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ABSTRACT: Heterogeneous catalysis plays a critical role in many
industrial processes, including the production of fuels, chemicals, and
pharmaceuticals, and research to improve current catalytic processes
is important to make the chemical industry more sustainable. Despite
its importance, the challenge of identifying optimal catalysts with the
required activity and selectivity persists, demanding a detailed
understanding of the complex interactions between catalysts and
reactants at various length and time scales. Density functional theory
(DFT) has been the workhorse in modeling heterogeneous catalysis
for more than three decades. While DFT has been instrumental, this
review explores the application of quantum computing algorithms in
modeling heterogeneous catalysis, which could bring a paradigm shift in our approach to understanding catalytic interfaces. Bridging
academic and industrial perspectives by focusing on emerging materials, such as multicomponent alloys, single-atom catalysts, and
magnetic catalysts, we delve into the limitations of DFT in capturing strong correlation effects and spin-related phenomena. The
review also presents important algorithms and their applications relevant to heterogeneous catalysis modeling to showcase
advancements in the field. Additionally, the review explores embedding strategies where quantum computing algorithms handle
strongly correlated regions, while traditional quantum chemistry algorithms address the remainder, thereby offering a promising
approach for large-scale heterogeneous catalysis modeling. Looking forward, ongoing investments by academia and industry reflect a
growing enthusiasm for quantum computing’s potential in heterogeneous catalysis research. The review concludes by envisioning a
future where quantum computing algorithms seamlessly integrate into research workflows, propelling us into a new era of
computational chemistry and thereby reshaping the landscape of modeling heterogeneous catalysis.
KEYWORDS: heterogeneous catalysis modeling, density functional theory, quantum computing algorithms,
variational quantum algorithms, uncertainty quantification, embedding techniques, quantum-centric computing, magnetic catalysts,
strong correlation effects, spin-related phenomena

1. INTRODUCTION
Heterogeneous catalysis, a dynamic field at the intersection of
chemistry, materials science, and engineering, plays a pivotal role
in enabling efficient and sustainable chemical transformations.1

Heterogeneous catalysis involves the utilization of solid catalysts
to accelerate chemical reactions by providing an alternative
reaction pathway with lower activation energy. Unlike
homogeneous catalysis, where the catalyst and reactants exist
in the same phase, heterogeneous catalysis leverages the unique
properties and high surface area of solid catalysts to facilitate
reactions between gas, liquid, or solid reactants.2 This ability to
operate in diverse reaction conditions and effectively couple
different phases makes heterogeneous catalysis an indispensable
tool in a wide range of industries, including energy production,3

environmental remediation,4 and chemical synthesis.5

A key aspect driving the evolution of heterogeneous catalysis
is its central role in sustainable chemistry.3 The pursuit of
greener and more sustainable chemical processes necessitates

catalysts that can enable highly efficient and selective reactions
while minimizing energy consumption and waste production.
Heterogeneous catalysis provides a promising avenue to achieve
these goals by enabling the design of catalysts with tailored
properties, such as active site engineering,6 incorporation of
nanoparticles,7 and optimization of surface morphology.8

The surfaces of heterogeneous catalysts act as active sites,
where reactant molecules undergo adsorption, diffusion, and
subsequent reactions.6 These surfaces offer interactions of
different types, such as Pauli repulsion, physisorption (weak
bonding), chemisorption (strong bonding), which dictate the
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overall catalytic activity and selectivity. The complexity of these
processes, coupled with the dynamic nature of catalysts,
necessitates a deep understanding of the underlying principles
governing surface chemistry and catalytic mechanisms.9 In
recent years, the field of heterogeneous catalysis has witnessed
tremendous advancements driven by both experimental and
theoretical investigations. State-of-the-art characterization
techniques, such as surface-sensitive spectroscopy and micros-
copy, have unraveled the intricate details of catalyst structure
and composition, shedding light on the correlation between
surface properties and catalytic performance.10−18 Moreover,
computational methods, ranging from various electronic
structure methods for transition state characterization, ab initio
molecular dynamics and advanced sampling, machine learning
algorithms, multiscale modeling, etc., have emerged as powerful
tools for elucidating reaction pathways, catalyst design, and
high-throughput screening of new materials.19−31

Density functional theory (DFT) has emerged as the
workhorse for modeling heterogeneous catalysis, providing a
powerful and efficient framework for understanding catalytic
processes at the atomic and molecular level.19,21 Since DFT is an
established method, it has not been discussed in this review.
Interested readers are referred to the following articles and
books for more information.21,32−34 DFT offers a practical
approach to calculate electronic structure and predict reaction
energetics, allowing researchers to explore the activity,
selectivity, and stability of catalysts. It has been successfully
employed to study a wide range of catalytic phenomena,
including adsorption, surface reactions, reaction dynamics and
catalytic cycles.21 However, despite its wide applicability, DFT
has inherent limitations,35 most importantly its reliance on
approximate exchange-correlation functionals, which can
introduce errors in the description of nonlocal and strong
correlation effects. In heterogeneous catalysis, where open-shell
systems like transition metals and delocalization of electrons are
common, strong correlation effects are often present, necessitat-
ing methods that go beyond the single-reference/single-
configuration approach.35−38 Multireference/multiconfigura-
tion methods, such as complete active space self-consistent
field (CASSCF)39,40 combined with multireference perturba-
tion theory (MRPT), for instance complete active space second-
order perturbation theory CASPT241−43 or N-electron valence
state second-order perturbation theory (NEVPT2)44−46 are
essential to capture static and dynamic correlation and
accurately describe the electronic structure and energetics of
complex catalytic systems. These advanced methods are crucial
for understanding the details of catalytic reaction mechanisms
and designing more efficient and selective catalysts for
sustainable chemical processes.

In CASSCF calculations, the computational complexity is
directly influenced by the size of the active space. As this active
space expands to encompass more orbitals and electrons, the
number of potential configurations increases factorially due to
the combinatorial nature of this way of treating electron
correlation.47 This factorial scaling renders these calculations
computationally demanding, particularly for larger and more
complex molecular systems. For large active spaces, the memory
requirements become prohibitively large, making it impractical
to store the full wave function explicitly. This limitation restricts
the application of CAS methods to relatively small active spaces
and limits the size and complexity of systems that can be studied
accurately. The largest CAS calculations performed so far
involve active spaces of up to a 44 orbitals and 44 electrons.48−50

To overcome the limitations of explicit wave function storage,
various methods have been developed to exploit sparsity and
exploit tensor network representations, such as density matrix
renormalization group (DMRG),51 matrix product states
(MPS)52 or tree tensor networks (TTN),53 to represent the
wave function more compactly. These approaches offer a way to
approximate and compress the wave function information,
enabling the treatment of larger active spaces than would be
possible with traditional storage techniques. However, even with
these advancements, the scalability of CAS calculations on a
classical computer is still a formidable challenge.

The emerging field of quantum computing offers an
alternative and compelling avenue for pushing the boundaries
of heterogeneous catalysis modeling.54−57 Quantum computers
derive their power from the ability of quantum algorithms to
represent and manipulate exponentially large wave functions,
enabling more accurate simulations of strongly correlated
molecules, their reaction kinetics, and high-throughput screen-
ing of catalytic materials. Unlike classical computers, quantum
computers can efficiently compute energies of highly complex
model wave functions using methods such as quantum phase
estimation, which allows for precise energy calculations and
other critical properties, such as density matrices. This capability
is crucial for tackling challenges such as strong correlation
effects, nonadiabatic processes, and large-scale systems that are
computationally prohibitive for classical methods.55,57 As future
error-corrected quantum processing units (QPUs) become
available, they will further enhance the ability to treat larger
active spaces and handle strong electron correlations. (N qubits
have the capacity to represent 2N complex numbers, equivalent
to requiring 2N+7 bits for representation in double precision on
classical computers.) This could lead to more accurate and
scalable modeling of complex systems, enabling insights into
elusive reaction intermediates and catalytic mechanisms, and
accelerating the design of novel catalysts with improved
performance and selectivity.58,59 Having said that, the near-
term quantum computers and their associated algorithms are
crucial as they serve as initial steps toward fault-tolerant
quantum computing. Although these devices do not incorporate
full error correction, they enable researchers to test, refine, and
develop quantum algorithms, such as the variational quantum
eigensolver (VQE)60 highlighted in this article. Understanding
their capabilities is essential, as it offers valuable hands-on
experience with quantum hardware and helps bridge the gap
between current technology and future error-corrected QPUs.

Furthermore, quantum computers can generate wave
functions using algorithms like the variational quantum
eigensolver (VQE).54 However, their accuracy is limited by
factors such as hardware coherence, ansatz expressivity,
quantum noise and barren plateaus.61 Scalability also presents
a challenge, as current devices struggle with large or highly
entangled quantum states. A recent study indicates that while
heuristic quantum state preparation is efficient for some
problems, no clear exponential advantage has been demon-
strated in chemical space.62 Perfect ground state preparation is
often assumed, but it is rarely achievable. A recent approach
addresses this by improving the initial state overlap with the true
ground state, accelerating matrix product state (MPS)
preparation, and employing efficient filtering methods.63 This
approach enhances the likelihood of preparing high-overlap
states in complex chemical systems, but reliable, scalable wave
function generation remains a challenge. Quantum computing
presents both opportunities and challenges. Despite these,
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leveraging quantum algorithms and simulations could provide
valuable insights into elusive reaction intermediates, unravel
complex catalytic mechanisms, and enable the design of novel
catalysts with improved performance and selectivity in
heterogeneous catalysis systems with strong correlation.

In heterogeneous catalysis modeling, embedding methods
bridge the gap between accurate but expensive electronic
structure calculations and computationally feasible simulations
of entire catalyst systems. These methods treat a smaller, active
region of the catalyst (e.g., the metal surface and adsorbates)
with a high level of theory, while embedding it within a simpler
representation of the surrounding bulk material.64 This allows
for capturing crucial chemical interactions at the active site while
maintaining computational efficiency. However, a key limitation
lies in defining the appropriate boundary between the embedded
region and the surrounding environment, as it can affect the
accuracy of the results. Embedding methods pave the way for
incorporating quantum mechanics into simulations of complex
catalytic systems.65,66 These approaches are crucial for
accurately modeling regions with strong (static) correlation
while allowing the rest of the system to be handled by different
methods. These techniques distinguish between types of
electronic correlation (static versus dynamic), enabling the use
of the most suitable solver for each region. Embedding methods
exemplify a hybrid quantum−classical framework, leveraging the
strengths of quantum processing units (QPUs) for strong
correlations and classical CPUs for dynamic ones. This
highlights that quantum and classical computers are not
mutually exclusive; instead, they are alternative and comple-
mentary tools. By employing this hybrid strategy, most
computations are performed on classical systems, reserving
quantum processing for aspects that classical algorithms cannot
effectively manage. As the field progresses toward quantum-
centric computing,67,68 these embedded regions themselves
could be tackled with even higher accuracy using quantum
algorithms, leading to a new level of detail in heterogeneous
catalysis modeling.

Another area where quantum computing may have an impact
is in understanding kinetics and quantifying uncertainties arising
from incomplete knowledge of reaction constants and
mechanisms.69−72 This is essential for optimizing reaction
conditions by enabling the accurate prediction of reaction rates
and the identification of optimal parameters for desired

outcomes. These problems can be cast as linear systems of
equations.73−75 Therefore, recent advancements, particularly
the application of the Harrow−Hassidim−Lloyd (HHL)
algorithm76 and its variational counterpart, the Variational
Quantum Linear Solver (VQLS),77 offer promising prospects
for an enhanced understanding and description of microkinetic
models, which facilitate the elucidation of reaction mechanisms
and the prediction of reaction rates by treating them as linear
systems of equations. Uncertainty quantification is crucial in this
context as it allows for the assessment and reduction of
uncertainties in model predictions, leading to more reliable and
efficient optimization strategies.

In the rapidly evolving landscape of quantum computing,
extensive reviews on its applications to various domains of
quantum chemistry have emerged, including energy applica-
tions,78 biochemistry,79,80 drug development,81 and fusion.82

However, to our knowledge, despite the growing interest in
harnessing quantum computing for catalysis,83 a notable gap
exists in the literature regarding dedicated reviews on the topic
of quantum computing for heterogeneous catalysis or chemical
reactions at surfaces, in general. Therefore, this review article
aims to fill this gap by providing an in-depth exploration of the
emerging field of quantum computing for quantum chemistry
applications in the context of heterogeneous catalysis. By
surveying the latest advancements in quantum algorithms and
applications, methodologies, and challenges, this review seeks to
provide a comprehensive overview and critical analysis of the
potential and challenges associated with utilizing quantum
computing for advancing the field of heterogeneous catalysis.

2. ATOMISTIC MODELING OF HETEROGENEOUS
CATALYSIS: STATUS AND CHALLENGES

In heterogeneous catalysis, the presence of a catalyst in a distinct
phase, typically solid, accelerates a reaction involving reactants
in a different phase, such as liquid or gas. Among the various
forms of heterogeneous catalysts, dispersed metal nanoparticles
on oxide supports are widely prevalent.7 However, accurately
modeling the complex interface comprising the oxide support,
metal nanoparticle, and reactants under operational conditions
of temperature and pressure presents significant computational
challenges.18,28 To gain insights into the underlying mechanisms
of these reactions, researchers often study simplified models,
such as clean two-dimensional surfaces representing the most

Figure 1. Time and length scales in heterogeneous catalysis illustrating processes across atomic, molecular, mesoscopic, and macroscopic scales. The
figure depicts an increase in both time and length scales from left to right, which captures the intricate dynamics of catalytic reactions at progressively
longer time and larger length scales.
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exposed facet of the metal nanoparticle. While these models
capture the rate-determining steps, the effects of reactant
concentration and pressure are typically excluded, model
limitations referred to as the “materials gap” and “pressure
gap,” respectively.1 To incorporate the influence of reaction
temperature, various approaches like the sudden model84 and ab
initio molecular dynamics85 are employed. To be able to include
the thermodynamic effects viz., pressure and temperature and to
obtain thermodynamic quantities like Gibbs free energies ab
initio thermodynamics (AITD) can be used.86,87 Overcoming
these gaps remains a notable challenge in the field.

In heterogeneous catalysis, understanding the catalytic cycle
and predicting catalytic activity involves considering multiple
levels viz., atomic scale, molecular scale, mesoscale and
macroscopic scale, of modeling and analysis (Figure 1).
Electronic structure calculations play a crucial role in providing
detailed and predictive information about individual elementary
processes within the catalytic cycle at the atomic scale, such as
adsorption and reaction energies and energy barriers associated
with chemical reactions. At the molecular scale, one examines the
dynamics of molecules on the catalyst surface, accounting for
temperature effects, generally, within the harmonic approx-
imation. Occasionally, effects beyond the harmonic approx-
imation and pressure effects are also incorporated at this
modeling stage. Building upon this, in the mesoscale first-
principles microkinetic models utilize the electronic structure
information to assess the intricate interplay between all
elementary processes, enabling the determination of the
intrinsic catalytic activity. In real catalysts, an intermediate
step is needed to appropriately coarse-grain the microstructure
of the catalyst, ensuring the effective integration of catalytic
activity with transport models. Finally, to fully understand the
overall macroscopic flow of heat and mass in real catalysts, it
becomes necessary to integrate the intrinsic catalytic activity
into transport models. In this macroscopic scale, it is important to
consider how catalytic activity interfaces with larger-scale
processes governing heat and mass transfer.

2.1. Industrial Relevance of Computational Modeling
in Heterogeneous Catalysis. Heterogeneous catalysis is vital
for sustainable energy applications,3 but material selection has
relied on intuition and serendipity for a long time. Nanoscale
systems like oxide supports, alloys, and dopants are too
complicated to be represented in full atomistic detail in a
model, but representative smaller models that can be treated
computationally aid in understanding reaction mechanisms and
provide descriptors to aid in rational catalyst design.21,88 In this
regard, DFT-based computational modeling of heterogeneous
catalysis has established itself also as crucial in industrial
research89,90 with the atomistic simulations offering insights into
the parameters relevant for catalyst design such as electronic
properties and reaction energies. Descriptors like the d-band
center, volcano plots, Sabatier principle, and BEP relationships
have proven successful in catalyst design.19 Various surface and
energy descriptors contribute to predicting catalytic perform-
ance, supporting catalyst optimization.91−94 A recent study
outlines a general approach to identify the best catalyst by
analyzing a data set of reactions under kinetic control,
calculating normalized key performance indicators (KPIs), and
using KPI plots to demonstrate the optimal catalyst selection in
two case studies: acetylene hydrochlorination for vinyl chloride
production and the selective oxidation of methane to
methanol.95

While density functional theory (DFT) provides valuable
data, integrating first-principles rate constants into higher-scale
models raises important questions regarding error propaga-
tion.96 Computational studies have proven beneficial in various
aspects of heterogeneous catalysis research, and the integration
of ab initiomolecular dynamics (AIMD)with high-level theories
for complex catalytic site models has become increasingly
practical in recent times.90,97 Bridging the gap between different
scales in heterogeneous catalysis modeling remains a challenge,9

requiring efforts to integrate complexity levels for a compre-
hensive understanding. The emerging synergy between
computational modeling and machine learning31 holds promise
for determining surface properties and chemical reactivity,
opening avenues for future advancements in catalysis research
and the efficient development of catalysts with industrial
applications.

As we seek more efficient and selective catalysts for various
chemical reactions, including multicomponent alloys,98 single-
atom catalysts,99 magnetic catalysts,100,101 etc., addressing the
challenges posed by strong correlation effects102 and spin-
related phenomena103 becomes imperative. While DFT-based
computational studies have been valuable in addressing
numerous aspects of heterogeneous catalysis, our focus is on
two important research areas with significant future potential: 1)
studying strong correlation effects in heterogeneous catalysis
and 2) investigating spin effects in heterogeneous catalysis.
Strong correlation effects, arising from electron−electron
interactions in transition metal complexes, bimetal and alloy
catalysts, demand advanced computational approaches beyond
standard DFT methods35 as the mean-field approach taken by
Kohn−Sham DFT has limitations in predicting reaction
pathways and accurate energetics for systems with such
complicated, open-shell, electronic structures. Additionally,
effects related to electron spin in heterogeneous catalysis,
particularly in magnetic catalysts or systems with pronounced
spin-polarized states, further complicate computational model-
ing.101,104,105 The interaction between electron spins, which
determines the catalyst’s magnetic properties, introduces
complexities challenging the predictive capabilities of DFT.
These challenges hinder DFT’s ability to provide precise insights
into spin-dependent catalytic processes, limiting the reliability of
calculated reaction mechanisms and electronic structures.
Overcoming these challenges is crucial for advancing computa-
tional methodologies in heterogeneous catalysis.

Furthermore, microkinetic modeling in heterogeneous
catalysis is important yet complex due to the interplay of
multiple reactions, intermediates, and pathways involving
adsorption, dissociation, desorption, and surface diffusion on
catalyst surfaces.106 Reaction kinetics also vary with temper-
ature, pressure, and concentration, challenging model accuracy.
Simplified models often use scaling relations based on electronic
structure descriptors, which may not fully capture real-world
behavior.107 Limited experimental data further complicates
fitting these models, requiring benchmarks against experimental
targets like turnover frequency (TOF), an important quantity
that defines the activity of the catalyst. However, uncertainty
arises at various levels in multiscale modeling, sepecially
microkinetic modeling, potentially compounding and impacting
prediction accuracy. Uncertainty quantification in microscale
modeling plays a crucial role in accurately modeling
heterogeneous catalysis under industrial conditions.108 There-
fore, it is important account for the various uncertainties at
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multiple levels in the modeling process, ensuring that
predictions align more closely with real-world catalytic behavior.

