
Picturing Quantum Software
An Introduction to the ZX-Calculus and Quantum Compilation

[Preprint Version 1.1.0 October 2024]

Aleks Kissinger and John van de Wetering

Contents

0.1 About This Version page 1
1 Introduction 2

1.1 How to read this book 6
1.1.1 From scratch 6
1.1.2 Coming from Picturing Quantum Processes 7
1.1.3 Coming from another quantum computing

background 8
1.2 Organisation 9

2 The Quantum Circuit Model 14
2.1 Preliminaries 14

2.1.1 Some things you should know about complex
numbers 15

2.1.2 Hilbert spaces 16
2.1.3 Types of linear maps 21
2.1.4 Tensors and the tensor product 23
2.1.5 Sums and diagrams 28
2.1.6 Tensor networks and string diagrams 29
2.1.7 Cups and caps 32

2.2 A bluffer’s intro to quantum theory 34
2.2.1 Quantum states 35
2.2.2 Qubits and the Bloch sphere 37
2.2.3 Unitary evolution 42
2.2.4 Measurements and the Born rule 43

2.3 Gates and circuits 47
2.3.1 Classical computation with quantum gates 48
2.3.2 Pauli and phase gates 50
2.3.3 Hadamard gates 51

iv Contents

2.3.4 Controlled unitaries 53
2.3.5 (Approximate) universality 53
2.3.6 Quantum circuit notation 56

2.4 A dash of quantum algorithms 57
2.5 A dash of complexity theory 60

2.5.1 Asymptotic growth 61
2.5.2 Classical complexity classes 62
2.5.3 BQP 64

2.6 Summary: What to remember 65
2.7 Advanced Material* 66

2.7.1 Quantum mixed states and channels* 66
2.8 References and further reading 69

3 The ZX-Calculus 73
3.1 ZX-diagrams 73

3.1.1 Spiders 73
3.1.2 Defining ZX-diagrams 78
3.1.3 Symmetries 84
3.1.4 Scalars 87
3.1.5 Adjoints, transpose and conjugate 88
3.1.6 Hadamards 89
3.1.7 Universality 90

3.2 The rules of the ZX-calculus 92
3.2.1 Spider fusion and identity removal 94
3.2.2 The copy rule and π-commutation 96
3.2.3 Colour changing 100
3.2.4 Strong complementarity 101
3.2.5 Euler decomposition 109

3.3 ZX in action 111
3.3.1 Magic state injection 111
3.3.2 Teleportation 112
3.3.3 Detecting entanglement 112
3.3.4 The Bernstein-Vazirani algorithm 114

3.4 Extracting circuits from ZX-diagrams 116
3.4.1 ZX-diagrams to circuits with post-selection 117
3.4.2 Circuit-like diagrams and optimisation 118

3.5 Summary: What to remember 120
3.6 Advanced Material* 121

3.6.1 Formal rewriting and soundness* 121
3.6.2 Dealing with scalars* 123

Contents v

3.7 References and further reading 127

4 CNOT circuits and phase-free ZX-diagrams 132
4.1 CNOT circuits and parity matrices 133

4.1.1 The two-element field and the parity of a bit string 133
4.1.2 From CNOT circuits to parity maps 134
4.1.3 CNOT circuit synthesis 136

4.2 The phase-free ZX calculus 140
4.2.1 Reducing a ZX-diagram to normal form 143
4.2.2 Graphical CNOT circuit extraction 147

4.3 Phase-free states and F2 linear subspaces 151
4.3.1 Phase-free completeness 154
4.3.2 X-Z normal forms and orthogonal subspaces 156
4.3.3 Relating parity matrices and subspaces 160

4.4 Summary: What to remember 161
4.5 Advanced Material* 161

4.5.1 Better CNOT circuit extraction* 161
4.6 References and further reading 164

5 Clifford circuits and diagrams 166
5.1 Clifford circuits and Clifford ZX-diagrams 167

5.1.1 Graph-like diagrams 168
5.1.2 Graph states 171

5.2 Simplifying Clifford diagrams 174
5.2.1 Transforming graph states using local comple-

mentation 174
5.2.2 Pivoting 178
5.2.3 Removing spiders in Clifford diagrams 180

5.3 Clifford normal forms 184
5.3.1 The affine with phases normal form 184
5.3.2 GSLC normal form 189
5.3.3 Normal form for Clifford circuits 192

5.4 Classical simulation of Clifford circuits 195
5.4.1 Simulating Cliffords efficiently 196
5.4.2 Weak vs strong simulation 201

5.5 Completeness of Clifford ZX-diagrams 206
5.5.1 A normal form for scalars 207
5.5.2 A unique normal form for Clifford diagrams 209

5.6 Summary: What to remember 213
5.7 References and further reading 214

vi Contents

6 Stabiliser theory 216
6.1 Paulis and stabilisers 217

6.1.1 Clifford conjugation, a.k.a. pushin’ Paulis 219
6.1.2 Stabiliser subspaces 222

6.2 Stabiliser measurements 224
6.2.1 The Fundamental Theorem of Stabiliser Theory 230

6.3 Stabiliser states and the Clifford group 235
6.3.1 Maximal stabiliser groups 236
6.3.2 Stabiliser states 237
6.3.3 The Clifford group 239
6.3.4 Putting it all together 241

6.4 Stabiliser tableaux 242
6.4.1 Cliffords are determined by Pauli conjugations 242
6.4.2 Stabiliser tableaux 243
6.4.3 Paulis as bit strings 245
6.4.4 Cliffords as symplectic matrices 247
6.4.5 Adding back in the phases 250
6.4.6 Putting it all together 251

6.5 The Clifford hierarchy 252
6.6 Summary: What to remember 255
6.7 References and further reading 255

7 Universal circuits 257
7.1 Path sums 258

7.1.1 Phase polynomials 258
7.1.2 Phase gadgets 261
7.1.3 Universal circuits with path sums 267

7.2 Circuit synthesis and path sums 271
7.2.1 Synthesis from phase polynomials 271
7.2.2 Quantum Fourier transform 276

7.3 Pauli exponentials 278
7.3.1 Unitaries from Pauli boxes 278
7.3.2 Matrix exponentials 280
7.3.3 Building unitaries as exponentials 282
7.3.4 Pauli exponentials 284

7.4 Pauli exponential compilation 286
7.4.1 Pauli exponentials are a universal gate set 287
7.4.2 Compiling to Pauli exponentials 288
7.4.3 Phase folding 290

7.5 Hamiltonian simulation 292

Contents vii

7.6 Simplifying universal diagrams 297
7.6.1 Removing non-Clifford spiders 302
7.6.2 Circuits from universal diagrams 304

7.7 Summary: What to remember 306
7.8 Advanced material* 306

7.8.1 Simulating universal circuits* 306
7.8.2 Higher-order Trotterisation* 312
7.8.3 Randomised compiling* 316

7.9 References and further reading 317
8 Measurement-based quantum computation 322

8.1 Measurement fragments 325
8.1.1 Universal resources 332

8.2 Determinism and gflow 333
8.2.1 Graph-like ZX-diagrams as measurement fragments 334
8.2.2 The measurement correction game 335
8.2.3 Diagrams with gflow are deterministic measure-

ment patterns 339
8.2.4 From circuits to measurement patterns 342
8.2.5 Focussed gflow 344

8.3 Optimising deterministic measurement patterns 345
8.4 From measurement patterns to circuits 351
8.5 Measurements in three planes 356

8.5.1 Rewriting 3-plane gflow 361
8.5.2 Circuit extraction, now phase gadget compatible 364

8.6 There and back again 365
8.7 Other stuff 366

8.7.1 Depth of a computation 366
8.8 Other MBQC models 367

8.8.1 Hypergraph state-based models 367
8.8.2 Phase gadget-based models 367

8.9 Summary: What to remember 367
8.10 References and further reading 368

9 Controlled gates and classical oracles 371
9.1 Controlled unitaries 371

9.1.1 The Toffoli gate 372
9.1.2 Diagonal controlled gates and phase polynomials 374
9.1.3 Fourier transforming diagonal unitaries 376

9.2 H-boxes 377
9.2.1 AND gates 380

viii Contents

9.2.2 Rules for the H-box 381
9.2.3 Constructing controlled unitaries using H-boxes 385

9.3 Reversible Logic synthesis 389
9.4 Constructing Toffoli gates with many controls 393

9.4.1 Quantum tricks for optimising Toffoli gates 398
9.4.2 Adding controls to other quantum gates 404

9.5 Adders 405
9.6 Summary: what to remember 408
9.7 Advanced Material* 409

9.7.1 From truth tables to Toffolis* 409
9.7.2 2-level operators* 414
9.7.3 More rules for the H-box* 415
9.7.4 W-spiders* 417

9.8 References and further reading 421

10 Clifford+T 423
10.1 Universality of Clifford+T circuits 424

10.1.1 Exact synthesis of one-qubit gates 426
10.1.2 Approximating arbitrary single-qubit gates 430

10.2 Scalable ZX notation 431
10.2.1 Scalable phase gadgets 436

10.3 Rewriting Clifford+T diagrams 437
10.3.1 Spider nests as strongly 3-even matrices 439
10.3.2 Proving all spider nest identities 442
10.3.3 Spider nests as Boolean polynomials 447

10.4 Advanced T-count optimisation 452
10.4.1 Reed-Muller decoding 453
10.4.2 Symmetric 3-tensor factorisation 455

10.5 Catalysis 457
10.5.1 Catalysis as a resource for compilation 459
10.5.2 Computational universality via catalysis 464
10.5.3 Catalysing completeness 468

10.6 Summary: What to remember 473
10.7 Advanced Material* 474

10.7.1 Exact synthesis of Clifford+T states* 474
10.7.2 Exact unitary synthesis* 480
10.7.3 Approximate single-qubit Clifford+T synthesis* 484
10.7.4 Computational universality of Toffoli-Hadamard* 487

10.8 References and further reading 490

Contents ix

11 Quantum error correction 493
11.1 Classical codes and parameters 494
11.2 Quantum stabiliser codes 496

11.2.1 Code distance for stabiliser codes 501
11.2.2 Detecting and correcting quantum errors 503
11.2.3 Encoders and logical operators 508
11.2.4 The decoder 512

11.3 CSS codes 515
11.3.1 Stabilisers and Pauli ZX diagrams 516
11.3.2 Maximal CSS codes as ZX diagrams 517
11.3.3 Non-maximal CSS codes as ZX encoder maps 518
11.3.4 The surface code 521
11.3.5 Scalable ZX notation for CSS codes 526

11.4 Fault-tolerance 531
11.4.1 Fault-tolerant computation with transversal gates 536
11.4.2 Fault-tolerant Pauli measurements 551
11.4.3 Lattice surgery 558

11.5 Magic state distillation 562
11.5.1 CCZ distillation and catalysis 566

11.6 Summary: What to remember 568
11.7 References and Further Reading 570
References 575
Index 589

0.1 About This Version 1

0.1 About This Version
This is a preprint of:

Picturing Quantum Software:
An Introduction to the ZX-Calculus and Quantum Compilation

to be released by Cambridge University Press. It is released under Creative
Commons Attribution-NonCommercial (CC-BY-NC) Licence v4.0, as per
the terms of CUP’s Green Open Access Policy. It is copyright (C) Aleks
Kissinger and John van de Wetering. All rights reserved.

This is version 1.1.0 and was prepared in October 2024. If you are
reading this in The Future, make sure you get the latest version from

https://github.com/zxcalc/book

...or better yet, grab the published book from CUP!

This is the colour version of the book. Colour and black-and white versions
are available from the website above.

This version contains all the TODOs.
This version contains all the solutions.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cambridge.org/core/services/open-access-policies/open-access-books/green-open-access-policy-for-books
https://github.com/zxcalc/book

1
Introduction

“Maybe in order to understand Mankind, we should look at the word itself. Basically,
it’s made up of two separate words ‘mank’ and ‘ind’. What do these words mean?
It’s a mystery. And that’s why so is mankind.”

- Deep Thoughts by Jack Handy. Saturday Night Live 1993

Maybe in order to understand what this book is about, we should break it
up into its parts: “Picturing” and “Quantum Software”. Let’s talk about the
second part first. Broadly, quantum software refers to the “code” that runs
on a quantum computer. This can mean many different things and many
different levels: ranging from quantum algorithms, i.e. high-level descriptions
of how to solve problems with a quantum computer, all the way down to
actual low-level code used to program specialised hardware like microwave
emitters that are actually responsible for making things happen to quantum
systems and reading out the results. This book is largely focused on what
lies between those two levels and also how we can move from higher-level
descriptions of a computation to lower-level ones. In classical computing,
passing from a high-level programming language to low-level machine code
is called compilation. Compilers are extremely important to making classical
computers work, both because high-level programming is crucial to represent-
ing something as complex as an operating system or a web application and
because a big reason why modern computers are so fast is because advanced
compilers do huge amounts of optimisation to programs in order to squeeze
as much performance as possible out of your computer.

As quantum computers are starting to take shape, so is a new field of
quantum compilation. Instead of just directly focusing on the code that
runs on quantum computers (e.g. quantum circuits, which we’ll introduce
in the next chapter), it is becoming increasingly interesting to focus on the
“code that makes that code” or even the “code that makes that code better”.

Introduction 3

There are a lot of interesting problems in this area, many of which we’ll
touch on in this book. The problem most analogous to classical compilation
is the following: given a high-level description of a quantum computation,
can we build a quantum circuit to perform that computation?

Quantum circuits are a de facto assembly language for quantum computa-
tion, and form the most important part in how a quantum computation is
described using the quantum circuit model. The latter is a straightforward
way to describe quantum computations, which is computationally universal
(in the sense we describe in Section 2.3.5). Quantum circuits give a simple
description of a quantum process by means of a sequence of primitive op-
erations, called gates, which are applied on a register of quantum memory,
e.g.

INIT 5
CNOT 1 0
H 2
Z 3
H 0
H 1
CNOT 4 2
...

⇔

⊕

0

0

H

0

0

0

H

⊕⊕H

Z

X

Z

⊕

⊕

S

T

⊕

⊕

Here, we have deliberately been a bit ambiguous about what a “high-level
description” means. This could be a program in a high level (quantum)
programming language. Such languages do exist (as we’ll survey briefly in
the references of Chapter 2), but are still in their infancy. At the time of this
writing, it is still not clear which “genuinely quantum” features are useful to
have in a quantum programming language, and the majority of what gets
called “quantum programming” these days amounts to using some specialised
libraries in a familiar classical programming language like Python to build
(and sometimes run) quantum circuits. In fact, you’ll get to experiment with
many of the techniques we discuss in this book using our Python library
PyZX, but more on that later.

In addition to a program written in a high-level language, a high-level
description of a quantum computation could mean various other things, de-
pending on the application. For example, it could simply be a big unitary
matrix, which as we will review in Chapter 2, are the way quantum pro-
cesses are modelled mathematically. However, this method of representing a
computation grows exponentially in size with the number of quantum bits,
or qubits, involved in a computation, so it is not feasible for concretely
representing computations on more than a dozen qubits or so. Also, we don’t

4 Introduction

know about you, but we don’t personally find staring at a matrix full of
numbers to be the most enlightening way to understand what is actually
going on.

This brings us to the other part of the title: “Picturing”. This book focuses
heavily on representing quantum computations using pictures. Unlike the
kinds of pictures you might know, e.g. from a physics textbook, where simple
diagrams are used to aid our intuitions, but all the “real math” happens in
good old fashioned formulas, in this book, the diagrams are the real math.
We will begin by introducing string diagram notation in the next chapter.
This notation, usually attributed to Roger Penrose, gives a rigorous way to
describe complex linear operators using diagrams consisting of boxes and
wires like this one:

Φ =

f

g

h

Perhaps the most interesting thing about such diagrams is that we can use
them to directly calculate stuff by transforming one diagram into another.
In particular, suppose we knew that two different diagrams actually describe
the same linear map. Then we might write something like this:

= 1
2 · (1.1)

We’ll see how such diagrams actually correspond to linear maps in Sec-
tion 2.1.6, but even before we know that, it is possible to explain how we
could use a diagrammatic equation like (1.1): if we see one side of this equa-
tion in a bigger diagram, we can “chop it out” and replace it with the other
side to get a new diagram:

= 1
2 ·

Thus, from a small equation, we have derived a bigger one. This way of doing
calculations directly on diagrams is called diagrammatic reasoning.

The “spiritual predecessor” to this book, Picturing Quantum Processes,
described the basic principles of quantum and classical processes and how
they interact using diagrammatic reasoning. Along the way, it introduced
a particular set of string-diagram equations called the ZX-calculus, which
turns out to be extremely useful for doing just about anything you’d want

Introduction 5

to do with quantum circuits and related structures. However, that book
just gave the slightest inkling of how one might apply ZX to solve concrete
problems in quantum software, and didn’t say much about how the ZX-
calculus picture relates to the whole myriad of techniques developed over
the past few decades for designing and reasoning about quantum software.

In this book, we will dive straight into using the language of ZX to work
concretely with quantum circuits. This turns out to be a very good language
to explain many concepts in quantum software that were not originally
introduced using diagrammatic methods, such as stabiliser theory, phase
polynomials, measurement-based quantum computation, and quantum error
correcting codes. Whether readers are familiar with these concepts or meeting
them for the first time, the ZX-calculus offers an intuitive look at the few
(relatively simple) structures at play, and how they come together to make
quantum computations behave the way they do.

A simple, “Hello World” style example is quantum teleportation, which
we’ll go through in some detail in Section 3.3.2. This is a simple quantum
protocol where Alice and Bob can use a shared entangled state and some
classical communication to allow Alice to send an arbitrary quantum state
to Bob. In a typical quantum computing textbook, you would probably see
teleportation pictured like this:

|Ψ⟩

+

|Ψ⟩ H

Z X

Alice

Bob

followed by a fairly elaborate linear algebraic calculation to show that it
actually works. By the time we get to Chapter 3, we’ll see that the ZX-
calculus makes these kinds of calculations super easy. After translating the
quantum circuit diagram above into ZX language, we can calculate what it
does using just a few graphical rules:

aπ

bπ

bπ aπ

Alice

Bob

aπ

bπ

bπ aπ

Alice

Bob

= 2bπ

aπ

aπ

Alice

Bob

=

2aπ
Alice

Bob

=

Alice

Bob

=

6 Introduction

In the end, we get just a wire passing from Alice to Bob, capturing that
fact that any quantum state Alice starts with will pop out on Bob’s side.

We’ll see over the following nine chapters that these techniques can be
pushed a lot further than toy examples to explain some of the most important
structures, concepts, and algorithms in the design and analysis of quantum
software.

1.1 How to read this book
We’re glad you made it here! Or, for those coming from Picturing Quantum
Processes, we’re glad you made it back! This book caters to a variety of
people with a variety of different backgrounds. As such, you may want to
read this book differently depending on what you know already, and what
you hope to get out of it. This section is intended to give a roadmap for a
few different kinds of readers.

1.1.1 From scratch

This book is designed to function well as a second course in quantum com-
puting. However, this book is also designed to be pretty self-contained, which
means there is nothing to stop you from diving in with nothing but a bit of
linear algebra under your belt. Some basic topics are not covered in as much
depth as you’ll find in a first text, and also some intuitions may be taken for
granted. To adopt this strategy, we suggest you start with the next chapter,
then if you get confused, or want to know something more in depth, pick up
one of the following books to help you out:

• Picturing Quantum Processes: A First Course in Quantum Theory and
Diagrammatic Reasoning. Coecke and Kissinger (2017). Cambridge Uni-
versity Press.
Picturing Quantum Processes (PQP) is, in some sense, the prequel to the
current book. It introduces quantum theory from first principles using a fully
diagrammatic language, and uses that language to go into detail on quantum
processes, quantum and classical interaction, quantum entanglement, quantum
communication protocols, and a bit of quantum computing. We do not explicitly
assume familiarity with PQP, but it can be read before or in parallel with this
book to get a fuller picture.

• Quantum in Pictures. Coecke and Gogioso (2023)
A (nearly) math-free introduction to quantum theory using pictures, including
the ZX-calculus. This is also good for younger readers and non-scientists and
can probably be read in an afternoon.

1.1 How to read this book 7

• Quantum Computation and Quantum Information. Nielsen and Chuang
(2010), (2000 first ed.). Cambridge University Press.
This is the standard text on quantum computing. It is a comprehensive in-
troduction to the topic; it has been called the “bible of quantum computing”.
However due to the amount of material covered, it is relatively long and dense,
especially for readers starting from scratch.

• An Introduction to Quantum Computing. Kaye et al. (2007). Oxford
University Press.

• Quantum Computer Science: an introduction. Mermin (2007). Cambridge
University Press.
These are both shorter, gentler introductory texts in quantum computing. We’d
suggest picking one of these up to learn quantum computing for the first time,
and eventually grabbing a copy of Nielsen & Chuang for reference.

• Categories for Quantum Theory: An Introduction. Heunen and Vicary
(2020). Oxford University Press.
The graphical notation we use in this book traces its origins back to categorical
quantum mechanics, a category theory-based approach to studying quantum
theory. While category theory is strictly optional to learn and use ZX-calculus,
this book is for readers who are interested in the deep mathematical and
categorical structures underlying the graphical calculus, such as Frobenius
algebras, Hopf algebras, and 2-categories.

1.1.2 Coming from Picturing Quantum Processes
You will notice a few things if you’ve landed here straight from the ‘spiri-
tual’ prequel to this book Picturing Quantum Processes: A First Course in
Quantum Theory and Diagrammatic Reasoning (which we’ll call PQP in this
section).

The first is we don’t mention process theories at all in this book, even
though they were a big deal in PQP. Process theories give us a general
way to talk about processes and computation that includes quantum theory
but also many other theories, such as classical probability theory and even
“super-quantum” theories which allow processes which (we think) are not
physically possible.

While it is fascinating, and foundationally important, to understand quan-
tum theory as just one example of many possible ways the world could
have been, we will forgo discussion of generic process theories in this book
and assume everything is quantum, right from the beginning! Well, that’s
actually not quite true. PQP introduced a process theory of linear maps,
where wires represent Hilbert spaces and boxes represent linear maps, then

8 Introduction

obtained the theory of quantum maps by some diagrammatic trickery.
For simplicity, we will pretty much exclusively work in the theory of linear
maps in this book. As you might recall from PQP, linear maps are pretty
much the same thing as pure quantum maps, as long as we (1) compute
probabilities by taking the absolute value squared of complex numbers, and
(2) throw away global phases. It turns out, for all of the concepts in this
book, that’s good enough for us!

This extra simplicity comes at a price, in that we don’t give ourselves access
to the elegant graphical techniques for representing mixed quantum states
and processes as well as classical-quantum interaction. However, readers
with a good handle on these techniques from PQP will probably notice many
places they can be applied throughout this book, and we invite them to
explore and be creative when filling in these gaps.

One final difference to note, is that in PQP time in diagrams flowed from
the bottom to the top, while in this book every diagram should be read from
left to right.

1.1.3 Coming from another quantum computing background

If you are already used to looking at |this⟩ |kind⟩ |of⟩ |stuff⟩, but not necessar-
ily pictures of quantum processes, welcome! We have tried to write this book
such that readers with little prior experience with the graphical notation for
quantum maps will start to feel comfortable with it in no time, and start
using diagrams as a natural extension of the quantum circuit notation you
undoubtedly already know and love.

You may want to briefly look through Section 2.1, and in particular 2.1.6,
as we introduce the graphical notation for linear maps along side the usual
bra-ket notation. In those sections, we explain the 3-fold correspondence
between bra-ket language, tensor networks, and string diagrams. We use this
correspondence throughout the book, in order to freely switch to whichever
tool is best for the job at hand (spoiler alert: it is usually string diagrams!).

After going through Section 2.1, you’ll probably not have much problem
skipping over the rest of Chapter 2 and diving straight into the ZX-calculus
in Chapter 3.

Note that even if you are already familiar with some of the concepts we
talk about in this book, you might find that we approach it with quite a
different perspective. So even for the quantum computing expert there should
be enough to discover in this book!

1.2 Organisation 9

1.2 Organisation
This book can be split roughly into three parts:

1. Intro

8.MBQC

9.Control

10. Clifford+T

2.Circuits

3. ZX

4. Phase-free

5. Clifford

6. Stabiliser

7.Universal 11.QEC

Part 1 Part 2 Part 3

In the first part of the book, Chapters 1–3, we introduce the basics of
quantum computation and the main tool we’ll be using throughout the book:
the ZX-calculus. After this introductory chapter, we move to Chapter 2:
The Quantum Circuit Model, which briefly reviews the mathematical
preliminaries you will need (namely linear algebra over the complex numbers)
and gives a short, pragmatic introduction to quantum theory by explaining
what we call the SCUM postulates.

S. States of a quantum system correspond to vectors in a Hilbert space.
C. Compound systems are represented by the tensor product.
U. Unitary maps evolve states in time.
M. Measurements are computed according to the Born rule.

We then introduce some basic building blocks of quantum circuits, and
explain some of the most important facts about circuits, such as universality
of gate sets, which we will use throughout the book.

What you will NOT find in this chapter (as opposed to virtually any other
introduction to quantum computing) is much discussion about quantum
algorithms. These of course are the reason one wants to study quantum
computation in the first place. However, since we will be focusing on quan-
tum compiling in this book, we will mostly abstract over specific quantum
algorithms and focus mainly on the sorts of circuit structures that arise
from “typical” algorithms and how to work with them effectively. To get a
deeper appreciation for how specific algorithms yield the kinds of circuits
we will study, we encourage readers to have a look at some of the resources
mentioned in Section 1.1.1 and also in the References and Further Reading
sections at the end of each chapter.

Chapter 3: The ZX-Calculus introduces ZX-diagrams, the main graph-
ical representation we’ll use for all the quantum computations we study in

10 Introduction

this book, as well as the ZX-calculus, a simple set of rules for transforming
and simplifying ZX-diagrams. We also give some examples of “ZX in action”,
where we show how to perform simple computations using ZX. We focus
mainly here on manipulating ZX-diagrams by hand, leaving the more high-
powered theorems and automated techniques involving the ZX-calculus for
later.

The next part of the book, Chapters 4–7, build up slowly from very
restricted families of circuits and ZX-diagrams to full-powered, universal
quantum computation. In Chapters 4 and 5, we introduce particular, non-
universal gate sets, and corresponding fragments of the ZX-calculus, whose
unitary ZX-diagrams are precisely the circuits constructible in those gate
sets.

A natural question is then: Why consider more limited kinds of quantum
computations and not just jump straight to maximum power? This is because,
like in many areas of science, there is a delicate balancing act between how
powerful a system is and how much we can say about it.

The paradigmatic example in classical computation is Turing machines.
These are super powerful, so powerful that if a computation is even possible
to do on a computer (classical or quantum!), then it is possible with a Turing
a machine. However, if we pluck a Turing machine out of the air, we can
say almost nothing about it. We don’t even know if it will halt with an
answer or just run forever. At the other extreme are finite state machines.
These are much, much weaker than Turing machines, but we can compute
(often efficiently) pretty much anything we want to know about them. Does
this machine ever answer Yes for some input? How about infinitely many
inputs? Do these two machines actually do the same thing? These questions
and many others are pretty easy to answer for finite state machines, but
extremely hard for Turing machines.

A similar thing can be said for quantum computations. The more powerful
the gate set, the closer we are to fully universal quantum computation, and
the more difficult it becomes to simulate, optimise, and answer questions
about, the quantum circuits we can build. Generally this should be regarded
as A Good Thing. Indeed if it were possible to efficiently simulate universal
quantum circuits, you wouldn’t be reading this book in the first place.

However, it is nevertheless an interesting and fruitful question to ask what
kinds of quantum computations can be simulated on a classical computer
or otherwise efficiently reasoned about. It turns out this goes much farther
than one might initially expect.

In Chapter 4: CNOT Circuits and Phase-Free ZX-Diagrams, we
look just at those circuits constructible using CNOT gates, and show these

1.2 Organisation 11

are closely connected to the phase-free ZX-calculus, i.e. the calculus involving
ZX-diagrams whose phase parameters are all restricted to zero. This will
give us some important insights into how this single entangling gate interacts
with itself, and how linear algebra over the two-element field F2 plays an
important role in the structure of quantum computations. We will also meet
the first automated simplification strategy for ZX diagrams, which always
efficiently terminates for phase-free diagrams in what we call a normal form.
These normal forms can tell us a lot about a computation, and also admit
strategies for “extracting” circuits back out. Furthermore, these normal forms
will come back with a vengeance when we discuss quantum error correcting
codes in Chapter 11.

In Chapter 5: Clifford Circuits and Diagrams, we add the H and
S gates to CNOT circuits to obtain a much richer, much “more quantum”
family of circuits, the Clifford circuits, while still retaining lots of structure,
and importantly, efficient classical simulability. Clifford circuits, despite leav-
ing the realm of what we would normally call classical computation, are
efficiently classically simulable thanks to the Gottesman-Knill theorem. We
will take an unconventional route to proving this famous theorem by going
via the corresponding fragment of the ZX-calculus: the Clifford ZX-calculus,
whose phase parameters are restricted be integer multiples of π

2 . Like in the
phase-free case, we give an automated strategy for efficiently turning any
Clifford ZX-diagram into a compact normal form. In fact, we’ll look at two
different normal forms, which are closely related, and can be applied to solve
three important problems for Clifford circuits: efficient classical simulation,
equality testing, and circuit optimisation/resynthesis.

In Chapter 6: Stabiliser Theory, we introduce an equivalent, and more
widespread, technique for studying Clifford circuits, called stabiliser theory.
Rather than restricting the class of gates used to build Clifford circuits, we
give a more global, group-theoretic characterisation of the Cliffords in terms
of certain subgroups of the Pauli group called stabiliser groups. Such a group
can always be represented by listing a small number of generators, and this
in turn enables us to perform many tasks involving Clifford circuits efficiently
by working not with the (exponentially large) unitary matrix, but with this
set of generators of the stabiliser group. Using this formalism, we will see a
more traditional approach to proving the Gottesman-Knill theorem, and also
how to get the best of both worlds by converting back-and-forth between
stabiliser and ZX representations.

Finally, in Chapter 7: Universal Circuits, we meet full-powered quan-
tum computation. We will see that it is useful to treat universal circuits
as Clifford circuits with a bit of “special sauce” mixed in: namely arbitrary

12 Introduction

Z-phase gates. We first see what happens when we mix arbitrary phase
gates into CNOT circuits, and we find we can reuse some of the tricks from
Chapter 5 to efficiently represent the resulting unitaries. A structure that
emerges naturally is that of phase polynomials, which have a graphical
ZX representation using phase gadgets. We will also show that there are
two ways to extend phase polynomials/gadgets to model universal circuits:
using path sums and Pauli gadgets, each with various benefits and ap-
plications. We will show how these structures can be used to implement a
simple circuit optimisation technique called phase folding. We will find
many other applications for these structures in Chapters 9–11.

The third part of the book extends the structures developed in part 2
in various different directions. Until this point, the dependency between
chapters is essentially linear, but here it splits.

On one track is Chapter 8: Measurement-based Quantum Com-
puting, where we introduce an alternative model of quantum computation
called measurement-based quantum computation (MBQC), and show how
it is equivalent to the circuit model. In the process, we will learn some new
things about the structure of ZX diagrams, which turn out to be closely
related to certain kinds of measurement-based quantum computations. No-
tably, we will see when it is possible to efficiently extract a quantum circuit
from a ZX-diagram (or MBQC computation) using a graph-theoretic notion
called generalised flow. While not strictly necessary to understand the
following chapters, the idea of using measurements and corrections to deter-
ministically implement quantum operations will be a running theme in this
part of the book.

On the other track, we continue to develop the structure of universal quan-
tum circuits. In Chapter 9: Controlled Gates and Classical Oracles,
we see how the basic gates and ZX-diagrams we have studied so far can be
used to construct higher-level gates, particularly to add control wires and
to embed complex classical functions into quantum computations. We will
introduce a new spider-like generator for ZX-diagrams called the H-box
which is especially convenient for dealing with these higher-level structures
and explaining how phase gadgets and H-boxes are related to each other by
a type of “graphical Fourier transform”.

In Chapter 10: Clifford+T, we will specialise from the exactly uni-
versal computations we have been studying so far to Clifford+T circuits.
Remarkably, if we add just one additional gate, called the T gate, to Clifford
circuits, we obtain an approximately universal family of quantum circuits.
The graphical analogue to such circuits are Clifford+T ZX-diagrams, i.e. di-
agrams whose phase parameters are integer multiples of π

4 . It turns out that

1.2 Organisation 13

when we restrict the angles in this way (and more generally to angles of the
form π

2ℓ), lots of interesting new structures start to emerge. We explore how
these structures can be used to efficiently approximate any unitary using
Clifford+T circuits, perform certain sophisticated circuit optimisations, and
prove completeness and universality results for increasingly large fragments
of the ZX/ZH calculus.

Finally, in Chapter 11: Quantum Error Correction, we introduce
quantum error correction and fault-tolerant quantum computation. This
brings together almost all of the concepts that have come before. Notably,
we use the phase-free normal forms we met back in Chapter 4 to construct
a graphical depiction of encoder maps, which enable error correction by
embedding a collection of logical qubits into a larger collection of physical
qubits. We see how to check for errors in this encoded quantum data using
measurements represented by the Pauli projections from Chapter 6, and build
toward a universal set of fault-tolerant operations for implementing quantum
computations on encoded qubits. An important ingredient is something called
magic-state distillation, which we can derive using the structure of T gates
developed in Chapter 10. Once we distil magic states, we can inject them into
our computations using a technique we met way back in Chapter 2! Putting
all of these ingredients together, we obtain a way to implement universal
quantum computation in a way that can, in principle, be made arbitrarily
robust to errors.

So that’s the plan. Let’s get started!

2
The Quantum Circuit Model

[TODO: Exercise idea’s:

• Let them prove the Euler angle decomposition of a single-qubit unitary.

]
The goal of this chapter is not to provide a comprehensive overview of

quantum computation, as there are already plenty of good general-purpose
books on that topic (see Section 1.1.1 for some pointers). In this chapter, we
will simply lay out some of the basic ingredients from quantum theory needed
to get us started working with circuits, then dive straight into their super
interesting underlying structures, which will be the topic of the following
chapters.

[TODO: More here, and explain a bit about how “circuit” is a misnomer
and they are more analogous to machine code than electrical circuits. Can
use this tidbit here: Indeed, the word “circuit” comes from the Latin circuitus
meaning “a going around”, referring to loops present in electrical circuits,
but forbidden in quantum circuits.]

2.1 Preliminaries
In this section, we will lay out the mathematical foundations and notation
which will be used throughout the book. We will introduce Hilbert spaces
and various linear algebraic operations on them, and two different notations:

• Dirac notation, which is by far the most common notation appearing
in the quantum computing literature. It gives a compact way to express
states and transformations for a single quantum system, but starts to
get clunky if we want to express lots of systems interacting with each
other.

2.1 Preliminaries 15

• String diagram notation: a graphical notation for expressing very gen-
eral compositions of linear algebraic operations (called tensor networks).
This is the main notation used in the so-called quantum picturalism
approach to quantum theory, which was adopted exclusively e.g. by this
book’s predecessor Picturing Quantum Processes.

Readers familiar with the mathematics behind quantum theory, but unac-
customed to string diagram notation may wish to skip ahead to section 2.1.6.

2.1.1 Some things you should know about complex numbers

Before we go into defining Hilbert spaces, we’ll need to make a couple of
remarks about complex numbers. We will write C for the set of complex
numbers, and we will often write λ ∈ C for an arbitrary complex number.
There are two main ways to write down a complex number. The first is the
familiar cartesian form: λ = a+ ib in terms of real numbers a, b ∈ R and
i :=

√
−1. The second, possibly less familiar, is the polar form: λ = reiα

for a positive real number r ∈ R≥0 called the magnitude and an angle
α ∈ [0, 2π) called the phase. Phases play an important role in quantum
theory, and they are often where the ‘quantum magic’ happens, so we’ll
run into the polar form a lot. These two representations are related by the
trigonometric identity:

eiα = cosα+ i sinα =⇒
{
a = r cos(α)
b = r sin(α) (2.1)

which can be visualised in the complex plane as follows:

r
α

a

b

(2.2)

A useful operation on the complex numbers is the complex conjugation
λ 7→ λ, which flips the sign of b in cartesian form or the sign of α in polar
form:

a+ ib 7→ a− ib reiα 7→ re−iα

It’s pretty straightforward to derive from (2.1) that these two operations are
the same for a complex number λ. This can be visualised by realising that
flipping the sign of b or α amounts to a vertical reflection of the complex

16 The Quantum Circuit Model

plane:

r
α

a

b

7→

r
-α

a

-b

We will slightly overload the term ‘phase’, and also refer to complex
numbers of the form eiα as phases. If there is some ambiguity, we will call
eiα the phase and α the phase angle. Because of the behaviour of exponents,
when we multiply phases together, the phase angles add:

eiαeiβ = ei(α+β)

Consequently, multiplying a phase with its conjugate always gives 1:

eiαeiα = eiαe−iα = ei(α−α) = e0 = 1.

More generally, we can always get the magnitude of a complex number by
multiplying with its conjugate and taking the square root:√

λλ =
√

(reiα)(re−iα) =
√
r2e0 = r

As a consequence, whenever we have λ = reiα and |λ| = 1, we can conclude
r = 1 so λ = eiα. In other words, |λ| = 1 if and only if λ is a phase.

Getting the angle out is a bit trickier. For this we use a trigonometric
function called arg, which for λ ≠ 0 is defined (somewhat circularly) as the
unique angle α such that λ = reiα. If λ = a+ib for a > 0, arg(λ) = arctan(ba).
This obviously won’t work when a is zero, and needs a bit of tweaking when
a is negative. Hence, the full definition of arg needs a case distinction, which
we’ll leave as an exercise.

Exercise 2.1 Just to make sure our trig is not too rusty, give a full
definition for arg for all non-zero complex numbers, using (2.2) as a guide.

Exercise 2.2 Write cosα and sinα in terms of complex phases. Hint:
remember that cos −α = cosα while sin −α = − sinα.

2.1.2 Hilbert spaces

A Hilbert space is a vector space over the complex numbers, with an inner
product defined between vectors, which we’ll write this way:

⟨ψ, ϕ⟩ ∈ C

2.1 Preliminaries 17

where ψ and ϕ are vectors in a Hilbert space H. Hilbert spaces can be finite-
or infinite-dimensional. For finite-dimensional Hilbert spaces, we are already
done with the definition. For infinite dimensions, we need to say some other
stuff about limits and convergence, but since quantum computing is all about
finite-dimensional Hilbert spaces, we won’t need to go into that here.

So, for our purposes, the main thing that separates a Hilbert space from
a plain ole vector space is the inner product. So let’s say a few things about
inner products and introduce some handy notation. First, a definition.

Definition 2.1.1 A mapping ⟨−,−⟩ from a pair of vectors to the com-
plex numbers is called an inner product if it satisfies the following three
conditions:

1. Linearity in the second argument. For ψ, ϕ1, ϕ2 ∈ H and λ1, λ2 ∈ C:

⟨ψ|λ1ϕ1 + λ2ϕ2⟩ = λ1⟨ψ|ϕ1⟩ + λ2⟨ψ|ϕ2⟩.

2. Conjugate-symmetry. For ψ, ϕ ∈ H: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩.
3. Positive-definiteness. For ψ ∈ H, ⟨ψ|ψ⟩ is a real number and ⟨ψ|ψ⟩ > 0

when ψ ̸= 0.

It might seem weird that we only ask inner products to be linear in one
of the arguments. However, combining conditions 1 and 2, we can show
that the inner product is actually conjugate-linear in the first argument.
Conjugate-linearity is pretty much the same as linearity, but scalar multiples
pop out as their conjugates:

⟨λ1ψ1 + λ2ψ2|ϕ⟩ = λ1⟨ψ1|ϕ⟩ + λ2⟨ψ2|ϕ⟩

Example 2.1.2 Our main example of a Hilbert space is Cn, the Hilbert
space whose vectors are column vectors with n entries:

ψ =

ψ0

ψ1

...
ψn−1

 , ϕ =

ϕ0

ϕ1

...
ϕn−1

 , · · ·

Note we adopt the physicist’s convention of allowing subscripts and super-
scripts to index entries in a vector or matrix. On the other hand, we adopt
the computer scientists’ convention of counting from 0. So for example, ψ2

means the third entry of the column vector ψ, not ‘ψ squared’. This looks
a bit weird at first, but it will come in really handy when we get to section
2.1.4.

To take the inner product, we first take the conjugate-transpose of ψ, i.e.

18 The Quantum Circuit Model

we transpose the column vector into a row vector then conjugate every entry,
and then matrix multiply this with ϕ. This amounts to multiplying a 1 × n

matrix with an n×1 matrix, which gives us a 1×1 matrix, i.e. just a number:

⟨ψ|ϕ⟩ :=
(
ψ0 ψ1 · · · ψn−1

)

ϕ0

ϕ1

...
ϕn−1

 =
n−1∑
i=0

ψiϕi (2.3)

Since a Hilbert space has an inner product, we know a bunch of things
about its vectors that a plain old vector space doesn’t tell you. For one thing,
the inner product tells us how long vectors are, i.e. the norm ∥ψ∥ :=

√
⟨ψ|ψ⟩,

and in particular when a vector is normalised: ∥ψ∥ = 1. It also tells us
when two vectors are orthogonal: ⟨ψ|ϕ⟩ = 0. Putting these pieces together
we get the following.

Definition 2.1.3 A basis {hi | 0 ≤ i < n} ⊂ H for an n-dimensional
Hilbert space H is called an orthonormal basis (ONB) if:

⟨hi|hj⟩ = δij where δij :=

1 if i = j

0 if i ̸= j
is the Kronecker delta.

So, an inner product defines ONBs. In particular, if we were to equip the
vector space with a different inner product, then which bases you consider
orthonormal will change. This also works the other way: an ONB defines an
inner product, in the sense of the following exercise.

Exercise 2.3 Show that any basis B = {hi | 0 ≤ i < n} ⊂ H on a vector
space H defines a unique inner product that makes H into a Hilbert space
and B into a ONB.

Since the inner product is linear in it’s second argument, any vector ψ ∈ H

defines a linear map ψ† : H → C by ϕ 7→ ⟨ψ|ϕ⟩, which we call the adjoint
of ψ. As you can see from (2.3), the adjoint of a column vector ψ ∈ Cn is
the row vector given by its conjugate-transpose:

ψ =

ψ0

ψ1

...
ψn−1

 =⇒ ψ† =
(
ψ0 ψ1 · · · ψn−1

)

If we have a linear map between two (possibly) different Hilbert spaces H
and K, the adjoint A† of A is the unique linear map satisfying the equation

2.1 Preliminaries 19

⟨A†ψ|ϕ⟩ = ⟨ψ|Aϕ⟩ for all ϕ ∈ H, ψ ∈ K. This definition takes a bit of
head-scratching at first, but when H = Cm and K = Cn, this again just
amounts to the conjugate-transpose of A:

A =

a0
0 a0

1 · · · a0
m−1

a1
0 a1

1 · · · a1
m−1

...
...

an−1
0 an−1

1 · · · an−1
m−1

=⇒ A† =

a0
0 a1

0 · · · an−1
0

a0
1 a1

1 · · · an−1
1

...
...

a0
m−1 a1

m−1 · · · an−1
m−1

Like with matrix transposes, one can show that adjoints satisfy (A†)† = A

and (AB)† = B†A†.
Inner products and adjoints are so ubiquitous in quantum theory that we

typically build them right into the way we write vectors down. For this, we
introduce Dirac bra-ket notation. Rather than writing a vector as it’s
usual naked self, we’ll wrap it up into a symbol called a ket:

ψ 7→ |ψ⟩

If we want to write the adjoint of |ψ⟩, we flip the ket into a bra:

ψ† 7→ ⟨ψ|

Now, the ket |ψ⟩ is still secretly just ψ, a vector in the Hilbert space H.
However, the bra ⟨ψ| is an element of the dual space H∗. That is, it is
a linear map from H to the complex numbers. In particular, we can try
plugging a ket into it, and some magic happens: we get a bra-ket, which is
just the inner product again.

⟨ψ||ϕ⟩ := ψ†ϕ = ⟨ψ|ϕ⟩

Breaking the two parts of an inner product apart gives us some extra
flexibility. For example, if we have some linear map M : H → H that we
want to sandwich in the middle of the inner product, we can do that: ⟨ψ|M |ϕ⟩.
This also leads us to more naturally think of bras and kets themselves as
processes, which are dual to one-another. We can think of |ϕ⟩ as a process
which starts with nothing and gives us something, namely the vector ϕ ∈ H:

|ϕ⟩ ⇝ ϕ
H

Conversely, we can think of ⟨ψ| as a process which ‘swallows’ a vector and

20 The Quantum Circuit Model

leaves nothing (well, actually nothing but a scalar):

⟨ψ| ⇝ ψ
H

The pictures to the right of ‘⇝‘ are in string diagram notation. This
gives us a way to visualise compositions of linear maps as boxes (or other
kinds of shapes), connected by wires. We’ve already seen how to draw bras
and kets above. The only thing missing at this point (at least until we meet
tensor products in section 2.1.4) is linear maps M : K → L between two
arbitrary Hilbert spaces. These are pictured as a box with an input wire
labelled H and output labelled K:

M
H K

We visualise composition by plugging wires together. For example:

⟨ψ|ϕ⟩ ⇝ ϕ ψ
H

⟨ψ|M |ϕ⟩ ⇝ ϕ M ψ
H K

⟨ψ|CBA|ϕ⟩ ⇝ ϕ A B C ψ

There’s a couple of things to note about these two different notations.
First, the string diagrams give slightly more information, since the wires can
be labelled to tell us which Hilbert spaces the maps are defined on. We can
drop these labels when it is clear from context, but sometimes it’s handy to
get an extra visual cue for which maps can be plugged together, and which
can’t. Second, the Dirac notation is being read from right-to-left, whereas
the pictures are being read from left-to-right. This is an artefact of the usual
‘backwards’ way composition is defined symbolically. For example, function
composition g ◦ f(x) := g(f(x)) means first apply f to an element x, then
apply g to the result. In other words: g ◦ f means ‘g AFTER f ’. Similarly,
with composition of linear maps (and hence matrix multiplications) BA|ϕ⟩
means first apply A to |ϕ⟩ then apply B to the result, i.e. BA means ‘B
AFTER A’.

This is not such a big deal, as long as we remember to flip the order of
maps around when we write them in Dirac notation. What is more of a big
deal, as we’ll see in section 2.1.4, is that most quantum computations really
want to be done in 2D. Dirac notation is only really handy for working with
1D chains of matrix multiplications like the ones above, and it gets a bit
clunky when we start mixing (sequential) composition of linear maps with

2.1 Preliminaries 21

(parallel) tensor products. On the other hand, these more general kinds of
composition are what string diagrams are meant for, so this is where they
really start to shine.

Remark 2.1.4 In some circles, it is popular to symbolically write compo-
sitions in ‘diagram order’, using a notation like f ; g to mean g ◦ f . We won’t
use this notation in the book, preferring to jump to full-fledged diagrams
instead.

Another advantage of writing vectors as kets is it gives us a compact way
of writing the standard basis. Namely, we write the standard basis for Cn as
{|i⟩ | 0 ≤ i < n}, i.e. simply as numbers in a ket, ranging from 0 to n− 1:

|0⟩ :=

1
0
...
0

 |1⟩ :=

0
1
...
0

 · · · |n− 1⟩ :=

0
0
...
1

In particular, the two-dimensional Hilbert space C2 has standard basis ele-
ments written as follows:

|0⟩ :=
(

1
0

)
|1⟩ :=

(
0
1

)
As we’ll see in Section 2.2, C2 represents quantum bits, or qubits. In C2,
the basis vectors |0⟩ and |1⟩ play the role of the classical bits 0 and 1. Part
of the power of quantum computing is that we cannot just access these
classical bit states, but also many more, coming from taking arbitrary linear
combinations of them.

2.1.3 Types of linear maps

The adjoint operation (−)† lets us define a handful of special kinds of linear
maps that crop up in quantum theory. This first is isometries, where the
adjoint acts as a one-sided inverse.

Definition 2.1.5 A linear map U : H → K is called an isometry if
U †U = I.

Next, we have a whole slew of maps from a Hilbert space to itself.

Definition 2.1.6 A linear map M : H → H is called:

• normal if M †M = MM †

• a unitary if M †M = I and MM † = I

22 The Quantum Circuit Model

• self-adjoint if M = M †

• positive if M = N †N for some N
• a projector if M = M † = M2

There are clearly some containments here: projectors are always positive
(since M = MM = M †M), and positive maps are always self-adjoint (since
M † = (N †N)† = N †N = M). Finally, everything in Definition 2.1.6 is
normal. Unitaries are normal because M †M = I = MM †. Self-adjoint
maps (and hence also positive maps and projectors) are normal because
MM † = M2 = M †M .

While this is a bit of a definition dump, we’ll treat the most important
kinds of maps from Definitions 2.1.5 and 2.1.6 – as well as their significance
to quantum theory – in their own sections later in this chapter.

A nice feature about normal maps (and hence all the maps in Defini-
tion 2.1.6) is that they can always be diagonalised. That is, we can find an
ONB M = {|ϕj⟩}j such that for all i, M |ϕj⟩ = λj |ϕj⟩. The scalars λj and
vectors |ϕj⟩ are called eigenvalues and eigenvectors, respectively, whereas
M is called an eigenbasis.

Bra-ket notation (and hence string diagram notation) gives us a convenient
way to write maps in diagonal form.

M =
∑
j

λj |ϕj⟩⟨ϕj | =
∑
j

λj · ϕj
H

ϕj
H

A special case is the identity map, which diagonalises with respect to any
ONB, with eigenvalues all equal to 1:

I =
∑
j

|ϕj⟩⟨ϕj | =
∑
j

ϕj
H

ϕj
H

We call such a sum over an ONB a resolution of the identity by ONB
{|ϕi⟩}i.

As it turns out, all of the particular kinds of normal maps can be charac-
terised by the types of eigenvalues they have.

Exercise 2.4 Let M : H → H be a linear map such that M †M = MM †.
Then M =

∑
j λj |ϕj⟩⟨ϕj | for some sets {λj}j , {|ϕj⟩}j . Show that:

a) M is self-adjoint iff all λj ∈ R
b) M is positive iff all λj ∈ R≥0

c) M is a projector iff all λj ∈ {0, 1}
d) M is a unitary iff all λj ∈ U(1)

2.1 Preliminaries 23

where R≥0 is the set of all real numbers ≥ 0 and U(1) := {eiα |α ∈ [0, 2π)}
is the set of all phases.

One thing you might notice is what happens when a map is unitary and
self-adjoint: it’s eigenvalues are all in U(1) ∩ R = {−1, 1}. This is indeed
what happens with the Pauli maps, which as we’ll see later, have many nice
properties.

2.1.4 Tensors and the tensor product

Quantum computing relies crucially on multiple systems interacting with
each other. To build up to how we should represent multiple systems in
quantum theory, we can first see what happens if we bring two classical
systems together. The simplest classical system that has more than one state
is a bit, which we can represent as the set B := {0, 1}. A single bit has
two possible states: 0 and 1. A pair of bits has four possible states: 00, 01,
10, and 11. In other words, the system describing two bits is the cartesian
product of two one-bit systems:

B × B = {(0, 0), (0, 1), (1, 0), (1, 1)}

Since the role of classical bit values 0 and 1 in the qubit system C2 is
played by the basis vectors |0⟩ and |1⟩, it stands to reason that the system
of two qubits should have four basis vectors |00⟩, |01⟩, |10⟩, |11⟩, labelled by
the four possible bit strings. This is exactly what taking the tensor product
does for us.

There are lots of ways to define the tensor product of two vector spaces.
For the sake of simplicity, we’ll adopt a fairly brutal definition here, which
makes explicit use of some fixed bases for a pair of Hilbert spaces.

Definition 2.1.7 For anm-dimensional Hilbert spaceH and an n-dimensional
Hilbert space K with fixed ONBs {|i⟩ | 0 ≤ i < m} ⊂ H and {|j⟩ | 0 ≤ j <

n} ⊂ K the tensor product H ⊗ K is the mn-dimensional Hilbert space
consisting of all linear combinations of states in the following product basis:

{|i⟩ ⊗ |j⟩ | 0 ≤ i < m, 0 ≤ j < n}

The inner product on this tensor product is fully determined by requiring
{|i⟩ ⊗ |j⟩}i,j to form an ONB. That is, we have: ⟨|i⟩ ⊗ |j⟩, |k⟩ ⊗ |l⟩⟩ = δikδjl.

We call this a ‘brutal’ definition, because the tensor product doesn’t really
depend on a choice of basis, but choosing a basis will make it easier for us to
see concretely what’s going on. Note that the symbol ⊗ used in defining the

24 The Quantum Circuit Model

product basis doesn’t really mean anything in it’s own right. The important
thing is just that we have one basis vector for each pair of basis vectors
from H and K. We could just as well have written basis elements as |ij⟩.
We will indeed do this sometimes, e.g. we will write the basis vectors of the
four-dimensional space C2 ⊗ C2 as:

|00⟩ := |0⟩ ⊗ |0⟩
|01⟩ := |0⟩ ⊗ |1⟩
|10⟩ := |1⟩ ⊗ |0⟩
|11⟩ := |1⟩ ⊗ |1⟩

However, this notation is suggestive of how we want to send a pair of
states |ψ⟩ ∈ H and |ϕ⟩ ∈ K into the bigger tensor product space H ⊗ K.
Suppose these states decompose in our chosen bases as follows:

|ψ⟩ :=
m∑
i=1

ψi|i⟩ |ϕ⟩ :=
n∑
j=1

ϕj |j⟩

Then, we’ll define the product state as follows, just by pulling the sums
and scalars out:

|ψ⟩ ⊗ |ϕ⟩ =
(∑

i

ψi|i⟩
)

⊗
(∑

j

ϕj |j⟩
)

:=
∑
ij

ψiϕj |i⟩ ⊗ |j⟩

This looks a bit abstract, but if we instantiate this to the case of qubit states,
it becomes pretty obvious what is going on. We just ‘multiply things out’:(

ψ0|0⟩ + ψ1|1⟩
)

⊗
(
ϕ0|0⟩ + ϕ1|1⟩

)
=

ψ0ϕ0|00⟩ + ψ0ϕ1|01⟩ + ψ1ϕ0|10⟩ + ψ1ϕ1|11⟩

If we write things out as column vectors, it should be even more clear
what’s going on:

(
ψ0

ψ1

)
⊗
(
ϕ0

ϕ1

)
=

ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1

 (2.4)

Note that, by writing |ψ⟩ ⊗ |ϕ⟩ as a four-dimensional column vector, we are
implicitly treating the four basis states as the standard basis for C4, just by
counting them base-2:{

|0⟩ := |00⟩, |1⟩ := |01⟩, |2⟩ := |10⟩, |3⟩ := |11⟩
}

This is a general phenomenon. When we take the tensor products of Hilbert

2.1 Preliminaries 25

spaces, the dimensions multiply. Hence, we can treat a basis vector |i, j⟩ ∈
Cn ⊗ Cn′ as a basis vector |in′ + j⟩ ∈ Cnn′ .

