
Competitive Query Minimization for Stable1

Matching with One-Sided Uncertainty2

Evripidis Bampis #3

Sorbonne Université, CNRS, LIP6, Paris, France4

Konstantinos Dogeas5

Department of Computer Science, Durham University, Durham, United Kingdom6

Thomas Erlebach #7

Department of Computer Science, Durham University, Durham, United Kingdom8

Nicole Megow #9

Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany10

Jens Schlöter #11

Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany12

Amitabh Trehan #13

Department of Computer Science, Durham University, Durham, United Kingdom14

Abstract15

We study the two-sided stable matching problem with one-sided uncertainty for two sets of agents16

A and B, with equal cardinality. Initially, the preference lists of the agents in A are given but the17

preferences of the agents in B are unknown. An algorithm can make queries to reveal information18

about the preferences of the agents in B. We examine three query models: comparison queries,19

interviews, and set queries. Using competitive analysis, our aim is to design algorithms that minimize20

the number of queries required to solve the problem of finding a stable matching or verifying that a21

given matching is stable (or stable and optimal for the agents of one side). We present various upper22

and lower bounds on the best possible competitive ratio as well as results regarding the complexity23

of the offline problem of determining the optimal query set given full information.24

2012 ACM Subject Classification Theory of Computation → Design and analysis of algorithms25

Keywords and phrases Matching under Preferences, Stable Marriage, Query-Competitive Algorithms,26

Uncertainty27

Related Version An extended abstract of this paper appears in the proceedings of the International28

Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX29

2024).30

Funding This research was supported by EPSRC grant EP/S033483/2.31

Evripidis Bampis: Partially funded by the grant ANR-19-CE48-0016 from the French National32

Research Agency (ANR).33

Nicole Megow: Supported by DFG grant no. 547924951.34

1 Introduction35

In the classical two-sided stable matching problem, we are given two disjoint sets A and B36

of agents (often referred to as men and women) of equal cardinality n. Each agent has37

a complete preference list over the agents of the other set. The task is to find a stable38

matching, i.e., a one-to-one allocation in which no two agents prefer to be matched to39

each other rather than to their current matching partners. This problem has applications40

in numerous allocation markets, e.g., university admission, residency markets, distributed41

internet services, etc. Since its introduction by Gale and Shapley [12] this problem has been42

mailto:evripidis.bampis@lip6.fr
https://orcid.org/0000-0002-4498-3040
https://orcid.org/0009-0001-1528-3221
mailto:thomas.erlebach@durham.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:jschloet@uni-bremen.de
https://orcid.org/0000-0003-0555-4806
mailto:amitabh.trehan@durham.ac.uk
https://orcid.org/0000-0002-2998-0933

2 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

widely studied in different variants from both practical and theoretical perspectives; we refer43

to the books [14, 30, 24].44

While the majority of the literature assumes full information about the preference lists,45

this may not be realistic in large matching markets. It might be impractical or too costly and46

not even necessary to gather the complete preferences. Hence, different models for uncertainty47

in the preferences have received attention in the past decade [1, 2, 5, 6, 8, 16, 15, 28, 29]. Many48

of these works rely on probabilistic models and guarantees. This may not be appropriate for49

applications in which no (correct) distributional information is available, e.g. in one-time50

markets. Further, one might ask for guaranteed properties such as stability and optimality51

instead of probabilistic ones.52

A different way of handling uncertainty in the preferences is to allow an algorithm to make53

queries to learn about the unknown preferences. Various types of queries (in terms of both54

input and output) are conceivable, with one example being interview queries [5, 6, 28, 29].55

Here one asks for a query sequence where a query corresponds to an interview between two56

potential matching partners and the outcome is the placement of the interview partners in57

each other’s preference list among all other candidates that she has interviewed so far. Hence,58

if an agent has several such interviews then she finds out her preference order over all these59

candidates.60

In this paper we investigate various query models for stable matching problems with61

one-sided uncertainty in the preferences. We assume that initially only the preference lists of62

one side, A, are known but the preference lists of the other side, B, are unknown. Applications63

include allocations between groups of different seniority or when preferences shall be kept64

private; see also [16, 15, 17]. For illustration consider, e.g., pairing new staff with mentors or65

new PhD students with supervisors as part of the onboarding. New staff can be asked to66

provide a full preference list of mentors based on information about the available mentors67

that can be made accessible with little effort, while requiring mentors to rank potential68

mentees might be considered too burdensome for senior staff due to other significant time69

commitments.70

We consider three types of queries to gain information about the preferences, namely71

(i) comparison queries that reveal for an agent b ∈ B and a pair of agents from A which72

one b prefers, (ii) set queries that reveal for an agent b ∈ B and a subset S ⊆ A the agent73

in S that b prefers most, and (iii) interview queries.74

We study basic problems regarding stability and optimality of matchings using these query75

models. A stable matching is called A-optimal (resp. B-optimal) if no agent in A (resp. B)76

prefers a different stable matching over the current one. To our knowledge, most existing77

related work considers worst-case bounds on the absolute number of queries necessary to solve78

the respective problem; see Further Related Work below for a discussion. For many instances,79

however, executing such a worst-case number of queries might not be necessary. To also80

optimize the number of queries on these instances, we analyze our algorithms using competitive81

analysis. We say that an algorithm that makes queries until it can output a provably correct82

answer, e.g., a stable and A-optimal matching, is ρ-competitive (or ρ-query-competitive) if it83

makes at most ρ times as many queries as the minimum possible number of queries that also84

output a provably correct answer for the given instance. Note that this answer may differ85

from that of the algorithm, e.g., a different stable matching. In this paper, we design upper86

and lower bounds on the competitive ratios for the above mentioned problems and query87

models. Our results illustrate that worst-case instances regarding the competitive ratio are88

very different from the worst-case instances regarding the absolute number of queries. Thus,89

our lower bounds on the competitive ratio use different instances and our algorithms are90

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 3

designed to optimize on different instances. Indeed, worst-case instances for the absolute91

number of queries turn out to be ‘easy’ for competitive analysis as the optimal solution we92

compare against is very large.93

Query-competitive algorithms are often associated with the field of ‘explorable uncertainty’.94

Most previous work considers queries revealing an originally uncertain value [3, 7, 9, 18, 19,95

21, 25, 10], while in this work we query a preference.96

Our Contribution. We study the stable matching problem with one-sided uncertainty in the97

preference lists and give the following main results. Note that we assume that the preferences98

of the B side are unknown, and |A| = |B| = n. We remark that our technically most involved99

main results are lower bounds on the competitive ratio and hardness results, so the results100

only get stronger by making these assumptions.101

In Section 3 we focus on comparison queries. Firstly, we ask the question of how to verify102

that a given matching is stable. We show that the problem can be solved with a 1-competitive103

algorithm. Then we ask how to find a stable matching under one-sided uncertainty. We104

give a 1-competitive algorithm that finds a stable matching and, moreover, the solution is105

provably A-optimal. Essentially, we employ the well-known deferred acceptance algorithm,106

first analyzed by Gale and Shapley [12], and compare its number of queries carefully with107

the number of queries that any algorithm needs to verify a stable matching.108

A substantially more challenging task is to find a B-optimal stable matching. Note that109

a trivial competitive ratio is O(n2 log n), as it is possible to obtain the full preferences of110

each of the n elements in B using O(n log n) queries, and the optimum total number of111

queries is at least 1. One of our main contributions is a tight bound of O(n). To that end,112

we first show that every algorithm for verifying that a given matching is B-optimal and113

stable requires Ω(n) queries. Then we give an O(n)-competitive algorithm for the problem114

of finding one. This is best possible up to constant factors, which we prove with a matching115

lower bound that also holds for verifying that a given matching is stable and B-optimal, even116

for randomized algorithms.117

We complement these results by showing that the offline problem of determining the118

optimal number of queries for finding the B-optimal stable matching is NP-hard, and we give119

an O(log n log log n)-approximation algorithm. Here, the offline version of a problem is to120

compute, given full information about the preferences of all agents, a smallest set of queries121

with the property that an algorithm making exactly those queries has sufficient information122

to solve the problem with one-sided uncertainty.123

Section 4 discusses interview queries. We show that the bounds on the competitive124

ratio and hardness results for comparison queries translate to interview queries. We remark125

that some of these results for interview queries, e.g., a 1-competitive algorithm for finding126

an A-optimal stable matching, were already proven by Rastegari et al. [29] and discuss127

differences to their results in the corresponding section. Interestingly, we can use essentially128

the same techniques as for the comparison model. This may seem surprising, especially for129

the lower bounds, as interview queries seem to be more powerful. For instance, n interviews130

are sufficient to determine the precise preference order of an agent b ∈ B, while we need131

Ω(n log n) comparison queries to determine b’s preference order. On the other hand, an132

instance that can be solved with a single comparison query requires two interviews. In133

general, we can simulate a comparison query by using two interview queries.134

In Section 5 we discuss the set query model. While some bounds remain the same as in135

the other models, e.g., 1-competitiveness for verifying the stability of a given matching, we136

show that some bounds change drastically. For example, we give an O(log n)-competitive137

4 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

algorithm for verifying that a given matching is B-optimal, which is in contrast to the138

lower bound of Ω(n) in the other query models. It remains open whether O(1)-competitive139

algorithms exist for the problems of finding a stable matching or verifying a B-optimal140

matching with set queries.141

Further Related Work. In classical work on stable matching with queries, the preferences on142

both sides can only be accessed via queries, with a query usually either asking for the ith entry143

in a preference list or for the rank of a specific element within a preference list (cf. e.g. [26]).144

Note that two rank queries are sufficient to simulate a comparison query, but up to n− 1145

comparison queries are needed to obtain the information of a single rank query. Thus, existing146

lower bounds on the necessary number of rank queries in these query models translate to147

our setting (up to a constant factor), but upper bounds do not necessarily translate. Ng148

and Hirschberg [26] showed that Θ(n2) such queries are necessary to find or verify a stable149

matching in the worst case. The lower bound of Ω(n2) translates to any type of queries150

with boolean answers, including comparison queries [13]. Further work on interview queries151

includes empirical results [5, 6] and complexity results [28] on several decision problems152

under partial uncertainty. We discuss the latter in Section 4.153

Our setting of one-sided uncertainty and querying uncertain preferences is also related to154

existing work on online algorithms for eliciting partial preferences [20, 27, 23]. These works155

also consider a setting where the preferences of agents in one of the sets are uncertain but can156

be determined by using different types of queries. In particular, [27] also considers the set157

query model. The main difference to our work is that these papers assume that the elements158

of one set do not have any preferences at all. As a consequence, they do not consider stability159

at all and instead aim at computing pareto-optimal or rank-maximal matchings.160

2 Preliminaries161

An instance of the two-sided stable matching problem consists of two disjoint sets A and B of162

size |A| = |B| = n and complete preference lists: The preference list for each agent a ∈ A163

is a total order ≺a of B, the preference list of each agent b ∈ B is a total order ≺b of A.164

Here, a1 ≺b a2 means that b prefers a1 to a2. A matching is a bijection from A to B. For165

a matching M , we denote the element of B that is matched to a ∈ A by M(a), and the166

element of A that is matched to b ∈ B by M(b).167

Given a matching M , a pair (a, b) ∈ A×B is a blocking pair in M if a is not matched168

to b in M , a prefers b to M(a), and b prefers a to M(b). A matching M is called a stable169

matching if there is no blocking pair in M .170

In their influential paper, Gale and Shapley [12] showed that a stable matching always171

exists, and the deferred acceptance algorithm computes one in O(n2) time. In this algorithm,172

one group (A or B) proposes matches and the other decides whether to accept or reject each173

proposal. The algorithm produces a stable matching that is best possible for the group X174

that proposes (we say X-optimal) and worst possible for the other group: Each element of175

the group that proposes gets matched to the highest-preference element to which it can be176

matched in any stable matching, and each element of the other group gets matched to the177

lowest-preference element to which it can be matched in any stable matching.178

In this paper, we consider the setting of one-sided uncertainty, where initially only the179

preference lists of all agents in A are known, but the preference lists of b ∈ B are unknown.180

