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Abstract

Querying complex models for precise information (e.g. traffic models, database systems, large
ML models) often entails intense computations and results in long response times. Thus, weaker
models that give imprecise results quickly can be advantageous, provided inaccuracies can be
resolved using few queries to a stronger model. In the fundamental problem of computing a
maximum-weight basis of a matroid, a well-known generalization of many combinatorial opti-
mization problems, algorithms have access to a clean oracle to query matroid information. We
additionally equip algorithms with a fast but dirty oracle. We design and analyze practical
algorithms that only use few clean queries w.r.t. the quality of the dirty oracle, while main-
taining robustness against arbitrarily poor dirty oracles, approaching the performance of classic
algorithms for the given problem. Notably, we prove that our algorithms are, in many respects,
best-possible. Further, we outline extensions to other matroid oracle types, non-free dirty oracles
and other matroid problems.
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1 Introduction

We study the power of a two-oracle model [1, 4, 5, 34, 36| for fundamental matroid optimization
problems, which generalize many problems in combinatorial optimization.

The two-oracle model is an emerging technique for augmenting a problem where algorithms
access information via oracles. The idea is to abstract from subroutines, such as Neuronal Network
(NN) inference or graph algorithms, which compute required information from underlying models.
Already today the size of such models can be arbitrarily large, and they are expected to grow further
in the near future. Thus, computing precise results for each oracle query can be (too) expensive.
To mitigate these costs, we assume to have access to a second oracle that is less expensive but gives
possibly imprecise answers. Such an oracle can be an efficient heuristic or a smaller NN. The goal
is to leverage this fast dirty oracle to obtain enough information in order to query the expensive
clean oracle as little as possible. This model has been successfully applied to, e.g., clustering [4, 34],
sorting [1], priority queues [5], or data labeling [36].

We study this model in the context of matroid optimization. Matroids play a central and
unifying role in combinatorial optimization as numerous classic problems can be framed as matroid
basis problems, e.g., problems in resource allocation and network design. A matroid M = (E,T) is
a downward-closed set system with a certain augmentation property. It is represented by a ground
set E of elements and a family Z C 2F of independent sets. A basis is an inclusion-wise maximal
independent set, and all bases of a matroid have the same size, which is the rank of the matroid;
we give formal definitions later. A prominent matroid is the graphic matroid in which, given an
undirected graph, every subset of edges that induces an acyclic subgraph is independent.

Since |Z| can be exponential in n := |F|, algorithms operating on matroids are given access to
oracles. The independence oracle answers for a query S C E whether S € Z. Given a weight w, > 0
for every e € F, a classic goal in matroid optimization is to find a basis of M of maximum total
weight. In his seminal work, Edmonds [18] showed that the greedy algorithm, which greedily adds
elements in order of non-increasing weight, solves this problem using an optimal number of n oracle
calls, and, vice versa, that matroids are the most general downward-closed set systems for which
this algorithm is correct. For graphic matroids, this greedy algorithm corresponds to the classic
algorithm of Kruskal [15] for computing a minimum-weight spanning tree in an edge-weighted graph,
which is commonly taught in undergraduate algorithm classes.

To motivate the two-oracle model for matroid optimization, we continue with the special case
of computing a minimum spanning tree in a large network. This problem arises, e.g., to ensure
connectivity in a telecommunication network or as a subroutine to approximate a cheap tour between
certain points of interest in a road network. Here, the elements E correspond to the edges of the
network. The clean oracle for this graphic matroid has to decide whether a set of edges is cycle-free.
While this is doable in time linear in the query size, it can be prohibitively expensive for huge
queries. However, there are several ways to design a dirty oracle of reasonable quality:

e Networks, especially telecommunication networks, often evolve over time. In this case, the
dirty oracle could quickly return cached results of the previous (now outdated) network.

e If the network is clustered into many highly connected components that are only loosely
connected to each other, such as road networks are clustered around big cities, the dirty
oracle can check the query for each (city) component individually. Since there may only be
few highways between the cities, this can be quite close to the clean answer.

e The dirty oracle could operate in a sparsified subnetwork, e.g., by restricting it to only major
roads or data links.



We initiate the study of the following two-oracle model for general matroid problems: In addition
to the clean oracle of a given matroid M = (E,Z), an algorithm has access to a fast dirty oracle.
For simplicity, we assume that this oracle belongs to a matroid My = (F,Z;) and answers for a
query S whether S € Z;. In fact, the former assumption is not necessary, and we will adapt our
results to weaker dirty-oracle variants such as arbitrary downward-closed set systems. We emphasize
that the algorithm has no knowledge about the relationship between the dirty oracle and the true
matroid M. Finally, we assume for now that calling the dirty oracle is free and discuss mitigations
later. Since calling the dirty oracle is free, our goal is to minimize the number of clean-oracle calls
required to solve the underlying matroid problem.

Our work neatly aligns with the celebrated framework of learning-augmented algorithms [30],
which is receiving tremendous attention [29]. Here, an algorithm has access to a problem-specific
prediction and yields a good performance when the prediction is accurate (consistency) and does not
perform too bad when given arbitrary predictions (robustness). Ideally, the performance degrades
gracefully with the prediction’s quality, measured by an error function (smoothness). The type
of performance thereby depends on the problem, and could be, e.g., a quality guarantee of the
computed solution of an optimization problem, or the running time of an algorithm. The latter is
intricately related to the goal of the two-oracle model: the overall running time highly depends on
the number of clean-oracle calls. From this perspective, the consistency of an algorithm in the two-
oracle model is the worst-case number of clean-oracle calls it uses when the dirty oracle is perfect,
ie., M = My, while the robustness is the worst-case number of clean oracles independent of the
quality of the dirty oracle.

More generally, we can interpret algorithms for one model also in the other model and vice versa:
On the one hand, our two-oracle model fits into the learning-augmented algorithm framework by
considering an optimal solution w.r.t. the dirty oracle as a possibly imprecisely predicted solution.
On the other hand, a predicted solution By € E can be used to construct the dirty oracle My =
(E,2P4). Thus, our main results are also applicable in the learning-augmented setting.

1.1 Our results

In this paper, we design optimal algorithms in the two-oracle model for the problem of finding a
maximum-weight basis (defined later) of a matroid.

1. Two-oracle algorithms: For any integer k > 1, there is an algorithm which computes a
maximum-weight basis of a matroid M using at most

1
min{n—r+/€+?7A'(/<:+1)+nR-(k—i—l)ﬂoggrd},<1+E>n}

many oracle calls to M (see Theorem 3.8).

Here, r is the rank of the matroid, i.e., the size of any basis, and r4 the rank of M. In terms
of learning-augmented algorithms, our algorithm has a consistency of at most n — r + k£ and a
robustness of at most (1 + %)n Moreover, the bound of our algorithm smoothly degrades w.r.t.
the quality of the dirty oracle, measured by our error measures 14 and ng (the prediction errors).
Intuitively, n4 and ngr denote the number of elements that have to be added to and removed from
a maximum-weight basis of My, respectively, to reach a maximum-weight clean basis; we give a
formal definition later. Our algorithm has a tuning parameter k to regulate the level of robustness
against a dirty oracle of bad quality; a beneficial feature when the quality of the dirty oracle can be
roughly estimated. In Section 2, we present slightly improved bounds for the case of unit weights.



Observe that, given a dirty oracle of reasonable quality, our algorithm significantly improves
upon the greedy algorithm whenever the rank r is not too small (due to the dependence on n — r),
which is always the case for, e.g., graphic matroids in sparse networks like road or telecommunication
networks. We further show that this dependence is best possible for any deterministic algorithm for
any rank r. Moreover, our algorithm is optimal w.r.t. to the dependence on 14 and ng:

2. Tight lower bounds: For every rank r, every deterministic algorithm requires at least n—r+mn4
and at least n —r +nr[logy 4] clean-oracle calls to compute a basis of a matroid (Appendix A).

Yet we present an algorithm which bypasses the dependence on n — r by leveraging the slightly
more powerful clean rank oracle (see Section 4.1 for the definition). Note that any algorithm requires
at least n clean rank oracle calls in the traditional setting for this problem in the worst case.

3. Rank oracles: There is an algorithm which computes a basis of a matroid M using at most
24+ nallogg(n —1r4)] +nrllogy rq] and at most n+ 1 calls to the rank oracle of M (Section 4.1).

Finally, we initiate the study of extensions, with which we hope to foster future research.

4. Costly oracles: In this model, every dirty-oracle call incurs cost 1, and every clean-oracle call
costs p > 1. We are interested in minimizing the total cost. We illustrate that this model requires
new algorithmic techniques compared to our main setting (see Section 4.2).

5. Matroid intersection: We give two different approaches on how our techniques can be incor-
porated in textbook algorithms for reducing the number of clean-oracle calls in the fundamental
matroid intersection problem using dirty oracles (see Section 4.3).

All omitted proofs are deferred to the appendix.

1.2 Further related work

Noisy oracles, two-oracle model, imprecise predictions. Optimization in the presence of
imprecise oracles is a fundamental problem and has been studied extensively, also for submodular
optimization [25, 26, 27, 28, 35|, which is connected to matroid optimization via the submodularity
of rank functions. The majority of previous work assumes access only to a single noisy oracle, where
the noise usually is of stochastic nature. Only recently, a two-oracle model as in our work has been
studied from a theoretical perspective. Bai and Coester [1]| consider sorting with a clean and a
dirty comparison operator. They minimize the number of clean-comparison-operator calls and give
guarantees that smoothly degrade with the number of wrong dirty-comparison answers. Similar
strong and weak oracles have been considered also by Bateni et al. [4] for the Minimum Spanning
Tree problem and clustering, and by Benomar and Coester [5] in the context of priority queues. In
contrast to our model, they consider oracles for accessing the distance between two points and not
for deciding cycle freeness (graphic matroid). Besides these explicit results on two-oracle models,
explorable uncertainty with predictions [20, 21| can also be interpreted as such a model.

Two- and multistage problems. All algorithms presented in this paper also solve the following
two-stage problem: Given a maximum-weight basis By for a first-stage matroid My (dirty matroid),
compute a maximum-weight basis B for a second stage matroid M (clean matroid) with minimum
|B4AB|, where B4AB denotes the symmetric difference of By and B, and minimize the number
of oracle calls to M. Two- (or multi-) stage problems of this type have been studied extensively,
mostly for graph problems [2, 3, 12, 13, 19, 22, 23, 33| but also for matroids [8, 9, 14, 24]. Most
of these works consider a combined objective optimizing the quality of the second stage solution



and the distance between the first- and second-stage solutions. In contrast, we insist on an optimal
second-stage solution and minimize the number of clean-oracle calls. Furthermore, to our knowledge,
all previous work on matroid problems in these models assumes that the matroid stays the same
for all stages but the weights of the elements change, whereas we assume the opposite. Blikstad et
al. [7] consider the somewhat similar problem of dynamically maintaining a basis of a matroid, but
in a different oracle model.

1.3 Preliminaries

Matroids. A matroid M is a tuple (E,Z) consisting of a finite ground set E of n elements and
a family of independent sets T C 2F with () € T that satisfy the following properties: (i) Z is
downward-closed, i.e., A € T implies B € Z for all B C A and (ii) if A, B € T with |A| > |B|, then
there exists a € A\ B s.t. B+a € Z. (We write X + e when weadd e € E\ X to X C E and X —e
when we remove e € X from X C E.) An important notion are bases, which are the (inclusion-wise)
maximal elements of Z; for a fixed matroid, we denote the set of bases by B. For a dirty matroid
My, we refer to the set of bases by By. A circuit is a minimal dependent set of elements. The main
results of this paper consider the problem of finding a maximum-weight basis, i.e., given matroid
M = (E,I) and weights w, for all e € E, the goal is to find a basis B € B maximizing ) .z we.
The greedy algorithm solves this problem by iteratively adding elements in non-increasing order of
their weight to the solution if possible, i.e., if the solution stays independent in M [18|. Given a
weighted ground set, we always assume that the elements of E' = {ey,...,e,} are indexed according
to the weight order, i.e., ¢ < j implies we; > we;, with ties broken arbitrarily. Given that, for any i
and S C E we define S<; = {e; € S| j < i} (S>; analogously).
Requirements on algorithms and optimal solutions. For all considered problems, we require
algorithms to execute clean queries (oracle calls) until the answers to these queries reveal sufficient
information to solve the given problem, e.g., find a maximum-weight basis for the clean matroid.
More precisely, the queries executed by the algorithm together with the answers must be a certificate
that a third party with only access to the clean matroid and without any additional knowledge can
use in order to find a provable solution. In particular, an optimal algorithm that knows the answers
to all clean queries upfront has to execute queries in order to satisfy the certificate requirement.