So, taking the tensor product of Cm with Cn just multiplies the dimensions.
Since every finite-dimensional Hilbert space is isomorphic to Cn for some n,
it follows that the tensor product is associative and has a unit given by the
one-dimensional Hilbert space C = C1:

(H ⊗K) ⊗ L ∼= H ⊗ (K ⊗ L) H ⊗ C ∼= H ∼= C ⊗H

The symbol ‘∼=’ here means ‘is isomorphic to’. Because of this associativity
we are justified in dropping the brackets when writing tensor products of
many different spaces, e.g. H1 ⊗ . . .⊗Hk.

The equation (2.4) is actually a special case of a more general kind of
operation we can apply to matrices of any size.

Definition 2.1.8 The Kronecker product of an n×m matrix A with
an n′ ×m′ matrix B is a new nn′ ×mm′ matrix A⊗B whose entries are all
possible products of the entries of A and B, i.e.

(A⊗B)kn′+l
im′+j := aki b

l
j

While this definition might be a bit of head-scratcher the first time you
see it, it’s pretty easy to think about in terms of block matrices. To form
the matrix A⊗B, we form a big matrix which has a block consisting of the
matrix ajiB for every element of A. That is, for matrices:

A :=

a0

0 · · · a0
m−1

...
an−1

0 · · · an−1
m−1

 and B :=

b0

0 · · · b0
m′−1

...
bn

′−1
0 · · · bn

′−1
m′−1

the Kronecker product is the nn′ ×mm′ matrix:

A⊗B :=

a0

0B · · · a0
m−1B

...
an−1

0 B · · · an−1
m−1B

This applies to any dimension of matrix, not just matrices with the same
numbers of rows or columns. For example, the Kronecker product of the 2×1

26 The Quantum Circuit Model

matrix of a state |ψ⟩ and the 2 × 2 matrix of map A is computed as follows:

|ψ⟩ ⊗A =

ψ0

ψ1

⊗
(
a0

0 a0
1

a1
0 a1

1

)
=
(
ψ0A

ψ1A

)
=

ψ0a0
0 ψ0a0

1

ψ0a1
0 ψ0a1

1

ψ1a0
0 ψ1a0

1

ψ1a1
0 ψ1a1

1

The Kronecker product is furthermore non-commutative: B ⊗A ≠ A⊗B.

The matrix of B ⊗A will be the same size and contains the same elements,
but those elements will be in different places. For example:

A⊗ |ψ⟩ =
(
a0

0 a0
1

a1
0 a1

1

)
⊗

ψ0

ψ1

 =

a0
0|ψ⟩ a0

1|ψ⟩
a1

0|ψ⟩ a1
1|ψ⟩

 =

a0

0ψ
0 a0

1ψ
0

a0
0ψ

1 a0
1ψ

1

a1
0ψ

0 a1
1ψ

0

a1
0ψ

1 a1
1ψ

1

Often, rather than smooshing the upper and lower indices together into a

single index, as we did in the definition of Kronecker product, we can keep
them separate and simply allow ‘generalised matrices’ that have zero or more
upper and lower indices:

m

{
T ..

.

..
.

}
n ⇝ T =

{
t
j0...jn−1
i0...im−1

∈ C
∣∣ 0 ≤ iµ < Dµ, 0 ≤ jν < D′

ν

}
Note, rather than having a fixed number of ‘rows’ and ‘columns’, we have
fixed input dimensions D0, . . . , Dm−1 and output dimensions D′

0, . . . , D
′
n−1.

These generalised matrices are called tensors.
In fact, we’ve already met some tensors: kets are represented by tensors

with zero inputs and one output:

ψ
H ⇝

{
ψi ∈ C

∣∣ 0 ≤ i ≤ dim(H) }

bras by tensors with one input and zero outputs:

ψ
H ⇝

{
ψi ∈ C

∣∣ 0 ≤ i ≤ dim(H) }

and plain old numbers are tensors with no inputs and no outputs:

λ ⇝
{
λ ∈ C

}
We can relate tensors to bra-ket notation by taking a big sum over all the

2.1 Preliminaries 27

basis elements, with the tensor elements as coefficients:

T =
∑

i0...im−1
j0...jn−1

t
j0...jn−1
i0...im−1

|j0...jn−1⟩⟨i0...im−1|

A tensor with two indices of dimensions n and n′ has the same data as
one with a single index of dimension nn′, just packaged up in a different way.
With that in mind, we can simplify the definition of the Kronecker product
to give us a very similar operation, which is often just called the tensor
product:

(A⊗B)k,li,j := aki b
l
j

This readily generalises to tensors with lots of indices:

(S ⊗ T)k0... , l0...
i0... , j0...

:= sk0...
i0...

tl0...j0...

In either case, we represent the tensor product in string diagrams by
‘stacking boxes’:

A⊗B ⇝
A

B

S ⊗ T ⇝
T ..

.

..
.

S ..
.

..
.

We can sequentially compose tensors the same way we would matrices.
For matrix composition, we get the components of BA by multiplying com-
ponents A and B together, and contracting (i.e. summing over) the output
index of A with the input index of B:

BA ⇝ A B =⇒ (BA)ki :=
∑
j

aji b
k
j

For tensors, the story is much the same, except we contract all the upper
indices of one with the lower indices of the other:

TS ⇝ T ..
.

..
.S..
. =⇒ (TS)k0...

i0...
:=
∑
j0...

sj0...i0...
tk0...
j0...

As the pictures indicate, we should think of BA as a sequential compo-
sition and A⊗ B as parallel composition. When we start mixing these
two together, the magic happens.

Exercise 2.5 We have seen that we can construct some vectors in the tensor
product by combining states of the component Hilbert spaces together to
form a product state. This raises the question:

28 The Quantum Circuit Model

Are all the states in H ⊗K product states?

The answer is no. We know that any product state e.g. in C2 ⊗ C2 has the
form given in equation (2.4). Find a vector |ψ⟩ in C2 ⊗ C2 that is not a
product state and prove that is the case by showing the following equation
is not solvable:

ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1

 = |ψ⟩ =

a

b

c

d

Solution: .
Sometimes this works out. For example, if a = 1, b = 0, c = 1, d = 0, we
have:

(
1
1

)
⊗
(

1
0

)
=

1
0
1
0

And other times it doesn’t work out. For example, the following equation
has no solution:

ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1

?

=

1
0
0
1

It’s pretty easy to see this by eyeballing it. The first and last rows mean all
four numbers ψ0, ψ1, ϕ0, ϕ1 must be non-zero. But then you can’t possibly
get a zero on the second and third rows.
End Solution .

2.1.5 Sums and diagrams

Since these diagrams describe linear maps, it makes perfect sense to take
linear combinations of them: for linear maps f, g and scalars λ, µ, the linear
map λf +µg sends a vector v to λf(v) +µg(v). At the level of matrices, this
amounts to scalar multiplication and adding matrices together element-wise.

In fact, we were already doing this back in Section 2.1.3 when we wrote
diagonalisation as:

M =
∑
j

λj · ϕj
H

ϕj
H

2.1 Preliminaries 29

Conveniently, we can summarise all of the various linearity and bilinearity
conditions involving composition and tensor products into one principle:

Sums distribute over string diagrams.

In other words, when a summation occurs somewhere inside a diagram,
it can always be pulled to the outside. We can see how this works using
the following example. Consider the following quantum state, which is often
called the (unnormalised) Bell state:

|Φ⟩ =
∑
i

|ii⟩ =
∑
i

i

i

This state famously satisfies the following yanking equation with its
adjoint ⟨Φ|. Shown both in bra-ket notation and as a string diagram, this
equation is the following:

(⟨Φ| ⊗ I)(I ⊗ |Φ⟩) = I
Φ

Φ

= (2.5)

Intuitively, we can think of the diagram of the left-hand side as a zig-zag
shape that we are “yanking” into a straight piece of wire. We can prove this
by substituting the definitions of |Φ⟩ and ⟨Φ| into the diagram and pulling
the sums out to the outside:

=

i

i j

j

∑
j

∑
i

=

i

i j

j

∑
ij

= ij
∑

ij δij =

Φ

Φ

2.1.6 Tensor networks and string diagrams

What happens when we compose two matrices A,B in sequence and two
more matrices C,D in sequence, then compose the results in parallel?

(BA⊗DC)k,li,j = (BA)ki (DC)lj =
∑
x

axi b
k
x ·
∑
y

cyjd
l
y =

∑
xy

axi b
k
xc
y
jd
l
y

30 The Quantum Circuit Model

How about when we do it the other way around?[
(B⊗D)(A⊗C)

]k,l
i,j

=
∑
xy

(A⊗C)x,yi,j (B⊗D)k,lx,y =
∑
xy

axi c
y
j b
k
xd
l
y =

∑
xy

axi b
k
xc
y
jd
l
y

We get the same thing! The resulting equation is called the interchange
law:

BA⊗DC = (B ⊗D)(A⊗ C)

Let’s see what happens if we do the same thing in the string diagram
notation. Doing the composition one way around, we plug A and B together
in sequence, plug C and D together in sequence, then stack the results in
parallel:

BA⊗DC = A B ⊗ C D =
C D

A B

The other way around, we stack A and C in parallel, then stack B and D

in parallel, then plug the results together in sequence:

(B ⊗D) ◦ (A⊗ C) =

D

B
 ◦

C

A
 =

C D

A B

We see that the interchange law becomes completely trivial in the language
of string diagrams:

C D

A B

=
C D

A B

This is a good thing! The interchange law isn’t capturing something fun-
damental about the processes we are studying, but is instead just a bit of
unavoidable bureaucracy we have to deal with to fit sequential and par-
allel composition all in one line. The more our notation can swallow this
bureaucracy and let us focus on what’s really important, the better!

You might have noticed that, while we have already been using string
diagrams in this section, we haven’t yet defined them in generality. For our
purposes, string diagrams are a graphical notation for a general kind of
composition of tensors called a tensor network.

A tensor network is a particular way of composing tensors, where the
elements of each of the component tensors are multiplied together and some
pairs of indices are matched and summed over. We can represent this as
a string diagram by depicting each of the component tensors as boxes and
indices as wires. Wires that are open at one end represent free indices (i.e.

2.1 Preliminaries 31

the indices corresponding to inputs/outputs of the tensor), whereas wires
that are connected at both ends correspond to bound indices. The latter are
matched pairs of indices that get summed over.

This might sound a little abstract, but if we see an example, it should be
pretty clear what is going on. Suppose we have the following string diagram
describing a big linear map:

Φ =

f

g

h
(2.6)

We can (arbitrarily) assign index names to each of the wires:

Φ =

f

g

h

a

b

c

d

e

a

b

c

d

e

x

y

z

Then, this diagram describes the following tensor network:

Φde
abc =

∑
xyz

fxdab g
ez
xyh

y
cz (2.7)

We will typically work purely with string diagrams and omit the indices,
which are only relevant inasmuch as they uniquely identify each wire in the
diagram. One thing to notice is that wires can freely cross over each other
and even form feedback loops. Also, if we deform the string diagram and
draw it different on the page, it will still describe the same calculation (2.7).
For example:

f

g

h
=

f g

h

In other words, the only relevant data is which inputs and outputs are
connected to which others. This fact can be summarised in the string diagram
mantra:

Only connectivity matters!

The final thing to note is we can also build up arbitrary tensor networks
from ◦ and ⊗, provide we add two additional ingredients: swap maps and

32 The Quantum Circuit Model

the partial trace operation. The former is a linear map which interchanges
the two tensor factors of a vector in A⊗B:

SWAP =

By linearity, it is totally defined by how it acts on product vectors:

SWAP :: |ψ⟩ ⊗ |ϕ⟩ 7→ |ϕ⟩ ⊗ |ψ⟩

Note that the SWAP for two qubits has the following matrix:

=

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.8)

The latter operation, the partial trace, sums the last input index together
with the last output index of a tensor. That is, for a linear map f : A⊗X →
B ⊗ X, TrX(f) : A → B is a linear map whose matrix elements are given
by:

TrX(f)ji =
∑
k

f jkik

In the special case where a map has only one input and output, this is
just the normal trace, i.e. summing over the diagonal elements of a matrix:
for g : X → X we have Tr(g) =

∑
k g

k
k . Graphically, we depict the partial

trace as introducing a feedback loop:

TrX

f

A B

XX

 = f

A B

XX

Exercise 2.6 Write an expression for (2.6) using ⊗, ◦, SWAP, and Tr(−).
Show that it evaluates to the same thing as (2.7).

2.1.7 Cups and caps

If this is your first time seeing this notation for the partial trace it might
make you... a little uncomfortable. Don’t these feedback loops introduce all
kinds of nasty complications like grandfather paradoxes and other problems
to do with time travel? One way to see that it is in fact all fine, is to remember
that the string diagrams are just notation for particular linear maps, and
a wire denotes an index you contract over, where a feedback loop simply
means we are contracting an input and an output ‘in the wrong order’. So

2.1 Preliminaries 33

you can just ‘shut up and calculate’ and treat the loops as a handy piece of
notation.

But we can also go one step further and decompose the loop into a couple
of smaller pieces, which correspond to some special types of tensors. We have
in fact already seen these pieces: they are the Bell state |Φ⟩ and effect ⟨Φ|.
We introduce some special notation for these tensors:

:= Φ := Φ (2.9)

The reason this notation works is because it makes the yanking equation of
Eq. (2.5) particularly nice:

= = (2.10)

Here the second equation states the state is symmetric in its two outputs.
In the context of string diagrams we call this special state the cup and the
effect the cap. Note that when we consider the cup and cap of qubits, their
matrices are:

=

1
0
0
1

 =
(
1 0 0 1

)
(2.11)

We can generalise this to a matrix representation for a cup and cap over
any dimension. We can also write the cup and cap using indices: ⊂ij = δij
and ⊃ij = δij , where δij is the standard Kronecker delta. In this notation
it becomes especially clear that the cup and cap are like ‘bended identities’,
since idij = δij .

Using the cup and cap we can view a trace not as a feedback loop, but as
a composition of a cup, a cap, and an identity wire connecting the two of
them:

f

A B

XX
= f

We are then left with a string diagram where every input is connected to an
output, and not vice versa.

34 The Quantum Circuit Model

2.2 A bluffer’s intro to quantum theory
Okay, so now we have all the mathematical apparatus to describe quantum
theory. But what is quantum theory actually? You will have almost cer-
tainly heard of quantum mechanics, and you may have heard of a few things
starting with the word ‘quantum’, like quantum optics, quantum electrody-
namics, quantum chromodynamics, and the standard model (okay, that last
one doesn’t start with ‘quantum’, but it’s still relevant here). These are all
theories of physics, which cover the behaviours of certain kinds of things
that exist in the world (electrons, photons, quarks, the Higgs boson, ...).

They are all underpinned by quantum theory, which can be seen more as
a framework to build theories of physics on top of, rather than a full-fledged
theory of physics in its own right. All the theories of physics we might build
based on quantum theory have some characteristics in common, which can
pretty much be summed up in the following 4 statements, which we’ll call
the SCUM postulates.

S. States of a quantum system correspond to vectors in a Hilbert space.
C. Compound systems are represented by the tensor product.
U. Unitary maps evolve states in time.
M. Measurements are computed according to the Born rule.

These 4 postulates are a (loose) paraphrase of the Dirac-von Neumann
axioms of quantum theory, where we’ve put a bit more emphasis on the
bits that are most relevant for quantum computing. Everything in bold
above will get defined soon enough. The point here is to show that there
really isn’t very much at the core of quantum theory. Quantum theory is in
fact very simple, and yet it somehow happens to be very good at making
predictions about a whole lot of different kinds of physical systems. However,
if you have encountered other theories of physics which can be derived from
simple postulates (and one in particular about space and time proposed by
a dude with crazy hair), you’ll notice something a little strange about the
von Neumann postulates: they are all about maths and not at all about
stuff. This is pretty odd for a theory of physics, because of course physics is
fundamentally about stuff, and mathematics is just the tool.

This has led to almost a century of dissatisfaction about the ‘fundamental’
nature of quantum theory, and led to a lot of interesting arguments, many
books, and the whole field called quantum foundations, which asks not just
what quantum theory is, but why it is the way it is. That is to say, if after
reading the four postulates and learning what all the words in bold mean,

2.2 A bluffer’s intro to quantum theory 35

you are still scratching your head about what the words in bold mean, you
are actually in good company.

2.2.1 Quantum states

There are a handful of equivalent ways we can represent a quantum state. The
first is as a normalised vector |ψ⟩ in a Hilbert space H. This representation
is the simplest, but also contains a bit of redundancy, because as we will
see in Section 2.2.4, quantum theory will make the exact same predictions
about a state |ψ⟩ as it will about eiα|ψ⟩ for any angle α. Hence, there is no
physical difference between |ψ⟩ and eiα|ψ⟩. We call the scalar factor eiα a
global phase, and we say the states |ψ⟩ and eiα|ψ⟩ are equivalent up to
global phase.

So, technically, a quantum state is not just one vector, but a set of vectors
{eiα|ψ⟩ |α ∈ [0, 2π)} which are equivalent up to a global phase. But then,
this is just all the normalised states in a one-dimensional subspace of H.

Proposition 2.2.1 The set of all normalised states in a one-dimensional
subspace S of a Hilbert space H is always of the form {eiα|ψ⟩ |α ∈ [0, 2π)}
for some normalised state |ψ⟩.

Proof Every vector in a one-dimensional space is a scalar multiple of some
fixed vector, i.e. such spaces are always of the form S := {λ|ψ⟩ |λ ∈ C} for
some non-zero vector |ψ⟩. Since S contains every scalar multiple of |ψ⟩, we
can also assume without loss of generality that |ψ⟩ is normalised. From this
it follows that any state of the form eiα|ψ⟩ is a normalised state in S:

(eiα|ψ⟩)†eiα|ψ⟩ = (e−iα⟨ψ|)(eiα|ψ⟩) = 1 · ⟨ψ|ψ⟩ = 1

Conversely, if λ|ψ⟩ ∈ S is normalised, we have:

1 = (λ|ψ⟩)†(λ|ψ⟩) = λλ⟨ψ|ψ⟩ = λλ = |λ|2

But, as we saw in Section 2.1.1, |λ|2 = 1 if and only if it is of the form eiα

for some α. Hence, all the normalised states in S are of the form eiα|ψ⟩.

So, the second equivalent way to represent a quantum state is to write
down it’s one-dimensional subspace S. Picking any normalised vector in that
space will recover |ψ⟩, up to a global phase, whereas looking at the space
spanned by |ψ⟩ will recover S.

A third equivalent way to represent a quantum state is by doubling |ψ⟩.
Somewhat counter-intuitively, we can make the representation of the state

36 The Quantum Circuit Model

less redundant by putting two copies of |ψ⟩ together. Or, more precisely, by
multiplying the ket |ψ⟩ with its adjoint bra ⟨ψ|:

|ψ⟩ ⇝ |ψ⟩⟨ψ|

The result is a linear map P|ψ⟩ := |ψ⟩⟨ψ| which goes from H to H. So, why
is this representation actually less redundant than just taking the ket |ψ⟩?
Well, if we think about doubling an equivalent state |ϕ⟩ := eiα|ψ⟩, something
magic happens:

|ϕ⟩⟨ϕ| = (eiα|ψ⟩)†(eiα|ψ⟩) = e−iαeiα|ψ⟩⟨ψ| = |ψ⟩⟨ψ|

The global phase disappears!
So, what’s going on here? There’s a couple of ways to think about this.

The most natural way to see this, is that it has something to do with
measurement probabilities, and the actual reason we don’t care about phases
in the first place. We’ll return to this point in Section 2.2.4, once we know
how measurement probabilities are computed. For now, perhaps the best
way to think about this is that |ψ⟩⟨ψ| is just another way of representing a
one-dimensional subspace S, which we already know is an equivalent way of
representing a quantum state.

To see that, first recall from Definition 2.1.6 that a projector P is a linear
map that is self-adjoint (P † = P) and idempotent (P 2 = P). Projectors
are linear maps that ‘squash’ vectors down into a subspace, called the range
of the projector: S := { |ϕ⟩ | ∃|ψ⟩ ∈ H : |ϕ⟩ = P |ψ⟩ } ⊆ H. If S is an
n-dimensional subspace, we say P is a rank-n projector on to S.

Now, it happens to be that P|ψ⟩ := |ψ⟩⟨ψ| is a rank-1 projector, whose
range is exactly S := {λ|ψ⟩ |λ ∈ C }. If we draw this as:

|ψ⟩⟨ψ| ⇝ ψ
H

ψ
H

we can imagine vectors coming in the wire on the left, then getting ‘squashed’
down to nothing (i.e. just a scalar factor), then getting embedded back into
the H as a scalar times |ψ⟩:

ϕ ψ
H

ψ
H = λ · ψ

H where λ := ϕ ψ
H

Exercise 2.7 Show |ψ⟩⟨ψ| is a projector with image S := {λ|ψ⟩ |λ ∈ C }.
Conversely, show that if P is a projector with 1D range S, P = |ψ⟩⟨ψ|.

So, that completes our three equivalent pictures of the quantum state. A
quantum state is:

1. a normalised vector |ψ⟩ ∈ H, up to a redundant global phase eiα,

2.2 A bluffer’s intro to quantum theory 37

2. a one-dimensional subspace S ⊆ H, or
3. a rank-1 projector |ψ⟩⟨ψ|.

Of course, this really just tells us how a quantum state is represented math-
ematically, which is enough for our purposes. What the quantum state it is
actually representing is a whole other question, which has been debated for
more than a century. We’ll make some remarks about this and point to some
further reading in Section 2.8.

Remark 2.2.2 Note that the quantum states we introduced in this section
are sometimes called pure quantum states, to distinguish them from more
general mixed quantum states. The latter allow us to represent having only
partial information or access to a quantum system. For the most part, we
won’t need this extra generality for the topics covered in this book, so we’ll
focus purely on pure states for now.

2.2.2 Qubits and the Bloch sphere

We now turn our attention to the most interesting system from the point of
view of quantum computation: the quantum bit, or qubit. We’ll see in the
next section that the one-dimensional Hilbert space C1 = C is the trivial, ‘no
system’ system. So, to get something non-trivial, we should go one dimension
up, to C2. Hence, a qubit is a system whose state lives in the Hilbert space
C2. Physically, qubits can be implemented with any physical system that
has at least 2 states that can be perfectly distinguished by a single quantum
measurement (which we’ll cover in Section 2.2.4).

As the name suggests, a qubit is the quantum analogue of a bit. As such,
we’ll give the two standard basis elements some suggestive names:

|0⟩ :=
(

1
0

)
|1⟩ :=

(
0
1

)
Graphically, we will depict these states as follows:

0 1

These are the quantum analogues of the two possible states 0 and 1 that
a classical bit could take. In Section 2.3, we’ll see how this embedding of
classical bits into two-dimensional vector spaces can be used to lift classical
logic gates on bits to quantum logic on qubits.

Because of this connection to classical computation, the basis {|0⟩, |1⟩} is
often called the computational basis. We will occasionally use this term, but

38 The Quantum Circuit Model

will instead mostly call it the Z-basis, for reasons that will shortly become
clear.

We know from the last section that quantum states in C2 correspond to
normalised vectors |ψ⟩ ∈ C2, up to a global phase. We’ll now use this fact to
find a convenient way to parametrise a generic state |ψ⟩ := a|0⟩ + b|1⟩ in C2.
First note that normalisation puts a restriction on the values a and b can
take:

1 = ⟨ψ|ψ⟩ = aa+ bb = |a|2 + |b|2.

Since |a|2 + |b|2 = 1, we can draw the following triangle with 1 on the
hypotenuse:

θ
|a|

|b|1

From the sine and cosine laws, we can always express |a| and |b| in terms
of a single angle θ: |a| = cos θ and |b| = sin θ. As a matter of convention,
it’s slightly more convenient to use θ

2 instead of θ, so let |a| = cos θ2 and
|b| = sin θ

2 .
As we saw in Section 2.1.1, the absolute value of a complex number

λ = reiα fixes r. Hence, we can conclude that a = cos θ2e
iβ and b = sin θ

2e
iγ ,

for some phase angles β, γ. So, using just normalisation, we can replace 2
complex numbers with 3 angles:

|ψ⟩ = cos θ2e
iβ|0⟩ + sin θ2e

iγ |1⟩

Now we can use the freedom to choose a global phase to get rid of another one
of these angles. Since we can freely multiply |ψ⟩ by a global phase without
changing the physical state, the angle β is actually redundant. We can cancel
it out by multiplying the whole thing by e−iβ.

e−iβ
(

cos θ2e
iβ|0⟩ + sin θ2e

iγ |1⟩
)

= cos θ2 |0⟩ + sin θ2e
i(γ−β)|1⟩

Letting α := γ − β, we can therefore write a generic qubit state |ϕ⟩ conve-
niently as:

|ϕ⟩ := cos θ2 |0⟩ + sin θ2e
iα|1⟩

Since the quantum state is now totally described by two angles, we can plot
it on a sphere, called the Bloch sphere:

2.2 A bluffer’s intro to quantum theory 39

|ψ⟩

|0⟩

|1⟩

α

θ

This picture is useful for our intuition. For example, the more ‘similar’
two states are, that is, the higher the value of their inner product, the closer
they are on the Bloch sphere. In particular, antipodes are always orthogonal
states.

Exercise 2.8 Show that, for the following antipodal states on the Bloch
sphere:

|ϕ0⟩ = cos θ2 |0⟩ + sin θ2e
iα|1⟩

|ϕ1⟩ = cos θ + π

2 |0⟩ + sin θ + π

2 eiα|1⟩

we have ⟨ϕ0|ϕ1⟩ = 0.

For a qubit, picking an orthonormal basis just comes down to picking a pair
of orthogonal normalised states, hence, we can always think of orthonormal
bases as different axes cutting through the Bloch sphere.

Exercise 2.9 The standard basis |0⟩, |1⟩ corresponds to the Z axis of the
Bloch sphere. Show that the following states

|+⟩ := 1√
2
(
|0⟩ + |1⟩

)
|−⟩ := 1√

2
(
|0⟩ − |1⟩

)
|+i⟩ := 1√

2
(
|0⟩ + i|1⟩

)
|−i⟩ := 1√

2
(
|0⟩ − i|1⟩

)

40 The Quantum Circuit Model

correspond to the X and Y axes, respectively. That is, show they are located
on the Bloch sphere as follows:

|1⟩

|0⟩

|+⟩|−⟩

|−i⟩

|+i⟩

The three pairs of antipodal points each correspond to an orthonormal
basis for C2:

X-basis := {|+⟩, |−⟩}
Y -basis := {|+i⟩, |−i⟩}
Z-basis := {|0⟩, |1⟩}

These bases mark out the X, Y, and Z axes of the Bloch sphere. We’ll see
in Section 2.3.2 that they are also eigenvectors of the Pauli X, Y , and Z

operations, respectively.
Let’s now take a look at what unitaries do to qubit quantum states visually.

A paradigmatic example is the Z phase gate:

Z(α) = |0⟩⟨0| + eiα|1⟩⟨1|

On eigenstates |0⟩ and |1⟩, the Z(α) doesn’t do anything: or rather it only
changes the state up to a global phase:

Z(α)|0⟩ = |0⟩ Z(α)|1⟩ = eiα|1⟩ ∝ |1⟩

However, on a generic state, we end up multiplying the coefficient of |1⟩ by
eiα, which amounts to adding α to its phase:

|ψ⟩ = cos θ2 |0⟩ + eiβ sin θ
2 |1⟩

7→ Z(α)|ψ⟩ = cos θ2 |0⟩ + ei(α+β) sin θ
2 |1⟩

Since the phase of the coefficient of |1⟩ determines how far around the
Z-axis to plot the state, we can conclude that Z(α) amounts to a Z-rotation
of the Bloch sphere by an angle of α.

2.2 A bluffer’s intro to quantum theory 41

|ψ⟩

|0⟩

|1⟩

β

θ

Zα|ψ⟩

α

While we said that Z(α) is a paradigmatic example, it is in fact (essentially)
the only example of a unitary over C2, up to a global phase. We can see that
by taking some generic unitary and diagonalising it:

U = λ0|ϕ0⟩⟨ϕ0| + λ1|ϕ1⟩⟨ϕ1|

Then, as we saw in Exercise 2.4, the eigenvalues of a unitary are always
phases, so λj = eiαj , hence up to a global phase, we have:

U ∝ |ϕ0⟩⟨ϕ0| + eiα|ϕ1⟩⟨ϕ1| (2.12)

So, U is basically Z(α), written with respect to another ONB {|ϕ0⟩, |ϕ1⟩}.

Exercise* 2.10 We have already seen that ONBs correspond to axes on
the Bloch sphere. Show that U as defined in (2.12) corresponds to a rotation
about the axis defined by {|ϕ0⟩, |ϕ1⟩} by an angle of α.

Hence, single-qubit unitaries correspond exactly to rotations of the Bloch
sphere. A standard fact about rotations of a sphere is that any rotation can
be generated by a sequence of three rotations about two orthogonal axes.
The standard choice of orthogonal axes you see crop up in the quantum
computing literature is a Z-axis rotation, which we’ve already met, and an
X-axis rotation:

X(α) = |+⟩⟨+| + eiα|−⟩⟨−|

Exercise* 2.11 Show that, up to a global phase, we can always write a
qubit unitary as a composition of Z and X rotations as follows:

U = eiθ · Z (α) X (β) Z (γ)

This is called the Euler decomposition of U .

42 The Quantum Circuit Model

2.2.3 Unitary evolution

We won’t talk much about the Schrödinger equation in this book, but no
bluffers intro to quantum theory would be complete without showing it at
least once. So here it is, the time-dependent Schrödinger equation:

i
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩ (2.13)

where H(t) is a self-adjoint operator, called the Hamiltonian, which may
depend on the time t (and yes physicists, we are ignoring the constants and
units). The actual form this operator takes depends on what sorts of physics
is actually going on. If we for instance are describing the internals of a
molecule we would have a particular Hamiltonian describing the momentum,
the spin, and attraction or repulsion between all the electrons, protons and
neutrons. If instead we are describing a lab situation where we are shining a
laser on trapped ion, we might only care about the terms having to do with
the time-dependent laser interaction.

This differential equation describes how a quantum state evolves in time.
When H doesn’t depend on t, solutions to (2.13) take a nice form in terms of
an initial state |ψ(0)⟩ and the matrix exponential eitH . We’ll talk about
matrix exponentials a lot more in Chapter 7, but for now, suffice to say that
matrix exponentials behave a lot like plain ole number exponentials when
you take their derivatives. In particular, for matrices we have d

dte
tM = MetM ,

so taking the derivative of e−itH |ψ(0)⟩ with respect to t just pops out a factor
of −iH. Hence:

i
d

dt
e−itH |ψ(0)⟩ = (i)(−iH)eitH |ψ(0)⟩ = He−itH |ψ(0)⟩

So, e−itH |ψ(0)⟩ gives a solution to the Schrödinger equation, and we can
let |ψ(t)⟩ := e−itH |ψ(0)⟩. Another handy thing is, whenever H is self-adjoint,
eitH is unitary (again we’ll see why in Chapter 7). Hence, U(t) := e−itH

gives us the unitary time evolution operator of a quantum system.
The reason we don’t talk much about the Schrödinger equation in this

book is, for the purposes of quantum computation, it usually suffices to talk
about time evolution abstractly, fully in terms of unitaries. That is, if a
system is initially in state |ψ⟩ := |ψ(0)⟩, its time evolution for a fixed chunk
of time (say t = 1) is described by some unitary map U := U(1). Conversely,
there is a powerful theorem that says any unitary map arises as the time
evolution of some Hamiltonian in this kind of way. For this reason, it is
often convenient to just talk directly about the unitaries and leave it to the
physicists to worry about Hamiltonians.

2.2 A bluffer’s intro to quantum theory 43

2.2.4 Measurements and the Born rule

Most quantum computations consist of preparing a quantum state, doing
some unitary evolution of the state, then measuring the result. The only
ingredient we are missing so far is measurement. In order to do a quantum
measurement, we need to choose what we want to measure. A measurement
is a (non-deterministic) process which extracts some information from a
quantum system and usually changes the state of the system when we do it.
Mathematically, this is represented as a set of projectors that sum up to the
identity:

M = {M1, . . . ,Mk}
∑
i

Mi = I

The probability of getting the i-th outcome when we measure a state |ψ⟩
with M is computed with the following M-sandwich:

Prob(i |ψ) = ⟨ψ|Mi|ψ⟩ (2.14)

This quantum sandwich is called the Born rule.
Note that

∑
iMi = I implies that the set of projectors in Mi are mutually

orthogonal, i.e. MiMj = 0 whenever i ̸= j. So, one can think of measuring
roughly as checking whether a state |ψ⟩ is “in” one of a collection of k
orthogonal subspaces, given by the images of the projectors M1, . . . ,Mk.
The reason for the scare-quotes around “in” is that a given state doesn’t
need to be totally inside the image of any of the projectors Mi. But if it is
completely inside the i-th subspace, then Mi|ψ⟩ = |ψ⟩ and:

Prob(i |ψ) = ⟨ψ|Mi|ψ⟩ = ⟨ψ|ψ⟩ = 1.

So in that case we get outcome i with certainty.
However, in general |ψ⟩ could be a linear combination of vectors in more

than one orthogonal subspace given by M. But here’s the funny thing: after
we measure a system and get outcome i, the state of the system will always
be entirely in the image of Mi. In other words, if it was only partially in the
image of Mi before, it has to move!

Quantum theory tells us that, if we measure |ψ⟩ with M and get outcome i,
the resulting state is given by projecting |ψ⟩ onto the image of Mi and
renormalising, i.e.

|ψ⟩ project7−−−−→ Mi|ψ⟩ renormalise7−−−−−−−→ 1√
Prob(i |ψ)

Mi|ψ⟩

This rule for updating a state after a measurement is called Lüder’s rule.
This idea that measuring something changes it is not so strange if you

44 The Quantum Circuit Model

think about it. Even in the classical world, if we want to know something
about a system, we need to interact with it somehow. For instance, if we
want to know what colour a ball is, we can shine a light on it, and see
which light reflects back. In the process, we barrage the ball with a bunch of
photons which interact with the particles in the ball, energizing them and
even sloughing off a tiny, tiny bit of paint. The only reason we tend to ignore
such things in the classical world is that there are many ways to measure
something which essentially don’t change it. For example, you would be hard
pressed to figure out if someone shined a light on that ball or not.

The story is different in quantum systems. A fundamental property of
quantum theory says that the amount of information we can get out of a
system is directly proportional to how much we disturb it. So, if we want
lots of information, we need lots of disturbance. We can see this with the
two extremes of measurement.

At one extreme we have ONB measurements. These are perhaps the
most common kinds of measurements considered, whose components are the
rank-1 projectors given by the ONB states. That is, for an ONB B = {|ϕi⟩}i,
we have a measurement MB = {|ϕi⟩⟨ϕi|}i. As we saw in Section 2.1.3,
summing over these projectors gives a resolution of the identity:∑

i

|ϕi⟩⟨ϕi| = I

So this does indeed define a measurement. This kind of measurement gives us
as much information as possible, since each of the subspaces corresponding
to the measurement outcomes is one-dimensional. However, it also disturbs
the system a great deal, since any state will get projected into one of these
1D subspaces after the measurement. That is, |ψ⟩ will collapse to a ba-
sis state |ϕi⟩ after the measurement. For the qubit Z ONB measurement
{|0⟩⟨0|, |1⟩⟨1|}, this can be visualised as sending a state the north or south
pole of the Bloch sphere, depending the associated Born rule probabilities:

|ψ⟩

|0⟩

|1⟩

Prob(0 |ψ) Prob(1 |ψ)

At the other extreme, we have the trivial measurement I = {I}. This
is indeed a collection of projectors which sum up to I, but we only have

2.2 A bluffer’s intro to quantum theory 45

one outcome: I. Afterwards, the state is “updated” by |ψ⟩ 7→ I|ψ⟩. Since
there’s only one outcome, measuring I doesn’t tell us anything, but at least
it doesn’t disturb anything either!

Between these two extremes, there are lots of examples which can all be
seen as some sort of “coarse-graining” of an ONB measurement. Perhaps
the most relevant example for us will be measuring just part of a state.
For example, the measurement M = {|ϕi⟩⟨ϕi| ⊗ I}i on a system A ⊗ B

corresponds to performing the basis measurement {|ϕi⟩⟨ϕi|}i on just the
subsystem A.

Exercise 2.12 Define the following 3 measurements on a pair of qubits:

A =
{

ii

}
i

B =
{

jj

}
j

C =

ii

jj

ij

Show that the probability of getting outcome i for A then getting outcome
j when measuring B on the resulting state is the same as the probability of
getting outcome (i, j) for C.

We will often be interested in computing the post-measurement state
after measuring just some of the qubits of a quantum state. For example,
this plays an essential role in state injection and quantum teleportation
in Section 3.3 and is the key ingredient in measurement-based quantum
computing, introduced in Chapter 8.

For example, consider measuring the first qubit of a 2-qubit quantum
state |Ψ⟩ in the computational basis, i.e. performing measurment A from
Exercise 2.12. If we get outcome 0, the post-measurment state will be the
following, up to renormalisation:

Ψ
0 0

whereas if we get outcome 1, the state will be:

46 The Quantum Circuit Model

Ψ
1 1

In either case, the state of the second qubit could change, depending on
which measurement was performed and the measurement outcome. This
sometimes referred to as the back-action of a quantum measurement.

It is worth noting that after a basis measurement is performed, the mea-
sured qubits are no longer entangled with the rest of the state, so we will
sometimes simply ignore them:

Ψ
i i

Ψ
i⇝ (2.15)

Depending on how we implement a measurement, we may have no longer
have access to the system after we measure it anyway. For example, if a pho-
ton hits a detector and makes a click, then for all intents and purposes, that
photon is gone. This kind of measurement is sometimes called a demolition
measurement. We can compute the state of the remaining systems after
a demolition ONB measurement simply by applying the basis effect to the
measurement qubit (and renormalising), e.g. sending |Ψ⟩ to (⟨i| ⊗ I)|Ψ⟩ as
in (2.15).

There are also ways to measure a system without physically destroying
it. For example, we may apply a unitary interaction between the system
of interest and an ancillary system, and measure the latter. Measurements
which leave the measured system in place (albeit changed via a projector)
are called non-demolition measurements. This kind of measurement will
be especially important for quantum error correction, which we study in
Chapter 11.

We conclude this section with an alternative way for specifying a quantum
measurement. Often in quantum theory and quantum computing literature,
measurements are defined in terms of self-adjoint maps called observables.
However, an observable just amounts to packing a bunch of projectors up
together into one map. That is, if we fix distinct real numbers r1, . . . , rk, we
can define a self-adjoint map M from a measurement M = {Mi}i as follows:

M =
k∑
i=1

riMi (2.16)

Conversely, by diagonalising a self-adjoint map M and gathering up terms
in the sum with the same eigenvalues, we can see that any self-adjoint map
can be written in the form of (2.16) for same unique set of projectors Mi.

2.3 Gates and circuits 47

That is,

M =
d∑
j=1

λj |ϕj⟩⟨ϕj | =
k∑
i=1

riMi

where Mi is the sum over all the projectors |ϕk⟩⟨ϕk| associated with a (pos-
sibly repeated) eigenvalue λk = ri.

2.3 Gates and circuits
Now that we know about states, unitaries, and measurements, we have all
the basic ingredients we need to start talking about computation in the
quantum circuit model. In this model, computation proceeds in three
steps:

1. Prepare N qubits in a fixed state.
2. Apply a quantum circuit to the input state.
3. Measure one or more of the qubits.
4. (Sometimes) perform some classical post-processing on the measurement

outcome.

A quantum circuit describes a large unitary map in terms of many smaller
unitaries (typically drawn from a fixed set) called gates, combined via
composition and tensor product. This is essentially the “code” of a quantum
algorithm. After performing all the gates, we measure some of the qubits.
It is these measurement outcomes that is the actual output of the quantum
circuit. Generally, we will have to run a quantum circuit many times in
order to gather more measurement outcomes and estimate the probability
of getting a certain outcome.

The quantum circuit model abstracts away all the physical details of
how the computation is actually performed. In practice a qubit might be
represented by two chosen energy states of an ion trapped in a magnetic field,
or as the different polarisations of a photon, or in terms of any other physical
system that has two different quantum states that we have arbitrarily chosen
to label as the states |0⟩ or |1⟩. Each individual gate will then physically
correspond to some type of interaction with this chosen model of a qubit. It
might mean we have to shine a laser on some ions for 10 nanoseconds, or let
some photons meet and entangle using a beam splitter. It doesn’t matter, as
long as the physical operation corresponds to applying (or approximating)
that unitary operation on the quantum state.

Quantum circuits enable us to construct large and complex unitaries from

48 The Quantum Circuit Model

known, relatively simple ones. The most interesting sets of quantum gates
are universal ones, i.e. sets of gates that allow us to construct any unitary,
or at least approximate it to high precision. We will spend a large part of this
book thinking about circuits and how we can construct interesting behaviour
from simple components.

2.3.1 Classical computation with quantum gates

Quantum computation is a strict generalisation of classical computation.
This means any computation involving bits on a classical computer can be
lifted to a quantum computation over qubits. We can see this by first noting
that any reversible function (a.k.a. bijection) on N bits ϕ : BN → BN lifts
to a unitary permutation over basis vectors:

Uϕ |⃗b⟩ := |ϕ(⃗b)⟩ ∀⃗b ∈ BN

The simplest non-trivial such gate is the NOT gate:

NOT|0⟩ = |1⟩ NOT|1⟩ = |0⟩

More interesting is the controlled-NOT, or CNOT gate:

CNOT ::

|00⟩ 7→ |00⟩
|01⟩ 7→ |01⟩
|10⟩ 7→ |11⟩
|11⟩ 7→ |10⟩

One way to think of this gate is that the first bit is controlling whether the
second bit gets a NOT applied to it. Constructing the ‘controlled’ variant of
a quantum gate is a common theme in quantum circuits.

Another way to think about the CNOT gate is as an exclusive-OR (XOR)
gate, where we’ve also kept a copy of one of the inputs to keep things re-
versible. We write XOR (a.k.a. addition modulo 2) as ⊕. Using this notation,
we have:

CNOT|x, y⟩ = |x, x⊕ y⟩

Another useful classical gate is the controlled-controlled-NOT gate, which
is also called the Toffoli gate. It is defined as follows:

TOF|x, y, z⟩ = |x, y, (xy) ⊕ z⟩

where xy is the product (a.k.a. the AND) of the two bits x and y. This gate
flips the third bit if and only if the first two bits are 1.

2.3 Gates and circuits 49

The NOT, CNOT, and Toffoli gates are all in a family of N -controlled
NOT gates, i.e. NOT is a 0-controlled NOT gate, CNOT is 1-controlled, and
Toffoli is 2-controlled. We draw them in a similar way, with dots on each of
the N control qubits, connecting to an ⊕ on the target qubit, i.e. the
one receiving the NOT:

NOT = ⊕ CNOT = ⊕ TOF =
⊕

Note that plugging a |1⟩ into any of the control qubits gives a smaller N -
controlled NOT gate on the remaining qubits:

⊕
1

⊕
1

=

⊕

1

⊕

1

=

whereas plugging a |0⟩ into any of the control qubits leaves an identity map
on the remaining qubits.

We can think of the Toffoli gate as a reversible version of the AND gate,
where again we keep copies of the inputs and ‘store’ the output of the AND
gate by XOR’ing it with the third input qubit. In particular, if we provide
it with a ‘fresh’ qubit in the |0⟩ state for the third input, we have:

TOF|x, y, 0⟩ = |x, y, xy⟩

This is in fact a special case of a standard technique, sometimes called
the Bennett trick, for turning any classical function f : BN → BM into a
unitary:

Uf :: |x⃗, y⃗⟩ 7→ |x⃗, f(x⃗) ⊕ y⃗⟩

where x⃗ ∈ BN , y⃗ ∈ BM and ⊕ is taking the XOR of the two M -bit strings
elemement-wise. Even if f is not itself a bijection, the mapping (x⃗, y⃗) 7→
(x⃗, f(x⃗) ⊕ y⃗) is bijective, hence Uf is a permutation of basis states.

We call this a quantum oracle for the function f . This construction
plays a central role in many quantum algorithms, since it allows us to query
a classical function f using a quantum state. If this is a basis state of the
form |x⃗, 0⟩, this essentially amounts to evaluating the function and storing
its output in the last qubit:

Uf |x⃗, 0⟩ = |x⃗, f(x⃗)⟩

However, choosing other input states allows us to query f in non-classical
ways, which if we are clever, can give us some extra quantum oomph.

50 The Quantum Circuit Model

2.3.2 Pauli and phase gates

The Pauli gates are single-qubit unitaries which will play a major role
throughout this book, especially in Chapters 6, 7 and 11. We’ve seen one of
the Pauli’s in the previous section already: the NOT gate, a.k.a. the Pauli
X gate. It is called such because it represents a 180◦ rotation around the
X-axis on the Bloch sphere:

NOT = X = X(π)

|+⟩|−⟩

There are two other canonical choices for ‘quantum’ NOT gates, corre-
sponding to 180◦ rotations around the Z and Y axes, respectively. Together,
these three maps form the single-qubit Pauli matrices:

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
(2.17)

All three of these matrices are unitary and self-adjoint (hence equal to their
own inverse), and multiplying any two of them gives the third one, up to
a factor of ±i. As a result, they generate a finite group called the (single-
qubit) Pauli group P1. We’ll have a lot more to say about Pauli groups in
Chapter 6.

As we already saw in Section 2.2.2, we can produce unitary rotations about
an axis of the Bloch sphere given by an ONB {|ϕ0⟩, |ϕ1⟩} as:

RB(α) = |ϕ0⟩⟨ϕ0| + eiα|ϕ1⟩⟨ϕ1|

Applying this to the X, Y, and Z basis, we obtain the X-, Y-, and
Z-phase gates as follows.

X(α) := |+⟩⟨+| + eiα|−⟩⟨−|
Y (α) := |+i⟩⟨+i| + eiα|−i⟩⟨−i|
Z(α) := |0⟩⟨0| + eiα|1⟩⟨1|

(2.18)

2.3 Gates and circuits 51

We also noted in Section 2.2.3 that the X(α) and Z(α) gates can generate
any single-qubit unitary, up to a global phase. Indeed we have:

Y (α) ∝ Z
(

− π
2

)
X (α) Z

(
π
2

) ∝ Z
(

π
2

)
X (−α) Z

(
− π

2

)
(2.19)

Remark 2.3.1 We write ∝ to mean equal up to a non-zero scalar factor. It
is important that we say non-zero, because 0 ·M = 0 ·N for any M,N , so if
we allowed 0 the statement becomes vacuous. In the case of equation (2.19)
above, this scalar is a global phase, which is always non-zero since |eiα| = 1
for all α.

From (2.18), there is an evident matrix presentation for Z-phase gates:

Z(α) =
(

1 0
0 eiα

)
We could also compute matrix presentations for X- and Y-phase gates from
(2.18), yielding matrices containing sums of 1, i, and eiα. However, it is often
more convenient when working concretely with the matrices to pass to an
equivalent (up to global phase) form using sine and cosine functions:

X(α) ∝
(

cos α2 −i sin α
2

−i sin α
2 cos α2

)
Y (α) ∝

(
cos α2 − sin α

2
sin α

2 cos α2

)
There are two Z-phase gates that crop up so often in quantum computing

that they have gained special names. These are the S gate S := Z(π2) and
the T gate T := Z(π4). Note that we have T 2 = S and S2 = Z. These names
‘S’ and ‘T’ don’t really mean anything (apart from that ‘T’ follows ‘S’ in the
alphabet), they are just names that people happened to decide on. In some
(especially older) quantum computing papers you might see people call the
S gate the P gate, where in this case ‘P’ stands for ‘Phase’. Some people
also refer to the T gate as the π

8 -gate. This is because:

T ∝
(
e−iπ

8 0
0 ei

π
8

)

2.3.3 Hadamard gates

The Hadamard, or H gate is a gate that sends the Z basis to the X basis,
and vice-versa:

H = |+⟩⟨0| + |−⟩⟨1| = |0⟩⟨+| + |1⟩⟨−| = 1√
2

(
1 1
1 −1

)

52 The Quantum Circuit Model

It can be visualised, like all self-inverse unitaries on qubits, as a 180◦

rotation of the Bloch sphere. This time, it is through the diagonal axis that
lies halfway between the X-axis and the Z-axis:

(2.20)

One way to see this is by computing the Euler decomposition of H:

H = Z
(

π
2

)
X
(

π
2

)
Z
(

π
2

)
As rotations of the Bloch sphere, this gives:

π
2

◦
π
2

◦
π
2

While it might not be immediately obvious from staring at the pictures
above that this indeed gives the rotation depicted in (2.20), you can probably
convince yourself this is true if you try it on a real world object. If you are
using a coffee cup or a beer can, we suggest draining it first.

We can write the effect of a Hadamard gate on computational basis ele-
ments compactly as follows:

H :: |x⟩ 7→ 1√
2

∑
y∈{0,1}

(−1)xy|y⟩ (2.21)

This behaviour of Hadamard gates, where it introduces a phase of −1 = eiπ

whenever the product of two boolean variables (in this case x and y) is 1, will
play a special role in Chapter 7, when we study the path sum representation
of quantum circuits.

We can generalise equation (2.21) to the action of n H-gates applied in
parallel to an n-qubit computational basis element as follows:

H⊗n :: |x⃗⟩ 7→ 1√
2n

∑
y⃗∈{0,1}n

(−1)x1y1+...+xnyn |y⃗⟩ = 1√
2n

∑
y⃗∈{0,1}n

(−1)x⃗·y⃗|y⃗⟩

(2.22)
where x⃗ · y⃗ is the dot product of the two vectors x⃗ and y⃗, taken modulo 2.
This works because, for an integer k, the value of (−1)k only depends on
where k is even or odd. This is sometimes called the Hadamard transform
of a vector, which is a type of discrete Fourier transform. We will discuss

2.3 Gates and circuits 53

different types of Fourier transforms, particularly in the context of boolean
logic, in Chapter 9.

2.3.4 Controlled unitaries

Controlled unitaries are unitaries where the first qubit acts as a control,
dictating whether the unitary U gets applied to the remaining qubits.

CTRL-U ::

|0⟩ ⊗ |ψ⟩ 7→ |0⟩ ⊗ |ψ⟩
|1⟩ ⊗ |ψ⟩ 7→ |1⟩ ⊗ U |ψ⟩

This can be seen as a sort of “quantum IF statement”:

IF q[0] THEN APPLY U TO (q[2] .. q[n-1])
ELSE DO NOTHING

Exercise 2.13 The CNOT gate is also often called the CX gate, because
it applies an X gate to the target if the control is |1⟩. We similarly also have
a CZ gate that applies a Z instead. We can construct this using a CNOT
and Hadamard gates as follows:

⊕H H

Find the matrix of the CZ by directly calculating the matrices involved in
the circuit above.

2.3.5 (Approximate) universality

A set G of gates is exactly universal if the gates in G can be combined to
construct any N -qubit unitary U . A typical example of an exactly universal
set of unitaries is G = {CNOT, H} ∪ {Z(α) | α ∈ [0, 2π)}. Using just H and
Z(α), we can produce X(α) = HZ(α)H. Hence, any single-qubit unitary can
be constructed via the Euler decomposition. What is trickier to show is that,
by combining single-qubit unitaries and CNOT, we get can any N -qubit
unitary. We will leave this as an exercise to the reader. :)

Since there are uncountably many N -qubit unitaries, exactly universal
sets of gates are necessarily infinite. As a result, it is often more convenient
to consider approximately universal (or simply universal) sets of gates,
which are able to approximate any N -qubit unitary up to arbitrarily high
precision. Put a bit more precisely:

54 The Quantum Circuit Model

Definition 2.3.2 For some ε > 0, a unitary U ′ ε-approximates U if for all
normalised states |ψ⟩, ∥U |ψ⟩ − U ′|ψ⟩∥ ≤ ε.

The more mathematically-inclined literature may say in this case that U
and U ′ are ε-close in the operator norm. Note that it is important we take
only the normalised states here (or at least states with some bounded norm).
Otherwise, two unitaries will never be ε-close unless they are equal, because
we can always just pick some huge number λ where ∥U(λ|ψ⟩) −U ′(λ|ψ⟩)∥ =
|λ| · ∥U |ψ⟩ − U ′|ψ⟩∥ > ε.

Definition 2.3.3 A set of gates G is approximately universal if for any
unitary U and ε > 0, we can construct a unitary U ′ using just gates from G
that ε-approximates U .

Unlike exactly universal sets of gates, approximately universal sets can be
finite. Perhaps the most commonly considered approximately universal set
of gates is the Clifford+T set:

Clifford+T := {CNOT, H, T := Z

(
π

4

)
}

This is called the Clifford+T set, because it is often regarded as adding the T
gate to this set:

Clifford := {CNOT, H, S := Z

(
π

2

)
}

Note that the Clifford circuits are a subset of the Clifford+T circuits, since
S = T 2.

Clifford+T circuits are approximately universal. While we won’t go into
the details here (they are covered in many standard quantum computing
textbooks), we can sketch a fairly simple argument. First, note that if we
can rotate around any axis of the Bloch sphere by an irrational multiple
of π that we can approximate any rotation around that axis: we just need
to keep going around and around until we land somewhere close. Then,
defining R = HTH, we can observe that TR is an irrational rotation around
some axis of the Bloch sphere and RT is an irrational rotation around some
different axis. Putting these together, we can approximate generic rotations
around two distinct axes, so that we can approximate any rotation. Then,
just like in the exactly universal case, as soon as CNOT gets involved, we
can boost up generic single-qubit unitaries to generic many-qubit unitaries.

The way we defined approximate universality, we are only asking that
the gate set can approximate any unitary, we are not asking that it can do
so with small overhead, or that we can find the approximation efficiently.

2.3 Gates and circuits 55

Luckily, we get those features for free. The Solovay-Kitaev theorem states
that if we have any finite set of single-qubit unitaries that can approximate
any single-qubit unitary arbitrarily well, then it can also do so efficiently
(to be precise: with a poly-logarithmic overhead in the precision 1/ε). The
algorithm is constructive, so it also tells you how to find this approximation.
In Chapter 10 we will describe a concrete approximation algorithm using the
Clifford+T gate set, which works even better than just using the Solovay-
Kitaev algorithm.

A consequence of the Solovay-Kitaev algorithm is that any finite approxi-
mately universal gate set is essentially equivalent to any other. If we requireN
gates for a particular circuit in one gate set, then we require O(N logc(N/ε))
gates in the other gate set if we want to approximate it up to an error ε.
Here c is a particular (small) constant that depends on the precise gate set
being used.

What all of this means is that we are essentially free to choose whatever
universal gate set we want, and it won’t change which unitaries we can
efficiently approximate.

Exercise 2.14 In this exercise we will see that the eigenvectors of the
Hadamard can be represented by a Clifford+T circuit. Let |H⟩ := |0⟩ +
(
√

2 − 1)|1⟩.

a) Show that |H⟩ is an eigenvector of the Hadamard gate. What is its
eigenvalue?

b) Give an eigenvector of the Hadamard with a different eigenvalue.
c) We will now work towards showing that |H⟩ can be constructed (up to

non-zero scalar) using a |+⟩ state and Clifford+T gates. First, note that
tan π

8 =
√

2 − 1, and then write |H ′⟩ = 2 cos π8 |H⟩ as a|0⟩ + b|1⟩ with a

and b written in terms of ±e±iπ
8 factors (you will need the result from

Exercise 2.2).
d) Now write e−iπ

8HS|H ′⟩ as a superposition of |0⟩ and |1⟩.
e) Give a sequence of Clifford+T gates G1, . . . , Gk such that Gk · · ·G1|+⟩ ∝

|H⟩.

