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Abstract. This editorial serves as a preface to the “Scientific Machine Learning”
(SciML) special issue of the AIMS Foundations of Data Science journal. In
this piece, we contend that SciML exists in a symbiotic relationship with the
fields of computational science and engineering (CSE) and machine learning
(ML). We highlight the progress (and limitations) of CSE and reflect on the
recent successes of ML. While ML creates significant possibilities for advancing
simulation techniques, it lacks the mathematical guarantees that are typically
found in CSE. We argue that as SciML develops and embraces the remarkable
capabilities of ML, it will support, not replace, traditional methods of CSE. We
then overview some existing challenges and opportunities in this interdisciplinary
field and close by introducing the special issue papers.

1. Introduction. Mathematical modeling of physical phenomena has been a corner-
stone of engineering and the natural sciences for centuries. The field of computational
science and engineering (CSE) seeks to operationalize the resulting models through
computer simulations based on numerical methods. Pursuing numerical methods
has led to fundamental mathematical theories and advances in high-performance
computing, creating a reliable paradigm for conducting physics-based computer sim-
ulations with rigorous mathematical guarantees. This paradigm has enabled major
breakthroughs across disciplines by allowing scientists, engineers, and practitioners
to investigate physical phenomena and make decisions about complex systems that
would be impossible to achieve through theory and experimentation alone. As a
result, CSE has been referred to as the “third pillar” of the scientific enterprise,
alongside theory and experimentation [39, 43].

The tenets and impediments of traditional CSE. The key tenets of CSE
lie in exploiting two fundamental aspects of mathematical models: generalizability
and interpretability [28]. Newton’s law of gravitation is an example of a simple
mathematical model that is both generalizable (it generalizes from apples falling on
Earth to planets orbiting the Sun) and interpretable (the gravitational force depends
on the masses of the objects, their relative distance, and a universal constant).
Symplectic integrators [44] operationalize this planetary model (as well as far more
complicated mathematical models), delivering accurately simulated orbital motions
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that preserve key invariants of the true mechanics. As such, symplectic integrators
are a prime example of a successful class of numerical methods: they preserve
fundamental properties deriving from the original mathematical formulation while
providing efficient execution and high-accuracy guarantees.

Over the past century, numerical methods from CSE have reformed prediction,
decision-making, and design of complex physical and engineering systems, leading to
major technological advances. However, significant challenges can persist even when
such powerful tools are available. Indeed, direct simulation with state-of-the-art
numerical methods can be infeasible in the following practical scenarios and for the
following reasons:
Outer-loop and many-query problems. Tasks involving the design, optimization,
uncertainty quantification, or control of complex physical systems require varying
inputs and, thus, repeatedly evaluating model outputs. In these problems, the overall
computational cost multiplies with the number of samples or iterations.
Scales and physical complexity . While mathematically describable, physical systems
that present either many scales or many relevant physical phenomena can lead to
systems of equations that are too costly to solve. For example, direct numerical
simulations of the Navier–Stokes equations are usually not feasible at high Reynolds
numbers without case-by-case modeling assumptions that are less well-understood
and not universally agreed upon.
Unknown models. Macroscopic balance laws can typically be derived from known
physical principles. However, constitutive laws are often based on empirical observa-
tions that may come from imperfect experiments or noisy and incomplete datasets.
Moreover, complex systems, such as those governing weather and climate, depend
on many interacting factors that are usually not fully observable. In such scenarios,
the main challenges, next to designing an appropriate numerical method, are select-
ing or calibrating the appropriate governing equations followed by quantifying the
uncertainty in their predictions.
The advent of machine learning (ML). The parallel developments of explicitly
parametrized architectures and data-driven machine learning (ML) techniques have
led to revolutionary breakthroughs in the fields of computer vision and natural
language processing, as evidenced by self-driving cars [4], foundational large language
models such as GPT-4 [2], and bots capable of mastering complex games such as
Go [46]. These disruptive technologies have propelled research into applying similar
techniques to scientific applications, suggesting a path to overcome the impediments
of traditional simulations described above. In particular, ML models that are cheap
to evaluate (once trained) could be substitutes or surrogates for expensive physical
models [32]. When the model itself is unknown, one can learn effective models from
a fusion of experimental and computational data and physical principles [45]. The
appeal is undeniable, and a significant ongoing effort has emerged focusing on how
to blend ML techniques with traditional CSE frameworks [25].
The symbiosis. Applying the recent advances in ML toward the goals of CSE
defines a new and ascendant scientific discipline with remarkable opportunities for
innovation and discovery. Borrowing a term from biological sciences, symbiosis best
describes this interplay, extracting the most beneficial characteristics and capabilities
from the two fields. This symbiosis has emerged as a field unto itself: Scientific
Machine Learning (SciML).