We refer to the robustness of an algorithm, when bounding the maximum number of clean-oracle
calls the algorithm needs for any input instance, independently of the quality of the dirty oracle.
Definition of our error measure. We define an error measure that quantifies the quality of the
dirty oracle w.r.t. the clean oracle. We define the error measure for the case that the dirty oracle
is a matroid and describe in the next section how this extends to arbitrary downward-closed set
systems. Let B* be the set of maximum-weight bases of M and B} be the set of maximum-weight
bases of My. (In the unweighted case, B* = B and B}; = By.) We first define for every S € B} the
sets A(S), R(S) as any cardinality-wise smallest set A C F'\ S and R C S, respectively, such that
SUAD Band S\ RC B for some B, B’ € B*.

These sets describe the smallest number of additions/removals necessary to transform S into
a superset /subset of some maximum-weight basis of M. We call |A(S)| + |R(S)| the modification
distance from S to B*. Our final error measure is defined as the largest modification distance of any
maximum-weight basis of Mg, that is, n4 = maxsep: |A(S)| and nr = maxgep: |R(S5)|.

Assume both oracles are matroids. It follows from standard matroid properties that, for any
dirty basis By, there are modification sets A, R with |A| = |A(Bg)|, |R| = |R(Bg4)| and B4\ RUA € B.
Hence r = ry+n4 —ngr. Also, for all Sy, 5 € By, |A(S1)| < |A(S2)]| if and only if |R(S1)| < |R(S2)].




1.4 Discussion of the model

Computing a dirty basis upfront. For all our results on computing a (maximum-weight) basis,
it suffices to first compute a (maximum-weight) dirty basis and afterwards switch to exclusively
using the clean oracle. A similar observation can be made for the results of Bai and Coester [1] on
sorting, where it would be possible to initially compute a tournament graph for the dirty comparator
and afterwards switch to only using the clean comparator without increasing the number of clean-
comparator calls. In Section 4, we observe that separating the usage of the dirty and clean oracles
in this way does not work anymore if dirty-oracle calls also incur costs.

Counting wrong answers as error measure. Bai and Coester [1| use the number of wrong
dirty-comparator answers as error measure. While this is a meaningful error measure for sorting,
a similar error measure for our problem does not seem to accurately capture the quality of the
dirty oracle. Consider an instance with unit weights, where we have B; C B. This can lead to an
exponential number of wrong dirty oracle answers, but the dirty oracle still allows us to compute a
clean basis. For this reason, we use the modification distance as error measure instead.

Relaxing requirements on the dirty oracle. We illustrate how to extend the error definition
of Section 1.3 to arbitrary downward-closed set systems in the unweighted case: For every inclusion-
wise mazimal set S of the dirty oracle we compute A(S) and R(S) as before. The addition and
removal error are then defined analogously by replacing B} with the set of all inclusion-wise maximal
independent sets (instead of all maximum sets in the unweighted case). Then, all our results in this
paper also carry over to this more general setting. Using an error definition with respect to some
greedy algorithm on weighted downward-closed set systems, one can also obtain the same result for
arbitrary weighted downward-closed set systems. However, for clarity, we only prove our statements
for the case that the dirty oracle is a matroid.

1.5 Organization of the paper

We begin in Section 2 with a gentle introduction to our techniques and algorithms by studying the
simpler problem of computing any basis of a matroid. Then, we extend these ideas in Section 3 and
present our main algorithmic results. Finally, in Section 4, we demonstrate how to generalize and
adapt our approach to other settings and problems. Longer proofs for these sections are deferred
to the appendix. In Appendix A, we also included a detailed section on our lower bounds.

2  Warm-up: computing an unweighted basis

The goal of this section is to give a gentle introduction to our algorithmic methods, which we extend
in the next sections. Consider the basic problem of finding any basis of a matroid. Note that without
the dirty oracle, we need exactly n clean-oracle calls to find and verify any basis in the worst-case.

In the following, we assume that we are given an arbitrary basis By of the dirty matroid Mg,
which can be computed without any call to the clean oracle. We first analyze the so-called simple
algorithm: If By € I, we set B to B,. Otherwise, we set B to the empty set. Next, for each element
e€ E\ B, we add it to B if B+ e € Z and output B at the end.

The idea of the simple algorithm is to only use the dirty basis By if it is independent in the
clean matroid, as we then can easily augment it to a clean basis. Otherwise, we abandon it and
effectively run the classic greedy algorithm. Formalizing this sketch proves the following lemma.

Lemma 2.1. The simple algorithm computes a clean basis using at most n + 1 clean-oracle calls.
Further, if Bg € B, it terminates using at most n —r + 1 clean-oracle calls.



Proof. The correctness follows easily from matroid properties. If the dirty oracle is perfectly correct,
i.e. By € B, then we only need to use one clean-oracle call to check whether By € Z and n — r calls
for checking the maximality. If By ¢ Z, we start from the empty set and check whether to add each
of the n elements. Thus, the algorithm uses at most n + 1 clean-oracle calls in any case. O

Surprisingly, in Appendix A, we will see that this simple algorithm achieves a best-possible
trade-off between optimizing the cases By € B and By ¢ B at the same time.

2.1 An error-dependent algorithm

The simple algorithm discards the dirty basis By if it is not independent in M. This approach
may be wasteful, especially if removing just one element from By, such as in the case of a circuit,
leads to independence. This seems particularly drastic if the clean and dirty oracle are relatively
“close”, i.e., the error measured by the modification distance is small. This suggests a refinement
with a more careful treatment of the dirty basis B;. We propose a binary search strategy to remove
elements from By until it becomes independent. A key feature is that this allows for an error-
dependent performance guarantee bounding the number of clean-oracle calls by 174 and ng, the
smallest numbers of elements to be added and removed to turn a dirty basis into a basis of the
clean matroid.

We define the error-dependent algorithm: First, set B to By and fix an order of the elements
in B. Repeatedly use binary search to find the smallest index i s.t. B<; ¢ Z and remove e; from B
until B € Z. Then add each element e € E'\ By to B if B+ e € Z and output the final set B.

Lemma 2.2. The error-dependent algorithm computes a clean basis using at mostn —r +14+na +
Nr - [logy rq| clean-oracle calls.

Proof. The algorithm simulates finding a maximal independent subset of By w.r.t. the clean matroid,
and augments the resulting set to a clean basis. Hence, the correctness follows from matroid
properties. We remove |R(Bg)| < nr elements from B;. Hence, the removal loop is executed
|R(Bg)| times. In each iteration, we use at most 1 + [logy 74| clean queries (one for checking
B € T and at most [logyrg| for the binary search). Thus, the removing process uses at most
|R(Bg)|(1 + [logyrq]) clean queries. Augmenting B uses n — r4 clean queries. Combined, our
algorithm uses at most |R(Bg)|(1+4[logy 74])+n—rg+1 oracle calls. We conclude using |R(By)| < nr
and r =74 —nr + na. O

2.2 An error-dependent and robust algorithm

The error-dependent algorithm has a good bound on the number of clean-oracle calls (less than n)
when 14 and ng are small. However, in terms of robustness—i.e., the maximum number of oracle
calls for any instance, regardless of the dirty-oracle quality—this algorithm performs asymptotically
worse than the gold standard n, achieved by the classic greedy algorithm. This is the case when the
dirty basis is equal to E, but the clean matroid is empty: the error-dependent algorithm executes n
binary searches over narrowing intervals, using logs(n!) € ©(nlogn) clean-oracle calls. By looking
closer at the error-dependent algorithm, the special structure of this example can be explained
because queries charged to n — r + 14 are essentially also done by the greedy algorithm. Hence,
they are in a sense already robust. Motivated by the greedy algorithm, another extreme variant of
the removal process would be to go linearly through B; and greedily remove elements. This gives
an optimal robustness, but is clearly bad if ng is small.

For our main result in the unweighted setting, we combine both extremes into a robustification
framework and achieve a trade-off using the following key observation. If we have to remove many



Algorithm 1: Find a basis (robustified)
Input: dirty basis By, matroid M = (F,Z), integer k > 1
1 B« () and S + By

2 Fix an order for S = {ey,..., e}

3 while S # () do

4 Re-index the elements in S from 1 to |S|, keeping the relative order

5 Find the smallest index i € {1,...,min{|S|,k — 1}} with BU S<; ¢ Z via linear search
6 if such an ¢ exists then

7 L B+ BUS<;—j and § + S\ S<; and go to next iteration of Line 3.

8 if |S|<k—1o0rBUS €T then

9 L B+« BUS and S < 0 and go to next iteration of Line 3

10 Find the smallest index i € {k,...,min{k[logy74],|S|}} with BU S<; ¢ Z via linear
search

11 if there is no such indexr ¢ then

12 Find the smallest index i € {k[logyrq] + 1,...,|S|} with BU S<; ¢ Z via binary
L search (guaranteed to exist)

13 | B<—BUS§Z'_1 andS<—S\S§i

14 for e € £\ By do
15 if B+ e €71 then
16 LB<—B—|—e

17 return B

elements (ng is large), some elements must be close to each other. In particular, if the next removal
is close to the last one (in terms of the fixed total order), a linear search costs less than a binary
search. Based on this, after a removal, we first check the next ©(log(rs)) elements of B, linearly
for other removals before executing a binary search. This bounds the number of binary searches
by @(bg’"%), each incurring a cost of [logy(ry)]. However, the linear search also incurs some cost.
Thus, we further parameterize this idea (see Algorithm 1), and obtain the following main result.

This algorithm is essentially the same as the error-dependent algorithm from Section 2.1 but uses
a robust way of finding removals. The parameter k measures the trade-off between linear searches
and binary searches. Note that each linear search has two parts (Line 5 and Line 10). Between
the two parts, we insert a check BU S € Z (Line 8), which is necessary to prevent using too many
queries when there are no further removals necessary. A small detail here is that we only have to
do this check if there actually are elements to check in the second part.

Theorem 2.3. For every k € Ny, there is an algorithm that, given a dirty matroid Mg of rank rq
with unknown na and nr, computes a basis of a matroid M of rank r with at most min{n —r + k +
na+ng - (k+1)[logarq], (1 + £)n} oracle calls to M.

Proof. We analyze Algorithm 1. Observe that the algorithm finds a maximal independent subset
of By in the clean matroid and greedily tries to add all remaining elements, similar to the error-
dependent algorithm. Hence, the correctness follows as in the proof of Lemma 2.2.

It remains to bound the number of clean-oracle calls. We first prove the error-dependent upper
bound. Note that the algorithm removes |R(By)| < nr elements from By, and then adds |A(Bg)| <
na elements. For every removed element, the algorithm uses at most k[log, r4] clean-oracle calls



due to the two linear searches, [log, 4] calls in the binary search, and one extra query for the check
between the two linear searches. Once we have a solution B U S that is not necessarily maximum
but feasible, which we do not know yet, we need to use at most k additional queries until we verify
that this solution is indeed feasible: We have up to k — 1 queries of linear search in Line 5 and one
query in Line 8. After removing elements, the algorithm makes n — r4 queries in Line 15. Thus, the
total number of clean-oracle calls is at most |R(Bg)|((k + 1)[logyrq] + 1) +n — rq. By plugging in
rq—nr +na = r, we proof the stated upper bound of

n—r+k+na+nr(k+1)[logyre].

Second, we prove the robust upper bound that is independent of n4 and ngr. To this end,
we partition By = {e1,...,e,,} into segments separated by the removed elements. Each segment
(except the last one, which we treat separately below) contains exactly one removed element at the
end. If a linear search (Lines 5 and 10) finds the element to be removed, we call the corresponding
segment short. Otherwise, we say it is long.