Solution: .
|H ′⟩ := (ei

π
8 + e−iπ

8)|0⟩ − i(ei
π
8 − e− π

8)|1⟩. Then e−iπ
8HS|H ′⟩ =

√
2|0⟩ +√

2e−iπ
4 |1⟩. So S†HT †|+⟩ ∝ |H⟩.

End Solution .

56 The Quantum Circuit Model

2.3.6 Quantum circuit notation

A certain set of conventions for representing quantum circuits has developed
throughout the years that is affectionately called quantum circuit nota-
tion. We have already seen many aspects of this in this section: qubits are
represented by lines going from left to right, with multiple qubit lines being
drawn from top to bottom. Unitary gates are represented by boxes on these
qubits, usually with certain standardised names or symbols:

S

⊕
T

U

⊕

The NOT gate (the Pauli X) has one of these special symbols: ⊕. Adding
a control-wire to a unitary is represented by a black dot connected to that
unitary (a unitary controlled on the control being |0⟩ instead of |1⟩ is often
depicted with a white dot instead of a black dot, though we will not need
that in this book). A multi-qubit unitary, like U here, is a box connected to
multiple input and output wires. A SWAP gate is depicted as literally just
a swapping of the qubit wires.

Quantum circuit notation also allows for representing non-unitary com-
ponents like state preparations, measurements and classically controlled op-
erations. Consider for instance the following implementation of magic state
injection (see Section 3.3.1):

|T ⟩ +

S

Here the second qubit has a |T ⟩ in front to denote that this qubit is prepared
in the specific |T ⟩ := T |+⟩ state. The box with the arrow that looks a bit like
a meter on a dial represents a demolition measurement in the computational
basis that returns a classical value of 0 or 1 depending on if the measurement
outcome was |0⟩ or |1⟩. The doubled-up wire coming out of it on the right
represents a classical state, the outcome of the measurement. This classical
wire flows into the S gate, meaning this S gate is controlled on this classical
outcome: we only apply the S gate it the measurement outcome was 1.

Quantum circuit notation has been very useful in representing operations
one would want to run on a quantum computer. It is however not ideal when
trying to prove properties about computations, we will see a much more
versatile way to do that in the next chapter.

2.4 A dash of quantum algorithms 57

2.4 A dash of quantum algorithms
It might be a bit strange to spend this long talking about quantum circuits
and computations without saying much about what those computations
are actually being used for. Indeed we imagine all of the circuits we are
working with are part of a quantum algorithm. We have deliberately chosen
not to talk too much about algorithms in this book because we wanted to
focus on many other important aspects of quantum software like compiling,
verification/classical simulation, and error correction. However, in the interest
of being somewhat self-contained, we will give a brief taster of what a typical
“oracle-style” quantum algorithm looks like.

While it cannot be said for every quantum algorithm out there, many
algorithms (including Shor’s famous factoring/period finding algorithm) fit
a very simple template. We start with a classical function f that is easy
to describe (e.g. as a small boolean formula or program) and we want to
know some kind of global property P about f . Then, the quantum algorithm
proceeds as follows:

1. Prepare a superposition of computational basis states.
2. Apply the quantum oracle Uf to that state.
3. Measure some or all of the qubits (usually in a non-standard basis).
4. Perform some classical post-processing on measurement outcome(s) to

compute P .

The quantum oracle Uf is the unitary map derived from the classical
function f using the Bennett trick we explained in Section 2.3.1:

Uf |x⃗, y⃗⟩ = |x⃗, y⃗ ⊕ f(x⃗)⟩

By global property, we mean something that would classically require
evaluating f on (much) more than one input. The prototypical example is
the boolean satisfiability problem SAT, where we want to know if there exists
any bit string x⃗ such that f(x⃗) = 1. Naïvely, we might need to try lots and
lots of bit strings before we found one where f(x⃗) = 1.

For various reasons, the prospects of solving SAT on a quantum computer
are not looking too good (see the discussion on NP vs BQP in Section 2.5.3),
but we can still look to uncover other global properties about some function
f . The most exciting such algorithms extract a global property from f

exponentially faster than any known classical algorithm. However, these are
relatively elaborate to explain in detail, so for the sake of an example, we
will settle for something that is simply faster.

The Bernstein-Vazirani problem takes as input a function f from n

58 The Quantum Circuit Model

bits to a single bit. This function has a secret bit string s⃗ “hiding” inside, in
the sense that f(x⃗) = s⃗ · x⃗, where s⃗ · x⃗ is the dot product (modulo two) of
the vectors s⃗ and x⃗. Our task is simply to find s⃗.

This is a global property of f because there is no way to figure out s⃗ from
querying f on any single input. In fact, it is possible to show that, in order
to recover s⃗ classically, we will need to evaluate f on precisely n different
inputs. The easiest choice is just to take all of the bit strings e⃗i that have a
1 in the i-th place and 0’s everywhere else. Then f(e⃗i) = e⃗i · s⃗ = si, the i-th
component of s⃗.

However, quantumly, we can do this with just a single evaluation of the
quantum oracle Uf . The quantum solution to this problem is called the
Bernstein-Vazirani algorithm. To solve this problem, we simply perform
the following circuit on n+ 1 qubits:

0

0

0

−

..
.

H

H

H

..
.

H

H

H

Uf

s1

s2

sn

(2.23)

Then, with probability 1 (assuming no noise), the measurement outcome will
be precisely the n-bit string s⃗.

We can see that this works doing a concrete calculation involving bras and
kets. The details of this calculation are not too important, since we’ll see a
much nicer way to do this same derivation in the next chapter. However, this
is typical of the kinds of calculations one meets when showing the correctness
of a quantum algorithm.

First, we can simplify the presentation of the algorithm a little bit. Rather
than using a full Bennett-style oracle Uf on n + 1 qubits, we can use the
reduced oracle Vf .

Exercise 2.15 Show that Uf (I⊗|−⟩) = Vf⊗|−⟩, where Vf |x⃗⟩ := (−1)f(x⃗)|x⃗⟩.

This lets the |−⟩ “fall through” Uf in (2.23):

2.4 A dash of quantum algorithms 59

0

0

0

−

..
.

H

H

H

..
.

H

H

H

Uf =

0

0

0

−

..
.

H

H

H

..
.

H

H

H

Vf

Since the last qubit is not entangled with the first n qubits, we can simply
compute the state of the first n qubits to predict the measurement outcome.

Recall from Section 2.3.3 that H⊗n acts as follows:

H⊗n :: |x⃗⟩ 7→ 1√
2n

∑
y⃗∈{0,1}n

(−1)x⃗·y⃗|y⃗⟩

Since H is its own inverse, we also have

H⊗n :: 1√
2n

∑
y⃗∈{0,1}n

(−1)x⃗·y⃗|y⃗⟩ 7→ |x⃗⟩

This is enough to compute the state of the first n qubits. They start in
the initial state of |⃗0⟩ = |0⟩⊗n and evolve through the unitaries as follows:

|⃗0⟩ H⊗n

7−→ 1√
2n

∑
y⃗∈{0,1}n

(−1)0⃗·y⃗|y⃗⟩ = 1√
2n

∑
y⃗∈{0,1}n

|y⃗⟩

Vf7−→ 1√
2n

∑
y⃗∈{0,1}n

(−1)f(y⃗)|y⃗⟩ = 1√
2n

∑
y⃗∈{0,1}n

(−1)s⃗·y⃗|y⃗⟩

H⊗n

7−→ |s⃗⟩

Since the first n qubits end up in the computational basis state |s⃗⟩, if we
measure in the computational basis, we’ll get outcome s⃗ with certainty.

Hence, in a single quantum query, we obtain the hidden bit string s⃗. As
long as we are forced to treat f as a black box (i.e. the only thing we can
do classically is query values f(x⃗)), this is polynomially better than any
classical algorithm. However, there is a variation of this problem, called
Simon’s problem which is in fact exponentially better in terms of query
complexity.

In Simon’s problem, we are given a function f from n-bit strings to n-bit
strings. It also hides a secret bit string s⃗, but in a more subtle way. We
promise that f(x⃗) = f(y⃗) if and only if y⃗ = x⃗⊕ s⃗ for some fixed bit string s⃗.

In order to find s⃗ classically, we need to find a collision, i.e. a pair of
distinct x⃗ and y⃗ such that f(x⃗) = f(y⃗), or prove that no such collision exists.

60 The Quantum Circuit Model

Classically, the best strategy is just querying f at random, as we will expect
to find a collision after about

√
2n queries. Quantumly, we can solve this

using a circuit that looks very similar to the one before, but with Uf now
having 2n qubits, instead of n+ 1, since f outputs n qubits:

0

0

0

..
.

H

H

..
.

H

HUf

t1

tn

..
.

0

..
.

With a bit of work, we can show that the measurement outcome t⃗ that
pops out isn’t s⃗ itself, but it satisfies the property that s⃗ · t⃗ = 0. Furthermore,
we are equally likely to get any bit string t⃗ satisfying this property, so if we
run this quantum part over and over again, pretty soon we get a system of n
independent linear equations involving s⃗, so we can solve for s⃗. (Note, we’ll
talk a lot more about doing linear algebra with bits in Chapter 4.)

Remark* 2.4.1 While we won’t give the derivation for Simon’s problem
here, it is part of a whole family of problems called hidden subgroup prob-
lems which have an efficient quantum solution. You can find a diagrammatic
derivation in Picturing Quantum Processes, Chapter 12.

As mentioned before, many algorithms follow the broad outline we gave at
the beginning of this section. A variation on this theme is the “Grover-like”
family of algorithms, which include Grover’s quantum search algorithm as a
prototypical example, where now Uf is called many times, with a thin layer
of quantum gates between each iteration.

[TODO: Wrap up here. Maybe a Grover picture, then say there are other
kinds of algorithms, see Further Reading as well as Chapter 7 for a brief
discussion of q.simulation.]

2.5 A dash of complexity theory
In Section 2.3.5 above we wrote O(N logc(N/ε)) to denote how fast a function
would grow. Expressions like these and some other concepts from complexity
theory will crop up here and there throughout the book, so we will give a
quick primer in this section. We will keep this mostly informal, as we won’t
be needing any really formal complexity-theoretic definitions in this book.

2.5 A dash of complexity theory 61

2.5.1 Asymptotic growth

Let’s give a formal definition of what it means for something to be bounded
by some polynomial.

Definition 2.5.1 We say a function f : N → N is of order O(nk) for
some k ∈ N when there is some constant c ∈ N such that f(n) ≤ cnk

for all n ∈ N.

The notation O(nk) is known as big O notation. When a function is
O(nk) it means that it grows at most as quickly as the function nk. Note
that an equivalent definition is that the quotient f(n)/nk stays bounded
as n increases. For a function, its order only depends on the factors in the
function that grow the quickest. For instance, if we had f(n) = 3n5 + 400n2,
then f is O(n5), as for large values of n, the n5 term contributes more and
more to the value of f . Note that if a function is O(nk) that it is also O(nk′)
for any k′ > k.

Exercise 2.16 Prove that the function f(n) = 3n5 + 400n2 is order O(n5)
but not O(n4).

The reason we care about the order of functions is that it allows us to say
which functions end up growing the quickest in ‘the asymptotic limit’, where
the input to the function is (very) large. Suppose for instance that f and
g are two functions that measure the runtime of two algorithms for solving
the same problem and that g is O(n2) while f is O(n3) (but not O(n2)).
Then we know that there will be some (possibly very large) N such that for
any n > N we have f(n) > g(n), and furthermore, that as we increase n
that the value of f will speed away from that of g. So because the order of
g is lower than that of f we know that eventually it will be better to run
the algorithm corresponding to g. But note that we could have for instance
f(n) = n3 while g(n) = 1000n2 so that the switchover would only come for
n > 1000.

In the definition above we only talked about O(nk), but we could really
replace nk with any monotonically increasing function. For instance, we
could say a function f is order O(2n/ log(n)) meaning that f is bounded
by some constant multiple of the function 2n/ log(n). Additionally, we could
consider a function of multiple variables, like f(n, k), and say for instance
that it is O(k2n), meaning that f grows slowly when you increase k, but
really fast when you increase n.

In this book we will often say something is ‘efficient’ to calculate. What
we mean by this is that if we let f(n) be an upper bound on the cost of

62 The Quantum Circuit Model

calculating an instance of the problem of size n, that this f is order O(nk)
for some k. In words: there is some polynomial that upper-bounds f . What
do we mean here by ‘size’? This depends on the thing we want to calculate!
Generally, there will be some set of size parameters that determine how
much data we need to specify the problem instance that we want to calculate
something about. For instance, if we wished to calculate something about
a quantum circuit, then the relevant size parameters might be the number
of qubits and the number of gates in the circuit. When we say something
is efficient to calculate, it should be taken to mean ‘efficient in all relevant
parameters’ unless we say otherwise. For an example of something that is
efficient in one parameter, but not in another we could look at calculating
the matrix of a quantum circuit. This scales linearly with the number of
gates, but exponentially with the number of qubits, and so we might say this
problem is ‘efficient in the number of gates’.

An important note must be made here, and that is that ‘efficient’ should
be taken with a grain of salt. We say something is efficiently calculable
when the calculation time is bounded by some polynomial. But what if this
polynomial is n100? In that case a computer would quickly need to run for
thousands of years for even small values of n. The reason computer scientists
have decided to make the benchmark of ‘efficient’ be ‘polynomial’, is because
it is the smallest useful class of orders that is closed under composition: if
we have an algorithm taking polynomial time that is used as a subroutine
in another program which is called a polynomial number of times, then
the resulting algorithm still takes polynomial time. With this definition we
can hence safely combine efficient programs and be ensured that the result
is still ‘efficient’. Another caveat is that while it is technically possible for
an algorithm to have a runtime that scales with n100, in practice, most
polynomial time algorithms used in the real world have a complexity where
the exponent is small, such as O(n3).

Ultimately, the only real way to know whether an algorithm is efficient is
to implement it on a computer and benchmark it on the problem instances
you care about.

2.5.2 Classical complexity classes

We can classify problems in terms of how hard they are to solve in the
asymptotic case. We call these classes complexity classes. We have for
instance the complexity class P that contains all the problems that can be
solved deterministically in polynomial time. We have to be a bit careful
here by what we mean by ‘problem’. P is a class of decision problems.

2.5 A dash of complexity theory 63

These are problems where the answer is either yes or no, true or false, 0 or
1. An example problem that is in P is determining whether a given input
bit string returns 1 when we apply a given Boolean function to it. We often
care about problems where the answer is not just a yes or no answer, but
where we have a more complicated type of output, like an integer, a matrix,
or a quantum circuit. We call such problems function problems, and the
complexity class of function problems that can be solved deterministically
in polynomial time is called FP. For instance, adding or multiplying two
numbers is in FP, and so is Gaussian eliminating a matrix. We consider the
complexity classes P and FP as containing the problems that are efficiently
solvable.

Probably the most (in)famous complexity class is NP, standing for Non-
deterministic Polynomial time. NP contains the problems you could effi-
ciently solve if you had a computer where every time you had to make a
decision, you could actually run both branches in parallel, and as long as
one of the branches returns ‘yes’, the whole computation returns ‘yes’. This
definition is a bit mind-bending to think about, but luckily there is an easier
way to think about NP: it contains the problems where we can verify the
solutions in polynomial time. Suppose for instance I am given a half-finished
sudoku, and I’m asked whether this sudoku can actually be finished. The
only way I might be able to do that is just trying to finish the sudoku and
see if I got stuck. This can be quite inefficient (especially if you are bad at
sudoku). If someone gives you a completion of the sudoku however, it is easy
to check that it was filled in correctly, and hence that the sudoku is indeed
solvable.

A canonical problem that is in NP is determining whether a given Boolean
formula f : Fn2 → F2 can be satisfied, that is whether there exists an x⃗ ∈ Fn2
such that f(x⃗) = 1. If we are given an x⃗ such that f(x⃗) = 1, then we can easily
check this is the case by just calculating what f does on x⃗. This problem of
Boolean satisfiability, or SAT for short, is in fact an NP-complete problem.
That means it is among the ‘hardest’ problems in NP. More specifically, if
we have some algorithm for solving SAT, then we can use this to solve any
other problem in NP with at most polynomial overhead.

Arguably the most famous problem in computer science is whether P ̸=
NP. That is, whether there are any problem for which we can efficiently check
the solution, but we cannot efficiently find the solution. Most researchers
believe this is the case, but through decades of effort we still do not know
the answer. In the complexity theory literature you will find many results
that are conditional on P ̸= NP (or on similar claims about complexity
classes not being equal to each other): “If the problem X is easy to solve,

64 The Quantum Circuit Model

then P = NP, hence we think that X is not easy to solve.” In this book we
will also sometimes make claims like these, when we want to argue that we
don’t expect to be able to solve some problem efficiently.

2.5.3 BQP

The classes P and NP are classical, in the sense that they describe problems
that a classical computer can (not) efficiently solve. In this book we will
obviously also care about which problems a quantum computer can (not)
efficiently solve. To define the relevant complexity class, we will first define
another classical complexity class.

The class BPP contains the decision problems that can be solved with
Bounded error, Probabilistically, in Polynomial time. That is, we are allowed
to solve the problem using an algorithm that makes random probabilistic
choices, and that is allowed to make some errors, as long as it gives the right
answer in the (vast) majority of cases. We have P ⊆ BPP, but we don’t
know whether they are equal.

The class of problems efficiently solvable by a quantum computer is defined
similarly to BPP. The class BQP contains the decision problems that can
be solved with Bounded error, using a Quantum computer, in Polynomial
time. Formally, we would construct a particular quantum circuit based on the
particular instance of the problem (this translation into a quantum circuit
would be given by some classical algorithm running in polynomial time), and
then measure a single qubit. Our answer is then whether this qubit gives
the outcome 0 or 1. In practice we probably want to post-process the output
of a quantum computer, or run the computation many time to gather more
statistics, but formally we can make all these steps also ‘quantum’, so that
there is just one big quantum computation taking care of everything, hence
why BQP is defined this way. Note that we haven’t specified what gate set
the quantum computer is using. Because all approximately universal gate
sets are essentially equivalent (Section 2.3.5), this is fine, and the complexity
class is the same regardless of which gate set is being used.

We have of course P ⊆ BPP ⊆ BQP. It is not known whether NP ⊆
BQP or BQP ⊆ NP or if neither is the case. It is widely believed that NP ̸⊆
BQP, and hence that NP-complete problems like SAT should not have an
exponential speed-up on a quantum computer, but at most a polynomial
speed-up.

The final complexity class we will consider is a quantum analogue to
NP. Quantum Merlin-Arthur (we will let the reader speculate where this
name comes from), or QMA for short, is the class of decision problems that

2.6 Summary: What to remember 65

a quantum computer can verify with high probability. A problem that is
QMA-complete is for instance determining whether a given quantum circuit
is equal to the identity, or is far away from being the identity, promised
that one of these is the case: given a circuit not equal to the identity, there
will be a state that is mapped to something quite different, and hence when
giving the verifying quantum computer this state, it can run the circuit and
see that it is indeed mapping this state to something else by doing some
appropriate measurement.

[TODO:

• Quantum oracles and query complexity
• Example: Simon’s algorithm
• A whirlwind tour of quantum algorithms

– Oracle-based
– Quantum random walks
– Hybrid algorithms and gate-based optimisation
– Quantum simulation
– Quantum machine learning
– QNLP?

]

2.6 Summary: What to remember
1. A tensor is a generalisation of a matrix that can have any number of

inputs and outputs.
2. A tensor network is a linear map built out of tensors by tensor product

and contraction.
3. A string diagram is a graphical representation of a tensor network where

the tensors are boxes, and wires connecting boxes denote contractions.
4. Deforming a string diagram by moving tensors around or bending wires

preserves the meaning the map.
5. We can summarise the basics of quantum theory with the SCUM model:

• States are represented by normalised states on a complex Hilbert
space.

• Compound systems are made by taking the tensor product of their
Hilbert spaces.

• Unitaries describe the dynamics of a system.
• Measurements follow the Born rule.

66 The Quantum Circuit Model

6. The quantum circuit model represents a quantum computation by start-
ing with a simple state, and then applying a sequence of gates, unitaries
usually acting on a small number of qubits, before finally measuring the
qubits in a fixed basis.

7. The state-space of a qubit can be modelled by the Bloch sphere. Single-
qubit unitaries then correspond to rotations of this sphere. Using Euler
angles any unitary can be decomposed into rotations along the Z- and
X-axis.

8. Other useful quantum gates include the CNOT, CZ, Hadamard, and
Toffoli.

2.7 Advanced Material*

2.7.1 Quantum mixed states and channels*

This first “Advanced Material” section isn’t really that advanced, but it
is optional, since we will focus on pure quantum states and operations for
almost the entirety of this book. However, for the sake of completeness, we
will briefly explain how to model more general states and processes, as this
can often be more convenient for certain calculations.

Pure quantum states and processes are the correct mathematical objects
for representing a quantum system in isolation evolving according to a process
that is completely known. Of course, this never happens in the real world.
The way we model all physical processes is necessarily a simplification, where
we choose to disregard parts of the system which (we hope!) won’t have too
big of an effect on the outcome. When we do this, we limit the knowledge
and degree of control we have over a quantum state. We can model these
limitations in a rigorous mathematical way using quantum mixed states
and channels.

A quantum mixed state is a generalisation of the pure states we saw before,
and can be used to model one of two seemingly different scenarios which
actually turn out to be mathematically identical in quantum theory. A mixed
state can capture:

1. an unknown member of a fixed set of pure states, which are drawn from
a classical probability distribution, or

2. part of a quantum pure state on two systems where we don’t know (or
care) what happens to the state on one of the systems.

Situation 1 above is sometimes called an ensemble, whereas situation 2 is
called the reduced state. From a practical point of view, the only utility

2.7 Advanced Material* 67

of a quantum state is to provide just enough data to compute Born rule
probabilities of measurements. To do that in either of these situations, we
just need the following data.

Definition 2.7.1 A quantum mixed state on a Hilbert space H is a positive
operator ρ : H → H such that Tr(ρ) = 1.

We say that mixed states generalise pure states because, for every pure
state |ψ⟩, the associated ket-bra |ψ⟩⟨ψ| is a positive semi-definite operator
where Tr(|ψ⟩⟨ψ|) = ⟨ψ|ψ⟩ = 1. A nice feature of this representation is
that the need to consider states “up to” a global phase is now handled
automatically:

eiα|ψ⟩ ⇝ (eiα|ψ⟩)(e−iα⟨ψ|) = eiαe−iα|ψ⟩⟨ψ| = |ψ⟩⟨ψ| ⇝|ψ⟩

A recurring theme with mixed states is that things we said with inner
products for pure states can now be stated in terms of the trace of a linear
map. Normally, if we specialise to pure states, we can use the cyclicity of
the trace (i.e. that Tr(AB) = Tr(BA)) to recover our original pure state
concept.

For example, if we fix a measurement {M1, . . . ,Mm}, the Born rule for
mixed states says that Prob(i | ρ) = Tr(Miρ). Specialising to pure states
gives the Born rule from the previous section:

Prob(i | |ψ⟩⟨ψ|) = Tr(Mi|ψ⟩⟨ψ|) = ⟨ψ|Mi|ψ⟩

If we have situation 1 above of an ensemble of pure states, i.e. a collec-
tion of pure states {|ψ1⟩, . . . , |ψk⟩} drawn from a probability distribution
{p1, . . . , pk}, we can represent this as:

ρ =
∑
j

pj |ψj⟩⟨ψj | (2.24)

Applying the Born rule gives:

Prob(i | ρ) = Tr(Mi(
∑
j

pj |ψj⟩⟨ψj |)) =
∑
j

pj⟨ψj |Mi|ψj⟩ =
∑
j

pjProb(i | |ψj⟩)

In other words, it is the sum over all of the different ways we could have gotten
outcome i, weighted by the appropriate probabilities. This is exactly how
classical probability theory would tell us we should compute this quantity.

For situation 2 of a reduced state, we can represent ρ as

ρ =
∑
j

(I ⊗ ⟨j|)|Ψ⟩⟨Ψ|(I ⊗ |j⟩) (2.25)

We saw this operation, the partial trace, at the end of Section 2.1.6. Notably,

68 The Quantum Circuit Model

it doesn’t depend on the choice of ONB {|j⟩} and can be graphically depicted
as:

Ψρ =
∑

j Ψ
j j

= ΨΨ

Now, it is easy to check that, for any measurement on the first system,
the Born rule for ρ gives:

Prob(i | ρ) =
∑
j

Prob(ij | |Ψ⟩⟨Ψ|)

That is, we get the same thing as if we measured both systems of the pure
state |Ψ⟩⟨Ψ|, and then marginalised over the second measurement outcome.
Since Eq. (2.25) doesn’t depend on the choice of ONB {|j⟩}, it actually
doesn’t matter which measurement we did on the second system, so this is
like not knowing or caring what happened to it.

Notably, both (2.24) and (2.25) can represent a generic trace-1 positive
operator ρ, so they are equivalent.

Quantum mixed states are the most general representation of a quantum
state in quantum theory. The most general representation of a process is a
quantum channel. This is a linear map which completely preserves the set
of quantum states. That is, a quantum channel Φ should have the property
that if ρ is a quantum state in H, then Φ(ρ) should be a quantum state
in H′. However, this is not quite strong enough, because we need to take
compound systems into account.

Let L(H) be the vector space of linear operators from H to itself. Then Φ
should be a linear map from L(H) to L(H). This is sometimes called a linear
super-operator. We can define the tensor product of linear super-operators
as follows:

(Φ ⊗ Ψ)(eij ⊗ ekl) := Φ(eij) ⊗ Ψ(ekl)

where eij represents the matrix containing a single 1 in position (i, j) and
zeros everywhere else. Since such matrices span the whole space of operators,
this fully defines Φ ⊗ Ψ by linearity.

For a map Φ to be a quantum channel, it should not only preserve the set
of quantum mixed states when it is applied to the whole state, but it should
also preserve the set of states when it is applied to just one subsystem. We can
say this in terms of the tensor product of Φ with the identity superoperator
1K(ρ) := ρ on an arbitrary Hilbert space K.

Definition 2.7.2 A linear super-operator Φ : L(H) → L(H′) is called

2.8 References and further reading 69

a quantum channel if for any Hilbert space K and any trace-1 positive
operator ρ ∈ L(H ⊗ K), (Φ ⊗ 1K)(ρ) is also positive and trace-1.

Just like in the case of states, pure maps can be interpreted as a special
case of quantum channels. For any unitary U , we can form the unitary
channel Û(ρ) := UρU †. If we apply such a channel to a pure state, it will
send the ket-bra of |ψ⟩ to the ket-bra of U |ψ⟩, as expected:

Û(|ψ⟩⟨ψ|) = U |ψ⟩⟨ψ|U † = U |ψ⟩(U |ψ⟩)†

There is a lot that can, and has, been said about quantum channels. For
this, we refer the interested reader to one of the textbooks in the References
for this chapter. For the purposes of this book, we will conclude with one of
the most useful tools for doing concrete calculations with channels.

Theorem 2.7.3 (Kraus Representation Theorem) A linear super-operator
Φ : L(H) → L(H′) is a quantum channel if and only if there exists a set
of linear operators {Bj : H → K}i called the Kraus operators, such that
Φ(ρ) =

∑
j BjρB

†
j and

∑
j B

†
jBj = I.

Clearly unitary channels are a special case, but this allows more general
maps such as probabilistic mixtures of unitaries like:

Φ(ρ) =
∑
j

pjUjρU
†
j

and even more general things such as discarding our state all together and
preparing a fixed pure state.

Exercise 2.17 Show that the super-operator Φ(ρ) := Tr(ρ)|0⟩⟨0| is indeed
a quantum channel by giving its Kraus operators. Show that furthermore it
cannot be written as a probabilistic mixture of unitaries.
Solution: .
Let Bj := |0⟩⟨i|. Then Φ(ρ) =

∑
j |0⟩⟨j|ρ|j⟩⟨0| = Tr(ρ)|0⟩⟨0| as required. As-

sume Φ is a mixture of unitaries. Then Φ(I) would have to be
∑
j pjUjIU

†
j =

I, but Φ(I) = |0⟩⟨0| which gives a contradiction.
End Solution .

2.8 References and further reading
On the origin of quantum computing There is a rich history of connections
between physics and computation in the early 20th century, typified by the
works of Landauer (1961) connecting principles of information, computation,
and thermodynamics. Inspired by these lines of thought, Paul Benioff (1980)

70 The Quantum Circuit Model

showed that a Turing Machine could be accurately modelled by quantum
mechanics, but stops short of using quantum processes to go beyond classical
computation. At the same time, on the other side of the Iron Curtain, Yuri
Manin (1980) proposed the first thing to look something like a genuine quan-
tum computer in his book Computable and Uncomputable, in the form of a
“quantum automaton” that can make use of superposition and entanglement
for its computations. One year later, and seemingly independently, Richard
Feynman (1982) quipped that “Nature isn’t classical, dammit” and went on
to lay out a proposal for how something like a quantum computer could be
used to simulate quantum phenomena, a problem that seems to intractable
on a classical computer.

Quantum Turing machines The first universal quantum computer, in the
sense that we understand today, was described by David Deutsch (1985), us-
ing the formalism of quantum Turing machines. Quantum Turing machines
are analogous to classical Turing machines, but with the “tape” replaced
by Hilbert spaces and the typical read/write operations replaced by quan-
tum operations. It is interesting to note that Deutsch’s original paper was
motivated largely by answering foundational questions about the nature
of quantum physics and computation. Deutsch, a lifelong proponent of Ev-
erett’s “Many worlds” interpretation of quantum theory, emphasises that the
parallelism present in the quantum Turing machine is something that cannot
be meaningfully captured by any classical description of computation, and
claims in the abstract of his seminal paper: “The intuitive explanation of
these properties places an intolerable strain on all interpretations of quantum
theory other than Everett’s.”

Quantum circuits While quantum Turing machines give a universal model
of quantum computation, their definition is somewhat unwieldy. Hence, a
few years later they were largely superseded by another universal model of
quantum computation, also due to Deutsch (1989), which is now called the
quantum circuit model. Deutsch himself called quantum circuits “quantum
networks”, and this may have been a more appropriate name. As we noted
at the beginning of this chapter, the analogy between classical and quantum
circuits is already somewhat strained. However, this name stuck, and it was
the name used by Chi-Chih Yao (1993) when he showed the polynomial-time
equivalence of the quantum circuit model with quantum Turing machines.

Universal gate sets The notion of universal sets of gates for quantum cir-
cuits goes all the way back to the first papers in the field. Deutsch (1985)

2.8 References and further reading 71

showed that arbitrary classical reversible computation plus a generating set
of single-qubit unitaries is approximately universal for quantum computation.
Since any classical reversible computation can be generated from the Toffoli
gate, this implies that 3-qubit gates are universal for quantum circuits. This
was made slightly stronger in Deutsch (1989), where Deutsch showed that
a single 3-qubit gate and ancillae could be used to approximate arbitrary
n-qubit unitaries. However, the question of universality with 2-qubit gates
remained open until DiVincenzo (1995) showed that 2-qubit gates gener-
ate the entire family of n-qubit unitaries. That same year, the result was
strengthened to show that a controlled-NOT gate and single-qubit unitaries
suffice for universal computation (Barenco et al., 1995). What is now known
as the Solovay-Kitaev theorem, that any approximately universal gate set
can approximate any other arbitrarily well with just a poly-logarithmic over-
head, was first announced by Solovay in 1995 and independently proved by
Kitaev (Kitaev, 1997, Lemma 4.7). A good reference for this result is Dawson
and Nielsen (2005).

Quantum algorithms Following the formalisation of the quantum circuit
model, many influential quantum algorithms started to appear in the 1990s,
such as the Deutsch-Jozsa algorithm (Deutsch and Jozsa, 1992), Shor’s fac-
toring algorithm (Shor, 1994, 1997), and Grover’s search algorithm (Grover,
1996). The hidden subgroup algorithm, along with its encoding of Shor’s fac-
toring algorithm and Simon’s problem, was given by Jozsa (1997). Quantum
algorithms is now a huge area, which we hardly touch on in this book, but
there are many excellent resources out there. A standard starting point is
Nielsen and Chuang’s canonical textbook Quantum computation and quan-
tum information (Nielsen and Chuang, 2010). Some overviews and surveys
of quantum algorithms include (Mosca, 2008), (Ambainis, 2010), (Monta-
naro, 2015), and (Dalzell et al., 2023). Finally, the Quantum Algorithms Zoo
(2022) is an excellent online resource which has collected and categorised
many quantum algorithms.

Quantum complexity theory The complexity class BQP was defined by Bern-
stein and Vazirani (1997) and used to give evidence, by means of an oracle
separation proof, that bounded-error quantum computation is strictly more
powerful (in a complexity-theoretic sense) from bounded-error probabilistic
classical computation. The complexity class QMA was defined by Kitaev,
apparently in a 1999 lecture at Hebrew University (Aharonov and Naveh,
2002), in order to give quantum analogues of the complexity class NP and
the famous Cook-Levin theorem for the NP-completeness of SAT.

72 The Quantum Circuit Model

Quantum programming There are a number of higher-level quantum pro-
gramming languages. The first attempt at a practically usable Quantum
Programming Language (QPL) that went beyond a theoretical framework
like quantum Turing machines or quantum lambda calculus was the im-
perative language QCL originally presented in Ömer’s Master thesis in
2000 (Ömer, 2002). A more modern and more developed functional language
is Quipper (Green et al., 2013), which is an embedded language in Haskell.
Microsoft released their Q# in 2017, which is based on C# (Microsoft, n.d.).
The main challenge of a quantum programming language is to deal with
the interactions between classical and quantum information, with quantum
variables for instances not being able to be cloned or freely read out. Every
high-level QPL needs to compile down into low-level instructions that can be
more easily understood by physical quantum devices. A useful intermediary
language for this is Open Quantum Assembly, known as OpenQASM (Cross
et al., 2017), which at the time of writing sits at version 3.0 (Cross et al.,
2022). There are also a number of integrated programming environments and
compilers that offer the user a combination of features related to program-
ming high-level algorithms, transpile this down to lower level QASM, and
compiling it further down into machine-specific instructions. Some examples
include IBM’s Qiskit (IBM, n.d.), Quantinuum’s TKET (Quantinuum, n.d.),
Xanadu’s PennyLane (Xanadu, n.d.), or the library written by the authors
of this book, PyZX (Kissinger and van de Wetering, 2020a).

Learning quantum computing In addition to the books we mentioned in
Section 1.1.1, there are many sets of lecture notes that provide a good
all-around introduction to quantum computing. For a strong emphasis on
algebraic and quantum information theoretic aspects, a good resource is the
lecture notes of Watrous (2006), which later became a textbook (Watrous,
2018). Another excellent set of lecture notes is that of John Preskill (2015),
which contains among many other things a very nice introduction to stabiliser
theory and quantum error correction, which we’ll cover in Chapters 6 and
11, respectively.

[TODO: there is surely a lot more that could be said about algos, com-
plexity, universality, etc. Feel free to add stuff.]

3
The ZX-Calculus

Now that we have covered the basic concepts of quantum computing, it
is time to do some interesting stuff. In the previous chapter we discussed
string diagrams and how they can be used to represent linear maps and,
in particular, quantum circuits. Actually calculating the linear map they
represent is tedious though, and in some cases also (impossibly) hard, as the
dimension of the spaces involved scales exponentially in the number of qubits.
It would then certainly be nice if we could work directly with string diagrams
instead. In this chapter we will introduce the ZX-calculus, a graphical
language that works with a particular type of string diagrams we call ZX-
diagrams. These ZX-diagrams can represent any quantum computation. In
addition, the ZX-calculus gives us rules for manipulating ZX-diagrams. In
this way we can prove interesting properties of states, unitaries, projections,
or any other linear map between qubits we want, all the while working with
diagrams instead of those pesky matrices.

In this chapter we will see how to represent quantum circuits as ZX-
diagrams, and how to use the basic rules of the ZX-calculus to start proving
some interesting things about them. We will just barely be scratching the
surface however, as there is much more to be said about the things we can
do with the ZX-calculus. In fact, we will be spending the rest of the book
doing exactly that!

3.1 ZX-diagrams

3.1.1 Spiders

ZX-diagrams arise as compositions and tensor products of the following basic
linear maps:

74 The ZX-Calculus

Z-spiders X-spiders

..
. α ..
. =

|0 · · · 0⟩⟨0 · · · 0| + eiα|1 · · · 1⟩⟨1 · · · 1|

..
. α ..
. = |+ · · · +⟩⟨+ · · · +| +

eiα|− · · · −⟩⟨− · · · −|

These generators are called spiders for no other reason than the fact that
they look a bit like spiders when you draw them.

Let’s focus on the Z-spider. Most of what we say will also be true of the
X-spider, by symmetry. First, note this is actually not just a single map, but
a family of linear maps of the form:{

Znm[α] : (C2)⊗m → (C2)⊗n
∣∣∣∣ m,n ∈ N, α ∈ [0, 2π)

}
where the notation (−)⊗n means ‘n tensor copies’, e.g.

(C2)⊗n := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n

∼= C2n

The number m is the number of input ‘legs’ and the number n is the number
of output ‘legs’. These two numbers together are called the arity of a spider.
These correspond to the number of qubits which the map takes as input and
output, respectively:

Znm[α] := m

{

..
. α ..
.

}
n = |0⟩⊗n⟨0|⊗m + eiα|1⟩⊗n⟨1|⊗m (3.1)

where ⟨j|⊗m and |j⟩⊗n are the m- and n-fold tensor products of bras and
kets, respectively, and we take the convention that (...)⊗0 = 1.

Keep in mind that, just like in circuit notation, the ordering of composition
is flipped between the picture and the bra-ket expression. For example, wires
coming in the left side of the diagram above correspond to bras which actually
appear on the right side of the bra-ket expression. That’s why the m’s and
n’s seem to have flipped around in equation (3.1).

We can also describe a Z-spider in matrix notation. Start with a 2n × 2m
matrix of all 0’s, then add a 1 to the top-left corner and an eiα to the
bottom-right corner:

..
. α ..
. =

1 0

0 0 . . .
. . . 0 0

0 eiα

3.1 ZX-diagrams 75

When m = n = 0, we’ll get a 20 × 20 = 1 × 1 matrix (i.e. a scalar), so the
top-left corner is the bottom-right corner. In that case, the resulting scalar
is 1 + eiα:

α = 1 + eiα.

Unlike quantum gates, Z-spiders can have a different number of inputs
from outputs, and hence do not need not be unitary. In fact, they are often
not even invertible.

Exercise 3.1 Show that for m > 0, n > 0, Z-spiders always correspond
to matrices with rank 2. What are the other possibilities for the rank of a
Z-spider if m or n is 0?

However, when m = n = 1, Z-spiders are unitary and correspond to the
familiar Z-phase gates we met in the previous chapter:

α = Z(α) = |0⟩⟨0| + eiα|1⟩⟨1| (3.2)

We don’t always write angles on spiders, in which case the ‘default’ angle is
assumed to be 0:

..
.

..
. := ..
.

0 ..
. = |0⟩⊗n⟨0|⊗m + |1⟩⊗n⟨1|⊗m

We will call such spiders phase-free. Some familiar quantum states arise
out of phase-free Z-spiders when m = 0. Namely, we obtain (unnormalised)
Bell, GHZ, and n-fold GHZ states:

= |00⟩+|11⟩ = |000⟩+|111⟩ ..
. = |0⟩⊗n+|1⟩⊗n

To normalise these states, we should multiply both sides in these examples
by 1√

2 . We will indicate a scalar multiple of a ZX-diagram just like we would
for any other kind of linear map. For example:

1√
2 · := 1√

2 (|000⟩ + |111⟩)

Most the time we won’t bother with normalisation unless it really matters.
It usually doesn’t.

Finally, looking at Z-spiders with a single output leg and α ∈ {0, π}, we
can construct X-basis (a.k.a. “plus” basis) elements |+⟩ and |−⟩, again up
to normalisation:

1√
2 · = 1√

2 (|0⟩ + |1⟩) =: |+⟩
1√
2 · π = 1√

2 (|0⟩ − |1⟩) =: |−⟩
(3.3)

76 The ZX-Calculus

X-spiders are pretty much the same as Z-spiders, but everything is defined
relative to the X-basis rather than the Z-basis:

Xn
m[α] := m

{

..
. α ..
.

}
n = |+⟩⊗n⟨+|⊗m + eiα|−⟩⊗n⟨−|⊗m (3.4)

Hence, all of the special cases highlighted above apply equally well to X-
spiders, after substituting 0 ↔ + and 1 ↔ −. In particular, when m = n = 1,
the X-spider is unitary and represents the X-phase gate:

α = X(α) = |+⟩⟨+| + eiα|−⟩⟨−| (3.5)

It will be useful for us to calculate the definition of an X-spider in terms
of the Z-basis. This will enable us, for example, to do concrete matrix cal-
culations involving both kinds of spiders, as well as understand some of the
interaction properties we’ll meet later in this chapter.

We’ll start with the basis states. Note that the Z and the X bases have a
symmetric presentation with respect to each other:

|+⟩ = 1√
2 (|0⟩ + |1⟩)

|−⟩ = 1√
2 (|0⟩ − |1⟩)

|0⟩ = 1√
2 (|+⟩ + |−⟩)

|1⟩ = 1√
2 (|+⟩ − |−⟩)

Consequently, we can modify (3.3) to get an expression for the two Z-basis
states:

1√
2 · = 1√

2 (|+⟩ + |−⟩) =: |0⟩
1√
2 · π = 1√

2 (|+⟩ − |−⟩) =: |1⟩
(3.6)

Notice that X-spiders are used to construct Z-basis states and vice-versa.
This is a common “gotcha” in ZX-calculation: to get basis elements, make
sure you use spiders of the opposite colour.

Now, let’s calculate the matrix for the special case where α = 0, m = 2
and n = 1:

= |+⟩⟨++| + |−⟩⟨−−| (3.7)

If we expand the first term in the expression above, we’ll get a sum over all
8 possible combinations of Z-basis elements, times the normalisation factor:

|+⟩⟨++| = 1
2
√

2 ·
(

|0⟩⟨00| + |0⟩⟨01| + |0⟩⟨10| + |0⟩⟨11|

+ |1⟩⟨00| + |1⟩⟨01| + |1⟩⟨10| + |1⟩⟨11|
)

3.1 ZX-diagrams 77

Expanding the second term in (3.7), we get almost the same thing, except
we pick up a −1 sign whenever there is an odd number of 1’s:

|−⟩⟨−−| = 1
2
√

2 ·
(

|0⟩⟨00| − |0⟩⟨01| − |0⟩⟨10| + |0⟩⟨11|

− |1⟩⟨00| + |1⟩⟨01| + |1⟩⟨10| − |1⟩⟨11|
)

In Eq. (3.7) we add these two terms together, so we see that when we
expand them that each term with an odd number of 1’s cancels, while those
with an even number add together. We hence have:

= 1√
2

(|0⟩⟨00| + |0⟩⟨11| + |1⟩⟨01| + |1⟩⟨10|) (3.8)

We see then that this map is ‘classical’: it sends Z-basis states to Z-basis states.
In particular, it maps |00⟩ and |11⟩ to |0⟩, while |01⟩ and |10⟩ are mapped to
|1⟩. But this is exactly what the XOR does! So we have X1

2 [0]|x, y⟩ = |x⊕ y⟩
where x⊕ y is the XOR of the two bits x, y ∈ F2.

Exercise 3.2 What classical map would we get if we instead took the
X-spider with 2 inputs, 1 output and a π phase?

We can generalise this construction to see what any X-spider does on
states in the Z-basis. Let’s consider a general X-spider as defined in (3.4).
Expanding the first term gives a uniform superposition over all Z-basis
elements:

|+...+⟩⟨+...+| =
(

1√
2

)n+m
·
∑
i1...im
j1...jn

|j1...jn⟩⟨i1...im|

The normalisation factor comes from the fact that we have m copies of ⟨+|
and n copies of |+⟩, each of which contribute a 1√

2 , which multiply together.
Expanding the second term in (3.4), we again get a sum over all of the

Z-basis elements, but with different coefficients inside the sum:

eiα|−...−⟩⟨−...−| =
(

1√
2

)n+m
·
∑
i1...im
j1...jn

(−1)i1+...+im+j1+...+jneiα|j1...jn⟩⟨i1...im|

Every term in the sum gets an eiα, but when any of the i’s or j’s is 1, it also
gets a factor of −1. Putting the two terms together, we get this expression
for an X-spider:

..
. α ..
. =

(
1√
2

)n+m
·
∑
i1...im
j1...jn

X[α]j1...jni1...im
|j1...jn⟩⟨i1...im|

78 The ZX-Calculus

where the coefficients are given by:

X[α]j1...jni1...im
:= 1 + (−1)i1+...+im+j1+...+jneiα

Now, that’s a pretty big expression, so let’s try to make some sense out
of it. First, note that, whenever the bit string (i1, ..., im, j1, ..., jn) contains
an even number of 1’s, this term has a coefficient of 1 + eiα, whereas if it
contains an odd number of 1’s, it’s coefficient is 1 − eiα. This can be written
succinctly in terms of an XOR as follows:

X[α]j1...jni1...im
=

1 + eiα if i1 ⊕ ...⊕ im ⊕ j1 ⊕ ...⊕ jn = 0
1 − eiα otherwise

Here, we used the fact that the XOR of all the elements in the bitstring tells
us if there were an even number of 1s or an odd number. For that reason,
the XOR of a bunch of bits is sometimes called the parity (where the word
“parity” means the property of something being even vs. odd).

If we specialise to the case where α = 0, we get the numbers 2 and 0, re-
spectively, in the two cases above. By swallowing the 2 into the normalisation
factor, we can write the coefficients for a phase-free X-spider as follows:

X[0]j1...jni1...im
=

1 if i1 ⊕ ...⊕ im ⊕ j1 ⊕ ...⊕ jn = 0
0 otherwise

We can think of such spiders as a family of “generalised XOR” maps.

3.1.2 Defining ZX-diagrams

We will now give two equivalent definitions of ZX-diagrams: one that is
closely related to quantum circuit notation and the other to tensor networks.

3.1.2.1 ZX-diagrams are “circuits” made of spiders
Just like gates form the building blocks for circuits, Z-spiders and X-spiders
form the building blocks for ZX-diagrams, under tensor product and compo-
sition. For example:

α

β

π
2

=
α

β

π
2

=:
(
X2

3[β] ⊗ Z1
1[π2]

)(
Z2

1[0] ⊗X2
3[α]

)

3.1 ZX-diagrams 79

A ZX-diagram can be built iteratively by composing other ZX-diagrams
either horizontally, by connecting the output wires of the first to the input
wires of the second, or vertically, simply by ‘stacking’ the diagrams to create
the tensor product. The base case of this inductive construction starts with
the Z- and X-spiders.

To demonstrate how this works, let’s work through an example: we will
show how to construct the CNOT gate using a Z- and X-spider.

The first ingredient we need is the phase-free Z-spider with 1 input and 2
outputs:

=

1 0
0 0
0 0
0 1

 (3.9)

Its matrix has 2 columns and 4 rows. In general, the matrix of a general
ZX-diagram with n inputs and m outputs will have 2n columns, and 2m
rows.

Suppose now that we wish to vertically compose the spider (3.9) with an
identity, which has matrix diag(1, 1). The way we calculate the result is with
the Kronecker product:

=

1 0
0 0
0 0
0 1

 ⊗
(

1 0
0 1

)
=

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

Note that we said above that a ZX-diagram is built by composing spiders.
We see here that that is not entirely true: we also need some ‘structural’
components like the identity wire. We’ll say a bit more about this later.

We calculate the matrix of the other ingredient we need similarly:

=
(

1 0
0 1

)
⊗ 1√

2

(
1 0 0 1
0 1 1 0

)
= 1√

2

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

Now to make a CNOT we need to horizontally compose these two subdia-

80 The ZX-Calculus

grams:

(3.10)

To see that this is indeed a CNOT we calculate its matrix. On the level
of the matrix, the horizontal composition of diagrams corresponds to matrix
multiplication:

1√
2

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

= 1√

2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(3.11)
Up to a scalar factor of

√
2 this is indeed the matrix of the CNOT gate.

If this matrix calculation business seems tedious: that is precisely why we
want to use the ZX-calculus! We will see that many identities which would
normally be proven by working with matrices can be replaced with graphical
reasoning instead.

In Eq. (3.10) we have first the Z-spider and then the X-spider. As we will
see later, spiders have many symmetries, and for this reason we can also
write the CNOT as first an X-spider and then a Z-spider:

= (3.12)

Exercise 3.3 Prove Eq. (3.12) by directly calculating the matrix the right-
hand side represents and showing it agrees with Eq. (3.11).

Because it doesn’t matter in which direction the middle wire points, top-
left to bottom-right or bottom-left to top-right, we can actually without
ambiguity just write the wire vertically:

(3.13)

If we want to view this diagram as being composed of simple pieces via
horizontal and vertical composition then we have to pick an orientation for

3.1 ZX-diagrams 81

this wire, but generally we can just leave it like it is. As a nice bonus this
then matches nicely with the quantum circuit notation for a CNOT gate:

⊕ =
√

2 (3.14)

We saw that to construct the diagram for a CNOT we needed to use an
identity wire. Note that however we could also write the identity as a spider,
since:

= = (3.15)

To construct arbitrary ZX-diagrams we also need the ability to swap wires, so
that we can connect the spiders up however we want. We can also represent
a swap just using spiders, by using the standard trick to build it out of three
CNOT gates:

∝ (3.16)

Finally, we also need the cup and cap we saw in Section 2.1.7, but again we
can construct these using spiders:

= =|00⟩+ |11⟩ = |++⟩+ |−−⟩= (3.17)

For the cap we just make the inputs into outputs instead. Note that Eq. (3.17)
is just Eq. (3.15) but with the input bended to be an output.

We see then that the “structural generators” of identity, swap, cup and
cap can actually be constructed using spiders, so that we can in fact say
that a ZX-diagram only consists of spiders. We will however consider these
structural pieces as first-class citizens of ZX-diagrams, and not as derived
from spiders, since they have useful properties by themselves, which we will
see more of in Section 3.1.3.

3.1.2.2 ZX-diagrams are tensor networks
For those readers familiar with tensor networks it might be helpful to note
that ZX-diagrams are in fact just tensor networks. Indeed, considering them
as tensor networks, our notation matches the standard notion of a graphical
tensor network as introduced by Penrose. Considered as a tensor network,
each wire in a ZX-diagram corresponds to a 2-dimensional index and a wire
between two spiders denotes a tensor contraction. The Z- and X-spiders are

82 The ZX-Calculus

then defined as:

Z[α]j1...jni1...im
=

1 if i1 = ... = im = j1 = ... = jn = 0
eiα if i1 = ... = im = j1 = ... = jn = 1
0 otherwise

where ik, jl range over {0, 1}.
Note that in both cases, the definition of the spider doesn’t depend on

the order of indices nor whether the indices appear in the upper or lower
position. Hence, permuting, raising, and lowering indices has no effect on
the definition of a spider. For example:

Z[α]mnijk = Z[α]kmnij = Z[α]nmkij = Z[α]ijkmn

So, unless it is important to distinguish inputs and outputs for some other
reason (e.g. to do matrix multiplication in the usual way), we might as well
take all indices to be upper indices. This allows us to simplify the expression
for the Z-spider to:

Z[α]j1...jn =

1 if j1 = ... = jn = 0
eiα if j1 = ... = jn = 1
0 otherwise

When α = 0, eiα = 1 so phase-free Z-spiders further simplify to:

Z[0]j1...jn =

1 if j1 = ... = jn

0 otherwise

This is a generalisation of the Kronecker delta matrix we introduced in
Definition 2.1.3 from two indices i, j to any number of indices. The intuition
is very much same: a Z-spider ‘forces’ a collection of indices to take the same
value by going to 0 whenever they do not. Consider for example the following
tensor network involving a single Z-spider and some generic matrix M :

M M

M M

T =

We can compute the elements of the tensor T in terms of M as follows:

T klij =
∑
abcd

Ma
i M

b
jZ[0]cdabMk

cM
l
d =

∑
a

Ma
i M

a
jM

k
aM

l
a

In the rightmost step, we use a Kronecker-delta-like simplification to replace
the sum over multiple indices with a sum over a single index.

3.1 ZX-diagrams 83

In fact, when the Z-spider does have a phase, we can do a similar sim-
plification by collapsing all of its summed-over indices into a single index,
but we should keep a 1-index Z-spider around to keep track of the phase.
Generalising the example above, we have:

M M

M M

αT ′ =

which can be written as a tensor contraction and simplified as follows:

(T ′)klij =
∑
abcd

Ma
i M

b
jZ[α]cdabMk

cM
l
d =

∑
a

Ma
i M

a
j Z[α]aMk

aM
l
a

X-spiders are defined identically to Z-spiders, except with respect to the
X-basis {|+⟩, |−⟩}. For tensor networks it is more convenient to define ev-
erything in terms of a single, fixed basis. Hence, we express an X-spider
concretely in terms of the Z-basis. We already computed the coefficients of
this expression at the end of Section 3.1.1, so we use them here:

X[α]j1...jni1...im
=
(

1√
2

)n+m
·

1 + eiα if i1 ⊕ ...⊕ im ⊕ j1 ⊕ ...⊕ jn = 0
1 − eiα otherwise

Just like the Z-spider, the X-spider treats inputs and outputs identically,
so we can permute indices or raise/lower them at will:

X[α]mnijk = X[α]kmnij = X[α]nmkij = X[α]ijkmn

Recall that in the previous section, we interpreted a ZX-diagram as a
tensor and composition of some linear maps. This required us to make an
arbitrary choice of how to “chop up” the diagram. Equivalently, since we
now have expressions for spiders as tensors, we can interpret a ZX-diagram
directly as a tensor network. For example the ZX-diagram:

D =
α

β

π
2

can be interpreted as a tensor network as follows. First assign an arbitrary

84 The ZX-Calculus

index to each wire, e.g.

α

β

π
2

⇝
α

β

π
2

i

j

k

l

a

b

c

d

x

y

z

then write D as a contraction involving X- and Z-spiders:

Dxyz
abcd =

∑
ijkl

Z[0]ija X[α]klbcdX[β]xyijkZ[π2]zl

Just like for general tensor networks, all of the indices that are not inputs
or outputs are summed over.

ZX-diagrams are just tensor networks whose basic components are only
X-spider and Z-spider tensors. Certainly most of the ways tensor networks
are used in the literature allow the component tensors to be any indexed
set of complex numbers. A natural question then is: why focus only on
spider tensors and not more general components? There are two reasons.
First, we don’t lose anything in terms of expressiveness by restricting to
spiders. Namely, any linear map on qubits can be constructed from spiders,
and hence any tensor network with 2D wires can also be constructed purely
out of spider tensors (we will have more to say about this in Section 3.1.7).
Second, ZX-diagrams come with an extremely useful set of rewrite rules, the
ZX-calculus, that lets us transform and simplify the tensor network itself. If
our basic tensors were “black box” collections of numbers, we wouldn’t be
able to do this. We’ll first meet these rules in Section 3.2, and we’ll be using
them throughout the book.