To realize SciML’s full potential, ML’s flexible, scalable, nonlinear approximation
techniques must be combined with the rich mathematical foundations underlying



SCIENTIFIC MACHINE LEARNING: A SYMBIOSIS iii

CSE. SciML is sure to benefit from advances in ML. Indeed, as better techniques
and richer neural network architectures appear in ML, scientists and engineers
will benefit from applying them to their problems [7]. On the other hand, SciML
should not be viewed as a replacement for traditional CSE. Instead, it can —
and should — benefit tremendously from the knowledge and principles underlying
classical methods, existing theoretical foundations, and supporting technology (e.g.,
computing infrastructure and legacy codes). Moreover, traditional numerical methods
are often essential or unavoidable in the training of SciML models [15, 49]. Therefore,
despite the abundant and warranted interest in SciML, it is essential to maintain a
strong focus and investment in the traditional methods of CSE.

BIRS workshop on SciML. In June 2023, a multidisciplinary group of researchers
(including the authors) gathered at the Banff International Research Station (BIRS)
for a workshop on SciML [26]. The purpose was to exchange ideas, spark collabo-
rations, and secure the foundation of a lasting research community. Attendees of
this workshop were invited to submit to this special issue of the AIMS Foundations
of Data Science (FoDS) journal. The key themes of the workshop included i) neu-
ral network design and approximation theory; ii) modeling, inference, prediction,
and data assimilation; and iii) high-performance algorithms and scalability. The
workshop participants provided complementary expertise in numerical analysis, ap-
proximation theory, functional analysis, probability theory, nonlinear programming,
high-performance computing, computer science, statistics, engineering, and indus-
trial applications. The workshop resulted in the following observations, which we
elaborate on in the next section:
1. The combination of physics-based and learning-based models provides a unique

opportunity for scientific discovery.
2. Techniques from computational science can guide the verification and validation

of ML tools, resulting in greater understanding.
3. The enormous power of data-driven models (e.g., large language models) has

been made possible through strong advances in software and hardware. SciML
requires a similar investment in community software and institutional hardware.

4. Curricula at universities should be designed so that students are well-versed in
both mathematics and machine learning topics. Accordingly, these institutions
should promote the design of such curricula.

2. Challenges and opportunities. In this section, we illustrate how a symbiosis
of CSE and ML is essential for SciML to tackle persistent and emerging challenges
in engineering and the natural sciences. We then discuss new challenges arising from
natural and historical differences between CSE and ML, such as their typical com-
puting workflows and preferences for mathematical guarantees. We also highlight the
significant opportunities that exist to overcome these challenges, e.g., by promoting
reproducible research, joint educational programs, and collaborative efforts.

Grand challenge problems. Our society faces urgent and important challenges,
including mitigating the detrimental effects of climate change, achieving affordable
and clean energy production, and controlling epidemiological events. For concreteness,
consider the challenges of climate change and energy supply. Critical decisions and
mitigation strategies will be eventually required to address CO2 and methane
emissions to curtail global warming. Such strategies could be based on an analysis
of the underlying dynamics, which is, however, complex and uncertain. To address
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uncertainties, significant amounts of data are collected on different aspects of the
Earth’s climate in an attempt to infer model parameters and thereby improve the
predictability of the system. Similarly, in the case of energy systems (e.g., solar,
wind, fusion), the decision-making process requires model calibration to improve
prediction accuracy and to ensure controllability of the system.

