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The realm of algorithms with predictions has led to the development of several new algorithms that leverage

predictions to enhance their performance guarantees. The challenge is to devise algorithms that achieve

optimal approximation guarantees as the prediction quality varies from perfect (consistency) to imperfect

(robustness). This framework is particularly appealing in mechanism design contexts, where predictions might

convey private information about the agents. In this paper, we design strategyproof mechanisms that leverage

predictions to achieve improved approximation guarantees for several variants of the Generalized Assignment

Problem (GAP) in the private graph model. In this model, first introduced by Dughmi & Ghosh (2010), the set

of resources that an agent is compatible with is private information. For the Bipartite Matching Problem (BMP),

we give a deterministic group-strategyproof (GSP) mechanism that is (1 + 1/𝛾)-consistent and (1 + 𝛾)-robust,
where𝛾 ≥ 1 is some confidence parameter. We also prove that this is best possible. Remarkably, our mechanism

draws inspiration from the renowned Gale-Shapley algorithm, incorporating predictions as a crucial element.

Additionally, we give a randomized mechanism that is universally GSP and improves on the guarantees in

expectation. The other GAP variants that we consider all make use of a unified greedy mechanism that adds

edges to the assignment according to a specific order. For a special case of Restricted Multiple Knapsack, this

results in a deterministic strategyproof mechanism that is (1 + 1/𝛾)-consistent and (2 + 𝛾)-robust. We then

focus on two variants: Agent Size GAP (where each agent has one size) and Value Consensus GAP (where all

agents have the same preference order over resources). For both variants, our universally GSP mechanisms

randomize over the greedy mechanism, our mechanism for BMP and the predicted assignment, leading to

(1+ 3/𝛾)-consistency and (3+𝛾)-robustness in expectation. All our mechanisms also provide more fine-grained

approximation guarantees that interpolate between the consistency and robustness guarantees, depending on

some natural error measure of the prediction.
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1 Introduction

Mechanism design is centered around the study of situations where multiple self-interested agents

interact within a system. Each agent holds some private information about their preferences

(also called type), based on which they make decisions. The primary goal is to create systems

such that, despite the agents acting in their own self-interest, the outcome is socially desirable or

optimal from the designer’s perspective. One of the key challenges is to design mechanisms that

incentivize the agents to reveal their preferences truthfully. A prominent notion in this context is

strategyproofness which ensures that it is in the best interest of each agent to reveal their preferences

truthfully, independently of the other agents. Unfortunately, strategyproofness often imposes strong

impossibility results on achieving the socially desirable objective optimally or even approximately.

As a consequence, the worst-case approximation guarantees derived in the literature can be rather

disappointing from a practical perspective (see, e.g., Roughgarden [2019]).

Mechanism Design with Predictions. To overcome these limitations, a new line of research,

called mechanism design with predictions, is exploring how to leverage learning-augmented inputs,

such as information about the private types of the agents or the structure of the optimal solution, in

the design of mechanisms. While this line of research first emerged in the area of online algorithms

(see, e.g., Lykouris and Vassilvitskii [2021]), it is particularly appealing in the context of mechanism

design because in economic environments this information can oftentimes be extracted from data

through machine-learning techniques. In the context of mechanism design, Agrawal et al. [2023]

and Xu and Lu [2022] are among the first works along this line.

In the mechanism design with predictions framework, the designer can exploit the predicted

information to improve the worst-case efficiency of their mechanism — but the predictions might be

inaccurate, or even entirely erroneous. As a result, the goal is to design mechanisms that guarantee

attractive approximation guarantees if the prediction is perfect (referred to as consistency), while

still maintaining a reasonable worst-case guarantee when the prediction is imperfect (referred to

as robustness). Ideally, the mechanism provides a fine-grained approximation guarantee, depending

on some measure of the prediction error, which smoothly interpolates between these two extreme

cases (referred to as approximation).

In this paper, we study how to leverage learning-augmented predictions in the domain of

mechanism design without money. How to design strategyproof mechanisms without leveraging

monetary transfers is a more complicated problem (see, e.g., Schummer and Vohra [2007] and

Procaccia and Tennenholtz [2013]). In the standard mechanism design with money literature,

monetary transfers can be employed to effectively eliminate the incentives for agents to misreport

their types. On the other hand, in some practical settings the designer might not be allowed to

leverage monetary transfers for ethical and legal issues (see Roughgarden [2010]), or due to practical

constraints (see Procaccia and Tennenholtz [2013]).

Generalized Assignment Problem with Predictions. We focus on the generalized assignment

problem (GAP), which encompasses several fundamental special cases that have been studied in

the literature on mechanism design without money (such as matching, multiple knapsack, GAP

variants, etc.). In this problem, we are given a set 𝐿 of strategic agents (or jobs) that can be assigned

to a set 𝑅 of resources (or machines). Each agent 𝑖 ∈ 𝐿 has a value 𝑣𝑖 𝑗 and a size 𝑠𝑖 𝑗 for being assigned

to resource 𝑗 ∈ 𝑅. Further, each resource 𝑗 ∈ 𝑅 has a capacity 𝐶 𝑗 (in terms of total size) that must

not be exceeded. The goal of the designer is to compute a feasible assignment of agents to resources

such that the overall value is maximized. This problem models several important use cases that

naturally arise in applications such as online advertising, crew planning, machine scheduling, etc.
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GAP Variant Restrictions

Unweighted Bipartite Matching (UBM) 𝑣𝑖 𝑗 = 1, 𝑠𝑖 𝑗 = 1, 𝐶 𝑗 = 1

Bipartite Matching Problem (BMP) 𝑠𝑖 𝑗 = 1, 𝐶 𝑗 = 1

Value Consensus GAP (VCGAP) ∃𝜎 : 𝑣𝑖𝜎 (1) ≥ . . . , ≥ 𝑣𝑖𝜎 (𝑚)
Agent Value GAP (AVGAP) 𝑣𝑖 𝑗 = 𝑣𝑖
Resource Value GAP (RVGAP) 𝑣𝑖 𝑗 = 𝑣 𝑗
Agent Size GAP (ASGAP) 𝑠𝑖 𝑗 = 𝑠𝑖
Resource Size GAP (RSGAP) 𝑠𝑖 𝑗 = 𝑠 𝑗
Restricted Multiple Knapsack (RMK) 𝑣𝑖 𝑗 = 𝑣𝑖 , 𝑠𝑖 𝑗 = 𝑠𝑖
Equal RMK (ERMK) 𝑣𝑖 𝑗 = 𝑠𝑖 𝑗 = 𝑣𝑖

Table 1. Overview of GAP variants.

UBM

ERMK

BMP

VCGAP

GAP

RMK

RSGAP

ASGAP

Fig. 1. Taxonomy of GAP variants.

Unfortunately, if the values of the agents are assumed to be private information, it is known that

deterministic strategyproof mechanisms are unable to provide bounded approximation guarantees

for GAP (see [Dughmi and Ghosh, 2010]).

Private Graph Model. In light of this, we turn towards a slightly more restrictive (but natural)

model for GAP that was introduced by Dughmi and Ghosh [2010], called the private graph model.

Here the agents’ values are assumed to be public information, but whether or not the value 𝑣𝑖 𝑗 can

be generated by assigning agent 𝑖 to resource 𝑗 is private information. The latter can naturally be

interpreted as compatibility restrictions that agents have with respect to the available resources.

Note that this variation restricts the strategy space of the agents from having the ability to misreport

their entire valuation vector to being able to misreport only their compatibility vector. Despite this

restriction, GAP in the private graph model still has several natural applications (see also [Dughmi

and Ghosh, 2010]).

We study GAP in the private graph model considering a learning-augmented setting.
1
Here, we

assume that a prediction of the optimal assignment with respect to the private compatibilities is

given. Note that this is weaker than assuming that the actual compatibilities are available as a

prediction. To see this, note we can always compute an optimal assignment with respect to some

given compatibility declarations (notwithstanding computational constraints). Depending on the

underlying application, it seems reasonable to assume that such assignment are learnable (e.g.,

through deep reinforcement learning, graph convolution neural networks, etc.).

1.1 Our Contributions

We initiate the study of GAP in the private graph model with predictions. We assume that a

(potentially erroneous) prediction of the optimal assignment for the true compatibility graph is

given as part of the input. We derive both deterministic and randomized mechanisms that are

(universally) group-strategyproof (GSP) for different variants of GAP; see Table 1 for an overview.

Our mechanisms are parameterized by a confidence parameter 𝛾 ≥ 1, which determines the trade-off

between the respective consistency and robustness guarantees. Choosing a higher confidence value

leads to a better consistency but a worse robustness guarantee, and vice versa. We also derive

more fine-grained approximation guarantees that smoothly interpolate between consistency and

robustness, depending on some error parameter 𝜂 of the prediction. Here, 1 − 𝜂 measures the

relative gap between the value of the predicted assignment and an optimal one; in particular, 𝜂 = 0

1
For the more general model of GAP with private values, even having access to optimal assignment predictions does not

help much: it is not hard to see that this leads to unbounded robustness if strategyproofness and bounded consistency is

required; more details are given in [Colini-Baldeschi et al., 2024].
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if the prediction is perfect, while 𝜂 = 1 if the prediction is arbitrarily bad. We summarize our main

results below.

• We prove a lower bound on the best possible trade-off in terms of consistency and robust-

ness guarantees that is achievable by any deterministic strategyproof mechanism for GAP

(Section 3). More precisely, we show that no deterministic strategyproof mechanism can be

(1 + 1/𝛾)-consistent and (1 + 𝛾 − 𝜖)-robust for any 𝜖 > 0. In fact, our lower bound holds for

the special case of the bipartite matching problem (BMP). We also extend our insights to

derive a lower bound in terms of consistency and approximation guarantees.

• For BMP, we derive a deterministic GSP mechanism that is (1 + 1/𝛾)-consistent and (1 + 𝛾)-
robust (Section 4). In light of the lower bound above, our mechanism thus achieves the best

possible consistency and robustness guarantees, albeit satisfying the stronger notion of GSP.