2.2. Strong Correlation in Heterogeneous Catalysis. At
the atomic scale, wave function-based methods with atom-
centered basis sets are effective in describing gas-phase
reactions. Conversely, for bulk and surface systems, the
prevalent approach is periodic DFT utilizing plane wave basis
sets. In the context of heterogeneous catalytic reactions,
especially those involving metal atoms and two-dimensional
surfaces with periodicity, this combination has therefore become
the predominant modeling approach. Within the realm of DFT,
various exchange-correlation functional approximations have
been developed, ranging from local density approximation
(LDA) to generalized gradient approximation (GGA), meta-
GGA, and hybrid functionals.33 Dispersion interactions can be
included as well, either via the economical methods developed
by Grimme,109−111 Tkatchenko and co-workers,112 many-body
dispersions113 or more explicitly by performing random phase
approximation (RPA) calculations.114 GGA functionals are
preferred for their trade-off between cost and accuracy for large
scale modeling of heterogeneous catalysis reactions. While DFT
with standard GGA functionals proves successful in many cases,
it encounters challenges when charge or electron transfer is
involved between the molecule and the metal surface as shown
in Figure 2.115

In numerous molecule-metal surface systems, GGA exchange
density functionals (DFs) face limitations as they tend to be
overly reactive, surpassing experimental reactivity.115 A critical
determinant for the applicability of GGA functionals in
capturing the barrier to dissociative chemisorption with
chemical accuracy lies in a property which characterizes
molecule-metal surface systems. This property, the difference
(W − Eea) between the metal’s work function (W) and the
molecule’s electron affinity (Eea), is indicative of the system’s
tendency for charge transfer.116,117 The work function (W) of a
material represents the minimum energy required to remove an
electron from its surface, measured in electron volts (eV). A

lower work function indicates easier electron emission. Electron
affinity, also measured in eV, reflects the energy change when
adding an electron to a neutral atom or molecule to form a
negative ion. A higher electron affinity suggests a greater
tendency to accept an additional electron. The comparison of
difference between work function and electron affinity
empirically determines the amount of charge transfer (Figure
2). In molecule-metal systems, when the W − Eea exceeds 7 eV,
generalized gradient approximation (GGA) in density func-
tional theory effectively describes the energetics and dynamics of
the dissociative chemisorption processes. However, if it is below
7 eV, GGA-DFT struggles to produce reliable energetics and
dissociative sticking probabilities, often attributed to significant
charge/electron transfer. While nonadiabatic effects are ruled
out118 as the primary explanation for this failure of the GGA,
ascending the DFT ladder to higher functionals, such as meta-
GGA or hybrid DFs, proves effective in addressing errors in
barriers for gas-surface reactions. The success of meta-GGA
DFs, particularly in semiquantitative agreement with exper-
imental results,115 suggests the viability of an electronically
adiabatic approach, emphasizing the importance of the
electronic structure treatment. The study of strong correlation
effects in molecule-metal interfaces plays a crucial role in
advancing our understanding of heterogeneous catalysis.35,36,102

In this context, several examples of strong correlation
phenomena have been observed, shedding light on the complex
nature of chemical reactions at the atomic level. One of the
classic examples is the H2 dissociation on Li4 and Li6
clusters.36,119 Previous research, has highlighted the limitations
of conventional computational methods in accurately describing
H2 dissociation on Si(100) surfaces due to the presence of
strong correlation effects.120,121

An intriguing example that highlights the limitations of
standard DFT is the O2 dissociation on metal surfaces.122 In this
reaction, the spin-flipping of O2 on numerous metal surfaces
poses a challenge that previous studies failed to address
adequately. Moreover, the ability to confirm or refute the

Figure 2.Relationship between the difference in work function of the metal surface (W) and the electron affinity (Eea) of the molecule (in electronvolt,
eV). This correlation highlights the influence on the accuracy of GGA exchange-based density functionals in predicting barrier heights for direct
electron transfer in the studied systems. The color-coded scheme (red and green) indicates the efficacy of density functionals (DF) based on GGA
exchange with red (large electron transfer) denoting scenarios not suited for GGA/DFT and green (small electron transfer) representing successful
candidate GGA/DFT for describing energetics and dissociative chemisorption dynamics in various molecule−metal surface reactions. Replotted data
from ref 115 under Creative Commons CC-BY-NC-ND license 4.0.
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occurrence of O2 spin-flip when the molecule approaches the
metal surface remains elusive. It is well-known that molecular O2
exists in a ground state as a triplet (two electrons unpaired),
which is unreactive, while the excited singlet (no unpaired
electrons) state readily engages in reactivity. The mechanism
underlying the conversion between the triplet and singlet states
during O2 dissociation on metal surfaces still remains a mystery.
Behler et al.123−125 found that the absence of a barrier in DFT for
O2/Al(111) results fromDFT predicting charge transfer at large
O2-surface distances. They addressed this by using locally
constrained DFT, enforcing the O2 molecule to stay in its triplet
state, revealing a barrier. The success of this method prompted
exploration into the role of spin selection rules in gas-surface
interactions. Furthermore, to understand the dynamics on
potential energy surfaces corresponding to different spin states,
nonadiabatic models were also developed.126−128 Libisch et al.
proposed that the barrier for O2 dissociation on Al(111) is not
governed by spin conservation rules but arises when charge
transfer is adequately treated,118 demonstrated using embedded
correlated wave function methods.129 Their approach, employ-
ing DFT for surface energy and correlated wave function theory
for O2 interaction, produced two-dimensional potential energy
surfaces (PESs) consistent with experimental observations.
However, the definition of an overall electronic state of the
entire molecule−surface reaction remains unclear within
periodic DFT. Despite indicating that spin is likely not the
primary reason, and charge transfer plays a crucial role in the
theory-experiment discrepancy, concrete evidence disproving
the role of the spin of the incoming O2 molecule and the
magnetic moments of the Al(111) surface is lacking. It is
essential to determine whether the model wave function is
strongly multiconfigurational as this gives a good indication of
strong correlation effects. At present, it is worthwhile to pursue
research on both the role of charge-transfer and of spin flipping
until one of the hypotheses is conclusively disproved.

2.3. Role of Spin in Heterogeneous Catalysis. Spin, an
inherent property of elementary particles, characterizes their
intrinsic angular momentum and entails magnetic properties for
particles with nonzero spin. In quantum computing, spin is a
fundamental property, serving as the foundation for qubits,
analogous to classical bits, and facilitating quantum information
processing and algorithms. Meanwhile, in chemistry, spin
profoundly influences reaction pathways and catalytic processes.
Extensive research has explored the role of spin in homoge-
neous, inorganic, and biochemistry catalysis, leading to valuable
insights.130,131 Two of the most widely cited examples in
quantum computing applications for drug discovery and
catalytic materials discovery are cytochrome P450 (CYP)132

and the FeMo-cofactor (FeMo-co) of the nitrogenase enzyme,83

respectively. In both cases, changes in spin states during
substrate binding play a crucial role in facilitating the reaction. In
drug discovery, the family of CYP enzymes, which contain heme
as a cofactor exhibit changes in spin state while binding oxygen
(O2),

132,133 where heme, is a ring-shaped iron-containing
molecular component of hemoglobin, which is necessary to
bind oxygen in the bloodstream. Specifically, the iron (Fe)
center within heme in CYP exists in multiple oxidation and spin
states depending on substrate binding and oxygen coordina-
tion.133 In the resting state (stable or inactive state before
substrate binding or catalysis begins), the Fe typically exists in a
low-spin FeIII configuration, which transitions to a high-spin
state upon substrate binding, facilitating the coordination and
activation of molecular oxygen.134,135 This transition is crucial

for enabling the enzyme’s function, as the high-spin state of the
iron makes the binding of substrates more energetically
favorable. This spin transition prepares the iron for electron
transfer, enabling a series of redox steps essential for catalysis.
During the reaction cycle, the heme iron also toggles between
FeII and FeIII oxidation states, enhancing the enzyme’s capacity
to activate the bound oxygen molecule and introduce an oxygen
atom into the substrate. The connection between spin state and
catalytic activity in cytochrome P450 thus provides one clear
example of how spin plays a role in catalytic activity in enzymes
with metal center in the drug discovery setting.

The other example, is obviously the most celebrated chemical
system in quantum computing setting is the FeMo-cofactor of
nitrogenase catalyzes the conversion of nitrogen (N2) into
ammonia (NH3) under ambient conditions, a process essential
for biological nitrogen fixation.83,136 In contrast to CYP, which
has one metal center (Fe), FeMo-co has multiple metal centers
(Fe and Mo atoms), which makes the spin dynamics more
interesting and more complicated to model. These iron atoms in
FeMo-co exhibits a complex electronic structure, where multiple
oxidation states, notably FeII, FeIII, and MoIV, lead to a large
number of unpaired electrons, resulting an open-shell system
containing unpaired electrons, resulting in a nonzero total spin
and allowing for various spin states.137 The open-shell nature of
FeMo-co gives rise to multiple spin states, with a stable ground-
state net spin of S = 3/2 achieved through specific spin
alignments, such as a 4-up/3-down arrangement among Fe
atoms.138 This dynamic spin and charge state flexibility enables
efficient electron and proton transfer, critical for nitrogen
reduction.83 Oxidation state and protonation shifts also alter
magnetic interactions, notably affecting Mo’s spin state and its
antiferromagnetic couplings with Fe, thereby influencing
reactivity.139 These spin state modulations are believed to be
essential for the enzyme’s efficiency, underlining spin’s role in
reaction energetics�a factor now being rigorously explored in
quantum computing.137 However, in line with the focus of this
review on heterogeneous catalysis, the discussion on spin will
specifically center around its significance in chemical reactions
occurring at surfaces and nanoparticles.

The role of spin in chemical reactions at surfaces and its
significance in heterogeneous catalysis have garnered consid-
erable attention in recent years. Early proposals on spin
catalysis140,141 laid the foundation for exploring the influence
of spin in catalytic processes. The original d-band center model,
proposed by Hammer and Norskov,142 provided insights into
the reactivity of metals, but it was later revised to incorporate the
effects of spin polarization.143 The importance of spin is evident
in reactions involving OCCO and CO2 intermediates144 in CO2

reduction reaction (CO2RR). In catalytic CO2 reduction,
intermediates like OCCO and CO2 often adopt high-energy
configurations upon chemisorption tometal surfaces, where spin
uncoupling plays a crucial role in their reactivity. When CO2 or
OCCO binds to a metal catalyst, such as platinum or copper, the
interaction can lead to spin uncoupling�where the initially
paired electron spins within these molecules are partially
unpaired as they interact with the metal’s surface electrons.
This spin uncoupling facilitates electron transfer between the
adsorbed molecule and the metal, enabling activation of
otherwise stable bonds in the CO2 molecule. For example, the
formation of the OCCO intermediate involves two CO units
coupling on the metal surface, with spin effects playing a role in
stabilizing this high-energy configuration. The spin state of these
intermediates impacts bond-breaking and bond-formation steps,
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such as CO bond cleavage in CO2, which are essential for
efficient catalytic reduction pathways. Spin uncoupling in these
adsorbed intermediates is therefore integral to lowering reaction
barriers and improving catalytic turnover, providing valuable
insights into the design of spin-tuned catalysts for sustainable
CO2 conversion.

Furthermore, spin was found to play a crucial role in ammonia
synthesis145 as well. Recently, Cao and Norskov conducted a
systematic study that further underscored the significance of
spin in chemical catalysis.105 They showed that inclusion of spin
polarization decreased chemisorption strengths. A similar
conclusion was also reached in earlier studies for N2 adsorption
on various transition metal surfaces143 and for O adsorption on
Pt3-transition metal alloys.103 Spin effects are also prominent in
the context of molecular adsorption on Pt3M alloy catalysts,
where the spin polarization of metal surfaces can significantly
influence the binding strength and reactivity of adsorbates. In
Pt3M alloys�where M represents transition metals such as Fe,
Co, or Ni�the introduction of a second metal alters the
electronic structure of platinum, including its spin polarization.
A detailed discussion on the spin effects in Pt3M alloy catalysts is
provided in Section 2.3.2 The lowering of chemisorption
energies was attributed to filling of antibonding states of the
predominant up-spin in the spin-polarized density of states.
Experimental evidence supporting the predictions of spin effects
in O2 interactions with pristine and defective graphene/graphite
surfaces has only recently emerged, reinforcing the relevance
and importance of spin effects in surface chemistry and
heterogeneous catalysis.146 Spin effects have also been observed
in other catalytic systems, such as phthalocyanines,147 electro-
catalysis,148 and photocatalysis reactions.149

Given the prominence of DFT in heterogeneous catalysis, it is
important to note that, in spin-DFT for open-shell systems, the
spin density can be qualitatively inaccurate, especially in low-
spin states, often requiring a broken-symmetry description.130 In
nonrelativistic scenarios, setting up Kohn−Sham-DFT involves
choosing between spin-restricted and spin-unrestricted for-
mulations. While the former ensures the wave function of the
noninteracting reference system is always an eigenfunction of S2,
its spin density deviates from the correct one. Conversely, spin-
unrestricted KS-DFT provides the correct spin density for the
noninteracting reference system but precludes it from being an
eigenfunction of S2. Developing exchange−correlation func-
tional approximations is possible for either formalism, but the
choice of restricted vs unrestricted imposes different constraints
such as on the fractional occupancy of spin orbitals,150

We will highlight two practical examples where spin plays a
crucial role in catalytic activity: single atom catalysts (SACs) and
Pt3M catalysts, both involved in the oxygen reduction reaction
(ORR). These examples were chosen because of the complex
nature of the interacting species, involving pronounced strong
correlation effects and the unconventional triplet ground state of
O2. The subsequent sections will offer a detailed exploration of
these examples.
2.3.1. Single-Atom Catalysts (SACs). Single-atom catalysts

(SACs) are materials where individual isolated metal atoms act
as catalytically active sites.151 Unlike traditional heterogeneous
catalysts, where metal particles or clusters contribute to the
catalytic activity, SACs consist of individual metal atoms
dispersed on a support material. SACs have gained attention
in catalysis research due to their potential for improving
efficiency, selectivity, and atom utilization in various chemical
reactions, offering advantages in terms of diversity of

applications152,153 and economic and environmental sustain-
ability.154

The unique electronic and geometric properties of these
isolated metal atoms can lead to enhanced catalytic perform-
ance, as they expose a maximum number of active sites and often
exhibit distinct reactivity.155 The computational chemistry
community is particularly intrigued by SACs due to their
distinct ability to catalyze important reactions using a single
active center. Despite the apparent simplicity of SACs, modeling
their activity poses significant complexity and challenges for
theorists, highlighting the difficulty in constructing realistic
models that faithfully represent the intricacies of the active site.
Numerous computational studies were conducted on this topic
to understand the origin of reactivity and the electronic effects
governing catalytic activity and selectivity in SACs.156−158 In
SACs, the metal atom is typically in a low coordination
environment, and the unsaturated d shell then gives rise to
strong local electron correlation. These correlation effects are
hard to describe with traditional DFT methods,158 making SAC
modeling quite sensitive to the choice of functional approx-
imation.158 To illustrate this, we discuss below the spin-related
aspects of SACs by considering a few specific examples.

The crucial role of spin in SACs for the ORR was studied with
DFT using octahedral transition metal complexes and Fe-based
SACs in N-doped graphene.159 This study highlights the
sensitivity of spin state ordering and reactivity predictions to
the chosen functional approximation. An increased Hartree−
Fock (HF) exchange fraction was found to enhance accuracy, a
trend transferable across various ligand environments. To
advance the understanding of SACs, a multilevel approach is
likely needed: addressing challenges related to spin as the Fe-
center and graphene itself with high-level methods, while
employing relatively affordable DFT with range-separated
hybrids for larger periodic simulations. Concurrently, research
on single metal atoms supported for catalysis has shown
promising progress, particularly in N-coordinated Fe single
atoms distributed over axial carbon micropores (d-FeN4).

99

These SACs exhibit notably higher intrinsic activity in ORR
compared to other catalysts. The unique spin characteristics of
d-FeN4 contribute to faster kinetics during ORR, providing a
valuable starting point for advanced energy catalysis. For
understanding the operation of SACs containing 3d-metal single
sites, their magnetic nature necessitates in-depth exploration of
the oxidation state and spin state of the active site, as well as the
investigation of spin polarization, indicated by its magnetic
moment.160 DFT-calculated partial density of states (PDOS)
and Wannier function analyses provide some first descriptors to
this end. Using first-principles calculations, the two-dimensional
ferromagnetic metal−organic framework Mn2C18H12 was
identified as a highly efficient SAC for spin-triplet O2 activation
and CO oxidation.161 The mechanism proposed, known as
’concerted charge-spin catalysis’ involved a synergistic process of
charge transfer from the hosting Mn atom and spin selection
facilitated by its nearest neighboring Mn atoms during O2
activation. This synergistic mechanism was proposed to exhibit
broad applicability in O2 adsorption on magnetic frameworks
X2C18H12 (X = Mn, Fe, Co, and Ni), showing a linear scaling
dependence between chemical activity and spin excitation
energy. Computational study on the catalytic activity of Fe
single-atoms supported on C2N (C2N−Fe) in the ORR reaction
uncovered a direct relationship between changes in electronic
spin moments of Fe and O2, induced by molecular-catalyst
adsorption, and the amount of electron transfer from Fe to

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.4c01212
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

G

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


O2.
162 This electron transfer was found to enhance the ORR

catalytic activity of C2N−Fe. Due to the observed linear
correlation, the electronic spin moment was proposed as a
promising catalytic descriptor for Fe-based SACs. Magnetic
(spin) effects can also used to explain the weakening of the
binding energies of adsorbates on SACs, especially for ORR.163

However, when magnetic SACs are involved, the functionals
used for simulations affect the predicted relative stability of
different spin states and, since the spin state may vary during the
reaction process,157 potentially also the predicted minimum
energy reaction pathway. From these examples it is evident that
the electronic structure and spin-related phenomena in SACs
demand the utilization of advanced computational method-
ologies, to check and improve the predictions made by DFT.
Specifically, the application of multireference/multiconfigura-
tion methods is likely imperative to reliably model the spin
transitions occurring at the active sites, especially for
applications in ORR.
2.3.2. Pt3M Catalysts. Proton-exchange membrane fuel cells

(PEMFC) hold promise for sustainable energy applications,
relying on catalytic reactions such as the hydrogen oxidation
reaction (HOR) and ORR.164,165 While platinum (Pt) has
conventionally served as the standard catalyst, its high cost has
prompted the search for more economical alternatives, leading
to the exploration of Pt3M alloys (M = 3d transition metals).
These catalysts are composed of a combination of Pt and
another less expensive transition metal (denoted as M) in a ratio
of 3:1. Apart from reducing the platinum content, the choice of
the other metal influences significantly the catalytic performance
and can thereby be used as a tuning parameter.