Exercise 3.4 Show that the following equality is true, by writing down
the left-hand side as a tensor contraction and simplifying it:

α β = α + β

3.1.3 Symmetries

We noted in the previous section that spiders are very symmetric tensors,
and that we were allowed to raise, lower or permute their indices however we
wanted. In this section we will see what this looks like graphically. Namely,
this translates into some nice interactions between cups and caps, swap, and
spiders.

3.1 ZX-diagrams 85

The SWAP interacts with spiders the way you would expect. Namely, that
you can ‘slide’ a spider along the wires, such as in the equation commuting
a CNOT gate through a swap below:

= (3.18)

It is possible to write down a set of equations that formally captures this
behaviour of ‘sliding through a swap’, but we will not bother with that and
instead let your intuition do the work. An important point to note though
is that we are not working in a ‘braided’ setting, and hence the swap is
self-inverse:

= (3.19)

The fact that we can permute the indices in the tensor of a spider corre-
sponds to being able to swap the wires of their inputs or outputs:

α

..
.

..
. α

..
.

..
.= α

..
.

..
.=

α

..
.

..
. α

..
.

..
.= α

..
.

..
.=

(3.20)

These symmetries hold for all phases α, for spiders with any number of input
and output wires, and for the swapping of any of their inputs or outputs.

We can’t just swap the wires among the inputs and outputs: we can also
swap an input with an output. We do this using the cup and cap.

Just as we can slide spiders along the wires of a swap gate (cf. (3.18)), we
can slide a spider along the wires of cups and caps. For instance:

α = α = (3.21)

This again works for Z-spiders and X-spiders, with any phase, and with
any number of input or output wires:

α..
.

..
. = α ..
.

..
. α ..
.

..
. = α..
.

..
.

α..
.

..
. = α ..
.

..
. α ..
.

..
. = α..
.

..
.

(3.22)

86 The ZX-Calculus

This might just look like some meaningless bending of wires and that is
exactly the point. Spiders treat inputs and outputs in essentially the same
way, where the distinction between the two is really just bookkeeping, which
we represent in the graphical notation as “bending wires”.

As a consequence, ZX-diagrams enjoy a particularly strong version of
the principle of Only Connectivity Matters that was introduced in Sec-
tion 2.1.6. There, we saw that the only relevant data in a string diagram was
which inputs were connected to which outputs. For ZX-diagrams, the order
and direction of wires connecting to a single spider are irrelevant. Hence,
we can treat a ZX-diagram essentially as a labelled, undirected graph with
some inputs and outputs.

To make more clear the type of freedom this entails, only connectivity
matters means that the following ZX-diagrams all represent the same matrix.

=

π

π
2

π
4

-π
2π

π

π
2

π
4

-π
2

π
=

π

π
2

π
4

-π
2

π (3.23)

That is, any way we can interpret the diagrams above as compositions and
tensor products of spiders, swaps, identities, cups, and caps will yield the
same matrix simply because the spiders and their connectivity are the same.

Note that while we can freely move around the spiders in the diagram, we
have to make sure the order of the inputs and outputs of the diagram as a
whole stays the same. So for instance, we have:

= (3.24)

This works because for instance the top input stays connected to the same
Z-spider in both diagrams, and the same for the other output and inputs.
However, the following is not equal:

̸= (3.25)

Even though the spiders in both diagrams are still connected in the same
way, we see that in the second diagram the first input is connected to the
X-spider while it was connected to the Z-spider in the first diagram.

Remark 3.1.1 We now know enough about ZX-diagrams to address the

3.1 ZX-diagrams 87

elephant in the room: why Z and X, but not Y ? One reason for this is
that Y can be presented as a composition of X and Z, and hence we don’t
need it. In principle however, we could have worked with the ‘XY’-calculus
instead of the ZX-calculus, but there is an important reason to prefer Z and
X over Y . Namely, the Z and X eigenbases are self-conjugate meaning that
each of the vectors in the basis is equal to its own componentwise complex
conjugate, for instance: |0⟩ = |0⟩. This is not the case for the Y eigenbasis
|±i⟩ := |0⟩ ± i|1⟩ where we have |+i⟩ = |−i⟩. As a result, the ‘Y-spider’ does
not have the nice symmetry between inputs and outputs of (3.22) that the
Z- and X-spiders do, which makes it a bit more tricky to work with.

[TODO: Add the acronym OCM as an explanation.]

3.1.4 Scalars

In the diagram deformation example given in equation (3.23), the zero-arity
X-spider with a −π

2 phase can be moved completely freely throughout the
diagram. This is because a zero-arity spider, or more generally any ZX-
diagram with zero inputs and outputs, simply contributes an overall scalar
factor. For instance, we have:

α =
√
2= 2

= 1√
2

απ =
√
2eiαπ = 0

α = 1 + eiα

(3.26)

For this reason, we call ZX-diagrams with no inputs and no outputs scalar
ZX-diagrams. Putting two such diagrams side-by-side corresponds to the
tensor product, which for scalars just means multiplication. Note that just
by using combinations of the scalar diagrams of (3.26) we can represent any
complex number as a scalar ZX-diagram.

Exercise 3.5 By combining the diagrams from (3.26), find a ZX-diagram
to represent the following scalar values z:

a) z = −1.
b) z = eiθ for any θ.
c) z = 1

2 .
d) z = cos θ for any value θ.
e) Find a general description or algorithm to construct the ZX-diagram for

any complex number z.

88 The ZX-Calculus

Solution: .

1. ππ

2. θ

3.
4. 2θ −θ π

5. First fix a k such that for z′ = 1/
√

2kz we have |z′| ≤ 1. Then we can
find phases α, β such that z′ = eiα cosβ. Since we know how to write
these three components as diagrams, we are then done.

End Solution .
When working with ZX-diagrams we will often ignore non-zero scalar

factors unless they are relevant to the calculation. This is for the same reason
that physicists will sometimes work with unnormalised quantum states: it
is simply inconvenient and sometimes unnecessary to know the exact scalar
values. Recall that we use the notation M ∝ N to mean M and N are equal
up to a non-zero scalar factor (see Remark 2.3.1).

Because any scalar can be represented by a ZX-diagram, we could work
just with ZX-diagrams even if we want to have the correct scalar values. For
instance, if we want the scalar-accurate CNOT gate we could write:

(3.27)

However, we will mostly just write the actual number we need instead of the
diagram representing the number. So instead of (3.27) we would just write:

√
2 (3.28)

3.1.5 Adjoints, transpose and conjugate

There are some useful global operations on ZX-diagrams that correspond to
well-known matrix operations.

First of all, if we take a ZX-diagram and negate all the phases in the
spiders, so that for instance π

2 is mapped to −π
2 ≡ 3π

2 , and π is mapped to
−π ≡ π, the matrix of the resulting diagram is the conjugate of the matrix
of the original diagram (recall that the conjugate of a complex matrix is the
pointwise complex conjugate of each the elements of the matrix).

3.1 ZX-diagrams 89

The transpose of a matrix is also easily represented by ZX-diagrams: we
use cups and caps to change every input into an output and vice versa.

D −→
transpose

D

Note that these ‘crossovers’ of the wires are necessary to ensure that the
first input is mapped to the first output, instead of to the last output. If we
apply this procedure to the CNOT gate we can verify that the CNOT gate
is indeed self-transpose:

= =

Here in the first step we slid the spiders along the wires to the bottom, and
in the second step we applied the first yanking equation (2.10).

The adjoint of a matrix is constructed by taking the transpose and con-
jugating the matrix. Hence, the adjoint of a ZX-diagram is constructed by
interchanging the inputs and outputs using cups and caps as described above,
and then negating all the phases of the spiders in the diagram.

3.1.6 Hadamards

We introduce some special notation for the Hadamard gate:

= 1√
2

(
1 1
1 −1

)
This ‘Hadamard box’ is the final generator of ZX-diagrams that we will need
(although note that we can in fact also define it in terms of spiders if we
want to; see Section 3.2.5).

By inspecting the matrix of the Hadamard it is easy to check that it is
self-transpose:

= (3.29)

This means that, just like with the spiders, the orientation of the Hadamard

90 The ZX-Calculus

is not important, which is why we are allowed to draw it as a simple box. Also
just like with the spiders, we can slide Hadamards along wires as intuition
would suggest.

3.1.7 Universality

We have now seen that quite a number of quantum gates and constructions
can be represented in the ZX-calculus. This raises the following question:
exactly which linear maps can be represented in the ZX-calculus. The answer
to this is simple: everything. Here, ‘everything’ means any complex matrix
of size 2n × 2m for some n and m.

To see why this is the case, let’s first look at which unitaries we can
represent. Eqs. (3.2) and (3.5) show that we can represent Z and X phase
gates using spiders. Using the Euler decomposition, any single-qubit unitary
can be written as a composition of Z and X phase gates, and hence we
can represent any single-qubit unitary as a ZX-diagram. In Eq. (3.14) we
additionally saw how to represent the CNOT gate as a ZX-diagram. Note
that this equation involves a complex number to get the correct scalar
factor, but in Exercise 3.5 we saw how to represent any complex number
as a ZX-diagram, so that is no problem. In Section 2.3.5 we recalled that
any many-qubit unitary can be written as a circuit of CNOT gates and
single-qubit unitaries. Hence, we then know we can write any unitary as a
ZX-diagram:

U
...

... ∝ ...
...α α{ }, ,

circuit of

Proposition 3.1.2 Any n-qubit unitary can be written as a ZX-diagram.

Note that for most unitaries, the diagram we would get when we apply this
procedure would be exponentially large, so it would not necessarily be useful
to write it as a ZX-diagram. However, we can do it, and that is the important
part in this section.

Now let’s see which states we can represent as a ZX-diagram. We know
we can represent |0⟩ using an X-spider (Eq. (3.6)). Hence, by taking tensor
products we can represent |0 · · · 0⟩. Now if we have any other normalised
n-qubit state |ψ⟩, there will be some n-qubit unitary that maps |0 · · · 0⟩ to
|ψ⟩ (think back to your linear algebra classes, why is this the case?). We can

3.1 ZX-diagrams 91

then write:

ψ
... =

... U
...

1√
2
n (3.30)

So we can represent any normalised state as a ZX-diagram. Since we
also have all complex numbers, we can multiply the normalised state by a
number to get an unnormalised state. Or, the other way around: if we have
an unnormalised state |ϕ⟩ we want to represent, we first use Eq. (3.30) to
represent the normalised 1

∥|ϕ⟩∥ |ϕ⟩ as a ZX-diagram, and then compose this
with the number ∥|ϕ⟩∥, also represented as a ZX-diagram.

Proposition 3.1.3 Any n-qubit (unnormalised) state can be written as a
ZX-diagram.

Now finally, let’s see how to represent arbitrary linear maps as diagrams.
Suppose we are given some linear map L from n qubits to m qubits. We
can transform this into an (n + m)-qubit state by the Choi-Jamiołkowski
isomorphism:

L −→ L

As this is a state, we know we can represent it as a ZX-diagram!

L

= λ U

(3.30)

3.1.2

(3.31)

Here λ is a complex number needed to scale the state to the right normali-
sation.

We can now bend back the wires in order to get a diagram for L itself:

L

L

=

λ

U
(3.31)=

(2.10)

(3.32)

92 The ZX-Calculus

We see now that we can indeed represent any linear map between qubits as
a ZX-diagram.

Theorem 3.1.4 Any linear map L : (C2)⊗n → (C2)⊗m can be represented
by a ZX-diagram.

We call this property universality. Later on we will also consider various
restrictions of ZX-diagrams. We can then also say that this restriction is
universal for a given subset of linear maps, if we can represent any linear
map from this subset using a ZX-diagram satisfying this restriction.

It is important to emphasise again that just because we can represent any
linear map using a ZX-diagram, this does not mean that such representations
will necessary be ‘nice’. It is an ongoing project to find good representations
of useful linear maps in the ZX-calculus. For instance, in Chapter 9 we will
introduce a new (derived) generator that allows us to more easily represent
Toffoli gates in the ZX-calculus, since the ‘native’ representation as a ZX-
diagram is a bit cumbersome.

3.2 The rules of the ZX-calculus
The thing that makes ZX-diagrams so useful, above and beyond plain old
tensor networks, is a collection of rewrite rules called the ZX-calculus.
These rules enable you to replace a little piece of a ZX-diagram with an-
other, equivalent piece, without changing the linear map represented by the
diagram.

Let’s look at a simple example, involving a Z-spider from 1 to 2 wires and
an X-spider from 2 to 1:

:= |00⟩⟨0| + |11⟩⟨1| := |+⟩⟨++| + |−⟩⟨−−|

Then, using the fact that:

⟨++|00⟩ = ⟨++|11⟩ = ⟨−−|00⟩ = ⟨−−|11⟩ = 1
2

we can do a little calculation:

= (|+⟩⟨++| + |−⟩⟨−−|)(|00⟩⟨0| + |11⟩⟨1|)

= 1
2 (|+⟩ + |−⟩)(⟨0| + ⟨1|)

= 1
2 ·

and we see that we have found a pair of ZX-diagrams that are equal, up to

3.2 The rules of the ZX-calculus 93

β

..
.

..
.

α ..
.

..
.

=..
.

..
.

..
.α+β

(sp)

−α∝
π

..
.

..
.

π(π)

..
. = ..
.

(cc)

(id)

= =

(hh)

(sc)

∝

..
.α α ..
.

∝
(eu)

π
2

π
2

π
2

α

π

..
.

π

..
.

..
.

..
.

..
.

..
.

Figure 3.1 The standard rules of the ZX-calculus

a scalar:

= 1
2 · (3.33)

We won’t see many concrete calculations with bras and kets in this chapter,
because once we know a few simple rules, we will be able to apply them
graphically to do all the calculations we need to. For example, now that
we have equation (3.33), we can use it to derive equations between bigger
ZX-diagrams. Here’s one:

= 1
2 ·

Note the scalar factor 1
2 pops out in front, by linearity.

The most commonly-used version of the ZX-calculus, and indeed what is
often referred to as the ZX-calculus consists of the following set of rules in
Figure 3.1.

We will use these 7 rules quite a bit in the coming pages, so we’ve tried
to give them some reasonably easy-to-remember names:

(sp) spider fusion
(cc) colour change
(π) π-commutation rule

(sc) strong complementarity
(id) identity rule

(hh) hadamard-hadamard cancel rule
(eu) euler decomposition of hadamard

94 The ZX-Calculus

This is sometimes also called the stabiliser or Clifford ZX-calculus,
for reasons that will become clear in Section 5.5.

Note that some of the rules of Figure 3.1 only hold up to a non-zero scalar.
This is fine for most of the book, since we often don’t care about the exact
scalar factors. In Section 3.6.2 we discuss rewriting with scalars in more
detail, and we present a scalar-accurate version of the rewrites in Figure 3.2.

These rules of the ZX-calculus will be our main tool for reasoning about
quantum computation in this book, so we better make sure we are all on the
same page about them. In the next few subsections we will discuss where
each of the rules comes from, and some examples of how you can use them
to prove interesting things.

3.2.1 Spider fusion and identity removal

The most fundamental of all the graphical rewrite rules allowed in the ZX-
calculus is spider fusion. This says that we can fuse two spiders together
when they are of the same colour and connected by one or more wires. When
spiders are fused, their phases are added together. In terms of diagrams:

β

..
.

..
.

α

..
.

..
.

=..
.

..
.

..
.α+β

β

..
.

..
.

α
..
.

..
.

=..
.

..
.

..
.α+β

(3.34)
Note that we interpret the numbers α and β as phases eiα and eiβ , and hence
this addition is assumed to be modulo 2π.

Spider fusion can be used to prove many well-known identities of quantum
circuits. For instance, that a Z-phase gate commutes through the control of
a CNOT gate:

α
=

α α
=

Flipping the colours, we can use spider fusion to show that an X gate
commutes through the target of a CNOT gate:

=
π

=
π π

That phases add when spiders fuse essentially generalises the observation
that two rotations of the Bloch sphere in the same direction add together:

βα = α + β (3.35)

3.2 The rules of the ZX-calculus 95

As we have |0⟩ ∝ and |1⟩ ∝ π (cf. (3.6)), we also see that spider
fusion proves that applying the Pauli X gate to |0⟩ gives |1⟩:

π = π (3.36)

An equation like Z|−⟩ = |+⟩ is given similarly:

π π = (3.37)

Note here that we have π + π = 2π ≡ 0.
The following rewrite rule we already saw in Eq. (3.15):

= = (3.38)

We call this rule identity removal. This rule can be interpreted in several
ways. Considering a 1-input 1-output spider as a phase gate over either the Z-
or X-axis, this rule says that a rotation by 0 degrees does nothing. Combining
it with spider fusion it says that the inverse of a rotation by α is a rotation
by −α:

α = =−α

Composing the diagrams of (3.38) with a cup it says we can make a Bell
state by either taking a maximally entangled state over the Z basis or over
the X basis:

= =|00⟩+ |11⟩ = |++⟩+ |−−⟩=

Identity removal also allows us to get rid of self-loops on spiders:

=

..
.

..
.α

..
.

..
.α =

..
.

..
.α

(3.38) (3.34)
(3.39)

Here in the first step we applied the rule in reverse to add an identity. Then
we fused the two spiders that are now connected by two wires using the
spider fusion rule.

Example 3.2.1 The following quantum circuit implements the GHZ state
|000⟩ + |111⟩:

|0⟩
|+⟩
|0⟩

+

+

96 The ZX-Calculus

We can verify this by translating it into a ZX-diagram and simplifying it
using the rules we have just seen:

= =

(sp) (sp)

=
(id)

(3.40)

By the definition of the Z-spider, this last diagram is equal to |000⟩ + |111⟩
which is indeed the (unnormalised) 3-qubit GHZ state.

3.2.2 The copy rule and π-commutation

The second set of rules of the ZX-calculus we will look at concerns the
interaction of the Pauli X and Z gates and their eigenstates |0⟩, |1⟩, |+⟩, |−⟩
with the spiders. Recall from Eqs. (3.3) and (3.6) that:

∝ |0⟩ ∝ |+⟩
π ∝ |1⟩ π ∝ |−⟩
π = X π = Z

The spider fusion rule already covers the interaction of a couple of these
maps and states. Indeed we can use the spider fusion rule to show that a Z
gate commutes through a Z-spider:

=

..
.

..
.

απ

..
.

..
.

α + π

..
.

..
.

α π

=

Spider fusion also shows what happens when a |+⟩ or |−⟩ state is applied to
a Z-spider:

=

..
.

..
.

α

..
.

..
.

α

=

..
.

..
.

απ

..
.

..
.

α + π

By flipping all the colours we then also know that an X gate commutes
through an X spider and that the |0⟩ and |1⟩ fuse into an X spider.

A more interesting question is what happens to an X gate when it en-
counters a Z-spider (or vice versa, a Z gate that encounters an X-spider).
Consider a Z-spider with just a single input and no phase. Its linear operator
is then given by |0 · · · 0⟩⟨0| + |1 · · · 1⟩⟨1|. Hence, if we apply an X gate to the
input the resulting linear operator is

|0 · · · 0⟩⟨0|X + |1 · · · 1⟩⟨1|X = |0 · · · 0⟩⟨1| + |1 · · · 1⟩⟨0|,

3.2 The rules of the ZX-calculus 97

as an X gate interchanges |0⟩ and |1⟩. This is easily seen to be equivalent to
a Z-spider followed by an X gate on each of the outputs:

|0 · · · 0⟩⟨1| + |1 · · · 1⟩⟨0| = (X⊗ · · · ⊗X)|1 · · · 1⟩⟨1| + (X⊗ · · · ⊗X)|0 · · · 0⟩⟨0|.

Hence, in terms of diagrams, we have:

=

..
.π

..
.

π

π

π

(3.41)

We will refer to this as the π-copy rule. By applying the appropriate cups
and caps we see that such a π-copy rule continues to hold regardless of how
many inputs and outputs the spider has. But what about when the spider
has a non-zero phase? Using spider fusion in reverse to unfuse the phase we
can reduce this to a simpler question:

=

..
.απ

..
.π

α

=

..
.

π
α π

π

π

(3.34) (3.41)

(3.42)

Hence, we need to resolve what happens when we apply an X gate to a
|0⟩ + eiα|1⟩ state:

X(|0⟩ + eiα|1⟩) = X|0⟩ + eiαX|1⟩ = |1⟩ + eiα|0⟩ = eiα(|0⟩ + e−iα|1⟩).

Ignoring the global phase eiα we can write this in terms of a diagram:

∝α π −α (3.43)

The most generic case, together with its colour-flipped counterpart is then:

∝

..
.

π

..
.

π

π

π

..
. α

..
. -α

π

π

∝

..
.

π

..
.

π

π

π

..
. α

..
. -α

π

π

(3.44)
With this rule we can also see what happens if there are already multiple π
phases present:

∝
π

α

π

π π

−α

π

π

(3.44)

π

π

= −α

(sp)

π

= −α

(id)

π

(3.45)
We see then that the position of the π’s on the wires of the spider gets
toggled.

Similar copy rules hold for the eigenstates of the X and Z operators. Indeed,

98 The ZX-Calculus

applying a |0⟩ to the 1-input Z-spider |0 · · · 0⟩⟨0| + eiα|1 · · · 1⟩⟨1| it is clear
that we get the output |0 · · · 0⟩:

∝

..
.α

..
. (3.46)

The same works for |1⟩ (although we then do get a global phase of eiα that
we will ignore):

∝

..
.απ

..
.

π

π

π

(3.47)

By introducing a Boolean variable a that is either 0 or 1 we can represent
the last two equations as a single parametrised equation:

∝

..
.αaπ

..
.

aπ

aπ

aπ

(3.48)

Here the aπ phase is either zero (when a = 0), or π (when a = 1), and hence
the input represents the Z-basis state |a⟩ (being either |0⟩ or |1⟩).

As before, the same equation but with the colours flipped also continues to
hold, which gives rules for copying |+⟩ and |−⟩ states through X-spiders. We
will refer to all these rules as state-copy rules. These state-copy rules only
hold when the spider being copied has a phase of 0 or π. For any other phase
the analogue of (3.48) does not hold, nor would we expect it to! Quantum
theory famously does not allow you to clone arbitrary states. Note here the
important quantifier of ‘arbitrary’. The reason that a Z-spider can act as a
cloning process for the |0⟩ and |1⟩ states is because they are orthogonal. It
does not clone any other state.

Note that the orientation of the wires in the rewrite rules we have derived
is irrelevant, as we can pre-compose and post-compose each rule with ‘cups
and caps’ to change inputs to outputs and vice versa. For instance, for the
‘reverse’ of the state-copy rule:

aπ

aπ

aπ =α aπ α ∝
(3.48)

aπ

aπ

= (3.49)

These copy rules all deal with the Pauli Z and X and their eigenstates.

3.2 The rules of the ZX-calculus 99

We can prove similar copy rules for the Pauli Y and its eigenstates, since we
could also define a Y-spider as mentioned in Remark 3.1.1. In particular, we
will find a way to write the Y eigenstates in Exercise 3.14.

Example 3.2.2 Knowing how the Pauli operators commute through a
circuit (or a more general computation) is important for several areas in
quantum computation, such as when verifying the functioning of an error
correcting code, implementing a measurement-based quantum computation,
or calculating the stabiliser tableau of a Clifford circuit. The ZX-calculus
makes it easy to remember the rules for how the Paulis propagate. Indeed,
the only rules required are spider fusion (sp), π-copy rule (sc), the colour-
change rule (cc) to be introduced in the next section (and occasionally an
identity will need to be removed with (id)).

For instance, suppose we wish to know how the Pauli operator X ⊗ Z

commutes through the following circuit:

+ S +

We write it as a ZX-diagram with the Pauli X and Z on the left, and start
pushing them to the right:

π
2

π

π π
2

π

π=

(π)

π π
2

π π

=

(sp)

π

π
2

π

π

=

(π)

π

π

π π
2π

=

(sp) π

π

∝
(π)

−π
2 π

π

π

π

=

(sp)

π π

π

π
2

=

(π)

π

π

π

π
2 π

=

(sp)

π π

π
2

(id)

Note that we have used (sp) both to commute spiders of the same colour
through each other (like the Pauli Z through the control of the CNOTs, or
the Pauli Z through the S gate), as well as to combine the phases of the
Paulis in order to cancel out the phases.

We see that we end up with the Pauli Y ⊗ I. Of course, this process was
quite lengthy, because every rewrite step is shown. Once you get comfortable
with this process, many of the steps can be combined and it becomes easy
to see where each of the Paulis ends up.

100 The ZX-Calculus

3.2.3 Colour changing

As has been noted several times in the preceding sections, when we have
derived some rule in the ZX-calculus, an analogous rule with the colours
interchanged also holds. This follows from the rules concerning the Hadamard
gate:

= = ..
. α ..
.

..
.

..
.α (3.50)

The first of these rules states that the Hadamard gate is self-inverse, while
the second says that commuting a Hadamard through a spider changes its
colour (reflecting the fact that the Hadamard interchanges the eigenbasis of
the Pauli Z and X). Note that the Hadamard commutation rule also holds
for spiders that have no inputs, so for instance:

α = α (3.51)

Let us give an example to demonstrate how the two Hadamard rules (3.50)
imply the colour-inverse of any other rule we have. For instance, suppose we
want to prove the colour-inverse of Eq. (3.41):

=

..
.π

..
.

π

π

π

(3.52)

We start with the left-hand side of the colour-swapped version, and then
insert two Hadamards on the input by applying the self-inverse rule in
reverse:

=

..
.π

..
.π

(3.50)

We then commute one of the Hadamards all the way to the outputs:

=

..
.π

..
.π =

..
.π

(3.50) (3.50)

We now see the left-hand side of the original (not colour-swapped) equa-
tion (3.52), and hence we can apply it:

=

..
.π

..
.

π

π

π

(3.52)

3.2 The rules of the ZX-calculus 101

Now it remains to commute the Hadamards back to the left, and to cancel
the resulting double Hadamard:

=

..
.

π

π

π

..
.

π

π

π

=

..
.

π

π

π

=

..
.

π

π

π

(3.50) (3.50) (3.50)

We have hence succeeded in proving the colour-inverse of Eq. (3.52):

=

..
.π

..
.

π

π

π

Using the Hadamard commutation rule we can also prove that surrounding
a spider with Hadamards changes its colour:

= ..
. α ..
.

..
.

..
.α

(3.50)

= ..
. α ..
.

(3.50)

(3.53)

In Exercise (2.13) we saw a circuit for building the CZ gate using a CNOT
and Hadamards. We can translate this circuit to a ZX-diagram and then
simplify it using the Hadamard rules:

(3.50) (3.50)
= = (3.54)

We see that the diagram we get looks symmetrically on the control and
target qubit. This is because a CZ gate is acting symmetrically on its two
qubits. I.e. we have SWAP ◦ CZ ◦ SWAP = CZ. So here the ZX-diagram
directly reflects a useful property the unitary has.

Exercise 3.6 Help the trapped π phase find its way to the exit.

π

Note that it might multiply itself before the end.

3.2.4 Strong complementarity

The previous sets of rules all have a very distinct topologically intuitive
character: spider fusion allows you to fuse adjacent spiders of the same
colour; identity removal and the Hadamard self-inverse rule allow you to

102 The ZX-Calculus

remove certain vertices; the π-copy, state-copy and colour-change rule allow
you to commute certain generators through spiders by copying them to the
other side. It is therefore relatively easy (after you gain some practice) to
spot where they can be applied and what the effect of their application will
be on the structure of the rest of the diagram.

The last major rule of the ZX-calculus takes more time to work with
intuitively, although it does correspond to a natural and crucial property of
the interaction of the Z- and X-spider.

3.2.4.1 Bialgebras, CNOTs and SWAPs
Before we introduce the rule, let us give some motivation. Treating the |0⟩
and |1⟩ states as Boolean bits, we can view the phase-free 1-input, n-output
Z-spider as the COPY gate that copies the bit 0 to 0 · · · 0 and the bit 1 to
1 · · · 1. Indeed, this is exactly what Eq. (3.48) states. Analogously, we can
view the phase-free 2-input, 1-output X-spider as the XOR gate:

=
aπ

bπ

(a ⊕ b)π

We already saw this in matrix form in Eq. (3.8), but we can also prove it
using spider fusion and the fact that 2π ≡ 0.

The XOR gate and the COPY gate have a natural commutation relation:
first XORing bits, and then copying the outcome is the same as first copying
each of the bits and then XORing the resulting pairs:

=COPYXOR

COPY

COPY XOR

XOR

(3.55)

This equation says that the XOR algebra and the COPY coalgebra together
form a bialgebra. This is why the analogous equation in the ZX-calculus is
often called the bialgebra rule:

∝ (3.56)

However, for reasons we will explain below, we will refer to this rule as (a
special case of) strong complementarity. This rule is essential to many
proofs in the ZX-calculus. As a demonstration of its utility, let us prove a
variation on the well-known ‘three CNOTs make a swap’ circuit identity. We
will start with a circuit containing two CNOT gates, and deform it to make

3.2 The rules of the ZX-calculus 103

clear where we can apply the rule:

=
(3.57)

We then see that we can apply Eq. (3.56) in reverse, and then deform the
diagram again to bring it into a simpler form:

∝
(3.56)

= (3.58)

We could have done all this without the diagram deformation, as the
rewrite rules apply regardless of the orientation of the inputs and outputs.
The circuit equality is then given in a single step by an application of
Eq. (3.56):

∝
(3.56)

(3.59)

We can see this as another interpretation of strong complementarity: it
relates CNOT gates to the SWAP gate.

3.2.4.2 Complementarity
We called Eq. (3.59) a version of ‘three CNOTs make a swap’, but it is of
course not the real deal. Let’s actually try to prove the real ‘three CNOTs
make a swap’ rule:

∝
(3.59)

= (3.60)

Here in the last step we simply pushed the spiders of the first CNOT through
the wires of the SWAP. To finish the proof it then remains to show that two
CNOTs applied in succession cancel each other:

= (3.61)

The first step towards doing this might seem clear, namely, we fuse the
adjacent spiders of the same colour:

=

(3.34)
(3.62)

104 The ZX-Calculus

But now we are seemingly stuck.
The solution comes from another equation between the Boolean gates

XOR and COPY. When we first apply an XOR and then a COPY, we can
commute the XOR by essentially ‘copying’ it through the COPY gate. But
what happens when we first apply a COPY and then an XOR gate to the
two outputs of the COPY:

|0⟩ COPY7→ |00⟩ XOR7→ |0⟩

|1⟩ COPY7→ |11⟩ XOR7→ |0⟩

We see that regardless of the input, we output a 0. Generalising the notion
of an XOR gate to allow for a 0-input XOR gate that just outputs its unit
(namely 0), and a 0-output COPY gate that copies its output zero times
(and hence discards it) we can write this relation diagrammatically as:

=COPY XOR COPY XOR (3.63)

An algebra (XOR) and a coalgebra (COPY) satisfying this equation are
known together as a Hopf algebra. Which is why the following analogous
equation between the Z- and X-spider is often called the Hopf rule:

∝ (3.64)

However, we will refer to this rewrite rule as the complementarity rule,
because this rule can also be seen as a consequence of the Z-basis and X-
basis defining complementary measurements: having maximal information
about the outcome of a Z measurement on a state |ψ⟩ (namely, we will obtain
precisely 1 outcome with probability 1) entails minimal information about
the outcome of an X measurement (namely, we will obtain any outcome
with equal probability). Writing Z := {|0⟩, |1⟩} and X := {|+⟩, |−⟩} for the
Z- and X-eigenbases, we can see that they are mutually unbiased:

∀|xi⟩ ∈ X , |zj⟩ ∈ Z : |⟨xi|zj⟩|2 = 1
2 (3.65)

It turns out that complementarity can be derived from strong complemen-
tarity using some clever deformation of the diagram and the rules from the
previous sections:

==

∝

=

∝ ∝

(3.38) (3.34)

(3.56) (3.48)
(3.66)

3.2 The rules of the ZX-calculus 105

In this derivation, we first deformed the diagram, then we introduced iden-
tities, we unfused some spiders, applied the strong complementarity rule,
copied a state twice, and in the last equation we removed the dangling scalar
diagram as it just introduces some scalar factor.

The complementarity rule is exceedingly useful. Indeed, combining it with
some spider fusion we can use it to show that we can always cancel pairs of
connections between spiders of opposite colours:

β

..
.

..
.

α

..
.

..
.

=

β

..
.

..
.

α

..
.

..
.(3.34)

∝
β

..
.

..
.

α

..
.

..
.(3.64)

=

β

..
.

..
.

α

..
.

..
.(3.34)

(3.67)
So if two spiders of opposite colour are connected by n wires, then this can
be reduced to n mod 2 wires. In particular, we can finish the proof that 2
CNOTs cancel each other out, and thus that 3 CNOTs make a SWAP:

= ∝ =

(3.67)(3.34) (3.38)

(3.68)

Exercise 3.7 We proved Eq. (3.60) by applying strong complementarity
in the reverse direction. Show that you can also prove it by using it in the
forward direction (for instance by applying Eq. (3.56) to the top-left Z- and
X-spiders). You will also need to use spider fusion and complementarity to
finish the proof.

3.2.4.3 General strong complementarity
We can extend equation (3.56) to spiders of arbitrary arity to obtain the full
strong complementarity rule:

∝··
·

··
·

n m ··
·

··
·

n m (3.69)

That is, for any two connected phase-free spiders of different colours we can
apply strong complementarity, resulting in a fully connected bipartite graph
as on the right-hand side. For n = m = 2 this is exactly Eq. (3.56). For
n = 1 or m = 1 this follows in a trivial manner by adding and removing
identities (cf. Eq. (3.38)). When n = 0 or m = 0 this is just the state-copy
rule, i.e. (the colour-swapped) Eq. (3.46). Now suppose n = 2 and m = 3,
we will show how to derive its strong complementarity rule using just spider

106 The ZX-Calculus

fusion and the n = 2,m = 2 version of the rule:

= ∝

∝ =

(3.34) (3.56)

(3.56) (3.34)

(3.70)

Exercise 3.8 Prove the remaining cases of bialgebra for n,m > 2. Hint:
first use induction on m, and then on n.

There are two common mistakes people make when using the strong
complementarity rule. The first is that the rule (3.56) only works when the
phases on the spiders are zero. When the phases are π a modification is
possible by combining it with the π-copy rules (3.44):

aπ bπ ∝
bπ

bπ

aπ

aπ

(3.71)

Exercise 3.9 Prove Eq. (3.71) using the rules of the ZX-calculus we have
seen so far.

But when one of the spiders contains some arbitrary phase α, the result
will be more complicated:

α = α

(3.34)

∝
(3.69)

α = α (3.72)

The additional bit of diagram we get is called a phase gadget. We will have
a lot more to say about phase gadgets in Chapter 7.

The second common mistake is that people apply the rule (3.56) from
right-to-left without paying attention to how many outputs the spiders have,
wrongfully equating the following diagrams:

̸= (3.73)

The correct way to apply strong complementarity here is to first unfuse the
spider:

=

(3.34)

∝
(3.56)

(3.74)

3.2 The rules of the ZX-calculus 107

3.2.4.4 Strong complementarity as spider pushing
Because strong complementarity is one of the most useful rewrite rules,
but also the hardest one to see when to use, we want to share one more
perspective on what it means topologically. Recall that we can push a π

phase of the opposite colour through a spider:

=

..
.aπ

..
.

aπ

aπ

aπ

(3.75)

Note that this is actually two equations, since it holds for both a = 0 and
a = 1. Let’s see if we can’t compress this into just a single equation. To do
this, we will unfuse the aπ phases and reduce them to just a single instance,
by applying the copy rule (3.48) in reverse:

=

..
.

aπ

aπ

aπ

..
.

aπaπ

aπ(sp)

∝

..
.

aπ(3.48)

Now let’s compare this again to the left-hand side of Eq. (3.75), where we
also unfuse the aπ phase onto its own spider:

∝

..
.

aπ

..
.

aπ

(3.76)

Now we have an equation which holds for a = 0 and a = 1, where the phase
aπ occurs in the same position: as an input to the first qubit. We can then
see this as an equation of linear maps where we input a specific state into
the top input. But these states are respectively |0⟩ and |1⟩ (up to a scalar
factor). This means that this equation holds for a basis of the qubit! But
then the linear maps themselves need to be equal regardless of the state that
we input. We hence get:

∝

..
.

..
. (3.77)

But we recognise this as an instance of strong complementarity! This then
gives us another perspective on strong complementarity: it is a ‘controlled’
version of the π pushing we saw before, where we don’t have to specify what
the phase is we want to push. We instead just leave the wire open.

108 The ZX-Calculus

Remark 3.2.3 We need to be a bit careful with this reasoning we used
here, because this is actually one of the areas where the scalar factors do
matter. We used the fact that if M1|ψj⟩ = M2|ψj⟩ for a basis {|ψj⟩}j and
linear maps M1 and M2, that then M1 = M2. But this only works if we
have equality on the nose for all j. If we just had M1|ψj⟩ ∝ M2|ψj⟩ so that
the scalar factor could be different for every j, then we wouldn’t get the
equality M1 = M2, or even M1 ∝ M2. To demonstrate this, let’s consider
M1 = id and M2 = S = diag(1, i). Then M1|0⟩ = |0⟩ = M2|0⟩, and M1|1⟩ =
|1⟩ ∝ i|1⟩ = M2|1⟩, but of course id is not proportional to S. The reason we
were still warranted in making the conclusion we did based on Eq. (3.76), is
because here the proportionality constant happens to be the same for both
a = 0 and a = 1. [j: If we want to have “Careful Coco”, this would be a
good remark for her.]

Using this realisation of ‘strong complementarity as controlled π pushing’,
we can give a nice visual intuition to what happens when you apply strong
complementarity:

∝

(sc)

(sp) (3.78)

Here we added an additional Z-spider the X-spider is connected to at the
start to make it look a little more intuitive. We see then that in the same
way that for π pushing, the π appears on all the other legs of the spider,
with strong complementarity the X-spider also appears on all the other legs
of the Z-spider.

Exercise 3.10 Prove the following circuit identity by translating them to
ZX-diagrams and rewriting the left-hand side into the right-hand side.

+

+ +

+

=

+

Exercise 3.11 Consider the following parametrised unitary:

G(α) = G(α) :=
α

a) Using the ZX-calculus show that G(β)◦G(α) = G(α+β) and that G(0) =
I. Note that this equation in particular implies that G(α)† = G(−α).

b) Using the ZX-calculus show that:

G(α) G(α)† ≈ (3.79)

3.2 The rules of the ZX-calculus 109

c) This previous equation implies that:

G(α)G(α) = (3.80)

Show that this indeed holds by calculating the matrix of both sides.
d) Show that Eq. (3.80) holds by using the ZX-calculus to reduce the left-

hand side to a diagram that is clearly symmetric under interchanging the
two qubits.

3.2.5 Euler decomposition

The final rule of the ZX-calculus we need to introduce is a way to write the
Hadamard in terms of spiders. Recall that any single-qubit unitary gate is
equal (up to global phase) to a Z-rotation followed by an X-rotation, followed
once again by a Z-rotation:

U = α γβ

This is then of course also true for the Hadamard. In particular for α = β =
γ = π

2 :
= π

2
π
2

π
2e−iπ

4 (3.81)

Here we have included the correct global phase for good measure.

Exercise 3.12 The rules presented in Figure 3.1 are actually not all nec-
essary. Show that we can prove (hh) using Eq. (3.81) and the other rewrite
rules of Figure 3.1.

Exercise 3.13 Prove using the ZX-calculus that we can get rid of Hadamard
self-loops at the cost of acquiring a phase:

α

...
∝

...
α + π (3.82)

Solution: .

α

...

π
2

π
2

α

...

π
2

=

π
2

...
α + π=

...
α + π=

(sp) (3.64)(3.81)
π
2

...
α + π=

End Solution .

110 The ZX-Calculus

Exercise 3.14 There are two ways in which we can write the eigenstate
|i⟩ := 1√

2(|0⟩ + i|1⟩) of the Pauli operator Y (up to global phase). Namely,
as |i⟩ = RX(−π

2)|0⟩ or as |i⟩ = RZ(π2)|+⟩. Prove this equivalence using the
ZX-calculus:

-π
2 ∝ π

2 (3.83)

An analogous equation holds for |−i⟩ := 1√
2(|0⟩ − i|1⟩), which boils down to

flipping the signs of the phases in the spiders.

Solution: .

-π
2 = -π

2
-π
2= π

2
π
2

π
2 = π

2
π
2 = π

2 = π
2

(cc) (3.81) (sp) (sc) (sp)

End Solution .
This Euler decomposition is just one possible way to write the Hadamard

in terms of spiders. There is in fact an entire family of representations that
will also be useful to note:

= π
2

π
2

π
2e−iπ

4

= π
2

π
2

π
2e−iπ

4 = -π
2

-π
2

-π
2ei

π
4

= -π
2

-π
2

-π
2ei

π
4

π
2

π
2

-π
2

=

π
2

π
2

-π
2

=

(3.84)

Exercise 3.15 Prove that all the equations of (3.84) hold in the ZX-
calculus, by using Eq. (3.81) and the other rewrite rules of the ZX-calculus
we have seen so far.

By including the rule (3.81) it looks like we are creating an asymmetry in
the phases in the rules of Figure 3.1 with special significance being given to
π
2 over −π

2 . However, (3.84) shows that the situation is still fully symmetric.
In particular, all the rules still hold when we flip the value of all phases
from α to −α. In particular we have the following ‘meta-rule’.

Proposition 3.2.4 An equation in the ZX-calculus between diagrams D1
and D2 can also be proven when we flip all the phases of spiders in the
diagrams of D1 and D2.

Such ‘flipping of the phases’ corresponds to taking the complex conjugate
of the linear map the diagram represents.

3.3 ZX in action 111

3.3 ZX in action
Now that we have seen all the rules of the ZX-calculus, let’s see what we
can do with them! In the previous section we have already seen a couple of
small use-cases: simplifying a circuit to verify that it implements the correct
state in Example 3.2.1, or pushing π phases through a circuit to see where
it maps Pauli gates in Example 3.2.2. Here we will give several more small
examples that demonstrate the use of the ZX-calculus in reasoning about
quantum computing. This will also demonstrate several best practices when
trying to simplify a diagram using the ZX-calculus.

3.3.1 Magic state injection

The following circuit implements the well-known magic state injection pro-
tocol, where a |T ⟩ := |0⟩ + eiπ/4|1⟩ magic state is pushed onto a qubit using
a measurement and potential correction:

|T ⟩ +

S

(3.85)

Here the double wire represents a classical measurement outcome being fed
forward into the S gate, so that the S gate is only applied if the measurement
outcome corresponded to ⟨1|.

We can represent this in the ZX-calculus by introducing a Boolean variable
a to represent the measurement outcome. We can then easily prove its
correctness:

π
4 aπ

aπ
2

=
π
4

aπ
2

aπ

(sp)

∝
(−1)a π

4

aπ
2(π)

=
π
4

aπ
2(sp)

−aπ
2 = π

4

(sp)

(3.86)
Most of this proof is spider (un)fusion, but there are a couple of interesting
bits. The step labelled (π) actually consists of two branches, because if a = 0,
then the X-spider can be removed using (id) so that the phase on the Z-spider
remains π

4 , while if a = 1, then (π) is indeed applied, and the phase flips to
−π

4 . Combining these two branches we see that the phase becomes (−1)a π4 .
In the step after that we make the observation that (−1)a π4 = π

4 − aπ2 .
The usage of a variable to denote a measurement outcome is an easy way

to deal with circuits that contain measurements and classically-controlled
gates. While it is easy to use, it does have the drawback that it is less clear
in which direction the information is ‘flowing’. Here aπ is the result of a
measurement outcome that we don’t have control over, while aπ2 denotes a

112 The ZX-Calculus
π
2 phase gate that we only apply when we saw the measurement outcome
a = 1. For more complicated scenario’s where we do care about showing this
causality more clearly we could adopt a variant of the ZX-calculus where we
allow both classical and quantum wires to exist. We will however not need
this additional machinery in this book.

3.3.2 Teleportation

The standard state-teleportation protocol consists of two parties, Alice and
Bob, that share a maximally entangled state |00⟩ + |11⟩. Alice does some
quantum operations, measures her states, sends the classical measurement
outcomes to Bob, and Bob does some quantum corrections based on those
outcomes. At the end Bob has the state that Alice started out with. We can
represent this as a quantum circuit as follows:

|Ψ⟩

+

|Ψ⟩ H

Z X

Alice

Bob

Here the |Ψ⟩ label is to denote that the bottom two qubits start in the
maximally entangled Bell state. By representing the measurement outcomes
by Boolean variables a and b we can again represent this in the ZX-calculus
and prove the correctness of the protocol:

aπ

bπ

bπ aπ

Alice

Bob

aπ

bπ

bπ aπ

Alice

Bob

=

(sp)

(cc)

2bπ

aπ

aπ

Alice

Bob

=

(sp)

2aπ
Alice

Bob

=

(id)

(sp) Alice

Bob

=

(id)

Here we used the fact that 2bπ is either 2π or 0 which are both 0 modulo
2π, and hence the spider can be removed using (id).

We see that we end up with a wire going directly from Alice and Bob.
Hence, whatever state Alice puts in her qubit wire will end up at Bob.

3.3.3 Detecting entanglement

Let us now do a more involved calculation with the ZX-calculus, demonstrat-
ing how one goes about systematically simplifying a diagram.

3.3 ZX in action 113

Suppose you are given the following (somewhat randomly chosen) quantum
circuit:

SH

|0⟩
|0⟩
|0⟩
|0⟩ +

+

+

+

+

H +

+

+

+

S +
(3.87)

Suppose further that you wish to know which qubits are entangled after
applying this circuit. Calculating the state directly gives

1
2(1, 0, 0, 0, i, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, i)T .

While a trained eye might be able to spot that the 2nd qubit is unentangled,
and that the remainder form a GHZ-state, at first glance this is altogether
not obvious. Instead, let’s simplify this same circuit in the ZX-calculus and
see where this gets us. In this simplification we have a step marked (*) which
will be explained after.

π
2

π
2

π
2

π
2

∝

(sc)

(sp)

(cc)

π
2

π
2

=

(sp)

(id)

π
2

π
2

=

(sp) π
2

π
2

=

(cc)

π
2

π
2

=

(sp)
−π

2
π
2∝

(3.64)

(3.83)
−π

2
π
2

=

(sp)

(cc)
π
2

π
2∝

(sp)

(3.83)

−π
2

=

(id)

(*)
−π

2
=

(sp)
−π

2∝
(3.64)

π
2∝

(3.84)
π
2

π
2 ∝

(sp)

If you don’t stare at diagrams for a living like we do, it might not necessarily
be clear what is happening here, but we are in fact following a simple
algorithm. Most of the steps follow the general pattern that we always try to
fuse spiders of the same colours with (sp) (though we don’t do that here for
all spiders at the same time to prevent cluttering), always remove identities
with (id), always copy states through spiders with (sc), and always remove
parallel wires between spiders of opposite colours using the Hopf rule (3.64).
Hadamards are moved out of the way with (cc) when no other obvious move
is available. Additionally we have used the rewrites of Eq. (3.82) and (3.83).

114 The ZX-Calculus

We have marked one rewrite by (*), this is just an application of the Euler
decomposition rule:

∝π
2

π
2

π
2

π
2

(3.81)

π
2

π
2

π
2 =

(sp)

π ππ
2 ∝

(π)

-π
2

(sp)

-π
2=

(id)

This equation is an example of how a series of Clifford phase gates can
often be combined together into a simpler series of phase gates. We will have
a lot more to say about Clifford gates in Chapter 5.

The size of the circuit (3.87) is nearing the limit of what is still comfortable
to rewrite manually. In fact, we used some software to verify and help with
the rewriting here: the algorithm we just described is easily implemented, so
that the entire simplification can be automated. We presented the derivation
here in detail to show how one would go about systematically simplifying
a ZX-diagram. We will look at more detailed approaches to simplifying
diagrams in other chapters.

Exercise 3.16 Write the following circuit with input state as a ZX-diagram
and simplify it to figure out which qubits are entangled to each other.

H

|0⟩
|0⟩
|0⟩
|0⟩

+ +

+

H

+

S

+

S

H

H

Solution: .
Qubits 1 and 3 end up entangled:

π

π
2

End Solution .

3.3.4 The Bernstein-Vazirani algorithm

Back in Section 2.4, we introduced the Bernstein-Vazirani algorithm, as
a simple example where a quantum computer gets a modest advantage over
a classical computer. Namely, one can extract a secret piece of information
from an unknown function f on n bits using just a single quantum query to

3.3 ZX in action 115

the function (i.e. one use of the unitary oracle Uf), rather than n classical
queries.

Here is the problem, stated formally:
Given: a function f : Fn2 → F2 such that there exists a fixed bitstring s⃗ such
that f(x⃗) = s⃗ · x⃗.
Find: s⃗ ∈ Fn2 .

We saw that the quantum algorithm for solving this problem is very simple.
If we simply perform the following circuit:

0

0

0

−

..
.

H

H

H
..
.

H

H

H

Uf

s1

s2

sn

we obtain the bitstring s⃗ as the measurement outcomes.
We gave a proof using bra-ket calculations in Section 2.4. We’ll now give a

different proof using the ZX calculus. This follows almost immediately from
finding a nice diagram to capture the oracle Uf . We claim that Uf can be
written as follows:

Uf :=

s1

s2

sn

..
. (3.88)

where the labels on the wires mean there is an edge connecting the Z spider
on the i-th qubit to the one X spider if and only if si = 1. This works because,
as we saw in Section 3.1.1, the X dot acts like an XOR on the computational
basis. Hence, if we take the XOR of all the bits xi where si = 1, we get
the dot product s⃗ · x⃗. If we additionally XOR in some other bit y, we get
(s⃗ · x⃗) ⊕ y = f(x⃗) ⊕ y.

Since the Z dot copies computational basis elements, (3.88) does exactly
what the Bernstein-Vazirani oracle should do:

x1

y

s1

sn

..
.

xn
=

x1

·

xn

(s⃗ · x⃗)⊕ y

..
.

116 The ZX-Calculus

Now, let’s see what happens if we plug |+⟩ = H|0⟩ into the first n qubits
and |−⟩ into the last qubit. In Section 3.1.1, we saw that:

|+⟩ ∝ |−⟩ ∝ π

Plugging in, we get:

π

s1

sn

..
.

∝

π

s1π

snπ

..
.

(sp)

(π)
∝

π

s1π

snπ

..
.(sp)

In the first step, the π-labelled Z spider is copied through the X spider. This
will give a π-labelled Z spider on the last output and anywhere there is a
wire to one of the other Z spiders, i.e. whereever si = 1. If we fuse these in,
we see that we get a Z gate where si = 1 and identity where si = 0. We
can capture this succintly in the middle picture above by writing this as the
Z-phase gate Z[siπ].

After the final spider fusion, we can see the state on the first n-qubits
is an element of the X basis. Hence, if we measure in the X basis (i.e.
perform Hadamards then measure in the Z basis), we will obtain the out-
come (s1, . . . , sn) with certainty. This completes the correctness proof for
the Bernstein-Vazirani algorithm.

3.4 Extracting circuits from ZX-diagrams
We have already seen that ZX-diagrams are a strict superset of circuit nota-
tion. That is, if we have a quantum circuit, it is straightforward to translate
it into a ZX-diagram. But what about the converse? How do we translate a
ZX-diagram back into a circuit? The first thing to note is that ZX-diagrams
can represent more types of maps, that aren’t necessarily unitaries or isome-
tries, and hence in general there is no way to turn an arbitrary diagram back
into a circuit. But what if you know somehow that the diagram implements
a unitary, how do we get a circuit back out? It turns out this is hard enough
that we should state it is a proper Problem:

Problem 3.4.1 (Circuit Extraction) Given a ZX-diagram D with desig-
nated inputs and outputs, which describes a unitary map. Produce a circuit
whose gate-count is polynomial in the number of spiders in D.

It turns out that Circuit Extraction is a “Hard with a capital H” problem in
the complexity-theory sense, which you will be asked to prove in Exercise* 7.8.

3.4 Extracting circuits from ZX-diagrams 117

Nevertheless, if we impose some restrictions on a ZX diagram, the problem
becomes much easier. In this section we will show how diagrams we call
circuit-like can be made back into circuits.

3.4.1 ZX-diagrams to circuits with post-selection

First, it’s worth noting that obtaining a circuit with post-selection is rela-
tively straightforward. A generic ZX-diagram can be constructed using the
following 5 things:

α

We can see this by transforming each X-spider into a Z-spider using (cc),
and then unfusing spiders until they all have at most 3 legs.

We can interpret each of these generators as circuit fragments:

∝ ⊕0

∝ +

∝ ⊕ 0

∝ +

= H

α = Z(α)

where the first two require ancilla qubits in the states |0⟩ and |+⟩ and the
second two require post-selection onto ⟨0| or ⟨+|. With this interpretation,
there is an evident translation of any ZX-diagram into a post-selected circuit.
First ‘unfuse’ the spiders into generators, then interpret them as post-selected
circuits, e.g.

118 The ZX-Calculus

α = α

⊕ 0

∝

⊕0

RZ [α] H

⊕0

⊕0

H

H

H

It could be that we are happy with this. Indeed any post-selected circuit
corresponds to a particular sequence of measurement outcomes. And, if we
start with a ZX-diagram that is not equal to zero, the post-selected circuit
will also be non-zero, so it corresponds to a computation that is realisable
with non-zero probability.

However! The probability of getting the diagram we wanted will, in general,
becomes exponentially small with the number of post-selections. So that
kindof sucks. What would be much better is to turn a ZX-diagram into
a computation that can be run deterministically (or at least with high
probability) on a quantum computer.

3.4.2 Circuit-like diagrams and optimisation

One of the simplest kinds of ZX diagrams that are easy to extract are the
circuit-like diagrams.

Definition 3.4.2 A ZX diagram is called circuit-like if it can be de-
composed into a circuit consisting only of CZ, H, and RZ [α] gates just by
applying the colour change rule (cc) and unfusing spiders, i.e. applying the
rule (sp) from right-to-left.

While this seems to be pretty much building the property we want directly
into the definition, there is (essentially) an equivalent formulation for circuit-
like diagrams which is called ZX diagrams with causal flow. We will
meet these in Chapter 8 (specifically Section 8.2.4), along with several gen-
eralisations that are relevant to circuit optimisation and measurement-based
quantum computing.

Even though the circuit-like ZX diagrams are a very limited class of
diagrams, we can already define a (pretty effective!) quantum circuit optimi-
sation algorithm that never leaves the realm of circuit-like diagrams.

3.4 Extracting circuits from ZX-diagrams 119

Algorithm 3.4.3 Circuit optimisation using circuit-like ZX diagrams

• Given: A circuit consisting of CNOT, CZ, H, Z(α), and X(α) gates.
• Output: An optimised circuit.

1. Replace every CNOT and X(α) gate by its decomposition into CZ, H
and Z(α), or equivalently use (cc) to turn all X spiders into Z spiders.

2. Apply the rules (sp), (id), (hh), and the following derived rule:

..
. α ..
.β ∝ ..
. α ..
.β (3.89)

from left-to-right as much as possible.
3. Extract the circuit from the resulting circuit-like ZX diagram by unfus-

ing spiders.