Let the total length of short segments be Lghot. The cost of a short segment is equal to its
length, plus one for the check between the two linear searches in Line 8 if its length is at least k.
Thus, the total cost of all short segments is at most (1 + %)Lshor‘v

Let the total length of long segments be Liong. In a long segment, there are exactly k[logy rq]
queries done by the linear searches (Lines 5 and 10), one query due to Line 8 and at most [logs 74]
many queries by the binary search in Line 12. Thus, the total cost of a long segment is at most

(k+1)[logy rq] + 1. Moreover, there can be at most ﬁ many long segments. Therefore, the

total cost of all long segments is at most (1 + %)Llong

Finally, let L.t be the length of the last segment, where no elements are removed. If this does
not exist we set Lj,s¢ = 0. When the algorithm considers this segment, the condition that BUS € 7
in Line 8 is true because no further elements are removed afterwards. Regarding the other condition
in Line 8, there are two cases. If |S| < k — 1, then we do not query BU S € Z and terminate the
while-loop. Before that, we use exactly Li,s¢ many oracle calls in Line 5. Otherwise, that is |S| > k,
we use k — 1 oracle calls in Line 5 and one query in Line 8, which evaluates true and terminates the
while-loop. Since k < |S| < Ljast, we conclude that in both cases we use at most Lj,s many oracle
calls during the last segment.

Therefore, the total number of queries done in Lines 3-13 is at most

1 1
<1 + E) (Lshort + Llong) + Llast < <1 + E) rq.

Together with the n — r4 oracle calls in Line 15, we conclude that the total number of oracle

calls is at most ) )
n—1rqg+ <1+E>7’d§ <1+E>n

This concludes the proof of Theorem 2.3. U

3 Computing a maximum-weight basis

Consider the weighted setting. Recall that B} and B* denote the sets of maximum-weight bases of
the dirty and clean matroid, respectively. We assume that we are given a maximum-weight basis
By € B, which can be computed without any clean-oracle calls. The main difficulty compared to
the unweighted setting is as follows: In the unweighted setting, the error-dependent algorithm first
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(a) Modification to an arbitrary clean basis. (b) Modification to a maximum-weight clean ba-
sis. Adding e is necessary for its high weight.
Element es is only blocking after adding es to
By — eg, hence cannot be detected earlier.

Figure 1: A matroid with elements eq,...,e9 (displayed as circles) ordered left-to-right by non-
increasing weight. The elements of the maximum-weight dirty basis B, are filled.

computes an arbitrary maximal independent set B’ C By and then easily augments B’ to a clean
basis. In the weighted setting, however, there clearly can be independent sets B’ C B, that are
not part of any maximum-weight basis; hence we need to be more careful. Finding such a special
independent subset of By only by removing elements from B, and testing its independence seems
difficult: By itself could be independent, but not part of any maximum-weight basis. However, even
in this case, By can be very close to a maximum-weight basis w.r.t. n4 and ng. Therefore, we cannot
avoid carefully modifying By since strategies like the greedy algorithm would use too many queries.

Thus, we alternatingly add and remove elements to and from By. Intuitively, we want to ensure,
as the greedy algorithm, that we do not miss adding elements with large weight. Thus, we try to
add them as soon as possible. However, even if they are part of every basis in B*, this might result
in a dependent current solution unless we now remove elements, which were not detectable before.
An example of such a situation is given in Figure 1. This observation rules out simple two-stage
algorithms as used in the unweighted case.

We now present our algorithm. Its full description is shown in Algorithm 2. Given elements
E = {e1,...,e,} in non-decreasing order of their weight, it maintains a preliminary solution, which
initially is set to the dirty basis By. It modifies this solution over n iterations and tracks modifica-
tions in the variable sets A C E '\ By (added elements) and R C By (removed elements). In every
iteration £, the algorithm selects elements to add and remove such that at the end of iteration ¢ its
preliminary solution (By \ R) U A satisfies two properties, which we define and motivate now.

Property (7) requires that the preliminary solution (By \ R) U A up to ey should be a mazimal
subset of some maximum-weight basis. For the sake of convenience, we introduce the matroid
M* = (E,TI*), where Z* is the set of all subsets of B*. Then, we can use the following definition.

Definition 3.1. A set Sis k-safe if S<;; € Z* and for every e € E<j\ S<y, it holds that S<i+e ¢ Z*.

In other words, a set S is k-safe if it is a basis of the truncated matroid of the kth prefix of
E. Using this definition, Property (i) requires that at the end of iteration ¢, the current solution
(Bg\ R)U A is (-safe. Establishing this property in every iteration will give us that the final solution
is m-safe, and, thus, a maximum-weight basis of M. This works because the algorithm does not
modify its solution for the fth prefix of E after the £th iteration.

To establish Property (i) after every iteration without using too many clean queries, it also
maintains Property (i7): at the end of every iteration the current solution is independent, i.e.,
(B4\R)UA€T.

We now give some intuition on how our algorithm achieves this. Initially, say for ¢ = 0, before
Line 2 Property (i) is fulfilled trivially. For Property (ii), before Line 5 the algorithm greedily adds
minimum-weight elements of By to R that close a circuit in the smallest prefix of (B;\ R)UA (Lines
2-4). This subroutine can be implemented via binary search. To guarantee both properties at the
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Algorithm 2: Find a maximum-weight basis
Input: dirty basis By C F, matroid M = (E,7)

1 A<+ 0; R+ 0 {added | removed elements}

2 while (B4 \ R)UA ¢ 7 do

3 Find the smallest index i s.t. ((Bg \ R) U A)_, ¢ T via binary search
4 R+ R+e;
5 for { =1 ton do
6 | ifeg¢ Byand (Bg\R)UA+es)., €7 then
7 A+ A+e -
8 if (By\ R)UA¢T then
9 Find the smallest index i s.t. ((Bg\ R) U A)_, ¢ I via binary search
10 L R+ R+ €;

11 return (B;\ R)U A

end of iteration ¢, first observe that Property (i) holds as long as A and R have not changed in
this iteration. However, this might be necessary to establish Property (7). Intuitively, our algorithm
wants to act like the classic greedy algorithm to ensure /-safeness. Thus, it checks whether ey should
be in the solution by considering its solution for E<,. Clearly, if e, € Bg \ R or ey € R, there is
nothing to modify (Line 6), because the current solution is independent due to Property (ii) for
the previous iteration. Similarly, if e, ¢ By and the current solution for E<, together with e is
independent, we add e; to our solution (Lines 6-7). However, by adding an element, Property (i)
can become false due to an introduced circuit, which we have to break (Lines 8-10). Finally, there
might be the situation that e, € By has been added to R in an earlier iteration, so e, € R. In
this case, we clearly do not want to even consider adding ey again, as queries for verifying this
addition cannot be bounded by our error measure. Indeed, removing and re-adding an element
cannot be part of any minimal modification distance. Thus, our algorithm skips such elements
(Line 6). To justify this, we prove that removing element ey is always necessary, in the sense that
there always is a circuit that e, breaks and that cannot be broken by removing elements in later
iterations by Lines 8-10. This follows from classic matroid properties for circuits. Formally, we
prove in Appendix B:

Lemma 3.2 (Property (ii)). At the start (end) of each iteration of Line 5, it holds (Bg\R)UA € T.

Proof. At the beginning of the first iteration, (By\ R)U A € Z by the condition in Line 2. It suffices
to show if (By\ R)U A € 7 holds before iteration ¢ = j, then it also holds before iteration ¢ = j + 1.
If in iteration ¢ = j, the condition in Line 6 is not satisfied, then A, R do not change and we are
done. The remaining case is that e; is added to A. If then (B4 \ R) U A € Z, Line 8 evaluates false
and we are done. Otherwise, that is, (Bg \ R) U A ¢ Z, we execute the binary search in Line 9 and
add an element to R. To conclude also this case, we argue that at the end of this iteration we have
that (Bg\ R) U A € Z. Adding e; to our solution, which by induction hypothesis was independent
before, creates at most one (in this case exactly one) circuit in our solution (cf. Theorem 39.35 in
[32]). Since the binary search in Line 9 detects exactly this unique circuit, an element of the circuit
is added to R, which breaks the circuit and makes (B; \ R) U A independent again. O

Lemma 3.3 (Property (i)). At the end of every iteration £ of Line 5, (By\ R)U A is £-safe.

11



Proof. First, we introduce some notations. Let Ay, Ry be the sets represented by the variables A, R
at the end of iteration k (equivalently at the beginning of iteration k 4 1). We prove by induction
over the iterations of Line 5 that the statement holds at the end of every iteration. First, note that
every set is O-safe, thus, this also applies to our solution before the first iteration of Line 5. Let
te{l,...,n}. We write B = (By \ Ry—1) U Ay;_1 for our preliminary solution after iteration ¢ — 1,
and B’ = (By \ Ry) U Ay for the solution after iteration ¢. By induction hypothesis, we can assume
that B is (£ — 1)-safe, and we now prove that B’ is f-safe. To this end, we distinguish three cases
concerning element ey.

In the first case we assume that e; ¢ By, Then, the algorithm makes one more query (Line 6). If
B<y+ ey ¢ T, it must hold that B is ¢-safe, and since in this case B = B’, we are done. Otherwise,
that is, B<; + e, € Z, we add e, to A and, thus, B<y + e, = B.,. We now prove that B, is part
of a maximum-weight basis, which implies that B’ is ¢-safe. Let B* be some optimal basis such
that B<y_; C B*. Such a basis exists because B is (¢ — 1)-safe by assumption. If e, € B*, then
also B, C B*, and we are done. Otherwise, that is, e, ¢ B*, there must be a circuit C' in B* + ey.
Moreover, C' must contain some other element ej, with k > ¢, because B, € Z due to Lemma 3.2.
By the ordering of the elements, we, > we, , and therefore B* + e, — ey, is a maximum-weight basis.
Further, it contains B’ ,. Thus, we conclude B, € T*.

For the second case, suppose that e, € By \ Ry_1. Thus, the condition in Line 6 evaluates false,
and we have B = B’. Thus, BL, = B</_1 + €/, and we can prove analogously to the previous case
that B., in included in a maximum-weight basis.

Finally, it remains the case where e, € Ry_;. In this case, e, is added to R in some earlier
iteration ¢’ < ¢, and, thus, e, ¢ B’. Also, B = B’ because ¢y € Bq. We show that B, ;| + e is
dependent, which implies that B’ is ¢-safe. To this end, we prove for ¢ = ¢,...,¢ — 1 the invariant
that ((Bg \ Rq) U Ag)<¢—1 + €¢ contains a circuit C' such that e, € C and that ey is the element
with the largest index in C. Note that the invariant holds at the time e, is added to R in iteration
¢ due to Lines 3 and 10. Suppose the invariant holds for ¢ = j — 1, witnessed by circuit C;. We
now prove the invariant for ¢ = j. If C1 C ((Bg \ Rj) U Aj)<¢—1 + e¢, we are done. Otherwise,
the algorithm must have added element e; € C; to R in iteration j. By Lines 2 and 9, e; is the
element with largest index in a circuit Cy in (Bg \ Rj—1) U A;. As e; has the largest index in Cy
by induction hypothesis and e; € C4, we conclude j < £. Thus, e, ¢ Cs. Since e; € C1 N Cy and
eq € Cp \ Oy, there exists a circuit C3 C (C; U Cy) \ {e;} such that e, € C3 (cf. Theorem 39.7 in
[32]). In particular, C3 C ((Bg\ Rj) U Aj)<¢—1 + e¢ and ey has the largest index in C3. This makes
C3 a witness for the invariant for ¢ = j, and, thus, concludes the proof. O

Since there are at most n elements in R, the algorithm clearly terminates, and we conclude
as follows.

Corollary 3.4. Algorithm 2 terminates with an n-safe set.

It remains to bound the number of clean queries. Fix A and R to their final sets. Assume that
elements are non-increasingly ordered by their weight; among elements of equal weight, elements
of By come before elements of '\ By. For such an ordering, the algorithm modifies By to a closest
basis of B*; for details, we refer to Appendix B.

Lemma 3.5. [t holds that |A] < n4 and |R| < ng.
To conclude, we use a charging scheme and Lemma 3.5 to derive the following bound.

Lemma 3.6. Algorithm 2 computes a maz-weight basis with at most n—r—+1+2n4+ng - [logy(rq)]
clean queries.