Past studies have established the enhanced catalytic activity of
Pt3Ni and Pt3Co alloys for ORR, attributed to the inhibition of
PtOHad formation and electronically modified Pt atoms.166−168

However, the underlying reasons for the increased activity on
Pt3Ni and Pt3Co alloys remained unclear for a considerable
period. The origin for enhanced activity was attributed to the
synergy among ligand (or electronic structure) effects, strain (or
geometric) effects, and ensemble effects.169 Conversely, by
comparing spin-polarized and nonspin-polarized calcula-
tions,102−104,170 the influence of spin and magnetic effects,
particularly the role of quantum spin exchange interactions
(QESI), was elucidated as being a likely cause for the enhanced
reactivity of these strongly correlated Pt3M catalysts.103,104

QSEIs and ferromagnetic spin-electron interactions play crucial
roles in facilitating milder chemisorption and spin-selective
electron transport, making magnetic catalysts appealing for
various applications.101

This section underscores the growing importance of
incorporating spin effects into catalysis research, highlighting
recent advancements in understanding spin-related phenomena
at surfaces.While it is common practice to follow reactions along
a single spin-state potential energy surface using spin-polarized
DFT, certain reactions exhibit two-state reactivity where spin−
orbit coupling becomes crucial. The modified d-band center
approach,143 emphasizing the role of spin in catalysis and
explicitly considering two spin channels, has shown promise,
particularly in reactions with significant spin involvement. In
addition, DFT+U approach also has alleviated some problems
related to strong correlation in magnetic catalysis and
materials.101,171,172 However, as the field progresses, despite
the robustness of DFT for catalysis modeling, there is a
recognized need to integrate more accurate wave function

electronic structure theories, such as multireference/multi-
configuration methods.35,173

Nevertheless, given the high computational demands of
multireference methodologies, as well as their increased
complexity in employing them, such as the crucial active space
selection and the more complicated interpretation of results,47

these methods are still hard to employ routinely. In addition we
note that geometry optimizations with CASPT2 is challenging,
so that DFT is often used to generate potential energy surfaces,
with the multireference methods used only for single-point
energy calculations. However, if the DFT model is qualitatively
inaccurate for these types of reactions, the reliability of the
potential energy surface can be compromised. This situation
calls for improved methodology that offer the possibility to work
with large active spaces and cover large fractions of the potential
energy surfaces of the different spin states to shed light on the
interplay between spin and chemical reactivity when designing
and optimizing heterogeneous catalytic systems. Since classical
computational methods are, due to the factorial scaling of the
configuration space with the size of the CAS space, intrinsically
limited,49,50 quantum computing algorithms hold promise in
treating strongly correlated systems for catalysis research. With
the emerging role of spin in catalysis, this incorporation of such
advanced computational modeling techniques can aid in
optimizing and designing new materials.

3. UNCERTAINTY QUANTIFICATION IN
HETEROGENEOUS CATALYSIS

Uncertainty quantification (UQ)174,175 is a systematic approach
for identifying, quantifying, and managing uncertainties in
models or simulations. It provides insights into the reliability of
predictions by assessing the effects of variations in input
parameters. In heterogeneous catalysis, UQ is crucial for
accurately modeling complex reactions across multiple
scales�from atomic-level interactions to reactor-scale pro-
cesses�each introducing distinct uncertainties.71,108,176 The
multiscale modeling framework (see Figure 1) highlights these
challenges, with uncertainties arising at each stage: DFT
calculations,177 molecular dynamics simulations,178 micro-
kinetic modeling,71 and reactor-scale analysis.179 Turnover
frequency (TOF), a key performance metric representing the
reaction rate per active site, is especially sensitive to
uncertainties in reaction mechanisms, rate constants, and
surface coverages, all of which influence TOF predictions and,
therefore, the reliability of catalytic assessments.6,180−182 While
quantifying uncertainties at each scale and understanding their
propagation to TOF is crucial, this discussion focuses specifically
on uncertainties within the microkinetic modeling stage, where
various rate equations and surface coverages come into play.

Classical methods, such as Monte Carlo simulations, are
widely used to estimate uncertainties.183 However, they are
computationally intensive due to large parameter spaces and the
“curse of dimensionality,” where the cost of sampling grows
exponentially with the number of uncertain parameters.184

Deterministic sampling techniques, though more efficient for
smaller dimensions, still struggle with exponential scaling in
high-dimensional UQ problems, making them impractical for
complex microkinetic models. Quantum computing presents a
promising alternative for efficient UQ, particularly through the
Harrow−Hassidim−Lloyd (HHL) algorithm,76 which can solve
linear systems exponentially faster than classical methods.
However, HHL produces a quantum state representing the
solution, and extracting meaningful numerical data from this
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state requires probabilistic measurements. These measurements
can become impractical for large systems due to the high
number of measurements required.

To address these limitations posed by classical methods,
Walker et al.73−75 proposed using the HHL algorithm for UQ in
prototypical catalytic systems, including CO oxidation on
Pt(111), CO oxidation on Ru(111), and H2 oxidation in air.
Their work focuses on UQ in microkinetic modeling, using the
HHL algorithm. The steps to construct a general microkinetic
model in heterogeneous catalysis185 are as follows:

1. Identify and define each elementary reaction step
involved in the system.

2. Derive rate expressions for each of these elementary
reaction steps.

3. Convert these rate expressions into a system of ordinary
differential equations (ODEs).

4. Define boundary conditions (e.g., partial pressures),
initial values (e.g., initial surface concentrations), and
any relevant model parameters (e.g., temperature).

5. Solve the system of ODEs to obtain dynamic behavior
over time.

6. Interpret the results using chemical intuition to gain
insights into the reaction system.

In this quantum context, the requirement for running the
HHL algorithm is to have a linear system of equations. To
achieve this, the problem (step 5 from the above list) is
reformulated into a set of linear rate equations (one additional
step added to the above steps), which are then incorporated into
the microkinetic model, with assumptions of steady-state and
mass balance applied.73 The HHL algorithm is used to calculate
the surface coverages of CO and O in this example. For
uncertainty quantification, the equilibriummodel is perturbed in
both positive and negative directions.74,75 Each perturbation
creates a block diagonal matrix, whose eigenvalues are
computed, leading to three sets of surface coverages
corresponding to these different perturbations. It is important
to note that current applications of microkinetic modeling and
uncertainty quantification using the HHL algorithm, demon-
strated for prototypical systems, involve a very small number of
qubits (3 qubits in these examples) and are run on simulators.
To achieve practical speedups under realistic conditions, the
algorithm needs to be extended, thoroughly understood, and
reimplemented. Variational quantum linear solvers (VQLS),77

on the other hand, offer a more NISQ-friendly alternative, using
variational methods to iteratively minimize a cost function and
solve linear systems. VQLS can yield numerical solutions more
directly with fewer measurements, making them potentially
better suited for near-term quantum devices. Nevertheless, both
HHL and VQLS face scalability challenges for large systems and
may require advanced techniques like implicit operators or
reduced bitstring spaces to make UQ feasible in complex
catalytic models. While these efforts are in the early stages, the
goal of discussing microkinetic modeling and uncertainty
quantification in this review is to emphasize that aspects of
heterogeneous catalysis modeling�beyond electronic struc-
ture�could benefit from quantum algorithms.

4. PROSPECTS OF QUANTUM COMPUTING
In the previous sections, we argued that DFT, the most
commonly used method, struggles to accurately capture strong
correlation effects in heterogeneous catalysis. As securing a
sustainable future creates a large demand for new catalysts,

research on sophisticated materials such as multicomponent
alloys is important. For modeling chemical reactions facilitated
by these types of catalysts it is imperative to reliably treat strong
correlation effects. Quantum computing provides a potential
solution by offering an effective means to work with strongly
multiconfigurational wave functions�an essential ingredient to
better treat the regime of strong correlation. Industries have
recognized the potential of quantum computing in heteroge-
neous catalysis and are actively investing in exploring its use
cases, aiming to enhance catalyst design and optimization in
heterogeneous catalysis.

Collaborations between quantum companies (companies
building quantum computers and/or developing quantum
algorithms) and companies seeking use cases have been
established as a promising path toward technological advance-
ments. Microsoft Azure Quantum has partnered with notable
companies like Johnson Matthey, BASF, Ford, and Toyota-
Tsusho Corporation to explore various applications.186,187

Johnson Matthey, for instance, focuses on finding improved
catalysts for hydrogen fuel cells and seeks alternatives to
platinum, including the exploration of alloy catalysts. BASF, a
leader in catalysis, collaborates with Microsoft Azure Quantum
to advance catalytic processes. Ford and Toyota-Tsusho
Corporation engage in partnerships to explore battery materials
and technologies.

IBM has established collaborations with renowned companies
such as Daimler AG (Mercedes Benz), Exxon Mobil, Boeing,
Mitsubishi Chemical, JSR, and the University of Keio.188−192

The collaborations aim to tackle diverse challenges. For
instance, Daimler AG works with IBM to identify candidates
for energy-dense battery technology, particularly focusing on
lithium−sulfur (Li−S) batteries.188 Exxon Mobil utilizes IBM’s
expertise in optimization to address problems related to
maritime inventory mapping.189 Boeing presents two distinct
challenges: the optimization of ply design, a critical aspect of
aircraft manufacturing, and the development of advanced
corrosion-resistant chemicals for airplane coatings.190 Mitsu-
bishi Chemicals and JSR, in collaboration with the University of
Keio, delve into organic light-emitting diodes and the crucial Li
superoxide rearrangement step in Li−O batteries.191,192

Another notable consortium in the quantum technology
realm is the Quantum Technology and Application Consortium
(QUTAC).193 Its founding members include BASF, BMW
Group, Boehringer Ingelheim, Bosch, Infineon, Merck, Munich
Re, SAP, Siemens, and Volkswagen. QUTAC acts as a platform
for collaboration and knowledge exchange among these industry
leaders in quantum computing for chemistry and materials.
BASF leverages the consortium to pursue novel catalysts for
various chemical transformations,194 while Boehringer Ingel-
heim seeks to accelerate drug discovery processes.195 These
collaborations between quantum companies and industry
leaders demonstrate the growing recognition of quantum
technologies’ potential across multiple sectors,196 ranging from
catalysis and energy storage to drug discovery and material
science. By combining expertise and resources, these partner-
ships aim to drive innovation and shape the future of
technology-enabled solutions.

In the subsequent sections, we delve into a detailed
exploration of some of the most promising quantum algorithms
in the context of heterogeneous catalysis. Additionally, we
examine recent applications in periodic simulations that leverage
quantum algorithms, such as calculating bulk lattice constants
and simulating electronic band structures, as well as exploring
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molecule−surface interactions involving metals and metal
oxides. These applications reflect collaborative efforts between
academia and industry.

5. QUANTUM COMPUTING ALGORITHMS FOR
HETEROGENEOUS CATALYSIS MODELING

Quantum computing presents exciting opportunities for tackling
complex chemistry problems, with several major quantum
algorithms proving promising in this field. Among these, the
variational quantum eigensolver (VQE)60 and quantum phase
estimation (QPE)197 immediately stand out. In addition,
algorithms due to Harrow−Hassidim−Lloyd (HHL)76 are
used in uncertainty quantification in heterogeneous catalysis.
HHL’s near-term counterpart, variational quantum linear solver
(VQLS)77 could potentially be used for similar applications as
well. Moreover, more versatile algorithms like linear combina-
tion of unitaries (LCU)198,199 and quantum singular value
transformation (QSVT)200,201 are gaining traction for various
applications in the field of quantum chemistry.202

In the rapidly evolving landscape of quantum computing,
different algorithms serve distinct purposes tailored for specific
types of quantum hardware categorized by its maturity in
handling errors. We categorize these algorithms into two main
groups: electronic structure methods suitable for near-term
devices and those typically employed in the context of fault-
tolerant quantum computers. Electronic structure methods for
near-term devices, such as VQE, quantum subspace expansion
(QSE), and variational quantum linear solver (VQLS), leverage
the capabilities of noisy intermediate-scale quantum (NISQ)
devices to address problems in quantum chemistry and material
science.

• VQE is particularly effective for estimating the ground and
excited-state energies of quantum systems, enabling
detailed explorations of molecular structures and reaction
dynamics.

• QSE enhances the accuracy of VQE by expanding the
solution space, thereby improving estimates of energy
levels and other observables.

• VQLS is adept at solving linear systems of equations that
is suitable for uncertainty quantification in heterogeneous
catalysis.

These methods utilize variational principles to optimize
parameters and extract meaningful information about quantum
states, making them accessible for current technologies despite
their limitations in coherence and error rates. In contrast,
methods designed for fault-tolerant devices, including QPE,
HHL, and QSVT, are primarily aimed at achieving exponential
speedups for large-scale problems.

• QPE excels at estimating the eigenvalues of quantum
operators, which is fundamental for applications like
determining ground-state energies in quantum chemistry.

• HHL is particularly useful for efficiently solving linear
systems of equations, offering potential speedups for
problems that can be represented in this form, e.g.,
uncertainty quantification.

• QSVT provides a versatile framework for various matrix
operations, such as singular value decomposition and
matrix inversion, which are essential for many quantum
algorithms and applications.

To be able to run these algorithms, quantum error correction
together with fault-tolerant quantum hardware is required.

QPE is the pioneering algorithm demonstrating efficient
estimation of eigenvalues of unitary operators, offering insights
into the energy spectra and electronic structures of quantum
systems.197 Although QPE holds significant potential for
chemistry applications, its implementation on current noisy
intermediate-scale quantum (NISQ) devices203 faces challenges
such as circuit depth, high error rates, limited qubit connectivity,
and scalability. The estimated number of ancilla qubits (ω)
required for phase estimation, given a precision of n bits and
success probability p, is determined by Nielsen’s equation:204
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Despite recent progress, these methods involve large gate
counts and the inability to perform a (large-scale) inverse
quantum Fourier transform (QFT), requiring fault-tolerance,205

thereby poses challenges for near-term quantum computers. As
quantum technologies advance and error correction techniques
improve, QPE is in the long run expected to offer the most
accurate and efficient solutions to chemistry problems on
quantum computers. Alternative approaches are, however,
required for practical chemistry simulations on the currently
existing and upcoming quantum hardware.

Currently, no proven quantum speedup has been achieved
with the variational quantum algorithms widely explored during
the NISQ era. The largest molecular calculations in terms of
qubit requirements and hardware resources are compiled in
Table 2 of ref.206 Additionally, we have gathered various
resource estimates for fault-tolerant quantum computing in
chemistry, expressed in T/Toffoli gate counts, which vary based
on estimator type and assumptions over time.207−210 For an
overview of quantum chemistry software and hardware on
quantum computers, we refer readers to a recent review.211 A full
analysis of the advantages and limitations is beyond this work’s
scope; however, we provide references to relevant metrics from
surveys conducted by independent organizations, including the
Unitary Fund. Last year’s survey results are available at ref.,212

and this year’s survey is currently underway.
The VQE, which integrates classical optimization techniques

with quantum state preparation and measurement to determine
ground-state energies of molecular systems, was introduced as a
more practical option for near-term quantum computers.60

Recent developments have enabled studies on interaction
energies between molecules and extended the treatment to
periodic systems, which makes this algorithm relevant for
heterogeneous catalysis reactions.213 In this section we will
explore the potential of VQE, briefly touch upon a few VQE-
inspired algorithms applied in the context of periodic systems,
and discuss VQE’s application to excited states. Following that,
other quantum algorithms relevant to quantum chemistry,
including QPE, HHL, and QSVT, will be briefly discussed.

5.1. Near-Term (NISQ) Quantum Algorithms Relevant
to Heterogeneous Catalysis. 5.1.1. Variational Quantum
Eigensolver (VQE). The VQE algorithm, originally proposed
and realized by Peruzzo et al.60 in 2014 on a photonic quantum
processor for computing the ground-state energy of HeH+, has
emerged as a practical tool for calculations of ground-state
energies in molecular and materials science using quantum
computers. VQE belongs to the broader category of variational
quantum algorithms (VQA),215 which are designed to solve a
range of optimization problems. In essence, VQE employs the
Rayleigh-Ritz variational principle to optimize a parametrized
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wave function or parametrized quantum circuit (PQC),
ultimately minimizing the cost function, which for quantum
chemistry problems is the electronic ground-state energy. VQE
is a hybrid quantum−classical algorithm wherein there is a loop
over classical and quantum processes, green and blue blocks,
respectively in Figure 3. The quantum processor is used to

evaluate the energy, through the expectation value of operators,
while the classical computer runs the optimization algorithm
that yields the parameter updates (θ⃗). In the NISQ era, VQE
stands out as one of the best candidates for exploring the
usefulness of quantum computers in chemistry simulations. In
this discussion, we will provide an overview of the various steps
and workings of the VQE. For more comprehensive reviews on
VQE, interested readers can refer to excellent resources on the
topic cited in the references:.213,214,216

A step-by-step workflow for implementing the VQE is given
below:

1. Step 1. Define the Hamiltonian operator: Define the
molecular Hamiltonian operator, Hel, which describes the
energy of the quantum system, in second quantization.

= +† † †H h a a g a a a a
1
2el

p q
pq p q

p q r s
pqrs p r s q

, , , , (2)

Here, a† and a are Fermionic creation and annihilation
operators for placing or deleting an electron in spin
orbitals, respectively. hpq and gpqrs are matrix elements of
the one- and two-electron operators in the molecular
orbitals basis that can be computed with N5 or lower
computational cost on a classical computer.

2. Step 2. Fermion-to-qubit mapping: Next, Fermionic
operators describing electron creation and annihilation
(Step 1) are first mapped onto a qubit basis. This process,
known as Fermion-to-qubit mapping, encodes molecular
systems into quantum circuits. These circuits are
essentially a series of operations represented by a linear
combination of Pauli operators (acting on individual
qubits) and coefficients. The key element in this mapping
is the concept of occupation numbers. These numbers (0
for empty, 1 for occupied) represent the state of each
electron orbital in the molecule, following the Pauli
Exclusion Principle. Different mapping techniques like

Jordan-Wigner,217 Bravyi-Kitaev,218 parity219 translate
these occupation numbers into specific configurations of
0s and 1s on the qubits. Finally, the encoded electronic
Hamiltonian of the molecule, represented by the eq 3, is
constructed using Pauli operators/matrices (σ) acting on
individual qubits (eq 4). These Pauli operators are built
based on the occupation number information embedded
within the qubits through the chosen mapping scheme.

=H Pel
j

j j
(3)

where,

=P I X Y Z, , , ,j
i

i
j

i
j

(4)

Here, I, X, Y, and Z are identity, Pauli X, Pauli Y, and Pauli
Z matrices (operators), respectively. (Can also be written
as

=P I X Y Z, , , ,j i i
j

i
j

).
3. Step 3. Define the quantum circuit: Then we define a

parametrized quantum circuit, often denoted as U(θ⃗),
where θ⃗ represents a vector of variational parameters.

4. Step 4. Prepare the trial state:Use the quantum circuit to
prepare a trial state |Ψ(θ⃗)⟩ by applying U(θ⃗) to an initial
reference state (|0⟩), often chosen as the Hartree−Fock
state:

| = |U( ) ( ) 0 (5)

5. Step 5: Calculate the expectation value: Calculate the
expectation value of the Hamiltonian Hel with respect to
the trial state |Ψ(θ⃗)⟩:

= | |E H( ) ( ) ( )el (6)

6. Step 6: Minimize the energy: Utilize a classical
optimization algorithm (e.g., gradient descent or a
variational optimizer) to minimize the energy E(θ⃗) by
adjusting the variational parameters θ⃗:

= Eargmin ( )optimal (7)

7. Step 7: Extract the ground-state energy: After
optimization, the minimum energy E(θ⃗optimal) provides
an estimate of the ground-state energy of the quantum
system.