An algorithm can make queries to learn about the preferences of b ∈ B. We distinguish the181

following types of queries:182

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 5

Comparison queries: For agents b ∈ B and a1, a2 ∈ A, the query prefer(b, a1, a2) returns183

a1 if b prefers a1 to a2 and a2 otherwise. These queries can also be seen as Boolean184

queries that return true iff b prefers a1 to a2.185

Set queries: For agents b ∈ B and any subset S ⊆ A, the query top(b, S) returns b’s most186

preferred element of S.187

Interview queries: For agents b ∈ B and a ∈ A, an interview query intq(b, a) reveals the188

total order of the subset {a}∪Pb defined by ≺b, where Pb is the set of all elements a′ ∈ A189

for which a query intq(b, a′) has already been executed before the query intq(b, a).190

A stable matching instance with one-sided uncertainty is given by two sets A and B of191

size n and, for each agent a ∈ A, a total order ≺a of the agents in B. The preferences192

of the agents in B are initially unknown. For a given stable matching instance with one-193

sided uncertainty, we consider the following problems: finding a stable matching, finding194

an A-optimal stable matching, and finding a B-optimal stable matching. For a given stable195

matching instance with one-sided uncertainty and a matching M , we consider the following196

problems: verifying that M is stable, verifying that M is stable and A-optimal, and verifying197

that M is stable and B-optimal. All problems can be considered for each query model. For198

the verification problems, we consider the competitive ratio only for inputs where M is199

indeed a stable (and A- or B-optimal) matching. If this is not the case, the algorithm must200

detect this, but we do not compare the number of queries it makes to the optimum. This is201

because any algorithm may be required to make up to Ω(n2) comparison or interview queries202

to detect a blocking pair, while the optimum can prove its existence with a constant number203

of queries.204

It is easy to see that for the optimum, the problem of verifying that a given matching M205

is stable and A-optimal (B-optimal) is the same as that of finding the A-optimal (B-optimal)206

stable matching. This implies that any lower bound on the number of queries required to207

verify that M is stable and A-optimal (B-optimal) also applies to the problem of finding the208

A-optimal (B-optimal) stable matching.209

An important concept is the notion of rotations, which can be defined as follows (cf. [24]):210

Let a stable matching M be given. For an agent ai ∈ A, let sA(ai) denote the most-preferred211

element bj on ai’s preference list such that bj prefers ai to her current partner M(bj). Note212

that sA(ai) must be lower than M(ai) in ai’s preference list as otherwise (ai, sA(ai)) would be213

a blocking pair. Let nextA(ai) = M(sA(ai)). Then a rotation (exposed) in M is a sequence214

(ai0 , bj0), . . . , (air−1 , bjr−1) of pairs such that, for each k (0 ≤ k ≤ r − 1), (aik
, bjk

) ∈M and215

aik+1 = nextA(aik
), where addition is modulo r. The rotation can be viewed as an alternating216

cycle consisting of the matched edges (aik
, bik

) and the unmatched edges (aik
, bik+1) (for217

0 ≤ k ≤ r−1). We refer to an edge (a, sA(a)) as a rotation edge or r-edge as it can potentially218

be part of a rotation. Note that every vertex a ∈ A is incident with at most one r-edge.219

Given a rotation R in a stable matching M , we can construct a stable matching M ′
220

from M by removing all edges that are part of R and M and adding all r-edges that are221

part of R. We refer to this as applying a rotation. Observe that no agent in B is worse off in222

M ′ than in M , and some agents in B prefer M ′ to M . The following has been shown.223

▶ Lemma 1 (Lemma 2.5.3 in Gusfield and Irving [14]). If M is any stable matching other224

than the B-optimal stable matching, then there is at least one rotation exposed in M .225

3 Stable Matching with Comparison Queries226

In this section, we consider the comparison query model with one-sided uncertainty. We first227

discuss our results on the problems of verifying that a given matching is stable and finding228

6 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

an A-optimal matching, before moving on to our main results regarding the competitive ratio229

for finding/verifying a B-optimal matching. Finally, we briefly consider the variation with230

two-sided uncertainty and give tight bounds for the problem of verifying a stable matching231

in that model.232

3.1 Verifying That a Given Matching Is Stable233

In this section, we consider the verification problem where we are given a matching M and234

our task is to verify that M is indeed stable. We give a 1-competitive algorithm. As argued235

in the previous section, we only care about the competitive ratio if the given matching M is236

indeed stable. If the given matching M is not stable, the algorithm must detect this, but237

its number of queries can be arbitrarily much larger than the optimal number of queries for238

detecting that M is not stable. In the case of one-sided uncertainty, as we consider it here, a239

single query is sufficient for the optimum to identify a blocking pair.240

The following auxiliary lemma shows that exploiting transitivity cannot reduce the number241

of comparison queries to an agent b ∈ B if one needs to find out the preference relationship242

of k agents from A to one particular agent from A in b’s preference list.243

▶ Lemma 2. Consider two agents a ∈ A, b ∈ B and assume that there are k agents244

a1, . . . , ak ∈ A\{a} for each of which we want to know whether b prefers that agent to a or not.245

Then exactly k comparison queries to b are necessary and sufficient to obtain this knowledge.246

Proof. The k queries prefer(b, a, ai) for i = 1, . . . , k are clearly sufficient. Assume that k′
247

queries to b, for some k′ < k, are sufficient to obtain the desired information. Consider the248

auxiliary graph H with vertex set VH = A and an edge {a′, a′′} for each of those k′ queries249

prefer(b, a′, a′′). As the set A′ = {a, a1, a2, . . . , ak} has k + 1 vertices and H has fewer than k250

edges, the set A′ intersects at least two different connected components of H. Let aj , for some251

1 ≤ j ≤ k, be a vertex that does not lie in the same component as a. Then the k′ queries do252

not show whether b prefers aj to a or not, which contradicts k′ queries being sufficient. ◀253

If an algorithm obtains for agents x and y with y ̸= M(x) the information that M(x) ≺x y254

(either via a direct query or via transitivity), we say that the algorithm relates y to M(x)255

for x. By Lemma 2, if the optimum relates k different elements to M(x) for x, it needs to256

make k queries to x. A pair (x, y) with y ̸= M(x) such that the optimum relates y to M(x)257

for x is called a relationship pair (for x). Lemma 2 implies the following.258

▶ Corollary 3. The total number of relationship pairs (for all agents x) is a lower bound on259

the number of comparison queries the optimum makes.260

▶ Theorem 4. Given a stable matching instance with one-sided uncertainty and a stable261

matching M , there is a 1-competitive algorithm that uses
∑

a∈A |{b ∈ B | b ≺a M(a)}|262

queries for verifying that M is stable in the comparison query model.263

Proof. Since the preferences of agents on the A-side are not uncertain, for each (a, b) /∈M ,264

we already know whether M(a) ≺a b. If M(a) ≺a b, then we do not have to execute any265

queries to show that (a, b) /∈M is not a blocking pair. Otherwise, every feasible query set266

has to prove M(b) ≺b a. Therefore, for each element b ∈ B, there is a uniquely determined267

number nb of elements of A that any solution (including the optimum) must relate to M(b)268

for b. Let K =
∑

b∈B nb be the resulting number of relationship pairs.269

Our algorithm simply queries prefer(b, M(b), a) for every pair (a, b) /∈ M for which270

b ≺a M(a). These are exactly K queries. As the total number of relationship pairs is K, the271

optimum must also make K queries (Corollary 3). Hence, our algorithm is 1-competitive. ◀272

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 7

The proof of Theorem 4 implies that the stable matching that maximizes the number of273

queries that are required to prove stability is the B-optimal matching.274

▶ Corollary 5. The number of comparison queries needed to verify that the B-optimal275

matching is stable is maxM stable
∑

a∈A |{b ∈ B | b ≺a M(a)}|.276

3.2 Finding an A-Optimal Stable Matching277

We obtain the following positive result by adapting the classical deferred acceptance al-278

gorithm [12] with A making the proposals.279

▶ Theorem 6. For a given stable matching instance with one-sided uncertainty, there is a280

1-competitive algorithm for finding a stable matching in the comparison query model. The281

algorithm actually finds an A-optimal stable matching.282

Proof. We utilize the classical deferred acceptance algorithm [12] where A makes the pro-283

posals, and we assume the reader’s familiarity with it. An unmatched agent a ∈ A makes a284

proposal to their preferred agent b ∈ B by whom it has never been rejected. If b is unmatched,285

then b accepts the proposal and a and b get matched. If b is currently matched to some286

a′ ∈ A, the algorithm makes a query prefer(b, a, a′). If the query result is that b prefers a287

to a′, then b accepts a’s proposal and becomes matched to a while a′ becomes unmatched.288

Otherwise, b rejects the proposal and remains matched to a′. The algorithm terminates if all289

agents in A are matched or if every unmatched agent in A has been declined by all agents290

in B.291

We show that this algorithm makes the minimum possible number of comparison queries.292

We execute the deferred acceptance algorithm with A as the proposers, so it produces an293

A-optimal stable matching. Consider an arbitrary agent b ∈ B. Assume that b gets matched294

to a ∈ A in the stable matching. Let Ab = {a, a1, a2, . . . , akb
} (for some 0 ≤ kb < n) be295

the set of agents of A that proposed to b during the execution of the algorithm. Note that296

|Ab| = kb + 1 and the algorithm has executed kb queries to b, each for two agents of Ab (the297

first agent of A that proposed to b did not require a query). Observe that each of a1, . . . , akb
298

gets matched with an agent of B that they rank strictly lower than b in the final matching.299

We claim that no stable matching can be identified without making at least kb queries300

to b. Let M ′ be an arbitrary stable matching. Note that b rates M ′(b) at least as highly as a,301

because M is the worst possible matching for B. Furthermore, for each ai with 1 ≤ i ≤ kb,302

we have that ai rates b strictly higher than M ′(ai) because M is A-optimal and ai rates303

M(ai) strictly lower than b. Thus, for none of the pairs (ai, b) for 1 ≤ i ≤ kb to be a blocking304

pair, the queries of any optimal query set must establish that b rates M ′(b) more highly than305

every ai for 1 ≤ i ≤ kb. This can only be achieved with at least kb queries.306

The same argument applies to each b ∈ B, so we have that both the optimal number of307

queries and the number of queries made by the algorithm are equal to
∑

b∈B kb. ◀308

The proof of Theorem 6 implies that, for the A-optimal stable matching M , the optimal309

number of queries to prove that M is stable equals the optimal number of queries to prove310

that M is stable and A-optimal. Hence, proving optimality comes in this case for free.311

3.3 Finding a B-Optimal Stable Matching312

The problem of finding a B-optimal stable matching is substantially more challenging in313

general. For the special case where all A-side preference lists are equivalent, however, there314

exists a 1-competitive algorithm:315

8 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

▶ Observation 7. If all agents of A have the same preference list, then there is a 1-competitive316

algorithm that uses n2−n
2 queries for finding a stable matching under one-sided uncertainty.317

Proof. Let B = {b1, . . . , bn} be indexed by the preference list of the elements in A, i.e., b1 is318

the first choice of the elements in A and bi is the ith choice of the elements in A.319

Let a∗
1 be the (initially unknown) first choice of b1 and, for i > 1, let a∗

i denote the first320

choice of bi among the elements of A \ {a∗
1, . . . , a∗

i−1}. We can inductively argue that every321

stable matching must match bi to a∗
i for all i ∈ [n].322

Thus, every algorithm (including the optimal solution) has to find the first choice of bi in323