12



Proof. The correctness follows from Corollary 3.4. It remains to bound the number of clean queries.
Note that we use clean-oracle calls only in Lines 2,3,6,8 and 9.

In Lines 3 and 9, each removal incurs a binary search, which costs at most [logy(ry)| queries.
Since every binary search increments the size of R, the total number of queries used in these lines is
at most [logy(rg)] - |R|. In Line 2, the number of queries is equal to the number of elements added
to R in Line 4 plus a final one where the condition evaluates false, which we charge extra. Similarly,
we charge the queries in Line 8 to the removals in Line 10 if Line 8 holds and to the added element
in Line 7 otherwise. In Line 6, we have that each e € E'\ B, incurs a query, hence the total number
isn—rg.

Summarized, the total number of clean queries is at most [logy(rq)] - |R|+|R|+ 1+ |A|+n —ry.
Using r = rq + n4 — nr and Lemma 3.5, we conclude the proof. O

We complement this algorithmic result by a lower bound. It proves that our error-dependent
guarantees in the unweighted case are not possible in the weighted case. Hence, it separates both
settings.

Lemma 3.7. Every deterministic algorithm for finding a maximum-weight basis executes strictly
more than n — 1 +na + g - [logy(rq)] + 1 clean-oracle calls in the worst-case.

Application of the robustification framework. As in the unweighted case, our algorithm may
perform poorly when the dirty oracle is of low quality, i.e., n4 and nr are large. We extend the
ideas for robustifying the error-dependent algorithm (cf. Section 2.2) and combine them with the
concepts developed above. The key idea for robustifying Algorithm 2 is to start a binary search
only after a sufficient number of linear search steps. However, as observed above (cf. Figure 1), we
cannot remove all blocking elements in one iteration. While the simple argument that the linear
search partitions By still holds, it does not cover the total removal cost, because a later addition can
create a removal at a previously checked position. To overcome this, we observe that in Algorithm 2,
immediate removal of every detected element from the current solution is not necessary; we just
need to decide whether in iteration £ element e, should be part of the solution.

In our robustified algorithm (Algorithm 3) we exploit this as follows. While in Algorithm 2 we
linearly check prefixes of E \ By for additions, we now linearly check prefixes of E for additions
(Lines 4-5) and removals (Lines 6-8). However, for the sake of a good error-dependency, we count
these removal checks (cf. increment counter ¢ in Line 7) and execute a binary search only if we
checked enough elements in By linearly (Lines 10-12). Then, we can again bound the total cost
for the binary searches using a density argument. Whenever we remove an element, we charge
the previous cost of the linear searches to this removal error and reset ¢, which re-activates the
linear search. However, if the current solution is already independent, we do not want to search for
removal errors at all (cf. Lines 2 and 8 in Algorithm 2). Unfortunately, doing such a check after
every addition and removal already rules out a robustness close to n. Thus, we slightly delay this
check w.r.t. the counter ¢, and stop the removal search accordingly (Line 9). Finally, whenever an
element is added, we make sure that the linear search is running or that we start it again (Line 5),
as a new circuit could have been introduced in our solution. Formalizing this sketch proves our
main theorem; for details we refer to Appendix B.

Theorem 3.8. For any k € Ny, there is an algorithm that, given a dirty matroid Mg of rank r4
with unknown na and nr, computes a maximum-weight basis of a matroid M of rank r with at most
min{n —r+k+na-(k+1)+ng- (k+1)[logyra], (1 + £)n} oracle calls to M.
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Algorithm 3: Find a maximum-weight basis (robustified)
Input: dirty basis By, matroid (E,Z), integer k > 1

1 A+ 0;R < 0; dyax < maxe,ep,

2 ¢ < 0; LS < true {linear search counter / flag}

3 for /=1 ton do

4 if e, ¢ By then

5 Lif((Bd\R)UA—l—eg)QGIthen A+ A+epand LS < true

6 else if ey € By \ R and LS = true then

7 qg+—q+1

8 if (Bi\R)UA)_.,¢Zthen R< R+e;and g+ 0

9 if { =dmax or (g=k—1 and (B4\ R)UA €Z)then ¢+« 0 and LS < false
10 else if ¢ = k[logy 4] then

11 Find the smallest index i s.t. ((Bg\ R) U A)_, ¢ I via binary search
12 \;R<—R+eiandq<—0

13 return (B;\ R)U A

4 Extensions and future work

4.1 Rank oracles

Another common type of matroid oracles is the rank oracle: Given any S C F, a rank oracle returns
the cardinality of a maximum independent set contained in S, denoted by r(S). Since r(S) = |S] if
and only if S € 7, our algorithmic results for independence oracles directly transfer. Moreover, for
the unweighted setting, we can even reduce the number of oracle calls using a rank oracle, implying
that some lower bounds do not translate. For example, given By we can compute its rank r(Bg) to
obtain ng = |By| — r(Bg) and decide whether to remove elements via binary search or immediately
switch to the greedy algorithm. Further, we can improve the dependency on 14 if n4 is small as we
can find the elements to be added via a binary search. Hence, we get the following result.

Proposition 4.1. There is an algorithm that computes a clean basis with at most min {n + 1,2+
nr - [logy rq] + min {na - [logy(n —rq)], n —rq}} clean rank-oracle calls.

The full discussion on rank oracles can be found in the appendix. For future work it would be
interesting to see if the error-dependency and the worst-case bound can be improved, and if rank
oracles can be used to improve the results for the weighted setting.

4.2 Dirty independence oracle with cost

We consider the generalized setting where a dirty-oracle call has cost 1 and a clean-oracle call has
cost p > 1 with the objective to minimize the total cost. Lemma A.1 translates to this setting,
giving a lower bound p(n — r + 1). Note that the previous results assume that p > 1 in this setup.

The main takeaway of this generalization is that it can be beneficial for an algorithm to delay
dirty-oracle calls for clean-oracle calls, depending on p and r. This contrasts the previous sections,
where we can meet lower bounds by computing a dirty basis upfront.

To see this, we consider two algorithms and assume for simplicity that My = M. The first
algorithm starts with £ and removes elements via binary search until it reaches an independent set.
It only uses clean-oracle calls of total cost p(n — r)[logs(n)] + p. The second algorithm computes a
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dirty basis and verifies it, incurring a total cost of n+p(n —r+ 1), as My = M. Thus, for small p
and large r, the first algorithm incurs less cost than the second algorithm, which is optimal among
the class of algorithms which only initially use dirty-oracle calls. Specifically, having access to rank
oracles, one can compute the value of r upfront using one clean-oracle call and, thus, select the
better algorithm.

4.3 Matroid intersection

In the matroid intersection problem, we are given two matroids M! = (E,T') and M? = (E,7?),
and we seek a maximum set of elements X C FE that is independent in both matroids, i.e., X €
'nz2

The textbook algorithm for finding such a maximum independent set is to iteratively increase the
size of a solution one by one using an augmenting-path type algorithm until no further improvement
is possible. This algorithm has a running time of O(r?n) [17]. There are faster algorithms known
for matroid intersection, which run in time O(nr3/4) [6] and in time O(n'*°(M)) for the special case
of two partition matroids [11]. (In a partition matroid M = (E,Z), the elements are partitioned
into classes C; with capacities k;, and a set S C E is independent if and only if |C; N S| < k; holds
for each C;.) Here, we focus on improving the running time of the simple textbook algorithm by
(i) using dirty oracles calls in each of the augmentation steps and (ii) by computing a warm-start
solution using an optimal dirty solution, i.e., a feasible solution of a certain size dependent on the
error.
Matroid intersection via augmenting paths. Our error measure is as follows: We define
m={F eI} F¢I'}and n ={F €I?|F ¢ I%} to be the number of different sets which are
independent in the dirty matroid but not independent in the clean matroid. In order to simplify the
setting, we assume here that (i) the dirty matroids are supersets of the clean matroids, i.e., Z* C Icll
and 7% C Ifl, and (ii) that the clean matroids are partition matroids. We note that in general the
intersection of two partition matroids can be reduced to finding a maximum b-matching.

Proposition 4.2. There is an algorithm that computes an optimum solution for matroid intersection
using at most (r +1) - (2+ (n1 + n2) - ([loge(n)] +2)) clean-oracle calls.

Matroid intersection via warm-starting. @ We show how to exploit the dirty matroids to
obtain a good starting solution that is independent in both clean matroids. The idea of warm-
starting using predictions has been used for other prediction models in [10, 16, 31| for problems
like weighted bipartite matching or weighted matroid intersection. These results are tailored to the
weighted setting and do not directly translate to improvements in the unweighted case. As error
measure we adjust the removal error for matroid intersection: Let s = maxg JETINT2 |Sq| and define
Sy ={Sq € I)NI3||S4| = s}} to be the set of optimum solutions to the dirty matroid intersection
problem. We define 7, = maxgs,es: ming, ez1nz2{[Sa \ Se| : Se € Sa}.

Our algorithm computes an optimal solution to the dirty matroid, then greedily removes el-
ements until we obtain a feasible solution for the clean matroid. By observing that this reverse
greedy algorithm is a 2-approximation in the number of elements to be removed, 7,., we obtain the
following result.

Proposition 4.3. There is an algorithm that computes a feasible solution S’ € T' N T? of size
|Se| > s — 2n, using at most 2+ 2n, - (1 + [logy(n)]) clean-oracle calls.
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Appendix

A Lower bounds

We present lower bounds on the worst-case number of clean queries required by any deterministic
algorithm. Note that all lower bounds hold even if the dirty oracle indeed follows a matroid. First,
we show that, even if M = My, the worst-case number of clean queries is at least n —r 4+ 1. The
following lemma also shows that this is best-possible number of queries for instances with M = M
and the best-possible worst-case bound of n queries cannot be achieved at the same time.

Lemma A.1. For every rank r > 1, no deterministic algorithm can use less than n —r + 1 clean
queries, even if M = My. Further, for any algorithm that uses exactly n —r + 1 clean queries
whenever M = My, there is at least one instance where it uses at least n + 1 clean queries.

Proof. Consider arbitrary n and r with 1 < r < n. We give a clean matroid M such that the
statement of the lemma holds for the instance defined by M and the dirty matroid My = M. Let
E = {ey,...,e,} denote the ground set of elements. We define M = M, as a partition matroid
with two classes of elements C; = {ej,...,e,—1} and Cy = {e,,...,e,}. Each set S C E with
|ISNCi| <r—1and |[SNCy| <1 isindependent in M = My, and we denote the set of independent
sets by Z and the set of bases by B. Each basis of this matroid completely contains C; and exactly
one member of C. Thus, the rank of M is indeed r. We show that even if the algorithm knows
that the underlying matroid is a partition matroid (but it does not know the exact classes), it needs
at least n — r + 1 queries.

As we require algorithms to show some certificate for a clean basis (see Section 1.3), every feasible
algorithm has to verify that (i) some B € By = B is independent in M and that (ii) B U {e} is not
independent in M = M, for every e € E'\ B.

Consider the instance defined above. To prove (i), an algorithm has to make the oracle call
B € T as calls to supersets of B will return false and calls to sets A with B ¢ A cannot prove that
B is independent.

Let e denote the element of C5 that is part of the basis B selected by the algorithm. To prove
(ii), the algorithm has to verify that the elements {e,,...,e,} \ {e} are all part of the same class
as e and that this class has capacity one. Otherwise, the queries by the algorithm would not reveal
sufficient information to distinguish between the matroid M and a potential alternative matroid
M’ that has a third class with capacity one. However, as B would not be a basis for M’, the queries
by the algorithm must reveal sufficient information to distinguish M and M’.

To prove that an element €’ is part of the same class as e, an algorithm has to execute a query
A €T with ANCy = {€',e"} for an element €” that is already known to be in the same class as e.
This is because queries A € Z with either |[ANCy| =1, [ANCy| > 3 or ¢ ¢ A would always give
the same answer even for the potential alternative matroid M’ in which €’ forms a class of capacity
one on its own.

In total, this leads to at least n — r + 1 oracle calls. Further, consider the robustness case that
the algorithm is given an instance with a dirty matroid as described above and a clean matroid
whose only independent set is the empty set. By the above arguments, in order to use only n—r+1
queries for the case M = My, the algorithm has to query some B € B;. But this query does not
help the algorithm to find out that the only clean basis is the empty set, i.e., it still needs n more
queries to show the fact. O

The next lemma gives a lower bound that justifies the linear dependency on 74 in our algorithmic
results. In fact, it prohibits improvements over the linear dependency unless the error grows quite
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large. But even then, we complement the result with a different lower bound that grows stronger
with increasing number of errors.