Unlike the mechanism known in the literature for the problem without predictions, we cru-

cially do not consider declarations in a fixed order. Instead, our mechanism draws inspiration

from the well-known deferred acceptance algorithm algorithm by Gale and Shapley [1962].

Here, the agent proposal order is crucial for GSP and the resource preference order is crucial

to improve upon the known guarantee for the problem without predictions. If an edge is in

the predicted optimal matching, it potentially has a better ranking in the resource preference

order. The result extends to many-to-one matchings and RSGAP.

• For GAP, we give a deterministic mechanism that greedily adds declared edges (while main-

taining feasibility) to an initially empty assignment, according to some order of the declara-

tions (Section 5). This order follows from a specific ranking function that is given as part of

the input. We prove a sufficient condition, called truth-inducing, of the ranking function for

GSP. For the special case of ERMK, we combine this greedy mechanism with a truth-inducing

ranking function resulting in a deterministic GSP mechanism that is (1 + 1/𝛾)-consistent and
(2+𝛾)-robust. The same approach can be used to obtain a GSP 3-approximate mechanism for

the setting without predictions, for which no polynomial time deterministic strategyproof

mechanism was known prior to this work.

• ForASGAP and VCGAP, we derive randomized universally GSP mechanisms that are (1+3/𝛾)-
consistent and (3 + 𝛾)-robust (Section 6). To this aim, we randomize over three deterministic

mechanisms, consisting of our mechanism for BMP, our greedy mechanism, and a third mech-

anism that simply follows the prediction. As the previously mentioned greedy mechanism is

one of the three building blocks, it is crucial that for these variants there exist truth-inducing

ranking functions. Notably, none of the three mechanisms achieves a bounded robustness

guarantee by itself. Additionally, note that RMK and both AVGAP and RVGAP are special

cases of VCGAP. For these special cases, no polynomial time deterministic strategyproof

mechanism is known. Finally, for BMP and ERMK, we derive randomized universally GSP

mechanisms that are (1 + 1/𝛾)-consistent and outperform the robustness guarantees of their

respective deterministic counterparts in expectation. In particular, for BMP this provides a

separation result showing that randomized mechanisms are more powerful than deterministic

ones (at least in expectation).

1.2 Related Work

Algorithms with predictions represent one perspective within the “beyond worst-case” paradigm.

The primary goal is to overcome existing worst-case lower bounds by augmenting each instance

with a prediction, possibly a machine-learned one. Hence, this line of work is also sometimes

referred to as learning-augmented algorithms. The conceptual framework that describes the trade-

off between 𝛼-consistency and 𝛽-robustness was introduced by Lykouris and Vassilvitskii [2021] in
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the context of online algorithms. Since then, online algorithms have remained a major focus (see

e.g., Azar et al. [2021, 2022], Banerjee et al. [2022], Purohit et al. [2018] for some reference works).

Thematically relevant to us, are the works on online matching (e.g., Antoniadis et al. [2023a,b],

Dinitz et al. [2022], Jin and Ma [2022], Lavastida et al. [2021a,b]) in non-strategic environments.
2

Other domains that have been studied under the lens of predictions include the reevaluation of

runtime guarantees of algorithms (see e.g., Chen et al. [2022], Dinitz et al. [2021], Sakaue and Oki

[2022] for bipartite matching algorithms), streaming algorithms, data structures, and more. We

refer the reader to Mitzenmacher and Vassilvitskii [2020] for a survey of some of the earlier works.

An overview of research articles that appeared on these topics is available at https://algorithms-

with-predictions.github.io.

Recently, Xu and Lu [2022] and Agrawal et al. [2023] introduced predictions for settings involving

strategic agents. In their work, Xu and Lu [2022] showcased four different mechanism design

settings with predictions, both with and without monetary transfers. On the other hand, Agrawal

et al. [2023] focused solely on strategic facility location. Most subsequent works with strategic

considerations have also been in algorithmic mechanism design (see e.g., Balkanski et al. [2023a,b],

Istrate and Bonchis [2022], Prasad et al. [2024]). However, other classic domains of economics and

computation literature continue to be revisited in the presence of predictions; see, e.g., the works

by Gkatzelis et al. [2022] on the price of anarchy, Berger et al. [2023] on voting, Lu et al. [2023] and

Caragiannis and Kalantzis [2024] on auction revenue maximization.

We briefly elaborate on the relation between learning-augmentedmechanism design and Bayesian

mechanism design. As pointed out by Agrawal et al. [2023], the main difference is the absence

of worst-case guarantees in the Bayesian setting. Indeed, in the standard Bayesian setting, it is

implicitly assumed that one has perfect knowledge of the distribution when analyzing the expected

performance of mechanisms. While this is a reasonable assumption in some settings, Bayesian

mechanisms do not offer any guarantees if this assumption fails.

Mechanism design without money has a rich history spanning over fifty years, being deeply

rooted in economics and social choice theory. As will be evident in Section 4, the seminal works

of Gale and Shapley [1962], Roth [1982] and Hatfield and Milgrom [2005] on stable matching are

particularly relevant to our study. However, our work aligns more closely with the agenda of

approximate mechanism design without money set forth by Procaccia and Tennenholtz [2013]

and, in particular, the subsequent work by Dughmi and Ghosh [2010]. In their work, Dughmi

and Ghosh [2010] introduced the private graph model, that we use in our environment with

predictions, and initiated the study of variants of GAP when the agents are strategic. (A variant of

this model where the resources are strategic instead, was studied by Fadaei and Bichler [2017a]).

Dughmi and Ghosh [2010] obtained a deterministic 2-approximate strategyproof mechanism for

weighted bipartite matching and a matching lower bound. Furthermore, they developed randomized

strategyproof-in-expectation
3
mechanisms for special cases of GAP; namely, a 2-approximation

for RMK, a 4-approximation for ASGAP and a 4-approximation for a special case of VCGAP,

termed Agent Value GAP (see Section 6.2 for some discussion). Finally, they proposed a randomized,

strategyproof-in-expectation 𝑂 (log𝑛)-approximate mechanism for the general case. Subsequently,

Chen et al. [2014] improved upon these results by devising mechanisms which satisfy universal

2
An exception to this is the work by Antoniadis et al. [2023b], who, even though their main focus is on designing algorithms

for online bipartite matching, observe that their algorithm implies a strategyproof mechanism if monetary transfers are

allowed.

3
A randomized mechanism is strategyproof-in-expectation if the true declaration of an agent maximizes their expected

utility. Note that this is a weaker notion than universal strategyproofness, which we obtain for the randomized mechanisms

in this work.
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strategyproofness, matching the guarantees of Dughmi and Ghosh [2010] for these special cases.

Additionally, they showed an improved 𝑂 (1)-approximation for GAP.

Beyond the private graph model, for the setting where values are private information but

monetary transfers are allowed, Fadaei and Bichler [2017b] devised a
𝑒

𝑒−1
-approximate mechanism

that is strategyproof-in-expectation. Finally, from an algorithmic perspective, the best known

approximation ratio for GAP is
𝑒

𝑒−1
− 𝜖 , for a fixed small 𝜖 > 0 due to Feige and Vondrak [2006].

On the negative side, Chakrabarty and Goel [2010] have shown that GAP does not admit an

approximation better that 11/10, unless P=NP.

2 Preliminaries

2.1 Generalized Assignment Problem with Predictions

In the generalized assignment problem (GAP), we are given a bipartite graph𝐺 = (𝐿∪𝑅, 𝐷) consisting
of a set 𝐿 = [𝑛] of 𝑛 ≥ 1 agents (or items, jobs) and a set 𝑅 = [𝑚] of𝑚 ≥ 1 resources (or knapsacks,

machines, respectively).
4
Each agent 𝑖 ∈ 𝐿 has a value 𝑣𝑖 𝑗 > 0 and a size 𝑠𝑖 𝑗 > 0 for being assigned to

resource 𝑗 ∈ 𝑅. Further, each resource 𝑗 ∈ 𝑅 has a capacity 𝐶 𝑗 > 0 (in terms of total size) that must

not be exceeded. We assume without loss of generality that 𝑠𝑖 𝑗 ≤ 𝐶 𝑗 for every 𝑖 ∈ 𝐿. Below, we use

𝒗 = (𝑣𝑖 𝑗 )𝑖∈𝐿,𝑗∈𝑅 ∈ R𝑛×𝑚>0
to refer to the matrix of all agent-resource values, 𝒔 = (𝑠𝑖 𝑗 )𝑖∈𝐿,𝑗∈𝑅 ∈ R𝑛×𝑚>0

to refer to the matrix of all agent-resource sizes and 𝑪 = (𝐶 𝑗 ) 𝑗∈𝑅 ∈ R𝑚>0
to refer to the vector of all

resource capacities.
5

The bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐷) encodes compatibilities between agents and resources; we

also refer to it as the compatibility graph.
6
An agent 𝑖 ∈ 𝐿 is said to be compatible with a resource

𝑗 ∈ 𝑅 if (𝑖, 𝑗) ∈ 𝐷 ; otherwise, 𝑖 is incompatible with 𝑗 . We use 𝐷𝑖 = {(𝑖, 𝑗) ∈ 𝐷} to denote the set of

all compatible edges of agent 𝑖 . Similarly, we use 𝐷 𝑗 = {(𝑖, 𝑗) ∈ 𝐷} to refer the set of all compatible

edges of resource 𝑗 . For example, the compatibility (𝑖, 𝑗) ∈ 𝐷 might indicate that agent 𝑖 has access

to resource 𝑗 , or that item 𝑖 can be assigned to knapsack 𝑗 , or that job 𝑖 can be executed on machine

𝑗 . Generally, 𝐷 can be any subset of 𝐿 × 𝑅. We use 𝐺 [𝐷] = (𝐿 ∪ 𝑅, 𝐷) to refer to the compatibility

graph induced by the edge set 𝐷 ⊆ 𝐿 × 𝑅 and IGAP = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪) to refer to an instance of GAP.