There are a few things that we should show before we are happy with
Algorithm 3.4.3. First, we can see that (3.89) is indeed a derived rule. Since
this is essentially just an “all-Z” variation on the complementarity rule we
met in Section 3.2.4, this is straightforward enough to be an exercise for
now.

Exercise 3.17 Show that (3.89) follows from the rules of the ZX calculus.

The second thing we would like to know is that we indeed have a circuit-
like ZX diagram by the time we get to step 3. The final thing we need to
know is which spiders to unfuse to turn the circuit-like diagram into a circuit.
Let’s look at these properties in turn.

Proposition 3.4.4 Left-to-right applications of (sp), (id), (hh), and (3.89)
preserve the property of being circuit-like.

Proof (sp) preserves circuit-like diagrams by definition. Suppose we can
apply the rule (id) to a circuit-like ZX diagram. That means that there must
be a 2-legged Z spider with phase 0. The only way this can arise from spider
fusions of a circuit is if the circuit contains a Z(0) = I gate. Deleting this
trivial gate from the circuit results in a new circuit, which can be obtained
by unfusing spiders after applying the (id) rule.

We can reason similarly about the rules (hh) and (3.89). The only way
the left-hand sides of these rules can arise from spider fusions of a circuit is
if the circuit contains a pair of cancelling H gates or cancelling CZ gates,
respectively:

= ∝=

120 The ZX-Calculus

Again, deleting these gates from the circuit will result in a new circuit, which
we can obtain by unfusing spiders after applying the (hh) and (3.89) rules,
respectively.

Now, let’s see how to actually perform the spider-unfusions necessary to
extract a circuit from a circuit-like diagram. It turns out we can actually
just do this greedily. Imagine a frontier between the part of the diagram
that has been decomposed into CZ, H, and Z(α) gates. We initially start
with the frontier on the outputs, and move the frontier toward the inputs,
performing spider-unfusions as necessary.

[TODO: pictures...]
For this, we consider three cases:

1. If an H gate is on the frontier, move it to the circuit part of the diagram.
2. If a 2-legged Z spider is to the left of the frontier, it can only be an
RZ [α] gate, so move it to the circuit part.

3. If two spiders on the frontier are connected via a Hadamard gate, per-
form spider-unfusion as necessary to produce a CZ gate, and move it to
the circuit part.

For circuit-like diagrams, this will never get stuck, and terminates when
there are no spiders or Hadamards to the left of the frontier. Proving this
is much easier when we have some extra tools in our tool belt (namely the
aforemented notion of causal flow, which we introduce in Chapter 8), so
we will postpone this proof until then. However, you should know enough at
this point to code up a full-fledged circuit optimisation algorithm using the
ZX calculus. You can see for yourself how well it works!

3.5 Summary: What to remember
1. Spiders are a class of linear maps that can have any number of inputs

and outputs. They come in two flavours: Z-spiders and X-spiders.
2. Spiders can be connected together to form ZX-diagrams. Stacking ZX-

diagrams correspond to the tensor product of linear maps, and connect-
ing ZX-diagrams corresponds to composition.

3. ZX-diagrams can be arbitrarily deformed as long as the order of inputs
and outputs is preserved.

4. ZX-diagrams are universal, meaning that they can represent any linear
map between any number of qubits.

5. In particular, any quantum circuit consisting of Z- and X-phase gates

3.6 Advanced Material* 121

and CNOTs can be easily written as a ZX-diagram. Conversely, any
ZX-diagram can be written as a post-selected quantum circuit.

6. The ZX-calculus is a set of graphical rewrite rules for transforming
ZX-diagrams while preserving the linear map they represent.

7. There are 7 rules of the ZX-calculus (see Figure 3.1): spider fusion, colour
change, π-copy, strong complementarity, identity, Hadamard-Hadamard
cancellation, and Euler decomposition of the Hadamard.

8. We can code up a pretty simple yet effective circuit simplification routine
by converting all X-spiders to Z-spiders, and applying spider fusions,
Hadamard-Hadamard cancellations and Hopf rules (Eq. (3.89)) wherever
possible, and then extracting a circuit from this diagram.

3.6 Advanced Material*

3.6.1 Formal rewriting and soundness*

While many of you might be familiar with mathematical rewriting of algebraic
expressions, you might be unfamiliar with doing the same with diagrams, and
might even be sceptical that what we are doing is even valid mathematics.
To ease those worries, we will say a bit more about what is actually going
on formally when we rewrite a diagram.

The rewrite rules we have given in this chapter are of the form D1 = D2,
where D1 and D2 are some ZX-diagrams with the same number of inputs and
outputs. We then used these rewrite rules on larger diagrams that contain
either D1 or D2 as subdiagrams. This is because when we are asserting
D1 = D2, we are actually asserting an entire family of equalities. We are for
instance also asserting that D1 ⊗ E = D2 ⊗ E for any other ZX-diagram E,
and D ◦D1 = D ◦D2 for any composable ZX-diagram D.

In a sense we are assuming we have the following implication:

=D1··
·

··
· D2··
·

··
· =⇒ =D1··
·

··
·

··
·

··
·

D′

D2··
·

··
·

··
·

··
·

D′

(3.90)
In words: if D1 appears as a subdiagram of some larger ‘ambient’ diagram
D′, then D1 can be replaced by D2 inside of D′. We are saying we can apply
the rewrite rule regardless of the context.

An important question to settle here is whether this is sound. A rewrite
rule in a language is called sound when it preserves the underlying semantics,

122 The ZX-Calculus

i.e. the underlying meaning. In the setting of ZX-diagrams, the language is
the set of diagrammatic rewrite rules of the ZX-calculus, and the semantics
of a ZX-diagram is the linear map it represents. So a rule in the ZX-calculus
is sound when the diagrams on each side of the equation represent the same
matrix. For a single equation like D1 = D2 soundness is easy to check: just
calculate the matrix on both sides. But how can we be sure that employing
this rewrite rule in a larger context as in (3.90) is still sound when we would
have to check an infinite family of diagrams?

To make the following discussion more clear, we will denote the matrix of
a ZX-diagram D by JDK. We can then say a diagrammatic rule D1 = D2 is
sound when JD1K = JD2K.

By definition of how we calculate the matrix of a ZX-diagram, we have
JD1 ⊗D2K = JD1K ⊗ JD2K and JD1 ◦D2K = JD1K ◦ JD2K, where this last
composition is just matrix multiplication. Hence, if we have JD1K = JD2K,
then we also have JD1 ⊗ EK = JD1K ⊗ JEK = JD2K ⊗ JEK = JD2 ⊗ EK, and
hence D1⊗E = D2⊗E is also sound. Similarly we have JD1 ◦ EK = JD2 ◦ EK.
Since we build any ZX-diagram by iteratively composing and tensoring, this
shows that the rewrite rule stays sound regardless of the context it appears
in, and hence that the implication in (3.90) is indeed true.

Even given this discussion, some of you might still not be happy about
this. How can all of this be rigorous mathematics when it is just pictures
on a page? Since this is a quantum computing book and not a mathematics
book, we won’t give the actual proof that all of this is solid here, and instead
we will give a Proof by Fancy Words and point the interested reader to the
References of this chapter.

So here it comes: the right formal language to think about the ZX-calculus
is category theory. In a symmetric monoidal category we can compose mor-
phisms via both horizontal and vertical composition. The coherence theorem
then tells us that the coherence isomorphisms of a symmetric monoidal
category are enough to prove we can move morphisms around on a page
while preserving equality. Because ZX-diagrams have cups and caps they
are actually an example of a compact closed category, for which an even
stronger coherence theorem is true, so that we can move the generators
around the cups and caps as well. The interpretation into linear maps is
a strong monoidal functor from ZX-diagrams to the category of complex
vector spaces. The rewrite rules can be understood as an equivalence re-
lation which respect composition and tensor product, so that it induces a
quotient category of ZX-diagrams modulo equality by rewrite rule. Soundness
of the rewrite rules means that the functor into linear maps restricts to this
quotient category.

3.6 Advanced Material* 123

β
..
.

..
.

α ..
.

..
.

=

..
.

..
.

..
.α+β

(sp)

−α=

(π)

..
. = ..
.

(cc)

(id)

= =

(hh)

(sc)

=

..
.α α ..
.

=

(eu)
π
2

π
2

α π

−π
2

(sc)

aπ
aπ =

aπ

=

π

=

π

απ

(s)(zo)

Figure 3.2 A complete and scalar-accurate set of rewrites rules for the
Clifford fragment of the ZX-calculus. These rules hold for all α, β ∈ R

3.6.2 Dealing with scalars*

We have been ignoring non-zero scalar factors in ZX-diagrams in this chapter,
and will continue to do so for most of the rest of the book. This is not however
because the ZX-calculus is incapable of reasoning about scalars. The opposite
in fact: because it is a straightforward exercise to deal with the scalar factors
once you know a couple of tricks, it just isn’t worth the effort of including
them most of the time.

In this section we will see what some of these tricks are.
So first, the rule set of Figure 3.1 is not taking into account the actual

scalar factors. Instead, we should use a rule set where we do have all the
correct scalars. See Figure 3.2.

Most of these rules should look familiar, but there are some perhaps weird-
looking things going on. Let’s go through the differences rule by rule. The
spider-fusion rule and the colour-change rule are unchanged. We have split
up the strong complementarity rule into two parts, a bialgebra rule and a
state-copy rule. This is necessary because the scalar factor for strong com-
plementarity depends on the number of inputs and outputs of the diagram.
These scalar subdiagrams included in the rules should make more sense once

124 The ZX-Calculus

you recall what they are equal to:

α =
√
2= 2

= 1√
2

απ =
√
2eiαπ = 0

α = 1 + eiα

The identity-removal rule and the Hadamard cancellation rule are still the
same, but we now have chosen for a different Euler decomposition of the
Hadamard that does not need a global phase to be accurate. We have replaced
the pi-commutation rule for a more minimal one that has now acquired a
scalar factor (which corresponds to a global phase of eiα). Finally, there are
two new rewrite rules. The first rewrite rule (zo) tells us that in the presence
of a zero scalar, essentially anything equals each other. For instance, as we
will see later, we can use it to show that the identity wire disconnects. The
second rule (s) allows us to cancel some scalars. This essentially implements√

2 · 1/
√

2 = 1. Note that the right-hand side is the empty diagram. This
rule is in fact necessary: there is no other rewrite rule that can produce an
empty diagram, so the equation of (s) can not be proven by any combination
of the other rewrite rules. It can also be shown that (zo) is necessary using
a more complicated argument.

Now in this section we will show two things we can do with scalars. First,
we will show that when there is a zero scalar π that the entire diagram
can be simplified, so that every two diagrams with this scalar in it are the
same. Second, we will show that certain scalar diagrams can be ‘multiplied’
together in exactly the way we would expect for their corresponding scalar
values.

So let’s prove some things about scalar diagrams. In this section, whenever
we refer to a rewrite rule like (sc), we are meaning the rewrite rules from
Figure 3.2, not Figure 3.1. Note that due to (cc) and (hh) that all the rules
also hold with the colours interchanged as usual.

Lemma 3.6.1 Twice
√

2 equals 2:

= =

Proof

=

(sp)

=

(sc)

=

(id)

(sp)

=

(cc)(s)

Now we can show that any two diagrams that contain a zero scalar can

3.6 Advanced Material* 125

be rewritten into each other by reducing them a unique normal form. This
will require a couple of lemmas.

Lemma 3.6.2
√

2 · 0 = 0:

=
π

π

Proof

=
π π(s)

=
π

3.6.1

(sp)

=
π(zo)

= π

(s)

Lemma 3.6.3

=

π π

Proof

=

π

π
(id)

(sp)

=

π

(zo)

=

π

(sc)

3.6.2

=

π(s)

Lemma 3.6.4

=α

Proof First we prove the (colour-reversed) version where α = π:

=π

(sp)

π =

(sc)
π

π
=

(cc)
π

π
=

(sc)
π

π
=

(sp)

(3.91)

And then we prove the general case:

=α πα π

(sp)

π−α=

(π)

α π

π
−α

=

(sc)

α
π=

(sp) (3.91)

=

Proposition 3.6.5 Any ZX-diagram with n inputs and m outputs con-
taining a zero scalar can be rewritten to the following normal form:

π

...
...n m

(3.92)

Proof Apply Lemma 3.6.3 to all the connections between spiders and the
inputs and outputs. The resulting diagram is then that of Eq. (3.92) except
that there might be some scalar pairs of spiders and some isolated spiders, at

126 The ZX-Calculus

most one of which has a phase. This phase can be removed using Lemma 3.6.4.
If it is an isolated spider then it can be decomposed into a pair of pairs using
Lemma 3.6.1. Now all the scalar pairs of spiders can be removed using
Lemma 3.6.2.

Now let’s see how we can combine some scalar diagrams by ‘multiplying’
them together.

Lemma 3.6.6 Two complex phases can be added together:

=
α π

β π
α + β π

Proof

=

(s)

(sc)
α π

β π

α
π

β
=

(sp)

α + β π

As a special case, where α = β = π we can show that (−
√

2) · (−
√

2) = 2:

Lemma 3.6.7

ππ

ππ
=

Note that when the X-spider does not have a π phase, that the phases
simply dissappear as in Lemma 3.6.4.

We can also simplify some expressions involving π
2 . This is because this

diagram equals 1 + i, and when we multiply it with itself, for instance, we
get (1 + i)(1 + i) = 2i, which should be equal to a simpler diagram. In order
to prove this, we will need the following scalar-accurate version of Eq. 3.83
in Exercise 3.14.

Lemma 3.6.8
=π

2
−π

2

π
2

Proof We prove this using the colour-reversed Euler decomposition rule of
Figure 3.2:

=π
2

π
2

(cc)

π
2

(eu)

= π
2

π
2

π
2

−π
2

(sp)

= −π
2

π
2(sc)

= −π
2

(cc)

3.7 References and further reading 127

Lemma 3.6.9 All instances of π
2 and − π

2 can be combined together so
that only one ±π

2 phase is necessary.

Proof First, when we have two π
2 subdiagrams we do the following rewrite:

π
2

π
2

=

(s)

(cc) π
2

π
2 =

(sp)
π
2

−π
2 π =

3.6.8

π
2 π

(3.93)

When we have multiple diagrams resulting in this way, we can combine them
using Lemma 3.6.6. We can use this to combine a π

2 and a − π
2 as well:

−π
2

π
2

=

(s)

(sp)

π
2 π

π
2

π
2

π =

3.6.8

−π
2

π
2

π

π
2

=

(cc)

−π
2 π

(3.93)

=

(s)

π
(3.93)

=

3.6.4
(3.94)

We leave it to the reader to find an analogous simplification of Eq. (3.93) to
combine π

2 .
After applying these rewrites there are then at most two π

2 phases in the
diagram, one coming from a possible π

2 or − π
2 , and the other coming from

a diagram which results from the rewrite (3.93). These can be combined as
follows:

π
2

=

(s)

π
2 π

=

(3.94)

=
(-1)a π

2 π

(3.93)

=

(s)

3.6.6

π
2

(-1)a π
2 π (-1)a π

2 π

π
2

−π
2 (s)

(-1)a π
2 π

−π
2

aπ π

−π
2

π
2

The case with − π
2 is proven similarly.

There is of course more to be said about calculating the values of small
scalar ZX-diagrams in this way, but hopefully the reader can see now how this
generally can be done. We will use these results on manipulating scalars in
Section 5.5 when we prove that the rules of Figure 3.2 are actually enough to
prove all equalities concerning ZX-diagrams where the phases are multiples
of π

2 .

3.7 References and further reading
Categorical quantum mechanics The ZX-calculus came forth from the field
of categorical quantum mechanics, an area of research initiated by Abramsky
and Coecke (2004) that aimed to study quantum phenomena abstractly,

128 The ZX-Calculus

using nothing but the structure of symmetric monoidal categories. These are
mathematical structures wherein both composition and tensor product make
sense (Selinger, 2010): in a category we have composition Mac Lane (2013),
‘monoidal’ means that there is a tensor product, and ‘symmetric’ means that
we have a SWAP operation. In a ZX-diagram we can’t just swap two inputs,
we can also swap an input with an output using cups and caps. A category
with this kind of structure is called compact closed Kelly and Laplaza (1980).
It is in this abstract category theory that it was proven that we can move
the generators around on the page while preserving the semantics of the
diagram, and hence why it even makes sense to write it as a diagram. The
original categorical quantum mechanics paper Abramsky and Coecke (2004)
gave a proof of quantum teleportation that is essentially the basis of the ZX
proof in Section 3.3.2.

The origin of the ZX-calculus The ZX-calculus was born on a bus in Iran in
2007. Bob Coecke, a professor at Oxford and Ross Duncan, a recently-finished
PhD student, were discussing how to capture a certain feature of quantum
measurements using category theory. In particular, they were thinking about
mutually unbiased bases (mubs), i.e. sets of bases that pairwise satisfy equa-
tion (3.65) from Section 3.2.4.2. While mubs, which were first introduced
by Schwinger (1960), are very simple to define, they have a suprisingly rich
structure that is still only partially understood. A running joke at the time
was, if you wanted to ruin a quantum computer scientist’s career (and per-
sonal life), you should just introduce them to the problem of classifying all
mubs in dimension 6. Earlier that year, Coecke and Pavlovic (2007) gave a
more “categorically flavoured” notion of fixing a measurement, which they
called classical objects. These have gone under a variety of names—notably
classical structures or dagger-special commutative Frobenius alge-
bras—but these days most people refer to them as spiders. It seemed at
the time that these abstract algebraic entities gave the correct notion of
fixing an ONB without needing to refer to concrete Hilbert space structure,
an intuition that was vindicated in 2013 when Coecke, Pavlovic, and Vicary
showed that spiders are in 1-to-1 correspondence with ONBs (Coecke et al.,
2013).

By studying two families of spiders satisfying some interaction equations,
Coecke and Duncan hoped to get some deeper insights in the behaviour of
mubs, and hence the ZX-calculus was born (Coecke and Duncan, 2008). In
fact, it wasn’t called the ZX-calculus until almost three years later (Coecke
and Duncan, 2011), with most early talks and papers referring to it as the
“calculus of complementary observables”, simply “the graphical calculus”, or

3.7 References and further reading 129

even the “Christmas calculus” due to its convention of using green and red
dots for Z and X spiders. As the story goes, this convention was born from
the fact that black and blue whiteboard markers in the Oxford Computing
Laboratory were constantly running out of ink, so the only working ones
were green and red.

Strong complementarity The name of strong complementarity for the rule
of Section 3.2.4 was introduced in Coecke et al. (2012), but as noted in
that section is also called the bialgebra equation. In fact, the bialgebra of
a Z-spider and X-spider we have in the ZX-calculus is a very special case,
as both spiders are Frobenius algebras. Two Frobenius algebras that form a
bialgebra are called interacting Frobenius algebras. It was shown in Duncan
and Dunne (2016) that these also form a Hopf algebra, essentially using the
proof of Eq. (3.66), and hence that strong complementarity implies regular
complementarity.

Completeness The version of the ZX-calculus from (Coecke and Duncan,
2008) was missing the Euler decomposition rule. This rule was introduced by
Duncan and Perdrix (2009), where the authors showed that, without this rule,
the ZX-calculus is incomplete for Clifford ZX-diagrams. With this rule, one
obtains a version of the ZX-calculus equivalent to the one used in this book,
which was shown to be complete for Clifford ZX-diagrams by Backens (2014a).
That same year, Schröder de Witt and Zamdzhiev (2014) showed that the
Clifford ZX-calculus was incomplete for non-Clifford ZX-diagrams, i.e. if we
allow angles that are not multiples of π/2. The counter-example, suggested
by Kissinger, came from considering the two possible Euler decompositions
of a single-qubit unitary:

α γβ ∝ α′ γ′β′ (3.95)

It is always possible to compute α′, β′, γ′ as (fairly elaborate) trigonometric
functions of α, β, γ. When the angles on the LHS are not π/2 multiples,
the angles on the RHS are typically irrational multiples of π, and it is not
possible to prove equation (3.95) using just the Clifford ZX rules.

This remained the status of completeness for several years, and it seemed
like it might even be the case that no finite set of rules would suffice to
show completeness for a computationally universal fragment of the ZX-
calculus such as Clifford+T ZX-diagrams (with π/4 multiple phases) or all
ZX-diagrams (with arbitrary phases). Some smaller results appeared, such as
the one-qubit Clifford+T completeness of Backens (2014b) and the 2-qubit
completeness of Coecke and Wang (2018), but it remained unclear how to

130 The ZX-Calculus

extend these to n qubits. In fact, Aleks would have bet money in 2015 that
no finite, complete set of rules for n-qubit Clifford+T ZX-diagrams existed.
Picturing Quantum Processes, the precursor to this book, which came out
in the spring of 2017, had this problem as an “advanced exercise”, at least
partially as a joke.

However, it’s a good thing Aleks didn’t bet, because he would have lost
his money. In the autumn of 2017, Jeandel, Perdrix, and Vilmart showed
a complete ZX-calculus for the Clifford+T fragment (Jeandel et al., 2018),
and later that same year Wang and Ng showed completeness for all ZX-
diagrams (Ng and Wang, 2017). The key idea in these two completeness
theorems was to use an encoding into a related graphical calculus called
the ZW-calculus, formulated by Coecke and Kissinger (2010a) and proved
complete by Hadzihasanovic (2015a).

While these presentations of the ZX-calculus were complete, they contained
some redundancy, in the sense that some rules could be derived from others.
A more compact presentation of the Clifford ZX-calculus, consisting just
of the spider rules, strong complementarity, Euler, and colour change rules,
was given by Backens et al. (2016). Similarly, a small complete set of rules
for the full ZX-calculus was given by Vilmart (2019), essentially by adding
(3.95) to the basic Clifford rules.

Measurement-based quantum computing Along with understanding the struc-
ture of mutually unbiased bases, a lot of the early development into ZX-
calculus was motivated by providing a convenient notation for working with
the one-way model of measurement-based quantum computation (MBQC),
which we’ll discuss extensively in Chapter 8. The representation of cluster
states as ZX-diagrams already appeared in the first paper (Coecke and Dun-
can, 2008) and started to be put to good use in subsequent work relating
quantum circuits and measurement patterns (Duncan and Perdrix, 2010)
and doing ZX-based optimisation of quantum circuits (Duncan et al., 2020).

Resources To some extent, this book grew out of the survey/tutorial paper
ZX for the Working Quantum Computer Scientist (van de Wetering, 2020),
which presents some of the topics we cover in a more condensed form. A good
place to start learning more about ZX is zxcalculus.com, which maintains
a tagged list of >100 papers on ZX, related calculi, and applications. It
also contains information about various communities, online seminars, and
mailing lists. The diagrams in this book were typeset with the help of TikZiT,
which acts as a GUI for making LaTeX suitable TikZ diagrams. TikZiT was
made by Aleks in an effort to make typesetting the 5000 diagrams in his

http://zxcalculus.com
https://tikzit.github.io/

3.7 References and further reading 131

previous book somewhat less horrific, and his current coauthor John is very
thankful for its existence.

4
CNOT circuits and phase-free ZX-diagrams

ZX-diagrams are a universal language for talking about quantum computing.
This makes them useful, but it also means that for generic ZX-diagrams, we
expect certain problems to be hard to solve with rewriting. For example,
if we could efficiently determine if two different ZX-diagrams describe the
same matrix, we can also determine if two quantum circuits actually describe
the same unitary. However, we have good, complexity-theoretic reasons to
believe that that is way harder than anything even a quantum computer can
do (much less a classical one).

As a special case, this would let us determine efficiently the complex
number described by a diagram with no inputs and outputs, which would
let us efficiently simulate quantum computers. This would of course make
the whole project of quantum computation (and essentially the jobs of the
authors of this book) pointless.

Since we don’t believe we can efficiently solve certain problems for any
ZX-diagram, it makes sense to restrict to classes of diagrams which can be
reasoned about efficiently.

The restriction of the ZX-calculus to a family of ZX-diagrams that is closed
under composition and tensor product is a fragment of the ZX-calculus. In
this chapter we will look in detail at one of the simplest possible fragments
of the ZX-calculus: the phase-free ZX-calculus. This fragment concerns
ZX-diagrams where all the phases on the spiders are required to be zero, and
where we do not have Hadamard gates. The phase-free diagrams turn out to
behave very nicely, and we can rewrite them in various fruitful ways.

Their nice structure comes from a deep connection with linear algebra over
the two-element field F2. Whereas quantum theory primarily concerns itself
with (exponentially large) matrices whose elements are in C, we’ll see in this
chapter that a special class of operations can be described in a different way
using (much smaller) matrices whose elements are in F2.

4.1 CNOT circuits and parity matrices 133

The reason we care about phase-free ZX-diagrams is because such diagrams
that are unitary correspond precisely to quantum circuits consisting solely
of CNOT gates, so-called CNOT circuits. In this chapter we will explore
in detail the relation between CNOT circuits, phase-free ZX-diagrams and
linear parity maps.

4.1 CNOT circuits and parity matrices
In this section, we will see that the action of a CNOT circuit on n qubits
can be succinctly represented as an n× n matrix over the field F2 and how
to translate to and from this representation.

4.1.1 The two-element field and the parity of a bit string

First and foremost: what is F2? Let’s give a formal definition.

Definition 4.1.1 The field with 2 elements F2 is defined as the set F2 :=
{0, 1} which comes equipped with addition and multiplication operations
defined as: x + y := x ⊕ y and x · y = x ∧ y, where ⊕ and ∧ are the XOR
and AND operations defined on bits, respectively.

This may not look much like the fields of numbers you are used to—like
the real numbers R, complex numbers C, or rational numbers Q—but just
by thinking about the behaviour of XOR and AND, we can verify all of
the field axioms. First off, we can easily see that XOR and AND are both
associative, commutative, and have units 0 and 1 respectively:

(x+ y) + z = x+ (y + z) x+ y = y + x x+ 0 = x

(x · y) · z = x · (y · z) x · y = y · x x · 1 = x

But what about inverses? In a field, every number x has to have an additive
inverse −x satisfying −x + x = 0. A special property of F2 is that every
element is its own additive inverse. We have 0 + 0 = 0 ⊕ 0 = 0, but also
1 + 1 = 1 ⊕ 1 = 0. Furthermore, for F2 to be a field, every non-zero number
has to have a multiplicative inverse. But here there is only one non-zero
number: 1, and clearly 1 · 1 = 1.

We sometimes refer to an element in F2 as a parity. Parity is a property
of bit strings: if a bit string contains an even number of 1s, we say it has
parity 0, whereas if it contain an odd number of 1s, we say it has parity 1.
For a bit string b⃗ = (b1, . . . , bn), we can compute the parity by taking the

134 CNOT circuits and phase-free ZX-diagrams

XOR of all of its bits, i.e. we sum up the bits as elements of the field F2:

parity(⃗b) :=
∑
i

bi

One is often interested not just in the overall parity of a bit string, but
also the parity of some subset of bits. This can be computed using simple
matrix operations. For example, we can express the operation of computing
the parity of the 1st, 3rd, and 4th bits of a 4-bit string as a row vector:

(
1 0 1 1

)
b1
b2
b3
b4

 = b1 ⊕ b3 ⊕ b4

More generally, if we are interested in computing several parities at once, we
can arrange them in the rows of a matrix:

1 0 1 1
0 1 1 0
1 0 0 1
0 0 0 1

b1
b2
b3
b4

 =

b1 ⊕ b3 ⊕ b4
b2 ⊕ b3
b1 ⊕ b4
b4

By saving or transmitting some parity information about a bit string, we
can often detect and correct errors. For example, if the bit b2 got lost in
transmission, but we know the values of b3 and b2 ⊕ b3, we can recover b2
since b2 = b2 ⊕ b3 ⊕ b3.

Such basic operations are the basis of classical linear error correcting
codes, and as we’ll see in Chapter 11, also play a major role in quantum
error correction.

However, before we get there, we’ll see a much more immediate connection
between parity matrices and quantum circuits: the behaviour of a CNOT
circuit can be exactly captured by an invertible parity matrix.

4.1.2 From CNOT circuits to parity maps

The CNOT gate acts on a pair of qubits via |x, y⟩ 7→ |x, x⊕ y⟩. When we
put multiple CNOT gates in a circuit, we can build unitaries that have more
complicated actions on the computational basis states. For instance, suppose
we have a CNOT from qubit 1 to 2, and then a CNOT from 2 to 1:

⊕

⊕
=

4.1 CNOT circuits and parity matrices 135

We can calculate its action on the computational basis state |xy⟩ as:

|x, y⟩ 7→ |x, x⊕ y⟩ 7→ |x⊕ x⊕ y, x⊕ y⟩ = |y, x⊕ y⟩

More generally, we can calculate the action of any CNOT circuit on a
computational basis state by labelling each of the input wires with a variable
xi, then pushing those variables through the circuit:

x1

x2

x3

x1

x2⊕x3 x1⊕x2⊕x3 x2⊕x3

x1

x2⊕x3

x3x3 x1⊕x2 x2

x1

x1⊕x2⊕x3 (4.1)

That is, we work from left to right. When we encounter a CNOT gate whose
input wires are labelled a on the control qubit and b on the target qubit, we
copy the label a onto the output wire of the control qubit and write a⊕ b on
the output wire of the target qubit. Once we get to the output of the circuit,
we will have calculated the overall action of the unitary on computational
basis states. For example, the circuit (4.1) implements the following unitary:

U :: |x1, x2, x3⟩ 7→ |x1, x2 ⊕ x3, x3⟩ (4.2)

Generally we can describe the action of a CNOT circuit by a parity map:

Definition 4.1.2 A parity map is a function f : {0, 1}n → {0, 1}m where
f = (f1, . . . , fm) and each fi calculates the parity of some of the input bits:
fi(x⃗) = xji1 ⊕ xji2 ⊕ · · · ⊕ xjiki

.

By pushing variables through a circuit as in the example above, we can
straightforwardly calculate the parity map for any CNOT circuit. Hence, the
following proposition is immediate.

Proposition 4.1.3 Let C be an n-qubit CNOT circuit describing the
unitary UC . Then there is a parity map f : {0, 1}n → {0, 1}n such that for
every computational basis state |x⃗⟩ we have UC |x⃗⟩ = |f(x⃗)⟩.

Furthermore, the parity map totally defines the unitary associated with
the CNOT circuit. In particular, if we find another CNOT circuit with the
same parity map, it implements the same unitary. For example, the unitary
implemented by the CNOT circuit (4.1) could also be implemented by this
much smaller CNOT circuit:

x1

x2

x3

x1

x2⊕x3

x3

(4.3)

136 CNOT circuits and phase-free ZX-diagrams

By starting with a CNOT circuit, computing its parity map, then finding
a new circuit that implements that same parity map, we ended up with a
circuit that was a lot smaller, with just one CNOT gate rather than six.
We call the problem of generating a CNOT circuit that implements a given
parity map the CNOT circuit synthesis problem.

In the next section, we will show that, as long as a parity map is invertible,
we can always synthesise a CNOT circuit that implements it.

4.1.3 CNOT circuit synthesis

We can view a bit string x⃗ ∈ {0, 1}n as a vector of the vector space Fn2 .
With this in mind, it follows that parity maps, which only ever compute
XORs of their input bits, are actually linear maps over such vector spaces.
Consequently, we can always write them in matrix form.

Definition 4.1.4 A parity matrix is a matrix with entries in F2.

One can show straightforwardly that for any parity map f , we can find a
parity matrix A such that f(x⃗) = Ax⃗. Indeed we saw an example of this in
section 4.1.1 when we represented the parity map:

f(b1, b2, b3, b4) = (b1 ⊕ b3 ⊕ b4, b2 ⊕ b3, b1 ⊕ b4, b4)

with the matrix:

A =

1 0 1 1
0 1 1 0
1 0 0 1
0 0 0 1

In the last section, we saw how to represent the action of a CNOT circuit as

a parity map. It will be convenient to write this map as a parity matrix. Since
CNOT circuits represent reversible computations on bits, their associated
parity matrices are always invertible.

Remark 4.1.5 Note that we now have two different ways to represent
CNOT circuits as matrices. On the one hand, treating them as quantum
circuits gives us a 2n × 2n unitary matrix U whose entries are all complex
numbers {0, 1} ⊆ C. These matrices always correspond to permutations of
computational basis states, so there is always a single 1 in each row and
column and U † = UT = U−1. On the other hand, treating them as classical
parity maps gives us a n × n invertible matrix P whose entries are bits
{0, 1} ⊆ F2. In general, these can have multiple 1’s in any give row/column

4.1 CNOT circuits and parity matrices 137

and P T might not equal P−1. [a: remarks like this could come from “careful
Coco”]

Thinking about the action of a single CNOT gate:

CNOT|x1, x2⟩ = |x1, x1 ⊕ x2⟩

we get the parity map f(x1, x2) = (x1, x1 ⊕ x2) and hence the following
lower-triangular parity matrix:

E =
(

1 0
1 1

)
Notably, since 1 + 1 = 0 in F2, this matrix is its own inverse:

E2 =
(

1 0
1 ⊕ 1 1

)
=
(

1 0
0 1

)
This captures the fact that two successive CNOT gates cancel out.

We can generalise this to a single CNOT gate appearing in a larger circuit
as follows.

Example 4.1.6 For an n-qubit circuit, the parity matrix corresponding
to a CNOT with the control on qubit i and the target on qubit j is the
identity matrix with one additional 1 in the i-th column and the j-th row.
We will denote this matrix by Eij . Just like with the matrix E above, we
have (Eij)2 = I.

You may have met matrices like these before in a linear algebra course. Ma-
trices that look like the identity matrix with the exception of one additional
non-zero value correspond to primitive row and column operations
used for Gaussian elimination.

If I multiply a generic matrix M with Eij on the left, this has the effect
of adding the i-th row of M to the j-th row:

Eij

R1
...
Ri
...
Rj
...
Rn

=

R1
...
Ri
...

Ri +Rj
...
Rn

whereas if we multiply by Eij on the right, it has the effect of adding the

138 CNOT circuits and phase-free ZX-diagrams

j-th column to the i-th column:(
C1 · · · Ci · · · Cj · · · Cn

)
Eij =

(
C1 · · · Ci + Cj · · · Cj · · · Cn

)
A general property of invertible square matrices is we can reduce them

to the identity matrix by means of primitive row operations or primitive
column operations. For a generic field, there are two kinds of primitive
row/column operations: multiplying a row/column by a non-zero scalar and
adding one row/column to another. This is what happens when we apply the
Gauss-Jordan reduction procedure, sometimes called simply Gaussian
elimination, to an invertible matrix. For F2, there is only one non-zero scalar,
1, so in fact the second kind is all we need.

There are two, essentially equivalent ways we can do Gauss-Jordan reduc-
tion, either working from the left side of the matrix with row operations
or the right side of the matrix with column operations. Although it is the
(slightly) less typical version, here we’ll use column operations. This will
make things easier when it comes to generalising to bigger families of circuits
in Chapter 7.

Suppose we find any sequence of k primitive column operations that reduce
a parity matrix to the identity. Then we have a series of elementary matrices
Ei1j1 , . . . , Eikjk such that:

AEi1j1 · · ·Eikjk = I

As we noted in Example 4.1.6, each of the elementary matrices is their own
inverse. So, we can move them to the other side of this equation, reversing
the order:

A = Eikjk · · ·Ei1j1 (4.4)

Hence, we can see Gaussian elimination as a way of decomposing invertible
matrices as a composition of elementary matrices. Since we know that ev-
ery parity matrix coming from a CNOT circuit is invertible and that each
elementary matrix corresponds to a CNOT gate, we see that synthesising
CNOT circuits from parity matrices amounts to Gaussian elimination!

We give the full synthesis procedure in Algorithm 1. Note we write CNOTij

for a CNOT gate with a control on the i-th qubit and a target on the j-th
qubit.

Theorem 4.1.7 Algorithm 1 works.

Proof This algorithm produces one CNOT gate corresponding to each el-
ementary column operation in the decomposition of A from equation 4.4.

4.1 CNOT circuits and parity matrices 139

Algorithm 1: CNOT circuit synthesis by Gauss-Jordan reduction
Input: An n× n invertible parity matrix A
Output: A CNOT circuit implementing A
Procedure CNOT-SYNTH(A)

let C be an empty circuit on n qubits
for i = 1 to n do // forward part

if Aii = 0 then
// ensure that a 1 is on the diagonal
find k > i such that Aik ̸= 0
add column k of A to column i

append CNOTik to C
end
for j = i+ 1 to n do

if Aij ̸= 0 then
add column i of A to column j

append CNOTji to C
end

end
end
for i = n to 1 do // backwards part

for j ∈ (i− 1)...1 do
if Aij ̸= 0 then

add column i of A to column j

append CNOTji to C
end

end
end
return C

end

Hence, the overall effect of C on a computation basis input will be the
composition of these elementary matrices, which is A.

Exercise 4.1 Consider the following CNOT circuit:

⊕
⊕

⊕ ⊕

a) Calculate the parity matrix of this circuit.

140 CNOT circuits and phase-free ZX-diagrams

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
...
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

=

=

=

=

(sp) (sc)

= ν

= 2=

Figure 4.1 The rules of the phase-free ZX calculus: the spider rules (sp)
and strong complementarity (sc). Note the righthand-side of the (sc) rule
is a complete bipartite graph of m Z spiders and n X spiders, with a
normalisation factor ν := 2(m−1)(n−1)/2, which we typically drop when
scalar factors are irrelevant.

b) Resynthesise a new equivalent CNOT circuit from this parity matrix by
using Algorithm 1.

4.2 The phase-free ZX calculus
Now that we understand CNOT circuits and their relationship to parity
matrices a bit better, let’s turn our attention to phase-free ZX-diagrams and
the phase-free ZX calculus. As we noted at the beginning of this chapter,
phase-free ZX-diagrams are those without Hadamard gates and whose spiders
all have phase 0. It turns out that once we make this restriction, one can
simplify the rules a great deal. As we’ll see in Section 4.3.1, the rules in
Figure 4.1 suffice to prove any true equation between phase-free ZX-diagrams.
[a: we may want to adjust labelling of rules here or elsewhere. In the paper,
I referred to fusion, id, and scalar rules all collectively as the spider rules.]

We will see in this section and the next that the phase-free ZX calculus
encodes a great deal of information about CNOT circuits, and more generally
linear algebra over F2. To start to get an idea of why this is the case, we’ll
temporarily introduce some π phases into X spiders to represent basis states,
and recap some of the things we already saw in the previous chapter.

Recall that we can represent the two Z-basis states as X-spiders, with a
phase of 0 or π, respectively:

∝ |0⟩ π ∝ |1⟩

where ‘∝‘ here means we are ignoring the scalar factor. Due to this fact, it

4.2 The phase-free ZX calculus 141

will be convenient to represent computational basis elements using a boolean
variable a ∈ {0, 1}:

aπ ∝ |a⟩

A Z-spider acts on a computational basis state by copying it through,
while an X-spider calculates the XOR of its inputs:

∝

..
.aπ

..
.

aπ

aπ

aπ

=
aπ

bπ

(a ⊕ b)π

The latter follows from the fact that, for boolean variables a, b, we have
(a+ b)π = (a⊕ b)π, modulo 2π.

Recall what the CNOT gate looks like as a ZX-diagram:

With the interpretation of the Z-spider as copying and the X-spider as XOR
we see that we can interpret this diagram as saying that we first copy the
first bit, and then XOR it with the second bit, and this is indeed how we
understand the functioning of the CNOT:

x1π

x2π

∝ x1π

x2π

x1π

=

(x1 ⊕ x2)π

x1π

It turns out that this idea generalises to describe the action of an arbitrary
parity matrix in the following way: suppose we have an n×m parity matrix
A, then its corresponding ZX-diagram is given by

• one Z-spider connected to each input 1 ≤ i ≤ n and one X-spider
connected to each output 1 ≤ j ≤ m,

• a connection from the ith Z-spider to the jth X-spider if and only if
Aij = 1.

Another way to say this is that the biadjacency matrix of the connectivity
from the Z-spiders to the X-spiders is equal to the parity matrix. This
biadjacency matrix has a row for each X-spider, and a column for every
Z-spider, and there is a 1 in the matrix when the corresponding Z-spider is
connected to the corresponding X-spider, and a 0 if they are not connected.

142 CNOT circuits and phase-free ZX-diagrams

Just like for CNOT circuits in the previous section, the parity matrix of
a ZX-diagram in parity form exactly captures the action of the associated
linear map on computational basis states.

Example 4.2.1 We have the following correspondence between this parity
matrix and a ZX-diagram:

(
1 0 1
1 1 0

)
↔ (4.5)

From the parity matrix, we can compute the action of the linear map on
basis states (up to some scalar factor):(

1 0 1
1 1 0

)x1
x2
x3

 =
(
x1 ⊕ x3
x1 ⊕ x2

)

In other words, the linear map depicted above acts as follows on basis states:

L :: |x1, x2, x3⟩ 7→ |x1 ⊕ x3, x1 ⊕ x2⟩

We can check this by inputting a computational basis state, expressed in
terms of X-spiders and reducing:

x2π

x3π

x1π

∝
(sc)

x2π

x3π

x1π

x1π

=

(sp) (x1 ⊕ x3)π

(x1 ⊕ x2)π

It will be helpful to have a name for diagrams such as the one depicted in
equation (4.5) above.

Definition 4.2.2 We say a phase-free ZX-diagram is in parity normal
form (PNF) when

• every Z-spider is connected to exactly one input,
• every X-spider is connected to exactly one output,
• spiders are only connected to spiders of the opposite colour and via at

most one wire.

If a diagram is in PNF, the only relevant information is the number of
inputs, number of outputs, and which inputs are connected to which outputs.
Hence biadjacency matrices are in 1-to-1 correspondence with ZX-diagrams
in parity normal form.

4.2 The phase-free ZX calculus 143

4.2.1 Reducing a ZX-diagram to normal form

We have now seen that we can represent a CNOT circuit as a parity matrix
and parity matrices as ZX-diagrams in parity normal form. Additionally,
using Gaussian elimination we can go back from this parity form to a CNOT
circuit. There is just one step missing in this trifecta of representations: how
to reduce a unitary phase-free ZX-diagram to parity normal form. This is
what we will do in this section. Apart from it being useful to understand
how CNOT circuits relate to ZX-diagrams, it will also give us a first taste
about how to define simplification strategies in the ZX-calculus.

The first step in this process of simplification will be to bring the ZX-
diagram into a more canonical form.

Definition 4.2.3 We say a ZX-diagram is two-coloured when

1. no spiders of the same colour are connected to each other,
2. there are no self-loops,
3. there is at most one wire between each pair of spiders,
4. there are no Hadamards.

We call such diagrams two-coloured because we can view them as simple
graphs (where the spiders are the vertices) with a two-colouring (correspond-
ing to the colours of the spiders).

Lemma 4.2.4 Any ZX-diagram (not just a phase-free one) can be effi-
ciently simplified to a two-coloured one.

Proof Given a ZX-diagram we do the following rewrites. First, if there are
any Hadamards, we decompose them into spiders using (eu), so that the
diagram will only contain actual spiders. Then we apply (sp) wherever we
can. As a result, no two spider of the same colours are connected to each
other in the resulting diagram (since otherwise we would have fused them).
Second, we apply Eq. (3.39) to remove all self-loops on the spiders, so that the
resulting diagrams has no self-loops left. Finally, whenever there is more than
one connection between a pair of spiders, we apply complementarity (3.64)
in order to remove a pair of these connections. This can always be done since
the connections must necessarily be between spiders of different colours.

Given a phase-free ZX-diagram we can apply the above procedure to
reduce it a two-coloured diagram. This diagram will of course still be phase-
free. Now we will apply rewrites to this diagram that bring it closer to parity
normal form. In the parity normal form, all Z-spiders are connected to an
input, while all X-spiders are connected to an output. So, ‘bringing it closer’

144 CNOT circuits and phase-free ZX-diagrams

to the normal form means reducing the number of Z-spiders that are not
connected to an input or reducing the number of X-spiders not connected
to an output. The way we do this will be to strategically apply the strong
complementarity rule (sc).

Definition 4.2.5 We say a spider is an input spider, respectively output
spider when it is connected to at least one input, respectively output. If a
spider is neither an input spider nor an output spider, it is called an internal
spider.

Definition 4.2.6 We say a phase-free ZX-diagram is in generalised par-
ity form when it is two-coloured and

1. every input is connected to a Z-spider and every output to a X-spider,
2. every spider is connected to at most 1 input or output,
3. there are no zero-arity (i.e. scalar) spiders, and
4. no internal spiders are connected directly to each other.

To phrase the condition above in a different way, it is saying that there are
only two kinds of Z-spiders: input Z-spiders and internal Z-spiders directly
connected to output X-spiders. A similar categorisation applies to X-spiders,
reversing the role of inputs/outputs. Hence, the generalised parity form looks
like this, for some m,n, j, k ≥ 0:

..
.

..
.m n

j k

..
.

..
.

..
.

(4.6)

What makes this form “generalised” as opposed to diagrams in parity normal
form is the possibility of some internal spiders. When j = k = 0, we get
exactly the parity normal form.

In Algorithm 2 we show how to efficiently transform a phase-free ZX-
diagram into generalised parity form.

Lemma 4.2.7 Algorithm 2 terminates efficiently with a ZX-diagram in
generalised parity form.

Proof Note that step 1 always removes spiders from the diagram. Step 2
will remove a pair of spiders, but it will introduce new Z-spiders on all the
neighbours of and new X-spiders on all the neighbours of . Since is
not an output, the only possibility is that the new Z-spiders will be inputs

4.2 The phase-free ZX calculus 145

Algorithm 2: Reducing to generalised parity form
Input: A phase-free ZX-diagram
Output: A phase-free ZX-diagram in generalised parity form

1. Apply (sp) as much as possible and remove zero-arity spiders by
multiplying the overall scalar by 2.

2. Try to apply (sc) where
• is not an input and
• is not an output.

3. If (sc) was applied at step 2, go to step 1, otherwise go to step 4.
4. Use (id) in reverse to ensure inputs are connected to Z-spiders,

outputs are connected to X-spiders, and that no spider is connected to
multiple inputs/outputs.

or they will be adjacent to other Z-spiders. In the latter case, they will get
removed by spider fusion when step 1 is repeated. Hence, step 2 removes a
non-input Z-spider without introducing any new non-input Z-spiders.

This shows that the algorithm terminates after a number of iterations of
steps 1–3 bounded by the number of non-output Z-spiders, where each of
steps 1–4 takes polynomial time (in the number of spiders), so the whole
algorithm terminates in polynomial time. The main loop in Algorithm 2 will
only terminate once condition 4 of Definition 4.2.6 is satisfied, and since it
applies step 1 just before exiting the loop, it will be in two-coloured form.
Finally, step 4 ensures condition 1 is satisfied while preserving the other
conditions.

Exercise 4.2 Show how Step 4 in Algorithm 2 works. That is, show
that we can use (id) in reverse to fix (1) cases where inputs/outputs are
not connected to the correct type of spider and (2) cases where multiple
inputs/outputs connect to the same spider.

Now, why do we care about generalised parity form? Well, it turns out
that if the diagram describes a unitary, that such a diagram must be in
parity normal form.

Proposition 4.2.8 Let D be a diagram in generalised parity form:

146 CNOT circuits and phase-free ZX-diagrams

..
.

..
.m n

j k

..
.

..
.

..
.

If D is an isometry, then j = 0 and if it is unitary j = k = 0. In particular,
a unitary in generalised parity form is already in parity normal form.

Proof We first need to show that if D is an isometry then k = 0. That is,
every Z-spider is connected to an input. Suppose there is an X-spider that
is not connected to any output. By assumption we don’t have any floating
scalar spiders, so it must be connected to at least some Z-spiders. Since the
diagram is in generalised parity form, these must then all be input Z-spiders.
Input a |1⟩ to one of the input Z-spiders that the X-spider is connected to
and |0⟩ to all the others. Then after copying states and fusing spiders there
is a π phase on the X-spider:

...

π

∝
(sc)

...

π

π

=

(sp) ... π

π

= 0.

Hence, we have some input state that is mapped to zero, which contradicts
D being an isometry. So all X-spiders must be connected to an output, and
hence to a unique one by the previous paragraph.

If D is furthermore unitary, then we can similarly show that k = 0, i.e.
that each Z-spider must be connected to an input. If this were not the case,
we can plug ⟨−| ⊗ ⟨+| ⊗ . . . ⟨+| into a subset of the output qubits to send the
whole diagram to 0, which contradicts unitarity (since unitaries also preserve
the norm of bras, and not just kets).

Theorem 4.2.9 Any unitary phase-free ZX-diagram can be efficiently
rewritten in parity normal form.

Proof First use Lemma 4.2.4 to reduce it to two-coloured form. Then apply
Algorithm 2 to reduce it further to generalised parity form. Since the diagram
is unitary, it must then already be in parity normal form by Proposition 4.2.8.

Exercise 4.3 Prove that phase-free ZX-diagrams are invertible if and only
if they are unitary. Hint: Look closely at the assumptions that are needed to
make the proof of Proposition 4.2.8 work.

4.2 The phase-free ZX calculus 147

4.2.2 Graphical CNOT circuit extraction

In this section, we will see that we can derive the exact same CNOT circuit
synthesis procedure from Section 4.1.3 starting with ZX-diagrams in parity
normal form and applying strong complementarity to extract a CNOT cir-
cuit via Gaussian elimination. While the ZX reformulation doesn’t tell us
something new about the specific case of CNOT circuits per se, we will see
this basic graphical technique appearing in various guises throughout the
book, so it will be instructive to work through it explicitly here. For instance,
if we have a diagram that is more complicated, but locally has a part that
looks like like a parity normal form, then we can still (partially) apply the
graphical Gaussian elimination strategy.

The key point to the proof is to realise that the phase-free ZX-calculus
already ‘knows’ how to do F2-linear algebra. To get started, we’ll see that
we can prove that CNOT matrices perform elementary column operations
on parity matrices using just the ZX rules.

First of all, what does this look like graphically? In a parity normal form,
the Z-spiders correspond to columns of the biadjacency (i.e. parity) matrix,
and the wires coming out of the Z-spider correspond to 1’s in that column. In
order to see a CNOT as performing a column operation, we should therefore
see that pre-composing two Z-spiders by a CNOT has the effect of “adding”
the connections of one spider to the other, modulo 2. That is the content of
the following lemma.

Lemma 4.2.10 The following identity holds in the ZX-calculus:

...

...

...

=

...

...

...

148 CNOT circuits and phase-free ZX-diagrams

Proof

...

...

...

=

...

...

...

(sp)

∝

...

...

...

(sc)

...

...

...

...

...

=

(sp)

...

...

...

∝
(3.64)

This lemma says that when we apply a CNOT to a pair of inputs in a
diagram in parity normal form that we can ‘absorb’ this CNOT at the cost of
changing the connectivity of the diagram. In the case of parity normal form
diagrams, this change in connectivity corresponds precisely to an elementary
column operation. This is easiest to see by means of an example.

Example 4.2.11 Consider the following ZX-diagram in parity normal
form, and its associated biadjacency matrix:

↔

1 1 0
1 0 1
0 0 1

For unitaries, this matrix will always be a square and invertible. Since the
matrix is invertible, we can always reduce it to the identity using primitive
column operations, which in turn correspond to pre-composing with CNOT
gates. For example, consider this sequence of column operations:1 1 0

1 0 1
0 0 1

 c2:=c2+c1−→

1 0 0
1 1 1
0 0 1

 c3:=c3+c2−→

1 0 0
1 1 0
0 0 1

 c1:=c1+c2−→

1 0 0
0 1 0
0 0 1

This corresponds to a sequence of applications of Lemma 4.2.10, where each

4.2 The phase-free ZX calculus 149

one introduces a CNOT gate and changes the connectivity of the rest of
diagram:

=

=

= =

Here, the diagram to the right of the dashed line is always in PNF, and
its connectivity corresponds exactly to the intermediate steps of the Gauss-
Jordan reduction.

As we noted in Section 4.1.3, whenever a parity matrix is invertible, it is
possible to reduce it all the way to the identity using just elementary column
operations. Hence, the following proposition follows immediately.

Proposition 4.2.12 A ZX-diagram in parity normal form whose biadja-
cency matrix is invertible can be diagrammatically rewritten into a CNOT
circuit.

Exercise 4.4 We need the assumption that the biadjacency matrix is
invertible. Generate the parity normal form diagram of the following parity
matrix and try to apply the strategy above. What goes wrong?1 0 0

0 1 1
1 1 1

Exercise 4.5 Show that a ZX diagram in PNF is unitary if and if only its
biadjacency matrix is invertible.

Solution: .
Suppose it is not. Then if we were to follow the strategy of Proposition 4.2.12
of applying Gaussian elimination to the biadjacency matrix by introducing
CNOTs to the diagram, we would eventually get a biadjacency matrix whose
bottom row consists only of 0s. This means that in the ZX-diagram the

150 CNOT circuits and phase-free ZX-diagrams

Z-spider on the bottom qubit is not connected to any X-spider. Such a
diagram cannot represent a unitary, as the output of the diagram is then
independent of whether we input a |0⟩ or |1⟩ on the bottom qubit, so that it
is not injective.
End Solution .

Combining Lemma 4.2.7 and Proposition 4.2.8 we see that we have a
strategy for simplifying any unitary phase-free ZX-diagram to parity normal
form. Additionally, such a diagram is equivalent to a CNOT circuit.

Theorem 4.2.13 Any unitary phase-free ZX-diagram can be efficiently
rewritten into a CNOT circuit.

Proof By Theorem 4.2.9 a unitary phase-free diagram can be simplified to
parity normal form. By Exercise 4.5, we know the associated biadjacency
matrix is invertible, hence we can apply Proposition 4.2.12 to extract a
CNOT circuit.

As CNOT circuits themselves are unitary phase-free ZX-diagrams, this
theorem gives us an evident technique for a purely ZX-based method for
optimising CNOT circuits: from a CNOT circuit compute the PNF, then
re-extract using strong complementarity as in Example 4.2.11.

Exercise 4.6 If the diagram V is an isometry, then it can be written as:

..
.

V ..
.

V ′

..
.

..
.

..
.

∝

where V ′ is in parity normal form with an injective parity matrix P . Using
this fact, show that we can then furthermore write V as follows, in terms of
a unitary phase-free diagram U :

..
.

V ..
.

U

..
.

..
.

..
.

∝

..
.

Solution: .
First note that we can unfuse Z spiders from the generalised parity form of
an isometry to get a parity normal form with parity matrix P applied to
the k input and m ancillae in the |+⟩ state. Then, we can assume without
loss of generality that the last m columns of P corresponding to the ancillae

4.3 Phase-free states and F2 linear subspaces 151

are linearly independent. If that were not the case, pre-compose V ′ with
CNOTs to send any column that is a linear combination of the others to zero.
Both the CNOTs and that ancilla can then be removed. Once any dependent
ancilla columns are removed, one can check by case distinction that no other
column of P can linear combinations of other columns, otherwise V would
not be an isometry.
P is a rectangular matrix whose columns are linearly independent, so it

can be extended to a square matrix P ′ whose columns form a basis for Fn2 .
Then, for any vector w⃗ ∈ Fk+m

2 , we have

P ′

w⃗

0
...
0

 = Pw⃗

Hence, if U is a phase-free unitary with invertible parity matrix P ′, we have
U(|v⃗⟩ ⊗ |+ . . .+⟩ ⊗ |0 . . . 0⟩) = V ′(|v⃗⟩ ⊗ |+ . . .+⟩) = V |v⃗⟩.
End Solution .