The iterative process, illustrated in Figure 3, continues until a
satisfactory approximation of the ground-state energy is
achieved. VQE leverages the quantum computer’s efficient
trial state preparation while classically optimizing variational
parameters to minimize the energy. It is a generic tool for
quantum chemistry simulations allowing for various ansatzes for
the unitary operator used in Step 3. The final energy estimate
serves as an approximate solution to the optimization problem,
constituting an upper bound to the true ground-state energy due
to its variational nature. To practically estimate E(θ⃗), achieved
through multiple samplings of the energy in Step 5, is in practice
a bottleneck for the algorithm. The number of samples needed is
crucial and scales with the desired precision, denoted by ϵ. This
scaling comparison is notable: VQE exhibits a scaling of 1/ϵ2,

Figure 3. The schematic of the variational quantum eigensolver (VQE)
method. This method combines classical (green) and quantum (blue)
computing resources and optimizes the Hamiltonian energy ⟨ψ(θ⃗)|
Hel|ψ(θ⃗)⟩ by adjusting variational parameters θ⃗. It involves constructing
a Fermionic Hamiltonian, mapping it to a qubit Hamiltonian, and
initializing the wave function’s ansatz with θ⃗0. The trial state is prepared
as a quantum circuit on a quantum computer. Iterative measurement of
Hamiltonian terms helps update the parameters θ⃗k+1 via a classical
algorithm until convergence is achieved. Reused from ref 214 under
Creative Commons CC BY 4.0 DEED. Copyright 2022 The Author(s).
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contrasting with the 1/ϵ scaling of fault-tolerant algorithms like
QPE and those approaching the Heisenberg limit. This
distinction underscores the trade-off between precision and
computational resources, prompting ongoing efforts to optimize
sampling strategies and improve VQE’s efficiency. To validate
the solution, comparisons can be made with the currently
available quantum hardware or simulators, often with known
exact solutions. When this is no longer possible and VQE
calculations surpass what is classically computable, one may still
examine consistency of solutions by validation with known
symmetries or other system properties. This validation step
ensures the reliability of the VQE-derived solution. The
obtained energy and its derivatives can be applied for predictive
purposes or decision-making based on the optimized parame-
ters. For instance, it can help identify optimal molecular
configurations or calculate interaction energies such as
adsorption and reaction energies in heterogeneous catalysis.
5.1.2. Excited States. Excited states play a crucial role in the

study of heterogeneous catalysis, particularly in heterogeneous
photocatalysis220−223 and plasmonic catalysis,224−228 due to
their influence on the electronic structure and reactivity of
catalysts. In photocatalysis, light excitation of a catalyst creates
electron−hole pairs (excitations), which can participate in
surface reactions. Understanding these excited states helps
identify key pathways for charge separation, transfer, and
recombination, which directly affect reaction rates and
efficiency.220 The band structure of the catalyst dictates the
energy levels at which such excitations can occur, and the
alignment of the catalyst’s conduction and valence bands with
those of reactant molecules determines whether an excited state
can effectively drive the desired reaction. In plasmonic catalysis,
excited collective oscillations of free electrons (plasmonic
excitations) are generated when metal nanoparticles interact
with light. These excitations can significantly enhance local
electromagnetic fields at the catalyst surface, thereby increasing
the reactivity of adsorbed molecules.225 The band structure of
the plasmonic material affects how these surface plasmons are
excited and how they interact with molecular orbitals of the
reactants.226 The excited states in this case are critical for energy
transfer and enhancing catalytic processes that rely on light-
matter interactions. In both cases, the catalyst’s band structure
6.3 determines the nature and efficiency of excitation, and the
excited states are central to understanding how energy is
transferred or absorbed during catalytic processes, ultimately
influencing reaction outcomes.

Due to their importance, several VQE extensions have been
developed to compute excited states of a given Hamiltonian H.
Quantum subspace expansion (QSE) is a method that resembles
the configuration interaction approach in quantum chemistry
and is particularly useful for mitigating noise errors in NISQ
devices.229 Subspace-search VQE (SS-VQE) is an algorithm
designed for this purpose, enabling the identification of excited
states beyond the ground state.230 Additionally, multistate,
contracted VQE (MC-VQE) is an extension of VQE that
calculates excited states of the Hamiltonian H, resembling a
simplified version of the SS-VQE algorithm.231 Moreover, two
papers propose an alternative approach to compute excited
states sequentially by incorporating overlap amplitudes between
the ansatz state |ψ(θ⃗)⟩ and previously found eigenstates into the
cost function of VQE.232,233 These extensions offer valuable
tools for efficiently obtaining a comprehensive understanding of
the excited states of quantum systems. This review will highlight
two types of approaches to give an impression of what is

currently possible. Quantum Subspace Expansion (QSE),
utilized for computing excited states in periodic systems234−237

and addressing error mitigation,56,238−240 is briefly discussed
below. Furthermore, we consider state-averaged ap-
proaches241,242 which provide a democratic description of
both ground and excited states, as is valuable when studying
photocatalytic reactions.
Quantum Subspace Expansion (QSE). Quantum Subspace

Expansion (QSE) is employed in quantum chemistry for
calculating excited-state properties of molecular systems.229 It
extends the framework of the VQE to capture the excited states
by introducing a subspace spanned by a set of trial wave
functions created from the optimized ground-state wave
function. The excited states are then obtained by diagonalizing
the Hamiltonian within this subspace. This method resembles
the classical configuration interaction method and is applicable
to a wide range of quantum systems.

Starting with a VQE, the trial wave function |Ψ(θ)⟩ is
parametrized by a set of variational parameters θ. The ground-
state energy E0 is minimized by optimizing these parameters. To
extend this approach to excited states, QSE introduces
additional parameters ϕi to create a subspace of trial wave
functions. The excited states are then obtained by diagonalizing
the Hamiltonian within this subspace, leading to the eigenvalue
problem H|Φi(ϕ)⟩ = Ei|Φi(ϕ)⟩, where H is the molecular
Hamiltonian. The excited-state wave functions |Φi(ϕ)⟩ are
constructed as linear combinations of the ground-state |Ψ(θ)⟩
and the subspace generated via the operation of a set of
operators (Oj) on the ground state. Mathematically, this can be
expressed as |Φi(ϕ)⟩= (1 + ∑jϕjOj)|Ψ(θ)⟩, where Oj are the
additional operators introduced to create excited states. The
subspace expansion allows for a flexible representation of excited
states, and can capture complex wave functions in a computa-
tionally efficient manner. QSE has been successfully applied to
study various molecular systems, providing accurate and reliable
results for excited-state properties in quantum chemistry
simulations. Some examples of application of QSE to periodic
systems, especially to the prototypical strong correlation
benchmark model of hydrogen chains are discussed in Section
6.1.
State-Averaged Orbital-Optimized Variational Quantum

Eigensolver (SA-OO-VQE). In heterogeneous photocatalytic
reactions, where both the catalyst and the initiation of the
reaction by light play a role, being able to model both ground
and excited states is crucial. Performing separate calculations for
the ground state and excited state is time-consuming and does
(unless the excited state has a different symmetry) not guarantee
that the obtained excited state is fully orthogonal to the ground
state as it should be for an exact solution. To address this issue
and provide a democratic description of ground and excited
states in photochemical reactions, the state-averaged orbital-
optimized variational quantum eigensolver (SA-OO-VQE)241

method was developed. The main steps of the algorithm are
explained in the diagram depicted in Figure 4. The method was
later extended to be able to calculate analytical gradients and
nonadiabatic coupling vectors, thereby enabling the study of
excited-state dynamics.242 The method can also be used to
detect conical intersection, a point in the potential energy
surface where two electronic states are degenerate and
nonadiabatic transitions between the states occur in photo-
chemical reactions.243 So far, this approach has been primarily
applied to a prototype of a single-molecule photoisomerization
reaction. Our research group is currently exploring the
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application of this method to heterogeneous photocatalytic
systems, specifically focusing on H2O dissociation on TiO2.
5.1.3. Variational Quantum Linear Solver (VQLS). The

variational quantum linear solver (VQLS) is a quantum
algorithm suited for near-term devices, leveraging a variational
approach to approximate solutions for linear systems Ax = b.77

The vector b is encoded into a quantum state, while a
parametrized quantum circuit (ansatz) encodes the solution
vector x. A classical optimizer iteratively adjusts the parameters
of this circuit to minimize a cost function�typically the residual
error ∥Ax − b∥�until the quantum state approximates x. By
measuring this state, specific components of x can be retrieved.

Compared to HHL (vide inf ra), which requires quantum
phase estimation and works best with sparse, diagonalizable
matrices, VQLS offers more flexibility for a broader range of
matrices, including both sparse and dense types. This flexibility
makes VQLS more practical for noisy, intermediate-scale
quantum (NISQ) devices, which struggle with the high resource
demands of HHL’s phase estimation. However, VQLS has

limitations: it depends on classical optimization, provides only
approximate solutions influenced by the ansatz and iteration
count, and requires a quantum circuit for each optimization step,
which can be resource-intensive for large systems.

Similar to the VQE, which approximates ground-state
energies in quantum chemistry, VQLS uses a variational process,
but it is specifically designed for solving linear systems of
equations. Despite its challenges, VQLS offers a practical
solution for quantum linear systems on NISQ devices, filling an
important role until fault-tolerant quantum computers become
available.

5.2. Fault-Tolerant Quantum Algorithms Relevant to
Heterogeneous Catalysis. 5.2.1. Quantum Phase Estima-
tion (QPE).The Quantum Phase Estimation (QPE) algorithm is
a quantum algorithm designed to efficiently estimate the
eigenvalues of a unitary operator, which is typically represented
by the Hamiltonian of the quantum system of interest in
chemistry.197 The key idea behind QPE is to encode the
eigenvalue information on the Hamiltonian into the phase of a
quantum state. The algorithm requires two quantum registers:
the control register, typically prepared in a superposition of
states, and the target register, initialized in an eigenstate of the
unitary operator (state with some considerable overlap with the
ground state of the given molecule). The quantum circuit used
to illustrate the different steps of the QPE algorithm is shown in
Figure 5.

The QPE algorithm essentially involves two main steps:

1. Phase kickback: In this step, a controlled unitary
operation is applied between the control and target
registers, where the control qubits are set to a super-
position of states using Hadamard (H) gates. The
controlled unitary operation effectively “kicks back” the
phase of the target register’s state based on the eigenvalue
corresponding to the eigenstate of the Hamiltonian. This
phase information is encoded in the quantum state of the
target register.

2. Inverse quantum Fourier transform: After phase
kickback, the inverse quantum Fourier transform
(QFT) is applied to the control register. The inverse
QFT transforms the superposition of states in the control
register into a state whose phases represent the

Figure 4. Schematic diagram of the SA-OO-VQE method, which
achieves a balanced treatment of multiple electronic states in quantum
computing for computational chemistry. It employs two algorithms in a
cyclic manner: SA-VQE (hybrid quantum−classical, blue block) and
SA-orbital-optimization (purely classical, green block). SA-VQE uses a
quantum circuit to determine multiple low-lying eigenstates via state-
averaged energy minimization. The correlated states are then
transferred to SA-OO, which optimizes the molecular orbitals using
the full orbital space to allow for further energy minimization. The
process iterates, making the SA-OO-VQE algorithm a better scaling
alternative to CASSCF for studying heterogeneous photocatalysis
reactions on quantum computers.

Figure 5. Quantum circuit for quantum phase estimation (QPE). The quantum circuit for the QPE algorithm involves several essential components.
First, the control register containing t qubits are initialized to a uniform superposition of states using Hadamard (H) gates. Next, a sequence of
controlled unitary operations is performed on the input state |ψ⟩, incorporating the unitary operator for which we aim to estimate the eigenvalues.
Through these controlled operations, the input state becomes entangled with the control qubits, thereby encoding the phase information from the
eigenvalues. Following the controlled unitary operations, the circuit proceeds to the quantum phase estimation process where an inverse quantum
Fourier transform (QFT) is applied to extract the phase information from the control qubits. Finally, the outcome of the QFT is measured in the
computational basis to provide an estimation of the phase, which corresponds to the eigenvalue of the unitary operator.
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eigenvalues of the Hamiltonian. Measuring the control
register then provides an estimation of the eigenvalues.

By repeating the QPE algorithm multiple times and using
postprocessing techniques, more accurate estimates of the
eigenvalues can be obtained. These estimated eigenvalues
directly correspond to the energy levels and electronic
properties of the molecular system of interest. Implementing
QPE on current NISQ devices faces enormous challenges,244

stemming from circuit depth, error rates, and qubit connectivity,
which limit the accuracy achievable with the inverse quantum
Fourier transform (QFT†). To address these limitations, much
research is focused on advancing the error mitigation techniques
and otherwise optimizing implementations.245 Both such
algorithmic advances as well as hardware scale-up will be
needed to bring the potential of the QPE algorithm for quantum
chemistry applications to life. As quantum technologies keep
maturing, QPE is expected to become valuable in quantum
chemistry research, and increasingly suitable to address the
challenges in describing the strongly correlated electronic states
encountered in the discovery of new catalytic materials and in
studying chemical reaction mechanisms.
5.2.2. Harrow−Hassidim−Lloyd (HHL) algorithm. The

HHL (Harrow−Hassidim−Lloyd) algorithm76 is a quantum
algorithm specifically designed for solving linear systems of
equations, which play a crucial role in various scientific and
engineering applications, including quantum chemistry. In the
context of heterogeneous catalysis, the HHL algorithm has been
proposed to be used in uncertainty quantification (UQ).73−75

UQ is the process of assessing and representing uncertainties in
model simulations such that their impacts on the quantities of
interest can be determined.

The HHL algorithm can efficiently solve the linear system Ax
= b, where A is a Hermitian matrix representing the quantum
system’s Hamiltonian, x is the unknown vector representing the
solution, and b is the input vector encoding the problem to be
solved. In short, the HHL algorithm, employs QPE to encode
the eigenvalues of matrix A into the quantum state and then
performs controlled rotations to extract the desired solution x.
The final step involves performing measurements on the
quantum state, yielding the solution to the linear system with
high probability. To provide a bit more detail, the HHL
algorithm follows a structured sequence of three steps designed
to solve linear systems (Figure 6). The first step is the QPE
(Section 5.2.1), which allows one to approximate the
eigenvalues of a Hermitian matrix A when the input state |b⟩
is one of its eigenvectors. The eigenvalues λj and eigenstates |uj⟩
of A are computed with certain precision through QPE. The
clock register stores the values of the phase of the eigenvalues of
the A matrix after the QPE. Subsequently, we move to the

second step, where a controlled rotation, dependent on λj, is
implemented. To achieve this, a third auxiliary register initialized
as |0⟩ is introduced, and a controlled σy-rotation is performed
based on our λj estimate stored in the clock register. When this is
successful, the result resembles the answer |x⟩ that we are
looking for. In the third step, the uncomputation is done by
using inverse QPE i.e., we undo the QPE to set the register that
contained the estimate back to |0⟩. In this step, the qubits in the
clock register and the b-register are disentangled and the input-
register |b⟩ stores the solution |x⟩.

The application of HHL algorithm in microkinetic modeling
stems fromt he fact that one can represent the rate equations of a
catalytic reaction network as a system of linear equations in
which, A is the rate constant matrix, capturing reaction rate
constants that describe reaction pathways and relationships
among species, x is the coverage vector, representing the
fractional surface coverage of each species involved in the
reaction and b is the rate vector, encapsulating the net
production or consumption rates of the species.73 Using the
HHL algorithm in this context would allow one to compute x
efficiently, but its value goes beyond just finding solutions�it
can also serve in uncertainty quantification. Since reaction rates
(elements of A) are often uncertain due to experimental
variations or intrinsic limitations in reaction models, quantum
approaches like HHL can incorporate uncertainty directly by
solving Ax = b across distributions of potential A matrices. This
can reveal how variability in reaction rates impacts surface
coverage and reaction outcomes. For example, one could
repeatedly solve for x with different probabilistic variations in A,
enabling an uncertainty quantification framework that assesses
how fluctuations in rate constants affect the system.

While the HHL algorithm holds potential for quantum
chemistry applications, especially in uncertainty quantification
for heterogeneous catalysis and other scientific fields, its
implementation on current NISQ devices faces challenges
similar to other fault-tolerant quantum algorithms like QPE.246

The algorithm offers exponential speedup in solving linear
systems of equations, particularly beneficial for sparse or
structurally specific matrices,247 closely tied to the QPE
algorithm for efficient eigenvalue determination. However, for
solving general large-scale linear systems, the HHL algorithm
offers a polynomial, not exponential, speedup over classical
methods.248 Despite its theoretical potential, practical imple-
mentation is hindered by issues such as quantum gate errors,
decoherence, and the need for error correction. Nevertheless,
with the advancements in quantum computing hardware and
error correction techniques, the HHL algorithm is anticipated to
make positive contributions in uncertainty quantification for
computational heterogeneous catalysis.

Figure 6.Quantum circuit for implementing the Harrow−Hassidim−Lloyd (HHL) algorithm. The HHL quantum circuit involves three main steps:
quantum phase estimation (QPE), rotation, and inverse QPE. In the QPE step, the algorithm encodes a classical vector into a quantum state and, using
QPE, it estimates the eigenvalues of a given linear system’s matrix. In the rotation step, the quantum state is rotated based on the eigenvalue estimation.
Finally, in the inverse QPE step, the algorithm uncomputes the eigenvalue estimation, and the result of the quantum computation is the solution to the
linear system, which can be efficiently obtained from the quantum state amplitudes.
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5.2.3. Quantum Singular Value Transformation (QSVT).
The spectral theorem in quantum chemistry facilitates the
diagonalization of Hermitian operators, simplifying complex
quantum systems by expressing these operators as a sum of
eigenvalues and orthogonal projectors. Singular value decom-
position (SVD) is a valuable mathematical tool widely used in
quantum chemistry for matrix analysis, allowing dissection of
matrices into key components: unitary matrices U and V†, and a
diagonal matrix Σ with singular values. Unlike the spectral
theorem, SVD is applicable to rectangular matrices, making it
more versatile for application in quantum chemistry where
rectangular matrices often occur. Quantum Singular Value
Transformation (QSVT),200 a quantum algorithm analogous to
SVD, applies polynomial transformations to singular values
using quantum computers, serving as a generalization of
Quantum Signal Processing (QSP).249−251 QSP systematically
applies quantum gates to qubits, initially designed for square
matrices and extended to nonsquare matrices through QSVT.
Together, QSP and QSVT form a versatile framework
recognized as the ’grand unification of quantum algorithms,’201

providing a unifying foundation for fault-tolerant quantum
algorithms, such as QPE and HHL algorithms discussed above,
showcasing its potential in advancing fault-tolerant quantum
computing methodologies. While delving into the details of how
each algorithm is constructed within this framework lies beyond
the scope of this review, it is noteworthy that the QSVT
framework provides an abstract and versatile approach that
underlies the development of these fault-tolerant quantum
algorithms. Despite its potential, the QSVT algorithm faces
challenges in constructing accurate polynomial approximations
for desired functions, particularly as matrix size and complexity
increase. Researchers actively explore strategies to enhance the

applicability and efficiency of QSVT in quantum algorithms and
simulations.252−255

5.3. First Quantization and Plane Waves. It has been
already discussed that DFT is a powerful tool for understanding
the electronic structure and reactivity of catalyst surfaces in
heterogeneous catalysis.21,256 By employing periodic boundary
conditions and expanding the wave functions in terms of plane
waves, DFT can relatively accurately capture the periodicity of
the crystal lattice and the interactions between the catalyst
surface and adsorbates. This allowed for the investigation of key
processes involved in catalytic reactions, such as adsorption,
activation, and reaction pathways. Recently, there have been
proposals to utilize plane waves within the framework of first
quantization for fault-tolerant quantum computing.257−259 First
quantization refers to the direct description of a quantum system
in terms of its wave functions and operators, without resorting to
the second quantization formalism (creation and annihilation
operators) commonly used in quantum chemistry. The use of
plane waves in first quantization approaches aims to harness
their periodic nature and Fourier transform properties to
efficiently represent and manipulate quantum states in large-
scale quantum computations. Two such examples are discussed
in Section 6.4.3 and Section 6.4.4.