A\{a∗
1, . . . , a∗

i−1} for all i ∈ [n]. For each bi this requires a minimum of |A\{a∗
1, . . . , a∗

i−1}|−324

1 = n− i queries, as each query can exclude at most one element from being the first choice325

of bi. This implies that every algorithm needs at least
∑n

i=1(i− 1) = n2−n
2 queries.326

The following algorithm matches this lower bound. This is essentially the deferred327

acceptance algorithm used in the proof of Theorem 6 but considers the agents of B in a328

specific order: (i) Iterate through B in order of increasing indices (ii) For each bi, determine329

the first choice among the not yet matched elements of A and match bi to that choice.330

For each bi this requires at most n − i queries and, thus, a total of
∑n

i=1(i − 1) = n2−n
2331

queries. ◀332

For arbitrary instances, we first describe an algorithm that is O(n)-competitive. Comple-333

menting this result, we then show that every (randomized) online algorithm has competitive334

ratio at least Ω(n) for finding a B-optimal stable matching. Finally, we show that the offline335

problem of determining the optimal number of queries for computing a B-optimal stable336

matching is NP-hard and give an O(log n log log n)-approximation.337

3.3.1 Algorithm for Computing a B-Optimal Stable Matching338

We first consider the problem of verifying that a given stable B-optimal matching is indeed339

stable and B-optimal. An algorithm for this problem needs to prove that M has no blocking340

pair and that no alternating cycle with respect to M is a rotation. For each potential blocking341

pair (a, b) that cannot be ruled out because of a’s preferences, such an algorithm has to prove342

that it is not a blocking pair using a suitable query to b as discussed in Section 3.1.343

The more involved part is proving that M is B-optimal. By Lemma 1, M is B-optimal344

if and only if it does not expose a rotation. Based on the known A-side preferences, each345

edge (a, b) with M(a) ≺a b could potentially be an r-edge. Thus, each cycle that alternates346

between such edges and edges in M could potentially be a rotation. An algorithm that proves347

B-optimality has to prove for each such alternating cycle that at least one non-matching348

edge (a, b) on that cycle is not an r-edge. By definition, there are two possible ways to prove349

that an edge (a, b) with M(a) ≺a b is not an r-edge:350

1. Query b and find out that b prefers M(b) to a. Then, b cannot be sA(a) as b does not351

prefer a to M(b).352

2. Query one b′ with M(a) ≺a b′ ≺a b and find out that b′ prefers a to M(b′). Then, b353

cannot be the most-preferred element in a’s list that prefers a to her current partner, as354

b′ has that property and is preferred over b.355

Corollary 5 gives the optimal number of queries to prove that the matching M is stable,356

which is a lower bound on the optimal number of queries necessary to prove that M is357

stable and B-optimal. Let Q(M) denote this number. However, there exist instances where358

Q(M) = 0 and QB(M) > 0 for the optimal number QB(M) of queries to prove that M359

is stable and B-optimal. Consider an instance where all elements of A have distinct first360

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 9

choices and let M denote the matching that matches all elements of A to their respective361

first choice. Then, there is a realization of B-side preference lists such that the matching362

M is also B-optimal. For this realization we have Q(M) = 0 and QB(M) > 0. This implies363

that the lower bound of Corollary 5 is not strong enough for analyzing algorithms that verify364

B-optimality as we cannot prove that such an algorithm makes at most c ·Q(M) queries.365

We give another lower bound on the optimal number of queries.366

▶ Lemma 8. The optimal number of queries for verifying (and thus also for finding) the367

B-optimal stable matching is at least n− 1 for every instance of the stable matching problem368

with one-sided uncertainty.369

Proof. Let M be the B-optimal stable matching for the given instance. For a ∈ A, call a370

query an a-query if it reveals for some b ∈ B with b ̸= M(a) whether b prefers a to her current371

partner or not. We claim that an optimal algorithm needs to make at least one a-query for372

every a ∈ A with at most a single exception. Assume for a contradiction that the optimal373

algorithm makes neither an a-query nor an a′-query for two distinct elements a, a′ ∈ A. If a374

prefers M(a) over M(a′) and a′ prefers M(a′) over M(a), then it is impossible to exclude375

the possibility that (a, M(a)), (a′, M(a′)) is a rotation exposed in M , because the only way376

to prove that (a, M(a′)) is not an r-edge is via an a-query, and similarly for (a′, M(a)). If a377

prefers M(a′) over M(a), then an a-query to M(a′) is necessary to exclude that (a, M(a′)) is378

a blocking pair. If a′ prefers M(a) over M(a′), then an a′-query to M(a) is necessary for the379

analogous reason. Hence, the claim holds. We note that the n− 1 queries whose existence is380

asserted by the claim are distinct: A query to some b ∈ B cannot be an a-query and at the381

same time an a′-query for some a′ ≠ a, as the query prefer(b, a, a′) cannot yield previously382

unknown information about how both a and a′ compare to M(b) in b’s preference list. ◀383

Next, we give an O(n)-competitive algorithm for finding a B-optimal matching and384

analyze it by exploiting the lower bounds on the optimal number of queries of Corollary 5385

and Lemma 8. For pseudocode see Algorithm 1.386

1. Find an A-optimal matching using the 1-competitive algorithm for A-optimal matchings.387

2. Search for a rotation by asking, for every a ∈ A, the elements of B that are below M(a)388

in a’s preference list in order of ≺a whether they prefer a to their current partner, until389

either an r-edge is found or we know that a has no r-edge.390

3. If a rotation R is found, apply that rotation. The agents a ∈ A ∩R then no longer have391

a known r-edge as their previous r-edge is now their matching edge. However, the new392

r-edge partner of such an agent must be further down the preference list of a than the393

old one. The elements a ∈ A \ R that had an r-edge to an element b ∈ B ∩ R can no394

longer be sure that their edge to b is an r-edge since b has a new matching partner M(b),395

so b must be asked again whether it prefers the new partner over a when searching for396

the new r-edge of a. The algorithm then repeats Step 2 but starts the search for the new397

rotation edge of an agent a ∈ A at either the previous rotation edge (if a ∈ A \R) or at398

the direct successor of the new M(a) in ≺a (if a ∈ A ∩R).399

4. When a state is reached where it is known for every a ∈ A what its r-edge is (or that400

it has no r-edge) but the r-edges do not form a rotation, the algorithm terminates and401

outputs M .402

▶ Theorem 9. Given a stable matching instance with one-sided uncertainty, the algorithm is403

O(n)-competitive for finding a B-optimal stable matching using comparison queries.404

10 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Algorithm 1 Algorithm to find the B-optimal stable matching using comparison queries.

Input: Instance of the stable matching problem with one-sided uncertainty.
1 M ← A-optimal matching computed using Theorem 6 ;
2 N ← {a ∈ A |M(a) is last in ≺a} ; /* Elements without r-edge */
3 ∀a ∈ A \N : p(a)← first element in ≺a after M(a);
4 ∀a ∈ A \N : r(a)← ⊤ ; /* known r-edges or ⊤ if r-edge still unknown */
5 foreach a ∈ A \N do
6 repeat
7 t← prefer(p(a), a, M(p(a))) ;
8 if t = M(p(a)) then
9 if p(a) is the last element of ≺a then N ← N ∪ {a} ;

10 else p(a)← direct successor of p(a) in ≺a ;
11 else
12 r(a)← p(a); /* r(a) and a form an r-edge */

13 until r(a) ̸= ⊤ or a ∈ N ;
14 if M exposes a rotation R then
15 M ← stable matching constructed from M by applying R;
16 N ← N ∪ {a ∈ A ∩R |M(a) is last in ≺a};
17 ∀a ∈ (A ∩R) \N : r(a)← ⊤ and p(a)← first element in ≺a after M(a);
18 ∀a ∈ (A \R) \N : p(a)← r(a) and r(a)← ⊤;
19 Jump to Line 5;
20 return M ;

Proof. Let OPT denote the number of queries made by an optimal algorithm. Since finding405

any stable matching can never require more queries than finding a B-optimal stable matching,406

Theorem 6 implies that the algorithm makes at most OPT queries in the first step.407

We analyze the queries executed after the first algorithm step. Call a query good if it is408

the first query involving a specific combination of an agent a ∈ A and an agent p(a) ∈ B, i.e.,409

the first query of form prefer(p(a), a, M(p(a))) for that specific combination of p(a) and a.410

All other queries are bad. By definition of good queries, the algorithm makes at most n2 such411

queries since this is the maximum number of good queries that can exist. Since OPT ≥ n− 1412

(Lemma 8), the number of good queries is O(n) ·OPT.413

Consider the bad queries and a fixed a ∈ A. In the second step of the algorithm, it414

repeatedly executes queries of the form prefer(p(a), a, M(p(a))) with p(a) ∈ B to find out if415

(a, p(a)) is an r-edge, starting with the direct successor p(a) of M(a) in ≺a. If (a, p(a)) is not416

an r-edge, then the next query partner p(a) for a moves one spot down in the list ≺a. This417

is repeated until the r-edge (a, r(a)) of a is found or we know that a does not have an r-edge.418

Here, r(a) refers to the element that forms an r-edge with a.419

If a does not have an r-edge, there will be no more queries for a again as all b ∈ B that420

are lower than M(a) in the preference list of a prefer their current partner M(b) over a and421

this partner will only improve during the execution of the algorithm. Otherwise, a will be422

considered again in the second step of the algorithm only if a rotation was found in the third423

step. If a is part of the rotation, then r(a) = p(a) will be the new matching partner of a and424

p(a) will be moved one spot down in ≺a. Only if a is not part of the rotation, p(a) = r(a)425

remains unchanged by definition of the third step. In conclusion, the next query partner426

p(a) of a moves down one spot in ≺a after each query for a unless a rotation is found that427

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 11

a0 b0

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

a8 b8

a9 b9

a10 b10

a11 b11

(b0, b6, b7, b8, b9, b10, b11, ∗)
(b1, b6, b7, b8, b9, b10, b11, ∗)
(b2, b6, b7, b8, b9, b10, b11, ∗)
(b3, b6, b7, b8, b9, b10, b11, ∗)
(b4, b6, b7, b8, b9, b10, b11, ∗)
(b5, b6, b7, b8, b9, b10, b11, ∗)
(b6, b11, ∗)
(b7, b11, ∗)
(b8, b11, ∗)
(b9, b11, ∗)
(b10, b11, ∗)
(b11, ∗)

(a1, a0, ∗)
(a0, a1, ∗)
(a3, a2, ∗)
(a2, a3, ∗)
(a5, a4, ∗)
(a4, a5, ∗)
(⋄, a6, a7, a8, a9, a10, a11, ⋄)
(⋄, a7, a8, a9, a10, a11, a6, ⋄)
(⋄, a8, a9, a10, a11, a6, a7, ⋄)
(⋄, a9, a10, a11, a6, a7, a8, ⋄)
(⋄, a10, a11, a6, a7, a8, a9, ⋄)
(⋄, a6, a7, a8, a9, a10, a11, ⋄)

Figure 1 Example of the lower bound construction for finding B-optimal matchings. The solid
edges represent the A-optimal matching M that needs to be shown to be also B-optimal using
queries. The dashed edges represent rotation edges. Each of the agents in {a0, a1, . . . , a5} also has a
rotation edge to some agent in {b6, b7, b8, b9, b10, b11} that is not shown. An asterisk (∗) indicates
that the remaining agents are placed in arbitrary order in the preference list. A diamond (⋄) indicates
that the adversary decides in response to the queries made by the algorithm which of the agents in
{a0, a1, . . . , a5} are placed at the front of the preference list and which at the back.

does not contain a. This means that a bad query for a can only occur as the first query for a428

after a new rotation that does not involve a is found. Thus, each rotation can cause at most429

|A| − 2 bad queries (at least two members of A must be involved in the rotation). Thus, the430

number of bad queries is at most (n− 2) · nr for the number of applied rotations nr.431