4.3 Phase-free states and F2 linear subspaces
Let’s have a look again at the generalised parity form (4.6):

..
.

..
.m n

j k

..
.

..
.

..
.

In the previous section, we focussed on the special case where the phase-
free ZX-diagram diagram describes a unitary, in which case we must have
j = k = 0.

We now turn to a different special case, where the ZX-diagram depicts a
state. In this case, m = 0, and hence up to scalar factors, we can also take
j = 0. Hence, we are only left with a layer of k internal Z spiders, followed
by a layer of n output X spiders:

nk ..
.

..
. (4.7)

152 CNOT circuits and phase-free ZX-diagrams

Note that we could still represent such a diagram by its biadjaceny matrix,
but columns correspond to internal Z spiders rather than inputs. In particular
the order of the columns no longer matters, so rather than representing such
a diagram as a matrix, it makes more sense to represent it simply as a set
of F2-vectors.

Definition 4.3.1 The Z-X normal form of a phase-free ZX-diagram
state consists of a row of internal Z spiders connected to a row of X spiders
each connected to precisely 1 output. It can be described as a set of vectors
{v1, . . . , vk} over F2 where (vp)q = 1 if and only if the p-th internal Z spider
is connected to the q-th X spider.

vk

..
.

..
.

v1

At this point, the careful reader may note that a Z-X normal form might
contain more than one Z spider connected to the exact same set of X spiders.
From this, one might think we should actually describe the Z-X normal
form by a multi-set of F2-vectors, i.e. a set that allows duplicate elements.
However, thanks to the rules of the phase-free ZX calculus, we can always
remove spiders corresponding to duplicate bit-vectors.

Exercise 4.7 Show, using the phase-free ZX calculus, that:
v1

vk

..
.

..
.

v1
∝v2

vk

..
.

..
.

v1
v2 (4.8)

Unlike the parity form, the Z-X normal form is not unique. However, we
will soon see that it is straightforward to discover when two Z-X normal forms
actually describe the same state, and how in that case we can transform one
into the other.

The key point is to realise that the important information captured in
{v1, . . . , vk} is not the set itself, but rather the subspace S of Fn2 spanned
by it. The usual way to define S is as the set of all of the possible linear
combinations of {v1, . . . , vk}:

S = Span{v1, . . . , vk} := {a1v1 + a2v2 + . . .+ akvk | a1, . . . , ak ∈ F2}

Equivalently, since the field is F2, we can think of S as the set of all vectors
obtained by XOR-ing any subset of {v1, . . . , vk}, including the zero vector
(which corresponds to XOR-ing the empty set).

4.3 Phase-free states and F2 linear subspaces 153

Since F2 is a finite field, any subspace of Fn2 (including Fn2 itself) is a finite
set of vectors, so we can compute it explicitly. For example:

Span

1

1
0

 ,
0

1
1

 =

0

0
0

 ,
1

1
0

 ,
0

1
1

 ,
1

0
1

 (4.9)

Let’s look at the Z-X normal form corresponding to the pair of vectors on
the lefthand-side of (4.9).

We can compute the state explicitly by expanding each Z spider as a sum
over X spiders:

= 1
4

∑

jk

jπ

jπ

kπ

kπ

= 1
4

∑

jk

jπ

(j ⊕ k)π

kπ

∝
∑

jk

|j, j ⊕ k, k⟩ = |000⟩+ |110⟩+ |011⟩+ |101⟩

(4.10)

The result is precisely the sum over all of the vectors in the subspace (4.9),
written as elements of the computational basis.

This is true in general, as stated in the following theorem.

Theorem 4.3.2 For any Z-X normal form described by a set of F2-vectors
{v1, . . . , vk}, we have:

vk

..
.

..
.

v1
∝

∑
b∈S

|b⟩ where S = Span{v1, . . . , vk} (4.11)

This can be seen by direct calculation similar to (4.10), by expanding each
of the Z spiders as a sum |0...0⟩ + |1...1⟩ and using the fact that X spiders
act like XOR.

Exercise 4.8 Complete the proof of Theorem 4.3.2.

Theorem 4.3.2 says that the state associated with an n-qubit Z-X normal
form is uniquely described by an F2-linear subspace S of Fn2 . From the Z-X
normal form itself, we can read off a spanning set of vectors for S. As a

154 CNOT circuits and phase-free ZX-diagrams

result, we are not too far from showing completeness of the phase-free ZX
calculus.

4.3.1 Phase-free completeness

Recall that a completeness theorem states that if any two diagrams corre-
spond to the same linear map, one can be transformed to the other just using
graphical rules. In this section, we will prove completeness of the phase-free
ZX-calculus for the fragment of phase-free ZX-diagrams.

Since we have already shown that phase free states correspond to linear
subspaces and their associated Z-X normal forms correspond to sets of vectors
spanning those spaces, the only thing left to do is show that we can transform
one spanning set into another using just the phase free ZX rules.

Proposition 4.3.3 Let B and C be two sets spanning the same F2-linear
subspace S. Then B can be transformed into C by

1. adding or removing the zero vector, or
2. replacing a pair of vectors v, w ∈ B with the pair v, v + w zero or more

times.

We will omit the proof here, as it is a standard result in linear algebra.
Note that usually case 2 consists of replacing the pair v, w with v, λv + w

for some non-zero scalar λ. But in F2, the only non-zero scalar is 1, so this
simplifies.

We can now prove the following lemma by reproducing the two cases of
Proposition 4.3.3 using the ZX calculus.

Lemma 4.3.4 Let B = {v1, . . . , vk} and C = {w1, . . . , wl} describe two
Z-X normal forms on n qubit space. If the sets B and C span the same
subspace of Fn2 , one can be transformed into the other, up to a scalar factor.

Proof We will show that the Z-X normal form for B can be transformed
into that for C using the two cases described in Proposition 4.3.3. First, note
that adding or removing a zero vector corresponds to adding or removing a
zero-legged Z spider, which simply adds or removes a scalar factor of 2.

Hence, it suffices to show that we can transform a pair of Z-spiders de-
scribed by the vectors v, w into Z spiders described by v, v + w. That is, we
can “add” the wires of one spider to the other one, modulo 2. We can see
this by splitting the X spiders into 3 groups: those connected to v, those
connected to w, and those connected to both. We can then perform the
vector addition by two applications of the (sc) rule. First, we apply the rule
in reverse:

4.3 Phase-free states and F2 linear subspaces 155

..
.

..
.

..
.

∝

..
.

..
.

..
.

..
.

..
.

..
.

v

w

= ..
.

then forward:

..
.

..
.

..
.

∝
..
.

..
.

..
.

=

..
.

..
.

..
.

v

v+w

=

..
.

..
.

..
.

Proposition 4.3.5 If two phase-free ZX-diagram states describe the same
linear map, one can be rewritten into the other using only the rules in
Figure 4.1.

Proof Suppose two diagrams describe the same quantum state. Then, they
can both be brought into Z-X normal form. By equation (4.11), their associ-
ated F2-vectors must span the same linear space S. Hence, by Lemma 4.3.4,
one can be transformed into the other. The rules we used were only accurate
up to scalar factors, however if the states are exactly equal, then once the
non-scalar portion of the diagram is made equal, these ignored scalar factors
must then also be exactly equal.

We now have completeness of the phase-free ZX-calculus for states. To get
the full completeness result we need to show how to adapt this to work for
arbitrary diagrams. Because we can just bend wires this is not too hard.

Theorem 4.3.6 (Completeness of phase-free ZX) If two phase-free ZX-
diagrams describe the same linear map, one can be rewritten into the other
using only the rules in Figure 4.1.

Proof Suppose the phase-free diagrams D1 and D2 are equal as linear
maps. Then we know if we bend all the input wires to be output wires so
that they are both states, that we still have equality. Additionally, because
of completeness for states, we know that we can then rewrite one into the
other. We can use this to show we can rewrite D1 into D2 diagrammatically:

156 CNOT circuits and phase-free ZX-diagrams

D1

... =

D1

...

...
...

...

=

(4.3.5)

...

...

D2

...

...

...

...

... D2

...=
...

Here we marked with a dotted box the states that we rewrite into each other
using the completeness for phase-free states (Proposition 4.3.5)

In this proof we implicitly rewrote the “state form” of D1 and D2 into
the Z-X normal form. If we take this normal form, and bend the input wires
back we get a diagram that looks like the following:

..
.

..
.

..
. mn (4.12)

We then have a layer of X-spiders connected to both the inputs and out-
puts, and these are connected via some internal Z-spiders. This is hence an
alternative normal form for phase-free diagrams.

4.3.2 X-Z normal forms and orthogonal subspaces

All of the rules of the ZX calculus are colour-symmetric, so we could just as
well obtain a normal form for phase-free ZX-diagrams consisting only of a
row of internal X-spiders and a row of boundary Z-spiders. One way to see
this is to start yet again from the generalised parity form:

..
.

..
.m n

j k

..
.

..
.

..
.

and set k = n = 0 this time. We’ll obtain a colour-reversed, mirror image of
the Z-X normal form from (4.7):

m j..
.

..
. (4.13)

Just like before, we can describe this object by a set of bit-vectors {w1, . . . , wj}.

4.3 Phase-free states and F2 linear subspaces 157

Definition 4.3.7 The X-Z normal form of a phase-free ZX-diagram
consists of a row of internal X spiders connected to a row of Z spiders,
each connected to precisely 1 input. It can be described as a set of vectors
{w1, . . . , wj} over F2, where (wp)q = 1 if and only if the p-th internal X
spider is connected to the q-th Z spider.

Suppose we plug some basis state |v1, . . . , vn⟩ into an X-Z normal form.
The result will be a scalar, which depends on the XORs of some subsets of
the input bits. For example:

v3π

v1π

v2π ∝

v3π

v1π

v2π

v1π

v3π

∝
(v1 ⊕ v2 ⊕ v3)π

(v1 ⊕ v3)π

If either of the scalar X spiders has a phase of π, the whole thing goes to zero.
If both X spiders have a phase of 0, then the scalar equals a fixed non-zero
value N . In other words, the result is non-zero precisely when a collection
of parities of input variables all equal zero. Hence, we can write the linear
map as follows:

N ·
∑
b∈S

⟨b| where S =

v1
v2
v3

 ∣∣∣∣ v1 ⊕ v2 ⊕ v3 = 0
v1 ⊕ v3 = 0

Recalling that in F2, ⊕ = + and the only possible coefficients in a linear
equation are zero and one, requiring a set of parities to all be zero is the same
thing as saying we have a solution to a system of homogeneous F2-linear
equations. The term homogeneous just means all the righthand-sides are
equal to zero, and famously the set of solutions to a homogeneous system of
equations always forms a subspace.

A handy perspective on a system of homogenous equations is to think of
them as a spanning set of vectors for the orthogonal subspace, or “perp”,
S⊥ of S, defined this way:

S⊥ = {w | for all v ∈ S, wT v = 0}.

158 CNOT circuits and phase-free ZX-diagrams

Then, note:

(
w1 w2 · · · wn

)

v1
v2
...
vn

 = 0 ⇐⇒ w1v1 ⊕ w2v2 ⊕ . . .⊕ wnvn = 0.

So, giving a spanning vector for S⊥ is really just giving a list of coefficients
w1, . . . , wn for a linear equation.

Rewriting the example above in terms of S⊥, we have:

w1

w2

∝
∑
b∈S

⟨b| where S⊥ = Span

w1 :=

1
1
1

 , w2 :=

1
0
1

Exercise 4.9 Show that this interpretation for X-Z normal forms is true
in general, namely that:

wj

..
.

..
.

w1

∝
∑
b∈S

⟨b| where S⊥ = Span{w1, . . . , wj} (4.14)

As in the case for spanning sets of vectors for S, there are many choices
of spanning set for S⊥, which correspond to equivalent systems of linear
equations. For example, adding one of the equations in a system to another
one doesn’t change the set of solutions:

v1 ⊕ v2 ⊕ v3 = 0
v1 ⊕ v3 = 0

⇐⇒
v1 ⊕ v2 ⊕ v3 = 0

v2 = 0

Such a move just corresponds to changing the spanning set for S⊥:

S⊥ = Span

1

1
1

 ,
1

0
1

 = Span

1

1
1

 ,
0

1
0

which, like in the Z-X case, can be replicated graphically thanks to strong
complementarity:

∝
w1

w1 ⊕ w2

w1

w2

∝
w2

w1 ⊕ w2

Exercise 4.10 Prove the two equations above using strong complementar-
ity.

4.3 Phase-free states and F2 linear subspaces 159

Exercise 4.11 Prove the general case of changing a basis for S⊥ using
strong complementarity. Use this to give an alternative proof of the phase-free
completeness Theorem 4.3.6 that relies on the X-Z normal form.

The fact that we ended up writing X-Z normal forms as bra’s rather than
ket’s is just an artifact of the convention we chose back in Section 4.2.1 to
get Z spiders on the left and X spiders on the right in our generalised parity
form. Everything in ZX is colour-symmetric, so we could have just as well
done this the other way around to obtain an X-Z normal form for states.
Hence, we actually get two equivalent ways to represent a state: the Z-X
normal form and the X-Z normal form:

vk

..
.

..
.

v1
∝

∑
b∈S

|b⟩ where S = Span{v1, . . . , vk}

wj

..
.

..
.

w1

∝
∑
b∈S

|b⟩ where S⊥ = Span{w1, . . . , wj}

It is important to note that, most of the time, the number of vectors in
these two forms will be different. For example, the GHZ state, given by the
subspace S = Span{(1, 1, 1)} = {(0, 0, 0), (1, 1, 1)} has this Z-X normal form:

|GHZ⟩ ∝ |000⟩ + |111⟩ ∝

whereas S⊥ = Span{(1, 1, 0), (0, 1, 1)}, so it has this X-Z normal form:

|GHZ⟩ ∝

But of course, these two are equal, thanks to the rules of the ZX calculus:

= = =

160 CNOT circuits and phase-free ZX-diagrams

This relationship between the Z-X and X-Z normal form will come in handy
when we start thinking of quantum error correcting codes in Chapter 11.

4.3.3 Relating parity matrices and subspaces

We’ve seen that phase-free unitaries can be represented efficiently as F2 linear
maps and phase-free states can be represented as F2 linear subspaces. So,
a natural question is: what happens when we hit a phase-free state with a
phase-free unitary?

You may not be particularly surprised to find out that we can compute the
subspace of the resulting state as the direct image of the original subspace.
That is, for a phase-free unitary with parity map p:

U |x⃗⟩ = |p(x⃗)⟩

and a phase-free state corresponding to a subspace S ⊆ Fn2 :

|ψ⟩ ∝
∑
x⃗∈S

|x⃗⟩

we have that |ψ⟩ gets mapped to a new phase-free state described by the
subspace p(S):

U |ψ⟩ ∝
∑

y⃗∈p(S)
|y⃗⟩ where p(S) := {p(x⃗) | x⃗ ∈ S} (4.15)

In fact, this just follows from linearity, and the fact that U (which is
injective) never takes two bit strings to the same place:

U |ψ⟩ ∝ U(
∑
x⃗∈S

|x⃗⟩) =
∑
x⃗∈S

U |x⃗⟩ =
∑
x⃗∈S

|p(x⃗)⟩ =
∑

y⃗∈p(S)
|y⃗⟩

Exercise 4.12 Consider the following phase-free state, corresponding to
the subspace Span{(1, 1, 0), (0, 1, 1)}:

|ψ⟩ =

Compute U |ψ⟩ for the following phase-free unitaries:

U ∈

 , ,

using the ZX calculus.

4.4 Summary: What to remember 161

4.4 Summary: What to remember
1. An n-qubit CNOT circuit corresponds to an n × n parity matrix: a

matrix over the field with 2 elements F2 = {0, 1}.
2. A CNOT circuit can be synthesised from a parity matrix using Gaussian

elimination.
3. Phase-free ZX-diagrams are those diagrams where all the phases on the

spiders are zero. They have a restricted rule set presented in Figure 4.1.
4. Phase-free ZX-diagrams can efficiently be rewritten to several different

normal forms: generalised parity form, Z-X normal form, or X-Z normal
form.

5. Unitary phase-free diagrams correspond to CNOT circuits.
6. The row operations of Gaussian elimination correspond to doing strong

complementarity in the ZX-calculus.

4.5 Advanced Material*

4.5.1 Better CNOT circuit extraction*

In the discussion on universal gate sets in Section 2.3.5 we saw that the
only multi-qubit gate we need is the CNOT gate. In current physical devices
entangling gates are harder to implement than single-qubit gates, incurring
more noise and taking a longer time to execute. All this is to say that CNOT
gates are important, and we should think hard about how we can optimise
their use as much as possible. We saw in this chapter that we can always
resynthesise a CNOT circuit using Gaussian elimination. Whereas a starting
CNOT circuit can be as long as we want, with this resynthesis we can get a
definite bound on how long the circuits can get.

Each row operation in the elimination procedure gives us one CNOT gate.
The question then is: how many row operations do we need in the worst
case? Let’s suppose we have some arbitrary n × n parity matrix. We will
find an upper bound to how many row operations we need to reduce it to
the identity matrix. Let’s recall the distinct steps of Gaussian elimination.
For every column we need to make sure there is a 1 on the diagonal. Then
we eliminate all the elements on the column below the diagonal. Once we
have done this with every column, the matrix is in upper-triangular form.
We then need to do the same elimination, column-by-column, for all the
elements above the diagonal. The first column in the first stage then gives
us at most n row operations: 1 for correcting the diagonal, and n − 1 for
correcting all the elements below the diagonal. Similarly, the second column

162 CNOT circuits and phase-free ZX-diagrams

takes n− 1 operations. Reducing the matrix to upper-triangular form hence
takes

∑n
k=1 k − 1 = n(n + 1)/2 − 1, where this last −1 comes from the

fact the final column will already have a 1 on the diagonal when we are
doing elimination and the matrix is full rank. To reduce the rest of the
matrix we no longer have to correct the diagonal, and hence fixing the
last column only takes n − 1 operations, and the second n − 2, and so on.
This hence occurs

∑n−1
k=1 k = (n− 1)n/2 operations. This gives us a total of

n(n + 1)/2 − 1 + (n − 1)n/2 = n2 + 1/2n − 1/2n − 1 = n2 − 1 operations
exactly.

Proposition 4.5.1 Every CNOT circuit can be resynthesised using at
most n2 − 1 CNOT gates.

Requiring just n2 gates, even though naively these circuits could be ar-
bitrarily long is already pretty good. But is it also the best we can do? To
determine this, we need to find some way to figure out how many CNOT
gates the worst-case parity matrices require. We will do this by using a
counting argument: we will count how many different possible invertible
parity matrices there are, and then argue that therefore circuits must reach
at least a certain length to represent them all. For instance, if we have just
a single CNOT gate acting on n qubits, then this can represent at most
n(n− 1) different parity matrices, as these are all the different ways we can
place the CNOT in the circuit. If instead we have d CNOT gates, then there
are (n(n − 1))d different ways to place them, so that this is the maximum
number of parity matrices we can represent. Since we actually care about
how many parity matrices we can write down with circuits up to D CNOT
gates, we should also allow the identity operation as one possibility, so that
there is actually n(n− 1) + 1 ways to optionally place a CNOT gate.

Now let’s count how many invertible parity-matrices there are. Suppose
we wish to build an invertible n× n parity matrix. We will do this column
by column. The first column we can pick arbitrarily, as long as it is not all
zero. We hence have 2n − 1 options for that column. Let’s call this vector c⃗1.
Now for the second column we need to make sure that it is independent of
the first column. So it can’t be c⃗1 or 0⃗, but otherwise we are free to choose it.
So there are 2n − 2 options for c⃗2. Now to choose c⃗3, we need to make sure it
is independent of c⃗1 and c⃗2. The vector space spanned by these vectors has
4 elements, and hence there are 2n − 4 options. At this point we can spot a
pattern! The kth column has 2n − 2k−1 options to choose from. The total
number of invertible parity matrices is then

(2n−20)(2n−21) · · · (2n−2n−1) ≥ 1
22n · 1

22n · · · 1
22n = (2n−1)n = 2n(n−1).

4.5 Advanced Material* 163

If we then claim that we can represent any invertible parity matrix by a
CNOT circuit of at most d CNOT gates, then we must at least have:

(n(n− 1) + 1)d ≥ 2n(n−1).

If this wasn’t the case, then there would be no way for use to write down
all the different parity matrices, since we just don’t have enough space in
our circuit for that many unique options. Let’s take the logarithm in this
equation, and rearrange the terms:

d ≥ n(n− 1)
logn(n− 1) + 1 = O

(
n2

logn

)
.

We see then that just to be able to represent all the parity matrices, we need
circuits that have length at least of order n2/ logn, and hence there will be
parity matrices that require at least that many CNOT gates to write down.

Our naive Gaussian elimination strategy gave us n2 CNOT operations,
and we see that this lower bound is n2/ logn. It would certainly be nice if
we could do some smarter elimination, just to squeeze out that last bit of
logarithmic factor. And we can!

The idea is that we don’t want to eliminate the matrix just element per
element, but instead we divide each row up into small ‘chunks’. We then
first try to eliminate whole chunks at a time. For instance, suppose we pick
our chunk size to be 3, then we would first consider the first 3 columns at a
whole, and we would look for any duplicate 3-bit strings in these columns.
If we find any, then we apply a row operation to get rid of this whole bit
string. Once we have done that, we proceed to eliminate these 3 columns as
usual, and then go on to the second set of 3 columns.

The benefit of doing this, is that when the chunk size is c, there are only
2c different types of sub-rows, meaning that of all the n elements in a row, at
most 2c can be non-zero after the chunk elimination, and hence the further
standard elimination step only requires c2c row operations to clear out the
c columns. The cost of first doing the chunk elimination is n (ignoring some
details here regarding chunks being counted twice across the diagonal), and
both these steps need to happen n/c number of times (assuming c divides
n), once for each of the chunked columns. We also have a cost of n total to
insert the right diagonal elements. The total cost is then

(c2c)n
c

+ n
n

c
+ n = n2

c
+ n2c + n.

Setting c = α logn for some α < 1 then simplifies this cost to O(n2

logn). Note

164 CNOT circuits and phase-free ZX-diagrams

that α < 1 is needed for the n2c = n1+α term to be asymptotically smaller
then n2 logn.

This hence gives us an algorithm with an asymptotically optimal CNOT
count!

Theorem 4.5.2 Every CNOT circuit can be resynthesised using at most
O(n2/ logn) CNOT gates.

This algorithm isn’t just theoretically interesting: in practice it already
gives better results than naive Gaussian elimination for very small number
of qubits.

4.6 References and further reading
CNOT circuit synthesis An efficient CNOT circuit synthesis procedure based
on Gaussian elimination was proposed by Alber et al. (2001). This was later
refined by Markov, Patel, and Hayes in (Markov et al., 2008). This algorithm
is the one described in Section 4.5.1. This algorithm remains one of the best
for unconstrained architectures, obtaining an asymptotically optimal gate
count. Recently, there has also been work on synthesising CNOT circuits
for architectures with topological constraints, such as superconducting de-
vices. In these approaches, a graph is provided whose nodes are qubits and
edges are places where CNOTs may be placed. This can be accomplished
by constraining which row operations are allowed in Gaussian elimination
using Steiner trees, a technique proposed simultaneously by Kissinger and
de Griend (2020) and Nash et al. (2020). A different technique, based on
F2-linear decoding, was given by de Brugière et al. (2020).

Interacting bialgebras The phase-free ZX calculus has also been called IB,
for interacting bialgebras, in the categorical algebra literature (Bonchi
et al., 2014). This is because this set of generating maps:

(4.16)

as well as this set:

(4.17)

each form an algebraic structure called a bialgebra. Bialgebras, and the
more specific structure of Hopf algebras, have been extensively studied in
representation theory, as they generalise group algebras. This system is called
interacting bialgebras because the two bialgebras (4.16) and (4.17) interact

4.6 References and further reading 165

with each other, via the spider fusion laws. In algebraic terms, this means the
four Z generators and the four X generators each form Frobenius algebras.

Normal forms In (Bonchi et al., 2014), the authors showed that any diagram
built out the generators (4.16) and (4.17), i.e. any phase-free ZX diagram,
can be put into one of two normal forms, which they called the span and
cospan form. These are closely related to the Z-X and X-Z normal forms
we used in this chapter. They also showed that the resulting maps from
m wires to n wires are in 1-to-1 correspondence with F2-linear relations,
i.e. subspaces S ⊆ Fm+n

2 . Up to bending wires, this is what we showed in
Section 4.3.

PROPs This work lives in the broader field of studying PROPs, or PROduct
categories with Permutations, a categorical formulation of algebraic struc-
tures whose generators can have many inputs or outputs. PROPs were first
formulated by Mac Lane MacLane (1965) and an important technique for
composing PROPs together was developed by Lack Lack (2004).

The techniques used to get normal forms in (Bonchi et al., 2014) used
abstract arguments based on composing PROPs, and did not directly show
how to compute normal forms by applying graphical rules. The rewriting
strategy used for obtaining normal forms in Section 4.2.1 is new to this book.
Similar strategies have been known, but not published, for a while. For ex-
ample, the graphical proof assistant Quantomatic (Kissinger and Zamdzhiev,
2015) and the ZX library PyZX (Kissinger and van de Wetering, 2020a) both
have implementations of such strategies, with the former implementation
dating back to the mid-2010s.

5
Clifford circuits and diagrams

In the previous chapter we saw that there were already a lot of interesting
things to say about phase-free ZX-diagrams. However, interesting as they
are, because there are no phases, these diagrams don’t allow us to do many
cool quantum computing things. In this chapter we will remedy this problem
and introduce some phases back into the picture.

Instead of immediately allowing all possible phases, we will expand our
scope to the Clifford ZX-diagrams. These are ZX-diagrams whose angles
are all integer multiples of π/2. At first, this might seem somewhat artificial,
but we’ll see that in this special setting, even huge diagrams can always
be simplified all the way down to a compact canonical form, called GSLC
form. It turns out this reduced diagram only has O(n) spiders in it and O(n2)
wires, where n is the number of qubits. A couple of magical things happen
as a consequence. In particular, virtually everything we would want to do
with such a diagram is efficient, from computing single matrix elements to
comparing two such diagrams for equality. Related to this: any circuit which
can be translated into a Clifford ZX-diagram can be efficiently classically
simulated. We call such circuits Clifford circuits, and this is (a version of)
the famous Gottesman-Knill theorem. Just because we can efficiently
reason about Clifford diagrams does not mean they are not useful, far from it!
We will see that Clifford diagrams form the backbone in measurement-based
quantum computing (Chapter 8) and quantum error correction (Chapter 11).

In a standard textbook on quantum computing, Clifford circuits and the
technique for efficiently classically simulating them would be introduced in
the context of stabiliser theory, a powerful collection of tools based on group-
theoretic properties of the Pauli group. These techniques are important and
ubiquitous in the quantum information literature, and we’ll go through them
in detail in Chapter 6. However, it is interesting to note that we also have a

5.1 Clifford circuits and Clifford ZX-diagrams 167

purely graphical bag of tricks based on the ZX-calculus that are extremely
useful for working with Clifford circuits, and in fact already suffice to prove
the Gottesman-Knill theorem. Thus, in this chapter, we’ll deal with Clifford
circuits using just the ZX-calculus.

5.1 Clifford circuits and Clifford ZX-diagrams
In the previous chapter, we established a close correspondence between
CNOT circuits and phase-free ZX-diagrams (see Section 4.2). Namely, we
saw that any CNOT circuit translates into a phase-free ZX-diagram, and
conversely any unitary phase-free ZX-diagram is equal to a CNOT circuit
(Theorem 4.2.13).

In this chapter we will see that a similar relationship exists if we generalise
from only allowing the phase 0 to allowing phases from the set {0, π2 , π,−

π
2 }.

On one side of this correspondence, we have the following family of ZX-
diagrams.

Definition 5.1.1 A Clifford ZX-diagram is a ZX-diagram where all the
phases on the spiders are integer multiples of π

2 .

..
. kπ

2 ..
.

..
. kπ

2 ..
.

On the other side, we have a certain family of circuits, which generalises
CNOT circuits.

Definition 5.1.2 A Clifford circuit is a circuit constructed from the
following gates:

CNOT := H := S := π
2

We will also refer to unitaries that can be built by composing these gates as
Clifford unitaries.

It immediately follows that any Clifford circuit yields a Clifford ZX-
diagram (as the Hadamard can be decomposed into a series of π

2 rotations,
see Eq. (3.81)). That any unitary Clifford ZX-diagram can be realised by
a Clifford circuit is less obvious, and proving this will in fact be one of the
primary goals of this chapter.

Exercise 5.1 A single-qubit Clifford circuit is constructed out of just
Hadamard and S gates. Show that any single-qubit Clifford circuit can be
rewritten to the form

168 Clifford circuits and diagrams

aπ
2

bπ
2

cπ
2

for some integers a, b and c. Hint: We know that a single S or Hadamard
can be brought to this form. So you just need to show that when you compose
this normal form with an additional S or Hadamard gate that the resulting
circuit also be brought to this normal form. You probably will want to make
a case distinction on the value of b.

Solution: .
Composing the normal form with S again gives a NF by spider fusion.
When we compose a Hadamard we make a case distinction on the value of
b. If b = 0, then a and c fuse, and we can just decompose the Hadamard
into its ZXZ Euler decomposition to get a NF again after spider fusion.
We can do something similar when b = 2, by moving the X gate out of
the way first. If b = 1, we realise the normal form can also be written as
Z((c− 1)π2)HZ((a− 1)π2) by using the Euler decomposition in reverse. The
result is then easily proven. The same when b = 3.
End Solution .

Definition 5.1.3 A Clifford state is a state which can be realised as
U |0 · · · 0⟩ for some Clifford unitary U .

Exercise 5.2 Show that the following states are Clifford states. I.e. con-
struct a Clifford circuit C that when applied to |0 · · · 0⟩ gives the desired
state.

a) |1⟩.
b) |+⟩.
c) 1√

2(|00⟩ + |11⟩).
d) 1√

2(|01⟩ + |10⟩).
e) 1√

2(|000⟩ + |111⟩).

5.1.1 Graph-like diagrams

When dealing with phase-free diagrams it turned out to be useful to simplify
our diagrams somewhat in order to work more easily with them: we fused
all the spiders and got rid of self-loops and double edges to get diagrams
that we called two-coloured (Definition 4.2.3). In this chapter it will be
useful to introduce a variation on this that allows us to more easily work
with Hadamards. This type of diagram only contains Z-spiders. This can
be achieved by changing the colour of every X-spider using the Hadamard

5.1 Clifford circuits and Clifford ZX-diagrams 169

colour-change rule (cc). We can then cancel all double Hadamards that
appear by the (hh) rule and fuse all connected Z-spiders using (sp). In the
resulting diagram all connections of spiders will then go via a Hadamard. It
will be useful to have a special name and notation for this.

Definition 5.1.4 When two spiders in a ZX-diagram are connected via a
Hadamard, we can denote this using a blue dotted line:

:=..
.

..
.

..
.

..
. (5.1)

We call such a connection a Hadamard edge.

Hadamard edges have a couple of useful properties. First, we only have to
deal with at most a single Hadamard edge between a pair of spiders, since
any parallel pair of Hadamard edges cancels.

Lemma 5.1.5

α β... ... ∝ α β... ...

Proof

... ... = α ...β...
(cc)

=
(sp)

α... ...β

(3.64)

∝ α... ...β =
(sp)

α... ...β

(cc)

βα

Second, we can always remove a “Hadamard edge self-loop.”

Lemma 5.1.6

α

· · ·
∝ α + π

· · ·
Proof This is just Eq. (3.82).

Now let’s give the definition of this special class of diagrams we are inter-
ested in.

Definition 5.1.7 We say a ZX-diagram is graph-like when

• Every spider is a Z-spider.
• Spiders are only connected via Hadamard edges.
• There are no self-loops or parallel edges.

170 Clifford circuits and diagrams

• Every Z-spider is connected to at most one input and at most one
output.

• Every input and output wire is connected to a Z-spider.

Every ZX-diagram can be efficiently reduced to an equivalent graph-like
diagram.

Proposition 5.1.8 Let D be an arbitrary ZX-diagram. Then the following
sequence of steps reduces D efficiently to an equivalent graph-like diagram.

1. Convert all X-spiders to Z-spiders using the (cc) rule.
2. Cancel all pairs of adjacent Hadamards using the (hh) rule.
3. Fuse all spiders by applying the (sp) rule until it can no longer be

applied.
4. Remove parallel Hadamard edges using Lemma 5.1.5.
5. Remove self-loops using Eq. (3.39), and remove Hadamard self-loops

using Lemma 5.1.6.
6. Introduce Z-spiders and Hadamards using (id) and (hh) in reverse,

in order to ensure every input and output is directly connected to a
Z-spider and no Z-spiders are connected to multiple inputs/outputs.

Proof It is clear that after this procedure there are only Z-spiders, as all
X-spiders have been converted. Every connection between spiders must be
via a Hadamard edge, since if it were a regular connection, then the spiders
would have been fused in step 3, and if there were multiple Hadamards on
the connection, then pairs of them would be cancelled in step 2. There is
at most one Hadamard edge between each pair of spiders because of step 4,
and there are no self-loops because of step 5. It could now still be that we
have input/output wires that are connected via a Hadamard to a Z-spider,
or wires that are not connected to a spider at all. We take care of these cases
as follows:

=

=

=

Similarly, if a Z-spider is connected to multiple inputs or outputs, we can
introduce an extra Z spider and a pair of Hadamards to fix it up:

= ..
.

α

..
.

α=..
.

α

..
.

α

5.1 Clifford circuits and Clifford ZX-diagrams 171

Each of the steps of this algorithm touches each vertex or edge at most once,
and hence this is all efficient in the size of the diagram.

Example 5.1.9 We demonstrate how an example ZX-diagram is trans-
formed into a graph-like diagram below. In the last step we write down its
underlying graph.

α

γ

→=
γ

α

=
γ

α

(sp) (id)

α

γ

=
(cc)

=
(hh)

α

γ

The reason we call these diagrams graph-like is because they are neatly
described by a structure that we call an open graph, a graph with a specified
list of inputs and outputs. We will have more to say about open graphs
in Chapter 8. For now, let’s just note that we can view each spider in a
graph-like diagram as a vertex, and every Hadamard as an edge.

Exercise 5.3

a) Show that every two-coloured diagram (see Definition 4.2.3) is trans-
formed into a graph-like diagram by changing all the X-spiders into Z-
spiders using (cc), and then potentially introducing some more identities
with (id) and (hh) to the input and output wires.

b) Show that the converse is not true: find a graph-like ZX-diagram where it
is not possible to rewrite it back into a two-coloured diagram using just
(cc).

c) Find a systematic way in which a graph-like diagram can be transformed
into a two-coloured diagram.

5.1.2 Graph states

A particularly useful subset of graph-like diagrams are the graph states. We
can either describe these diagrammatically as a restricted set of graph-like

172 Clifford circuits and diagrams

diagrams, or directly as a type of quantum state. We will give the description
as a quantum state first.

For each simple undirected graph G = (V,E), where V denotes the set of
vertices of the graph, and E the set of edges, we can define its corresponding
graph state |G⟩ as

|G⟩ :=
∏

(v,w)∈E
CZv,w|+⟩⊗|V |.

I.e. we prepare the |+ · · · +⟩ state, where the number of qubits is equal to the
number of vertices in the graph, and then for every edge in G we apply a CZ
gate between the corresponding qubits (recall the CZ from Exercise 2.13).

A |+⟩ state as a ZX-diagram is just a phase-free Z-spider with a single
output. A CZ gate is a pair of Z-spiders connected via a Hadamard gate:

To go from a graph to a graph state represented as a ZX-diagram is then
straightforward:

G |G⟩

⇝ (sp)

= (5.2)

Here we get the diagram on the right by simply fusing all the spiders together.
To go from a graph to the graph state represented as a ZX-diagram we see
then that every vertex becomes a phase-free Z-spider with an output attached
to it and each edge in the graph becomes a Hadamard edge between the
corresponding spiders.

With this description in hand we can also define a graph state as a partic-
ular type of graph-like diagram (spend some time convincing yourself that
this definition is indeed equivalent to the description given above):

Definition 5.1.10 A graph-like diagram is a graph state when

• it has no inputs,
• every spider is connected to an output,
• and all phases are zero.

Some useful quantum states are not exactly graph states, but are in-
stead merely very close to being a graph state. For instance, the GHZ-state
(cf. (3.40)), is not a graph state, but we can construct it by starting with

5.1 Clifford circuits and Clifford ZX-diagrams 173

a graph state and then applying some Hadamard gates on a couple of the
qubits:

(id)

=
(hh)

= (5.3)

In the context of graph states, we refer to the application of single-qubit
unitaries on some of its outputs as local unitaries. Imagine for instance some
quantum protocol where we start with a bunch of qubits in one spot, which
are then entangled to make a graph state. We then give each of the qubits
of this graph state to a different person, who are then allowed to take their
qubit very far away from the others. While each of these people can’t change
the graph state by applying some operation on multiple qubits at once, they
can still modify the qubit they have access to by applying a unitary on just
that qubit. Hence why we refer to single-qubit operations as ‘local’.

Note furthermore that the operation we had to apply in the case of the
GHZ state was not just any unitary but specifically a Clifford unitary. This
leads us to our next definition of a useful subclass of states and ZX-diagrams.

Definition 5.1.11 A graph state with local Cliffords (GSLC) is a
graph state to which some single-qubit Clifford unitaries have been applied
on its outputs.

We will often say a ZX-diagram is in GSLC form or (at the risk of
sounding like the kind of people that say “ATM machine”) that a quantum
state is a GSLC state.

Every single-qubit Clifford unitary can be written as a composition of
three phase gates where the phases are multiples of π

2 (cf. Exercise 5.1). So
an example of a GSLC state would be a composition of the graph state
of (5.2) with any Z(π2) or X(π2) phase gates:

π
2

π −π
2

Where here the Hadamard gate on the top qubit is a number of π
2 phase

gates in disguise.

Exercise 5.4 Show that the graph state (5.2) is a Clifford state by finding
a Clifford circuit that builds it when applied to |0 · · · 0⟩.

Exercise 5.5 A graph state has no internal spiders, but a general graph-
like diagram does. Show that any graph-like diagram with no inputs (i.e. a

174 Clifford circuits and diagrams

state) can be written as a graph-state where each internal spider becomes a
post-selection by adapting the arguments from Section 3.4.1.

5.2 Simplifying Clifford diagrams
Now that we have all the tools we need, we will see how we can systematically
simplify Clifford diagrams. Instead of rewriting arbitrary diagrams, we will
work with graph-like diagrams. Thanks to Proposition 5.1.8, we can translate
any ZX-diagram into a graph-like one, so we can do this without loss of
generality.

Because graph-like ZX-diagrams are pretty much just graphs with a bit of
extra stuff, we can use some techniques from graph theory to simplify them.
Before we do this in the general case, it pays to first look at the special case
of GSLC states.

5.2.1 Transforming graph states using local complementation

When looking at a graph state it might seem at first glance that the presence
or absence of an edge between two qubits determines whether those qubits
are entangled. Considering again the scenario where we have prepared a
graph state and sent each of the qubits far away from each other. This might
then seem to mean that there is no way in which we can get any more
entanglement between these qubits. However, the structure of entanglement
in a graph state can be deceiving. It turns out that just applying local
Cliffords can greatly affect the connectivity of the underlying graph. For
instance, in Eq. (5.3) we saw that we can represent a GHZ state as a graph
state with some local Cliffords. Because the GHZ is of course symmetric in
all three qubits, that means we can do this in three equivalent ways, and
hence the following graph states are all equal up to the application of some
local Cliffords:

A natural question is then how we can find out when two graph states can
be transformed into each other just using local Clifford operations.

One important graph transformation we can do just by using local opera-
tions is the local complementation.

Definition 5.2.1 Let G be a graph, and u a vertex in G. The local
complementation of G about u, which we write as G ⋆ u, is the graph

5.2 Simplifying Clifford diagrams 175

which has the same vertices and edges as G, except that the neighbourhood
of u is complemented. In other words, two neighbours v and w of u are
connected in G ⋆ u if and only if they are not connected in G.

Example 5.2.2 Consider the graph G below with vertices a, b, c, d. In
G ⋆ a we see that the neighbourhood of a, consisting of the vertices b, c, d is
complemented. So because b and c are not connected in G, they are connected
in G ⋆ a, and because b and d are connected in G, they are not in G ⋆ a. In
(G⋆ a) ⋆ b we see that the connection between c and d is not affected, as d is
not a neighbour of b.

G

a b

dc

G ⋆ a

a b

dc

(G ⋆ a) ⋆ b
a b

dc

To transform a graph state so that its underlying graph is locally comple-
mented about a vertex (i.e. qubit) u, we only need to apply a X(−π

2) gate
on u, and a Z(π2) gate on each of its neighbours:

−π
2

π
2

π
2

π
2

N(u)

u

∝
... ...

(5.4)

Here N(u) denotes the neighbourhood of u.
In the remainder of this section we will prove that (5.4) indeed holds. To do

this it will be helpful to introduce the family of fully connected ZX-diagrams.

Definition 5.2.3 We define Kn to be the fully connected ZX-diagram
on n qubits, defined recursively as:

:=
Kn

K0 := n+ 1
n

...
...

...
...

Kn+1 (5.5)

When we fuse all the spiders in Kn we see that they indeed give totally-
connected graphs of Hadamard edges:

· · ·

176 Clifford circuits and diagrams

Using this definition of Kn we can state the equality that will allow us to
do local complementations:

Lemma 5.2.4 The following holds in the ZX-calculus for all n ∈ N:

∝
π
2

π
2

−π
2Kn

...
... ... (5.6)

Before we prove this, see Example 5.2.5 for a demonstration of how this is
related to doing local complementations. The crucial point is that the intro-
duction of a fully connected graph by Eq. (5.6) makes a parallel Hadamard
edge if there was already a Hadamard edge present, which is then subse-
quently removed by Lemma 5.1.5.

Example 5.2.5 Let us take the graph G from Example 5.2.2, but now
seen as the graph state |G⟩.

a

b
d

c

(sp)

=

π
2

π
2

π
2

-π
2

π
2

-π
2

-π
2

-π
2

(5.6)

∝
π
2

-π
2

-π
2

-π
2

a a (sp)

=

π
2

-π
2

-π
2

-π
2

a

5.1.5

∝
π
2

-π
2

-π
2

-π
2

a

c

d
b

(id)

We indeed end up with |G ⋆ a⟩ (up to local Cliffords).

For the proof of Lemma 5.2.4 we will need the following base case.

Exercise 5.6 Prove the following using the ZX-calculus.

∝
π
2

π
2

−π
2 (5.7)

Hint: Push the rightmost Hadamards to the right and decompose the mid-
dle Hadamard using one of the versions of the Euler decomposition from
Exercise 3.15 to reveal a place where you can apply strong complementarity.

5.2 Simplifying Clifford diagrams 177

Solution: .

π
2

π
2

=

π
2

-π
2

π
2

= -π
2=

(cc) (??) (sp)

−π
2

π
2

π
2

π
2

−π
2

π
2

∝ −π
2

π
2

π
2

==

(3.64) (sp) (cc)

End Solution .
And now we can prove the general case.

Proof of Lemma 5.2.4. Note that for n = 0 and n = 1 this equation be-
comes:

−π
2

(sc)
−π

2= π
2=

(cc)

(sp)

Exercise 5.6 shows n = 2. We prove the other cases by induction. For our
induction hypothesis, assume (5.6) holds for some fixed n ≥ 2, which we
indicate as (ih) below. Then, for n+ 1 we calculate:

=

π
2

π
2

−π
2

...

π
2

π
2

π
2

−π
2

π
2

...
=

−π
2

π
2

π
2

...

π
2

(sp) (hh)

(sp)

=

π
2

−π
2

π
2

...
∝

−π
2

π
2

...

π
2

π
2

...
π
2

π
2

−π
2

-π
2

π
2

=

(sp) (5.7) (cc)

∝
Kn

...
...

= ...
...Kn

∝
(ih) (cc)

...
...Kn

(sc)

178 Clifford circuits and diagrams

= ...Kn

...

... Kn+1

...

(5.5)

=

(cc) (sp)

...Kn

...

=

Exercise 5.7 We say two n-qubit quantum states |ψ1⟩ and |ψ2⟩ are equiv-
alent under local operations when U |ψ1⟩ = |ψ2⟩ for a local quantum
circuit U = U1 ⊗ U2 ⊗ · · · ⊗ Un consisting of just single-qubit gates. Show
that the following two graph states are equivalent under local operations.

Hint: Use the fact that a local complementation can be done using just local
unitaries.

5.2.2 Pivoting

It turns out that it is often useful to not just do a single local complementa-
tion, but to do a particular sequence on a pair of connected vertices.

Definition 5.2.6 Let G be a graph and let u and v be a pair of connected
vertices in G. We define the pivot of G along uv, written as G∧uv, as the
graph G ⋆ u ⋆ v ⋆ u.

Note that in this definition, the ordering of u and v does not matter.

Exercise 5.8 Show that for any graph G and connected pair of vertices u
and v in G we have G ⋆ u ⋆ v ⋆ u = G ⋆ v ⋆ u ⋆ v.

On a graph, pivoting consists in exchanging u and v, and complement-
ing the edges between three particular subsets of the vertices: the common
neighbourhood of u and v (i.e. NG(u) ∩ NG(v)), the exclusive neighbour-
hood of u (i.e. NG(u) \ (NG(v) ∪ {v})), and exclusive neighbourhood of v
(i.e. NG(v) \ (NG(u) ∪ {u})). Schematically:

G
A

B C

vu

G ∧ uv
A

B C

v u

As a pivot is just a series of local complementations, it can also be per-
formed on a graph state by the application of a particular set of local Cliffords.

5.2 Simplifying Clifford diagrams 179

Indeed, in terms of ZX-diagrams, we have:

...
...

...

...

u v

=

...

u v
π π

... ...

...
(5.8)

I.e. we can perform a pivot on the graph state by applying a Hadamard to
the vertices we pivot along, and applying a Z gate to the vertices in their
common neighbourhood.

Exercise 5.9 Prove Eq. (5.8) by decomposing the Hadamards into se-
quences of π

2 phase gates and then applying a sequence of local complemen-
tations using Eq. (5.4).

It turns out we can prove (5.8) more directly by using strong complemen-
tarity.

Lemma 5.2.7 Eq. (5.8) holds in the ZX-calculus.

Proof For clarity, let us first assume that the set of vertices connected to
both u and v is empty.

...
...

u v

...
...

u v
(cc)

=

...
...

u v

(sc)

∝

(5.9)

...
...

u v

(sp)

=

...
...

u v

(cc)

=

...
...

u v

(sp)

=

(hh)

We see that u ends up connected to whatever v was connected to and vice
versa, and that the neighbourhoods of u and v are now fully connected, so
that if there were connections they will get complemented in the same way
as described in Example 5.2.5.

Now, if there are spiders that are connected to both u and v, then we can
unfuse spiders in a clever way to reduce it to the previous case:

180 Clifford circuits and diagrams

...
...

u v
(sp)

=
...

...

u v

(5.9)

=
...

...

u v

..
.

...

...

...

(sp)

=

...
...

u v

..
.

...

...

...

For clarity we have only drawn the Hadamard edges that stay within the joint
neighbourhood of u and v in the bottom two diagrams. We see that we end
up with parallel Hadamard edges that can be removed using Lemma 5.1.5.
The Hadamard self-loops are simplified to Z(π) phases using Lemma 5.1.6,
which indeed gives the expected result.

5.2.3 Removing spiders in Clifford diagrams

In Sections 5.2.1 and 5.2.2 we saw that we can apply the graph operations
of local complementation and pivoting on graph states by introducing some
local Cliffords. It turns out that we can use some variations on these rules
to greatly simplify graph-like diagrams. As this chapter deals with Clifford
diagrams, we will focus here on the variations that are useful to simplify
these diagrams, but later on we will introduce some additional variations
that can also simplify generic graph-like diagrams.

The rules we introduce in this section all serve to remove one or more
spiders from a Clifford diagram. By repeatedly applying these rules we then
get smaller and smaller diagrams until there are no longer any spiders to
remove using these rules. For these rewrite rules it will be useful to introduce
a distinction between two classes of spiders in graph-like diagrams (see also
Definition 4.2.5).

Definition 5.2.8 Let D be a graph-like diagram. We say a spider in D

is internal if it is not an input or output spider (i.e. it is not connected to
any input or output wire). Conversely, we say a spider is a boundary spider
when it is connected to at least one input or output wire.

Our first simplification rule is based on the local complementation rule (5.6).

5.2 Simplifying Clifford diagrams 181

Lemma 5.2.9 The following local complementation simplification hold:

±π
2

α1 αn

...... ... ∝ ...

α1∓ π
2

...

αn∓ π
2

α2

...

αn−1

...

α2∓ π
2

...

αn−1∓ π
2

...

...

∗

(5.10)

Proof We pull out all of the phases via (sp) then apply the local comple-
mentation rule (5.6) (from right to left) on the vertex marked by (∗):

±π
2

α1 αn

...... ...
=

α2

...

αn−1

...

α1 αn
...

... ...
α2

...

αn−1

...

±π
2

(sp)

∝ α1
αn

...... ...

α2

...

αn−1

...

±π
2

5.6

π
2

-π
2

-π
2

-π
2

-π
2

Using Eq. (3.83), the topmost spider in the right-hand side above becomes
an X-spider, with phase ∓π/2, which combines with the phase below it into
an aπ phase, where a = 0 if we started with π/2 and a = 1 if we had started
with −π/2. The resulting X-spider copies and fuses with the neighbours:

...

α1∓ π
2

...

αn∓ π
2

α2∓ π
2

...

αn−1∓ π
2

...

...∝ α1− π
2

αn− π
2

...... ...

α2− π
2

...

αn−1− π
2

...

(sp)

aπ

∝ α1− π
2

αn− π
2

...... ...

α2− π
2

...

αn−1− π
2

...

(sc)

aπ aπ aπ aπ

=

(cc)(3.84)

(sp)
...

In words we can describe this rule as follows: if we have a spider (here
marked on the left-hand side by a ∗) with a ±π

2 phase in a graph-like diagram
that is internal, i.e. that is not connected to inputs or outputs but only to
other spiders, then we can remove it from the diagram by complementing the
connectivity on its neighbourhood and changing some phases. The reason
we complement the neighbourhood, is because in Lemma 5.2.9 we get a
fully connected graph on the right-hand side, but if there were already edges
present between some of the spiders, then the resulting double edges would
be removed by Lemma 5.1.5, so that we indeed complement the edges in the
neighbourhood. For the remainder of this chapter, when we say we ‘apply’

182 Clifford circuits and diagrams

Lemma 5.2.9 we mean that we apply it from left to right on some chosen
vertex, and that we immediately follow it by Lemma 5.1.5 in order to cancel
the introduced parallel edges, so that we are still left with a graph-like
diagram.

Remark* 5.2.10 In this rule we ignored non-zero scalar factors (like we
always do). However, when we applied Eq. (3.83), the actual equation with
the correct scalar, Lemma 3.6.8, introduces an additional scalar π

2 spider.
So in this sense, Lemma 5.2.9 is not really removing the ±π

2 spider, as it
is just interchanging it for a ±π

2 spider that is not connected to any other
spider, and hence is just a simple scalar. This is important for when we
discuss completeness in Section 5.5.

In a Clifford diagram each spider has a phase k π2 for some k ∈ Z. Using
the rule above repeatedly on a graph-like Clifford diagram we can remove
all internal spiders with a ±π

2 phase. Hence, the only internal spiders that
remain are those that have a 0 or π phase. Most of these internal spiders
can also be removed, by using a variation on the pivot rule (5.8).

Lemma 5.2.11 The following pivot simplification holds:

jπ
α1

=
αn

β1

βn

γ1

γn

kπ

..
.

..
.

..
.

αn + kπ

βn + (j + k + 1)π

..
.

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

..
.

..
.

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...

∗ ∗

Proof We pull out all of the phases via (sp) and apply the pivot rule
Lemma 5.2.7:

α1

αn

βl

β1 γ1

γm

..
.

..
.

..
.

...

...

...

... ...

...

(sp)

jπ kπ

α1

αn

βl

β1

γ1

γm

..
.

..
.

..
.

...

...

...

...

...

...

∝
5.2.7

π

π

jπ kπ

jπ
α1

=
αn

βl

β1

γ1

γm

kπ

..
.

..
.

..
.

...

...
...

...
...

...

5.2 Simplifying Clifford diagrams 183

We then apply the colour-change rule to turn the Z-spiders with phases jπ
and kπ into X-spiders. They can then be copied, colour-changed again and
fused with their neighbours:

∝

α1

αn

βl

β1

γ1

γm

...

...

...

...

...

...

...
...

...

∝

(cc)

π

π

jπkπ

(sc)

jπjπjπkπ kπkπ

(cc)

(sp)
...

kπ jπ

αn + kπ

βn + (j + k + 1)π

..
.

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

..
.

..
.

γn + jπ

...

... ...

...

...

...

Note that the dangling scalar diagram appears because we copy twice and
the vertices are connected. We simply ignore this non-zero scalar.

Here, the marked spiders on the left-hand side are internal connected
spiders with a 0 or π phase. On the right-hand side, these spiders are removed,
at the cost of complementing their neighbourhood in the manner described
by the pivot rule, and introducing some phases (again, the complementation
happens because fully connected bipartite connectivity is introduced, and
parallel edges are then removed using Lemma 5.1.5).

Exercise 5.10 Simplify the following circuit to a diagram that has no
internal spiders with a ±π

2 phase or pairs of internal spiders with a 0 or π
phase.

π
2

π
2

π
2

Solution: .
Many possible solutions, but some options:

π

π
2

π
2

π

π
2

π
2

End Solution .

184 Clifford circuits and diagrams

5.3 Clifford normal forms
These simplification lemmas allow us to remove many of the spiders in a
Clifford diagram. In fact, so many that the resulting types of diagrams
deserve to be called normal forms for Clifford diagrams. In this section we
will see two types of normal forms. The first is what you get if you just keep
applying the local complementation and pivoting simplifications. The second
requires an additional type of pivot operation that removes the final internal
spiders.

5.3.1 The affine with phases normal form

Lemma 5.2.9 removes those internal spiders with a phase of ±π
2 so that if we

started with a Clifford diagram, the only phases left on internal spiders are
0 are π. Then Lemma 5.2.11 can apply to any remaining internal spider that
is connected to at least one other internal spider. Hence, once we are done
applying Lemmas 5.2.9 and 5.2.11 on a Clifford diagram the only remaining
internal spiders are then those that carry a 0 or π phase and are connected
only to boundary spiders. These diagrams turn out to be rather useful, so
let’s give them a name.

Definition 5.3.1 We say a graph-like Clifford diagram is in affine with
phases form (AP form) when:

1. every boundary spider is connected to exactly one input or output,
2. every internal spider has a phase of 0 or π, and
3. no two internal spiders are connected to each other.

Our previous summary of the simplification procedure can then be sum-
marised as follows.

Proposition 5.3.2 We can efficiently rewrite any Clifford diagram into
an equivalent AP form.