6. APPLICATION OF QUANTUM COMPUTING
ALGORITHMS FOR SIMULATING PERIODIC
SYSTEMS

Whenmodeling periodic systems, integrals are to be evaluated in
reciprocal space, typically at points within the first Brillouin zone
(BZ). Calculations performed at the central point of the BZ,
denoted as the Γ-point, is akin to modeling molecules. In
systems with periodic boundary conditions (PBC), integral
calculations extend across the BZ, requiring assessment at

Table 1. Overview of Periodic Systems Analyzed in the Literature, Including the Hardware Platform, Number of Qubits, and
Quantum Algorithms Employeda

Periodic System Platform Qubits Algorithm

Hydrogen chains
Linear H-chain234 Emulator - VQE/K2G, VQE/QSE
Linear H-chain235 Emulator 8 (4 tapered) TransQSE
Linear H-chain236 Emulator 12 VQE
H2 dimer236 Emulator 8 VQE
Band structures
H2O/Mg(001)260 Superconducting qubits (IBM) 2, 10 VQE (EF)
O2/Pt(111)

261 Trapped ions (Quantinuum - H1) 6, 8 VQE
Fe235 Superconducting qubits (IBM) 2 VQE
Battery materials259 Cost estimation only - QPE (qubitization)
Transition metal oxides (NiO and PdO)258 Cost estimation only - QPE (Wannier and Bloch orbitals)
Embedding
NV center in diamond262 Emulator 6b QPE (QDET)
NV center in diamond262 Emulator 2 VQE (QDET)
NV center in diamond262 Superconducting qubits (IBM) 2 VQE (QDET)
CO2 capture263 Emulator 4−16 VQE (DMET)
Kinetics and uncertainty quantification
CO oxidation on Pt(111)73 Emulator 3 HHL
CO oxidation on Rh(111)74 Emulator 3 HHL
Hydrogen-air combustion75 Emulator 3 HHL

aFor fault-tolerant quantum algorithms, such as QPE, resource or cost estimates are provided where available. Entries without reported qubit
counts are retained for consistency. In this context, “emulator” (also referred to as a simulator) denotes quantum algorithms classically emulated on
conventional computing systems. Abbreviations: VQE (variational quantum eigensolver), QSE (quantum subspace expansion), EF (entanglement
forging), QPE (quantum phase estimation), QDET (quantum defect embedding theory), HHL (Harrow−Hassidim−Lloyd algorithm). bNumber
of ancilla qubits.
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multiple k-points. The accuracy increases with the number of k-
points, but such an increase also leads to a higher computational
cost. For bulk materials PBC are needed in all three spatial
dimensions and balancing accuracy and computational cost is
crucial. For surfaces, which only exhibit periodicity in the x- and
y-directions one may devise a dedicated approach, but simpler is
to introduce a vacuum in the z-direction. The latter approach
allows for straightforward use of the full periodic plane wave
approach, but requires careful consideration of k-point sampling.
A surface model in DFT requires a vacuum in the z-direction to
prevent interactions with its periodic replica. With a sufficiently
large vacuum a realistic representation of the surface can be
obtained. If the vacuum is sufficiently extended (around 15 Å),
modeling surfaces with just one k-point along the z-axis is
feasible. Surfaces, lacking the full symmetry of bulk systems,
require larger unit cells, increasing computational demands. In
addition, the high density of electronic states near the Fermi
level found in surface models does further increase computa-
tional costs.256 DFT implies the use of a density function
approximation (DFA) for the exchange-correlation energy. For
molecules such DFAs usually incorporate a fraction of nonlocal
“exact” exchange to improve their performance. Thus, going
beyond pure DFT, various hybrid DFAs demonstrate improved
performance relative to the best (semi)local functionals,
especially in systems with strong correlation. However, using
nonlocal exchange for electronic band structures and molecule−
surface interactions is computationally demanding and the
improvement in performance is often problem-specific.33 The
surge in interest in quantum computing, coupled with
advancements in quantum hardware and software, has prompted
studies addressing electronic structure calculations in periodic
systems and molecule−surface interactions relevant to hetero-
geneous catalysis (Table 1). This offers promising avenues to
overcome computational and methodological challenges
encountered in the DFT approaches. Variational quantum
algorithms215 Section 5.1.1 rooted in the second quantization of
the electronic Hamiltonian have also been considered for
simulating periodic systems as we will discuss below. Quantum
simulations using plane wave basis sets Section 5.3, while not
offering substantial advantages in the near-term,257 are also
discussed in this review, highlighting the potential of quantum
computing both in the near-term and the fault-tolerant era. To
learn more about both basis sets and the difference between
molecular and periodic simulations, in the context of quantum
computers the readers are referred to this resource.264

6.1. Hydrogen Chains. Hydrogen atom chains are widely
used as model systems in quantum chemistry and condensed
matter physics for studying strong correlation effects.265−267

These chains consist of linear arrays of hydrogen atoms, each
contributing a single electron. Due to their simplicity, hydrogen
chains provide a clean environment to isolate and investigate the
effects of electron−electron interactions. When hydrogen atoms
are spaced at intermediate distances, the electrons become
strongly correlated, making the system difficult to describe using
mean-field theories like Hartree−Fock. This strong correlation
emerges because the electrons interact strongly with each other,
leading to phenomena that simpler methods fail to capture.
Hydrogen chains, particularly when modeled as infinite systems
with periodic boundary conditions, serve as useful approx-
imations for periodic systems with strong correlations, such as
Mott insulators in condensed matter physics.267 Their relatively
simple structure, combined with the challenging correlation
effects, make them ideal for benchmarking advanced methods.

The VQE algorithm, described in (Section 5.1.1), has shown
to be applicable for computing ground-state energies of
molecular systems. Building upon this success, researchers
have extended the VQE algorithm to be able to simulate periodic
systems. As a proof of principle that can be studied with a small
number of qubits, initial applications of the VQE to periodic
systems focused primarily on the ground-state properties of one-
dimensional hydrogen chains.234−236

Using PBC and the Hartree−Fock method to obtain orbitals,
one-dimensional hydrogen chains were studied using VQE by
Liu and co-workers.234 They compared the performance of three
ansatzes: unitary coupled cluster singles and doubles
(UCCSD),268 unitary coupled cluster generalized singles and
doubles (UCCGSD)269 and adaptive derivative-assembled
pseudotrotter (ADAPT)270 method. Looking at the potential
energy curve as a function of the H−H lattice distance, they
found UCCSD-VQE and ADAPT to deviate significantly from
the full CI reference result, while the absolute error of
UCCGSD-VQE ansatz was acceptable, but still one to 2 orders
of magnitude larger than in nonperiodic simulations. The
problem in these approaches was found to be due to the
imaginary component of the periodic wave function which
invalidates an assumption made when deriving the energy
optimization algorithm. To overcome this problem and to be
able to model periodic systems at various k-points in the
Brillouin zone, Liu et al.,234 proposed two modified VQE
algorithms: VQE-K2G and VQE/QSE. The VQE-K2G
approach involves the conversion of HF orbitals at sampling k-
points in a unit cell into real orbitals at Γ-point in the
corresponding supercell. Subsequently, the wave function and
Hamiltonian are then defined in the real space so that the
optimization method is valid again. This change of basis allows
VQE-K2G for periodic systems to match the accuracy of VQE-
K2G accuracy to VQE for molecular systems. The second
approach, combining VQE with QSE, referred to as VQE/QSE
was also proposed to enhance the accuracy of VQE. In VQE/
QSE, a reference state is prepared using VQE, and the ground-
state wave function is obtained by diagonalizing the Hamil-
tonian sampled in the linear-response space of the reference
state. VQE/QSE could provide a reliable estimation of the exact
wave function, provided that VQE can generate a suitable
reference state. Their calculations demonstrate that both VQE-
K2G and VQE/QSE approaches provide reasonable results for
describing the potential energy surfaces of one-dimensional
hydrogen chain with the SVZ (While the authors mention SVZ,
we think it is split valence polarized (SVP) because we could not
find a SVZ basis set within PySCF basis set library.271) basis set
together with GTH pseudopotentials.272,273 It was also noted
that for achieving converged results with practically relevant
systems and also for the long-term, other type of basis sets, such
as plane waves, should be used. Among these ansatzes,
UCCGSD-VQE was found to be more stable than UCCSD-
VQE. However, in the comparison between UCCGSD and
ADAPT, no clear winner emerges due to the trade-off between
flexibility, accuracy, and cost.

A hybrid quantum−classical algorithm, extending the unitary
coupled cluster (UCC) framework, was utilized to calculate the
electronic structure of periodic systems (linear hydrogen chains
and dimer hydrogen chains), determining ground states and
quasiparticle band structures.236 A variation of QSE was
employed for the computation of the quasiparticle band
structure. This approach shares conceptual similarities with
ionization-potential/electron-attached EOM-CC (IP-EOM-
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CC, EA-EOM-CC),274 a variant of equation-of-motion coupled
cluster (EOM-CC).275 The algorithm’s efficiency was validated
in simulating the hydrogen chain for both weakly and strongly
correlated electronic structures using the VQE.

In another study, the adaptation of the UCC ansatz to
periodic boundary conditions is presented in both real space and
momentum space representations showing the application of
VQE in the simulation of solid-state crystalline materials.235

This adaptation involves the direct mapping of complex cluster
operators to a quantum circuit ansatz, capitalizing on the
reduced number of excitation operators and Hamiltonian terms
due to momentum conservation. A translational Quantum
Subspace Expansion method (TransQSE) is proposed for the
localized representation of the periodic Hamiltonian. The
investigation includes a comparative analysis of accuracy and
computational costs across various geometries for 1D chains of
dimerized hydrogen, helium, and lithium hydride, incorporating
an increasing number of momentum space grid points.
Additionally, VQE calculations are demonstrated for two-
dimensional and three-dimensional hydrogen and helium
lattices. The UCCSD-PBC ansatz is identified as the most
favorable in the momentum space representation, considering
circuit depth. Notably, the adoption of a smaller supercell,
proves effective in trading accuracy against the expensive scaling
associated with the full UCCSD-PBC approach. However, the
authors emphasize that this strategy is applicable exclusively to

insulating systems, where orbital occupation remains constant
across different k-points. For metals, characterized by band lines
crossing the Fermi level, the transformation introduces
complexity, mixing occupied and virtual orbitals, making the
preparation of the reference state nontrivial.

Furthermore, Mizuta et al.276 introduced an enhanced version
of the DeepVQE protocol,277 emphasizing the efficient
computation of low-energy eigenstates, with a particular focus
on simulating periodic materials. The refined DeepVQE
approach was specifically designed and tested using a periodic
hydrogen chain system for its simplicity. Advancements over the
initial DeepVQE proposal involve optimized strategies for
handling periodicity, ensuring precise simulations of periodic
materials. In addition, the updated protocol integrates advanced
techniques to minimize the number of parameters in the
quantum circuit, enhancing the efficiency of computations for
low-energy eigenstates.

These studies share a common thread in their utilization of
the VQE adapted for systems governed by PBCs. Notably, each
study applied their respective methodologies to compute the
energy of the one-dimensional hydrogen chain, with some
extending their analysis to encompass two- and three-dimen-
sional model systems. An additional noteworthy parallel lies in
the incorporation of the QSE method for calculating excited-
state energies across these investigations. The collective findings
signify an increasing interest in quantum computing method-

Figure 7. Lattice constants of bcc and fcc iron crystals. Panel I: Evolution of energy ΔE during the Rotosolve optimization process. Panel II: Evolution
of energy ΔE during the stochastic gradient descent optimization process for both bcc and fcc iron crystals (crystal structure shown in inset). Blue
circles represent hardware results from the ibmq_casablanca device. The dashed black lines indicates ΔE for the model Hamiltonian. Application of
noise mitigation schemes SPAM (red triangles) and SPAM+PMSV (black triangles) (see text) is shown, which presents raw and noise-corrected ΔE
for each optimization step to illustrate noise mitigation effects. Reused from ref 278 under Creative Commons CC BY 4.0 DEED. Copyright 2022 The
Author(s).
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ologies tailored for periodic systems, as evidenced by the
adaptation of established algorithms from molecular studies.
While these studies primarily serve as a proof of concept, there is
a growing imperative to extend investigations beyond hydrogen
chains to more realistic systems. The evolving landscape of
quantum algorithms promises insights into their performance
compared to established methods like DFT and their
applicability in modeling various periodic systems. This
exploration aims to uncover advantages in accuracy, computa-
tional efficiency, and adaptability across different material types.

6.2. Bulk bcc-Fe: Quantinuum−Nippon. The bulk lattice
constant refers to the equilibrium lattice parameter or the
optimal interatomic distance in a crystalline material in its bulk
or three-dimensional form. It is a fundamental property of a
crystal and is often a key parameter in characterizing its
structure. Computationally, to find the equilibrium lattice
constant, one performs calculations for different lattice
constants, varying the interatomic distances. The lattice
constant at which the total energy is minimized corresponds
to the equilibrium lattice constant. Quantum hardware
calculations were conducted for solid-state model systems
under PBCs, focusing on a distorted hydrogen chain and fcc and
bcc iron crystals (Inset of Figure 7.I).278 Utilizing two-qubit one-
parameter ansatz, the translational quantum subspace expansion
(TransQSE) method235 was applied to the hydrogen chain,
while the PBC-adapted VQE method was employed for iron

crystals. Variational optimization employed classical algorithms,
Rotosolve279 and Stochastic Gradient Descent (SGD),280 for
both methods. Quantum hardware experiments were executed
on the IBM Quantum Falcon processor, specifically ibmq_casa-
blanca. Noise mitigation techniques, including state preparation
and measurement (SPAM)281 and partition-measurement
symmetry verification (PMSV),278 significantly improved
accuracy compared to exact values obtained through classical
simulations (Figure 7.I and II). Despite the simplicity of the
model systems, these results serve as a foundational step for
advancing quantum chemical calculations on quantum com-
puters, with potential improvements anticipated as quantum
hardware evolves to accommodate larger basis sets and k-point
grids for more accurate total energy estimates.

6.3. Electronic Properties: Band Structures. Band
structures are fundamental to understanding the electronic
properties of solid materials and play a crucial role in
heterogeneous catalysis. One key concept linking band structure
to catalytic performance is the d-band center model,19 which has
been highly successful in predicting and optimizing the catalytic
behavior of transition metals. This model directly correlates the
position of the d-electron states relative to the Fermi level with
the strength of adsorption and reactivity on metal surfaces. A
higher d-band center leads to stronger adsorption interactions,
while a lower d-band center results in weaker binding. Since
catalytic efficiency depends on achieving an optimal balance

Figure 8. Electronic band structures. (I) (a) Comparison of the two-band electronic structure of silicon along the X-G-L line obtained through classical
diagonalization (black solid line), a hybrid quantum−classical algorithm on a quantum state simulator (QSS, blue squares), and a quantum virtual
machine (QVM, yellow circles). (b) Similar comparison as in (a) but executed on the quantum processing units (QPUs) of IBM (red squares) and
Rigetti (green circles�before and after correction for readout errors). (II) (a) The band structure of a simple cubic lattice along the high-symmetry
path. Solid curves: classical (exact) diagonalization. Diamonds: median optimization result from a noiseless statevector simulator. (b). Simulating low-
fidelity qubits, along with rudimentary calibration. Left column: raw optimization results. Right column: energy obtained by QPE refinement. Gray
dots: results from each of 32 trials, with each band given its own row (l = 0, 1, 2, 3). Asterisks and crosses: the median and mean, respectively. Squares
and diamonds: energiesmeasured on quantum devices ibmq_santiago and ibmq_athens, respectively, using the least-error optimization results obtained
with the calibrated simulation data. (III) Band structures of model systems in one, two, and three dimensions with N = 8 for each dimension and 3
qubits per dimension. Analytically calculation using the standard classical algorithm (solid curves). Values estimated through the simulation of the
quantum algorithm (squares). Values obtained under ideal conditions featuring perfect optimization and no sampling noise (crosses). Figure used with
permission from refs 287−290 under Creative Commons CC-BY 3.0 (refs 287 and 288) and Creative Commons CC-BY 4.0 (ref 290).
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between strong and weak adsorption (Sabatier’s principle),
tuning the band structure through techniques like alloying or
nanostructuring becomes essential for improving catalytic
performance.282 This concept is particularly important in
industrial applications, including fuel cells, hydrogenation, and
CO2 reduction. Moreover, band structures are also critical in
heterogeneous photocatalysis,283−286 where they govern the
interaction between the photocatalyst and light. The ability of a
photocatalyst to absorb light, generate electron−hole pairs, and
facilitate charge carrier mobility depends on its band structure.
By engineering the band structure, one can optimize processes
like water splitting, pollutant degradation, and CO2 reduction.
Given the crucial role of band structures in both heterogeneous
catalysis and heterogeneous photocatalysis, we extend our
discussion to include the calculation of band structures using
quantum computing methods, as these are relevant for modeling
in heterogeneous catalysis.

Nardelli and co-workers287−290 explored the evaluation of
band structures, an essential aspect for understanding electronic
properties of solid materials. They developed an approach to
compute properties of periodic solids, exemplified by calculating
the band structure of silicon using the VQE algorithm on Rigetti
Aspen and IBMQ Armonk quantum hardware.287 Comparative

calculations were performed on Quantum Virtual Machine
(QVM) and Quantum State Simulator (QSS). While the
quantum-computed bands generally align with classically
computed bands, slight deviations are observed near high-
symmetry points (G and L) for Rigetti and IBM, respectively
(Figure 8I). The authors suggest that various sources of errors,
including probabilistic aspects and noise simulation, may
contribute to these discrepancies, with gate noise and readout
errors influencing measured energy and shifting expectation
values toward different eigenstates.

A hybrid quantum−classical algorithm was designed for
determining the band structure of periodic systems described by
tight-binding models.288 While no quantum advantage is to be
expected for tight-binding as it is a method with low-order
scaling (at most cubic) and a small prefactor, such models are
useful to explore quantum−classical algorithms. To illustrate the
correctness of the approach, the algorithm is applied to compute
the band structure of a simple-cubic crystal with one s and three
p orbitals per site, serving as a model for polonium. The
computations include simulations on quantum simulators with
varying noise levels, concluding with experiments conducted on
IBM quantum computers (Figure 8II). The findings demon-
strate the algorithm’s reliability in low-noise environments,

Figure 9.H2O dissociation onMg(001). Panel (A): Common steps (a,b) shared by both methods, with left blocks (c,d) illustrating density difference
(DD) method steps, and right blocks (e,f) depicting density difference + natural orbitals (DD+NO) method steps. Panel (B): Comparison of CCSD
and energy differences ΔE calculated in active spaces constructed with DD and DD+NO methods. Panel (C): Depiction of energy differences ΔE
derived from both noiseless classical simulations and hardware experiments. In 10-orbital active spaces, QCCwas implemented with 50 Pauli operators
(purple crosses) on classical simulators and with 2 and 5 Pauli operators (ΔE = 2P and ΔE = 5P) on quantum hardware. Reused from ref 260 under
Creative Commons CC-BY 4.0. Copyright 2023 The Author(s).
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functional adaptability to present-day noisy quantum com-
puters, and a scaling complexity similar to classical counterparts.