For each applied rotation, at least two agents of A get re-matched to agents of B that432

are lower down on their preference lists than their previous matching partner. This increases433

the lower bound on the optimal number of queries to show stability (cf. Corollary 5) by at434

least 2. Thus, Corollary 5 implies OPT ≥ 2 · nr. We can conclude that the number of bad435

queries is at most (n− 2) · nr ≤ O(n) ·OPT. ◀436

3.3.2 Lower Bound for Computing a B-Optimal Matching437

We give a lower bound of Ω(n) on the competitive ratio for finding a B-optimal stable matching438

with comparison queries. This implies that the result of Theorem 9 is, asymptotically, best-439

possible. Further, the lower bound also holds for verifying that a given matching is B-optimal.440

▶ Theorem 10. In the comparison query model, every deterministic or randomized online441

algorithm for finding a B-optimal stable matching in a stable matching instance with one-sided442

uncertainty has competitive ratio Ω(n).443

Proof. We first show the statement for deterministic algorithms. Consider the following444

instance (cf. Fig. 1) with two sets of agents A = {a0, . . . , an−1} and B = {b0, . . . , bn−1}, and445

assume n/2 to be even. If this is not the case, then the constant factor in the lower bound446

will be slightly worse.447

We partition A into three subsets A1 = {a0, . . . , a n
2 −1}, A2 = {a n

2
, . . . , an−2} and448

A3 = {an−1}. and B into two subsets, B1 = {b0, . . . , b n
2 −1} and B2 = B \B1.449

12 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

In the following, we first define the known A-side preferences and the adversarial strategy.450

Then we give bounds on the optimal number of queries and the number of queries made by451

any deterministic algorithm.452

A-side preferences. Consider the following preference lists for A. For an agent ai ∈ A1,453

the preference list consists of three parts, P (ai) = P1(ai)P2(ai)P3(ai). The first part of the454

list is the corresponding ith agent of B, i.e., P1(ai) = (bi). The second part consists of the n
2455

agents of set B2 in increasing order, i.e., P2(ai) = (b n
2

, b n
2 +1, . . . , bn−2, bn−1). The last part456

P3(ai) consists of the agents of B1 \ {bi} in an arbitrary order.457

For an agent ai ∈ A2, the preference list starts with agent bi, followed by the last agent458

bn−1 and finally an arbitrary order of the remaining agents in group B. For the single agent459

an−1 in set A3, the preference list starts with agent bn−1 followed by an arbitrary order of460

the remaining agents of set B.461

Adversarial strategy. The preference lists of the agents in set B are unknown. The462

instance has the A-optimal matching M = {(ai, bi) | 0 ≤ i < n}. The adversary will ensure463

that this matching is also B-optimal. Since each ai is matched with its top choice, proving464

stability does not require any queries. To prove B-optimality of M , the executed queries465

must prove that there is no rotation.466

The adversary will ensure that M can be shown to be a B-optimal matching with O(n)467

queries while any deterministic algorithm is forced to make Ω(n2) queries.468

To achieve this, the adversary sets the preferences of the agents of B1 independent of the469

algorithm’s actions as follows. For each odd i ∈ {1, 3, 5, . . . , (n/2)− 1}, we let the preference470

list of bi start with ai−1 followed by ai and finally all remaining agents in A in an arbitrary471

order. The preference list of bi−1 starts with ai followed by ai−1 and then the remaining472

agents in A in an arbitrary order. Using these preferences, the sequences (ai−1, bi−1), (ai, bi)473

are potential rotations. To prove that such a sequence is not a rotation, an algorithm has to474

show that either (ai−1, bi) or (ai, bi−1) is not an r-edge. The only way of showing this is to475

prove that either ai−1 or ai instead has an r-edge to some agent of B2.476

Consider any deterministic algorithm. The adversary selects the preferences of the agents477

in B2 in such a way that the following properties hold:478

(P1) Agent an−1 has no r-edge. Note that, by the definition of the preferences of B1 above,479

an−1 already cannot have a rotation edge to an agent of B1.480

(P2) Each agent in A2 has an r-edge to bn−1.481

(P3) Each agent ai in A1 has an r-edge to some agent bt(i) of B2. The choice of that agent482

bt(i) depends on the queries made by the algorithm.483

The properties (P1)–(P3) ensure that there is no rotation, as the alternating path starting484

at any a ∈ A \ {an−1} with the r-edge of that agent ends at an−1, which has no r-edge.485

Let t(i) denote the index of the agent bt(i) of B2 to which ai ∈ A1 has an r-edge. This486

index is determined by the adversary in response to the queries made by the algorithm.487

Concretely, the adversary lets t(i) be the index of the last agent bj ∈ B2 for which the488

algorithm makes a query of the form prefer(bj , ai, ∗), where we use prefer(bj , ai, ∗) as a short-489

hand to refer to queries prefer(bj , ai, ai′) or prefer(bj , ai′ , ai) for some i′. If the algorithm490

doesn’t make queries of this form for all bj ∈ B2, then let t(i) be an arbitrary j such that the491

algorithm does not make a query of this form for bj ∈ B2. The adversary sets the preferences492

of the agents in B2 in such a way that bt(i) prefers ai to her partner at(i) in the A-optimal493

matching M while all other bj ∈ B2 prefer their partner in the A-optimal matching aj to ai.494

For example, if the algorithm was to make queries prefer(bj , ai, aj) for all bj ∈ B2 (which it495

might do in order to check whether ai has an r-edge to one of these agents), the adversary496

would answer false to the first n
2 − 1 such queries and true to the final one.497

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 13

To achieve the properties (P1)–(P3), the adversary sets the preferences of each agent bj498

of B2 as follows:499

bj prefers ai ∈ A1 to aj if and only if j = t(i).500

If j ̸= n− 1, bj prefers aj to aj′ for all j′ ̸= j, aj′ ∈ A2.501

If j = n− 1, bj prefers aj′ to aj for all j′ ̸= j, aj′ ∈ A2.502

This can be done by letting the preference list of bj contain first the agents ai ∈ A1 with503

j = t(i) in some order, then the agents of A2 in some order (only ensuring for bj that aj504

comes first among the agents of A2 if j ̸= n− 1 and that aj comes last among the agents of505

A2 if j = n− 1), and finally the agents ai ∈ A1 with j ̸= t(i) in some order.506

Upper bound on the optimal query cost. An optimal solution for the instance can507

prove that matching M is B-optimal by verifying that the properties (P1)–(P3) indeed hold508

by using at most n− 1 + n
2 − 1 + n

2 = 2n− 2 queries as follows:509

The n− 1 queries prefer(bi, an−1, ai) = false for i ≤ n− 2 show that an−1 has no r-edge.510

Each of the n
2 − 1 queries prefer(bn−1, a n

2 +i, an−1) = true for 0 ≤ i ≤ n
2 − 2 shows that511

a n
2 +i has an r-edge to bn−1. This is because each agent of A2 has bn−1 in its preference512

list directly after its current matching partner. So if bn−1 prefers an agent of A2 over its513

current partner an−1, then this directly gives us an r-edge.514

Each of the n
2 queries prefer(bt(i), ai, at(i)) = true for 0 ≤ i ≤ n

2 − 1 shows that ai has a515

rotation edge to some agent in B2. Based on the result of such a query, ai must have an516

r-edge to either bt(i) or to some other agent of B2 that is higher up in ai’s preference list.517

Lower bound on the algorithm’s query cost. We provide to the algorithm the518

information that an−1 has no r-edge, that each agent of A2 has an r-edge to bn−1, and we519

reveal the full preference lists of all agents in B1. Clearly, this extra information can only520

reduce the number of queries a deterministic algorithm may need as it could simply ignore521

the information.522

For each agent ai ∈ A1, the algorithm will either make queries of the form prefer(bj , ai, ∗)523

for all bj ∈ B2 or not. Call ai resolved in the former case and unresolved otherwise. For any524

resolved agent, the algorithm may have determined that it has an r-edge to an agent of B2525

and hence cannot be part of a rotation. For the unresolved agents, the algorithm cannot526

know whether they have an r-edge to an agent in B2.527

As argued above, for each odd i ∈ {1, 3, 5, . . . , n
2 −1}, the algorithm has to resolve either ai528

or ai−1 to prove that (ai, bi), (ai−1, bi−1) is not a rotation. Thus, it must resolve at least n/4529

agents. For each resolved agent, the algorithm has made queries of the form prefer(bj , ai, ∗)530

for each bj ∈ B2. This totals to at least n
4 ·

n
2 ·

1
2 = n2

16 ∈ Ω(n2) queries. Note that we531

divide n
4 ·

n
2 by two as a single query prefer(bj , ai, ai′) is of the form prefer(bj , ai, ∗) and also532

prefer(bj , ai′ , ∗).533

Finally, we show how to extend the lower bound to work for randomized algorithms.534

By Yao’s principle [4, 31] we can prove the theorem by giving a randomized instance R
and showing that

ER∼R

[
ALG(R)
OPT(R)

]
∈ Ω(n)

holds for every deterministic algorithm ALG, where ALG(R) and OPT(R) denote the number535

of queries executed by the algorithm and an optimal solution, respectively, for the realization536

R of the randomized instance R.537

To define the randomized instance R, we take the instance of the deterministic lower538

bound and introduce randomization into the uncertain preference lists. We define the539

preference lists of A and B1 without randomization in the same way as before. Similarly, we540

14 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

leave the sub-list defined for the agents of A2 in the preference list of an agent of B2 as it is541

and only randomize the positions of the agents of A1 in the preference lists of B2.542

To this end, consider an odd i ∈ {1, 3, . . . , (n/2) − 1}. The randomized part of the543

instance uniformly at random picks a tuple (ak, bj) with k ∈ {i − 1, i} and bj ∈ B2. For544

this selected tuple, we set the preferences such that bj prefers ak over its current matching545

partner aj . For all other tuples (ak′ , bj′) with k′ ∈ {i− 1, i}, bj′ ∈ B2 and either k ̸= k′ or546

j ̸= j′, we set the preference of bj′ such that it prefers its current partner over ak′ .547

This can be achieved by letting the preference list of bj contain first the agents ak ∈ A1548

such that (ak, bj) was selected by the randomized procedure above, then the agents of A2 in549

some non-randomized order (only ensuring for bj that aj comes first among the agents of A2550

if j ̸= n − 1 and that aj comes last among the agents of A2 if j = n − 1), and finally the551

agents ak′ ∈ A1 such that the tuple (ak′ , bj) was not selected by the randomized procedure.552

Ties can be broken according to some arbitrary but fixed order.553

By defining the preferences in this way, every realized instance still satisfies the properties
(P1) and (P2) as defined in the proof of the deterministic lower bound. While the preferences
do not satisfy property (P3), they satisfy for each odd i ∈ {1, 3, . . . , (n/2)− 1} that either ai

or ai−1 has a rotation edge to some agent of B2. This still implies that, for every realized
instance, the matching M = {(aj , bj) | j ∈ {0, . . . , n− 1}} is B-optimal. Slightly adjusting
the strategy of the deterministic proof, one can show that OPT ≤ 2n− 2 still holds for each
such realization. This implies

ER∼R

[
ALG(R)
OPT(R)

]
≥ ER∼R

[
ALG(R)
2n− 2

]
= ER∼R[ALG(R)]