In an AP form we have two groups of spiders. We have the boundary
spiders and we have the internal spiders. The boundary spiders can be
connected to any other spider (via a Hadamard edge) and carry any phase,
but the internal spiders are only connected to the boundary spiders and can
only have a phase of 0 or π.

Example 5.3.3 An example AP form:

5.3 Clifford normal forms 185

k2
π
2

b1π

b2π

k3
π
2

k4
π
2

k1
π
2

for bj ∈ {0, 1} and kj ∈ {0, 1, 2, 3}.

Thanks to condition 1 of Definition 5.3.1, AP forms don’t treat inputs and
outputs differently. Thus, from hence forth we will primarily study states
in AP form. Here, we implicitly use the fact that we can treat arbitrary
AP form maps as states by ‘bending wires’ to turn inputs into outputs. For
example, the map from Example 5.3.3 can be treated as a state as follows:

=

k2
π
2

b1π

b2π

k3
π
2

k4
π
2

k1
π
2

k2
π
2

b1π

b2π
k3

π
2

k4
π
2

k1
π
2

Why do we call these diagrams ‘affine with phases’? To answer this we need
to look at what types of states they encode. There are a couple of different
things going on here, so for simplicity we’ll start with just the ‘affine’ part of
AP forms then build up to the general case. Recall from Section 4.3.2 that
a phase-free X-Z normal forms give us a state defined by a system of linear
equations:

∝
∑
x⃗∈S

|x⃗⟩ where S =

x1
x2
x3

 ∣∣∣∣ x1 ⊕ x2 ⊕ x3 = 0
x1 ⊕ x3 = 0

Importantly, S is always defined by a homogeneous system of linear equations,
meaning the right-hand side of every equation is 0. Equivalently, it is the set
of bit vectors x⃗ satisfying Mx⃗ = 0 for some F2-matrix M . We can generalise
this form by additionally allowing the X spiders to carry 0 or π phases.
This gives us almost the same thing, except now S can be defined by an
inhomogeneous system of linear equations. Each X spider with a 0 phase
gives us an equation with a 0 on the right-hand side, whereas an X spider
with a π phase gives us an equation with a 1 on the right-hand side. For
example:

π

∝
∑
x⃗∈S

|x⃗⟩ where A =

x1
x2
x3

 ∣∣∣∣ x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x3 = 0

(5.11)

186 Clifford circuits and diagrams

That is, we get the set of vectors x⃗ satisfying Mx⃗ = b⃗ for some fixed matrix
M and vector b⃗. In the example above, its:

M =
(

1 1 1
1 0 1

)
b⃗ =

(
1
0

)
Whereas the set of all solutions to a system of homogeneous linear equa-

tions always gives us a linear subspace of Fn2 , the solutions to an inhomoge-
neous system will, in general, form an affine subspace. Intuitively, an affine
subspace is like a linear subspace that has been shifted away from the origin
by some fixed amount.

Definition 5.3.4 An affine subspace A ⊆ Fn2 is either:

• the empty set, or
• a set of the form w⃗+ S := {w⃗+ v⃗ | v⃗ ∈ S} for some fixed vector w⃗ ∈ Fn2

and a linear subspace S ⊆ Fn2 .

Just like in the case of linear spaces, we have two equivalent representations
for an affine subspace, either in terms of a spanning set of vectors or a system
of equations. As before, these correspond to Z-X normal forms and X-Z
normal forms, respectively. In both cases, the extra data needed to define an
affine space (as opposed to a linear one) is included by introducing π phases
on to some of the X spiders.

wnπ

w1π

v⃗k

..
.

..
.

v⃗1
∝

∑
x⃗∈A |x⃗⟩ where A = w⃗ + span{v⃗1, . . . , v⃗k}

bkπ

b1π

w⃗k

..
.

..
.

w⃗1

∝
∑
x⃗∈A |x⃗⟩ where A =

x⃗ ∈ Fn2

∣∣∣∣∣∣∣
w⃗T1 x⃗ = b1

· · ·
w⃗Tk x⃗ = bk

(5.12)

As before, we have decorated spiders with vectors to mean that there is
an edge to the j-th spider if the j-th entry of the associated vector is 1. Note
the second row is a general form for (5.11), since w⃗Ti x⃗ gives the XOR of the
variables xj for which (w⃗i)j = 1. Equivalently, the vectors w⃗i correspond to
the rows in a matrix M such that A = {x⃗|Mx⃗ = b⃗}.

Exercise 5.11 The bit strings appearing in the superposition in an AP
state are described by the solutions to the affine system of equations Mx⃗ = b⃗.
When we do row operations on M and b⃗ (as in a Gaussian elimination of the

5.3 Clifford normal forms 187

linear system) this does not change the solutions, and so this transformed
system (M ′, b⃗′) should still describe the same state. As the matrix M corre-
sponds to the connectivity of the internal spiders to the boundary spiders,
show that these row operations can be implemented diagrammatically:

b1π

b2π

...

...

...

∝
b1π

(b1 + b2)π

...

...

...

Solution: .

b1π

b2π

...

...

...

=

b1π

(b1 + b2)π

...

...

...b2π

...

...

...

(3.64)

(sp)

b1π

∝

b2π

...

...

...

(sc)

b1π

∝

(sc)

(sp)

End Solution .
If we colour-change the X spiders, we see that we’re most of the way to

an AP form:

π

⇝
π

(5.13)

Hence, if we do not have phases on the outputs or Hadamard edges between
them, an AP form can always be described by an affine subspace. For a
generic AP form, by spider (un)fusion, we can split off the affine part from
the rest, which we’ll call the ‘phase’ part:

k2
π
2

k1
π
2

b1π

b2π

kn
π
2

bmπ

..
.

..
.

..
. =

b1π

b2π

bmπ

..
.

..
.

k2
π
2

k1
π
2

kn
π
2

..
.

affine phase

The reason for the name is that the ‘phase’ part always forms a diagonal
unitary, which means all it will do to the state is introduce some phases on

188 Clifford circuits and diagrams

the computational basis states |v⃗⟩ from (5.13). By unfusing some spiders,
we can see that this phase part is generated by S gates, which introduce
π/2 phases to individual outputs, and CZ gates, which introduce Hadamard
edges between outputs. We can see that each of these gates affects the phase
in a way that depends on the computational basis state:

π
2 :: |x⟩ 7→ ei

π
2 ·x|x⟩

:: |x1x2⟩ 7→ eiπ·x1x2 |x1x2⟩

We can describe the action of unitaries built out of these gates using certain
polynomials, called phase polynomials. For example:

π
2

π

x1

x2

x3

:: |x1x2x3⟩ 7→ ei
π
2 ·ϕ(x1,x2,x3)|x1x2x3⟩

where ϕ(x1, x2, x3) := x1 + 2x2 + 2x1x2 + 2x1x3

Here, each single-qubit gate (i.e. the S gate on the first qubit and the S2 = Z

gate on the second) contributes a linear term to ϕ, whereas each two-qubit
CZ gate contributes a quandratic term, whose coefficient is always even.
Note that, even though these polynomials can contain products of variables,
they are always linear in each argument individually. For that reason, we
call these phase polynomials in multilinear form. In Chapter 7 we will see
phase polynomials in XOR-form, and in Chapter 9, we will see how these
two forms are related.

By applying a diagonal Clifford unitary to an affine state, the phase is
applied to each of the terms in the same. So, if we combine the example
above with (5.13) we get:

π

π
2

π

π

=

π
2

π

affine phase

∝
∑
x⃗∈A

eiϕ(x⃗)|x⃗⟩

where

A := {(x1, x2, x3) |x1 ⊕ x2 ⊕ x3 = 1, x1 ⊕ x3 = 0}
ϕ(x1, x2, x3) := π

2 (x1 + 2x2 + 2x1x2 + 2x1x3)
(5.14)

5.3 Clifford normal forms 189

Exercise 5.12 Reduce the following diagram to AP-form:

π

π
2

3π
2

What is its parity matrix and its phase polynomial?

Solution: .

π

π
2

3π
2

(cc)

π

π
2

3π
2 (id) 3π

2

π

π
2

3π
2

3π
2

= =

(sp)

(id)

=

(sp)

End Solution .

5.3.2 GSLC normal form

In a diagram in AP form there are still some internal spiders. It turns out
that we can actually also get rid of these. However this does come at a
cost: we must then allow Hadamards on input and output wires, so that the
diagram is not what we have defined to be a ’graph-like diagram’. Just as it
was useful to define a ‘graph state with local Cliffords’, it will be useful here
to define a diagram that is graph-like up to Hadamards on the boundary
wires.

Definition 5.3.5 We say a diagram is graph-like with Hadamards
when it satisfies all the conditions for being graph-like (Definition 5.1.7),
except that inputs and outputs are also allowed to be connected to Z-spiders
via a Hadamard.

Note that a graph-like diagram with Hadamards can be easily transformed

190 Clifford circuits and diagrams

into a graph-like diagram by introducing some additional Z-spiders using
the (id) rule.

So how do we get rid of the final internal spiders in a Clifford diagram?
Note that each of those spiders has a 0 or π phase and is only connected
to boundary spiders (in particular, it is connected to at least one boundary
spider, since otherwise it would just be a floating scalar we can ignore). The
first step is to introduce some dummy Hadamards and identity spiders to
make this boundary spider into an internal spider:

jπ
=

αnα1

γ

......
· · ·

· · ·

βmβ1

......
· · ·

jπ

αnα1

γ

......
· · ·

· · ·

βmβ1

......
· · ·

(hh)

=
jπ

αnα1

γ

......
· · ·

· · ·

βmβ1

......
· · ·

(id)

(5.15)
The diagram is now no longer just graph-like, but graph-like with Hadamards
and the spider with the γ phase has become internal. Then we make two case
distinctions. If γ = 0 or π, we have an internal pair of 0/π spiders, and we can
remove them using the pivot simplification Lemma 5.2.11. If γ = ±π

2 , then
we can first remove that spider using the local complementation Lemma 5.2.9.
As a result of this, the phase of the spider with the jπ phase becomes jπ∓ π

2
so that its phase is also ±π

2 . We can then also remove this spider using local
complementation. In both cases we see that we can remove both spiders,
and hence that we get rid of the original internal spider. Note that in the
second case, when γ = ±π

2 , the other spiders it is connected to also gain
a ∓π

2 phase, so that this might also give some additional opportunities to
remove internal spiders using local complementation.

We can repeat this procedure for any remaining internal spider. This might
result in multiple Hadamards appearing on the same input or output wire. In
that case we can of course cancel these Hadamards using (hh). Combining
the simplifications so far we see that we can hence actually remove all internal
spiders in a Clifford diagram. Let’s give a name to such a type of diagram.

Definition 5.3.6 We say a Clifford diagram is in GSLC form when it is
graph-like with Hadamards and has no internal spiders.

As before, GSLC here stands for graph state with local Cliffords. This is
a fitting name, because states in GSLC form are graph states with local
Cliffords as defined in Definition 5.1.11. Indeed, if we have a state, so a
diagram with no inputs, that is in GSLC form, then every spider must be
connected to an output, possibly via a Hadamard, so after unfusing the

5.3 Clifford normal forms 191

phases on the spiders, we see that it is indeed a graph state followed by some
single-qubit Clifford unitaries:

π
2

π

=

π
2

π

graph state

Cliffords

Let’s summarise what we have shown in a proposition.

Proposition 5.3.7 Any Clifford diagram can be efficiently rewritten to
an equivalent diagram in GSLC form.

As a consequence of this, all Clifford states, those states that can be
produced from applying a Clifford unitary to |0 · · · 0⟩, must be equal to
graph states with local Cliffords.

Theorem 5.3.8 Let U a Clifford unitary (i.e. a circuit consisting of CNOTs,
Hadamards and S gates). Then U |0 · · · 0⟩ is a graph state with local Cliffords.

Proof We can easily represent U |0 · · · 0⟩ as a Clifford diagram. Proposi-
tion 5.3.7 shows it can be reduced to GSLC form. Unfusing the phases then
transforms this into a graph state with local Cliffords.

In fact, we have something even stronger: we can apply the Clifford circuit
to |0 · · · 0⟩, and then also post-select some outputs to be ⟨0| (or ⟨1|, ⟨+| or
⟨−| for that matter), and still have a graph state with local Cliffords.

Proposition 5.3.9 Let |ψ⟩ be a state produced by applying a Clifford
unitary U to |0 · · · 0⟩, and then post-selecting some qubits to ⟨0|. Then |ψ⟩
is (proportional to) a graph state with local Cliffords.

Proof The rewrite strategy to bring the diagram to GSLC form works
regardless of how we produced the Clifford ZX-diagram, so we can still apply
it in this setting.

This means that allowing Z-basis measurements on Clifford states doesn’t
give us something more general or powerful: we get exactly the same class
of states.

Finally, let us write down an equivalence between two different notions of
Clifford states.

Proposition 5.3.10 Let D be a Clifford diagram without inputs (i.e. a
state). Then D is equal to a Clifford state U |0 · · · 0⟩ for some Clifford unitary
U .

192 Clifford circuits and diagrams

Proof Rewrite D to GSLC form so that it is a graph state with local
Cliffords, and then build U as the circuit that transforms |0 · · · 0⟩ into that
graph state plus the local Cliffords.

5.3.3 Normal form for Clifford circuits

In the previous section we saw that if we simplify a Clifford state, that
we get a graph state with local Cliffords. What happens if we simplify a
Clifford unitary in the same manner? Again, there are no internal spiders
in the diagram, so each spider must be connected to at least one input or
output. By introducing some dummy spiders we can ensure that each spider
is connected to exactly one input or output. The diagram will then look
something like the following:

π

π
2

π

-π
2

π
2

We have possible Hadamards on the inputs and outputs as our reduced
diagram is graph-like with Hadamards. Each spider can carry a phase, and
each spider is connected to exactly one input or output, so that we have
two layers of spiders. There are no further (obvious) restrictions for how the
spiders can be connected via Hadamard edges. We will now investigate how
we can make diagrams like this look more like circuits.

First, note that we can unfuse the phases on both sides so that the
Hadamards and the phases form a layer of local Cliffords:

LC

LC

LC

...

LC

LC

...

LC

··
·

Second, we can unfuse the connections between the spiders in the same layer.
This reveals those connections to be CZ gates:

LC

LC

LC

...

LC

LC

...

LC

··
·

5.3 Clifford normal forms 193

It remains to see what is happening in the middle-part of the diagram. This
should become clear once we change the colour of the layer of spiders on the
right:

LC

LC

LC

...

LC

LC

...

LC

··
·

(5.16)

We recognise this middle part of the diagram as a parity normal form (Def-
inition 4.2.2)! So far, all the steps we have done on this GSLC diagram work
regardless of whether the diagram is unitary. However, when the diagram is
unitary, then this parity normal form must represent a unitary matrix itself,
and hence by Proposition 4.2.12, it is equivalent to a CNOT circuit.

Summarising this analysis of GSLC unitary diagrams we see that we can
represent any Clifford unitary as a particular sequence of gates.

Theorem 5.3.11 Let U be a Clifford unitary. Then U can be written as
a circuit consisting of 8 layers of gates in the following order:

Had − S − CZ − CNOT − Had − CZ − S − Had

This is really surprising! For one thing, before we started this chapter you
might think there are an infinite number of different unitaries you can build
from the Hadamard, S and CNOT gate, as you can just make longer and
longer circuits, but this result shows that we can always reduce such a long
circuit to one consisting of just a few layers of gates. In particular, we need
at most a quadratic number of gates in terms of the number of qubits.

Proposition 5.3.12 Any n-qubit Clifford unitary can be represented by
an equivalent circuit consisting of at most 4n(n+ 3/2) − 1 Hadamard, S and
CNOT gates.

Proof A layer of Hadamard gates contains at most n gates, and there
are three of those. Each layer of S gates has at most 3 gates per qubits,
corresponding to an S, Z or S† gate, and there are again two of those layers.
Hence, the single-qubit gates contribute at most 9n gates.

A circuit of CZ gates contains at most n(n−1)/2 CZ gates (corresponding
to all possible pairs of qubits there can be a CZ between). A CZ gate can be
constructed from a CNOT and two Hadamards, and hence each CZ layer, of
which there are two, contributes at most 3 · n(n− 1)/2 gates. The number
of CNOTs needed in the CNOT circuit corresponds to how many Gaussian
elimination row operations are needed to fully reduce the associated parity

194 Clifford circuits and diagrams

matrix. It is a little exercise to show that you need at most n2 − 1 row
operations to fully reduce any matrix.

The total number of needed Hadamard, S and CNOT gates is then:

9n+ 2 · 3 · n(n− 1)/2 + n2 − 1 = 6n+ 4n2 − 1 = 4n(n+ 3/2) − 1.

Corollary 5.3.13 For any given number of qubits, there are only a finite
number of different Clifford unitaries.

Exercise 5.13 Using Theorem 5.3.11, give an upper-bound on the number
of different n-qubit Clifford unitaries for any n. Hint: See Section 4.5.1 for
how you can count this.

We can also conclude another interesting fact from this extraction of a
circuit from a GSLC normal form. The simplification procedure to get to
this GSLC normal form works for any Clifford ZX-diagram, i.e. any ZX-
diagram whose phases are multiples of π/2, not just those coming from a
Clifford circuit. If such a diagram happens to be unitary, then we can use the
procedure above to transform it into a Clifford circuit. Hence, the following
proposition immediately follows.

Proposition 5.3.14 Any unitary Clifford ZX-diagram is equal to a Clifford
circuit.

Exercise 5.14 Show that any Clifford ZX-diagram of an isometry V can
be transformed into a Clifford circuit with some ancilla qubits in state |0⟩.
That is, there exists come Clifford circuit U such that V = U(I ⊗ |0...0⟩), or
graphically:

..
.

V ..
.

U

..
.

..
.

..
.

∝

..
.

Hint: See Exercise 4.6.

Exercise 5.15 In Theorem 5.3.11 we had three layers of Hadamards. It
turns out we only need two, because we can get rid of either the first or last
one by doing some additional rewriting before extracting a circuit. To start,
let’s assume we have a unitary Clifford ZX-diagram in GSLC form. We are
going to progressively remove Hadamards on its input wires.

a) Suppose we have an input spider with a Hadamard on it, and that the
phase of the spider is aπ. Show that we can remove this Hadamard by
doing a regular, non-vertex-removing, pivot (5.8) between this input and

5.4 Classical simulation of Clifford circuits 195

an output it is connected to. Why will it always be connected to an
output? Argue that this does not introduce any Hadamards on other
inputs.

b) Suppose we have an input spider with a Hadamard on it, and that the
phase of the spider is ±π

2 . Show that you can remove the Hadamard
by using a Euler decomposition and removing the resulting X(π2) phase
using a regular local complementation (5.4). Show that you can rewrite
the diagram back into GSLC form, but now with one fewer Hadamard
on an input wire.

c) Argue that if you do these steps for all the inputs with Hadamards on
them, that you get a GSLC form diagram where extracting a circuit does
not give any Hadamards in the first layer.

5.4 Classical simulation of Clifford circuits
In the previous sections we saw that we can use two simple rewrites, local
complementation and pivots, to reduce Clifford states to graph states with
local Cliffords, and Clifford circuits to a normal form consisting of just
a few layers of gates. There is a third class of relevant Clifford diagrams
that we can simplify using these rewrite rules: scalars. Recall that a scalar
diagram is any ZX-diagram that has no inputs or outputs. The reason we
care about scalar diagrams is because they can represent amplitudes of a
quantum computation. If we start with the basis state |0 · · · 0⟩, then apply
a unitary U , and finally wish to know the amplitude of the state U |0 · · · 0⟩
with respects to some computational basis effect ⟨x1 · · ·xn| we get the scalar
⟨x1 · · ·xn|U |0 · · · 0⟩. In our case we are interested in U ’s that are Clifford
unitaries, so that the resulting scalar ZX-diagram is also Clifford.

So what happens if we feed a scalar Clifford diagram to the simplification
procedure described in Section 5.2? Remember that the procedure allowed us
to remove any internal Clifford spider. However, in a scalar Clifford diagram,
all spiders are internal and Clifford, so after we are done simplifying there
will be no spiders left! The diagram will have been simplified away completely.
What does this mean? The empty diagram evaluates to the scalar 1. However,
remember that all our rewrites also introduce some scalar factors, which in
the case of Clifford diagrams are always multiples of 1/

√
2 and ei

π
4 . So

the end result is just a number, which is equal to the amplitude we were
calculating.

Let’s summarise all this in a proposition.

Proposition 5.4.1 Let U be a Clifford circuit, and let ⟨x1 · · ·xn| for

196 Clifford circuits and diagrams

x⃗ ∈ Fn2 be any computational basis effect. Then we can efficiently calculate
the amplitude ⟨x1 · · ·xn|U |0 · · · 0⟩.

This is really surprising! Clifford circuits contain essentially all the features
we would expect from a quantum computation—entanglement, superposi-
tions, and negative and complex amplitudes—and we can use Clifford circuits
to realise many truly quantum protocols such as quantum teleportation or
quantum key distribution, and yet, such circuits offer no computational ben-
efit over classical computers. This result is known in the literature as the
Gottesman-Knill theorem.
Gottesman-Knill theorem: A Clifford computation can be efficiently classically
simulated.

Why is this the case? Well, on the surface we see it’s because we can just
rewrite the corresponding diagrams very well. But why is it that we can
do that? A hint is given by the affine with phases normal form of Clifford
states. Apparently, Clifford circuits can only produce quantum states that
are uniform superpositions of computational basis states that are efficiently
described by an affine subspace of bit strings. This means there is a limit
to how much we can actually use the complex amplitudes and entanglement
present in Clifford states. There is for instance no way in which we can
iteratively repeat a procedure to slowly add more and more amplitude to
certain states like is done in Grover’s algorithm: the amplitudes are always
distributed equally.

5.4.1 Simulating Cliffords efficiently

In Proposition 5.4.1 we said we could simulate a Clifford amplitude efficiently,
but how efficient are we talking?

The entire ‘simulation’ just consists of diagram simplification operations,
so the complexity of the method, how expensive it is to actually calculate
an amplitude, comes down to how hard it is to find the correct rewrite rule
to apply, the number of rewrites we need to do, and how hard these rewrites
are to perform.

The first two of these questions are easily answered. First, how hard is it
to find the correct rewrite rule to apply? Well, local complementation applies
to any spider with a ±π

2 phase, so we simply have to loop over the spiders
of the diagram until we encounter a spider with the correct phase. When we
are done doing local complementations, any spider will have a 0 or π phase
left, so all the spiders are suitable for a pivot, and we only need to look at
any neighbour, so that finding a place where we can apply a rewrite rule

5.4 Classical simulation of Clifford circuits 197

is quite trivial in this setting: we can do it anywhere. The second question,
how many rewrite rules need to be applied, is also easily answered. Each
of the rewrite rules, local complementation and pivoting, removes at least
one spider, so that the number of rewrite rules applied is bounded by the
number of spiders.

Finally, how hard is it actually to change the diagram based on the rewrite
rules? We will measure this in terms of the number of elementary graph
operations we need to perform: vertex and edge additions or removals.
When we do a local complementation, we remove a single vertex, and we
toggle the connectivity of all its neighbours. In the worst case, the spider
we wish to remove is connected to pretty much all other spiders. In this
case we end up changing the connectivity of the entire graph. So if there are
N spiders, then this could cost N2 edge additions and removals. A similar
cost estimation holds for pivoting: we remove two spiders, and we toggle
connectivity between three groups of spiders that could also pretty much
encompass the entire graph, so that it also costs N2 graph operations to
implement a pivot.

So a single simplification costs about N2 elementary graph operations
in the worst case, and as we’ve seen, we will need about N rewrite rules
to fully simplify the graph, which means we will need N · N2 = N3 graph
operations in the worst case. In comparison to this, the cost of finding the
right rewrite rules to apply is negligible (adding at most an O(N) cost to the
application of every rewrite rule). We can now state a more detailed version
of Proposition 5.4.1.

Proposition 5.4.2 LetD be a scalar Clifford diagram containingN spiders.
Then we can calculate the value of D in time O(N3). In particular, we can
calculate amplitudes of a Clifford circuit containing k gates in time O(k3).

Proof The first claim follows from the discussion on the complexity of
rewriting above. For the second claim we simply note that each gate in a
Clifford circuit can be translated into a fixed small number of spiders, so
that the ZX-diagram corresponding to the amplitude to be calculated has
O(k) spiders.

Now, O(N3) is not too bad, but it does mean that once we start dealing
with diagrams with, say, millions, of spiders, that we run into trouble. Can
we do better?

As it turns out: yes! With a more clever simplification strategy, we can
actually obtain a significantly better upper bound.

The reason we got this N3 scaling, is because we weren’t telling the

198 Clifford circuits and diagrams

simplifier which spiders to target, so that we couldn’t limit the number of
wires that end up in the diagram. There is a better strategy that we can
use to simplify the diagram, which works when we know that the diagram
came from a circuit. The idea is that once we have a GSLC diagram that
we can very efficiently ‘absorb’ a Clifford gate and rewrite the whole thing
as another GSLC diagram.

So suppose we have a Clifford circuit consisting of CZ, Hadamard and
S gates (if your circuit contains CNOTs, then these can be converted into
CZ gates surrounded by Hadamards). Now when we write this circuit as a
ZX-diagram, it will only contain Z-spiders, so that it already looks a bit like
a graph-like diagram. However, we will not actually reduce it to graph-like
form like we did with our previous simplification algorithm. Instead we will
keep the circuit structure intact.

Now we will introduce some dummy spiders and Hadamards in order to
insert a GSLC form diagram at the start of the circuit:

...

C
...

= ...

C
...

GSLC circuit

(5.17)

We will now consume gates one by one from the circuit and absorb them
into the GSLC part of the diagram, transforming it into a different GSLC
diagram, while not affecting the other parts of the diagram. Depending on
the gate and on the specific configuration the GLSC part of the diagram is
in, we will need to do different things.

The easiest gate to deal with is the Hadamard. This is simply absorbed as
part of the GSLC if there is no Hadamard already on that qubit, or cancelled
if there is one:

=...

π
2

−π
2

π
2

π

(hh)
... ...

π
2

−π
2

π
2

π

... (5.18)

For S gates and CZ gates the situation is more complicated. If there are no
Hadamards on the qubits they act on, then we can also absorb them as part

5.4 Classical simulation of Clifford circuits 199

of the GSLC:

=...

π
2

−π
2

π
2

π

(sp)

...

π
2

5.1.5

...

π
2

−π
2

π
2

−π
2

... (5.19)

For the CZ gate, as always, if there was already a Hadamard edge present
between the spiders, then we simply toggle the connectivity.

Now, if there is a Hadamard in the way then we can’t just fuse the S or
CZ gate into the GSLC. Instead, we will need to resort to our old friends, the
local complementation and pivot. The reason we can use these, is because
if there is a Hadamard in the way, with an S or CZ gate on the right-hand
side, then the spider that is part of the GSLC is ‘internal’ in the sense that
all its connections are to other spiders via a Hadamard edge. Now, if this
spider has a ±π

2 phase, this is straightforward enough: we just apply a local
complementation on it to remove it. This connects the spider of the S or CZ
gate to all the neighbours of this internal spider, so that the S or CZ spider
takes its place in the GSLC diagram:

=...

π
2

−π
2

π
2

π

...
5.2.9

π
2

...

π
2

−π
2

−π
2

π

... = ...

π
2

−π
2

−π
2

π

... (5.20)

Now, if the spider we wish to remove has a 0 or π phase, then we need
to apply a pivot to get rid of it. The spider must be connected to at least
one input spider (since the diagram is unitary), so that we can apply the
standard non-spider-removing pivot rule of (5.8). The end result is that the
output Hadamard disappears, so that the spider of the gate can be fused
and become part of the GSLC diagram.

Combining these different options we see that we can always absorb a gate
into the GSLC portion of the diagram. We can hence simplify the entire
circuit into a GSLC diagram.

Exercise 5.16 Reduce the following Clifford circuit to GSLC form using
the algorithm described in this section.

200 Clifford circuits and diagrams
π
2

π
2

Crucially, the connectivity change resulting from these local complemen-
tations and pivots is now restricted to just the other spiders of the GSLC
diagram and the spider corresponding to the gate to be absorbed, instead
of potentially involving the entire diagram. Letting q denote the number of
qubits, there are 2q qubits in the GSLC diagram, so that this requires tog-
gling at most (2q)2 edges. We need to do such a rewrite potentially for every
gate we absorb, so that the entire simplification costs O(Nq2) elementary
graph operations where N is the number of gates in the circuit. Compare this
to our previous method that required O(N3) elementary graph operations.
The number of gates is generally a lot more than the number of qubits, so
this is a significant savings. Indeed, from Proposition 5.3.12 it follows that
to represent an arbitrary Clifford unitary we need O(q2) gates, so taking
N = q2 we see that we have improved the complexity from O(q6) to O(q4).

Proposition 5.4.3 Let U be a q-qubit Clifford circuit with N CNOT,
Hadamard and S gates. Then we can reduce it to GSLC form using O(Nq2)
elementary graph operations. Furthermore, assuming that N ≥ q, we can
also write U in the layered normal form of Theorem 5.3.11 in O(Nq2) time.

Proof The reduction to GSLC form in O(Nq2) time follows from the algo-
rithm described above. To rewrite a GSLC diagram into the layered Clif-
ford normal form requires a Gaussian elimination of the central parity dia-
gram (5.16). This takes O(q3) time for a total cost of O(Nq2 + q3). As long
as N ≥ q, this reduces to O(Nq2).

Proposition 5.4.4 Let U be a q-qubit Clifford circuit with N ≥ q

CNOT, Hadamard and S gates. Then we can calculate any amplitude
⟨x1 · · ·xn|U |0 · · · 0⟩ in O(Nq2) time. If U is given as a GSLC diagram then
this reduces to O(q3).

Proof We first reduce U to GSLC form using the algorithm described
above. This takes O(Nq2) time. Then we compose the diagram with the
ZX-diagrams for |0 · · · 0⟩ and ⟨x1 · · ·xn|. This adds O(q) spiders, so that the
total diagram has O(q) spiders. Using the standard simplification algorithm
on this diagram then requires O(q3) graph operations. Assuming N ≥ q the
total cost is then O(Nq2) for fully reducing the diagram to a scalar. If U were
already given as a GSLC diagram, then only the final set of simplifications
is necessary, requiring just O(q3) graph operations.

5.4 Classical simulation of Clifford circuits 201

Exercise* 5.17 The O(N3) bound on calculating amplitudes in Proposi-
tion 5.4.2 is just an upper-bound. In practice it might turn out not to be so
bad. Implement a benchmark of random Clifford circuits with an increasing
number of gates and/or qubits and measure what the actual exponent is
more like. Does the exponent stay the same for different number of qubits?
Can you find a different strategy for targeting spiders to remove that leads
to better scaling?

5.4.2 Weak vs strong simulation

In the previous sections we discussed how to calculate the amplitude corre-
sponding to observing a particular effect on a Clifford state and we called this
‘simulating’ a Clifford computation. But this is not entirely correct. In order
to truly say we are simulating a quantum computation we should be getting
the same types of outcomes that we would get when we would actually run
the quantum circuit. These outcomes come in the form of measurement sam-
ples. Namely, we would prepare a quantum state, execute quantum gates on
it, and finally measure each qubit. The outcome is then a bit string spec-
ifying which measurement outcome we got for each qubit. By running the
experiment many times we will see a particular distribution of bit strings as
outcomes. To simulate a quantum computation is then to be able to generate
a series of bit strings that have a similar distribution of outcomes.

Definition 5.4.5 Let U be some unitary, and write

P (x1, . . . , xn) = |⟨x1 · · ·xn|U |0 · · · 0⟩|2

for the probabilities of observing the outcome |x1 · · ·xn⟩ when applying U
to the input state |0 · · · 0⟩. We then say a probabilistic algorithm weakly
simulates U when it produces bit strings y⃗ ∈ Fn2 according to a distribution
suitably close to P .

In this definition ‘suitably close’ can be made exact, but that won’t be
necessary for us for now. With what we have seen up to now, it is not obvious
how we can actually efficiently weakly simulate Clifford unitaries. We are
however quite close to being able to strongly simulate Clifford circuits.

Definition 5.4.6 Let U be some unitary, and let P (x1, . . . , xn) be its
associated probability distribution as above. Then we say an algorithm
strongly simulates U when it can calculate (or closely approximate) any
marginal probability of P .

202 Clifford circuits and diagrams

Let’s explain this definition. Recall that a marginal probability dis-
tribution is one where we don’t care about the outcome of one or more
of the variables of the distribution. For instance, if we have a distribution
P (x1, x2, x3) of three variables, then we can marginalise x3 to get the dis-
tribution P (x1, x2) :=

∑
x3 P (x1, x2, x3). When P (x1, x2, x3) corresponds to

the probabilities of observing particular measurement outcomes in a 3-qubit
circuit, then this marginal P (x1, x2) tells us the probability of observing x1
on qubit 1 and x2 on qubit 2, when we don’t measure qubit 3 at all.

The reason we require the ability to determine any marginal probabil-
ity in the definition of strong simulation, is that if we can only calcu-
late the non-marginal probabilities, then it will generally take exponen-
tial resources to determine marginal probabilities. Consider for instance
an n-variable distribution P (x1, . . . , xn) of Boolean variables. Then to cal-
culate the marginal P (x1) we have to sum the values of n − 1 variables
P (x1) =

∑
x2,...,xn

P (x1, x2, . . . , xn), and this summation contains O(2n)
terms.

Okay, so now that we understand what the definition says, it might be
helpful to answer why we call this ‘strong’ simulation as opposed to ‘weak’
simulation. First of all, note that being able to weakly simulate doesn’t seem
to easily imply the ability to calculate the value of the probabilities: it might
be that some probability P (x1, . . . , xn) is exponentially small (in n), and
hence we would need to sample at least exponentially many bit strings using
weak simulation to get an estimate of its value. But the converse is true: if we
can strongly simulate a unitary, then we can also weakly simulate it. To see
how to do this, we need to recall the concept of conditional probabilities. A
conditional probability distribution tells us the probability of observing
some outcome conditional on some other variables taking particular values.
For instance P (x1, x2 |x3 = 1), the probability of observing the particular
values x1 and x2 given that x3 = 1, is equal to P (x1, x2, 1)/P (x3 = 1). Hence,
since strong simulation allows us to calculate any marginal probability, we
can then also calculate any conditional probability.

So how do we use marginal and conditional probabilities to generate a
sample bit string y⃗ with the correct distribution? We do this by determining
the value of each bit of y⃗ in turn. First we ask for the probability p1 =
P (x1 = 0), the marginal probability that we observe qubit 1 to give a value
of 0. We then decide with probability p1 to set y1 = 0 and otherwise we set
y1 = 1. We then calculate p2 = P (x2 = 0 |x1 = y1) and set y2 = 0 with
probability p2 and otherwise y2 = 1. This means that we have chosen y1 and

5.4 Classical simulation of Clifford circuits 203

y2 with probability

P (y2 |x1 = y1) · P (y1) = P (y1, y2)
P (y1) · P (y1) = P (y1, y2) (5.21)

which is the correct distribution. We carry on and calculate p3 = P (x3 =
0 |x1 = y1, x2 = y2) and repeat the procedure until we have determined
the entire bit string y1 · · · yn. Repeating the argument of Eq. (5.21) we see
that we will have chosen this specific bit string with probability P (x1 =
y1, x2 = y2, . . . , xn = yn) so that we are indeed sampling correctly from this
distribution.

To summarise:

• Weak simulation is about sampling correctly from the probability dis-
tribution of measurement outcomes we would get if we were to actually
run the quantum circuit.

• Strong simulation is about calculating the actual probabilities of observ-
ing certain measurement outcomes;

• If we can do strong simulation, then we can do weak simulation.

So how do we actually do strong simulation of Clifford circuits with
the ZX-diagram simplification strategies we have discussed in this chap-
ter? Well, we have seen how to calculate an amplitude ⟨x1 · · ·xn|U |0 · · · 0⟩
which allows us to calculate a non-marginal probability P (x1, . . . , xn) =
|⟨x1 · · ·xn|U |0 · · · 0⟩|2. But how do we calculate a marginal probability? To
see this it first helps to expand P (x1, . . . , xn) in a way that allows us to
more easily represent it as a diagram. Recall that for a complex number z
we have |z|2 = zz∗ where z∗ is the conjugate. The conjugate of the inner
product ⟨x1 · · ·xn|U |0 · · · 0⟩ is ⟨0 · · · 0|U †|x1 · · ·xn⟩. We can represent each of
these by ZX-diagrams, and as they are scalar diagrams, their multiplication
is implemented just by putting them next to each other:

P (x1, . . . , xn) =
x1π

xnπ

U ··
·

x1π

xnπ

U†··
·

··
·

··
·(

1√
2

)4n

(5.22)
We get these scalar factors of 1/

√
2 because the X-spiders only represent |0⟩

and |1⟩ up to a scalar. Note that these middle pairs of spiders correspond then
(up to scalar) to operators |xi⟩⟨xi|. Now if we want to calculate a marginal
probability then this corresponds to a sum of such diagrams where we vary
the values of some of the xi. Remember that

∑
x |x⟩⟨x| = I, hence on the

diagram we can implement this summation by replacing the middle spiders

204 Clifford circuits and diagrams

by an identity wire:

P (x1, · · · , xk) =
(1

2

)n+k

x1π

xkπ

U

··
·

··
·

··
· x1π

xkπ

U†

··
·

··
·

··
·

··
·

··
·

(5.23)
Using this diagrammatic representation of a marginal probability allows

to calculate the marginals of a Clifford computation.

Proposition 5.4.7 Let U be a q-qubit Clifford circuit with N ≥ q gates.
Then we can calculate any marginal probability of U using O(Nq2) graph
operations. If U is given in GSLC form then it takes only O(q3) operations.

Proof First reduce U to GSLC form using O(Nq2) operations (see Proposi-
tion 5.4.3). Then construct the diagram as in (5.23) to represent the desired
marginal probability. This diagram has O(q) spiders, so fully simplifying it
requires O(q3) graph operations. As N ≥ q we see that the total number of
steps taken is O(Nq2).

Since we can now calculate any marginal probability, we have also found
a way to sample measurement outcomes from the Clifford circuit.

Proposition 5.4.8 Let U be a q-qubit Clifford circuit with N gates. Then
we can sample k bit strings from its measurement distribution using O(Nq2 +
kq4) graph operations.

Proof We first reduce U to GSLC form, which requires O(Nq2) operations.
Now in order to sample a bit string from its distribution (i.e. to perform
weak simulation), we can use the method described above, which requires us
to calculate q marginals, each of which takes O(q3) operations to calculate.
So sampling a single bit string requires O(q4) operations. We need to do this
k times, so the total cost is O(Nq2 + kq4).

It is perhaps a bit unsatisfying that the weak simulation seems to be more
expensive than the so-called strong simulation. However, it turns out that
there is a smarter way to perform weak simulation of Clifford circuits. To do
this, we also need to simplify our unitary U using ZX-calculus rewrites, but
now instead of reducing to GSLC form, we want to reduce it to the affine
with phases form (AP form) of Section 5.3.1. We can do this with the same
order of graph operations as it takes to reduce to GSLC form. We can see this

5.4 Classical simulation of Clifford circuits 205

in two ways. Either we first reduce to GSLC form using Proposition 5.4.3,
and then we do some final rewrites to reduce it to AP form. Or, we modify
the algorithm used in Proposition 5.4.3 so that instead of absorbing gates
into a GSLC part of the diagram, we absorb gates into an AP form diagram.
We hence have the following.

Proposition 5.4.9 Let U be a q-qubit Clifford unitary with N gates. Then
we can write both U and U |0 · · · 0⟩ in AP form using O(Nq2) operations.

Recall from Eq. (5.14) that a state in AP form can naturally be written
as

U |0 · · · 0⟩ = 1
√

2N
∑
x⃗∈Fq

2
Ax⃗=b⃗

if(x⃗)|x⃗⟩

for some phase function f , parity matrix A and bit string b⃗. This state is
an equal superposition of those |x⃗⟩ for which Ax⃗ = b⃗. Hence, if we measure
all the qubits then the outcomes will correspond to one of those bit strings
x⃗ for which this parity condition Ax⃗ = b⃗ is satisfied (the phase function is
irrelevant for the outcomes). So we see that sampling from the distribution
of U boils down to being able to uniformly randomly select vectors that
satisfy such parity conditions.

Proposition 5.4.10 Let U be a q-qubit Clifford unitary with N gates.
Then we can sample k bit strings from its measurement distribution using
O(Nq2 + q3 + kq2) operations.

Proof First write U |0 · · · 0⟩ in AP form using Proposition 5.4.9, which re-
quires O(Nq2) operations, and let A and b⃗ denote the parity matrix and
bit string determining the AP form. Now we need to uniformly randomly
return k bit strings x⃗ that satisfy Ax⃗ = b⃗. First find a single z⃗ for which
Az⃗ = b⃗. This takes O(q3) operations as A is of size O(q), and Gaussian
elimination takes cubic time. Now do another Gaussian elimination of A to
find a basis x⃗1, . . . , x⃗r for the kernel of A, i.e. of those x⃗i for which Ax⃗i = 0⃗.
This also takes O(q3) time. Now to determine a uniformly random bit string
x⃗ satisfying Ax⃗ = b⃗ we simply generate uniformly random bits c1, . . . cr and
output x⃗ = z⃗+ c1x⃗

1 + · · · + crx⃗
r (this is indeed uniformly random as each bit

string in the kernel of A can be written in a unique way as a combination
of the basis vectors). Hence, each additional sample just requires generating
some random bits and summing together O(q) bit strings of length O(q) for
a total cost of O(q2) per sample.

Instead of casting this algorithm in terms of Gaussian elimination, we can

206 Clifford circuits and diagrams

also view it as a diagram rewriting exercise. In Eq. (5.12) we saw that we
can relate the affine part of an AP form diagram, a X-Z normal form, to a
different Z-X form:

bkπ

b1π

w⃗k
..
.

..
.

w⃗1

∝
∑
x⃗∈A |x⃗⟩ where A =

x⃗ ∈ Fn2

∣∣∣∣∣∣∣
w⃗T1 x⃗ = b1

· · ·
w⃗Tk x⃗ = bk

wnπ

w1π

v⃗k

..
.

..
.

v⃗1
∝

∑
x⃗∈A |x⃗⟩ where A = w⃗ + span{v⃗1, . . . , v⃗k}

From this latter type of diagram we can easily read of which computational
basis states |x⃗⟩ are part of the superposition making it up: each Z-spider
represents a basis vector x⃗j of the kernel of A, where xji is 1 precisely when
the Z-spider is connected to output spider i. While the spiders give the
solution to Ax⃗ = 0⃗, the π phases on the output transform this into solutions
to Ax⃗ = b⃗.

5.5 Completeness of Clifford ZX-diagrams
We have seen in this chapter that we can prove a lot about Clifford circuits
using the ZX-calculus, but can we actually prove everything? In the previous
chapter we saw that the phase-free ZX-calculus is complete, meaning we can
prove all equations between phase-free ZX-diagrams using the rules of the
phase-free ZX-calculus. It turns out the same is true for Clifford diagrams,
when we use the Clifford rewrite rules.

In this section we will adopt the scalar-accurate rewrite rules of Sec-
tion 3.6.2. We will then show that these rewrite rules are complete for the
Clifford fragment, meaning that if we can represent a linear map by a Clifford
diagram, then any two ways to do so can be rewritten into one another. We
show completeness in two steps. First we study scalar Clifford diagrams and
show that these can be reduced to a form that uniquely encodes the number
they are equal to. Hence, any two scalars representing the same number are
reduced to the same diagram, which shows that we have completeness for
these scalar diagrams. Then we show that we can refine the AP normal form
so that every Clifford diagram can be reduced to a unique normal form. This
means that if two diagrams represent the same linear map, that they will
be reduced to the same normal form, and hence we have a path of rewriting
from one to the other.

5.5 Completeness of Clifford ZX-diagrams 207

5.5.1 A normal form for scalars

First let’s show that we can correctly deal with scalar Clifford diagrams, so
that we are then again free to ignore them. For this we will use the results
of Section 3.6.2, and hence we use the rules of Figure 3.2 there. We’ve seen
in Proposition 3.6.5 that when the diagram contains a zero scalar π , that
the entire diagram can be reduced to a simple unique form. Hence, we may
assume our scalar diagram is non-zero.

Our strategy will be to simplify an arbitrarily complicated scalar Clifford
diagram to a diagram that consists of small disconnected bits and pieces that
can each be dealt with individually. It is straightforward enough to check
that with the rules of Figure 3.2 we can prove all the rules of Figure 3.1 up
to some scalar diagrams that contain at most two spiders. Hence, everything
we have proven so far using the rules of Figure 3.1 remains true using our
scalar-accurate set of rules, except that we might acquire some additional
small scalar diagrams.

This means that in particular our simplification strategy for Clifford di-
agrams still works, except for some small modifications. We can still use
the local complementation simplification Lemma 5.2.9, but as noted in Re-
mark 5.2.10, now it doesn’t actually remove the spider we complement on.
Instead, the spider remains as an unconnected scalar. Hence, if we were to
apply this rewrite to an unconnected spider (so where n = 0 in that lemma),
it would not remove the spider. In order for the simplification strategy to
work we must then only apply this lemma to spiders with a ±π

2 phase that
are connected to at least one other spider. The same consideration holds for
the pivot simplification Lemma 5.2.11, where we should only apply it if at
least one of the spiders being pivoted on is connected to some other spider.

In Section 5.4 it was noted that if we apply the simplification strategy to a
scalar Clifford diagram, that the entire diagram is simplified away. With our
scalar-accurate calculus we see that this now becomes slightly different. We
can still remove most connections between spiders, but there will generally
be some small scalar subdiagrams left.

Proposition 5.5.1 Any scalar Clifford diagram can be rewritten to be a
product of the following scalar subdiagrams:

π
2 , π , − π

2 , , ππ ,

Proof First rewrite the ZX-diagram to graph-like form, except that we
can’t remove the triple set of wires in . We leave those subdiagrams
as is. Then apply the scalar-accurate version of the local complementation
Lemma 5.2.9 to any spider with a ±π

2 phase that is connected to at least

208 Clifford circuits and diagrams

one other spider. After doing this, any connected spider must have a phase
of 0 or π. Apply the pivot Lemma 5.2.11 to any such pair where at least
one of the spiders has connections to other spiders. Hence, after we are done
there can only be connections between pairs of spiders that aren’t connected
to anything else. By simply enumerating the possibilities (and applying
some colour-changes using (cc)) we see that the only possible connected
subdiagrams are then the ones listed above, π , and . The first of these
can be rewritten to using Lemma 3.6.4, and can be decomposed into
a pair of ’s using Lemma 3.6.1.

Now, if our scalar diagram contains a π then it can already be rewritten
to a normal form, so let’s assume it does not contain that subdiagram. Then
our diagram is a composition of five different types of diagrams. By applying
(s) we can ensure that the diagram does not contain both a and a
(as they are each others inverses). What other relations hold between these
scalars? Using Lemma 3.6.7 we see that there can be at most one subdiagram
of ππ and using Lemma 3.6.9 we can make it so that there is at most
one spider with a ±π

2 phase in our diagram.

Theorem 5.5.2 We can rewrite any non-zero scalar Clifford diagram D

to a unique normal form Dk
1 ◦ D2 ◦ D3 where k ∈ N, D1 ∈ { , },

D2 ∈ { ππ , } and D3 ∈ { π
2 , − π

2 , π
2π , }.

Proof Apply Proposition 5.5.1 to rewrite the diagram to a product of pairs
of spiders. Apply Lemma 3.6.9 so that the diagram contains at most one
spider with a ±π

2 phase. If this one diagram with a π
2 is −π

2π then apply
Lemma 3.6.6 in reverse with α = π and β = π

2 , so that the π
2 diagram is

then π
2π .

Apply Lemma 3.6.7 so that there is at most one instance of ππ . Finally,
cancel all pairs of and using (s). It is then straightforward to
verify that the diagram must be of the form specified.

To see this is a unique representation of the scalar let s denote the value of
the scalar the diagram represents. The type of D3 tells us whether Re(s) =
Im(s) (D3 = π

2 = 1 + i), Re(s) = −Im(s) (D3 = − π
2 = 1 − i), Re(s) = 0

(D3 = π
2π =

√
2i) or Im(s) = 0 (D3 = = 1). As s ≠ 0 by assumption

D3 must then be the same for any diagram representing s in this normal
form. Similarly D2 tells us whether the real part of s is positive (or the
imaginary part in case D3 = π

2π), since D2 either represents −
√

2 or
1, so that this must also be the same diagram for every representation of
s. Finally, D1 being =

√
2 or = 1/

√
2 together with the value

5.5 Completeness of Clifford ZX-diagrams 209

of k tells us the magnitude of Re(s) (or Im(s)), and hence is also uniquely
determined by s.

This theorem tells us that we can always rewrite any two scalar Clifford
ZX-diagrams into one another if they represent the same scalar, since they
can both be rewritten into this unique normal form.

5.5.2 A unique normal form for Clifford diagrams

The previous section settled the question of completeness for scalar Clifford
diagrams. In this section we will do the same for non-scalar Clifford diagrams.
Since the question of scalars is now settled, we will again revert back to not
caring about these scalar subdiagrams. As before, we will write ∝ when we
are denoting an equality up to a non-zero scalar factor. We will just work
with states in this section, so diagrams that don’t have any inputs. Once
we have completeness for states, completeness for all diagrams follows easily
just by bending some wires (like we did in Theorem 4.3.6).

What we will show in this section is that we can refine the AP form,
rewriting it into something more canonical. We will then show that this
reduced normal form is unique. In particular, we will rewrite our diagrams
to the following form.

Definition 5.5.3 A non-zero diagram in AP-form defined by the triple
A, b⃗, ϕ is in reduced AP-form when:

1. A is in reduced row echelon form (RREF) with no zero rows,
2. ϕ only contains free variables from the system Ax⃗ = b⃗.
3. all the coefficients of ϕ are in the interval (−1, 1].

Recall that the first non-zero element in a row of a matrix A in RREF
is called a pivot (no relation to the pivot graph rewrite rule). The variable
xi is called a free variable if the ith column of A does not contain a pivot,
otherwise it is called a bound variable. The utility of looking at the reduced
AP-form is the following theorem.

Theorem 5.5.4 For any non-zero state |ψ⟩, there is at most one triple
(A, b⃗, ϕ) satisfying the conditions of Definition 5.5.3 such that:

|ψ⟩ ∝
∑

x⃗,Ax⃗=b⃗

eiπ·ϕ|x⃗⟩

Proof Since |ψ⟩ ≠ 0, the set A = {x⃗|Ax⃗ = b⃗} is non-empty. Hence, there
is a unique system of equations in RREF that define A (why?). From this

210 Clifford circuits and diagrams

it follows that A and b⃗ are uniquely fixed. Now, for any assignment {xi1 :=
c1, . . . , xik := ck} of free variables, there exists |x⃗⟩ ∈ A such that xiµ =
cµ (this is why we call these variables ‘free’, they can be chosen without
restrictions while still satisfying the constraints given by A). Hence:

⟨x⃗|ψ⟩ = λeiπϕ(c1,...,ck)

for some fixed constant λ ̸= 0. From this it follows that, by inspection of
|ψ⟩, we can determine the value of ϕ at all inputs (c1, . . . , ck) ∈ Fk2, modulo
2. This is enough to compute each of the coefficients of ϕ, modulo 2. (Q:
How?) Since we require the coefficients of ϕ to be in the interval (−1, 1], we
can drop the “modulo 2” and conclude that ϕ is uniquely fixed by |ψ⟩.

Our goal then will be to show that we can rewrite any Clifford diagram
into reduced AP-form. We already know that we can rewrite the diagram to
AP form using Proposition 5.3.2. Such a diagram is then fully described (up
to scalar) by a parity matrix A, a bit string vector b⃗ and a phase function
ϕ. We fully Gaussian eliminate the pair (A, b⃗) and do the corresponding
transformation on the diagram as in Exercise 5.11, to bring it to RREF. If
the Gaussian elimination shows that there is no solution to the affine system,
then this corresponds to a scalar X-spider with phase π appearing, which
is equal to the scalar 0. In this case, we can bring the diagram to the zero
normal form of Proposition 3.6.5. So let’s suppose that this is not the case,
and the affine system is not inconsistent.

We remove all the zero rows of A (which correspond to scalar spiders).
So now each row of A is a linear independent bit string. The affine part of
the diagram is then unique. It then remains to show that we can rewrite
the phase part so that the phase function ϕ only depends on free variables.
To do this it will be useful to introduce some notation. Each of the internal
spiders in the diagram defines a parity set Pj containing the spiders it is
connected to. Since we have fully reduced the matrix A, each Pj contains a
pivot spider pj ∈ Pj that does not appear in any other parity set. We then
need to rewrite the diagram so that the pivot spiders pj does not interact
at all with ϕ. This means it must not have any phase, and not be involved
with any CZs.

First, if a pivot spider has a phase of π, then this can be pushed to the
other spiders of its parity set:

π

bπ ∝
...

bπ
π

π

...

5.5 Completeness of Clifford ZX-diagrams 211

If instead its phase is ±π
2 then we can remove it by applying a local comple-

mentation type rewrite rule. We start by applying the local complementation
Lemma 5.2.9 in reverse:

±π
2

bπ

∝
...

bπ

∓π
2

∓π
2

...

bπ

∓π
2

∓π
2

...

∓π
2

5.2.9

= ∓π
2

∓π
2

...

(cc)

(sp)
∓π

2

bπ

∝ ∓π
2

∓π
2

...

(sc)
∓π

2

bπ

∝

(sc)

(sp)

Here in the last step we also implicitly got rid of the scalar spiders that
result after applying the copy rule (sc).

Now that all pivot spiders have no more phase, we will remove all the
Hadamard edges that pivot spiders are involved in. First, we remove all the
Hadamard edges from a pivot to a spider within its own parity set. We can
do this by repeating the following rewrite:

bπ =

...

bπ

...

(b + 1)π

...

bπ

(sp)

(π)

(cc)

bπ

∝
...

bπ
(sc)

bπ

=

...

bπ
bπ

(sp)

∝

(id)

5.1.6

=

...

bπ
(cc)

bπ

After every such rewrite the number of Hadamard edges from a pivot strictly
decreases, so that the procedure terminates.

Finally, we can use a variation of this rewrite rule to remove Hadamard

212 Clifford circuits and diagrams

edges from a pivot to a spider outside its parity set:

bπ
...

bπ ...

bπ

∝

Note that this rewrite can introduce new Hadamard edges to the pivot of the
other parity set, namely when we apply the rewrite rule to two pivots that are
connected to each other. However, the rewrite rule either decreases the total
number of edges that are connected to a pivot or it decreases the number of
pivots that are connected to each other, so that we can always keep applying
it and it will always reduce one of these metrics, so that the procedure does
terminate. In the end when we can no longer apply the rewrite rule anywhere,
it must mean that there are no Hadamard edges attached to a pivot in the
diagram.

Remark 5.5.5 The previous phase-removal and edge-removal rewrites also
apply when the pivot spider is the only spider in its parity set, but then
these rewrites become quite trivial:

αbπ ∝ bπ

bπ

∝
bπ

bπ

We conclude then that we get a diagram in reduced AP form.

Proposition 5.5.6 Any diagram in AP form can be transformed to reduced
AP form.