The next study explores an approach to quantum computing
in materials science by focusing on the calculation of a periodic
system’s single-electron band structure. Traditional methods
involve constructing unique Hamiltonian operators for each k-
point, requiring numerous optimizations to generate a single
band. The proposed approach adopts a direct space method,
utilizing a hybrid qubit mapping to construct a single
Hamiltonian and cost-function suitable for solving the entire
electronic band structure.290 The results of band structures
calculated for model systems in one, two, and three dimensions
are shown in Figure 8III. This approach supposedly simplifies
the quantum algorithm for band structure calculations, offering

technical and conceptual advantages over previous methods
proposed by this group.

Other researchers have proposed a new quantum algorithm,
EOM-ADAPT-C, specifically designed to calculate band
structures in periodic systems.291 This method leverages the
equation-of-motion (EOM) theory and builds upon existing
techniques like ADAPT (adaptive derivative-assembled pseudo-
trotter)270 and K2G methods234 discussed above. EOM-
ADAPT-C utilizes a unique variation of the VQE called
ADAPT-VQE,270 which constructs the wave function adaptively
using a complete set of anti-Hermitian operators. Following the
ground-state calculation with ADAPT-C, this algorithm
employs EOM theory292 within QSE229 to determine
quasiparticle energies and ultimately the band structure.

Figure 10.O2 dissociation on Pt(111). Panel (a) shows different high symmetry sites on a Pt(111) surface. Panel (b): Energy profiles calculated using
nudged-elastic band (NEB) method connecting the initial adsorbed state (O2) to the final dissociated state (2 O) on Pt(111) surface for the “cis”
(purple squares) and “trans” (violet circles). Activation energy Ea taken from literature is shown as a violet patch. Panel (c): Atomistic DFT models
illustrate the reference initial O2, *O2-rotated TS, and 2O-“cis”/-“trans” states adsorbed on a Pt(5 × 5 × 5) slab, each associated with a path length
value (0.00, 0.4, and 1.00, respectively) in panel (b). Panel (d): The Pt19O2 fragment using solid spheres, emphasizing potential oxygen occupation
sites. In Panels (e,f), a comparison of adsorption (Eads), activation (Ea), and dissociation energies (Ed) calculated using various methods with respect to
the initial state (O2 adsorbed) is presented. Panel (e) shows results from DFT and mean-field HF level calculations; panel (f) shows VQE calculations
on the statevector simulator (SV) andQuantinuum “H1−1” device (H1), and panel (g) showcases VQE+NEVPT2 results on the same devices. Figure
used with permission from ref 261. Copyright 2024 The Author(s).
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Notably, the method incorporates projected excitation oper-
ators to ensure a specific condition is satisfied. In contrast to
tight-binding approach that are already very efficient on classical
computers and have a limited accuracy, the higher level of theory
and more accurate results that can be achieved provide some
perspective on quantum advantages in the future. The adequacy
of EOM-ADAPT-C has been demonstrated by calculating the
band structures of silicon and diamond using a quantum
simulator, with results matching well with established EOM-
CCSD calculations. These explorations serve as a starting point
for investigating the calculation of band structures for strongly
correlated catalytic materials using quantum computing
methods. Continued advancements in this area are anticipated,
given the crucial role of band structures in the d-band center
model and heterogeneous photocatalysis.

6.4. Heterogeneous Catalysis: Chemical Reactions at
Surfaces. 6.4.1. H2O Dissociation on Mg(001): IBM−Boeing.
A novel method for modeling surface reactions on quantum
computers was introduced,260 featuring active-space orbital
selection based on the electronic density and its effect on energy,
employing the VQE for the calculation of expectation values.
Efficiency is enhanced by evaluating the active-space Hamil-
tonian’s expectation value over a simplified quantum circuit
throughClifford transformations, reducing qubit and gate count.
Illustrated with magnesium corrosion by water, this workflow
advances DFT-based calculations, offering valuable applications
for studying reactions like water adsorption on metal surfaces on
near-term quantum computers.

The study begins with classical preprocessing and employs
simple PBC calculations at the Γ-point for a time-reversal-
symmetric Hamiltonian. To enhance convergence, twist-
averaged boundary conditions (TABC)293 are applied. Main
highlight of this work is the proposal of two strategies for
constructing active spaces (Figure 9A), both initiating with the
localization of occupied and virtual DFT orbitals projected onto
an active region encompassing molecules involved in the
reaction and a small surface portion. Method 1, known as the
density difference (DD) approach, ranks occupied DFT orbitals
based on their contribution to the electronic density difference,
resulting in monotonically decreasing ground-state energies
with increasing active-space size. However, this method exhibits
slow convergence with increasing active-space size. Method 2,
termed the density difference and natural orbitals (DD+NO)
method, incorporates a coupled-cluster singles and doubles
(CCSD) calculation in the active space, utilizing the five highest-
ranking occupied DFT orbitals and all virtual orbitals. The
inclusion of natural orbitals, sorted by decreasing occupation
number, provides a systematic approach to defining active
spaces in systems with strong correlation. The comparison
reveals that DD+NO achieves faster convergence (Figure 9B),
typically requiring only 15−20 natural orbitals as opposed to
around 200 natural orbital with DD, but comes at a higher
computational cost compared to DD. Both methods can be used
complementarily to enhance the efficiency and accuracy of
quantum chemical simulations.

Hardware simulations reveal a statistically consistent perform-
ance with noiseless classical simulations utilizing the same
quantum circuit (Figure 9C). The study explores the efficacy of
the VQE algorithm through Trotterized implementations of
unitary CCSD (qUCCSD),294 entanglement forging (EF),295

and qubit coupled cluster (QCC).296 The calculated energy
differences with QCC display a nontrivial dependence on the
number of Pauli operators in the ansatz, notably with 50 Pauli

operators deviating from qUCCSD by approximately 0.1−0.3
eV. The incorporation of EF results at the Γ-point facilitates
effective handling of (2e,2o) (Here, e and o represents electrons
and orbitals.) and (10e,10o) active spaces with 2 and 10 qubits,
respectively, delivering results in good alignment with qUCCSD
and QCC. It should be noted that the current implementation is
restricted to Hamiltonians with time-reversal symmetry.
6.4.2. O2 Dissociation on Pt(111): Quantinuum−BMW.The

ORR on Pt and Co@Pt surfaces, was studied using the ADAPT-
VQE algorithm270 on the H1−1 trapped-ion quantum
computer. Static correlation exploration involved a complete
active space approach on quantum hardware, while dynamic
correlation was addressed with second-order perturbation
theory (QRDM NEVPT2).297 The selection of the active
space utilized the automatic regional embedding variant of the
automatic valence active space (AVAS/RE) method.298,299

High-symmetry adsorption sites on the Pt and Co@Pt surfaces,
the potential energy profile for O2 dissociation to dissociatively
chemisorbed O atoms in cis- and trans- configurations and the
initial, transition state and final configurations are displayed in
Figure 10 (a), (b) and (c). For the 3-layer atomistic model, the
AVAS/RE active space incorporated valence and higher orbitals
of the ‘Pt19O2’ fragment Figure 10 (c). In the Co@Pt system, a
model comprising 29 atoms was constructed, guided by density
change analysis, traditional CAS notations, and the assurance
that AVAS active orbitals were localized on O and the nearest Pt
atoms. A smaller Hamiltonian was then formed with a (2e,3o)
active space, compatible with hardware. The initial state
preparation involved the use of ADAPT-VQE and (k = 1)-
UpCCGSD. Reference converged DFT calculations demon-
strated accurate results for the pure Pt catalyst with a small active
space, while the Pt/Co catalyst required a larger active space to
capture correlation energy, confirming strong correlation in the
magnetic core−shell system.

DFT calculations indicated a halving of the barrier and a
doubling of the driving force (Figure 10 (e)). The analysis of
results, particularly in classical VQE statevector (SV)
simulations (Figure 10 (f)), revealed a low correlation energy
at the adsorption site. Simulations on H1 quantum computer
aligned well for reactant (R) and product(P) states, while results
for the TS state suggested an overestimation of Ea both with the
SV and H1 simulations.

Challenges arose with the AVAS procedure due to finite
magnetization in an restricted open-shell situation. The
exclusion of half-filled Co 3d orbitals, contributing to total
magnetism, was necessary to focus on correlations during O2
dissociation. Successful optimization of VQE state variational
parameters on a classical CPU was achieved, but subsequent
measurements of the active space Hamiltonian and spin-traced
1- and 2-RDM operators on both quantum hardware and the
quantum noisy emulator presented complications.
6.4.3. Battery Materials: Xanadu−Volkswagen. In classical

simulations of materials, pseudopotentials are commonly
employed to represent the effective potential arising from the
nucleus and core electrons. A recent work introduces a quantum
algorithm that leverages pseudopotentials to enhance the
efficiency of simulating periodic materials on a quantum
computer.259 The algorithm utilizes a qubitization-based QPE
approach, employing a first-quantization representation of the
Hamiltonian in a plane-wave basis. Addressing the challenge of
pseudopotential complexity in quantum simulations, optimized
compilation strategies for qubitization300−304 are developed.
The computational cost of applying the algorithm to simulate
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lithium-excess cathode materials for batteries is estimated,
including the required number of qubits and Toffoli gates for
accurate simulations (Figure 11). For the calculation of
resources, η values are 408 (808), 468 (968), 428 (836), and
100 (150), and N values are 5,473 (5.8 × 108), 67,767 (8.7 ×
108), 57,655 (6.4 × 108), and 19,549 (5.46 × 107) for Li0·
5MnO3, Li0·75[Li0·17Ni0·25Mn0·58]O2, Li0·75MnO2F, and
Li2FeSiO4, respectively. The numbers outside the parentheses
refer to pseudopotential, and numbers within the parentheses
correspond to the all-electron implementation for both η and N.
The optimized compilation strategies result in a pseudopoten-
tial-based quantum algorithm with a Toffoli cost 4 orders of
magnitude lower than the previous state-of-the-art method,
maintaining fixed target accuracy. They develop quantum read-

only memories as a key component, minimizing complex
arithmetic operations on a quantum computer and facilitating
trade-offs between qubit and gate numbers. Overall, the
quantum algorithm’s cost is reduced by about 4 orders of
magnitude compared to the all-electron approach when applied
to simulating lithium-excess materials (Figure 11). However,
realizing the full potential of quantum computing necessitates
ongoing efforts to further reduce algorithmic costs, addressing
aspects such as the quality of initial state preparation methods,62

particularly for states with poor overlap, where repeated rounds
of QPE may be required.
6.4.4. Transition Metal Oxides: Riverlane−Johnson Mat-

they. While VQE possesses merits in specific scenarios, the
prevailing consensus suggests superior scaling with system size

Figure 11. Li-excess battery materials resource estimation. Resource estimation for the pseudopotential (PP) and all-electron (AE) algorithms using η
number of electrons in the supercell structural models andN number of plane waves required to converge the ground-state energy of the material at the
level of density functional theory (refer to text for the exact numbers). Qubit cost is represented in terms of logical qubits. Plot made from data
published in Table 2 of ref 259 under Creative Commons CC BY 4.0. Copyright 2023 The Author(s).

Figure 12.NiO and PdO resource estimation. Resource estimation for the calculation of ground-state energy in various solid-state systems employing
Wannier and Bloch functions is provided. The estimations are based on L2-norm truncation, and the Hamiltonian simulations maintain an accuracy of
50 meV/f.u. (1.8 mHa/f.u.). The cycle duration of the code is 10−6 s, and the physical error rates are assumed to be 0.1% and 0.01%. The figures
illustrate: (a) runtime in days, (b) number of physical qubits, and (c) number of logical qubits. The x-axis denotes the total number of spin orbitals. The
numerical value alongside the crystal name indicates the number of atoms in the supercell and the size of the k-point mesh used for Wannier and Bloch
basis sets, respectively. Reused from ref 258 under Creative Commons CC BY 4.0. Copyright 2023 The Authors.
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for QPE.81 Therefore, in a recent study, the efficiency of QPE in
estimating the ground-state energy of crystalline solids on error-
corrected quantum computers is explored.258 The two most
widely used basis sets, namely Bloch and Wannier representa-
tions,305 were employed in the context of qubitized QPE.300−304

Employing the sparse qubitization approach, the research
estimates the resources required for calculating the ground-
state energy of crystals with a supercell of approximately 50−70
atoms. The estimated number of T gates ranges from 1010 to
1012 when considering a basis set of 300−500 spatial orbitals.
However, for realistic solids demanding at least double-ζ
polarized (DZP) or triple-ζ polarized (TZP) basis sets, the T-
gate count would be higher. To enable simulations of solids with
larger basis sets on error-corrected quantum computers, an
alternative approach involves selecting an active space within a
few hundred orbitals or utilizing quantum embedding methods
was suggested (Section 7).While this paper focuses solely on the
single-shot cost of the total QPE circuit, it is noted that the
effectiveness of QPE in estimating ground-state energy depends
on the overlap between the initial state (e.g., Hartree−Fock
state) and the true ground-state wave function,62 although this
aspect was not explored in this paper.

Figure 12(a) shows the runtime for a single shot of the QPE
circuit with a 50 meV/f.u. permissible error. It indicates that
small-unit-cell simulations of NiO and PdO (8 and 16 atoms,
respectively) take under 10 days, while larger computational
cells like LiH (64 atoms) require about 50 days, even with a 0.1%
physical error rate. NiO (64 atoms) and PdO (72 atoms) in
supercells need approximately 100 days at a 0.1% physical error
rate. A 10-fold reduction in the physical error rate to 0.01%
roughly halves the runtime for all systems. Figure 12(b) and
Figure 12(c) display physical and logical qubit counts. The
smallest simulations need a few million physical qubits at a
0.01% error rate, while the largest simulations of NiO and PdO
require around 65 million physical qubits. For a 0.1% error rate,
quantum error correction raises the required number of physical
qubits 4−5 times. Figure 12(c) indicates that small-cell
simulations need a few thousand logical qubits, while large
supercells require around 105 logical qubits.

7. EMBEDDING APPROACHES
So far we have explored the potential of quantum computers in
simulating molecular and material properties, highlighting
emerging algorithms for both NISQ and fault-tolerant systems
with examples from academia and industry. However, current
quantum computers are limited to performing ab initio
calculations on only a few states due to qubit constraints. To
tackle complex chemistry and material science problems with
NISQ computers, it is crucial to reduce the number of electrons
treated explicitly with high accuracy. We already saw an example
of the speed-ups that can be obtained when introducing a
pseudopotential approach to treat the chemically inert core
electrons. In a similar fashion, one may separate a complex
system into a part that is relevant for the property of interest and
an environment that can be treated with a more approximate
method or be neglected. In the context of quantum computing
one may think of a hybrid approach, in which most of the
calculation is done with a classical computer, letting the
quantum computer tackle only that part of the problem that
can not be described well by classical algorithms. To successfully
utilize near-term quantum computers for larger systems, such
hybrid quantum−classical methods are necessary, focusing on
quantum computation only for specific parts of the system. This
is particularly relevant for molecules and solids, where the
required precision in the active region is much higher than that
of the surrounding (bath) region. Many embedding theories
have been proposed to address this challenge, as discussed in
previous sections Section 5. Before we delve into the details of
the individual techniques and their applicability to heteroge-
neous catalysis, we explain the general idea of embedding here.

Embedding is a powerful technique for studying complex
chemical systems, particularly those involving large molecules
(inorganic complexes) or extended systems (heterogeneous
catalysis).64 The central theme of embedding involves
partitioning the full system into an active region, treated using
highly accurate quantummechanics or quantum algorithms, and
an environment region, treated using low-accuracy methods
Figure 13. An embedding potential is used to account for the
effects of the surrounding environment on the subsystems. An
embedding Hamiltonian describes the interaction between the
active region and the environment, facilitating the transfer of
information and correlation between the two regions. This

Figure 13. The general idea for the embedding approaches. Embedding involves dividing the entire system into two parts: the strongly correlated
region (active space) and its surrounding environment or bath. The active space includes electronic states described by an effective Hamiltonian,
solvable through traditional quantum chemistry methods such as multiconfigurational self-consistent field (MCSCF) + complete active space second-
order perturbation theory (CASPT2)/n-electron valence-state second-order perturbation theory (NEVPT2), or full configuration interaction (FCI),
represented by the dark yellow arrows. Quantum algorithms, such as quantum phase estimation (QPE) (Section 5.2.1) and variational quantum
eigensolver (VQE) (Section 5.1.1), represented by light yellow arrows, can also be employed to calculate the energies of the strongly correlated
regions.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.4c01212
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

W

https://pubs.acs.org/doi/10.1021/acs.jcim.4c01212?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01212?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01212?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01212?fig=fig13&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


approach significantly reduces computational costs compared to
a full quantum mechanical treatment while maintaining high
accuracy. Numerous embedding techniques have been
developed for quantum computing and periodic systems. In
the upcoming discussion, we will explore these techniques, some
of which have been mentioned in preceding sections, providing
detailed insights into each method.

7.1. Embedding Using Localized Molecular Orbitals
(LMO). Molecular orbitals (MOs) play a crucial role in
understanding chemical concepts and properties. Mean-field
calculations such as Hartree−Fock (HF) or Kohn−Sham
density functional theory (KS-DFT) yield valence orbitals
with a well-defined energy, which is useful when studying
electronic excitations and spectroscopy. A drawback for
extended systems is, however, the spatial delocalization that
MOs typically exhibit. Spatially localized MOs can be
constructed to provide a better understanding of chemical
bonding and photochemistry of the system.306 Such localized
MOs (LMOs) are particularly important in local correlation
treatments within post-HF methods. These LMOs serve as
excellent starting orbitals for multiconfiguration calculations,
such as state-averaged complete active space self-consistent field
(SA-CASSCF),307,308 as well as for quantum calculations like
state-averaged orbital-optimzied variational quantum eigensolv-
er (SA-OO-VQE).241,242 Various schemes exist for generating
localized orbitals, and for a comprehensive list we refer to the
introduction section of earlier reviews.306,309 One notable
scheme is the introduction of intrinsic atomic and bonding
orbitals by Knizia,310 initially for occupied MOs and later
extended to molecular fragments and relativistic spinors311 as
well as to provide additional localized virtuals for correlation and
use in time-dependent DFT.312 The procedure comprises two
steps, definition of intrinsic fragment orbitals, followed by
localization of the occupied and virtual subspaces by a
generalization of the Pipek-Mezey localization algorithm.313

This scheme has been implemented in a standalone program
known as the Reduction of Orbital Space Extent (ROSE), which
has been interfaced with various quantum chemistry packages311

and was demonstrated by application in systems such as
benzene, acrylic acid, ferrocene, Irppy3, microsolvated astatine
anion, and tellurazol oxide complexes.311 While LMOs do not
have a well-defined energy, they can be recanonicalized within
each fragment to make them better suited for embedding
purposes. Such a set of recanonicalized orbitals was recently
used for calculating charge transfer states in chlorophyll
dimer314,315 within the linear response framework of time-

dependent density functional theory (TDDFT).312 By consid-
ering molecular fragments instead of isolated atoms, the
convergence of the localization procedure can be improved,
which is particularly valuable for embedding techniques such as
the automated valence active space method.298 In summary, the
use of LMOs yields a simple approach to define a reduced size
local Hamiltonian that is compatible with many electronic
structure methods, including the quantum algorithms discussed
in this review.