An assignment 𝑀 ⊆ 𝐿 × 𝑅 is a subset of edges such that each agent 𝑖 ∈ 𝐿 is incident to at

most one edge in𝑀 . Note that each agent is assigned to at most one resource, but several agents

might be assigned to the same resource; we also say that 𝑀 is a many-to-one assignment. If we

additionally require that each resource 𝑗 ∈ 𝑅 is incident to at most one edge in𝑀 , then𝑀 is said to

be a one-to-one assignment (or, matching, simply). Note that every matching is also an assignment.

Given an agent 𝑖 ∈ 𝐿, we use 𝑀 (𝑖) = { 𝑗 ∈ 𝑅 | (𝑖, 𝑗) ∈ 𝑀} to refer to the resource assigned to 𝑖 (if

any); note that 𝑀 (𝑖) is a singleton set. Also, we have 𝑀 (𝑖) = ∅ if 𝑖 is unassigned. Similarly, for a

resource 𝑗 ∈ 𝑅, we define 𝑀 ( 𝑗) = {𝑖 ∈ 𝐿 | (𝑖, 𝑗) ∈ 𝑀} as the set of agents assigned to 𝑗 (if any);

note that𝑀 ( 𝑗) = ∅ if 𝑗 is unassigned.

An assignment 𝑀 is said to be feasible for a given compatibility graph 𝐺 [𝐷] if (1) 𝑀 is an

assignment in𝐺 [𝐷], i.e.,𝑀 ⊆ 𝐷 , and (2)𝑀 satisfies all resource capacities constraints, i.e., for each

resource 𝑗 ∈ 𝑅,
∑

𝑖∈𝑀 ( 𝑗 ) 𝑠𝑖 𝑗 ≤ 𝐶 𝑗 . We define the value 𝑣 (𝑀) of an assignment𝑀 as the sum of the

values of all edges in𝑀 ; more formally,

𝑣 (𝑀) =
∑︁

(𝑖, 𝑗 ) ∈𝑀
𝑣𝑖 𝑗 . (1)

4
Throughout the paper, we use [𝑛] = {1, . . . , 𝑛} to refer to the set of the first 𝑛 ≥ 1 natural numbers.

5
We note that our assumption of all values, sizes and capacities being positive is without loss of generality in our model.

6
We can assume without loss of generality that𝐺 does not contain any isolated nodes.
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We overload this notation slightly and also write 𝑣 (𝑀 (𝑖)) and 𝑣 (𝑀 ( 𝑗)) to refer to the total

value of all edges assigned to agent 𝑖 or resource 𝑗 , respectively. We use𝑀∗
𝐷
to denote a feasible

assignment of maximum value in the graph 𝐺 [𝐷]. We also say that𝑀∗
𝐷
is an optimal assignment

with respect to 𝐷 .

Aswe considerGAPwith assignment predictions, in addition to an instanceIGAP = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪),
we are given a predicted assignment �̂� ⊆ 𝐿 × 𝑅 that respects the capacity constraints, i.e., for all

𝑗 ∈ 𝑅 it holds that

∑
(𝑖, 𝑗 ) ∈�̂� 𝑠𝑖 𝑗 ≤ 𝐶 𝑗 . Generally, �̂� can be any assignment in the complete graph

𝐺 [𝐿×𝑅], and thus may contain edges which are not in𝐷 . It is important to realize that the predicted

assignment �̂� is considered to be part of the input. We use I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) to refer to an
instance of GAP augmented with an assignment prediction �̂� . We use a similar notation for the

various special cases of GAP we study (see Table 1 for an overview of the special cases).

We say that �̂� is a perfect prediction for I
GAP

+ if it corresponds to an assignment of maximum

value in the graph 𝐺 [𝐷], i.e., 𝑣 (�̂� ∩ 𝐷) = 𝑣 (𝑀∗
𝐷
). Namely, we define an error parameter that

measures the quality of the predicted assignment �̂� relative to an optimal assignment𝑀∗
𝐷
of𝐺 [𝐷].

We define the prediction error 𝜂 (I
GAP

+ ) ∈ [0, 1] of an instance I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) as

𝜂 (I
GAP

+ ) = 1 − 𝑣 (�̂� ∩ 𝐷)
𝑣 (𝑀∗

𝐷
) . (2)

Note that with this definition an instance I
GAP

+ with a perfect prediction has a prediction error of

0. As the value of �̂� ∩ 𝐷 deteriorates from the value of an optimal assignment, the error measure

approaches 1. If 𝜂 (I
GAP

+ ) = 1, we must have 𝑣 (�̂� ∩ 𝐷) = 0 which means that the prediction �̂�

does not contain any edge that is also in 𝐷 (recall that the values are assumed to be positive).

Note that the definition of our error parameter in (2) is meaningful as it captures the relative

gap between the values of the predicted assignment and the optimal one. Alternatively, one could

compare structural properties of �̂� ∩ 𝐷 and𝑀∗
𝐷
. However, this seems less suitable in our context:

For example, under an error notion that is not value-based, a predicted assignment may only miss

one edge of an optimal assignment, i.e., |𝑀∗
𝐷
\ (�̂� ∩ 𝐷) | = 1, but still be of relatively low value if

this missing edge is valuable. Further, a predicted assignment might contain none of the edges of

the optimal assignment, i.e., (�̂� ∩ 𝐷) ∩𝑀∗
𝐷
= ∅, but still be very useful when its value is close to

optimal; in fact, (�̂� ∩ 𝐷) might even be an optimal matching that is disjoint from𝑀∗
𝐷
(because the

optimal assignment might not be unique). Finally, note that accounting the value of edges in �̂� \𝐷
in a prediction error notion is not informative, as our goal is to compute a feasible assignment𝑀

(i.e.,𝑀 ⊆ 𝐷). All these cases are captured by the definition of our prediction error as in (2).

Given a fixed error parameter 𝜂 ∈ [0, 1], instances I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) with 𝜂 (I
GAP

+ ) ≤ 𝜂

constitute the class of instances of prediction error at most 𝜂.

Approximation Objectives. We introduce the following three approximation notions for GAP

with predictions.

• Consistency: A mechanism M is 𝛼-consistent with 𝛼 ≥ 1 if for every instance I
GAP

+ =

(𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) with a perfect prediction, the computed matching 𝑀 = M(𝐷) satisfies
𝛼 · 𝑣 (𝑀) ≥ 𝑣 (𝑀∗

𝐷
).

• Robustness: A mechanism M is 𝛽-robust with 𝛽 ≥ 1 if for every instance I
GAP

+ =

(𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) with an arbitrary prediction �̂� , the computed matching𝑀 = M(𝐷) satis-
fies 𝛽 · 𝑣 (𝑀) ≥ 𝑣 (𝑀∗

𝐷
).

• Approximation: A mechanism M is 𝑔(𝜂)-approximate with 𝑔(𝜂) ≥ 1 if for every instance

I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) of prediction error at most 𝜂 ∈ [0, 1], the computed matching

𝑀 = M(𝐷) satisfies 𝑔(𝜂) · 𝑣 (𝑀) ≥ 𝑣 (𝑀∗
𝐷
).

1140



EC ’24, July 8–11, 2024, New Haven, CT, USA R. Colini-Baldeschi et al.

2.2 Private Graph Model and Assignment Mechanisms

We study GAP with predictions in a strategic environment. More specifically, we are interested

in the setting where the agents are strategic and might misreport their actual compatibilities. To

this aim, we use the private graph model introduced by Dughmi and Ghosh [2010] to capture such

manipulations in a meaningful way.

Here, each agent 𝑖 ∈ 𝐿 has a private compatibility set 𝐸𝑖 ⊆ {(𝑖, 𝑗) ∈ 𝐿 × 𝑅} specifying the set

of edges that are truly compatible for 𝑖 . Crucially, the compatibility set 𝐸𝑖 is private information,

i.e., 𝐸𝑖 is only known to agent 𝑖 . In addition, each agent 𝑖 ∈ 𝐿 declares a public compatibility set

𝐷𝑖 ⊆ {(𝑖, 𝑗) | 𝑗 ∈ 𝑅}. The interpretation is that 𝑖 claims to be compatible with resource 𝑗 ∈ 𝑅

if and only if (𝑖, 𝑗) ∈ 𝐷𝑖 ; but these declarations might not be truthful, i.e., 𝐷𝑖 ≠ 𝐸𝑖 . We define

𝐷 = ∪𝑖∈𝐿𝐷𝑖 ⊆ 𝐿 × 𝑅 to refer to the union of all compatibility sets declared by the agents. We use

𝐺 [𝐷] = (𝐿 ∪𝑅, 𝐷) to refer to the compatibility graph induced by the declared edges in 𝐷 . Similarly,

we use𝐺 [𝐸] to refer to the compatibility graph induced by the true compatibility sets of the agents,

i.e., 𝐸 = ∪𝑖∈𝐿𝐸𝑖 . We refer to 𝐺 [𝐸] as the private graph model (or, private graph simply).

Subsequently, we use (I
GAP

+ ,𝐺 [𝐸]) to refer to an instance I
GAP

+ of GAP with predictions in

the private graph model 𝐺 [𝐸]. We note that all input data of I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) is public
information accessible by the mechanism, while the private graph 𝐺 [𝐸] is private information. For

the sake of conciseness, we often omit input parameters which remain fixed; in fact, most of the

time is will be sufficient to refer explicitly to the compatibility declarations 𝐷 only.

Given an instance (IGAP,𝐺 [𝐸]) with compatibility declarations 𝐷 , a deterministic mechanismM
computes an assignment𝑀 = M(𝐷) that is feasible for 𝐷 . The utility 𝑢𝑖 of agent 𝑖 ∈ 𝐿 is defined as

𝑢𝑖 (𝐷) =
{
𝑣𝑖 𝑗 if (𝑖, 𝑗) ∈ 𝑀 ∩ 𝐸𝑖 ,

0 otherwise.