In short, these challenge problems lead to a complex combination of physics-
driven and data-driven models to be used in outer-loop analyses. The decisions in
these applications are often safety-critical or entail dramatic economic consequences,
thus requiring reliability and interpretability of computational tools. Significant
algorithmic advances are needed in order to overcome the exorbitant costs that
would be required by traditional numerical methods to solve such problems. SciML
algorithms provide a viable path to aid in predictions for robust policy decisions
relating to such complex physical systems. Indeed, techniques at the core of SciML
have already had a real-world impact on public and private policy, with examples
ranging from the ability to rapidly estimate ensembles of weather predictions [42, 29,
5] to the discovery of 200 million protein structures [24]. The process of scientific
discovery is on the verge of a paradigm shift and it is here that the new discipline of
SciML is emerging.

However, the unification of CSE and ML in SciML is not straightforward as
the two research communities, while having significant overlap, do have distinct
differences, for example in terms of software workflow, as well as in their educational
backgrounds. Addressing these differences presents opportunities for new approaches
to algorithmic development, education, funding, and collaboration, and will be
discussed in the subsequent paragraphs.

Computational workflows. One barrier to future research in SciML is that CSE
and ML have different software, hardware, and data ecosystem needs. Traditional
ML is data-driven, centered around highly optimized automatic differentiation of
batched linear algebraic kernels, e.g., computations that exploit homogeneous dense
array patterns. ML workflows center around compute ecosystems that leverage
massive GPU parallelism across easily accessible, large datasets. On the other hand,
CSE is often driven by discretizing mathematical models, leading to complex linear
and nonlinear systems, which are solved by methods that exploit the structure of the
system (e.g., symmetry and locality). HPC workflows center around bulk synchronous
parallel implementations of, e.g., massive-scale solvers and time steppers. As SciML
sits at the intersection of these two disciplines, unique issues arise in marrying
the different computing workflows. These issues come from structural changes
in the hardware landscape (e.g., the rise of GPU computing), increasing energy
and memory costs of modern computing, and challenges related to constructing
sustainable computing environments for the multifaceted software workflows required
by this naturally interdisciplinary field. Below, we delineate some of these challenges
and note related opportunities.

The success of ML and SciML research, in conjunction with the more favorable
FLOP/Watt cost characteristics of GPUs, has led to a significant proliferation of
GPU-based systems. This structural change in the hardware landscape creates
both challenges and opportunities for SciML and CSE research. One path forward
is to port legacy CSE codes to this new GPU-dominated computing ecosystem.
This was a major focus for the exascale computing project (ECP) [35] in the US,
mirrored by similar initiatives in Europe. However, this has only been partially
successful and significant amounts of CSE infrastructure are still (and will likely
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remain) CPU dependent. While the changing hardware landscape continues to create
new opportunities to (re-)develop traditional numerical methods for deployment on
GPUs (e.g., by exploiting locality, reformulating computations to leverage homoge-
neous array operations, or avoiding communication dependencies [1, 17, 27, 50, 51])
the major challenge will lie in providing infrastructure for efficiently interfacing
GPU-based ML tools and CPU-based CSE codes. As several contributions at the
BIRS workshop highlighted, much of modern SciML research (e.g., surrogates and
multilevel/multifidelity approaches) is directed precisely at this challenge.

An important issue for all modern ML workflows concerns their increasing energy
and memory costs, which often outstrip gains in hardware. It is well known that the
data, energy and memory needs of state-of-the-art ML models (e.g., large language
models) are growing at rates that will create issues in the future [23, 16]. This same
issue will likely arise in SciML as its models and methods mature. In order to mitigate
the coming burdens, it is essential to develop compute workflows that emphasize
energy and memory efficiency. This can be achieved by pursuing sparse model
representations, e.g., via neural network pruning [10]. Models that are designed to
be efficient (e.g., independent of the grid dimension) are particularly favorable as
the scales of simulations increase.