Lemma A.2. For every na > 1, there is no deterministic algorithm that uses less than

n—r+1a if1<ma <5
1+ [logy (") 7)1 if na > "5

clean queries in the worst-case, even if it knows na upfront.

We prove the lemma by dividing the two different lower bounds into two lemmas, Lemma A.3
and Lemma A.4, which we prove individually.

Lemma A.3. For every number of addition errors ng with 1 < ny < =574, there is no deterministic

algorithm that uses less than n —r +na clean queries in the worst-case even if the algorithm knows
the value of na upfront and nr = 0.

Proof. For the statement of the lemma, we assume that the algorithm has full knowledge of n4.
However, we still require that the queries of the algorithm can be used as a certificate for a third
party without knowledge of 14 to find a provable clean basis. Nevertheless, the assumption that the
algorithm knows 74 still restricts the query answers that can be returned by an adversary.

Fix n4 € {1,...,[*5%]}. Consider a problem instance with the ground set of elements £ =
{e1,...,en}. Let My be a partition matroid with two classes of elements C; = {ey,...,e,,} and
Cy ={er 41,...,€en}. Bach set S C E with |[ENC4| < rg and |[E N Cy| = 0 is independent in M.
Thus, C1 is the only basis.

Consider an arbitrary algorithm for the instance. Depending on the algorithm’s oracle calls,
the adversary will create a clean partition matroid M = (E,Z) with the three classes of elements
Ci1 ={ei1,...,er,}, C2 and C3. The elements of N := {e,,11,...,e,} will be distributed to Cy and
C5 depending on the algorithm’s actions, and the class capacities will be ry for C1, 0 for C5 and 14
for C5. The adversary will assign exactly 14 elements to C'3, so the only basis of the clean matroid
will be C7 U C3 and the addition error will be indeed 7n4.

The adversary starts out with empty Co and C'5 and later on adds elements to these sets in a
consistent manner. We distinguish between two types of oracle calls by the algorithm: (i) queries
to sets S C E with [(SNN)\ C3| > 2 and (ii) queries to sets S C E with [(SNN)\ C3| =1 for the
current C3, which is initially empty. All other oracle calls only contain elements of (E \ N) U Cj.
For such queries the adversary has to return true.

For queries of type (ii), the queried set S C F contains a single element e € (SN N)\ C5 for the
current C3. If e has already been fixed as a member of Cs, the oracle call returns false. Otherwise,
the adversary returns true and adds the single element of (SN N)\ C3 to C3. After 74 elements of
N have been fixed as members of C3, the adversary starts to return false on all type-(ii) and assigns
the single element e € (SN N) \ C3 to Cy instead.

Before we move on to type-(i) queries, we give some intuition on the strategy of the adversary
for type-(ii) queries. The adversary is designed to reveal the elements Cj5 that lead to addition
errors as fast as possible if the algorithm executes type-(ii) queries. If the algorithm would only
execute type-(ii) queries, then after n4 such queries the algorithm would have identified C5. Since
the algorithm knows 74, it then also knows that none of the remaining elements of N \ C5 can be
added to the basis Cy UC3 and, thus, has also identified C5. However, in order to query a certificate
that proves to a third party without knowledge of n4 that the elements of Cs can indeed not be
added, the algorithm will still require |Cs| additional queries. Therefore, revealing C3 fast will lead
to |Co| +|C3] = n —r 4+ na queries if the algorithm only executes type-(ii) queries. If the adversary
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would instead reveal the elements of Cs first, then the algorithm that only executes type-(ii) queries
could use the knowledge of 14 to conclude after n — r queries that C; U C35 must be an independent
set, as otherwise the number of errors would be too small. In contrast to the previous case, the
algorithm can prove this efficiently with a single query to C; U C5. Thus, revealing C5 first would
allow the algorithm to save queries.

For queries of type (i), the adversary will use a different strategy. If the adversary would also
start by returning true for type-(i) queries, then every element of N \ Cj that is part of the query
would have to be added to Cs. Since there are at least two such elements by definition of type-(i)
queries, a single query would prove membership of C3 for at least two elements. This would allow
to reduce the number of queries below n — r 4+ n4.

Instead, we define the adversary to return false as long as this is possible. To make this query
result consistent with the clean matroid, the adversary has to add one of the queried elements to
Cy. If SNCy # () already holds for the queried set S and the current set Co, then the adversary can
return false without adding a further element to Cy. Otherwise, we define the adversary to select
two elements eg, ea of (SNN)\ (C3UC2). These elements must exist by definition of type-(i) queries
and as we assume S N Cy = (). The adversary will later on add one of e; and es to Cy depending on
the algorithms actions. Assume without loss of generality that e; is the element that appears first
(or at the same time as es) in another later oracle call. Once e; appears in this second query, the
adversary adds e; to Co. If Cs already contains n — rq — 14 elements, then the adversary has to
add it to (3 instead and answer the query accordingly.

To show the lower bound, we consider two cases: (1) n—7;—mn4 elements are added to Cs before
N4 elements are added to C3 and (2) n4 elements are added to C3 before n — ry — n4 elements are
added to Cy. If we show that the algorithm in both cases needs at least n — r 4+ n4 queries, the
lemma follows.

Case 1. First, assume the algorithm queries in such a way that n — ry — na elements are
assigned to Cy before 14 elements are assigned to C3. Since this is the case, an element e is only
added to Cy if there was a type-(i) query for which the adversary selected {e,e’} with e # €’ to
potentially add to C. By definition of the adversary, each such element e is afterwards added to
Cy while appearing in a second query after the type-(i) query. Thus, e must appear in at least two
queries. Note that these two queries are distinct for each e € Cy because the assignment of e is fixed
immediately once e appears in a second query after being selected by the adversary as part of the
pair {e, e’} in the type-(i) query. In particular, for €’ to also be added to Cs, it would need to be
selected by the adversary in another type-(i) query and appear in another query afterwards. Since
|Ca| = n —rq — 4, this leads to a total number of queries of least 2- (n —rq —n4). As na < "5,
we have 2-(n —rqg—ma) >2-(n—rq) —(n—71q9) =n—rqg=mn—r+na. If there exist elements
that are never selected by the adversary in response to a type-(i) query, then the adversary must
add those elements to C3 as (s is already full. Since the algorithm knows 74, it potentially knows
that this is the case and can prove that these elements are in C3 with a single additional query to
CLuCs.

Case 2. Next, assume the algorithm queries in such a way that n4 elements are added to Cs
before n — rqy — na elements are added to Co. Then, the algorithm must have executed 14 type-(ii)
queries to sets S where the unique element of (S N N)\ Cs was added to C3 afterwards.

Each element e € Co must appear in a query to a set S for which each other member is either part
of Cy or C3 (or eventually added to C3). As the algorithm knows 74, it might be able to conclude
that none of the elements in N \ C5 can be added to the independent set Cy U C3 without actually
querying them. However, the queries of the algorithm must be a certificate for a third party without
knowledge of n4. Thus, despite knowing that none of these elements can be added, the algorithm
still has to prove it using type-(ii) queries. This leads to a total of at least n—ry—na+na = n—r+na
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queries. O

Since the previous lemma only holds for errors of at most "5, we complement it with the

following lower bound for large errors.

Lemma A.4. For every number of removal errors na with 1 < na, there is no deterministic
algorithm that uses less than 1+ [log, (”;:d)] queries in the worst-case, even if the algorithm knows
the value of na upfront.

Proof. The idea is similar to Lemma A.6. Consider an instance with the dirty matroid My = (F,Zy)
for the ground set of elements {eq,...,e,}. Let My be a partition matroid with the two classes
Ci = {e1,...,e;,} and Cy = {e; 41,...,mn}. Each set I with [I NCy| < rgand [INCy <0 is
independent in M. Thus, C] is the only dirty basis.

Fix a number of addition errors n4 > 1. The adversary will create a clean matroid M = (E,Z)
by selecting 14 elements from Cs and add to C instead. Formally, the clean matroid will be a
partition matroid with the two classes C] = C1 U A and Cf = Cy \ A for some set A C C with
|A] = na. The capacities for the classes are rq + n4 and 0, respectively.

Firstly, the algorithm has to query C'1, otherwise it cannot know whether there’s some element
in C] that should be removed (it does not know nr). Then, the adversary has to identify the set
A (or equivalently Cy \ A) in order to execute a final query to the clean basis C; U A. In order to
do so, it has to use queries of the form Dy U Dy where Dy C Cy and Dy C Cs. The adversary has
('7?2') choices to decide A, and each of the queries by the algorithm can rule out at most one half of
these choices (the adversary can always choose to answer “yes” or “no” depending on which preserves
more choices). Thus the algorithm needs at least [logy (ng\ﬂ = [logy ("~")] queries. Note that

na 74
this bound is weaker than that in Lemma A.3 when 7,4 is small compared to n — rg. O

We show that there exists an improved algorithm in terms of the error dependency if np = 0
and na > %(n —1rq) + 1 (cf. Lemma A.5). Hence, a distinction depending on 74 in the lower bound
(as in Lemma A.2) is indeed necessary.

Lemma A.5. For problem instances with np =0 and na > %(n —rq)+ 1, there exists an algorithm
that executes strictly less than n —r +na clean queries in the worst-case.

Proof. Let B be a basis of the given dirty matroid Mg. Let N = {e1,...,e,_y,} denote the elements
of E'\ B indexed in an arbitrary order. Note that |[N| > 1 as ng = 0 and n4 > 1. Consider the
following algorithm:

1. If IN| > 2, continue with Step 2. Otherwise, query B U {e} € Z for the single element e € N.
Add e to B if this query returns true. Afterwards, terminate.

2. Pick two arbitrary distinct elements e, e’ of N and execute the oracle call B U {e, e’} € 7.
Remove both elements from N.

3. If the oracle call returns true, then add {e, e’} to B.

4. Otherwise, query BU{e} € Z. If this returns true, add e to B. Otherwise, query BU{e'} € Z.
If this returns true, add €’ to B.

5. If N is empty now, then terminate. Otherwise, go to Step 1.
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We show that this algorithm satisfies the asserted statement.

Assume for now that |N| is even and, thus, no queries are executed in Step 1. We call one
execution of Steps 1 to 5 an iteration. Let k; with ¢ € {0,1,2} denote the number of iterations
in which ¢ many elements have been added to B. Then, the number of queries executed by the
algorithm is at most 3 - (ko + k1) + k.

Since (n — r4) — na elements of N are not part of the basis B computed by the algorithm, we
must have 2-kg+k; = (n—rq) —n4 as ko iterations identify two such elements each and k; iterations
identify one such element each. Similarly, we have k1 4+ 2- ks = 4. By combining the two equalities,
we obtain kg + ki + ko = “54. Hence, the number of queries executed by the algorithm is at most

3.(k0+k1)+k2:"‘2”+2k0+2k13

n—rq n—rq n—rq
= 2(n —rqg — < 2 -1
5 t2n—ri—na) s ——+ < 1 )

n—rg

+ 2(2]{70 + k‘l)

=n—rqg—2=n—1r-+n4—2.

The last inequality uses our assumed lower bound on 74.

We note that there is a straightforward example which shows that this analysis is tight, where
in particular ky = 0 and the algorithm alternatingly adds two and one elements.

Finally, if |[N| is odd, we have one additional query in Step 1 of the algorithm. Thus, the number
of queries is in this case at most n —r +n4 — 1. O

Finally, we justify the logarithmic error-dependency on the removal error nr in our algorithmic
results for small ng.

Lemma A.6. For every ng > 1, there is no deterministic algorithm that uses less than n — r +
1 + [logs (;;ﬂ clean queries in the worst-case even if the algorithm knows the value of ng upfront.
Further, if ng < 3¢ for some fived k > 0, the bound is at least n —r + 1+ [nr(logyrg — k)]

Proof. Consider an instance with the dirty matroid My = (F,Zy) for the ground set of elements
{e1,...,en}. Let My be a partition matroid with the two classes C; = {ei,...,e,,} and Cy =
{€ry+1,...,en}. Each set I with [I NCy| <74 and [I NCy| <0 is independent in My. Thus, Cy is
the only dirty basis.