(3)

Note that the utility of agent 𝑖 is 𝑣𝑖 𝑗 if 𝑖 is assigned to resource 𝑗 in𝑀 and 𝑖 is truly compatible

with resource 𝑗 . In particular, the utility of 𝑖 is 0 if 𝑖 is unassigned in 𝑀 , or if 𝑖 is matched to an

incompatible resource. We assume that each agent wants to maximize their utility. To this aim, an

agent 𝑖 might misreport their true compatibilities by declaring a compatibility set 𝐷𝑖 ≠ 𝐸𝑖 . Note

that we are considering a multi-parameter mechanism design problem here.

Note that if𝑀 = M(𝐷) is the assignment computed byM for truthfully declared compatibilities,

i.e., 𝐷 = 𝐸, then its value 𝑣 (𝑀) (as defined in (1)) is equal to the sum of the utilities of the agents.

Incentive Compatibility Objectives. The following incentive compatibility notions will be

relevant in this paper.

• Strategyproofness: A mechanism M is strategyproof if for every instance I
GAP

+ =

(𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) and private graph 𝐺 [𝐸], it holds that for each agent 𝑖 ∈ 𝐿

∀𝐷 ′
𝑖 : 𝑢𝑖 (𝐸𝑖 , 𝐷−𝑖 ) ≥ 𝑢𝑖 (𝐷 ′

𝑖 , 𝐷−𝑖 ).

• Group-Strategyproofness: A mechanismM is group-strategyproof if for every instance

I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) and private graph 𝐺 [𝐸], it holds that for every subset 𝑆 ⊆ 𝐿

∀𝐷 ′
𝑆 : ∃𝑖 ∈ 𝑆 𝑢𝑖 (𝐸𝑆 , 𝐷−𝑆 ) ≥ 𝑢𝑖 (𝐷 ′

𝑆 , 𝐷−𝑆 ) .

Randomized Mechanisms. A randomized mechanism is a probability distribution over a finite

set of deterministic mechanisms. By extension, given a randomized mechanismM and an instance

of GAP with predictions I
GAP

+ ,M(I
GAP

+ ) is a probability distribution over a finite set of feasible

assignments for I
GAP

+ .

All randomized mechanisms we suggest in this work are universally strategyproof. A random-

ized mechanism M is universally strategyproof if it is a probability distribution over a finite set
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MECHANISM 1: Trust(I
GAP

+ )
Input: An instance I

GAP
+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�).

Output: A feasible assignment for I
GAP

+ .

return �̂� ∩ 𝐷

of deterministic strategyproof mechanisms. The notion of universally group-strategyproofness is

defined analogously. The three approximation objectives defined in Section 2.1 extend naturally to

randomized mechanisms (simply by replacing the value of an assignment with the expected value

in the respective definition).

Due to space limitations, several proofs and additional material are deferred to the full version

of the paper, see Colini-Baldeschi et al. [2024].

3 Impossibility Results and the Baseline Mechanism

We prove a lower bound on the best possible trade-off in terms of consistency and robustness

guarantees achievable by any deterministic strategyproof mechanism. We also derive a lower bound

in terms of the error parameter 𝜂. Finally, we introduce a trivial mechanism, called Trust, that

serves as a baseline mechanism in subsequent sections.

Impossibility Results. We prove our lower bound for the bipartite matching problem (BMP
+
)

and the Value Consensus GAP (VCGAP
+
) with predictions in the private graph model. Clearly, this

lower bound extends to all variants of GAP
+
that contain BMP

+
or VCGAP

+
as a special case.

Theorem 3.1. Let 𝛾 ≥ 1 be fixed arbitrarily. Then no deterministic strategyproof mechanism for

BMP
+
or VCGAP

+
can achieve (1 + 1/𝛾)-consistency and (1 + 𝛾 − 𝜖)-robustness for any 𝜖 > 0.

Note that the lower bound holds independently of any computational assumptions. For the

setting without predictions, Dughmi and Ghosh [2010] proved a lower bound of 2 for BMP.

Theorem 3.1 proves a lower bound in terms of consistency versus robustness. The next theorem

establishes a lower bound in terms of the error parameter 𝜂 as defined in (2) for any deterministic

strategyproof mechanism that is (1 + 1/𝛾)-consistent.

Theorem 3.2. Let 𝛾 ≥ 1 be fixed arbitrarily. Then no deterministic strategyproof mechanism for

BMP
+
or VCGAP

+
can be (1 + 1/𝛾)-consistent and ( 1

1−𝜂+𝜖 )-approximate with 𝜖 > 0 for any 𝜂 < 𝛾/1+𝛾 .

Baseline Mechanism. We conclude this section by introducing a naïve mechanism for GAP
+

in the private graph model, which simply adheres to the prediction: Given an instance I
GAP

+ =

(𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�), the mechanism returns the assignment �̂� ∩ 𝐷 . We call this mechanism Trust

(see Mechanism 1). It is trivial to see that Trust is 1-consistent. It is also not hard to prove that

Trust is group-strategyproof and achieves an optimal approximation guarantee matching the

lower bound in Theorem 3.2 (as 𝛾 → ∞).

Theorem 3.3. Fix some error parameter 𝜂 ∈ [0, 1). Consider the class of instances of GAP+ in the

private graph model with prediction error at most 𝜂. Then, Trust is group-strategyproof and achieves

an optimal approximation guarantee of 1/(1 − 𝜂).

We conclude from Theorem 3.3 that Trust realizes our strongest notion of incentive compatibility

(i.e., group-strategyproofness) and even achieves the best possible consistency and approximation

guarantees. But the point is, that it completely fails to achieve any bounded robustness guarantee.
7

In a nutshell, this demonstrates that the actual challenge in deriving strategyproof mechanisms

7
To see this, just consider an instance I

GAP
+ with �̂� ∩𝐷 = ∅.
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MECHANISM 2: Boost(I
BMP

+ , 𝛾)
Input: An instance I

BMP
+ = (𝐺 [𝐷], 𝒗, �̂�), confidence parameter 𝛾 ≥ 1.

Output: A feasible matching𝑀 for I
BMP

+ .

Initialize𝑀 = ∅, 𝐴 = 𝐿, 𝑃𝑖 = 𝐷𝑖 for each 𝑖 ∈ 𝐿.

while 𝐴 ≠ ∅ do

Choose 𝑖 ∈ 𝐴 and let (𝑖, 𝑗) = arg max{𝑣𝑖 𝑗 | (𝑖, 𝑗) ∈ 𝑃𝑖 }. // determine next proposal (𝑖, 𝑗 )
Agent 𝑖 offers 𝜃𝑖 𝑗 = 𝜃𝑖 𝑗 (𝛾, �̂�) to resource 𝑗 . // 𝑖 makes (boosted) offer to 𝑗

if 𝜃𝑖 𝑗 > 𝜃𝑀 ( 𝑗 ) 𝑗 then // check if 𝑖’s offer is highest for 𝑗

if 𝑀 ( 𝑗) ≠ ∅ then𝑀 = 𝑀 \ {(𝑀 ( 𝑗), 𝑗)} // 𝑗 rejects current mate 𝑀 ( 𝑗 ) (if any)

𝑀 = 𝑀 ∪ {(𝑖, 𝑗)} // 𝑖 tentatively matched to 𝑗

𝐴 = 𝐴 ∪𝑀 ( 𝑗) \ {𝑖} // update active agents

𝑃𝑖 = 𝑃𝑖 \ {(𝑖, 𝑗)} // update 𝑖’s proposal set

if 𝑃𝑖 = ∅ then 𝐴 = 𝐴 \ {𝑖} // remove 𝑖 from 𝐴 if no more proposals

return𝑀

for GAP
+
in the private graph model is to achieve the best possible trade-off in terms of consis-

tency/approximation and robustness guarantees; without the latter, the whole problem becomes

trivial (as Trust is the best possible mechanism). Despite this deficiency, and perhaps surprisingly,

we will use this non-robust mechanism Trust as an important building block in our randomized

mechanisms described in Section 6.

4 Our Mechanism for Bipartite Matching with Predictions

We introduce our mechanism, called Boost, for bipartite matching with predictions (BMP
+
) in the

private graph model. Our mechanism is inspired by the deferred acceptance algorithm by Gale and

Shapley [1962]. Boost is parameterized by some 𝛾 ≥ 1, which we term the confidence parameter.

Put differently, Boost defines an (infinite) family of deterministic mechanisms, one for each choice

of 𝛾 ≥ 1. It is important to realize that all properties proved below, hold for an arbitrary choice of

𝛾 ≥ 1. Boost also constitutes an important building block to derive our randomized mechanisms

for special cases of GAP in Section 6.

4.1 Boost Mechanism

Boost receives as input an instance I
BMP

+ = (𝐺 [𝐷], 𝒗, �̂�) of BMP
+
and a confidence parameter

𝛾 ≥ 1. Our mechanism maintains a tentative matching 𝑀 and a subset of agents 𝐴 ⊆ 𝐿 that are

called active. An agent 𝑖 is active if it is not tentatively matched to any resource and has some

remaining proposal to make; otherwise, 𝑖 is inactive. Initially, the matching is empty, i.e.,𝑀 = ∅,
and all agents are active, i.e., 𝐴 = 𝐿. In each iteration, the mechanism chooses an active agent 𝑖 ∈ 𝐴

who then makes an offer to an adjacent resource 𝑗 ∈ 𝑅 by following a specific proposal order:

Agent Proposal Order: Each agent 𝑖 ∈ 𝐿 maintains an order on their set of incident edges

𝐷𝑖 = {(𝑖, 𝑗) ∈ 𝐷} by sorting them according to non-increasing values 𝑣𝑖 𝑗 . We assume that ties are

resolved according to a fixed tie-breaking rule 𝜏𝑖 .
8

The key idea behind our mechanism is that the value 𝑣𝑖 𝑗 that 𝑖 proposes to 𝑗 is boosted if the

edge (𝑖, 𝑗) is part of the predicted matching �̂� . We make this idea more concrete: given an agent 𝑖

8
Note that the choice of the edge (𝑖, 𝑗 ) of maximum value 𝑣𝑖 𝑗 in Line 2 is uniquely determined by this order.
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and a declared edge (𝑖, 𝑗) ∈ 𝐷𝑖 , we define the offer 𝜃𝑖 𝑗 = 𝜃𝑖 𝑗 (𝛾, �̂�)9 for resource 𝑗 as

𝜃𝑖 𝑗 (𝛾, �̂�) =
{
𝑣𝑖 𝑗 if (𝑖, 𝑗) ∉ �̂� ,

𝛾𝑣𝑖 𝑗 if (𝑖, 𝑗) ∈ �̂� .