Mathematical guarantees. A challenge for achieving symbiosis arises from the
different foci of CSE-based (physics-driven) and ML-based (data-driven) methods.
The main focus of CSE is operationalizing numerical methods for the simulation
of physical systems through the use of mathematical models. Examples of these
numerical methods include the finite element [11, 34, 14, 38], finite difference [12],
integral equation [37], and spectral methods [18] for solving partial differential
equations (PDEs), alongside density functional theory and ab initio methods for
quantum mechanical simulations [22, 41], and N-body simulations for particle systems
[19]. The hallmark of these celebrated methods is the mathematical guarantees
that have been rigorously established in their development. These mathematical
models are generalizable and interpretable, and the associated numerical methods are
equipped with rigorous theories of convergence, stability, consistency, and complexity
[30].

In contrast, data-driven ML methods typically do not possess such guarantees.
While universal approximation results are established for many ML methods, specific
theories of rates of convergence and stability are much less common. Realizing con-
vergent approximations is inhibited by the NP-hardness of the associated nonconvex
optimization problems utilized to train ML methods [13]. Naïve adoption of ML
methods thus introduces risk into important applications. It is important for future
research in SciML to attempt to develop methods that are equipped with certain
mathematical guarantees that are fundamental to CSE. Doing so will invariably
require adapting techniques and theories from CSE to the ML setting or developing
new mathematical tools. In addition, when such mathematical guarantees are not
attainable, a possible symbiotic approach that combines SciML and CSE methods
can be used to accelerate simulations while still maintaining asymptotic exactness.
This can be achieved, for example, via rigorous a posteriori error estimation tech-
niques [3], predictor-corrector methods and hybrid approaches, which have already
been employed for forward prediction [40, 21] and Bayesian inverse problems [9, 8].

Reproducibility. A valuable opportunity to address the aforementioned challenges
and develop trust in SciML is to ensure that results can be independently verified,
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confirming the validity and reliability of new findings. Reproducible and transparent
open-source implementations also allow other researchers to build upon existing
work, fostering collaborative advancements and the development of more robust
and effective models and methods. To promote confidence in new research, leading
voices have advocated for following strict scientific standards in reproducibility
and verifiability [6, 25], such as following the Findable, Accessible, Interoperable,
and Reusable (FAIR) data principles [48]. The community has responded by
embracing benchmark datasets such as PDEArena [20], PDEBench framework
[47], and Mechanical MNIST [31, 36] and conducting independent reviews of recent
works [33]. We wish to encourage further datasets, protocols, and reviews, in
particular, those that emphasize downstream tasks such as inference, prediction, and
decision-making. This includes additional protocols for creating, sharing, and storing
potentially large datasets that can constitute future community benchmarks in this
rapidly developing field. It is important to have a clear view of the performance
of new methods in these tasks as they are often used to motivate new research in
SciML.

Education, collaboration, and funding. The background required to effectively
conduct research in SciML is challenging because of the need to access a wide
range of technologies, including mathematics, engineering, data science, machine
learning, statistics, probability, and scientific computing. Moreover, if SciML is
positioned to address decision-making for complex applications, a hierarchy of
algorithms is required. These issues raise multiple questions: How do we educate
students? How do we incorporate additional topics in already congested curricula?
Can existing programs be extended, or should completely new degrees be designed?
Can departments be organized to educate students within collaborative settings?
And finally, what are the right and sustainable hiring strategies for faculty positions?