2n− 2

for every deterministic algorithm ALG. So it suffices to show ER∼R[ALG(R)] ∈ Ω(n2) to554

prove the theorem.555

To that end, consider an arbitrary deterministic algorithm. As argued in the deterministic556

lower bound proof, the algorithm has to, for each odd i ∈ {1, 3, . . . , (n/2)− 1}, either prove557

that (ai, bi−1) or (ai−1, bi) is not an r-edge. By definition of the instance, this requires at least558

one query of the form prefer(bj , ak, ∗) (as defined in the deterministic lower bound proof) for559

the tuple (bj , ak) with bj ∈ B2 and k ∈ {i, i−1} that was drawn by the randomized procedure560

above for index i. The algorithm will have to execute queries of the form prefer(bj′ , ak′ , ∗)561

with bj′ ∈ B2 and k′ ∈ {i, i− 1} until it hits a query with j′ = j and k′ = k. We call such562

a query successful if j′ = j and k′ = k and unsuccessful otherwise. In the same way, we563

call the selected tuples successful and all other tuples unsuccessful. Note that the algorithm564

might need further queries to prove that either (ai, bi−1) or (ai−1, bi) is not a rotation edge,565

but executing at least one successful query is a necessary condition.566

Consider a fixed odd i ∈ {1, 3, . . . , (n/2)− 1}. We bound the expected number of queries567

of the form prefer(bj′ , ak′ , ∗) with bj′ ∈ B2 and k′ ∈ {i, i− 1} that the algorithm needs until568

one of them is successful. Let Yi be a random variable denoting the number of queries of569

that form the algorithm executes. Note that the algorithm might execute different queries570

in-between the queries of that form, but the random variable Yi only counts the queries of571

that form for the fixed i and ignores different queries that are executed in-between them.572

To further characterize Yi, let Zi,ℓ with ℓ ≥ 1 be an indicator random variable denoting573

whether the first ℓ queries of that form are not successful. Then, Yi = 1 +
∑

ℓ≥1 Zi,ℓ and574

ER∼R[Yi] = 1 +
∑

ℓ≥1 ER∼R[Zi,ℓ].575

We first observe that queries that do no involve ai and ai−1 do not give any information576

on which tuples can be successful for i. Furthermore, queries that involve ai (or ai−1) and577

some bj ∈ B2 do not admit any information on whether some tuple (ak, bj′) (or some tuple578

(ai−1, bj′)) with j′ ̸= j or k = i− 1 (or k = i) is successful or not. Thus, at any point during579

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 15

the execution of an algorithm, all tuples (ak, bj) for which the algorithm did not yet execute580

a query of form prefer(bj , ak, ∗) are equally likely to be successful (unless the algorithm581

already found the successful tuple).582

Consider the expected value ER∼R[Zi,ℓ] = Pr[Zi,ℓ = 1]. For ℓ = 1, we have Pr[Zi,ℓ = 1] =
n−2

n since there are n tuples (ak′ , bj′) with k′ ∈ {i, i− 1}, among those only one successful
tuple is drawn uniformly at random, and a query can cover at most two such tuples at the
same time if it is of form prefer(bj′ , ai, ai−1). For ℓ = 2, we have Pr[Zi,ℓ = 1] ≥ n−2

n · n−4
n−2

because given that the first query is not successful there are still n− 2 tuples that could still
be successful, only one uniformly at random selected tuple is actually successful, and the
second query can cover at most two of the potentially successful tuples. Continuing this
argumentation, we get

ER∼R[Zi,ℓ] = Pr[Zi,ℓ = 1] =
ℓ∏

ℓ′=1

n− 2 · ℓ′

n− 2 · (ℓ′ − 1) = 1− 2ℓ

n

for each 1 ≤ ℓ ≤ n/2. This directly implies583

ER∼R[Yi] = 1 +
∑
ℓ≥1

ER∼R[Zi,ℓ] ≥ 1 +
n/2∑
ℓ=1

ER∼R[Zi,ℓ]584

≥
n/2∑
ℓ=1

(1− 2ℓ

n
) = n− 2

4 .585

The number of queries the algorithm executes on a realization R is at least ALG(R) ≥586 ∑
i∈{1,3,...,(n/2)−1} Yi, which implies587

ER∼R[ALG(R)] ≥
∑

i∈{1,3,...,(n/2)−1}

ER∼R[Yi] ≥
n

4 ·
n− 2

4588

= n2 − 2n

16 ∈ Ω(n2).589

◀590

3.3.3 Offline Results for Computing B-Optimal Stable Matchings591

We show NP-hardness for the offline problem of verifying a given matching M to be stable592

and B-optimal. Recall that in the offline problem we assume full knowledge of the B-side593

preferences but still want to compute a query set of minimum size that a third party without594

knowledge of the B-side preferences could use to verify the B-optimality of M .595

▶ Theorem 11. The offline problem of computing an optimal set of comparison queries596

for finding (or verifying) the B-optimal stable matching in a stable matching instance with597

one-sided uncertainty is NP-hard.598

Proof. We give a reduction from the NP-hard Minimum Feedback Arc Set (FAS) problem.599

Given a directed graph G = (V, E), a feedback arc set is a subset of edges E′ ⊆ E which, if600

removed from G, leaves the remaining graph acyclic. The FAS problem is to decide for a601

given directed graph and some k ∈ Z+, whether there is a feedback arc set E′ with |E′| ≤ k.602

Given an instance of FAS with G = (V, E) and some k, we construct a stable matching603

instance with one-sided uncertainty as follows. For each node v of G, introduce an agent604

v in A and an agent v′ in B. Let N+(v) denote the set of out-neighbors of v in G, and605

16 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

d+(v) = |N+(v)|. The preference list of v is such that it ends with v′ followed by all u′ for606

u ∈ N+(v). All other w′ in B come before v′. Thus, the elements of B \{u′ | u ∈ N+(v)} are607

the most preferred partners of v, followed by v′ and finally the elements of {u′ | u ∈ N+(v)}.608

Let M be the matching that matches v to v′, for all v. The preference lists of b ∈ B are609

such that M is the B-optimal stable matching: Every v′ has v as top preference, and the610

remaining agents of A follow in arbitrary order. By selecting the matching M this way, we611

have that, for every v ∈ A, all edges to elements of {u′ | u ∈ N+(v)} are potential r-edges.612

To prove that such an edge (v, u′) is not an r-edge, an algorithm has to compare u and v613

from the perspective of u′ to prove that u′ prefers M(u′) = u over v.614

The number of queries Q(M) needed to verify the stability of M is determined by M615

and is polynomial-time computable by using Theorem 4. To prove B-optimality of M , we616

need to show that there is no rotation (Lemma 1). Indeed, there is a query strategy with k617

queries for verifying that there is no rotation if and only if there is a feedback arc set in G of618

size k. To see this, observe that every directed cycle in G corresponds to a potential rotation619

in the matching instance, and every query that excludes one of the edges of the potential620

rotation from being an r-edge corresponds to the removal of the corresponding arc in G.621

Note that, for the constructed instance, all queries to verify the stability of M obtain622

information of the form M(b) ≺b a for a ∈ A and b ∈ B with b ≺a M(a). On the other623

hand, all queries that help to verify the absence of a rotation obtain information of the form624

M(b) ≺b a for a ∈ A and b ∈ B with M(a) ≺a b. As these are disjoint query sets, we can625

conclude that there is a query strategy that proves M to be stable and B-optimal with at626

most Q(M) + k queries if and only if there is a feedback arc set in G of size at most k. ◀627

We also prove the following approximation for the offline problem by exploiting an628

O(log n log log n)-approximation for weighted feedback arc set by Even et al. [11].629

▶ Theorem 12. The offline problem of computing an optimal set of comparison queries for630

finding the B-optimal stable matching in a stable matching instance with one-sided uncertainty631

can be approximated within ratio O(log n log log n).632

Proof. Let M be the B-optimal matching. We give an algorithm that verifies M to be633

stable and B-optimal by executing at most O(log n log log n) ·OPT queries, where OPT is634

the optimal number of queries for the same instance. First, the algorithm proves that M is635

stable using Theorem 4. This leads to at most OPT queries.636

After that, the algorithm has to prove B-optimality. First, for every a ∈ A that has an637

r-edge to an agent r(a) ∈ B, the algorithm queries prefer(r(a), a, M(r(a))). Since (a, r(a))638

is an r-edge, this query must return that r(a) prefers a over M(r(a)). This leads to at most639

n ≤ OPT + 1 queries (n ≤ OPT + 1 holds by Lemma 8). Note that, for an a ∈ A with an640

r-edge, the query prefer(r(a), a, M(r(a))) proves that a has an r-edge but is not necessarily641

sufficient to prove that (a, r(a)) is indeed the r-edge of a. If there is an agent b ∈ B with642

M(a) ≺a b ≺a r(a) for which we have not yet verified whether b prefers a over M(b), then643

(a, b) could also still be the r-edge of a. We call such pairs (a, b) potential r-edges and let P644

denote the set of these edges.645

It remains to consider the graph G defined by the matching edges, the r-edges R, and all646

potential r-edges P . If G has no cycle alternating between edges in M and edges in P ∪R,647

then we have shown that M does not expose a rotation and, thus, is B-optimal. Otherwise,648

the algorithm has to execute queries prefer(b, a, M(b)) for edges (a, b) ∈ P to prove that they649

are not actually r-edges until it becomes clear that M has no rotation.650

To select the edges (a, b) ∈ P for which the algorithm executes such queries, we exploit651

the O(log n log log n)-approximation for weighted feedback arc set by Even et al. [11]. To652

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 17

this end, we create an instance of the weighted feedback arc set problem by considering the653

vertices A ∪B, adding the edges M ∪R with weight ∞ each and adding the edges P with654

weight 1 each. We orient all edges in M from the B-side vertex to the A-side vertex and all655

edges in R ∪ P from the A-side vertex to the B-side vertex. The orientation ensures that656

all cycles in the graph alternate between M -edges and R ∪ P -edges. Since the matching657

M is B-optimal by assumption, there cannot be an alternating cycle using only edges in658

M ∪R, so there must be a feedback arc set that only uses edges in P . The choice of the edge659

weights ensures that every approximation algorithm for weighted feedback arc set finds such a660

solution. We use the O(log n log log n)-approximation to find such a feedback arc set F ⊆ P .661

Since removing F from the instance yields an acyclic graph, querying prefer(b, a, M(b))662

for each (a, b) ∈ F proves that M does not expose a rotation. As the minimum weight663

feedback arc set is the cheapest way to prove that M does not have a rotation, we have664

|F | ≤ O(log n log log n) ·OPT, which implies the theorem. ◀665

3.4 Verifying a Stable Matching with Two-Sided Uncertainty666

We observe that the lower bound on the optimal number of queries in Corollary 3 can also be667

used for verifying a stable matching in a stable matching instance with uncertain preferences668

on both sides.669

▶ Theorem 13. In the comparison query model, there is a 2-competitive algorithm for670

verifying that a given matching M in a stable matching instance with uncertain preferences671

on both sides is stable.672

Proof. To verify that a given matching M in a graph G is stable, we have to prove for each673

(a, b) /∈ M that (a, b) is not a blocking pair. That is, we have to prove that M(a) ≺a b or674

that M(b) ≺b a. Note that M(a) ≺a b (or M(b) ≺b a) can be verified by directly querying675

prefer(a, b, M(a)) (or prefer(b, a, M(b))) or indirectly via transitivity.676

For every pair (a, b) /∈ M , let the algorithm query prefer(b, a, M(b)) first and, if the677

answer is that a ≺b M(b), query also prefer(a, b, M(a)). If the answer to the latter query678

is that b ≺a M(a), the pair (a, b) is a blocking pair, and the algorithm outputs that M is679

not a stable matching. If the algorithm finds for every pair (a, b) /∈ M that M(b) ≺b a or680

M(a) ≺a b, the algorithm outputs that M is a stable matching.681

The algorithm makes at most 2(n2 − n) queries, as it makes at most 2 queries for each of682

the n2 − n pairs (a, b) /∈M .683

We now show that the optimal number of queries is at least n2 − n. For each pair684

(a, b) /∈M , the optimum needs to prove M(a) ≺a b or M(b) ≺b a. This means it must relate685

b to M(a) for a, or it must relate a to M(b) for b. Either way, this produces a relationship686

pair. As no two different pairs (a, b) /∈M can produce the same relationship pair, the total687

number of relationship pairs is at least n2−n. By Corollary 3, this implies that the optimum688

makes at least n2 − n queries. As the algorithm makes at most 2(n2 − n) queries, it is689