(4)

Based on this definition, when it is 𝑖’s turn to propose to resource 𝑗 , then the offer that 𝑗 receives

from 𝑖 is the actual value 𝑣𝑖 𝑗 if (𝑖, 𝑗) is not a predicted edge, while it is the boosted value 𝛾𝑣𝑖 𝑗 if

(𝑖, 𝑗) is a predicted edge. Intuitively, our mechanisms increases the chance that an agent proposing

through a predicted edge is accepted (see below) by amplifying the offered value by a factor 𝛾 ≥ 1.

Suppose resource 𝑗 receives offer 𝜃𝑖 𝑗 from agent 𝑖 . Then 𝑗 accepts 𝑖 if 𝜃𝑖 𝑗 is the largest offer that

𝑗 received so far; otherwise, 𝑗 rejects 𝑖 . We define 𝜃∅ 𝑗 = 0 to indicate that the highest offer that 𝑗

received is zero if 𝑗 is still unmatched, i.e.,𝑀 ( 𝑗) = ∅. To this aim, each resource 𝑗 maintains a fixed

preference order over their set of incident edges.

Resource Preference Order: Each resource 𝑗 maintains an order on their set of incident edges

𝐷 𝑗 = {(𝑖, 𝑗) ∈ 𝐷} by sorting them according to non-increasing offer values 𝜃𝑖 𝑗 . We assume that ties

are resolved according to a fixed tie-breaking rule 𝜏 𝑗 .
10

If 𝑖 is accepted, then 𝑖 becomes tentatively matched to 𝑗 , i.e., (𝑖, 𝑗) is added to𝑀 , and 𝑖 becomes

inactive. Also, if there is some agent 𝑘 that was tentatively matched to 𝑗 before, then 𝑘 is rejected

by 𝑗 , i.e., (𝑘, 𝑗) is removed from𝑀 , and 𝑘 becomes active again. Whenever an agent gets rejected,

it moves on to the next proposal (if any) according to their offer order; in particular, an agent

proposes at most once to each adjacent resource.

The mechanism terminates when all agents are inactive, i.e., 𝐴 = ∅. The current matching

becomes definite and is output by the mechanism. Note that we do not specify how an agent 𝑖 is

chosen from the set of active agents 𝐴 in Line 2. In fact, any choice will work here.
11
For example,

a natural choice is to always choose an active agent 𝑖 ∈ 𝐴 whose next offer 𝜃𝑖 𝑗 is largest.

Intuitively, the confidence parameter𝛾 ≥ 1 specifies to which extent Boost follows the prediction.

On the one extreme, for 𝛾 = 1 our mechanism ignores the prediction, which is the best choice

in terms of achieving optimal robustness (at the expense of achieving worst consistency). As 𝛾

increases, our mechanism follows the prediction more and more. On the other extreme, for 𝛾 → ∞
our mechanism becomes Trust (as introduced in Section 3) and simply returns the predicted

matching; naturally, this is the best choice in terms of achieving optimal consistency (at the expense

of unbounded robustness).

A crucial difference between Boost and the existing mechanism for BMP by Dughmi and Ghosh

[2010], is that Boost maintains a tentative matching until it terminates. The 2-approximate mecha-

nism of Dughmi and Ghosh [2010] greedily and permanently matches declared edges according

to non-increasing values, while maintaining feasibility. This mechanism coincides with Boost if

𝛾 = 1, i.e., Boost ignores the prediction, and the next proposal is determined by the highest valued

remaining edge among the active agents (assuming that ties are broken in the same way).

The following is the main result of this section:

Theorem 4.1. Fix some error parameter 𝜂 ∈ [0, 1]. Consider the class of instances of BMP
+
in the

private graph model with prediction error at most 𝜂. Then, for every confidence parameter 𝛾 ≥ 1,

9
Note that 𝜃𝑖 𝑗 (𝛾, �̂� ) depends on the confidence parameter 𝛾 and the predicted matching �̂� ; but we omit these arguments

and simply write 𝜃𝑖 𝑗 if they are clear from the context.

10
Note that the comparison in Line 2 is done with respect to this order.

11
In contrast, for the more general settings considered below, the specific choice of 𝑖 ∈ 𝐴 will be crucial.
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Boost is group-strategyproof and has an approximation guarantee of

𝑔(𝜂,𝛾) =
{

1+𝛾
𝛾 (1−𝜂 ) if 𝜂 ≤ 1 − 1/𝛾 ,
1 + 𝛾 otherwise.

(5)

In particular, Boost is (1 + 1/𝛾)-consistent and (1 + 𝛾)-robust, which is best possible.

Note that Boost is not only strategyproof, but satisfies the stronger incentive compatibility

notion of group-strategyproofness. Also, in light of the lower bound given in Theorem 3.1, Boost

achieves the best possible trade-off in terms of consistency and robustness guarantees. Note that

the approximation guarantee retrieves the best possible (1 + 1/𝛾)-consistency guarantee for 𝜂 = 0

and (1 + 𝛾)-robustness guarantee for 𝜂 ≥ 1 − 1/𝛾 . For the range 𝜂 ∈ [0, 1 − 1/𝛾], as 𝜂 increases the

approximation interpolates between the consistency and the robustness guarantee (see Figure 2a).

The upper bound for Boost as stated above is off by a factor of 1 + 1/𝛾 from the lower bound proven

in Theorem 3.2 (see Figure 2b and Figure 2c).

The following lemma will turn out to be useful for proving the robustness guarantee.

Lemma 4.2. Let 𝛾 ≥ 1. Let I
BMP

+ = (𝐺 [𝐷], 𝒗, �̂�) be an instance of BMP
+
and let𝑀 be the matching

returned by Boost(I
BMP

+ , 𝛾). Then 2𝑣 (𝑀) + (𝛾 − 1)𝑣 (𝑀 ∩ �̂�) ≥ 𝑣 (𝑀∗
𝐷
).

We can now prove that Boost is (1 + 𝛾)-robust.

Proof of Theorem 4.1 (robustness). Let 𝛾 ≥ 1. Let I
BMP

+ = (𝐺 [𝐷], 𝒗, �̂�) be an instance of

BMP
+
and let 𝑀 be the matching returned by Boost(I

BMP
+ , 𝛾). Further, let 𝑀∗

𝐷
be an optimal

matching. By Lemma 4.2, we have

𝑣 (𝑀∗
𝐷 ) ≤ 2𝑣 (𝑀) + (𝛾 − 1)𝑣 (𝑀 ∩ �̂�) ≤ 2𝑣 (𝑀) + (𝛾 − 1)𝑣 (𝑀) ≤ (1 + 𝛾)𝑣 (𝑀). □

The next lemma shows that the matching computed by Boost is a (1 + 1/𝛾)-approximation of the

predicted matching �̂� ∩ 𝐷 in 𝐺 [𝐷]. It will turn out to be useful when proving the approximation

guarantee of Boost.

Lemma 4.3. Let 𝛾 ≥ 1. Let I
BMP

+ = (𝐺 [𝐷], 𝒗, �̂�) be an instance of BMP
+
and let𝑀 be the matching

returned by Boost(I
BMP

+ , 𝛾). Then (1 + 1/𝛾)𝑣 (𝑀) ≥ 𝑣 (�̂� ∩ 𝐷).

Proof. We prove that the value of each edge in �̂� ∩𝐷 can be covered by the value of an edge in

the matching𝑀 output by Boost (I
BMP

+ , 𝛾). More precisely, we define a mapping 𝑔 : �̂� ∩ 𝐷 → 𝑀

together with some scalars (𝛼𝑒 )𝑒∈�̂�∩𝐷 such that for each edge 𝑒 ∈ �̂� ∩𝐷 it holds that 𝛼𝑒 · 𝑣𝑒 ≤ 𝑣𝑔 (𝑒 )
with 𝛼𝑒 ≥ 1. We also say that 𝑒 is (1/𝛼𝑒 )-covered by edge 𝑔(𝑒) ∈ 𝑀 .

Let 𝑒 = (𝑖, 𝑗) ∈ �̂� ∩ 𝐷 . If 𝑒 ∈ 𝑀 , we define 𝑔(𝑒) = 𝑒 and 𝛼𝑒 = 1. Suppose 𝑒 = (𝑖, 𝑗) ∉ 𝑀 . We

distinguish the following cases:

(1) ∃𝑘 ∈ 𝑀 (𝑖) with 𝑣𝑖𝑘 ≥ 𝑣𝑖 𝑗 . We define 𝑔(𝑒) = (𝑖, 𝑘) and 𝛼𝑒 = 1.

(2) ∃𝑘 ∈ 𝑀 (𝑖) with 𝑣𝑖𝑘 < 𝑣𝑖 𝑗 . Note that 𝑖 first proposes to 𝑗 and only later to 𝑘 . In particular, 𝑗

must have rejected the offer of 𝑖 at some stage. Thus, there must be an agent ℓ with (ℓ, 𝑗) ∈ 𝑀

whose offer is larger than the one of 𝑖 . Recall that (𝑖, 𝑗) ∈ �̂� ∩ 𝐷 and thus 𝑖 made a boosted

offer 𝛾𝑣𝑖 𝑗 to 𝑗 . On the other hand, (ℓ, 𝑗) ∉ �̂� ∩ 𝐷 and thus ℓ offers 𝑣ℓ 𝑗 to 𝑗 . We conclude that

𝑣ℓ 𝑗 ≥ 𝛾𝑣𝑖 𝑗 . We define 𝑔(𝑒) = (ℓ, 𝑗) and 𝛼𝑒 = 𝛾 .