Fix a number of removal errors ng > 1. The adversary will create a clean matroid M = (E,Z)
by selecting ngr elements to remove from C and add to C instead. Formally, the clean matroid
will be a partition matroid with the two classes C] = C; \ R and C} = Cy U R for some set R C (4
with |R| = ng. The capacities for the classes are ry — nr and 0, respectively.

Consider an arbitrary deterministic algorithm. For each e € Cy = C4 \ R, the algorithm has to
query a set S with SN Cy = {e} and S\ {e} C Cf, as this is the only way of verifying that the
elements in Cy cannot be added to the basis. Even if the algorithm knows that n4 = 0, it still has
to prove this by using such queries. This leads to at least n —ry > n — r 4+ 1 queries.

For the elements in R, the algorithm has to do the same. However, it does not know which
elements of C7 belong to R and which do not. Instead, the algorithm has to iteratively query
subsets of C until it has sufficient information to identify the set R. Note that queries to sets
containing members of C7 and Cy always return false independent of whether the queried members
of C1 belong to R or not, which means that such queries do not reveal any information helpful for
identifying R.

We can represent each such algorithm for identifying R as a search tree. A vertex v in the search
tree represents the current state of the algorithm and is labeled by the set P, C C of elements that
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still could potentially belong to R given the information already obtained by the algorithm and a
family of subsets S, such that each S € S, is guaranteed to contain at least one member of R given
the algorithm’s information. For the root r of the search tree, we have P, = Cy and S, = {C1}. As
the algorithm executes queries to sets S C (1, it gains more information about which elements could
potentially belong to R. Thus, each vertex v in the search tree has (up-to) two successors v’,v”
with different labels P, and P, depending on the answer to the query executed by the algorithm
while being in the state represented by v. The algorithm can only terminate once it reaches a state
u in the search tree with |P,| = ngr, because only then it has identified the set R = P,. We refer
to such vertices as leaves. Since, depending on the query results returned by the adversary, each
subset of S C C} with |S| = ng could be the set R, there are at least (|C1|) (;;) leaves.

The search tree representing the algorithm has a maximum out-degree of two and at least ( R)
leaves, which implies that the depth of the search tree is at least [log, (;; ﬂ Since the adversary
can select the query results in such a way that it forces the algorithm to query according to a longest
root-leaf-path, this implies that the algorithm needs at least [log, (Tdﬂ queries to identify R.

In total, the algorithm has to execute at least n —r+ 14 [log, ( )1 queries. Note that (}) > 7 ”k
for any positive integer n, k with k < n. If ng is small compared to ry4, say, ng < ;k for some
constant k > 0, then logy ( ) > nr(logyrg — k). O

B Proofs omitted from Section 3

Lemma 3.5. It holds that |A| < na and |R| < ng.

Proof. Let A* = A(By), R* = R(B,) be some minimum modification sets for By and I* = (Bg U
A*)\ R*. We choose A* and R* such that |R A R*|+|A A A*| is minimized. By definition, I* € B¥,
and we have |R*| < nr and |A*| < na.

Let I denote the solution computed by the algorithm. If all elements have distinct weights,
it is well known that a maximum-weight basis is unique. Since [ is n-safe by Corollary 3.4, no
elements can be added to I while maintaining independence in M*. Hence, I = I*. Further, since
RN A =0, we have |R| = |R*| and |A| = |A*|, which asserts the statement in this case. The same
argumentation holds if some elements have the same weight and I = I'* holds.

Hence, we assume from now on I # I* for the sake of contradiction. Let x < n be the number
of distinct weights. We partition F according to weight into weight classes of elements with the
same weight. We use subscript ¢ on any set of elements to refer to the subset of elements of the ith
weight class. Since [ is n-safe by Corollary 3.4, both I and I* have maximum weight. Using again
the observation that AN R = (), we have that

|Ri| — [Ail = |Ri| — |A7| and | L] = [I}] (1)

for every i € [K]. 3 3 3 3
We now either find new modification sets R* and A* with |[RAR*|+|AAA*| < |[RAR*|+|AAA¥|

or show I* ¢ B*; a contradiction in both cases. In the former case, we additionally require that

|R*| = |R*|, |A*| = |A*| and I* € B*. (2)
That is, R* and A* are minimum modification sets.
Let ¢ be the weight class of the largest weight such that I; # I. Since |I;| = |I}|, we have
I*\I; # 0. -
If there exists an element e € (I} \ I;) N A}, there exists an element ¢’ € I; \ I} with I* :=
I*—e+¢€ € B* due to the basis exchange property (cf. Theorem 39.6 in [32]). If ¢’ € ((Bg)i\ Ri)\ I},
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setting R* := R*—¢’ and A* := A*—e we obtain I* := (By\R*)UA* € B*. However, this contradicts
our assumption that A* and R* are minimum modification sets for By since |R*|4|A*| < |R*|+|A*|.
Thus, ¢ € A; \ I7. Therefore, setting R* := R* and A* := A* — e + ¢ implies (2) and contradicts
our minimality assumption on |[R A R*| + |A A A*| since €/ € A\ A*.

Otherwise, it must hold that A¥ C A;, and there must exist an element e € (I \ I;) N ((Bq)i \ R}).
If A = A;, there must exist an element ¢’ € ((By); \ R;) N R} such that I* —e+¢€’ € B* by the basis
exchange property. Setting ]:2;* =Rf — € +eand A* = A* in this case implies (2) and contradicts
again our minimality assumption on |[R A R*| 4+ |A A A*|. Therefore, A} C A; and, in particular,
|A¥| < |A;]. Due to (1) and (2), |Rf| < |R;|. Observe that for all 1 < j < i — 1, we have by our
choice of ¢ that I7 = I;. In the prefix P = U;_:ll I;U(Bg)i, our algorithm guarantees that the largest
independent set in P has size |P| —|R;|. This implies P\ R} ¢ Z, which contradicts our assumption
that I* is a basis. O

Lemma 3.7. Every deterministic algorithm for finding a maximum-weight basis executes strictly
more than n —r +na + g - [logy(rq)] + 1 clean-oracle calls in the worst-case.

Proof. Consider the ground set of elements E = {ej,...,e,} with weights we, = n 4+ 1 — i for
all e; € E. Let the dirty matroid M, be a partition matroid that is defined by the two classes
Cy = {e1,...,en—1} and Cy = {e,} with capacities n — 2 and 1, respectively. That is, each set
I C Ewith [INCy| <n—2and |INCy <1 isindependent in My. Then, By = E \ {e,—_1} is the
only dirty maximum-weight basis. Furthermore, if M = My, then the only way of verifying that
By is indeed a maximum-weight clean basis is to query By and {ej,...,e,—1}. The first query is
necessary to prove independence and the second query is necessary to prove that By is a maximum-
weight basis. Note that querying B; and E would also suffice to prove that By is a basis, but it
would not exclude the possibility that {eq,...,e,—1} is also a basis with strictly more weight. Thus,
the queries By and F are not a certificate for proving that By is a maximum-weight basis.

Consider an arbitrary deterministic algorithm. We prove the statement by giving an adversary
that, depending on the algorithms clean-oracle calls, creates a clean matroid M that forces the
algorithm to execute strictly more clean-oracle calls than the bound of the lemma.

First, we can observe that if M = My, we have n —r+n4 + [logy(rq)] - nr +1 = 2. This means
that if the algorithm starts by querying anything but By or P := {eq,...,e,_1}, the adversary can
just use My as the clean matroid. By the argumentation above, the algorithm then has to also
query By and P, leading to 3 > 2 queries. Thus, it only remains to consider algorithms that start
by querying either By or P.

Case 1: The algorithm queries P first. In this case, the adversary will return false. Note that
this answer is consistent with the dirty matroid Mg. This implies that the algorithm has to query
By next, as the adversary can otherwise select M = My, which again forces the algorithm to also
query By. Thus, the algorithm would execute 3 > 2 queries.

Consider the case where the second query of the algorithm goes to By. We define the adversary
to return that By is not independent.

Instead, the adversary will select a clean partition matroid that is defined by the three classes
Ci = {e1,...,en—2} \ {€} for an element € € {ey,...,e,_2} that is selected by the adversary in
response to the further clean-oracle calls by the algorithm, C) = {€,e,—1} and C% = {e,}. The
capacities will be n — 3, 0 and 1, respectively. This implies ng = 1 as the element € induces a
removal error, and 4 = 0 as e,_1 is still not part of any maximum-weight basis, and n —r = 2.
The bound of the lemma then becomes n — 7+ na + [logy(rq)] - nr + 1 = 3 + [logy(ra)].

Following the proof of Lemma A.6, the adversary can force the algorithm to use [log, (Td_l)] =

1
[logy (rg — 1)] oracle calls to find the element e. If we pick r4 as a sufficiently large power of two,

we get [logy (ra — 1)] = [logy ra].
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Note that queries containing e,,_1 do not contribute to finding € as they always return false. This
implies that the algorithm needs an additional query containing e, to prove that (Bg\{e})U{en—1}
is not independent in the clean matroid. Combined with the two queries to By and P and the
[log, 4] queries for finding €, this already leads to 3 + [logy(rg)] queries. Any additional query
would imply that the algorithm executes strictly more queries than the bound of the lemma.

The algorithm however needs one additional query to verify that By \ {€} is independent. Note
that the query By \ {€} could in principle be executed during the search for e. However, the
adversary would only answer true to a query of form By \ {e} for any e € By if e is the only
remaining choice for € since returning true to that query would reveal e = €, which the adversary
never does. However, if e is the only remaining choice for €, then algorithm already knows e, which
means that the query is not counted within the [log, rq — 1] = [logy rg] for finding e. In total, this
leads to 4 + [logy ] > 3 + [log, 4] queries.

Case 2: The algorithm queries By first. Then, the adversary will return true, which is consistent
with the dirty matroid. In order to avoid three queries in case that the adversary chooses M = My,
the algorithm has to query P next. The adversary will answer that P is indeed independent and
choose F as the only basis of the clean matroid. Afterwards, the algorithm has to query also F
to prove that E is indeed independent. This leads to a total of three queries. However, we have
n—1r=0,n4 =1 and ng = 0, which implies n —r +n4 + [logy(rq)] -nr +1 =2 < 3. O

Theorem 3.8. For any k € Ny, there is an algorithm that, given a dirty matroid My of rank rq
with unknown na and nr, computes a maximum-weight basis of a matroid M of rank r with at most
min{n —r+k+na-(k+1)+ng- (k+1)[logyra], (1 + £)n} oracle calls to M.

Proof. To prove this theorem, we consider Algorithm 3. It is not hard to see that the correctness
of Algorithm 3 follows from the correctness of Algorithm 2. We now prove the stated bound on the
number of clean-oracle calls.

The algorithm uses clean-oracle calls only in Lines 5, 8, 9, and 11. We separately prove the
error-dependent bound and the robustness bound.

Proof of the error-dependent bound. We start by bounding the number of queries in Lines 5,
9, and 11:

e In Line 5, each element e € E \ By incurs a query and the total number of such queries is
n—rgq.

e In Line 11, the binary search is incurred by elements in R. Thus, the total number of such
queries is at most |R|[logy 74].

e To bound the number of queries in Line 9, we observe that whenever ¢ reaches k—1, we execute
one such query, unless ¢ = dpax, because then we know that ((Bg\ R)UA)<, = (Bg\R)UA
and the independence follows because the condition in Line 10 evaluated false. Therefore, it
suffices to bound how often g reaches k — 1. Note that ¢ can be decreased to 0 only in Lines 8,
9, and 12. Lines 8 and 12 correspond to an element in R and Line 9 sets the variable LS to
false which must have been set to true by Line 2 or Line 5 (in which case we added an element
to A). Hence, we conclude that the number of times ¢ reaches k — 1, which upper bounds the
number of queries executed in Line 9, is at most |R| 4 |A| + 1.