2-competitive. ◀690

We can show that no deterministic algorithm can do better.691

▶ Theorem 14. In the comparison query model, no deterministic algorithm can be better692

than 2-competitive for the problem of verifying that a given matching M in a stable matching693

instance with uncertain preferences on both sides is stable.694

Proof. Let A = {a1, a2}, B = {b1, b2} and M = {(a1, b1), (a2, b2)}. Any algorithm has to695

prove that (a1, b2) and (a2, b1) are not blocking pairs. Thus, any algorithm has to either696

18 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

prove a2 ≺b2 a1 or b1 ≺a1 b2 (to verify that (a1, b2) is not a blocking pair) and a1 ≺b1 a2 or697

b2 ≺a2 b1 (to verify that (a2, b1) is not a blocking pair).698

Since the subproblems of proving that (a1, b2) and (a2, b1) are not blocking pairs are699

independent of each other, we can w.l.o.g. assume that the algorithm starts by proving that700

(a1, b2) is not a blocking pair. If the algorithm starts by querying prefer(b2, a1, a2), then701

the adversary reveals a2 ≻b2 a1, which forces the algorithm to also query prefer(a1, b1, b2).702

We let this query reveal b1 ≺a1 b2. The optimal solution only queries prefer(a1, b1, b2). If703

the algorithm starts by querying prefer(a1, b1, b2), we can argue symmetrically. Thus, the704

algorithm executes twice as many queries as the optimal solution to prove that (a1, b2) is not705

a blocking pair.706

We can argue analogously to show that the algorithm also executes twice as many queries707

as the optimal solution to prove that (a2, b1) is not a blocking pair, which implies the708

result. ◀709

4 Stable Matching with Interview Queries710

In this section, we consider the interview query model. Most of our results and proofs are711

quite similar to their counterparts for comparison queries. This might be surprising as712

interview and comparison queries are, in a sense, incomparable: While interview queries allow713

us to more efficiently determine full preference lists, a comparison between two agents can714

be done more efficiently via a single comparison query. As we show the same (asymptotic)715

bounds on the competitive ratio, the latter seems to be the deciding factor.716

4.1 Verifying and Finding a Stable Matching with Interview Queries717

A 1-competitive algorithm for finding a stable matching and verifying a given stable matching718

with interview queries is implied by the results and arguments from [29] for a more general719

uncertainty setting and can be derived as follows.720

Consider a given instance of stable matching with one-sided uncertainty and a given721

stable matching M . To verify that M is indeed stable, we have to consider all potential722

blocking pairs, i.e., all pairs (a, b) with b ≺a M(a). For such a pair, we have to verify that723

M(b) ≺b a holds to prove that (a, b) is not a blocking pair. The only way of comparing724

M(b) and a from b’s perspective is to execute the interviews intq(b, a) and intq(b, M(b)). For725

a fixed b ∈ B, this implies that the minimum number of interviews involving b necessary726

to prove that M is stable is Qb(M) = 0 if no element of a ∈ A \ {M(b)} prefers b over its727

current partner M(a) and Qb(M) = 1 + |{a ∈ A | b ≺a M(a)}| otherwise. We can observe728

the following.729

▶ Observation 15. Consider a given instance of stable matching with one-sided uncertainty730

and a given stable matching M . The minimum number of interview queries necessary to731

verify that M is indeed stable is Q(M) =
∑

b∈B Qb(M) with Qb(M) = 0 if no element of a ∈732

A \ {M(b)} prefers b over its current partner M(a) and Qb(M) = 1 + |{a ∈ A | b ≺a M(a)}|733

otherwise734

Consider the following algorithm: For each b ∈ B with Qb(M) > 0, query intq(b, M(b))735

and intq(b, a) for each a ∈ A with b ≺a M(a). This algorithms algorithm clearly verifies the736

stability of M and executes exactly
∑

b∈B Qb(M) interview queries. Thus, the observation737

implies the following lemma.738

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 19

▶ Lemma 16. For a given stable matching instance with one-sided uncertainty and a stable739

matching M , there is a 1-competitive algorithm for verifying that M is stable in the interview740

query model.741

Similar to the comparison query model, we can observe that the A-optimal matching742

M∗ minimizes the query cost for verifying stability Q(M) =
∑

b∈B Qb(M) over all stable743

matchings M .744

To find such an A-optimal matching, we can again just consider the deferred acceptance745

algorithm where A makes the proposals. Whenever an agent a ∈ A makes a proposal to an746

element b ∈ B that is currently matched to some a′ ∈ A, the algorithm queries intq(b, a)747

and intq(b, a′). Each interview query is only executed if it has not yet been queried during748

the previous execution if the algorithm. If the query result is that b prefers a to a′, then b749

accepts a’s proposal and becomes matched to a while a′ becomes unmatched. Otherwise, b750

rejects the proposal and remains matched to a′.751

It is not hard to see that this algorithm executes exactly Q(M∗) =
∑

b∈B Qb(M∗)752

interview queries. This implies that the deferred acceptance algorithm is 1-competitive for753

finding the A-optimal matching or any stable matching with interview queries.754

4.2 Finding a B-Optimal Stable Matching with Interview Queries755

For finding a B-optimal stable matching with interview queries, it is not hard to see that756

the lower bound of Theorem 10 for comparison queries nearly directly translates. We briefly757

sketch how to adjust that lower bound for interview queries to achieve the following theorem.758

▶ Theorem 17. In the interview query model, every deterministic or randomized online759

algorithm for finding a B-optimal stable matching in a stable matching instance with one-sided760

uncertainty has competitive ratio Ω(n).761

Proof sketch. We separately sketch the deterministic and randomized lower bound.762

Deterministic lower bound. Consider the same instance as in the deterministic lower763

bound of Theorem 10. Recall that each ai ∈ A1 has an r-edge to some t(i) ∈ B2 that is764

selected by the adversary depending on the queries executed by the deterministic algorithm.765

Fix an ai ∈ A1. For interview queries we select t(i) as the last element b ∈ B2 for which the766

algorithm executes a query intq(b, ai). If the algorithm does not execute such a query for767

every element of B2, then select an arbitrary agent b of B2 for which the query intq(b, ai)768

has not been executed by the algorithm.769

For a fixed ai ∈ A1, this forces any deterministic algorithm to execute at least |B2| queries770

intq(b, ai) with b ∈ B2 to prove that ai has an r-edge to some b ∈ B2. As argued in the proof771

for comparison queries, any deterministic algorithm has to do this for at least n
4 members of772

A1. This leads to a total of at least n
2 ·

n
4 ∈ Ω(n2) interview queries for every deterministic773

algorithm.774

The optimal solution on the other hand needs at most O(n) queries by for example775

executing the query strategy described in the proof for comparison queries while simulating776

each comparison query with at most two interviews.777

Randomized lower bound. For the randomized lower bound, we again use Yao’s778

principle, consider the same randomized instance as in the proof for comparison queries and779

prove that every deterministic algorithm need Ω(n2) queries in expectation.780

To this end, consider an arbitrary deterministic algorithm. Recall that, for each odd781

i ∈ {1, 3, . . . , (n/2) − 1}, the algorithm either has to prove that (ai, bi−1) or (ai−1, bi) is782

not an r-edge. By definition of the instance, this requires at least one query of the form783

20 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

intq(bj , ak) for the tuple (bj , ak) with bj ∈ B2 and k ∈ {i, i − 1} that was drawn by the784

randomized procedure as defined in the comparison query proof for index i. The algorithm785

will have to execute queries of the form intq(bj′ , ak′) with bj′ ∈ B2 and k′ ∈ {i, i− 1} until it786

hits a query with j′ = j and k′ = k. We call such a query successful if j′ = j and k′ = k and787

unsuccessful otherwise. In the same way, we call the selected tuples successful and all other788

tuples unsuccessful. Note that the algorithm might need further queries to prove that either789

(ai, bi−1) or (ai−1, bi) is not a rotation edge, but executing at least one successful query is a790

necessary condition.791

After this slight adjustment, we can bound the expected number of queries in the same792

way as before (with the only difference that a single query can now cover only a single tuple793

and not two) to prove that every deterministic algorithm makes Ω(n2) queries in expectation.794

On the other hand, the optimal solution for each realization of the randomized instance795

needs at most O(n) queries by again simulating the comparison query strategy with at most796

two interview queries per comparison. ◀797

For the matching upper bound, recall that n2 interview queries are enough to determine798

the full B-side preference lists. This means that we need at most n2 interview queries to799

find the B-optimal matching M . We show that even the optimal solution needs at least800

Ω(n) interviews to find the B-optimal matching, which then implies an O(n)-competitive801

algorithm. We prove the following lemma by essentially repeating the corresponding proof802

for comparison queries (cf. Lemma 8)803

▶ Lemma 18. The optimal number of queries for verifying the B-optimal stable matching804

with interview queries is at least n− 1 for every instance of the stable matching problem with805

one-sided uncertainty.806

Proof. Let M be the B-optimal stable matching for the given instance. Consider an arbitrary807

algorithm that verifies M to be B-optimal with interview queries. Assume that there are808

at least two distinct members a and a′ of B for which the algorithm does not execute any809

queries. If some b ∈ B satisfies either b ≺a M(a) or b ≺a′ M(a′), then this is a contradiction810

to the algorithm verifying M to be stable. Otherwise, (a, M(a)), (a′, M(a′)) is a potential811

rotation so the algorithm has to prove that either (a, M(a′)) or (a′, M(a)) is not an r-edge.812

Assume w.l.o.g. that the algorithm proves (a, M(a′)) to not be an r-edge. To do this, it either813

has to prove a′ ≺M(a′) a, which is impossible without executing the interview intq(M(a′), a),814

or it has to prove a ≺b M(b) for some b with M(a) ≺a b ≺a M(a′), which is impossible815

without executing the interview intq(b, a). Each case leads to a contradiction. ◀816

Together with Theorem 17, this lemma implies the following theorem.817

▶ Theorem 19. In the interview query model, the best possible (randomized) competitive ratio818

for finding the B-optimal stable matching in an instance of stable matching with one-sided819

uncertainty is in Θ(n).820

4.3 NP-Hardness of the Offline Problem821

For the offline problem of verifying a given B-optimal stable matching with interview queries,822

Rastegari et al. [29] show NP-hardness in a setting with partial uncertainty on both sides. As823

their proof exploits the possibility of giving partial information as part of the input, it does824

not directly translate to our setting with one-sided uncertainty. However, we can show with825

a similar proof as for comparison queries that the problem remains hard even in our setting.826

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 21

▶ Theorem 20. The offline problem of computing an optimal set of interview queries for827

finding the B-optimal stable matching in a stable matching instance with one-sided uncertainty828

is NP-hard.829

Proof. Consider the same construction as in the proof for comparison queries (cf. Theorem 11).830

We add a dummy element z to A and a dummy element z′ to B. Element z′ has z as the831

top choice and afterwards all other agents of A in an arbitrary order. Agent z has z′ as832

the last choice and before that the other elements of B in an arbitrary order. The agents833

of A \ {z} all have z′ as the top choice and afterwards the preference list as defined in the834

proof of Theorem 11. The elements of B \ {z′} have z as the last choice and before that835

the preference list as defined in the proof of Theorem 11. This forces (z, z′) to be part of836

the B-optimal matching and any algorithm has to query intq(b, z) and intq(b, M(b)) for all837

b ∈ B \ {z′} to prove stability.838

After proving stability, each query intq(b, a) for an a ∈ A and b ∈ B contains the839

information of prefer(b, a, M(b)) (as intq(b, M(b)) has already been queried to prove stability).840