(3) �𝑘 ∈ 𝑀 (𝑖). Note that 𝑖 proposed to 𝑗 at some stage but was rejected (immediately or subse-

quently) and remained unassigned after all. Similarly to the previous case, this implies that

there exists some agent ℓ with (ℓ, 𝑗) ∈ 𝑀 and 𝑣ℓ 𝑗 ≥ 𝛾𝑣𝑖 𝑗 . We define 𝑔(𝑒) = (ℓ, 𝑗) and 𝛼𝑒 = 𝛾 .
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Fig. 2. Approximation guarantee 𝑔(𝜂) as a function of 𝜂. (a) For 𝛾 ∈ {3/2, 2, 3}. (b) Upper vs. lower bound for

𝛾 = 2. (c) Upper vs. lower bound for 𝛾 = 4.

Note that themapping𝑔 defined abovemaps each edge 𝑒 ∈ �̂�∩𝐷 either to itself, i.e.,𝑔(𝑒) = 𝑒 ∈ 𝑀 ,

or to an edge 𝑓 = 𝑔(𝑒) ∈ 𝑀 that is adjacent to 𝑒 . Also, because �̂� ∩ 𝐷 is a matching, there are

at most two edges in �̂� ∩ 𝐷 which are adjacent to an edge 𝑓 in 𝑀 . Said differently, each edge

𝑓 ∈ 𝑀 covers at most two edges in �̂� ∩𝐷 . Moreover, if edge 𝑓 = (ℓ, 𝑗) = 𝑔(𝑒) ∈ 𝑀 (1/𝛾)-covers an
edge 𝑒 = (𝑖, 𝑗) ∈ �̂� ∩ 𝐷 (i.e., Cases (2) and (3) above), 𝑓 and 𝑒 must share a common resource 𝑗 ; in

particular, the other edge in �̂� ∩ 𝐷 that is mapped to 𝑓 (if any) must be 1-covered by 𝑓 . Using the

above observations, we can now prove the claim:

𝑣 (�̂� ∩ 𝐷) =
∑︁

𝑒∈�̂�∩𝐷

𝑣𝑒 ≤
∑︁

𝑒∈�̂�∩𝐷

𝑣𝑔 (𝑒 )/𝛼𝑒 ≤
(
1 + 1

𝛾

) ∑︁
𝑓 ∈𝑀

𝑣 𝑓 =

(
1 + 1

𝛾

)
𝑣 (𝑀). □

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1 (Approximation). Let 𝛾 ≥ 1 be fixed arbitrarily. Consider an instance

I
BMP

+ = (𝐺 [𝐷], 𝒗, �̂�) of BMP
+
with prediction error 𝜂 (I

BMP
+ ) ≤ 𝜂. Let𝑀 be the matching returned

by Boost(I
BMP

+ , 𝛾). Note that by Lemma 4.3 we have (1 + 1/𝛾)𝑣 (𝑀) ≥ 𝑣 (�̂� ∩ 𝐷). By the definition

of the error parameter in (2), we have 𝑣 (�̂� ∩𝐷) = (1−𝜂 (I
GAP

+ ))𝑣 (𝑀∗
𝐷
). Also, 𝜂 (I

GAP
+ )) ≤ 𝜂. Thus,

(1 + 1/𝛾)𝑣 (𝑀) ≥ 𝑣 (�̂� ∩ 𝐷) = (1 − 𝜂 (I
GAP

+ ))𝑣 (𝑀∗
𝐷 ) ≥ (1 − 𝜂)𝑣 (𝑀∗

𝐷 ),
and we conclude that Boost is (1 + 1/𝛾)/(1 − 𝜂)-approximate. Further, the robustness guarantee of

(1 + 𝛾) holds independently of the prediction error 𝜂. The claimed bound on the approximation

guarantee 𝑔(𝜂,𝛾) now follows by combining these two bounds. □

4.2 Extensions of Boost

Boost is rather versatile in the sense that it can be adapted to handle more general settings while

retaining its group-strategyproofness property. We summarize a few extensions below and defer

further details to the full version of the paper: (E1) Boost can also be run with a prediction that is

a many-to-one assignment and remain group-strategyproof. We exploit this in Section 6. In fact,

the only change is that the offer function in (4) is defined with respect to a predicted many-to-one

assignment �̂� . The proof of group-strategyproofness in Theorem 4.1 continues to hold without

change. (E2) Boost can also handle many-to-one matchings. Also here, the offer function in (4)

is defined with respect to a predicted many-to-one assignment �̂� . Further, each resource 𝑗 now

accepts the at most 𝐶 𝑗 highest offers among the set of proposing agents and rejects the remaining

1146



EC ’24, July 8–11, 2024, New Haven, CT, USA R. Colini-Baldeschi et al.

MECHANISM 3: Greedy(I
GAP

+ , 𝒛)
Input: An instance I

GAP
+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�), a ranking function 𝒛 : 𝐿 × 𝑅 ↦→ R𝑘 for some 𝑘 ∈ N.

Output: A feasible assignment for I
GAP

+ .

Set L = sort(𝐷, (𝑧 (𝑒))𝑒∈𝐷 ). // sort edges in 𝐷 lexicographically by (𝑧 (𝑒 ) )𝑒∈𝐷
Initialize𝑀 = ∅.
while L ≠ ⟨⟩ do // process edges in sorted order of L

Let (𝑖, 𝑗) be the first edge of L and remove it. // remove first edge (𝑖, 𝑗 ) from L
if

∑
𝑡 ∈𝑀 ( 𝑗 )∪{𝑖 } 𝑠𝑡 𝑗 ≤ 𝐶 𝑗 then // 𝑖 can be added to 𝑀 ( 𝑗 ) without exceeding capacity

Set𝑀 ( 𝑗) = 𝑀 ( 𝑗) ∪ {𝑖}. // add 𝑖 to 𝑀 ( 𝑗 )
Remove all edges of agent 𝑖 from L. // update L

return𝑀

ones.
12
The resulting adaptation of Boost remains group-strategyproof. An easy way to see this by

realizing that this adapted mechanisms mimics Boost on the instance obtained from the reduction

described next. (E3) Boost can also be used to handle instances of RSGAP by a simple reduction to

BMP. Recall that for an instance IRSGAP = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪) of RSGAP it holds that all agents have

the same size 𝑠 𝑗 with respect to a resource 𝑗 , i.e., 𝑠𝑖 𝑗 = 𝑠 𝑗 for all 𝑖 ∈ 𝐿. It is not hard to see that we

can reduce IRSGAP to an equivalent instance IBMP of BMP by introducing ⌊𝐶 𝑗/𝑠 𝑗 ⌋ copies of 𝑗 . Based
on this, there is a natural correspondence between the compatibility declarations as well as the

assignments in IRSGAP and IBMP, respectively.

The latter observation leads to the following corollary.

Corollary 4.4. Fix some error parameter 𝜂 ∈ [0, 1]. Consider the class of instances of 𝑅𝑆𝐺𝐴𝑃+
in

the private graph model with prediction error at most 𝜂. Then, for any confidence parameter 𝛾 ≥ 1,

Boost is group-strategyproof and has an approximation guarantee of

𝑔(𝜂,𝛾) =
{

1+𝛾
𝛾 (1−𝜂 ) if 𝜂 ≤ 1 − 1/𝛾 ,
1 + 𝛾 otherwise.

Note that the above implies that Boost is group-strategyproof and 2-approximate for RSGAP

without predictions (i.e., by choosing 𝛾 = 1). To the best of our knowledge, the current best

mechanism for this problem is the randomized, universally strategyproof, 4-approximatemechanism

by Chen et al. [2014].

5 Beyond Bipartite Matching Via Greedy Mechanisms

In this section, we first introduce a generic mechanism design template for GAP
+
that provides a

unifying building block for several of our mechanisms. After that, we provide a first application of

this template and derive a deterministic mechanism for a special case of RMK
+
.

5.1 A Template Of Greedy Mechanisms

At high level, the greedy mechanism template behaves as follows: the mechanism first orders all

declared edges according to some specific ranking (which is given as part of the input). According

to this order, the mechanism then greedily adds as many edges as possible (while maintaining

feasibility) to construct an assignment. We refer to this mechanism as Greedy; see Mechanism 3.

Greedy receives as input an instance I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) of GAP+ and a ranking function

𝒛 : 𝐿×𝑅 ↦→ R𝑘 for some 𝑘 ∈ N. It then uses the sort operator (see Line 1) to sort the set of declared

edges 𝐷 in lexicographic decreasing order according to their values (𝑧1, . . . , 𝑧𝑘 ). As a result, the list
12
Recall that in the many-to-one setting each agent has unit size and all resources have integer capacities.
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L = ⟨𝑒𝜋1
, . . . , 𝑒𝜋 |𝐷 | ⟩ output by sort satisfies 𝒛 (𝑒𝜋𝑖 ) ⪰lex 𝒛 (𝑒𝜋 𝑗

) for all 𝑖 < 𝑗 . Greedy then processes

the edges in this order by always removing the first element (𝑖, 𝑗) from L, and greedily assigns

agent 𝑖 to resource 𝑗 whenever this maintains the feasibility of the constructed assignment𝑀 . If 𝑖

can be assigned to 𝑗 , the assignment𝑀 is updated accordingly and all edges of 𝑖 are removed from

the list L. Greedy terminates if there are no more edges in L.