In total, the number of clean queries in Lines 5, 9, and 11 is at most

n—rq+ |R|[logyrq] + |R| + |A| + 1. (3)
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It remains to bound the number of queries executed in Line 8. To this end, we first show ¢ < k—2
when the algorithm terminates. This follows from the fact that at the end of the algorithm we have
a feasible solution by Corollary 3.4. Assume for contradiction that ¢ > k — 1 at the end of the
algorithm. Then at some previous iteration, we entered Line 9. Consider the iteration with largest
index in which we entered Line 9. Note that the if-statement in Line 9 has to be false as otherwise
q was set to 0 again. But, in particular, this implies that the current solution (By \ R) U A in
this iteration is not independent and hence the algorithm must enter Line 8 or Line 11 at some
later iteration in order to output an independent solution. This implies that ¢ is set to 0 again, a
contradiction.

Observe that ¢ is increased by 1 before each query executed in Line 8 and the number of times ¢
is increased is at most the total decrease of ¢ plus k — 2 (the value of ¢ at the end of the algorithm).
As shown before, ¢ can only be decreased by k — 1 in Line 9 which happens at most |A| + 1 times,
or decreased by at most k[logy rg] in Lines 8 or 12, which happens |R| times. To be more precise,
Line 9 is executed at most |A| (rather than |A| + 1) times if ¢ > 0 at the end of algorithm. This
follows from the fact that ¢ > 0 implies LS = true at the end of the algorithm, which means Line 9
is not executed after the last execution of Line 5.

To finally bound the number of queries in Line 8 we distinguish whether ¢ = 0 or ¢ > 0 holds at
the end of the algorithm. If ¢ > 0 at the end of the algorithm, then the number of queries executed
in Line 8 is at most |A|- (k— 1)+ |R| - k[logy rq| + k — 2, where the additive k — 2 are caused by the
final at most k — 2 increases of g at the end of the algorithm after the last reset of ¢q. If ¢ = 0, then
there are no final queries after the last reset of q. However, as argued above, Line 9 is potentially
executed (|A| + 1) times instead of only |A| times. Thus, the number of queries in Line 8 in that
case is at most (|A| +1)- (kK — 1) + |R| - k[logy r4]. In both cases, the number of queries in Line 8
is at most

|A| - (k—1)+ |R| - k[logg rq] + k — 1. (4)

We can conclude the target bound on the number of clean queries by summing up Equation (3) and
Equation (4), plugging in rg+|A| — |R| = r and using Lemma 3.5, which also holds for Algorithm 3:

n—rq+|R|[loggrq] + |R|+ |A| + 1+ |A] - (k= 1)+ |R]| - k[loggrq] + k — 1
=n—rq+ |R|+|Al-k+|R|- (k+ 1)[logyrq] + k
=n—(r—|A|+|R|) + |R|+ |A| -k + |R| - (k + 1)[logy 4] + Kk
=n—rg+|Al-(k+1)+|R| - (k+ 1)[logarq| + &
<n-—rqgtna-(k+1)+nr-(k+1)[logyrq| + k.

Proof of the robustness bound. Let Q4 denote the set of queries of Line 5 that trigger the
execution of A < A+¢;, i.e., Q4 contains the queries that detect an addition error. Let QQn denote
the queries of Line 5 that do not trigger the execution of A «+— A + ¢; and let Qg denote the set of
all remaining queries.

First, observe that each query in @ is incurred by a distinct element of E \ (By U A). Thus,
we have |Qn| =n—rq— |A]|.

Next, we continue by bounding |@Q 4| and |Qg|. To this end, we partition Qg into segments T;.
A segment T; contains the queries of Qg that occur after the i’th reset of variable ¢ but before reset
14+ 1. We use reset to refer to an execution of Line 2, 8, 9 or 12 that sets the variable ¢ to 0. Since
we count the execution of Line 2 as a reset, segment T} contains the queries of Qg that take place
between the execution of Line 2 and the first execution of Line 8, 9 or 12 (if such an execution
exists).
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For a segment T;, let ¢; denote the current value of variable ¢ at the final query of the segment.
We distinguish between long, short and tiny segments:

e A segment T; is long if it contains queries executed in Line 11.
e A segment T} is tiny if it satisfies ¢; < k — 1.
e A segment is 7; is short if it is neither long nor tiny.

First, consider the long segments. Let Ijons denote the index set of the long segments and
let Liong = Zie Tong 9i° Each long segment 7T; contains k[log, rgq] queries of Line 8 since ¢; must
increase to at least this value in order to trigger queries in Line 11 and ¢ is reset afterwards.
Additionally, the segment must contain a query of Line 9 as ¢; increases to a value larger than k£ — 1.
Finally, T; contains up-to [logs 4] queries of Line 11. Thus, a long segment T; contains at most

(k+1)[logyrq] + 1 queries. The number of long segments is at most Mﬁgjﬁ

T; has q; = k[logy 74|. By using that the total number of long segments is also at most |R| (since
each execution of Line 11 finds a distinct removal error), we get that the total number of queries

as each long segment

over all long segments is

Z |T5| < ]{:]L&((k + 1)[logyrg] +1) = <1 + %) Liong + |I]ong| < <1 + %) Liong + |Rlong|7
i€ Tiong [logy 4]
where Rjong € R denotes the set of removal errors that where added to R in Line 12.

Next, consider the short segments. As before let Igort denote the index set of the short segments
and let Lgport = Zie Lpor &i- A short segment T; contains exactly ¢; queries of Line 8. Furthermore,
it must contain a query of Line 9 since it is not tiny and, thus, has ¢; > k — 1. This implies that
T; contains ¢; + 1 = (1 + %)qi queries. As T; is not tiny, we have (1 + %)qi < (1+ 7)gi. We can
conclude that the total number of queries over all short segments is at most

Z ’E‘S(l"i'%) Z Qi:<1+%>'Lshort-

Z'elshort Z'elshort

Finally, consider the tiny segments. As before let Iy, denote the index set of the tiny segments
and let Lgny = Zie Tuiny i Observe that each tiny segment T; either ends with the reset in Line 14
or it ends even before the reset because the algorithm terminates before g; reached value k — 1. The
latter case can happen at most once in the final segment. Since each reset in Line 9 sets the LS
flag to false and the flag is only set to true again in Line 5 when an addition error is detected, the
number of tiny segments is at most 1+ |A|.

Each tiny segment contains at most ¢; + 1 queries (up-to ¢; in Line 8 and up-to one in Line 9).
Let t Elenote the index of the final segment and let Etmy = ic Lin\ {6} € Without the final segment,
we ge

Z ’,Tz’ = Z (Qi + 1) = -ztiny + ’Itiny’ —1= Etiny + ’A‘

ie[tiny\{t} ie[tiny\{t}
We can combine the bound for the queries of these tiny segments with a bound for |@Q4|. Since
each query of Q4 detects an addition error in Line 5, we have |Q 4| = |A|. Furthermore, we have

Liiny + |A| = k - |A] as there are |A| tiny segments that are not the final one and each such segment
T; has ¢; = k — 1. Putting it together we achieve the following combined bound:

_ 1 _
S T+ 1Qal = Zamy 1A+ 141 < (14 7 ) - (a4
1€lginy \{t}
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It remains to consider the final segment T;. If this segment does not query in Line 9, then we
have |T;| = ¢;. In this case, we can combine all previous bounds and use that Liong + Lehort + Etiny +
gt + |A| <74+ |A] — |Riong| to conclude that the total number of queries is at most:

QNI+ 1QrI+1Qal = Qx|+ Y T+ D 1T+ > [Tl +Qal+IT.]

ie[long ie[short ie]tiny\{t}

1 _
<n-—rqg— ‘A’ + <1 + E) : (Ltiny + ‘A’ + Lshort + Llong) + ‘Rlong‘ + q¢
1
<n-—rq—|A+ (1 + E) - (rq + |A] — |Riong|) + | Riong|
1 1
< (1 + E> (n —Tqg— |A| +7rq+ |A| - |Rlong| + |Rlong|) = <1 + E) n.

Note that the last inequality holds because |[A| < n — ry.

If T} executes a query in Line 9, then we have |Ti| = ¢; + 1. On the other hand, the query
in Line 9 implies ¢ < dpax for the current index ¢ when the query is executed and for dp.x =
maxe,ecp, t. This means that the variable ¢ is increased at most 74 — |Riong| — 1 times and, thus,
Liong + Lshort —|—Z_Ltiny—|—qt+ |A| < 7q+|A|—|Riong| — 1. Plugging these inequalities into the calculations
above yields the same result:

QNI+ QeI +1Qal = [QnI+ Y 1T+ D T+ > ITi+1Qal+ Ty

Z'ellong Z'elshort ie[tiny\{t}

1 _
<n-—rg— ’A‘ + <1 + _> (Ltiny + ’A‘ + Lshort + Llong) + ’Rlong‘ + q¢ + 1

k

1
<= ra= AL+ (14 1) Cact 4]~ Ring] = 1)+ [Ring] + 1

1
< (1 §) 00 = AL+ 74 1A] = gl = 1+ ] + 1)

:<1+%>n.

This concludes the proof of Theorem 3.8. U

C Proofs omitted from Section 4

C.1 Discussion omitted from Section 4.1

Another commonly used type of matroid oracle is the rank oracle: given any S C FE, a rank oracle
returns the cardinality of a maximum independent set contained in S, denoted by r(5). We show
in this section that a rank oracle can be much more powerful than an independence oracle for our
problem. First note that since (S) = | S| if and only if S € Z, our previous results for independence
oracles immediately translate. Moreover, we can even reduce the number of oracle calls using a rank
oracle. We briefly discuss key ideas for the unweighted case below. It would be interesting to see
whether these ideas can also be used for the weighted case.

We start by adapting the simple algorithm from Section 2: Assume w.l.o.g. By # 0. If r(By) #
|Bg| (Bq ¢ I), we run the greedy algorithm. Otherwise, we check whether r(F) = |Bgy|. If it
holds, we can conclude By € B and are done. (This is the main difference compared to the simple
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algorithm with an independence oracle.) If not, we greedily try to add each element e € E'\ By using
in total n — |Bg| < n — 1 queries. Thus, in every case the algorithm does at most n + 1 clean-oracle
calls. Moreover, unlike the simple algorithm with an independence oracle, it only does 2 oracle calls
if By € B. In particular, this shows that Lemma A.1 does not hold for rank oracles anymore.

Using the same idea, we can improve the number of oracle calls whenever By € B for the error-
dependent algorithm from Section 2.1 to 2. Furthermore, we can also improve its worst-case number
of queries from ©(nlogyn) to n 4+ 1. Recall that this bad case happens when 7 is large. However,
now we can simply compute r(By) and obtain g = |Bg| — r(Bg). Depending on nr, we then decide
whether to remove elements via binary-search or immediately switch to the greedy algorithm. In
particular, achieving this worst-case guarantee of n + 1 does not affect the error-dependent bound
on the number of oracle calls.

Finally, we can improve the dependency on 14. Recall that in the error-dependent algorithm, we
iteratively augment an independent set B with 774 many elements from E \ By to a basis. But with
a rank oracle, we can find these elements faster via binary search: find the first prefix (E\ Bg)<;
which satisfies (B U (E \ Bq)<i) > r(B), and add (E'\ Bg)=; to B. Doing this exhaustively incurs
at most n4[logy(n — r4)] clean-oracle calls. Thus, whenever 7y < m, this strategy gives
an improved error-dependent bound over considering elements in E'\ By linearly. Furthermore, this
condition can be easily checked with the rank oracle. Note that this contrasts Lemma A.2.

To conclude the discussion, we obtain the following proposition.

Proposition 4.1. There is an algorithm that computes a clean basis with at most min {n +1, 2+
nr - [logy rq] + min {na - [logy(n —rq)], n —rq}} clean rank-oracle calls.

C.2 Proofs omitted from Section 4.3

In the matroid intersection problem we are given two matroids M! = (E,Z') and M? = (E,Z?)
on the same set of elements F and we seek to find a maximum set of element X C E such that
X € I'N7? ie., it is independent in both matroids. For i € {1,2} we define 7; to be the rank of
matroid Z°.

C.2.1 Matroid intersection via augmenting paths

The textbook algorithm for finding such a maximum independent set is to iteratively increase the
size of a solution by one and eventually reach a point in which no improvement is possible; in that
case we also get a certificate: U C E with |X| > r1(U) 4+ ro(E \ U). Given some feasible solution
X € I' N 72, in every iteration the algorithm executes the following steps.