Thus, we can now repeat the remaining part of the proof of Theorem 11 to show the841

theorem. ◀842

5 Stable Matching with Set Queries843

We consider the stable matching problem with one-sided uncertainty and set queries. Note844

that set queries are a natural generalization of comparison queries. For verifying any B-845

optimal matching, we show that the optimal number of set queries is at least n− 1. We also846

observe that there is an algorithm that makes at most n2 queries for finding the B-optimal847

matching (or an A-optimal matching if we want to), as one can sort all preference lists848

using n2 set queries. This implies an O(n)-competitive algorithm for finding the B-optimal849

matching. For the subproblem of verifying that a given matching is B-optimal, we give850

an O(log n)-competitive algorithm by exploiting the additional power of set queries in an851

involved binary search algorithm. If we only have to verify stability for a given matching, we852

give a 1-competitive algorithm. Furthermore, we show that the offline problem of verifying853

that a given matching does not have a rotation is NP-hard.854

5.1 Verifying That a Given Matching Is Stable855

We start by characterizing the optimal number of queries (and query strategy) to verify that856

a given matching M is stable. The main difference to the comparison model is that, for a857

fixed b ∈ B, a single query top(b, {a | b ≺a M(a)} ∪ {M(b)}) is sufficient to prove that b is858

not part of any blocking pair.859

▶ Theorem 21. Consider a stable matching instance with one-sided uncertainty and a860

stable matching M . The minimum number of set queries to verify that M is stable is861

|{b ∈ B | ∃a ∈ A : b ≺a M(a)}| ≤ n. Further, there is a 1-competitive algorithm to verify862

that M is stable.863

Proof. Consider an arbitrary b ∈ B. Let Z(b) = {a ∈ A | b ≺a M(a)}, i.e., Z(b) contains864

all a ∈ A that could potentially form a blocking pair with b. Thus, M can only be stable if865

M(b) ≺b a holds for all b ∈ B and a ∈ Z(b). If Z(b) ̸= ∅, at least one query to b is necessary,866

and the query top(b, Z(b) ∪ {M(b)}) with answer M(b) reveals all the required information867

to prove that b is not part of any blocking pair. Thus, the minimum number of queries to868

confirm that M is stable is |{b ∈ B | ∃a ∈ A : b ≺a M(a)}| as claimed. Furthermore, the869

algorithm that queries top(b, Z(b)∪{M(b)}) for all b ∈ B with Z(b) ̸= ∅ is 1-competitive. ◀870

22 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

5.2 Verifying That a Given Matching Is Stable and B-Optimal871

For the problem of confirming that a given matching is B-optimal by using set queries, we872

show that every algorithm needs to execute at least n− 1 queries. This is analogous to the873

setting with comparison queries and uses a similar proof as Lemma 8. It implies that finding874

a B-optimal matching also requires at least n− 1 queries.875

▶ Lemma 22. Consider an arbitrary stable matching instance with one-sided uncertainty876

and the B-optimal matching M . Every algorithm needs at least n− 1 set queries to verify877

that M is indeed stable and B-optimal.878

Proof. For each b ∈ B, let Z(b) = {a ∈ A | b ≺a M(a)} and let S = {b ∈ B | Z(b) ̸= ∅}. By879

the proof of Theorem 21, every algorithm needs to execute at least one query of the form880

top(b, X) with X ⊆ A for all b ∈ S and this query has to return M(b) as the top choice.881

Since verifying B-optimality includes proving stability, this leads to at least |S| queries.882

Consider an arbitrary algorithm that verifies M to be B-optimal and let A1 ⊆ A denote883

the agents of A that are returned as the top choice by some query of the algorithm. Then884

|S| ≤ |A1| and {a ∈ A | ∃b ∈ S : M(b) = a} ⊆ A1 by the argumentation above.885

If |A1| ≥ n − 1, then the statement follows immediately, so assume |A1| < n − 1 and886

let A2 = A \ A1. Since |A1| < n− 1, the set A2 has at least two distinct members a1 and887

a2. Furthermore, we must have M(a1), M(a2) /∈ S as observed above. By definition of888

S, we have M(a1) ≺a1 M(a2) and M(a2) ≺a2 M(a1). This means that (a1, M(a2)) and889

(a2, M(a1)), based on the initially given information, could potentially be rotation edges.890

Thus, (a1, M(a1)), (a2, M(a2)) could potentially be a rotation and the algorithm has to891

prove that this is not the case by showing that one of (a1, M(a2)) and (a2, M(a1)) is not an892

r-edge. To prove that (a1, M(a2)) is not an r-edge, one has to either verify a2 ≺M(a2) a1 or893

a1 ≺b M(b) for some b ∈ B with M(a1) ≺a1 b ≺a1 M(a2). However, this requires at least894

one query that returns either a1 or a2 as the top choice, and there is a symmetric argument895

for proving that (a2, M(a1)) is not an r-edge. Since a1 and a2 are never returned as the896

top choice by a query of the algorithm, this is a contradiction to the assumption that the897

algorithm verifies that M is B-optimal. ◀898

In contrast to the comparison model, there exists an offline algorithm that asymptotically899

matches the lower bound of Lemma 22.900

▶ Theorem 23. There exists a polynomial-time offline algorithm that, given an instance of901

stable matching with one-sided uncertainty and the B-optimal matching M , verifies that M902

is indeed stable and B-optimal by executing O(n) set queries.903

Proof. By the proof of Theorem 21, an algorithm can prove M to be stable by executing at904

most n set queries, so it remains to prove that M is B-optimal by executing at most O(n)905

set queries.906

We do so by proving that M does not contain a rotation. First, for each b ∈ B, we907

compute the set P (b) = {a ∈ A |M(a) ≺a b and M(b) ≺b a}. Each tuple (b, a) with b ∈ B908

and a ∈ P (b) could be a rotation edge based on ≺a but is not a rotation edge as M(b) ≺b a.909

An algorithm can prove that none of these edge are actually rotation edges by executing a910

query top(b, P (b) ∪ {M(b)}) for each b ∈ B. This leads to n additional queries.911

If an a ∈ A does not have a rotation edge, then the previous queries prove that this is the912

case. Consider an a ∈ A that has a rotation edge. Then the second endpoint of that edge913

is the agent b ∈ B of highest preference according to ≺a among those agents that satisfy914

M(a) ≺a b and a ≺b M(b). Let b be that endpoint. To prove that (a, b) is indeed a rotation915

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 23

edge, an algorithm has to verify a ≺b M(b) and M(b′) ≺b′ a for all b′ with M(a) ≺a b′ ≺a b.916

The latter has already been verified by the previous n queries and the former can be proven917

by an additional query top(b, {a, M(b)}). Doing this for every a ∈ A that has a rotation edge918

leads to at most n further queries.919

Executing these queries yields, for each a ∈ A, either the rotation edge of a or a proof920

that a does not have a rotation edge. Thus, it gives sufficient information to show that M921

does not have a rotation and is B-optimal. ◀922

Next, we give an online algorithm that decides whether a given matching M is B-optimal923

by executing at most O(n log n) set queries. In combination with Lemma 22, this yields an924

O(log n)-competitive algorithm for verifying that a given matching is B-optimal with set925

queries.926

▶ Theorem 24. There is an algorithm that decides if a given matching M in a stable matching927

instance with one-sided uncertainty is stable and B-optimal with O(n log n) set queries.928

Proof. First, we can use Theorem 21 and execute O(n) queries to decide whether M is929

stable. If M turns out not to be stable, then we are done. Otherwise, we have to decide930

whether M is B-optimal by using at most O(n log n) set queries. We do so by giving an931

algorithm that, for each a ∈ A, either finds the rotation edge of a or proves that a does not932

have a rotation edge. After executing that algorithm we clearly have sufficient information933

to decide whether M exposes a rotation and, thus, whether it is B-optimal.934

For each a ∈ A, we use R(a) to refer to the set of agents that could potentially form a935

rotation edge with a. Initially, we set R(a) = {b ∈ B |M(a) ≺a b} as all agents with a lower936

priority than M(a) can potentially form a rotation edge with a based on the initially given937

information. During the course of our algorithm, we will update the set R(a) such that it938

always only contains the agents of B that, based on the information obtained by all previous939

queries, could still form a rotation edge with a. In particular, if we obtain the information940

that M(b) ≺b a for some b ∈ R(a), then (a, b) clearly cannot be a rotation edge and we941

can update R(a) = R(a) \ {b}. Similarly, if we obtain the information that a ≺b M(b) for942

some b ∈ R(a), then the agents b′ ∈ R(a) with b ≺a b′ cannot form a rotation edge with a943

anymore and we can update R(a) = R(a) \ {b′ ∈ R(a) | b ≺a b′}. Given the current list R(a)944

of potential rotation edge partners, we use R̄(a) to refer to the
⌈

|R(a)|
2

⌉
agents of R(a) with945

the highest priority in R(a) according to ≺a.946

Our algorithm, cf. Algorithm 2, proceeds in iterations that each execute at most O(n)947

set queries. Let Ri(a), a ∈ A, denote the current sets of potential rotation edges at the948

beginning of iteration i and let R̄i(a) be as defined above. We define our algorithm in a way949

such that each iteration i decides for each a ∈ A whether it has a rotation edge to an agent of950

R̄i(a) or not. Then, |Ri+1(a)| ≤ |Ri(a)|+1
2 holds for each a ∈ A with |Ri(a)| > 1 as we either951

get Ri+1(a) ⊆ R̄i(a) or Ri+1 ⊆ Ri(a) \ R̄i(a). Furthermore, if |Ri(a)| = 1, then iteration i952

either identifies the rotation edge of a or proves that it does not have one. This means that953

after at most O(log n) such iterations, for each a ∈ A, we either found the rotation edge of a954

or verified that it does not have one. Since each iteration executes O(n) set queries, we get955

an algorithm that executes O(n log n) set queries and decides whether M is B-optimal.956

It remains to show that each iteration i indeed executes O(n) set queries and decides,957

for each a ∈ A, whether a has a rotation edge to some agent of R̄i(a). Lines 4 to 13 of958

Algorithm 2 show the pseudocode for such an iteration. In each iteration i, the algorithm959

considers the set U = {a ∈ A | |Ri(a)| ≥ 1}, i.e., the subset of A for which we do not yet960

know whether it has a rotation edge to some agent of R̄i(a). Then, the algorithm iterates961

through the agents b of B and considers the set Ub = {a ∈ U | b ∈ R̄i(a)}. Note that, for962

24 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Algorithm 2 Algorithm to decide whether a given matching is B-optimal using set queries.