The success of ML has created significant enthusiasm among younger generations,
which suggests that rethinking academic programs to foster this interest is timely.
However, undergraduate engineering, science, mathematics, and computer science
programs have little room to consider adding courses to address these needs. At
the same time, simply replacing important fundamental mathematics courses with
new courses on data-driven approaches is also not the right solution. Curricula need
to be carefully modernized, while completely new undergraduate programs could
also be considered by extracting cross-cutting elements from different educational
programs. A third strategy could exclusively rely on graduate programs that build
on standard undergraduate degrees to supplement the students’ knowledge with
key missing material. All of these options will require leveraging expertise across
multiple departments and establishing close, multidisciplinary collaborations.

The required academic transformation will likely not happen immediately be-
cause of a shortage of educators in SciML. Instead, it will require an iterative and
potentially multigenerational process, and academia will face challenges in finding
suitable educators in the short term, regardless of how individual institutions decide
on new curricula. Partnerships with industry and national laboratories through
collaborations, internships, and post-doc programs could help accelerate the process.
Of these options, national laboratories are particularly well-suited to help fill knowl-
edge gaps in industrial applications and high-performance computing. Moreover,
funding agencies can play a pivotal role in creating calls for proposals that encour-
age collaborative themes, as well as support for innovative educational infrastructure.
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3. Overview of the special issue. This special issue was motivated by the BIRS
workshop and features papers that cover a range of research contributions, including
novel methodologies, theoretical analyses, applications to complex systems, and a
review of state-of-the-art SciML methods. These works exemplify the symbiotic
relation of CSE and ML, illustrating many exciting new research areas in the field
of SciML. We list the papers appearing in the special issue below.
1. “GNEP based dynamic segmentation and motion estimation for neuromorphic

imaging” by Harbir Antil and David Sayre.
2. “A system identification approach for non-intrusive reduced order modeling of

radiation-induced photocurrents” by Pavel Bochev and Biliana Paskaleva.
3. “An over complete deep learning method for inverse problems” by Moshe Eliasof,

Eldad Haber and Eran Treister.
4. “A practical existence theorem for reduced order models based on convolutional

autoencoders” by Nicola Rares Franco and Simone Brugiapaglia.
5. “Hyper-differential sensitivity analysis with respect to model discrepancy: Poste-

rior optimal solution sampling” by Joseph Hart and Bart van Bloemen Waanders.
6. “Stacked networks improve physics-informed training: Applications to neural

networks and deep operator networks” by Amanda A. Howard, Sarah H. Murphy,
Shady E. Ahmed and Panos Stinis.

7. “An operator learning perspective on parameter-to-observable maps” by Daniel
Zhengyu Huang, Nicholas H. Nelsen and Margaret Trautner.

8. “Heterogeneous peridynamic neural operators: Discover biotissue constitutive
law and microstructure from digital image correlation measurements” by Siavash
Jafarzadeh, Stewart Silling, Lu Zhang, Colton Ross, Chung-Hao Lee, S. M.
Rakibur Rahman, Shuodao Wang and Yue Yu.

9. “Multifidelity linear regression for scientific machine learning from scarce data”
by Elizabeth Qian, Dayoung Kang, Vignesh Sella and Anirban Chaudhuri.

10. “Scientific machine learning for closure models in multiscale problems: A review”
by Benjamin Sanderse, Panos Stinis, Romit Maulik and Shady E. Ahmed.

11. “Reduced basis approximations of parameterized dynamical partial differential
equations via neural networks” by Peter Sentz, Kristian Beckwith, Eric C. Cyr,
Luke N. Olson and Ravi Patel.

12. “Neural network approaches for parameterized optimal control” by Deepanshu
Verma, Nick Winovich, Lars Ruthotto, and Bart van Bloemen Waanders

13. “Deep learning enhanced cost-aware multi-fidelity uncertainty quantification of
a computational model for radiotherapy” by Piermario Vitullo, Nicola Rares
Franco, and Paolo Zunino.

14. “Unsupervised physics-informed disentanglement of multimodal data” by Elise
Walker, Nathaniel Trask, Carianne Martinez, Kookjin Lee, Jonas A. Actor, Sourav
Saha, Troy Shilt, Daniel Vizoso, Remi Dingreville, and Brad L. Boyce.
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