It is important to realize that Greedy coupled with an arbitrary ranking function 𝒛 may not

result in a strategyproof mechanism for GAP
+
in general. However, we show that mechanisms

derived through this template allow us to obtain meaningful results for several GAP
+
variants

studied in this paper. Definition 5.1 captures a sufficient condition for group-strategyproofness for

a ranking function 𝒛 for Greedy, as we show in Theorem 5.2.

Definition 5.1. Consider some class of instances of GAP
+
in the private graph model. We say that

a ranking function 𝒛 is truth-inducing if for every instance I
GAP

+ of this class it holds that:

(1) The extended lexicographic order of 𝐿 × 𝑅 with respect to 𝒛 is strict and total.

(2) For every agent 𝑖 ∈ 𝐿, and every 𝑒 = (𝑖, 𝑗), 𝑒′ = (𝑖, 𝑗 ′) ∈ 𝐿 × 𝑅 with 𝒛 (𝑒) ⪰lex 𝒛 (𝑒′), it holds
that 𝑣𝑒 ≥ 𝑣𝑒′ .

Theorem 5.2. Consider some class of instances of GAP
+
in the private graph model and let 𝒛 be a

ranking function that is truth-inducing with respect to this class. Then Greedy coupled with 𝒛 is a
group-strategyproof mechanism.

Finally, we stress that, given an instance I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�), Greedy is not necessarily
dependent on the predicted assignment �̂� ; it can handle a non-augmented instance of GAP as

well. However, the flexibility is in place for the accompanying ranking function 𝒛 to use �̂� in a

beneficial manner for the underlying optimization problem. In the following section we present an

implementation of this concept.

5.2 Restricted Multiple Knapsack

We introduce the GAP variant called Restricted Multiple Knapsack (RMK).
13
In this variant, given

an instance IGAP = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪), each agent 𝑖 ∈ 𝐿 has a fixed value 𝑣𝑖 = 𝑣𝑖 𝑗 and size 𝑠𝑖 = 𝑠𝑖 𝑗
for all 𝑗 ∈ 𝑅. For the private graph model, Dughmi and Ghosh [2010] showed a randomized,

strategyproof-in-expectation, 2-approximate mechanism for this problem, while a 4-approximation

under universal-strategyproofness is implied by Chen et al. [2014] (through a generalization). To

the best of our knowledge, no deterministic strategyproof mechanism is known.

In this section, we focus on devising a deterministic, group-strategyproof mechanism for the

special case where 𝑣𝑖 = 𝑠𝑖 for all 𝑖 ∈ 𝐿 and we refer to it as Equal RMK (ERMK) throughout the

section.
14
We denote an instance of this special case asIERMK = (𝐺 [𝐷], (𝑣𝑖 = 𝑠𝑖 )𝑖∈𝐿, 𝑪). Interestingly,

ERMK is strongly NP-hard as shown by Dawande et al. [2000]. For this class of instances, we

show that coupling our Greedy mechanism with a carefully chosen ranking function 𝒛 gives a
deterministic group-strategyproof mechanism achieving constant approximation guarantees (for

every fixed 𝛾 ≥ 1). Our ranking function 𝒛 combines our boosted offer notion 𝜃𝑖 𝑗 (𝛾, �̂�) with a

specific tie-breaking rule to favor edges in the predicted assignment �̂� . This allows us to derive

improved approximation guarantees if the prediction error is small, while at the same time retaining

bounded robustness if the prediction is erroneous.

Let I
ERMK

+ = (𝐺 [𝐷], (𝑣𝑖 = 𝑠𝑖 )𝑖∈𝐿, 𝑪, �̂�) be an instance of ERMK
+
. Note that �̂� is a many-to-one

assignment here. Let 𝛾 ≥ 1 be fixed arbitrarily. We define the ranking function 𝒛 : 𝐿 × 𝑅 ↦→ R4

13
Also known as Multiple Knapsacks with Assignment Restrictions (see, e.g., Aerts et al. [2003], Dawande et al. [2000], Nutov

et al. [2006]).

14
We readdress the general problem in Section 6.2 through a more general variant, by devising a randomized mechanism.
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as follows: Let the boosted offer 𝜃𝑖 𝑗 (𝛾, �̂�) be defined as in (4). Also, let 1(𝑖, 𝑗 ) ∈�̂� be the indicator

function which is 1 if and only if (𝑖, 𝑗) ∈ �̂� . Then, for each (𝑖, 𝑗) ∈ 𝐿 × 𝑅, we define

𝒛 ((𝑖, 𝑗)) :=

(
𝜃𝑖 𝑗 (𝛾, �̂�), 1(𝑖, 𝑗 ) ∈�̂� , −𝑖, − 𝑗

)
. (6)

The intuition behind our ranking function is to rank the edges in 𝐷 by their 𝛾-boosted value.

Recall that for ERMK we have for each agent 𝑖 ∈ 𝐿, 𝑣𝑖 = 𝑣𝑖 𝑗 for all 𝑗 ∈ 𝑅. In particular, for 𝛾 > 1,

the first-order criterion 𝜃𝑖 𝑗 (𝛾, �̂�) ensures that the predicted edge of agent 𝑖 in 𝐷𝑖 is ordered before

the non-predicted ones. In fact, crucially, the second-order criterion ensures that this property also

holds for 𝛾 = 1. Put differently, whenever 𝜃𝑒 (𝛾, �̂�) = 𝜃𝑒′ (𝛾, �̂�) we make sure that priority is given

to edges in �̂� ∩ 𝐷 . Remarkably, the preference we give to the predictions in case of ties leads to

improved approximation guarantees even for 𝛾 = 1, if the prediction error 𝜂 is small, i.e., for 𝜂 < 1/3.

If any ties remain, they are broken in increasing index of first 𝑖 and then 𝑗 .

We use Greedy-by-Theta to refer to the mechanism that we derive from Greedy with the

ranking function 𝒛 as defined in (6).

Theorem 5.3. Fix some error parameter 𝜂 ∈ [0, 1]. Consider the class of instances of ERMK
+
in

the private graph model and prediction error at most 𝜂. Then, for every confidence parameter 𝛾 ≥ 1,

Greedy-by-Theta is group-strategyproof and has an approximation guarantee of

𝑔(𝜂,𝛾) =
{

1+𝛾
𝛾 (1−𝜂 ) if 𝜂 ≤ 1 − 𝛾+1

𝛾 (𝛾+2) ,

2 + 𝛾 otherwise.

(7)

In particular, Greedy-by-Theta is (1 + 1/𝛾)-consistent and (2 + 𝛾)-robust.

Note that for 𝛾 = 1 our result implies a 3-approximate, group-strategyproof mechanism for

ERMK. To the best of our knowledge, no deterministic strategyproof mechanism was known prior

to our work.

6 Randomized Mechanisms for GAP Variants With Predictions

In this section, we devise randomized mechanisms for variants of GAP with predictions. It is

important to note that all randomized mechanisms in this section attain the stronger property of

universal group-strategyproofness.

A common thread among all mechanisms in this section is that they may return the outcome of

Trust with some probability. As discussed in Section 3, Trust alone lacks a robustness guarantee.

However, we can obtain randomized schemes with improved (expected) robustness guarantees by

mixing between Trust and other mechanisms. First, we present our methodology in Section 6.1 by

applying it to BMP
+
. Then, in Section 6.2, we derive our randomized mechanisms for more general

variants of GAP.

6.1 Improved Robustness via Randomization: A Separation Result for Matching

We demonstrate our idea by applying it to BMP
+
. Our mechanism Boost-or-Trust randomizes

over two deterministic mechanisms, one with and one without a robustness guarantee. Boost-or-

Trust can be summarized as follows: given an instance I
BMP

+ and a confidence parameter 𝛾 ≥ 1,

with probability 𝑝 the mechanism outputs 𝑀1 = Boost(I
BMP

+ , 𝛿 (𝛾)), with 𝛿 (𝛾) =
√︁

2(𝛾 + 1) − 1.

With probability 1 − 𝑝 , Boost-or-Trust outputs the matching𝑀2 = Trust(I
BMP

+ ) = �̂� ∩ 𝐷 . As

we have discussed in Section 3, using Trust implies confidence in the quality of the prediction �̂� .

In expectation, this trade-off gives Boost-or-Trust an edge regarding robustness compared to

simply running Boost and, at the same time, allows it to retain the approximation of Boost.
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MECHANISM 4: Boost-or-Trust(I
BMP

+ , 𝛾)
Input: An instance I

BMP
+ = (𝐺 [𝐷], 𝒗, �̂�), confidence parameter 𝛾 ≥ 1.

Output: A probability distribution over matchings for I
BMP

+ .

Let 𝛿 (𝛾) =
√︁

2(𝛾 + 1) − 1.

Set𝑀1 = Boost(I
BMP

+ , 𝛿 (𝛾)). // Note that 𝛿 (𝛾 ) ≥ 1 for all 𝛾 ≥ 1.

Set𝑀2 = Trust(I
BMP

+ , 𝐷).
Set 𝑝 = 2/(𝛿 (𝛾) + 1). // Note that 𝑝 ∈ (0, 1] for all 𝛾 ≥ 1.

return𝑀1 with probability 𝑝 and𝑀2 with probability 1 − 𝑝 .

Theorem 6.1. Fix some error parameter 𝜂 ∈ [0, 1]. Consider the class of instances of BMP
+
in the

private graph model with prediction error at most 𝜂. Then, for every confidence parameter 𝛾 ≥ 1,

Boost-or-Trust is universally group-strategyproof and has an expected approximation guarantee of

𝑔(𝜂,𝛾) =


1+𝛾
𝛾 (1−𝜂 ) if 𝜂 ≤ 1 −

√
2(𝛾+1)
2𝛾

,√︁
2(𝛾 + 1) otherwise.

In particular, Boost-or-Trust is (1 + 1/𝛾)-consistent and
√︁

2(𝛾 + 1)-robust (both in expectation).