Input: Stable matching instance with one-sided uncertainty and a matching M .
1 Decide whether M is stable using Theorem 21. If M is not stable, terminate;
2 R(a)← {b ∈ B |M(a) ≺a b} for all a ∈ A;
3 while We did not decide yet whether M is B-optimal do
4 U ← {a ∈ A | |R̄(a)| ≥ 1};
5 for b ∈ B do
6 Ub ← {a ∈ U | b ∈ R̄(a)};
7 repeat
8 t← top(b, Ub ∪ {M(b)});
9 if t = M(b) then R(a)← R(a) \ b for all a ∈ Ub; Ub ← ∅; ;

10 else
11 U ← U \ {t}; Ub ← Ub \ {t};
12 R(t)← R(t) \ {b′ ∈ R(t) | b ≺t b′};

13 until Ub = ∅;

each a ∈ Ub, it holds that if a ≺b M(b), then a has a rotation edge to some agent of R̄i(a)963

(not necessarily to b). The algorithm executes the query top(b, Ub ∪ {M(b)}). If this query964

returns M(b), then we know for sure that b does not have a rotation edge to any agent of Ub965

and we can discard b for the rest of the iteration and also remove b from the current R(a) of966

all a ∈ Ub. On the other hand, if the query returns a ̸= M(b), then we know that a has a967

rotation edge to some agent of R̄i(a) and we do not need to consider a for the rest of the968

iteration anymore. Thus, after each query within the iteration we discard an agent of either969

A or B, which means that the iteration terminates after at most 2n queries. At the end of970

the iteration, we know for each a ∈ A whether it has a rotation edge to some b ∈ R̄i(a). ◀971

For the offline problem, we show that computing the query set of minimum size that972

verifies that a given matching does not have a rotation is NP-hard. However, in the instances973

constructed by the reduction, verifying that the given matching does not have a rotation974

and is stable is trivial as we will discuss after the proof. This means that the following result975

does not imply NP-hardness for the offline variant of finding the B-optimal matching with976

set queries.977

▶ Theorem 25. In the set query model, the offline problem of computing an optimal set of978

queries for verifying that a given B-optimal stable matching M for a stable matching instance979

with one-sided uncertainty does not have a rotation is NP-hard.980

Proof. We show the statement by reduction from the NP-hard feedback vertex set problem [22].981

In this problem, we are given a directed graph G = (V, E) and a parameter k ∈ N. The goal982

is to decide whether there exists a subset F ⊆ V with |F | ≤ k such that deleting F from G983

yields an acyclic graph.984

We construct an instance of the stable matching problem with one-sided uncertainty and985

a matching M as follows:986

1. For each v ∈ V , we add an agent av to set A and a matching partner M(av) to set B.987

2. For each v ∈ V and u ∈ V \ {v}, we set M(av) ≺av
M(au) if (v, u) ∈ E and M(au) ≺av

988

M(av) otherwise.989

3. For each v ∈ V and u ∈ V \ {v}, we set av ≺M(v) au.990

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 25

Based on the A-side preferences, each (av, M(au)) with (v, u) ∈ E could be a rotation991

edge and each (av, M(au)) with (v, u) /∈ E is not a rotation edge. Consider the directed992

graph G′ = (A∪B, E′) with E′ = {(M(av), av) | v ∈ V }∪{(av, M(au)) | (v, u) ∈ E)}. Then,993

based on the A-side preferences, each cycle in G′ could be a rotation. Furthermore, if we994

contract the edges {(M(av), av) | v ∈ V }, we arrive at the given graph G.995

Assume that there is a set F ⊆ V with |F | ≤ k such that deleting F from G yields an996

acyclic graph. Consider the queries top(M(av), A) for all v ∈ F . By the third step of the997

reduction, these queries prove that the agents M(av) with v ∈ F are not part of any rotation.998

This also means that the agents av with v ∈ F cannot be part of a rotation. Thus, the only999

edges that can still be part of a rotation are the matching edges (M(av), av) with v /∈ F and1000

the edges (av, M(au)) with (v, u) ∈ E but v, u /∈ F . If we consider the graph induced by1001

these remaining edges and contract the matching edges, we arrive at the subgraph G[V \ F]1002

of the given feedback vertex set instance. Since this graph by assumption does not contain a1003

cycle, this implies that executing the queries proves that the constructed instance has no1004

rotation.1005

Consider a query strategy that proves the constructed instance to not have a rotation1006

by using at most k queries. Let A′ ⊆ A denote the set of all agents that are returned as1007

the top choice by at least one of those queries. Then, by construction, the alternative query1008

strategy that queries top(M(av), A) for each av ∈ A′ must also be feasible and uses at most1009

k queries. This alternative strategy proves that there exists no rotation by proving that no1010

av ∈ A′ is part of any rotation. Thus, removing all vertices av and M(av) with av ∈ A′ from1011

the graph G′ as defined above yields a graph without cycles. This also implies that removing1012

F = {v ∈ V | av ∈ A′} from G yields a graph without cycles. Thus, F with |F | ≤ k is1013

feasible for the given feedback vertex set instance. ◀1014

In the instances constructed within the proof, querying top(M(av), A) for between n− 11015

and n agents av ∈ A proves that the given matching is stable and B-optimal. If n− 1 queries1016

suffice, then this is optimal by Lemma 22. Otherwise, n queries are optimal. We can decide1017

whether n− 1 queries suffice via enumerating all possible choices of the agent av for which1018

M(av) does not receive a query top(M(av), A).1019

Thus, the NP-hardness for proving that no rotation exists does not directly translate to1020

the offline problem of proving that a given matching has no rotation and is stable.1021

6 Open Problems1022

While we understand the comparison model quite rigorously, it remains open in the set query1023

model what best possible competitive ratio can be achieved for finding a (A- or B-optimal)1024

stable matching. Further, it would be interesting to investigate the two-sided stable matching1025

problem with uncertainty in the preference lists on both sides further. For verifying the1026

stability of a given matching in this case, we have given a best possible 2-competitive1027

algorithm. All other questions regarding finding a stable or stable and optimal matching1028

remain open under two-sided uncertainty. It would also be interesting to investigate a1029

generalized set query model in which a query to a set S ⊆ A for a b ∈ B reveals the top-k1030

partners of b, that is, the k partners in S that b prefers most.1031

References1032

1 Haris Aziz, Péter Biró, Ronald de Haan, and Baharak Rastegari. Pareto optimal allocation1033

under uncertain preferences: uncertainty models, algorithms, and complexity. Artif. Intell.,1034

276:57–78, 2019.1035

26 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

2 Haris Aziz, Péter Biró, Serge Gaspers, Ronald de Haan, Nicholas Mattei, and Baharak1036

Rastegari. Stable matching with uncertain linear preferences. Algorithmica, 82(5):1410–1433,1037

2020.1038

3 Evripidis Bampis, Christoph Dürr, Thomas Erlebach, Murilo Santos de Lima, Nicole Megow,1039

and Jens Schlöter. Orienting (hyper)graphs under explorable stochastic uncertainty. In ESA,1040

volume 204 of LIPIcs, pages 10:1–10:18, 2021. doi:10.4230/LIPIcs.ESA.2021.10.1041

4 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge1042

University Press, 1998.1043

5 Joanna Drummond and Craig Boutilier. Elicitation and approximately stable matching with1044

partial preferences. In IJCAI, pages 97–105. IJCAI/AAAI, 2013.1045

6 Joanna Drummond and Craig Boutilier. Preference elicitation and interview minimization in1046

stable matchings. In AAAI, pages 645–653. AAAI Press, 2014.1047

7 Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie Meißner. An adversarial model1048

for scheduling with testing. Algorithmica, 82(12):3630–3675, 2020.1049

8 Lars Ehlers and Jordi Massó. Matching markets under (in)complete information. J. Econ.1050

Theory, 157:295–314, 2015.1051

9 T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncertainty.1052

Bulletin of the EATCS, 116:22–39, 2015. URL: http://bulletin.eatcs.org/index.php/1053

beatcs/article/view/335.1054

10 Thomas Erlebach, Murilo S. de Lima, Nicole Megow, and Jens Schlöter. Sorting and hypergraph1055

orientation under uncertainty with predictions. In IJCAI, pages 5577–5585. ijcai.org, 2023.1056

11 Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum1057

feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.1058

12 D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American1059

Mathematical Monthly, 69(1):9–15, 1962. doi:10.1080/00029890.1962.11989827.1060

13 Yannai A. Gonczarowski, Noam Nisan, Rafail Ostrovsky, and Will Rosenbaum. A stable1061

marriage requires communication. Games Econ. Behav., 118:626–647, 2019. doi:10.1016/j.1062

geb.2018.10.013.1063

14 Dan Gusfield and Robert W. Irving. The Stable Marriage Problem – Structure and Algorithms.1064

Foundations of computing series. MIT Press, 1989.1065

15 Guillaume Haeringer and Vincent Iehlé. Two-sided matching with one-sided preferences. In1066

EC, page 353. ACM, 2014.1067

16 Guillaume Haeringer and Vincent Iehlé. Two-sided matching with (almost) one-sided prefer-1068

ences. American Economic Journal: Microeconomics, 11(3):155–190, 2019.1069

17 Guillaume Haeringer and Vincent Iehlé. Enjeux stratégiques du concours de recrutement des1070

enseignants chercheurs. Revue Economique, 61(4):697–721, 2010.1071

18 M. M. Halldórsson and M. S. de Lima. Query-competitive sorting with uncertainty. In MFCS,1072

volume 138 of LIPIcs, pages 7:1–7:15, 2019. doi:10.4230/LIPIcs.MFCS.2019.7.1073

19 Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Rajeev Raman.1074

Computing minimum spanning trees with uncertainty. In STACS, volume 1 of LIPIcs, pages1075

277–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2008.1076

20 Hadi Hosseini, Vijay Menon, Nisarg Shah, and Sujoy Sikdar. Necessarily optimal one-sided1077

matchings. In AAAI, pages 5481–5488. AAAI Press, 2021.1078

21 S. Kahan. A model for data in motion. In STOC’91: 23rd Annual ACM Symposium on Theory1079

of Computing, pages 265–277, 1991. doi:10.1145/103418.103449.1080

22 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer1081

Programming, pages 219–241. Springer, 2010.1082

23 Thomas Ma, Vijay Menon, and Kate Larson. Improving welfare in one-sided matchings using1083

simple threshold queries. In IJCAI, pages 321–327. ijcai.org, 2021.1084

24 David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on1085

Theoretical Computer Science. WorldScientific, 2013. doi:10.1142/8591.1086

https://doi.org/10.4230/LIPIcs.ESA.2021.10
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1016/j.geb.2018.10.013
https://doi.org/10.1016/j.geb.2018.10.013
https://doi.org/10.1016/j.geb.2018.10.013
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.1145/103418.103449
https://doi.org/10.1142/8591

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter and A. Trehan 27

25 N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum spanning1087

tree under uncertainty. SIAM Journal on Computing, 46(4):1217–1240, 2017. doi:10.1137/1088

16M1088375.1089

26 Cheng Ng and Daniel S. Hirschberg. Lower bounds for the stable marriage problem and its1090

variants. SIAM J. Comput., 19(1):71–77, 1990. doi:10.1137/0219004.1091

27 Jannik Peters. Online elicitation of necessarily optimal matchings. In AAAI, pages 5164–5172.1092

AAAI Press, 2022.1093

28 Baharak Rastegari, Anne Condon, Nicole Immorlica, Robert W. Irving, and Kevin Leyton-1094

Brown. Reasoning about optimal stable matchings under partial information. In EC, pages1095

431–448. ACM, 2014.1096

29 Baharak Rastegari, Anne Condon, Nicole Immorlica, and Kevin Leyton-Brown. Two-sided1097

matching with partial information. In EC, pages 733–750. ACM, 2013.1098

30 Alvin E. Roth and Marilda A. Oliveira Sotomayor. Two-Sided Matching: A Study in Game-1099

Theoretic Modeling and Analysis. Econometric Society Monographs. Cambridge University1100

Press, 1990. doi:10.1017/CCOL052139015X.1101

31 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.1102

In FOCS, pages 222–227. IEEE Computer Society, 1977.1103

https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/0219004
https://doi.org/10.1017/CCOL052139015X

	1 Introduction
	2 Preliminaries
	3 Stable Matching with Comparison Queries
	3.1 Verifying That a Given Matching Is Stable
	3.2 Finding an A-Optimal Stable Matching
	3.3 Finding a B-Optimal Stable Matching
	3.3.1 Algorithm for Computing a B-Optimal Stable Matching
	3.3.2 Lower Bound for Computing a B-Optimal Matching
	3.3.3 Offline Results for Computing B-Optimal Stable Matchings

	3.4 Verifying a Stable Matching with Two-Sided Uncertainty

	4 Stable Matching with Interview Queries
	4.1 Verifying and Finding a Stable Matching with Interview Queries
	4.2 Finding a B-Optimal Stable Matching with Interview Queries
	4.3 NP-Hardness of the Offline Problem

	5 Stable Matching with Set Queries
	5.1 Verifying That a Given Matching Is Stable
	5.2 Verifying That a Given Matching Is Stable and B-Optimal

	6 Open Problems