In the following paragraph, the procedure followed in the
construction of recanonicalized molecular orbitals is summar-
ized. The process of embedding using LMOs begins with a
supersystem HF calculation, which yields a set of canonical
molecular orbitals (CMOs) for the supersystem. Subsequently,
these CMOs are explicitly localized within each subsystem (I).
This localization procedure aligns with the concept of intrinsic
atomic and bonding orbitals, as introduced by Knizia (referred
to as IAOs and IBOs), which has been extended to molecular
fragments in ROSE. In this approach, the localization is carried
out within a minimal basis of intrinsic fragment orbitals (IFOs),
and the reference orbitals are defined by fragment MOs (RFOs)
acquired through separate HF SCF calculations for each
subsystem. For the details of the construction of the IFOs and
the recanonicalized LMOs we refer the reader to referen-
ces.311,312 Briefly, the steps for the construction of the
recanonicalized LMOs can be summarized as

1. Construction of Intrinsic Fragment Orbitals (IFOs) using
a predefined set of RFOs.

2. Separate localization of the occupied, valence virtual and
hard virtual orbitals generating the so-called intrinsic
LMOs (ILMOs).

3. Diagonalization of the Fock matrix in the ILMO basis
insie each fragment generating our fianl recanonicalized
intrinsic localized molecular orbitals (RILMOs) (Figure
14).

These RILMOs provide a foundation for detailed analyses
and computations in the context of embedding and quantum
chemistry. Additional technical details related to the LMO
construction process can be explored in the literature for a more
comprehensive understanding of the methodology. This
procedure has been implemented in the Reduction of Orbital
Space Extent (ROSE) code,316 a standalone code which is
independent of the underlying electronic structure code used.
This code can be used to generate LMOs that can be used as a

Figure 14. From canonical molecular orbitals (CMOs) to recanonicalized intrinsic localized molecular orbitals (RILMOs). Illustration of the Fock
matrix in various bases with color-coded blocks denoting nonzero matrix elements, while smaller squares depict individual matrix elements. Reused
from ref 312 under Creative Commons CC BY 4.0. Copyright 2023 The Author(s).
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starting point for any quantum chemistry calculation on
quantum computers.

7.2. Dynamical Mean-Field Theory (DMFT). Dynamic
Mean Field Theory (DMFT) is a powerful theoretical
framework in quantum chemistry and condensed matter physics
that focuses on capturing the effects of strong electron−electron
correlations in strongly correlated systems, such as transition
metal compounds and high-temperature superconduc-
tors.317−323 DMFT, a variant of the popular mean field theory
(MFT), takes into account the dynamics of the system, hence its
name. DMFT achieves this by self-consistently embedding the
Green’s function of local fragments within a fluctuating
environment.

One of DMFT’s significant contributions is its ability to
extend quantum chemical methods, originally designed for finite
systems, to tackle infinite periodic problems while employing a
local correlation approximation. This locality of correlation
suggests that the daunting computational scaling with Brillouin
zone (BZ) size can be circumvented, as DMFT effectively
operates as a self-consistent theory for a single unit cell within a
crystal lattice.324 For example, consider a crystal lattice
composed of unit cells, where one unit cell is embedded in the
surrounding medium constituted by the rest of the crystal. This
arrangement, dictated by translational symmetry, necessitates a
self-consistent embedding theory. While an exact embedding
calculation would be as computationally intensive as a full crystal
calculation, DMFT offers a solution. By neglecting intercell
correlations based on their localized nature, DMFT efficiently
addresses the computational challenges associated with the
scaling of the Brillouin zone size. This approximation enables
DMFT to treat the crystal effectively, considering it as a self-
consistent theory focused on a single unit cell. Effectively,
DMFT replaces the description of a solid with a simplified
model where each lattice site is coupled to a self-consistent
medium. This medium captures local many-body correlations
on each site, effectively treating the system as a collection of
single atoms interacting with this medium. This approach allows
DMFT to capture electron−electron interactions and correla-
tions in strongly correlated systems. This idea can be extended
to the application of DMFT to modeling molecule−surface

reactions (Figure 15) relevant to heterogeneous catalysis. In this
context, the strongly correlated region of interest, such as a
localized molecular orbital or an adsorbate on a surface, is
effectively treated as the “local moment” within DMFT. This
region interacts with an effective bath formed by the rest of the
system, which accounts for the nonlocal correlations and
interactions. This description is consistent with the general
framework of DMFT, where the local properties of the strongly
correlated region are coupled to an effective environment.

DMFT’s formulation revolves around Green’s functions and
is structured as a self-consistent theory for the Green’s function
of a unit cell, which could be a primitive cell or a computational
supercell. Notably, the local correlation approximation in
DMFT assumes that the self-energy is local, implying that
intercell elements of the self-energy vanish or, in momentum
space, that the self-energy is momentum-independent. It is
worth emphasizing that while DMFT considers correlation
effects between unit cells through the embedding method (e.g.,
DMFT+LDA will have LDA correlations between unit cells;
LDA - local density approximation) and accounts for one-
electron delocalization effects between them. This, coupled with
DMFT’s self-consistent nature, sets it apart from simpler
quantum chemical embedding formalisms that incorporate
quantum mechanical clusters into a medium described by
molecular mechanics.

In DMFT, the self-consistency condition is a crucial concept
that ensures the consistency between local and nonlocal
properties of the system. The local subset of degrees of freedom,
often referred to as the active space, usually consists of localized
orbitals or lattice sites where strong electronic correlations are
present. The Green’s function (amathematical representation of
the correlation between particles in a quantum system) for this
active space is denoted as Gloc(ω). On the other hand, the total
system’s Green’s function, denoted as G(k, ω) includes
contributions from all momentum (k) points in the Brillouin
zone. The self-consistency condition in DMFT demands that
the local Green’s function Gloc(ω) should be equivalent to the
average of the total system’s Green’s function G(k, ω) over all
momentum points (k). In mathematical terms:

Figure 15. The idea of dynamical mean-field theory (DMFT). DMFT replaces the idea of a solid with a single atom exchanging electrons with a self-
consistent medium by capturing local many-body correlations on each site. It describes a strongly correlated system by coupling a “local moment” on
each lattice site to a “bath” of noninteracting electrons to effectively consider electron−electron interactions and correlations in the system. When
DMFT is applied to modeling molecule−surface reactions, the strongly correlated region of interest, such as a localized molecular orbital or an
adsorbate on a surface, effectively interacts with an effective bath formed by the rest of the system. The left figure shows the active region on a surface
(gray circles) with an adsorbed molecule (red circles with a bond). On the right, the strongly correlated region marked with a blue dotted circle
interacting with an effective bath formed by the rest of the system (blue patch) is shown.
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where Nk is the total number of momentum points. Physically,
this condition implies that the local properties of the system
(captured by Gloc(ω)) should be representative of the average
behavior of the system across all momentum points. This is
justified because the higher order correlation effects are
dominantly local.324 Achieving this equivalence typically
involves an iterative procedure. One starts with an initial guess
for Gloc(ω) and computes the total system’s Green’s function
G(k, ω) using this guess. Then, one updates the local Green’s
function based on the average of G(k, ω) over all momentum
points. This process is repeated until convergence is achieved,
i.e., until Gloc(ω) and G(k, ω) are consistent with each other. In
summary, the self-consistency condition ensures that the local
properties captured by are consistent with the behavior of the
system across all momentum (k) points, thus providing a reliable
description of strongly correlated electron systems within the
DMFT framework.

In the quantum computing context, a hybrid approach was
proposed to be used on a quantum computer that integrates
classical and quantum algorithms into the DFT + DMFT
embedding framework.325 Within this scheme, a cost-effective
DFT calculation is employed to establish a set of orbitals and
ascertain the electronic structure for the majority of these
orbitals. Simultaneously, a more computationally intensive
many-body method is applied to solve a reduced model
comprising a significantly smaller set of correlated orbitals. In
a recent study, researchers proposed an alternative approach that
leverages the VQE method for ground and excited states in the
context of an exact diagonalization.326 The algorithm is
specifically designed for a two-site DMFT system, addressing
the single-bandHubbardmodel on the Bethe lattice with infinite
connectivity using exact diagonalization of a two-site impurity
problem comprising one interacting and one bath site. Through
comprehensive benchmarks conducted on superconducting and
trapped ion qubits for the 2-site DMFT model, it was
demonstrated that practical calculations with minimal error
are feasible. Overall, this proof-of-concept demonstration
showcases the viability of running DMFT calculations on
contemporary quantum hardware. Furthermore, utilizing the
quantum circuit simulator Qulacs,327 the algorithm was
validated by computing Green’s functions for various impurity
models, including the dimer and four-site impurity models
derived from DMFT.328 The results, including the imaginary-
time Green’s function and Matsubara Green’s function,
exhibited very good agreement with exact solutions. Addition-
ally, an efficient computation of the imaginary-time Green’s
function was achieved by employing a nonuniform mesh, while
addressing numerical instabilities through adaptive mesh
generation and energy convergence conditions. It is essential
to note that while these applications have demonstrated success
with model systems, their adaptation to realistic heterogeneous
catalytic systems remains unexplored and will require further
studies on scaling and accuracy.

In summary, DMFT offers a versatile framework for tackling
strong electron−electron correlations in materials, enabling the
extension of quantum chemical methods from finite systems to
infinite crystals while circumventing the computational burden
associated with large Brillouin zones. It achieves this through a
local correlation approximation and self-consistent embedding,

making it a valuable tool in the study of correlated electron
systems in heterogeneous catalysis.

7.3. Quantum Defect Embedding Theory (QDET). A
quantum defect embedding theory (QDET) for calculating
strongly correlated electronic states of active regions using a
highly accurate method, while using random phase approx-
imation (RPA) to describe the rest of the system was proposed
by Galli and co-workers.329 QDET draws heavy inspiration from
the constrained random phase approximation (cRPA) meth-
od.330 In cRPA, the active space typically consists of a subset of
electrons or degrees of freedom that are strongly correlated and
of interest for the particular system being studied. RPA
approximates the polarization by a summation of all particle-
hole excitations in the system. In cRPA, all the particle-hole
excitations except those within the active space are considered.
This polarizibility is then used to effective parametrize the
interactions within the active space. By imposing these
constraints, cRPA provides a systematic way to incorporate
nonlocal correlations from the environment into the description
of the active space, leading to improved accuracy in the
treatment of strongly correlated systems. Modified and
improved implementations of cRPA have been used for
calculating electronic excitations on large-scale simulations of
nitrogen-vacancy states in a periodic hBN monolayer and hBN-
graphene heterostructure,331 electronic states of twisted bilayer
graphene (tBLG) characterized by giant unit cells and correlated
electronic states,332 and optical excitations in the negatively
charged nitrogen vacancy (NV) center defect in diamond.262

In cRPA calculations, two common approximations are
typically made to evaluate dielectric screening: first, the
adoption of the random phase approximation (RPA) to the
screened Coulomb interaction, which only approximately
captures exchange-correlation effects between electrons and
may lead to inaccuracies; and second, the Adler-Wiser
formalism, which involves explicit summations over empty
states, potentially hampering computational efficiency. In
contrast, QDET addresses both of these approximations. It
goes beyond the RPA by computing dielectric screening with
inclusion of exchange-correlation effects, which are evaluated
using a finite-field algorithm.333−335 Moreover, QDET circum-
vents the need for explicit summations over empty states by
employing a compact basis derived from the spectral
decomposition of density response functions.336−339 This
approach enhances both the accuracy and efficiency of
calculations. The methodology behind QDET, detailed else-
where65,340 offers scalability advantages, particularly for
materials containing thousands of electrons, as it does not
necessitate the explicit evaluation of virtual electronic
states.336,339 The stepwise strategy used for QDET is shown
below.

1. Perform spin-restricted DFT calculation on the entire
system using hybrid functionals

2. Selection of active space: choose single-particle defect
wave function; include relevant resonant and band-edge
states; verify the choice of active space size - converged
excitation energies

3. Construct effective Hamiltonians including exchange
correlation effects

4. Obtain many-body ground and excited state using
quantum algorithms (QPE and VQE) and compare
with classical FCI calculations, when available
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Using QDET, the ground and excited-state properties of spin-
defects, encompassing the nitrogen vacancy (NV) center in
diamond, silicon vacancy (SiV) in diamond, and Cr impurity 4+

in 4H-SiC were calculated. Full Configuration Interaction (FCI)
simulations for NV center diamond reveal the correct symmetry
and ordering of low-lying electronic states. SiV diamond exhibits
similar values in active space bands with or without exchange-
correlation effects. For the hexagonal configuration of Cr-4H-
SiC, QDET’s effective Hamiltonians enable the investigation of
electron−electron spin flip transitions for the half-filled level.
While FCI calculations were performed for all three systems,
quantum simulations were conducted only on the NV center
diamond using QPE and VQE algorithms on 6 qubits,
representing 4 electrons in 3 orbitals, with UCCSD ansaẗze.
Using a simulator, convergence was demonstrated for the exact
ground-state energy. QPE simulations on a simulator show good
agreement with FCI, with increasing auxiliary qubits converging
to FCI. QPE calculations were not performed on a quantum
hardware. In VQE calculations, the active space size was further
reduced, and correlated and uncorrelated states with 4 qubits
were computed on a simulator and an actual quantum computer
(IBMQYorktown).While VQE on simulators converged to FCI
energies for both uncorrelated and correlated states, only the
uncorrelated calculations on the hardware converged (Figure
16.I). The quantum hardware results display a 0.2 eV error for
the uncorrelated state.

In an another study, electronic structure calculations were
performed on strongly correlated ground and excited states of
the N−V− center in diamond and the VV in 4H SiC, both of
which are point defects in semiconductors.237 The calculations
utilized a combination of DFT and QDET. The ground states
were computed using VQE, while the excited states employed
QSE. Notably, these calculations were executed on quantum
hardware. As some results fell below FCI energies, which is
deemed unphysical, a postselection method based on partial
constraints on the number of electrons was successfully applied.
Within their postselectionmethod, all measurements that do not
conserve the number of electrons are discarded. This
postselection method ensured physically meaningful and
converged results during the VQE calculation (Figure 16.II).
Further, to address noise issues, an error mitigation technique
within the Zero Noise Extrapolation (ZNE) scheme,341 utilizing
an exponential block to enhance the control over quantum
errors in Unitary Coupled Cluster (UCC) type ansaẗze was
introduced. The authors assert the method’s applicability
without prior knowledge of the hardware noise source, all
without increasing the number of qubits.

In the original formulation of QDET presented in ref 329, the
authors adopted an approximate double counting correction
based on Hartree−Fock theory. In a recent work, a more
rigorous derivation of QDET is presented based on Green’s
functions, and an exact double counting correction is derived342

which is similar to what was was already known in the

Figure 16. (I) (a) VQE estimation of the ground-state energy of NV center diamond starting from MS = 1 state. (b) The VQE estimation of the
ground-state energy NV center diamond starting from aMS = 0 state results in a strongly correlated state with an error of 0.2 eV. (II) VQE optimization
of the ground-state energy for (a) the NV− center in diamond and (b) VV in 4H-SiC. The optimization is conducted using the VQE algorithm with
four and six qubits, respectively, on ibmq_casablanca. The orange dots represent the results with postselection of states, while the blue dots depict
results without postselection. FCI energy is provided for reference. Figure reused from ref 329 [Copyright 2020 The Author(s)] and ref 237
(Copyright 2022 The Authors) under Creative commons CC BY 4.0.
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community.330 This correction is exact within the G0W0
approximation (The G0W0 approximation is a commonly
employed technique, where the self-energy is formulated as
the convolution of a noninteracting Green’s function (G0) and a
screened Coulomb interaction (W0) in the frequency domain.
This also holds true for the GW self-energy beyond G0W0. The
main feature ofG0W0 is that the off-diagonal elements of the self-
energy are neglected and the KS orbital energies are therefore
corrected perturbatively.) and when retardation effects are
neglected.343 The authors refer to this correction as EDC@
G0W0 (exact double counting at the G0W0 level of theory).
Furthermore, quantum embedding theories were compiled in a
recent review on embedding theories designed for electronic
structure calculations of solids on noisy intermediate-scale
quantum computers.344 Specifically, the focus is on a class of
materials, solid materials housing spin defects, with examples
highlighting their application. However, it is important to note
that embedding schemes, including QDET, demonstrate
potential versatility by being applicable to diverse localized,
highly correlated states. This includes states found in solvated
ions, nanostructures, surface adsorbates, as well as catalytic sites
at surfaces and interfaces that are extremely relevant to
heterogeneous catalysis.

7.4. Density Matrix Embedding Theory (DMET).
Density Matrix Embedding Theory (DMET) is another
embedding theory that is used to simulate strongly correlated
electronic systems.345,346 Like DMFT, DMET employs a
strategy where a localized fragment, treated with high precision,
is embedded within a surrounding environment treated with
lower precision. This approach allows for a focused treatment of
the important region while simplifying the representation of the
entire system. The primary distinction between DMET and
DMFT lies in their embedding strategies. DMET embeds the
ground-state density matrix exclusively, eliminating the need for
a frequency-dependent formulation. In contrast, DMFT embeds
the Green’s function, resulting in a different approach to
describing the system-environment interaction. The density
matrix of the active region is then used to embed the active
region into the environment region, thus correlating the two
regions. This method allows for the treatment of strongly
correlated systems, such as transitionmetal complexes, with high
accuracy at a relatively low computational cost. Additionally, by
treating the active region with an exact method and the
environment region with a mean-field method, DMET can
capture both short-range and long-range correlation effects in
the system. It can also be used to simulate large and complex
systems that are difficult to treat using traditional methods, such
as systems pertaining to heterogeneous catalysis. For more in-
depth exploration of this topic, readers are directed to a tutorial-
level review on DMET.347

In the quantum computing context, DMET has been used to
model carbon capture on metal−organic frameworks.263 DMET
combined with the VQE and active space approach was used to
study CO2 adsorption in Al-fumarate metal−organic frame-
works (MOF), an important reaction in carbon capture.263 We
note that the starting second quantized Hamiltonian was formed
in a minimal STO-3G basis so results should not be compared
directly to experimental observations. The quantum simulations
were performed on noise-free and noisy emulator backends and
error mitigation schemes were applied on the results. Four
different fragmentation strategies were used to calculate CO2-
MOF bond stretching energy, which for larger bond distances, r
≫ 2 Å corresponds to the bond dissociation energy. All four

fragmentation strategies gave different results while one of the
four schemes provided reasonable results for the bond
dissociation energy. In an other case, simplified models of
hydrogen chain and iron crystals were studied using DMET and
VQE.278 This study is already discussed in Section 6.2. Given its
usefulness, it has been integrated to be a part of the workflow of
Inquanto,348 a software developed by Quantinuum that is
capable of performing chemistry calculations using quantum
algorithms. In addition to these algorithms, two new approaches
have been proposed to leverage embedding techniques in near-
term quantum computers. One approach is based on DMET,349

while the other is based on the projection-based embedding
method.350 However, the details of these algorithms will not be
discussed here.