Remark 6.2. By Corollary 4.4, we have concluded that Boost can be adapted to handle instances of

𝑅𝑆𝐺𝐴𝑃+
with the same performance as the one-to-one case and remain group-strategyproof. Therefore,

Theorem 6.1 applies for this case as well. Furthermore, the same technique can be used for ERMK
+

(Section 5.2) to yield a universally group-strategyproof randomized mechanism, see the full version of

the paper for a detailed exposition.

Recall that, by Theorem 3.1 and Theorem 4.1, we have concluded that Boost attains the optimal

consistency-robustness trade-off among deterministic strategyproof mechanisms. However, as

shown in Theorem 6.1, the (expected) consistency-robustness of Boost-or-Trust is strictly better

than that of any deterministic mechanism. This implies a separation between the two classes of

mechanisms for BMP
+
in our environment with predictions.

6.2 More General Variants of GAP
+

In this section we devise randomized universally group-strategyproof mechanisms for two variants

of GAP
+
, namely VCGAP

+
and ASGAP

+
. We write I

VCGAP
+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) and I

ASGAP
+ =

(𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) to denote an instance of VCGAP
+
and ASGAP

+
respectively. While Dughmi and

Ghosh [2010] and Chen et al. [2014] studied multiple GAP variants for the private graph model, to

the best of our knowledge, theVCGAP has not been considered in the literature and for the problems

without predictions, i.e., VCGAP and ASGAP, no deterministic strategyproof 𝑂 (1)-approximate

mechanism for the private graph model is known.

Greedy Mechanisms for VCGAP and ASGAP. In Section 5.2 we demonstrated how Mecha-

nism Greedy combined with an appropriate ranking function can serve as a group-strategyproof

mechanism for the special case of ERMK
+
. Here, we present two distinct instantiations of ranking

functions, one for VCGAP and one for ASGAP, which can be coupled with Greedy to obtain a

group-strategyproof mechanism for their respective classes of instances.

We present our ranking function for VCGAP first. We define the function 𝒛VCGAP : 𝐿 × 𝑅 ↦→ R3

as follows: Let 𝜎 = (𝜎 (1), . . . , 𝜎 (𝑚)) be the ordinal consensus permutation of resources in 𝑅 for the

instance (note that such a permutation is guaranteed to exist). Then, for every pair (𝑖, 𝑗) ∈ 𝐿 × 𝑅,

we define

𝒛VCGAP ((𝑖, 𝑗)) :=

(
− 𝜎 ( 𝑗), 𝑣𝑖 𝑗/𝑠𝑖 𝑗 ,−𝑖

)
. (8)
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This function instructs Greedy to rank edges in 𝐷 so that the edges linked to the most “preferred”

resources, according to the ordinal consensus 𝜎 , are considered first. Then, among the edges linked

to each resource, the second-order criterion instructs Greedy to give precedence to the edge with

the highest value per size ratio. If any ties remain, they are broken in increasing index of 𝑖 .

For ASGAP
+
, we define the function 𝒛ASGAP : 𝐿×𝑅 ↦→ R3

as follows: For every pair (𝑖, 𝑗) ∈ 𝐿×𝑅,

we define

𝒛ASGAP ((𝑖, 𝑗)) :=

(
𝑣𝑖 𝑗/𝑠𝑖 𝑗 ,−𝑖,− 𝑗

)
. (9)

This ranking function is particularly straightforward; it instructs Greedy to prioritize edges with

the highest value per size ratio in the greedy ordering. Then, in case of ties, they are broken in

increasing index of first 𝑖 and then 𝑗 .

Throughout this section, when invoking Greedy for VCGAP
+
and ASGAP

+
instances, we will

refer to the pairing of Greedy with the corresponding ranking functions 𝒛VCGAP and 𝒛ASGAP
respectively. In Lemma 6.3 we show that each of the two instantiations of Greedy described above

is a group-strategyproof mechanism for its respective class of instances.

Lemma 6.3. Mechanism Greedy coupled with ranking function 𝒛VCGAP (resp. 𝒛ASGAP) is a group-
strategyproof mechanism for instances of VCGAP

+
(resp. ASGAP

+
).

Note that neither ranking function above depends on the predicted assignment �̂� in any way.

Furthermore, the greedymechanisms we describe above do not guarantee worst-case approximation

guarantees when run as stand-alone mechanisms. However, both ranking functions ensure that

agents are processed by Greedy in an efficient way.

Observation 6.4. For an instance I
GAP

+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�) which is either VCGAP
+
or ASGAP

+
,

the ranking functions 𝒛 as defined in (8) and (9) satisfy the following property: for every resource 𝑗 ∈ 𝑅,

and every (𝑖, 𝑗), (𝑖′, 𝑗) ∈ 𝐷 𝑗 with 𝒛 ((𝑖, 𝑗)) ⪰lex 𝒛 ((𝑖′, 𝑗)), it holds that 𝑣𝑖 𝑗

𝑠𝑖 𝑗
≥ 𝑣𝑖′ 𝑗

𝑠𝑖′ 𝑗
.

Randomized Mechanism for VCGAP
+
and ASGAP

+
. We present our randomized universally

group-strategyproof mechanism for VCGAP
+
and ASGAP

+
. There are two main pillars in our

approach. The first one is that we randomize over the respective Greedy mechanism presented

above, which processes agents in order of efficiency (as argued in Observation 6.4), and a com-

plementary mechanism, which processes agents in order of their values. While neither of these

mechanisms achieves a bounded approximation guarantee by itself, their (probabilistic) combina-

tion does in expectation. In fact, this is the key idea that Chen et al. [2014] used to devise the current

state-of-the-art universally strategyproof mechanism for ASGAP and special cases of VCGAP. The

deferred-acceptance mechanism that they use can be cast into our Greedy template as it simply

follows a specific ranking of the edges such that agents are never unmatched (see proof Theorem 1

of Chen et al. [2014]).

Inspired by this idea, we instead randomize over Greedy and our mechanism Boost for BMP
+

to leverage the predicted assignment. Additionally, we combine the above scheme with a third

mechanism, namely Trust, to follow the prediction with some (small) probability. We refer to the

resulting mechanism as Boost-or-Greedy-or-Trust; see Mechanism 5. Note that the assignments

𝑀1 and 𝑀2 computed by Boost and Greedy, respectively, are always returned with positive

probability 𝑝 = 2/(3 + 𝛾), while the predicted assignment output by Trust is returned with

probability 1 − 2𝑝 , which is positive only if 𝛾 > 1 (i.e., when there is some confidence in the

prediction). A subtle point that needs some clarification here is that the predicted assignment �̂�

of the constructed instance I
BMP

+ passed on to Boost is a many-to-one assignment. However, as

argued in Section 4.2 Extension (E1), Boost can handle such predictions as well. In fact,𝑀1 being a

one-to-one assignment output by Boost suffices to prove bounded approximation guarantees for

Boost-or-Greedy-or-Trust.

1151



Assignment Mechanisms with Predictions in the Private Graph Model EC ’24, July 8–11, 2024, New Haven, CT, USA

MECHANISM 5: Boost-or-Greedy-or-Trust (I
GAP

+ , 𝒛, 𝛾)
Input: An instance I

GAP
+ = (𝐺 [𝐷], 𝒗, 𝒔, 𝑪, �̂�), a ranking function 𝒛 : 𝐿 × 𝑅 ↦→ R𝑘 for some 𝑘 ∈ N and a

confidence parameter 𝛾 ≥ 1.

Output: A probability distribution of feasible assignments for I
GAP

+ .

Construct an instance I
BMP

+ = (𝐺 [𝐷], 𝒗, �̂�).
Set𝑀1 = Boost(I

BMP
+ , 𝛾) and𝑀2 = Greedy(I

GAP
+ , 𝒛).

Set 𝑝 = 2/(3 + 𝛾).
return𝑀1 with probability 𝑝 ,𝑀2 with probability 𝑝 and Trust(I

GAP
+ ) with probability 1 − 2𝑝 .

Theorem 6.5. Fix some error parameter 𝜂 ∈ [0, 1]. Consider the class of instances of ASGAP+
and VCGAP

+
in the private graph model with prediction error at most 𝜂. Then, for every confidence

parameter 𝛾 ≥ 1, Boost-or-Greedy-or-Trust is universally group-strategyproof and has an expected

approximation guarantee of

𝑔(𝜂,𝛾) =
{

3+𝛾
𝛾 (1−𝜂 ) if 𝜂 ≤ 1 − 1

𝛾
,

3 + 𝛾 otherwise.

(10)

In particular, Boost-or-Greedy-or-Trust is (1+3/𝛾)-consistent and (3+𝛾)-robust (both in expectation).

7 Conclusions

In this paper, we initiated the study of generalized assignment problems in the private graph

model with assignment predictions. An important building block for the GAP
+
variants that we

consider is the mechanism Boost. For BMP
+
, Boost is an optimal group-strategyproof (GSP)

mechanism in terms of consistency and robustness, with an interpolation of the approximation

guarantee between the two. We provide a lower bound for this interpolation, which is not tight.

We additionally prove a separation result between deterministic and randomized GSP mechanisms

for the trade-off of consistency and robustness. Another important building block for VCGAP
+

and ASGAP
+
is the mechanism Greedy. Greedy is GSP when executed with a truth-inducing

ranking function. However, as no polynomial time deterministic strategyproof mechanism is known

for these variants, we turn to randomization over Boost, Greedy and Trust. This results in a

universally GSP mechanism, with a non-optimal trade-off between consistency and robustness.

Besides improving on this trade-off, through improving either the upper or lower bound (for

VCGAP
+
), it would be interesting to obtain deterministic mechanisms for these variants, with or

without predictions.

We believe the problems and techniques considered in this paper are interesting and relevant

to applications and other problems. A specific property of the problems that we consider, is that

they are enriched with a prediction of the optimal assignment. Our mechanisms leverage this by

increasing the preference for declared edges that are in the prediction, potentially giving these

edges an advantage. A natural direction for further research would be to apply this technique on

other mechanism design problem without money enriched with a structural prediction.
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