1. Construct the directed bipartite exchange graph D(X) for sets X and E \ X, where for
every € X and y € F'\ X there is an edge (z,y) if X —2z+y € Z' and there is an edge (y, x)
if X —x+y €% Computesets Vi ={y e E\X | X +yeZ'land Yo ={y€ E\ X |
X +yeTI?.

2. If Y1 = 0 terminate with certificate U = E. If Y3 = ) terminate with certificate U = 0.
Otherwise, compute a shortest path P between any vertex of Y; and any vertex of Ys.

3. If no such path exists, terminate with the certificate U C E of elements for which there
exists a directed path in D(X) to some element of Ys. Otherwise, augment X along P, that
is, X «+ XAP, and continue with the next iteration.
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We call the path found in step 2 an augmenting path. The running time of this classic algorithm
is O(r?n) [17], where n = |E| and r = min{ry,r2}. Recently, there has been a lot of significant
progress concerning the running times for matroid intersection, culminating in the currently best
running time of O(nr3/*) for general matroids [6] and time O(n'*+°(M) for special cases, e.g., the
intersection of two partition matroids [11].

Here, we focus on improving the running-time of the simple textbook algorithm for matroid
intersection, by (i) using dirty oracles calls in each of the augmentation steps or (ii) by using warm-
starting ideas, i.e., by computing a feasible solution of a certain size dependent on the error using
an optimal dirty solution.

Formally, additionally to the input for matroid intersection we are also given two dirty matroids
ML = (B, Z}) and M2 = (E,Z2). Our goal is to improve the classic textbook algorithm from above
by using dirty-oracle calls. We attempt the following approach: Given a feasible solution X (for
the clean oracles), we do one iteration of the above algorithm using the dirty oracles. If there is an
augmenting path, which is also an augmenting path for the clean matroids, we augment our solution
and go to the next iteration. Otherwise, we found an augmenting path using dirty oracles, which is
not an augmenting path for the clean matroids. In this case we do a binary search to find the error,
update our dirty matroids and start the algorithm again. Finally, if there is no augmenting path
in the dirty matroid, we need to augment the solution using clean-oracle calls, as we do not benefit
from using the dirty oracle anymore. To avoid this situation, throughout this section we assume
that the dirty matroids are supersets of the clean matroids, i.e., Z* C Ié and 72 C 1'3.

Further, in step 2 of the augmenting path algorithm it is crucial that the path from Y; to Y5 is
a path without chords', as otherwise the computed solution may not be feasible. Note that in step
2 we compute a shortest path, which is always a path without chords. Therefore, if we use the dirty
oracles to compute a shortest path w.r.t. the dirty oracles, we need to verify in each step that the
computed path has no chords for the clean matroids as well. To avoid such a situation, we restrict
to the case that the clean matroids are partition matroids, as for those matroids we do not need to
find an augmenting path without chords, but just any augmenting path. We note that in general
the intersection of two partition matroids can be reduced to finding a maximum b-matching.

Therefore, from now on we assume that the clean matroids are partition matroids and that the
dirty matroids are supersets of the clean matroids. Our algorithm works as follows. We assume that
we are given a feasible solution for the clean matroid and wish to increase its size by one if possible.
Additionally, we are given two lists F; and F» of false dirty queries for ./\/l}l and ./\/l?l, respectively,
i.e., two list of sets FF C E for which we have already queried that F' is not independent in M! or
M?2, respectively (but it was independent in the respective dirty matroid). For each iteration, we
use the following algorithm.

Here, Df (X) is the bipartite exchange graph for the dirty matroids Mcll and Mfl, in which we
have excluded the list of false queries F. More formally, for every x € X and y € E \ X there is an
edge (z,y) in DF (X)if X —z+y €7y and X —z +y ¢ F and there is an edge (y,z) in D7 (X)
it X —zcs+yelyand X —x+y ¢ Fo.

Next, we analyze this augmenting path algorithm. In order to define an error measure, let
m={F €Z)|F¢&TI'%andn ={F € I? | F ¢ I?} be the number of different sets which
are independent in the dirty matroid but not independent in the clean matroid. We now show the
following result, which is stronger than Proposition 4.2.

Proposition C.1. Let M' and M? be two partition matroids and ./\/l}i and Mfl be two dirty
matroids such that Mcll and ./\/13 are supersets of M' and M?, respectively. Given a feasible solution

YA chord e of some s-t path P is an edge such that P + e admits an s-t path P’ that is strictly shorter than P.
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Algorithm 4: Augmenting path via dirty oracles
Input: A feasible solution X € Z' N Z? and two lists of false dirty queries Fi, F»
Compute augmenting path P in D7 (X)
if there is no such path P then
L return X (in this case X is optimal)

[SURE

I

if P is augmenting path for clean matroids then

L X' +— XAP, f{ %fl,fé — Fo

if P is not an augmenting path for clean matroids then
find the first edge on P such that e ¢ D(X) via binary search. Add corresponding set to
JF1 or Fo and go to Line 1.

(S}

4 o

X € I'N7? of value k, there is an algorithm that either returns a solution of value k+ 1 or outputs
that X is mazimum using at most 2 + (m + n2) - ([logy(n)] + 2) clean-oracle calls.

Moreover, there is an algorithm that computes an optimum solution for matroid intersection
using at most (r +1) - (2+ (m + n2) - ([logy(n)] +2)) clean-oracle calls.

Proof. We first prove that the solution output by the algorithm is feasible. If there is no augmenting
path in D7 (X), then there is no augmenting path in D(X) since the dirty matroids are supersets
of the clean matroids and in F; and JF» we only save queries which are not independent in the clean
matroid. Once we find an augmenting path P in Dgl: (X), we always verify it using two clean-oracle
calls: We query if XAP is independent in M; and in Ms. Hence, we only augment X if the
augmenting path P is also an augmenting path in D(X). Since both clean matroids are partition
matroids, we do not need to verify that P is an augmenting path without chords and hence XAP
is an independent set in both clean matroids.

It remains to prove that we use at most 2+ (11 +72) - [logy(n)] clean-oracle calls. As described
above, after finding an augmenting path P in Df (X), we verify it using two clean-oracle calls: We
query if XAP is independent in M; and in Ms. If it is independent, we are done. This check
needs 2 clean-oracle calls. Otherwise, one of the queries tells us that X AP is not independent, i.e.,
one of the edges e in P corresponds to a resulting set X, such that X, is independent in, say ./\/ltli,
but not independent in M*. In particular, in this case Line 7 is executed.

We now show the following: Whenever Line 7 is executed, we add to J7 or F» an additional set
and we can find such a set using at most log,(n) many clean-oracle calls. Since |Fi|+ |Fa| < n1+n2
by definition, this shows the desired bound.

The exchange graph D(X) is a subgraph of the exchange graph D7 (X) since the dirty matroids
are supersets of the clean matroid and by definition of F; and 5. Hence, if P = eq, €3, ...,¢, is an
augmenting path in D7 (X) but not an augmenting path in D(X), there must be an edge ¢; € P
which is not in D(X). Let e; be the first such edge. In order to find e;, we simply do a binary
search: In each iteration, we have two pointers ¢ and r, satisfying 0 < ¢ < ¢ and ¢ < r < p, for
which we know that the first £ edges of P are also in D(X) and among the edges eg41, ..., e, there
must be an edge which is not in D(X). Then, for P’ = ey, eq, ..., €py|rot) We simply query if XAP’

is independent in both clean matroids. If yes, then we set £ = ¢+ LTT_ZJ If no, we set r = ¢+ LTT_ZJ
We repeat this until we found e;. This binary search algorithm finds the first edge e € P which is
not in D(X) using at most [log,(n)] many clean-oracle calls, where n is the number of elements | E|.
The additional +2 in the bound appears since whenever we compute a new candidate augmenting
path P, we first test if it is also an augmenting path in D(X) using 2 clean-oracle calls. Therefore,
we obtain the bound of at most 2 + (11 + 72) - ([loga(n)] + 2) clean-oracle calls.
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We obtain the final bound of (r + 1) - (2 4+ (m1 + n2) - ([logy(n)] + 2)) clean-oracle calls for
computing an optimum solution for matroid intersection as follows: In each iteration we increase
the size of the current solution by one or prove that there is no improvement possible (and hence
the solution is optimal). Therefore, there are at most r + 1 iterations, which proves the bound. [

C.2.2 Matroid intersection via warm-starting using a dirty solution

In this subsection we consider the task of using a solution to the dirty matroid intersection instance
as a “warm-start” for the clean matroid intersection instance. In particular, we compute a maximal
subset of the dirty solution using only few clean-oracle calls, which again will depend on the error
of the dirty matroids. Similar approaches for warm-starting using predictions have been used in [10,
16, 31] for problems like weighted bipartite matching or weighted matroid intersection. We show
here that this is also possible using dirty matroids.

Before we start with the algorithm, let us define our error measure for this subsection. Here,
we are just interested in the removal error: for a given maximum solution Sy for the dirty matroid
intersection, we compute the shortest distance to obtain a feasible solution to the clean matroid in-
tersection problem. Then, the error is simply the maximum value of this shortest distance among all
maximum solutions Sy for the dirty matroid intersection. More formally, let 57 = maxg JETINT2 |Sal
and define St = {S; € T} N2 | |S4| = s3} to be the set of optimum solutions to the dirty matroid
intersection problem. We define 7, = maxg,es: ming,ezinzz2{[Sa \ Sec| : Se € Sa}-

Our algorithm works as follows. We first compute a maximum solution S; € Ié N Ifl using
some algorithm for matroid intersection. Then, via binary search we greedily remove elements to
first obtain a solution which is in Z', and then do the same to obtain a solution which is also
in Z2. We will then show that this solution satisfies |S.| > |S4| — 27, and that we use at most
2+ 2n, - (1 4 [logy(n)]) many clean-oracle calls to compute S..

Algorithm 5: Obtaining a warm-start solution
Input: Two dirty and clean matroids.

1 Compute maximum-cardinality solution Sy € Icll ﬂIg

2 fori=1,2 do

3 if S; € I' then

4 | go to Line 2 with i = 2 or return S}, = Sy if i = 2
5 else

6 sort elements in Sy in arbitrary order ey, eg, ..., €5,

7 find the first element e; € Sy such that {ey,...,ej_1} € Z" and {ey,...,e;} ¢ Z* via
binary search. Set Sq = Sgq — e; and go to Line 3

Proposition 4.3. There is an algorithm that computes a feasible solution S. € I' N I? of size
|S.| > s — 2n, using at most 2+ 2n,. - (1 + [logy(n)]) clean-oracle calls.

Proof. Feasibility is clear since we check in Line 3 for both matroids whether the solution is indeed
feasible. We first prove that we remove at most 27, many elements from Sy to obtain a feasible
solution S/ € Z'NZ2. By the definition of the error 7y, there is some set S, € Z'N7? with S. C Sy
of size |S4| — n,. Hence, there is some set R} such that Sy \ R} € Z' and some set RZ such that
Sa \ R% € 2, where |R717| < n, and |R727| < np. Therefore, S, == Sy \ (R,lz U R,%) € I' NZ? and
S| > [Sal — 2n,. Note that since M' and M? are matroids, the set R} can be found by greedily
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removing elements from Sy such that Sy \ R,l7 € I! and, afterwards, the set R?? can be found by
greedily removing elements from Sd\R}] such that (Sd\R}?) \R?7 € 72, Since Algorithm 5 computes
such a set, we conclude that Line 5 is executed at most 27, times.

Next, we show that whenever Line 5 is executed, we use at most [logs(n)]| many clean-oracle
calls. We fix some i € {1,2}. Let eq,eq, ..y €|5,| be any order Qf the elements. To find the first
element e; € Sy such that {eq,...,e;_1} € Z* and {eq,...,e;} ¢ I', the algorithm performs a binary
search. By folklore results, we use at most [logs(n)] many clean-oracle calls to do so. Furthermore,
whenever Line 5 is executed, we have previously executed a clean query in Line 3. Finally, we
additionally need 2 clean-oracle calls, as Line 5 is executed for both matroids even if there is no
error at all. Therefore, we use at most 2 + 27, - (1 4 [logy(n)]) many clean-oracle calls. O
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