7.5. Embedding Approaches: Summary and Outlook.
Considering the size of the active space essential for accurately
capturing strong correlation effects in catalytically relevant
materials and the number of atoms required to define realistic
models of heterogeneous catalysts, embedding approaches
emerge as the most practical and promising strategy to make
calculations feasible. The continuous advancement of quantum
computing, marked by improvements in qubit quality and
classical-quantum communication connectivity, opens up
opportunities for embedding approaches that utilize both
classical and quantum computing techniques. It is essential to
recognize that increase in the number of qubits in a quantum
processor must be accompanied by improvements in qubit
fidelity to achieve meaningful progress. This realization has
prompted discussions about quantum-centric supercomput-
ing,67,68 a paradigm that emphasizes the unique strengths of
quantum computers, particularly their suitability for specific
problem types. The ongoing collaboration between the high-
performance computing (HPC) and quantum computing
communities holds great promise, showcasing a collective effort
to harness the strengths of both paradigms.351−353 The
development of tools for circuit cutting and knitting354 is
particularly noteworthy, as it enables more seamless integration
of embedding approaches into the broader computational
landscape. Looking forward, as embedding approaches become
more practical and viable in the near future, in line with previous
observations,68 we can see a quantum-centric computing
approach to materials modeling emerge. Such an approach can
leverage the strengths of both classical and quantum computing,
offering a synergistic solution to the challenges faced in
heterogeneous catalysis modeling.

8. KINETICS AND UNCERTAINTY QUANTIFICATION
A final topic in which quantum computingmay have an impact is
in the modeling the entire set of reactions that can occur in a
certain heterogeneous catalytic process. Understanding these
kinetics and quantifying uncertainties that result from
incomplete knowledge of the reaction constants or even
mechanisms are vital for optimizing catalytic processes.
Furthermore, this step serves as a connection between the
atomistic scale to the reactor scale processes. Kinetic models,
particularly microkinetic models, serve thereby as valuable tools
for elucidating reaction mechanisms and predicting reaction
rates. One notable advantage of microkinetic models is their
ability to describe reactions because they can be cast as linear
systems of equations in a straightforward manner.

Recent advancements in quantum computing have shown
promise for the application of the Harrow, Hassidim, and Lloyd
(HHL) algorithm76 in the realm of kinetics and uncertainty

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.4c01212
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

AB

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


quantification in heterogeneous catalysis. The HHL algorithm is
a quantum algorithm specialized in numerically solving linear
systems of equations (Section 5.2.2). Writing the kinetic
equations as a system of linear equations, Walker and his co-
workers have explored these areas.73−75 One of their works
emphasizes the setup of a CO oxidation microkinetic model
using a quantum circuit, emphasizing the advantage of
microkinetic models that eliminate the need for an encoding
step.73 In the HHL algorithm, the vector |b⟩ is encoded using
additional qubits in a quantum register. Each element of the
vector |b⟩ is represented by the state of these qubits. This
encoding typically involves mapping the amplitudes of the
vector onto the quantum states of the qubits. In their algorithm,
Walker et al. utilize the steady state approximation and mass
balance to represent the input vector |b⟩ with binary encoding,
effectively eliminating the need for a separate encoding step. It
demonstrates that the linearized set of equations can be solved
with reasonable accuracy in a single iteration. In another paper,
they present a method for uncertainty quantification using
reduced microkinetic models and the logarithmic scaling of
qubits, again, leveraging the HHL algorithm to solve linear
systems.74 Comparisons with classical methods are made, and
the potential for quantum advantage is highlighted, along with
the challenges encountered when dealing with larger systems.
Furthermore, in a more recent paper, they introduce a quantum
circuit approach for modeling steady-state behavior in
homogeneous hydrogen-air combustion.75 Empirical testing
reveals critical factors influencing the accuracy of the HHL
algorithm, providing valuable insights for the preconditioning of
reduced models. These papers showcase the potential of
quantum computing and the HHL algorithm in kinetics and
uncertainty quantification, paving the way for further advances
in heterogeneous catalysis research. That being said, the HHL
algorithm, meant for solving linear systems of equations, is not
ideal for NISQ computers because it needs high qubit
connectivity, long coherence times, and low errors in gates
and measurements. The challenges of implementing the HHL
algorithm on NISQ computers and the conditions necessary for
achieving speedup are discussed in Section 5.2.2.

9. SUMMARY AND OUTLOOK
In summary, this review has explored the emerging research field
of modeling heterogeneous catalysis through quantum comput-
ing algorithms, encompassing academic advancements, industry
demands and collaborative efforts of academia and industry. The
quest for active and selective catalysts, including emerging
materials such as multicomponent alloys, single-atom catalysts,
and magnetic catalysts, has underscored the limitations of
conventional methods like DFT, particularly in capturing strong
correlation effects and spin-related phenomena. Quantum
computing has the potential to emerge as a transformative
tool, as it is intrinsically better suited to overcome these
challenges than conventional computational chemistry meth-
ods.

Within quantum computing algorithms, our primary focus has
been on the variational quantum eigensolver (VQE), as this is
the most extensively researched algorithm in the current noisy
intermediate-scale quantum (NISQ) era. Considering the
current landscape with only a few thousand qubits within
reach, it is likely that VQE will remain a dominant tool for
computational tasks in the near future. However, to look further
ahead we also briefly discussed other algorithms such as
quantum phase estimation (QPE), the Harrow−Hassidim−

Lloyd (HHL) algorithm, and quantum singular value trans-
formation (QSVT). These algorithms are poised to play an
important role in the transition to the early fault tolerant
quantum computing (EFTQC) era and the subsequent fault-
tolerant quantum computing (FTQC) era, where the availability
of a few hundred thousand error-corrected qubits could change
the landscape of computational approaches for heterogeneous
catalysis research.

In our exploration of quantum computing applications in
heterogeneous catalysis, we underscored the preliminary but
promising utility in industrial use cases. While current
applications concern proof-of-principle studies with basis sets
that are far too small to reach chemical accuracy or even rival
classical computing approaches, they serve to explore what will
be possible with more potent quantum computers. The many
collaborative efforts between academia and industrial partners in
researching these applications are illustrative for the rapidly
increasing interest in this field.

As an example, we highlighted studies where VQE, initially
designed for modeling molecular systems, was extended to
address periodic systems. We furthermore looked at efforts to
use VQE in calculating electronic band structures, a crucial
component for studying photocatalysis applications. Addition-
ally, we discussed use cases involving the computation of bulk
lattice constants and molecule−surface reactions, where
embedding approaches were employed to tackle challenges
posed by the system’s size. We dedicated a section and delved
into the details of embedding methods, drawing attention to a
hybrid strategy where quantum computing algorithms handle
the strongly correlated region, while reasonably accurate and
cost-effective traditional quantum chemistry algorithms, like
DFT, address the remainder of the system. Finally, we briefly
touched upon uncertainty quantification in heterogeneous
catalysis, which find a potential application in modeling catalysis
at the reactor scale.

Looking ahead, the utilization of quantum computing in
heterogeneous catalysis research with its complex and large to
solve models has considerable potential to lead to break-through
developments. This observation is corroborated by the invest-
ments by both academic and industrial players which signal a
growing interest in exploring quantum computing in this
context. This review emphasizes the importance of adapting
computational methodologies for strongly correlated systems
where quantum computing can provide an advantage over
classical algorithms. If theory, algorithms, and hardware
developments continue to progress, quantum computing may
reach its potential and start to play an important role inmodeling
heterogeneous catalysis. Envisioning such a future where
quantum algorithms seamlessly integrate into catalysis research
workflows, we expect that the journey into quantum computing
can help to push the boundaries of our understanding in
heterogeneous catalysis.
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■ GLOSSARY
Heterogeneous catalysis: Heterogeneous catalysis is a type of
catalysis where the catalyst is present in a different phase
(solid, liquid, or gas) from the reactants. The reactants adsorb
onto the surface of the catalyst, undergo chemical reactions,
and then desorb as products. Heterogeneous catalysis plays a
crucial role in various industrial processes, such as petroleum
refining, chemical synthesis, and pollution control.
Single-atom catalysts (SACs): SACs represent a novel class of
catalysts consisting of isolated metal atoms dispersed on a
support material. Their unique electronic and geometric
structures enable exceptional catalytic activity and selectivity,
offering promising avenues for sustainable chemical pro-
cesses. SACs provide precise control over catalytic reactions
because of their high surface area and tunable active sites,
making them highly desirable for various industrial
applications.
Multicomponent alloys: Multicomponent alloys serve as
versatile catalysts in heterogeneous catalysis by offering
tunable properties that can enhance catalytic performance. By
combining multiple elements, these alloys can exhibit
synergistic effects, which promotes desirable catalytic
reactions while minimizing undesired byproducts. Their
tailored composition enables precise control over surface
reactivity and electronic structure, which is crucial for
catalyzing complex chemical transformations.
Density functional theory (DFT): DFT is a computational
method widely used in quantum chemistry and condensed
matter physics to calculate the electronic structure and
properties of molecules, solids, and surfaces. It is based on the
concept that the total energy of a system can be determined
by the electron density rather than the wave function. DFT
employs the exchange-correlation functional to describe the
electron−electron interactions, which makes it a computa-
tionally efficient method for large systems.
First quantization: First quantization is a formalism used to
describe quantum systems by directly considering the wave
function of individual particles or the system as a whole. It
involves solving the Schrödinger equation for the wave

function in terms of the coordinates and momenta of the
particles. First quantization is commonly used in introductory
quantum mechanics courses and provides a foundation for
understanding the principles of quantum theory.
Second quantization: Second quantization is a mathematical
framework used to describe quantum systems with multiple
identical particles. It treats the particles as indistinguishable
entities and represents the quantum state of the system in
terms of creation and annihilation operators acting on a
vacuum state. Second quantization is widely used in quantum
field theory, many-body physics, and quantum chemistry to
describe systems with variable numbers of particles.
Atom-centered basis set: An atom-centered basis set is a set of
mathematical functions used to represent the electronic wave
functions in molecules or molecular systems. These basis
functions are centered on individual atoms and describe the
spatial distribution of electrons around each atom. Basis sets
can be composed of Gaussian functions or numerical grid
representations and are crucial for accurate quantum
chemical calculations of molecular properties.
Plane waves: Plane waves, in the context of computational
materials science and electronic structure calculations, are a
mathematical basis set used to represent the electronic wave
functions in periodic systems. They are characterized by
having a constant amplitude and a wavefront that is a plane
perpendicular to the direction of propagation. Plane wave
methods are commonly employed in solid-state physics and
materials simulations.
Wave function: In quantum mechanics, a wave function
represents the quantum state of a system. It is a mathematical
function that describes the probability amplitudes of different
possible outcomes when measuring observables of the
system. The square of the wave function gives the probability
density of finding the system in a particular state.
Hamiltonian: The Hamiltonian is an operator in quantum
mechanics that represents the total energy of a system. It
includes the kinetic energy and potential energy terms and is
used to describe the time evolution of the wave function
according to the Schrödinger equation. The Hamiltonian
operator provides information about the observable proper-
ties and behavior of a quantum system.
Full configuration interaction (FCI): FCI is a quantum
chemical method that provides an exact solution to the
electronic Schrödinger equation within a given basis set. It
involves considering all possible configurations of electron
occupation in the molecular orbitals leading to an exact
description of the electronic wave function. However, the
computational cost of FCI scales exponentially with the
system size, thereby limiting its application to small systems.
Active space: In quantum chemistry, the active space refers to
the subset of molecular orbitals and electrons considered as
the most relevant for describing the electronic structure of a
system. It is typically chosen based on the specific chemical
and physical properties under investigation. The active space
is defined by selecting a specific number of occupied and
virtual orbitals and the corresponding electrons.
Strong correlation: Strong correlation refers to situations in
quantum systems where the standard mean-field methods,
such as Hartree−Fock theory or density functional theory, fail
to accurately describe the electronic structure due to strong
electron−electron interactions. Strong correlation effects are
prevalent in systemswith open-shell configurations, transition
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metals, and molecules with significant electronic delocaliza-
tion.
Static correlation: Static correlation refers to the correlation
effects in a molecular system that arise because of the
degeneracy or near-degeneracy of two or more electronic
states. It is characterized by the mixing of electronic
configurations with significantly different occupancies,
leading to difficulties in describing the electronic structure
with single-reference methods.
Dynamic correlation: Dynamic correlation refers to the
correlation effects in a molecular system beyond the static
correlation effects. It involves the multitude of weak
correlations, like the dispersion interactions between different
molecules, as well as interactions between the highly localized
core electrons and the spatially more distributed valence
electrons. Dynamic correlation effects are crucial for
accurately describing the potential energy surfaces and
reaction mechanisms.
Embedding: In the context of quantum chemistry calcu-
lations, embedding refers to a computational approach that
combines different levels of theory to describe a system. It
involves partitioning the system into a primary region of
interest and an embedding environment. The primary region
is treated at a higher level of theory, while the environment is
described using a lower level of theory. Embedding methods
allow for the accurate treatment of a small region of interest
embedded in a larger system.
Canonical molecular orbitals: Canonical molecular orbitals,
also known as spectroscopic orbitals or Hartree−Fock
orbitals, are solutions to the electronic Schrödinger equation
obtained within the Hartree−Fock approximation in
quantum chemistry. They represent the molecular orbitals
of a system and are obtained by diagonalizing the molecular
orbital matrix. Canonical molecular orbitals provide a basis
for describing the electronic structure of a molecule and are
often used in electronic structure calculations to analyze
bonding, molecular properties, and chemical reactivity.
Localized molecular orbitals (LMOs): LMOs are alternative
representations of molecular orbitals that provide a localized
description of electron density. LMOs are derived from
canonical molecular orbitals through a transformation that
maximizes the localization of electron density on specific
atoms or groups within a molecule. LMOs are particularly
useful for analyzing chemical bonding, molecular reactivity,
and electron delocalization. They offer an intuitive and
chemically interpretable representation of electron distribu-
tion in a molecule.
State-averaged: State-averaged refers to a computational
approach in quantum chemistry and molecular electronic
structure calculations. It involves optimizing wave functions
for an average of electronic energies over multiple electronic
states, such as different spin states or excited states. State-
averaged methods are used to obtain accurate descriptions of
molecular systems that exhibit strong degeneracy or to create
a balanced treatment of multiple electronic states.
Orbital optimization: Orbital optimization is a procedure
used in quantum chemical calculations to optimize the
molecular orbitals that describe the electronic structure of a
molecule. It involves iteratively adjusting the molecular
orbitals to minimize the electronic energy of the system,
typically using methods based on the variational principle.
Orbital optimization helps improve the accuracy of electronic

structure calculations and provides a more reliable
description of molecular properties.
Variational quantum eigensovler (VQE): VQE is a quantum
algorithm designed to solve for the ground-state energy of a
quantum system using a variational approach. It combines
classical optimization techniques with a quantum circuit
ansatz to find the lowest energy eigenstate of a given
Hamiltonian. VQE is a promising approach for near-term
quantum computers to tackle problems in quantum chemistry
and materials science.
Qubit: A qubit is the fundamental unit of quantum
information in quantum computing. It is the quantum
analogue of a classical bit, which represents a two-level
quantum system with states usually referred to as |0⟩ and |1⟩.
Qubits can exist in a superposition of states, which allows for
parallel processing and the potential for exponential
computational speedup in certain algorithms.
Quantum gates: Quantum gates are fundamental building
blocks of quantum circuits and are analogous to classical logic
gates in classical computing. They are represented by unitary
operators that act on the quantum states of qubits. Quantum
gates manipulate the quantum state of qubits to perform
specific operations, such as rotations, entanglement gen-
eration, and information processing, in quantum algorithms.
Quantum circuit: A quantum circuit is a sequence of quantum
gates applied to qubits to perform quantum computations.
Similar to classical circuits composed of logic gates, quantum
circuits manipulate the quantum state of qubits to implement
quantum algorithms and computations. The gates in a
quantum circuit typically perform unitary operations on
qubits, such as rotations, entanglement operations, and
measurements.
Unitary operations: In the context of quantum computing,
unitary operations refer to transformations that preserve the
norm of the quantum state and are reversible. A unitary
operator is represented by a square matrix that is both
Hermitian (equal to its own conjugate transpose) and unitary
(its inverse is equal to its conjugate transpose). Unitary
operations are fundamental in quantummechanics and play a
crucial role in quantum circuits where they enable the
manipulation and evolution of quantum states while
preserving their probabilistic interpretation.
Ansatz: In the context of quantum algorithms and quantum
computing, an ansatz refers to a trial wave function or a
specific form of a quantum circuit used to prepare a state of
interest. The ansatz is chosen based on heuristics, intuition, or
prior knowledge and is designed to capture the relevant
features of the desired quantum state. The optimization of the
ansatz parameters allows for the exploration of the solution
space in variational quantum algorithms.
State preparation: State preparation, also known as initial
state preparation, is the process of preparing a quantum
system in a desired quantum state. In the context of quantum
computing, it involves initializing the qubits or quantum
registers in a specific configuration or superposition state
required for a particular quantum algorithm or computation.
State preparation is a crucial step in performing quantum
computations and experiments.
Measurement: Measurement in quantum mechanics refers to
the process of extracting information or obtaining outcomes
from a quantum system. It involves interacting with the
system in a way that projects it onto a particular eigenstate or
superposition state. The measurement process in quantum
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computing is typically carried out by applying appropriate
quantum gates followed by a measurement operation to
provide classical data based on the quantum state of the
qubits.
Noisy-intermediate scale quantum (NISQ): Near-term
quantum computing, often referred to as noisy intermedi-
ate-scale quantum (NISQ) computing, represents the current
state of quantum technology where devices possess a limited
number of qubits and short coherence times. Research in
NISQ focuses on harnessing these devices to explore
quantum algorithms, error mitigation techniques, and
applications in various fields, thereby paving the way for
future advancements in quantum computing technologies.
Error mitigation: Error mitigation techniques play a crucial
role in improving the reliability and accuracy of quantum
computations, especially on noisy intermediate-scale quan-
tum (NISQ) devices. By identifying and correcting errors that
arise during quantum operations, these techniques help
mitigate the impact of noise and imperfections inherent in
current quantum hardware. Various approaches, such as
randomized benchmarking, Pauli twirling, zero-noise extrap-
olation, machine learning-based methods, etc., are being
explored to mitigate errors in NISQ quantum computations.
Error correction: Error correction is a vital aspect of quantum
computing aimed at mitigating errors introduced during
quantum operations. Quantum error correction codes, such
as the surface code and the repetition code, are designed to
detect and correct errors that occur because of noise and
decoherence in quantum systems. These codes use
redundancy and logical qubits to protect quantum
information from errors, thereby enhancing the reliability of
quantum computations. Error correction techniques play a
crucial role in building fault-tolerant quantum computers
capable of performing complex calculations with high
accuracy and reliability.
Quantum advantage/Quantum supremacy: Quantum ad-
vantage, also known as quantum supremacy, refers to the state
where a quantum computer can perform a specific computa-
tional task that is beyond the capabilities of the best classical
computers. It signifies the ability of a quantum computer to
solve certain problems more efficiently or to tackle
computations that would take an impractically long time for
classical computers. Achieving quantum advantage is a major
goal in the field of quantum computing.
Time-reversal symmetric Hamiltonian: A time-reversal
symmetric Hamiltonian, denoted as H, is a quantum
mechanical operator representing the total energy of a
system. This operator preserves its form under time reversal
operations, which ensures that the system’s physical laws
remain unchanged when the direction of time is reversed.
Mathematically, the time reversal operator T satisfies the
condition: THT−1 = H, which indicates that applying time
reversal to the Hamiltonian restores its original form.
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