Theorem 5.5.7 The ZX-calculus is complete for Clifford diagrams.

Proof Suppose we have two diagrams D1 and D2 that represent the same
linear map. Without loss of generality we may assume that they are states by
bending all the wires to the right. We can rewrite the diagrams to reduced
AP forms D′

1, respectively D′
2. The diagrams represent the same linear

map and Theorem 5.5.4 shows that this linear map has a unique reduced
AP form associated to it, so that D′

1 and D′
2 must be the same diagram.

Furthermore, by reducing the scalars in the diagrams to a unique normal
form (Theorem 5.5.2), we see that the scalar parts of the diagram are also
equal. We then indeed have a set of rewrites from D1 to D2: first go from
D1 to D′

1, which is equal to D′
2, and then do rewrites in reverse to go from

D′
2 to D2.

5.6 Summary: What to remember 213

Remark 5.5.8 The reader familiar with stabiliser theory might be won-
dering how it is that we get a unique normal form for Clifford states, as there
is no really ‘canonical’ way to do this. The trick is that we fully Gaussian
eliminate the parity matrix. This procedure makes a distinction between
the qubits: the first qubit is much more ‘likely’ to be a pivot than the last
qubit. A state that is symmetric in the qubits hence would not necessarily
be reduced to a symmetric unique normal form (try to construct for instance
the reduced AP form of the GHZ state).

You might wonder how these reduced AP forms relate to graph states. We
have already seen that we can transform a state in AP form to one in GSLC
form by doing some boundary pivots. If the diagram is in reduced AP form,
the translation is even simpler: since for every internal spider we have a pivot
spider that does not have a phase, it’s Z-spider is actually an identity, and
we can do some identity removal and colour change to turn it into a GSLC
state:

bπ
=α1

αk

...

pivot (id)

(cc) bπ

α1

αk

...

We see that that every internal spider in AP form translates into a Hadamard
on the output of its corresponding pivot in the resulting graph state.

5.6 Summary: What to remember
1. Clifford circuits are circuits consisting of CNOT, Hadamard and S gates.

Clifford states are the quantum states that can be produced by starting
with |0 · · · 0⟩ and then applying a Clifford circuit to it.

2. Clifford circuits are represented by ZX-diagrams where all the phases
are multiples of π

2 . We call these diagrams Clifford diagrams.
3. Any Clifford diagram that is unitary can be written as a Clifford circuit.
4. We can efficiently simplify Clifford diagrams by the graph-theoretic

operations of local complementation and pivoting.
5. This allows us to

a) reduce each Clifford circuit to a normal-form consisting of just a few
layers of Hadamard, S, CNOT and CZ gates,

b) write each Clifford state in the affine with phases form,
c) write each Clifford state as a graph state with local Cliffords,
d) efficiently calculate amplitudes of Clifford states,

214 Clifford circuits and diagrams

e) efficiently calculate marginal probabilities of Clifford states (strong
simulation),

f) efficiently sample measurement outcomes from a Clifford state (weak
simulation).

6. This scalar-accurate set of rewrites of the ZX-calculus is complete for
Clifford ZX-diagrams, meaning that any two Clifford diagrams repre-
senting the same linear map can be rewritten into each other using these
rewrite rules.

7. This follows from the existence of a unique normal form for Clifford
states that we call the reduced AP form.

5.7 References and further reading
Classical simulation Clifford circuits were first shown to be efficiently classi-
cally simulable by Gottesman (1998), using what he called the Heisenberg
representation, which is now more commonly called the stabiliser representa-
tion or stabiliser tableau. We will go into detail on this structure in Chapter 6.
Notably, the classical simulation theorem itself appears in this single-author
paper by Gottesman as “Knill’s theorem”, crediting Knill with the idea.
These days it is called the Gottesman-Knill theorem.

[TODO: cite MBQC-based classical sim? is this a Raussendorf paper?]

Circuit normal forms The first Clifford circuit synthesis algorithm was given
by Aaronson and Gottesman (2004), which produced a circuit with 11 layers
of distinct gate types. This was subsequently improved to more compact
forms Dehaene and De Moor (2003); Van Den Nest (2010); Maslov and
Roetteler (2018). The shallowest decompositions, at the time of this writing,
are due to Maslov and Zindorf (2022) have a 2-qubit gate depth of 2n +
O(log2 n).

Graph states with local Cliffords The GSLC form for Clifford ZX diagrams
is based on a result by Van den Nest et al. (2004b), who showed that any
stabiliser state, i.e. any state prepared from |0 . . . 0⟩ using a Clifford circuit,
can be expressed as a graph state with local Cliffords. The definition of
GSLC form for ZX diagrams is due to Backens (2014a), who used it to prove
completeness of the Clifford ZX calculus. The reduction of an arbitrary
diagram to GSLC form is from Duncan et al. (2020).

5.7 References and further reading 215

Local complementation Local complementation, as a purely graph-theoretic
concept, goes back to Kotzig (1968). It’s relevance to quantum computing
originates with Van den Nest et al. (2004a), who showed that two graph states
are equal up to local Cliffords if and only if one graph can be transformed
into the other via local complementations. Elliott et al. (2008) showed that,
furthermore, this sequence of local complementations can be found efficiently.

The local complementation rule was proved in the ZX-calculus by Duncan
and Perdrix (2009). A more accessible proof is provided in Ref. (Coecke
and Kissinger, 2017, Prop. 9.125). The pivoting rule was introduced for
ZX diagrams by Duncan and Perdrix (2013), where it was used to show
completeness of the “real stabiliser” fragment of the ZX-calculus, i.e. for ZX
diagrams generated by phase-free spiders and the Hadamard gate.

The simplification-versions of local complementation and pivot rules (i.e.
the ones that delete spiders) were introduced by Duncan et al. (2020) to
simplify non-Clifford circuits, and with some additional variations on the
pivoting rule, they were used in Backens et al. (2021) to simplify MBQC
patterns (though note that the idea that ’a pivot deletes vertices’ was also
present in (Mhalla and Perdrix, 2013)).

AP normal form The AP form and reduced AP form were introduced in a
preprint of this book in 2022 to give, among other things, a simplified proof
of Clifford completeness. It first appears in published form in (Poór, 2022)
for the case of odd-prime-dimensional qudits. A circuit decomposition for
Clifford state preparations, which is closely related to the AP normal form,
appears more than ten years earlier, in a classical simulation paper by Van
Den Nest (2010).

[TODO: probably more to go here...]

6
Stabiliser theory

In Chapter 5, we already built up a good collection of practical tools for
working efficiently with Clifford diagrams and circuits using rewriting. How-
ever, this is quite different from the toolkit one more typically encounters in
the literature. An alternative way to work with Clifford maps is to focus not
on the maps themselves, but rather families of Pauli operators that stabilise
them. This approach is sometimes referred to as stabiliser theory or the
stabiliser formalism. In this section, we will see that this formalism gives
a fully equivalent way to represent and efficiently simulate Clifford maps.
[TODO: Measurements still need to be done, but can be done quite easily
with the machinery of stabiliser groups we have.]

In order to do this, we will develop a theory of Pauli projections, which
are maps that project onto the +1 or −1 eigenspace of an n-qubit Pauli
operator. Interestingly, these always chop a space precisely in half: the 2n-
dimensional space of n qubits can be regarded as the direct sum of two
2n−1-dimensional subspaces in the range of a Pauli projection and its or-
thocomplement. As we’ll see, subsequent commuting Pauli projections will
further chop the space in half, until we get all the way down to a 20 = 1
dimensional space.

This leads us to what we will call the Fundamental Theorem of Sta-
biliser Theory in Section 6.2.1, which states that k independent, commut-
ing Pauli operators on n qubits uniquely fix a 2n−k-dimensional subspace
of (C2)⊗n. In particular, when n = k, this gives us a 1D space so that it
uniquely fixes a state up to a scalar factor. We will see that these states,
often called stabiliser states in the literature, are precisely the Clifford
states we saw in Chapter 5. We will also see that all of the interesting things
we might want to compute about a stabiliser state, such as its evolution
through a Clifford circuit or measurement probabilities, can be computed in
terms of its associated Pauli operators.

6.1 Paulis and stabilisers 217

This gives us a powerful second perspective on Clifford maps, which we will
apply to quantum error correction and fault-tolerant quantum computation
in Chapter 11. In Chapter 7, we will see that Pauli projections induce a
related type of map, called Pauli exponentials. These are closely related
to phase gadgets and give us a new way to talk about universal quantum
computations as well as allowing us to synthesise circuits that simulate
physical processes on a quantum computer.

6.1 Paulis and stabilisers
We met the Pauli matrices back in Chapter 2. Here they are again:

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
These are self-adjoint matrices, so they each have a basis of eigenstates.

These are respectively:

Z|0⟩ = |0⟩ X|+⟩ = |+⟩ Y |+i⟩ = |+i⟩
Z|1⟩ = −|1⟩ X|−⟩ = −|−⟩ Y |−i⟩ = −|−i⟩

When viewed on the Bloch sphere these six states lie in the corners corre-
sponding to the three principal axes:

|0⟩

|1⟩

|+⟩|−⟩

|+i⟩

|−i⟩

(6.1)

Each of these states is uniquely defined (up to global phase) as being the
+1 eigenvector of one of the Pauli matrices. In particular, |0⟩, |+⟩ and |+i⟩
are the +1 eigenvectors of Z,X, Y , respectively, while |1⟩, |−⟩ and |−i⟩ are
the +1 eigenvectors of −Z,−X,−Y . So while we don’t care about the global
phase of the vectors, for this definition of being the +1 eigenstate, we do
care about the global phase of the Pauli operators, since the +1 eigenvector
of Z is |0⟩ while the +1 eigenvector of −Z is |1⟩.

Definition 6.1.1 We say a linear map A is a stabiliser of the state |ψ⟩
when A|ψ⟩ = |ψ⟩, i.e. when |ψ⟩ is a +1 eigenvector of A.

An important fact about stabilisers is that the product of stabilisers is also

218 Stabiliser theory

a stabiliser. Suppose A|ψ⟩ = |ψ⟩ andB|ψ⟩ = |ψ⟩. Then, AB|ψ⟩ = A|ψ⟩ = |ψ⟩.
For that reason, we’ll soon be interested not in just single operators stabilising
a state, but whole groups of them.

Each of the Pauli matrices is its own inverse: X2 = Y 2 = Z2 = I, and if
we multiply two different Pauli matrices, we get the third one, up to a factor
of i:

XY = iZ ZX = iY Y X = −iZ XZ = −iY (6.2)

One way to remember this is to think of the Pauli matrices arranged in a
cycle:

X

YZ

If we multiply two Paulis going forward in the cycle, we get the third one
with a factor of +i, and if we multiply backwards, we get it with a factor of
−i. Note that from the multiplications of (6.2) we also see that if we have
two different Paulis P and Q that then PQ = −QP . We say then that these
Paulis anti-commute.

Accounting for scalar multiples of i, we get a 16-element group, called the
single-qubit Pauli group:

P1 = { ikP | k ∈ {0, 1, 2, 3}, P ∈ {I,X, Y, Z} }

We can then ask which subgroups of this group stabilise some state |ψ⟩.
The trivial subgroup {I} ⊆ P1 stabilises everything, so that’s not very
interesting. Also, −I|ψ⟩ = −|ψ⟩, so any group containing −I doesn’t stabilise
anything except the zero state, which is also not very interesting. This rules
out the whole group P1 ⊆ P1, and any group containing ±iP , because
(±iP)2 = (±i)2I = −I.

That leaves just 6 subgroups, corresponding exactly to the 6 points on the
Bloch sphere of (6.1):

⟨X⟩, ⟨Y ⟩, ⟨Z⟩, ⟨−X⟩, ⟨−Y ⟩, ⟨−Z⟩ ⊆ P1

Note we write ⟨...⟩ to mean the subgroup generated by the given operators,
so for example ⟨X⟩ = {I,X}.

Exercise 6.1 Show that ⟨X,Y, Z⟩ = P1, but ⟨X,Z⟩ generates a strict
subset of P1.

6.1 Paulis and stabilisers 219

In this section, we will generalise this idea of groups stabilising a state
from one qubit to n qubits, by looking at subgroups of the following group.

Definition 6.1.2 The n-qubit Pauli group is defined as follows:

Pn = { ikP1 ⊗ . . .⊗ Pn | k ∈ {0, 1, 2, 3}, Pj ∈ {I,X, Y, Z} }

We will refer to the elements of the n-qubit Pauli group as Pauli strings,
and introduce special notation for them:

P⃗ := ikP1 ⊗ . . .⊗ Pn

Concretely, fixing a Pauli string consists of choosing a global phase from
the set {1,+i,−1,−i} and for each Pj , a Pauli from the set {I,X, Y, Z}.
Since each of these choices yields a distinct element of Pn, it follows that
|Pn| = 4n+1.

Exercise 6.2 Fix an arbitrary pair of Pauli strings P⃗ , Q⃗ ∈ Pn, where:

P⃗ := ikP1 ⊗ . . .⊗ Pn Q⃗ := ilQ1 ⊗ . . .⊗Qn

Prove the following properties:

a) P⃗ is unitary.
b) P⃗ † = P⃗ if k is even, otherwise P⃗ † = −P⃗ .
c) P⃗ 2 = I if k is even, otherwise P⃗ 2 = −I.
d) P⃗ and Q⃗ either commute (P⃗ Q⃗ = Q⃗P⃗) or anti-commute (P⃗ Q⃗ = −Q⃗P⃗).

For the majority of this chapter and the next one, we will mostly be
interested in self-adjoint Pauli strings, i.e. those whose global phase is
±1. As the name suggests, this implies that P⃗ † = P⃗ . Since Pauli strings
are unitaries, being self-adjoint implies that they are also self-inverse, i.e.
P⃗ 2 = I.

6.1.1 Clifford conjugation, a.k.a. pushin’ Paulis

As we first pointed out way back in Example 3.2.2, whenever there are Z or X
gates on the input of a Clifford circuit, we can always ‘push them through’ to
the outputs using ZX rules. We now know enough about Clifford unitaries to
prove this straightforwardly. We saw in Proposition 5.3.14 that any Clifford
unitary U can be written as a circuit built out of CNOT, Hadamard, and S
gates. Hence, we only need to check that we can push arbitrary single Pauli
gates through each of these three. That is, for any single Z or X on any
input, we can push it through to Z and X gates on the outputs.

220 Stabiliser theory

For the Hadamard gate, Z pushes through and becomes X and X pushes
through to become Z:

π π= ππ =

For the S gate, Z commutes straight through, whereas X turns into Y :
π
2π = −π

2 πi = π
2 πi π = π

2 Y

Note that we picked up the global phase of eiπ/2 = i when we used the
π-commutation rule (π). Finally, for the CNOT gate, there are 4 cases to
consider, corresponding to a Z or X gate on either of the two inputs:

=
π π

=
π

π

π

=
π π

=
π π

π

Since we can push any Z or X gate through any Clifford gate, we can
push any Y = iXZ gate through as well. Putting these rules together, we
can see that, for any Pauli string P⃗ and Clifford unitary U , we can push P⃗

through U gate-by-gate, getting a (probably different) Pauli string Q⃗ on the
outputs.

Proposition 6.1.3 For any Clifford unitary U and Pauli string P⃗ , there
exists a Pauli string Q⃗ such that:

= ..
.

U Q⃗..
.

..
.

..
.

UP⃗ ..
.

..
.

or equivalently:

= ..
.

U† Q⃗..
.

..
.

..
.

UP⃗ ..
.

..
.

The second equation above, written symbolically as Q⃗ = UP⃗U †, says that
conjugating a Pauli string by a Clifford unitary yields another Pauli string.
We will see in Section 6.4 that the converse of Proposition 6.1.3 also holds:
any unitary that sends Pauli strings to Pauli strings under conjugation is
Clifford.

A variation on this result, which will prove to be very useful in this chapter,
is that we can use Clifford unitaries to simplify a multi-qubit Pauli string to
one that is non-trivial on just one qubit (say Z1).

6.1 Paulis and stabilisers 221

Proposition 6.1.4 Let P⃗ = ±P1 ⊗ · · · ⊗ Pn be a non-trivial self-inverse
Pauli string. Then there exists a Clifford unitary U such that UP⃗U † = Zj
for any choice of j.

Proof The first step will be to find a Clifford unitary that conjugates P⃗ to
a Pauli string P⃗ ′ where P ′

i ∈ {I, Z} for all i. Set Vi = I if Pi = I or Pi = Z,
set Vi = H if Pi = X, and set Vi = X(π2) if Pi = Y . Then V := V1 ⊗ · · · ⊗Vn

gives V P⃗V † = P⃗ ′ with the desired property.
We will now find a CNOT circuit W such that WP⃗ ′W † = ±Zj . The

desired unitary is then U := W ◦V , potentially composed with an additional
Xj in order to get rid of the unwanted minus sign in ±Zj . We will build W

step by step as follows.
By assumption P⃗ is non-trivial, and hence so is P⃗ ′, which means at least

one P ′
k is non-trivial. If P ′

j = I, then we add a CNOT from j to k to W

(meaning the control is on j and the target is on k). This ensures that there
is a Z on qubit j. Now it remains to ‘clean up’ the Z’s on the other qubits.
To do this, for every P ′

k where k ̸= j and P ′
k = Z we apply a CNOT from k

to j.

Example 6.1.5 Suppose we have P⃗ = −Y XIZ and that we want to find
a U that maps it to Z3. First conjugating P⃗ with the right single-qubit
Cliffords gives us just Z’s and identities and removes the −1 phase:

π

π

π π

i
−π

2
π
2

−1
π π π

π

=

(π)

(cc)

(sp) π (6.3)

Then first doing a CNOT from the third qubit to get a Z there, and then
adding CNOTs to it to get rid of the Z’s on the other qubits we get the
following:

π

π

π π

i
−π

2
π
2

−1
π π

π=

(6.3)

(π)

(sp)

(id)

Since any Clifford isometry can be written as a Clifford unitary with some
ancilla qubits, the ‘Pauli pushing’ property holds for isometries as well.

Proposition 6.1.6 For any Clifford isometry V : (C2)⊗k → (C2)⊗n and
any Pauli string P⃗ , there exists a Pauli string Q⃗ such that:

222 Stabiliser theory

..
.

V

..
.

P⃗ ..
.

..
.

V

..
.

= Q⃗..
.

Proof By Exercise 5.14, for any Clifford isometry V , there exists a Clifford
unitary U such that:

..
.

V ..
.

U

..
.

..
.

..
.

∝

..
.

Since P⃗⊗I⊗. . .⊗I is a Pauli string on n qubits, we can use Proposition 6.1.3
to push it through U :

..
.

V ..
...
.

..
.

∝
P⃗ ..

.

P⃗ ..
.

= ..
...
.

Q⃗..
.

..
.

V

..
.

∝ Q⃗..
.

U

..
.

..
.

U

..
.

..
.

6.1.2 Stabiliser subspaces

We already noted that, if unitaries A and B both stabilise the same state |ψ⟩,
then their product AB also stabilises that state, as AB|ψ⟩ = A|ψ⟩ = |ψ⟩.
Hence, the set of stabilisers of a given state forms a group.

In the other direction, if two states |ψ⟩ and |ϕ⟩ are stabilised by a map A,
then:

A(λ|ψ⟩ + µ|ϕ⟩) = λA|ψ⟩ + µA|ϕ⟩ = λ|ψ⟩ + µ|ϕ⟩.

This means the set of states stabilised by a group of linear operators always
forms a subspace of (C2)⊗n.

Definition 6.1.7 For a group S ⊆ Pn, we define the stabiliser subspace
of S as:

Stab(S) := { |ψ⟩ | P⃗ |ψ⟩ = |ψ⟩,∀P⃗ ∈ S}

If Stab(S) ̸= {0}, we call S a stabiliser group.

Note that in our definition of stabiliser group, we have explicitly ruled
out those groups which only stabilise the zero state |ψ⟩ = 0. This is very
convenient because it immediately puts several constraints on which sub-
groups form stabiliser groups. Most importantly, stabiliser groups are always
commutative (a.k.a. Abelian), meaning all of their elements commute.

6.1 Paulis and stabilisers 223

Proposition 6.1.8 If a subgroup S ⊆ Pn is a stabiliser subgroup, then:

1. −I /∈ S,
2. P⃗ 2 = I for all P⃗ ∈ S, and
3. S is commutative.

Proof If −I ∈ S, then all |ψ⟩ ∈ Stab(S) satisfy |ψ⟩ = −I|ψ⟩ = −|ψ⟩, so
that Stab(S) = {0}. If, for some P⃗ , we have P⃗ 2 ≠ I, then by Exercise 6.2,
P⃗ 2 = −I. But then −I ∈ S, so again Stab(S) = {0}.

Finally, since every element in S is self-adjoint (or equivalently for unitaries,
self-adjoint), S must be commutative: P⃗ Q⃗ = P⃗ †Q⃗† = (Q⃗P⃗)† = Q⃗P⃗ .

Remark 6.1.9 From this proof we in fact see that for any subgroup
S ⊆ Pn, as long as −I /∈ S, that then S is commutative and it only contains
self-adjoint Pauli strings.

Thus we have shown that, in order to stabilise a non-zero subspace, a
subgroup of the Pauli group must satisfy several conditions. But are those
conditions also sufficient? That is, does any subgroup of the Pauli group
satisfying the conditions in Proposition 6.1.8, or by Remark 6.1.9 just the
property that −I /∈ S, form a stabiliser group?

As it turns out, the answer is yes, and we can even figure out the dimension
of the subspace stabilised by such a group. The key point to figuring this
out has to do with number of independent generators of S.

Definition 6.1.10 We say a collection of Paulis P⃗1, . . . , P⃗k ∈ Pn is inde-
pendent when none of the Paulis can be written as a product of some of
the others (even up to global phase), or equivalently, when the Paulis can’t
be multiplied together to give ikI for any k, when we only allow each Pauli
to appear once in the product.

Exercise 6.3 Let S ⊆ Pn be a group satisfying the properties of Proposi-
tion 6.1.8.

a) Show that there exists a set of independent Paulis P⃗1, . . . , P⃗k that gener-
ates S.

b) Show that any Q⃗ ∈ S can be written uniquely as some product of these
Paulis (taking the convention that the “empty product” is equal to I ∈ S).

c) Show that such a product gives Q⃗ exactly, and not up to phase.

Hence, we can describe a stabiliser group by a set of independent Paulis
that generate it. While n-qubit stabiliser groups may in general be very large,
we will see that we can work with them efficiently by representing them as
sets of generators.

224 Stabiliser theory

6.2 Stabiliser measurements
In Section 2.2.4, we defined measurements as sets of projectors that sum up
to the identity:

M = {M1, . . . ,Mk}
∑
i

Mi = I

We also noted in that section that a self-adjoint operator O always defines
such a set of projections, on to each of the subspaces associated with each
distinct eigenvalue of O. Any self-adjoint Pauli string P⃗ is, in particular, a
self-adjoint operator, so we can find such a set of projectors. In fact, these
projectors always take a particularly simple form.

Definition 6.2.1 For a self-adjoint Pauli string, we define the associated
Pauli projectors as follows:

Π(0)
P⃗

= 1
2(I + P⃗) Π(1)

P⃗
= 1

2(I − P⃗)

Proposition 6.2.2 The maps Π(k)
P⃗

for k = 0, 1 are projectors and further-
more:

P⃗ |ψ⟩ = (−1)k|ψ⟩ ⇐⇒ Π(k)
P⃗

|ψ⟩ = |ψ⟩ (6.4)

Proof We can show that (Π(k)
P⃗

)† = Π(k)
P⃗

and Π(k)
P⃗

Π(k)
P⃗

= Π(k)
P⃗

by concrete
calculation, using the fact that P⃗ † = P⃗ and P⃗ 2 = I. For (6.4), first assume
P⃗ |ψ⟩ = (−1)k|ψ⟩ for k = 0, 1. Then:

Π(k)
P⃗

|ψ⟩ = 1
2(I + (−1)kP⃗)|ψ⟩ = 1

2(|ψ⟩ + (−1)2k|ψ⟩) = |ψ⟩

Conversely, if Π(k)
P⃗

|ψ⟩ = |ψ⟩, then 1
2(I+ (−1)kP⃗)|ψ⟩ = |ψ⟩. Multiplying both

sides by 2 gives:
|ψ⟩ + (−1)kP⃗ |ψ⟩ = 2|ψ⟩

Subtracting a |ψ⟩ from both sides gives (−1)kP⃗ |ψ⟩ = |ψ⟩. Multiplying both
sides by (−1)k then gives P⃗ |ψ⟩ = (−1)k|ψ⟩.

In the next exercise, you will prove some facts about Pauli projectors that
will come in handy later.

Exercise 6.4 For P⃗ , Q⃗ self-adjoint Pauli strings, show that Pauli projectors
satisfy the following properties:

a) Π(0)
P⃗

+ Π(1)
P⃗

= I and Π(0)
P⃗

− Π(1)
P⃗

= P⃗ .
b) UΠ(k)

P⃗
U † = Π(k)

UP⃗U† for any unitary U .

6.2 Stabiliser measurements 225

c) P⃗ Q⃗ = Q⃗P⃗ =⇒ Π(j)
P⃗

Π(k)
Q⃗

= Π(k)
Q⃗

Π(j)
P⃗

.

d) Π(0)
P⃗

Π(0)
Q⃗

= Π(0)
P⃗

Π(0)
P⃗ Q⃗

.

e) Π(0)
I = I and Π(1)

I = 0.

In this section, we will derive a useful graphical representation for the
projectors Π(0)

P⃗
and Π(1)

P⃗
. This representation will help us prove the Funda-

mental Theorem of Stabiliser Theory in the next section, as well as leading
naturally to Pauli exponentials, which we’ll introduce in Chapter 7.

Rather than directly building the Pauli projectors Π(k)
P⃗

, we will construct a
“controlled” version of the projector, namely a ZX-diagram with the property
that, when we plug in the computational basis effect ⟨k| to the first output,
we’ll be left with the projector Π(k)

P⃗
. This will give us a handy way to build

up projectors for arbitrary Pauli strings from the basic Pauli projectors for
X, Y , and Z.

We’ll start with Z. The Pauli projectors are simply the projections onto
the two Z eigenstates, i.e. the computational basis elements:

Π(0)
Z = 1

2(I + Z) =
(

1 0
0 0

)
= |0⟩⟨0| Π(1)

Z = 1
2(I − Z) =

(
0 0
0 1

)
= |1⟩⟨1|

So, we want to find a “box” that satisfies this property:

Z ∝ Z ∝ π π

π

Thanks to the copy law, a single Z-spider will do the job:

∝ ∝ π π

π

More generally, we want to construct a new kind of generator, called a
Pauli box that produces the projector Π(k)

P⃗
when we plug in a computational

basis effect ⟨k|.
We can get the other two basic Pauli boxes, corresponding to projectors

Π(k)
X and Π(k)

Y , by applying unitaries to send the Z eigenstates to X and Y

eigenstates, respectively. To do that, let’s ZX-ify the Bloch sphere picture

226 Stabiliser theory

from (6.1).

π

π

-π
2

π
2

OR

π

π

-π
2

π
2

(6.5)

Note that, while there is one obvious choice for the Z and X eigenstates,
using spiders of the opposite colours, we actually have two choices for Y :
either using Z phases or (negative) X phases. For our purposes, it will be
more convenient to use the X phases, so:

|+i⟩⟨+i| ∝ π
2

-π
2 |−i⟩⟨−i| ∝ π

2
-π
2

Recall that because the ⟨+i| is defined to be the adjoint of |+i⟩, we need to
flip the phase to represent the ⟨+i|. By conjugating the Z-spider with H or
X(−π

2), we obtain Pauli boxes for X and Y . That is, for P ∈ {X,Y, Z}, we
have:

P = UU† where U ∈ { , , -π
2 } (6.6)

For building up generic Pauli strings P⃗ , we should also have a trivial Pauli
box corresponding to Π(k)

I . We can obtain this simply as |0⟩⊗I. In summary,
the four basic Pauli boxes are given as:

I X:= :=

Y
π
2:= -π

2 Z :=

1√
2

Exercise 6.5 Show that:

1√
2 ·

P

kπ

= Π(k)
P

for P ∈ {I,X, Y, Z}.

Curiously, we can also use Pauli boxes to ‘switch on’ the Pauli unitary by
plugging in basis elements of the other colour.

Exercise 6.6 Show that:

P

kπ

=

I if k = 0
P otherwise

6.2 Stabiliser measurements 227

for P ∈ {I,X, Y, Z}.

There is a good reason for this, which we’ll discuss in more detail when
we introduce Pauli exponentials in Chapter 7. For now, we’ll see that this
gives us everything we need to construct the projectors Π(k)

P⃗
for longer Pauli

strings.

Definition 6.2.3 For a self-inverse Pauli string P⃗ = P1 ⊗ . . . ⊗ Pn with
Pi ∈ {I,X, Y, Z}, the associated Pauli box is defined as follows:

P1

Pn

..
.

P2P⃗..
.

..
. :=

√
2
n−1

Using this definition, we can prove the generalisation of the equation in
Exercise 6.5 to any self-adjoint Pauli string P⃗ .

Proposition 6.2.4 Pauli projectors can be defined by plugging (nor-
malised) Z-basis effects into Pauli boxes as follows:

Π(k)
P⃗

:=
P⃗..

.

..
.

kπ
1√
2

Proof This follows from decomposing the X spider as a number of Z spiders
(i.e. X basis elements):

kπ = 1√
2

(
+ (−1)k π

)
(6.7)

Applying (6.7), we have:

P1

Pn

..
.

P2P⃗..
.

..
. =

√
2
n−2

kπ
kπ1√

2

P1

Pn

..
.

P2=
√
2
n−3

P1

Pn

..
.

P2

π

+(−1)k

228 Stabiliser theory

=

P1

Pn

..
.

P2
√
2
−2 +(−1)k

P1

Pn

..
.

P2

π

π

π

Then, by Exercise (6.6), the diagram above equals 1
2(I+(−1)kP⃗) = Π(k)

P⃗
.

By unrolling the definition of the Pauli box, we can see that, for any Pauli
string P⃗ = P1 ⊗ . . .⊗ Pn with Pi ∈ {X,Y, Z}, we have:

P⃗..
.

..
.

kπ

∝

..
.

kπ

U1

U2

Un

U†
1

U†
2

U†
n

where Ui =

if Pi = X

-π
2 if Pi = Y

if Pi = Z

(6.8)
The general case can be obtained by additionally representing any Pi = I

by simply not connecting to the i-th qubit, as we will see in the following
example.

Example 6.2.5 The single-qubit and two-qubit Pauli projectors corre-
spond to some simple ZX-diagrams. In particular, for a single qubit it always
disconnects:

Z

kπ

∝
kπ

∝ kπ

(sc)

kπΠ
(k)
Z

∝ (6.9)

While Π(0)
P⃗

for P⃗ = X ⊗X (abbreviated XX) becomes a 2-to-2 X spider:

X

X

= =

(id)

(sp)

=

(cc)

∝Π
(0)
XX

(6.10)

Note that for a Pauli string P⃗ , if some Pi = I, then the projector does not

6.2 Stabiliser measurements 229

interact with the qubit i:

I

I

kπ

P∝ P∝ P=

(sp)

Π
(k)
IPI

kπ kπ

(6.11)

Exercise 6.7 Show that the Z ⊗ . . .⊗ Z and X ⊗ . . .⊗X measurements:

MZ...Z := {Π(k)
Z...Z}k MX...X := {Π(k)

X...X}k
are defined by the following Pauli projectors:

Π(k)
Z...Z ∝

..
.

kπ

Π(k)
X...X ∝

..
.

kπ

We conclude this section by noting that Pauli boxes are an example of
a more general object, which we call a measure box, that can be used to
represent a generic 2-outcome measurement.

Definition 6.2.6 A map M : H → C2 ⊗ H is called a measure box when
it satisfies the following identities:

M = M
M

= M M =
M

()†

(6.12)

Exercise 6.8 Let M : H → C2 ⊗ H be a measure box.

a) Show that the following is a projector for k ∈ {0, 1}:

Mk := 1√
2 · M

kπ

b) Show that M0 +M1 = I.
c) Show that each of the 4 Pauli boxes:

I X Y Z

are measure boxes.
d) Let N : K → C2 ⊗ K be a second measure box. Show that M and N can

be combined as follows to form a new measure box satisfying (6.12):

M

N

H H

K K

√
2 ·

230 Stabiliser theory

and hence that Pauli boxes for an arbitrary self-adjoint Pauli string P⃗
are measure boxes.

[TODO: decide if we want to label wires or use multiple wires w ellipses
(or neither) above.]

Since we’ll use it later, we’ll write down the conclusion of the above exercise
explicitly in the following proposition.

Proposition 6.2.7 For any self-adjoint Pauli P⃗ , the associated Pauli box
satisfies the following equations:

.

P⃗

..
.

..
. P⃗

..
. P⃗

..
.

..
.=

..
.P⃗

..
.

..
. =

(6.13)

Exercise 6.9 Show diagrammatically that Proposition 6.2.7 implies that
Pauli projectors on to different measurement outcomes are orthogonal:

P⃗

..
.

..
.

jπ

P⃗

kπ

..
.

1√
2

=
P⃗

..
.

jπ

..
.δjk

1√
2

1√
2

6.2.1 The Fundamental Theorem of Stabiliser Theory

Any self-adjoint Pauli string (except the trivial one I) chops a space into
two orthogonal parts: the +1 eigenspace, a.k.a. the stabiliser subspace, and
the −1 eigenspace, a.k.a. the “anti-stabiliser” subspace. It turns out that
these spaces have equal dimension, so we can see a single Pauli string P⃗

as chopping n-qubit space in half. Hence, the image of the projector Π(0)
P⃗

(or Π(1)
P⃗

) is 2n/2 = 2n−1 dimensional.

We can see this explicitly by splitting the projector Π(0)
P⃗

, i.e. finding an

6.2 Stabiliser measurements 231

isometry V : (C2)⊗(n−1) → (C2)⊗n such that:

P⃗..
.

..
. =

V †..
.

..
.

V..
.

Proposition 6.2.8 Let P⃗ be a non-trivial self-inverse Pauli string P⃗ . Then
there exists a Clifford unitary U such that V = U(I ⊗ · · · ⊗ I ⊗ |0⟩) splits
Π(0)

(−1)kP⃗
.

Proof By Proposition 6.1.4, there exists a Clifford unitary U such that
U †(−1)kP⃗U = Zn. Then, by Exercise 6.4, we have U †Π(0)

(−1)kP⃗
U = Π(0)

U†(−1)kP⃗U
=

Π(0)
Zn

. As V = U(I ⊗ · · · ⊗ I ⊗ |0⟩) is then a normalised state followed by a
unitary, it is an isometry. We can show directly that it splits Π(0)

(−1)kP⃗
:

V †
...

...V
= ...

... =
U

...
...U† ZnUU†

1
2

= Π(0)
(−1)kP⃗

As this proposition shows that a potential minus sign on the Pauli can be
incorporate into the splitting isometry, we will just ignore these minus signs
in this section and without loss of generality assume that every Pauli string
has a constant of +1.

If we split Π(0)
P⃗

as V V †, then Π(0)
P⃗
V = V V †V = V . Hence, for any state

|ϕ⟩ on n− 1 qubits we have Π(0)
P⃗

(V |ϕ⟩) = V |ϕ⟩, so that V |ϕ⟩ is stabilised by
P⃗ for any choice of |ϕ⟩. Conversely, when Π(0)

P⃗
|ψ⟩ = |ψ⟩ then |ψ⟩ = V (V †|ψ⟩)

so that taking |ϕ⟩ = V †|ψ⟩ shows that any stabilised state is of this form. We
then see that Stab(⟨P⃗ ⟩) = {V |ϕ⟩ | |ϕ⟩ ∈ C2n−1} where we have written ⟨P⃗ ⟩
for the stabiliser group generated by P⃗ . We hence have shown the following.

Proposition 6.2.9 Let P⃗ ∈ Pn be a non-trivial self-inverse Pauli string.
Then dim Stab(⟨P⃗ ⟩) = 2n−1.

Now we claim that this ‘splitting’ of the 2n-dimensional Hilbert space into

232 Stabiliser theory

2n−1-dimensional parts continues on if we have an additional independent
commuting Pauli. In particular, if we have two independent commuting self-
inverse Paulis P⃗ and Q⃗, then we claim that dim Stab(⟨P⃗ , Q⃗⟩) = 2n−2. This
follows from the next lemma.

Lemma 6.2.10 Let P⃗ , Q⃗ ∈ Pn be commuting self-inverse Pauli strings.
Then there exists a Clifford unitary U and Pauli string Q⃗′ ∈ Pn−1 such that:

..
.

..
. ∝ ..
.

..
.

U† UP⃗ Q⃗
Q⃗′

Proof The U from Proposition 6.2.8 is such that P⃗ = UZnU
†, and hence:

Π(0)
Q⃗

Π(0)
P⃗

= UU †Π(0)
Q⃗
UU †Π(0)

P⃗
UU † = UΠ(0)

Q⃗′ Π(0)
Zn
U †, (6.14)

where Q′ = U †Q⃗U . Now, as Q⃗ and P⃗ commute, the Pauli strings that
result from conjugating by the same unitary will also commute. Hence, Q⃗′

commutes with Zn. This can only be the case when Q′
n = I or Q′

n = Z. In
both cases we then have:

..
.

..
. ∝ ..
.

..
.

Q⃗′ Q⃗′ (6.15)

Note that we still write Q⃗′ to denote Q⃗′ where the nth Pauli is removed to
get a string of length n− 1. We then calculate:

..
.

..
.

∝

..
.

..
.

U† U

(6.14)

(6.9)

..
.

..
.

U† U∝
(6.15)

P⃗ Q⃗ Q⃗′ Q⃗′

If Q⃗ is independent from P⃗ , then the Q⃗′ we get here in this lemma is
non-trivial, so that we can then also split Π(0)

Q⃗′ using Proposition 6.2.8.
We then end up with n − 2 wires in the middle, showing that indeed
dim Stab(⟨P⃗ , Q⃗⟩) = 2n−2.

We can now iterate this procedure, so that if we have k independent com-
muting Pauli strings, that the states they mutually stabilise has dimension

6.2 Stabiliser measurements 233

2n−k. In fact, this result is so crucial to this chapter, that we will give it a
grand name: the Fundamental Theorem of Stabiliser Theory.

Theorem 6.2.11 Let P⃗1, . . . , P⃗k be independent commuting self-adjoint
Pauli strings on n qubits. Then there exists a Clifford unitary U such that:

..
.

U

..
.

n− k

k

U†∝
..
.

..
.

· · ·

· · ·

..
.

..
.

..
.

..
.

..
.

..
.

P⃗1 P⃗k
(6.16)

Consequently, letting S denote the group generated by the P⃗j , we see that
dim Stab(S) = 2n−k.

Proof We prove this by induction on k. The case of k = 1 is just Proposi-
tion 6.2.8. So suppose we know Eq. (6.16) holds when we have k−1 indepen-
dent generators. Then let U1 be a Clifford unitary such that U1P⃗1U

†
1 = Zn.

We can then use an argument similar to that of Lemma 6.2.10 to write:

..
.

..
. ∝ ..
.

..
.

U†
1 U1

· · · · · ·
P⃗1 P⃗2 P⃗k

Q⃗2 Q⃗k

Here Q⃗j = U1P⃗jU
†
1 . In order to use the induction hypothesis on Q⃗2, . . . , Q⃗k

we need to show that they are still commuting and independent when we
are ignoring the last qubit. First note that because we conjugated them all
with the same unitary U1 that Zn, Q⃗2, . . . , Q⃗k are all still commuting and
independent (not ignoring the n-th qubit). As a result each of the Q⃗j has
either an I or Z in the nth position. This means that they all commute on
the n-th position, and hence the Q⃗j must also be commuting when we ignore
this last qubit. Additionally, no product of Q⃗2, . . . , Q⃗k can result in Zn due
to the them being independent of Zn, so that no product of the Q⃗j can
result in I⃗ when we ignore the last qubit. Hence, now ignoring the nth qubit,
the Q⃗j are independent and commuting, so that we can use the induction
hypothesis. We then simply combine the resulting unitary U with U1, and
we are done.

[TODO: Include an example of this procedure in action?]
There is a bunch of important results that follow from this theorem. First,

234 Stabiliser theory

it allows us to bound how many independent commuting Pauli strings there
can be.

Corollary 6.2.12 If P⃗1, . . . , P⃗k is a set of commuting independent Pauli
strings on n qubits, then k ≤ n.

Proof Suppose k is at least n+1. Then applying the proof of Theorem 6.2.11
to the first n + 1 generators, we end up in the following situation once we
have repeated the procedure n− 1 times:

..
.

..
. ∝

..
.

..
. U† U· · ·P⃗1 P⃗n P⃗n+1

Qn Qn+1

..
.

..
.

We see that we end up with single-qubit Pauli projectors Π(0)
Qn

and Π(0)
Qn+1

that must be commuting, but also independent. But such single-qubit Paulis
don’t exist, so we have reached a contradiction.

This corollary allows us to answer the question we raised before: any
subgroup of the Paulis satisfying the properties of Proposition 6.1.8 does in
fact stabilise at least some non-zero state.

Corollary 6.2.13 Let S ⊆ Pn be a subgroup satisfying the properties of
Proposition 6.1.8. That is, it is commutative, consists only of self-adjoint
Pauli strings, and does not contain −I. Then S stabilises at least one non-
zero state, and hence is a stabiliser group.

Proof By Exercise 6.3, S is generated by independent Paulis P⃗1, . . . , P⃗k.
Since S is commutative, all these P⃗j must also commute. Hence, the previous
corollary applies and we must have k ≤ n. Then Theorem 6.2.11 tells us
that dim Stab(S) = 2n−k ≥ 20 = 1, so that there is at least a 1-dimensional
space of states that are stabilised by S.

In fact, recall from Remark 6.1.9 that as long as −I /∈ S, the other
properties of Proposition 6.1.8 are also satisfied, so any subgroup of Pn that
does not contain −I stabilises some non-zero state! We then also get the
following corollary.

Corollary 6.2.14 Any set of commuting independent self-adjoint Pauli
strings generates a stabiliser group.

Proof By definition of independence there is no non-trivial product of in-
dependent Pauli strings that produces −I, so that −I is not in the group.

6.3 Stabiliser states and the Clifford group 235

Hence, the previous corollary applies so that we see that it is a stabiliser
group.

Some other major corollaries we will study in detail in the next section.

Exercise* 6.10 Generalise Equation (6.16) to account for other Pauli
measurement outcomes. That is, show that:

..
.

U

..
.

n−m

m

U†∝
..
.

..
.

· · ·

· · ·
..
.

..
.

..
.

..
.

..
.

..
.

P⃗1

s1π

P⃗m

smπ

s1π s1π

smπ smπ

..
.

for any s⃗ = (s1, . . . , sm).

When Paulis commute, their projections cut down the space of states
they jointly stabilise. However, when they do not commute, then the second
projection can be seen as applying a unitary to the space.

Exercise 6.11 Let P⃗ and Q⃗ be two self-adjoint Pauli strings that anti-
commute.

1. Show that U = 1√
2(P⃗ + Q⃗) is unitary and self-adjoint and that UQ⃗ = P⃗ .

2. Show that U is Clifford by proving that UR⃗U † is Pauli for any Pauli
string R⃗. Hint: Make a case distinction on whether R⃗ (anti-)commutes
with P⃗ and or Q⃗.

3. Show that Π(0)
P⃗

Π(0)
Q⃗

= 1√
2UΠ(0)

Q⃗
= 1√

2Π(0)
P⃗
U .

4. Show that if |ψ⟩ is an eigenstate of Q⃗, that then the measurement
{Π(k)

P⃗
} has both outcomes occur with probability 1

2 . Hint: Recall that
the probability is given by ⟨ψ|Π(0)

P⃗
|ψ⟩. Now use the fact that |ψ⟩ = Π(0)

Q⃗
|ψ⟩

for both |ψ⟩ and ⟨ψ|.

6.3 Stabiliser states and the Clifford group
In this section we will look at states that are uniquely determined by the
Pauli strings that stabilise them. That such states exist follows from Theo-
rem 6.2.11, as we will show next. We will then look at the unitaries that map
Pauli strings into Pauli strings. These unitaries form the Clifford group, and
as the name suggests these are related to the Clifford unitaries we studied
in Chapter 5 (in fact, they are the same thing).

236 Stabiliser theory

6.3.1 Maximal stabiliser groups

Theorem 6.2.11 shows that if the number of generators of S ⊆ Pn is k, that
its stabiliser subspace has dimension 2n−k. This means that if the number of
generators is exactly n, that its isometry V goes from 0 wires to n wires. But
then V is just an n-qubit state! So let’s write V = |ψ⟩. Then the projector
onto the stabiliser subspace of S is |ψ⟩⟨ψ|. In other words: the only normalised
state (up to global phase) that is stabilised by S is |ψ⟩.

Corollary 6.3.1 Let S ⊆ Pn be a stabiliser group with n generators. Then
it stabilises a unique non-zero state (up to scalar).

From Theorem 6.2.11 it also turns out that no stabiliser group can have
more than n generators. Before we prove this it will be helpful to define a
new class of stabiliser group.

Definition 6.3.2 We say a stabiliser group S is maximal when it is
not strictly included in another stabiliser group. Equivalently, for any self-
inverse Q⃗ ̸∈ S that commutes with all of S there must be a P⃗ ∈ S such
that Q⃗P⃗ = −I.

Proposition 6.3.3 Any maximal stabiliser group has exactly n generators.

Proof Suppose S is a stabiliser group with k < n generators. We will show
that it is not maximal, which will prove our claim. Note that the right-
hand side of Eq. (6.16) says that we can write the projection to Stab(S)
as UΠ(0)

Zn−k+1
· · · Π(an)

Zn
U †, and hence that we can take P⃗j := UZn−jU

† for
j = 1, . . . , k to be a set of generators for S. Now, let Q⃗ be any non-trivial
Pauli string on n − k qubits. Then Q⃗′ = Q⃗ ⊗ I2k commutes with all the
Zn−k+1, . . . , Zn, and is also independent of this set. Hence UQ⃗′U † is also
independent from all the UZn−jU

† = P⃗ j , and also still commutes with them.
Hence, the stabiliser group generated by Q⃗′, P⃗ 1, . . . , P⃗ k strictly includes S,
so that S is not maximal.

Corollary 6.3.4 The following are equivalent for a stabiliser group S on
n qubits.

• It is maximal.
• It has n generators.
• It stabilises a unique non-zero state (up to scalar).

6.3 Stabiliser states and the Clifford group 237

6.3.2 Stabiliser states

A maximal stabiliser group stabilises a unique state. Such states turn out to
be very special, so we will give them a special name.

Definition 6.3.5 We say a non-zero state is a stabiliser state if there is
a maximal stabiliser group that stabilises it.

It might seem hard to determine when a state is stabilised by a maximal
stabiliser group. Luckily, Corollary 6.3.4 offers an easier way to figure out
when a state is stabiliser.

Proposition 6.3.6 Let |ψ⟩ be a non-zero n-qubit state. Then |ψ⟩ is a
stabiliser state if and only if it is stabilised by n independent Pauli strings.

Proof Suppose |ψ⟩ is a stabiliser state, so that it is stabilised by a maximal
stabiliser group S. Then Corollary 6.3.4 shows that S has n generators.
These generators are independent Pauli strings that stabilise |ψ⟩. Conversely,
suppose |ψ⟩ is stabilised by n independent Pauli strings. Then these Pauli
strings generate a stabiliser group, that again by Corollary 6.3.4 must be a
maximal group, so that |ψ⟩ is indeed a stabiliser state.

Example 6.3.7 Let |Ψ⟩ := 1√
2(|00⟩ + |11⟩) be the maximally entangled

Bell state. This state is stabilised by ZZ and XX. Indeed

(Z ⊗ Z)(|00⟩ + |11⟩) = (Z|0⟩) ⊗ (Z|0⟩) + (Z|1⟩) ⊗ (Z|1⟩)
= |0⟩ ⊗ |0⟩ + (−|1⟩) ⊗ (−|1⟩)
= |00⟩ + |11⟩,

and (X⊗X)(|00⟩+|11⟩) = |11⟩+|00⟩ = |00⟩+|11⟩. As |Ψ⟩ is a two-qubit state
that is stabilised by two independent Pauli strings, it is hence a stabiliser
state.

Example 6.3.8 Any graph state is a stabiliser state: recall that in a
graph state |G⟩ we have a one-to-one correspondence between qubits and
the vertices of G. We claim that the Pauli string P⃗ v := Xv

∏
w∈N(v) Zw is a

stabiliser of |G⟩, where N(v) denotes the neighbourhood of the vertex v,
which is the set of vertices of G that are connected to v. As a Pauli string
this stabiliser has an X on the qubit corresponding to v and a Z on every
qubit that is connected to X. We can easily check this is a stabiliser of |G⟩
by writing the graph state as a ZX-diagram, and pushing the X into the
graph state using (π) and (cc):

238 Stabiliser theory

=

π π

=
π

π

π

=

π

π

π

Exercise 6.12 Suppose |ψ⟩ is a stabiliser state, which is stabilised by
maximal stabiliser groups S and S ′. Prove that S = S ′.

Recall from Chapter 5 that we defined a Clifford state to be any state of
the form U |0 · · · 0⟩ for some Clifford unitary U , and that these correspond
to Clifford ZX-diagrams with no inputs. Observe that the isometries of
Theorem 6.2.11 that split the projector onto a stabiliser subspace are Clifford
diagrams. In particular, for a maximal stabiliser group, the isometry is a
state, and hence is a Clifford state. We then have the following.

Proposition 6.3.9 Any stabiliser state is a Clifford state (up to potentially
some non-zero scalar). That is, up to a scalar, we can represent any stabiliser
state by a Clifford ZX-diagram.

The converse is also true: any Clifford state is a stabiliser state. Recall
from Theorem 5.3.8 that we can rewrite any Clifford state to a graph state
with local Cliffords. Example 6.3.8 shows that all graph states are stabiliser
states, so to prove that any Clifford state is a stabiliser state it remains to
show that (local) Cliffords send stabiliser states to stabiliser states. This
turns out to follow from the property of Clifford unitaries we proved in
Section 6.1.1, namely that conjugating a Pauli string by a Clifford results in
another Pauli string.

Proposition 6.3.10 Let |ψ⟩ be a stabiliser state and let U be a Clifford
unitary. Then U |ψ⟩ is also a stabiliser state.

Proof Let |ψ⟩ be an n-qubit stabiliser state and let P⃗1, . . . P⃗n be a maximal
set of independent stabilisers of |ψ⟩. Then we claim that the Q⃗k := UP⃗kU

†

are independent stabilisers of U |ψ⟩ so that U |ψ⟩ is indeed a stabiliser state.
First note that the Q⃗k are all Pauli strings because of Proposition 6.1.3.
Second, they are indeed stabilisers of U |ψ⟩ as Q⃗kU |ψ⟩ = UP⃗kU

†U |ψ⟩ =
UP⃗k|ψ⟩ = U |ψ⟩. Finally, note that they are independent since if we had
I =

∏
kj
Q⃗kj

then I = U †U =
∏
kj
U †Q⃗kj

U =
∏
kj
P⃗kj

, which contradicts the
independence of the Pk.

So stabiliser states and Clifford states are exactly the same thing!

Proposition 6.3.11 Any Clifford state is a stabiliser state, and vice versa
any stabiliser state is proportional to a Clifford state.

6.3 Stabiliser states and the Clifford group 239

6.3.3 The Clifford group

The property we used to prove Proposition 6.3.10 above was that conjuga-
tions of Pauli strings by Cliffords produces Pauli strings. This is in fact quite
a useful property that we have used many times throughout this chapter
and the previous, so it is worthwhile to try and understand this a bit better.
In particular, can we find more unitaries than just the Cliffords that have
this property?

For our next definition we need to know a little more group theory. Con-
sider a group G with a subgroup H. An element g ∈ G normalises H when
g−1hg ∈ H for every h. For instance, every h′ ∈ H normalises H, and if G
is abelian, then every element of G normalises H. We write NG(H) for the
set of elements of G that normalises H.

Exercise 6.13 Show that NG(H) is a subgroup of G and that H ⊆ NG(H).

We can now define the Clifford group.

Definition 6.3.12 We say an n-qubit unitary U is Pauli normalising
when it normalises Pn. That is, when for every P⃗ ∈ Pn we have UP⃗U † ∈ Pn.
We write N(Pn) for the group of Pauli normalising unitaries.

The group of Pauli-normalising unitaries is usually just called the Clifford
group. However, as we already defined the term ‘Clifford unitaries’, we will
not use the term Clifford group for now. Rest assured though that there is
in fact a reason for the conflict in the naming scheme, as it turns out that
Clifford unitaries and Pauli-normalising unitaries are the exact same thing.
One direction of this equivalence we already have:

Example 6.3.13 Proposition 6.1.3 shows that every Clifford unitary is
Pauli normalising.

The remainder of this section will work towards proving the converse.

Exercise 6.14 Show that the conjugation of a self-adjoint Pauli string by
a Pauli-normalising unitary is also self-adjoint.

The Z(π2) phase gate is Clifford and hence Pauli normalising. What other
Z phase gates are Pauli normalising? Consider the phase gate Z(α) =
diag(1, eiα). Conjugating Z by this gate of course preserves Z as they com-
mute, so it remains to check the case for X:

απ−α ∝ απ α = π 2α

(π) (sp)

The only way for this to be equal to a Pauli is for the phase 2α to be equal

240 Stabiliser theory

to 0 or π. Hence, we get α = 0 (the identity), α = π (the Z Pauli), α = π
2

(the S gate), or α = −π
2 (the adjoint of S). There are no other Z phase

gates that are Clifford! By symmetry (i.e. colour-changing the spiders) the
same situation of course also holds for X phase gates: only X(α) gates with
α a multiple of π

2 are Pauli normalising. This seems to point towards ZX-
diagrams only being Pauli normalising if all the phases involved are multiples
of π

2 , and this is in fact exactly right.

Definition 6.3.14 Let U be an n-qubit unitary. We denote by |U⟩ the
2n-qubit Choi state that we get by applying U to one side of n nested cups
(i.e. Bell states):

U
..
.

..
.

Lemma 6.3.15 Let U be a Pauli-normalising unitary. Then |U⟩ is a sta-
biliser state.

Proof Let P⃗k be the Pauli string such that ZkU = UP⃗k and similarly let
Q⃗k be such that XkU = UQ⃗k. Then we claim that P⃗ Tk ⊗ Zk and Q⃗Tk ⊗ Xk

are stabilisers for |U⟩. Here P⃗ Tk denotes the componentwise transpose of the
Paulis in P⃗k, such that ZT = Z, XT = X, and Y T = −Y . That these are
stabilisers is best demonstrated diagrammatically:

U

..
.

..
. P⃗T

k

π

=

U

..
.

..
.

π
P⃗k

=

U

..
.

..
.

ππ

=

U

..
.

..
.

(sp)

(id)

Here, the Z is taken to appear on the (n+k)th qubit. The same computation
works for Q⃗Tk ⊗ Xk. We then have 2n stabilisers for a 2n-qubit state. It is
easily seen that these are all independent as they all have a unique non-I

6.3 Stabiliser states and the Clifford group 241

component on the bottom n qubits. Hence, by Proposition 6.3.6, |U⟩ is a
stabiliser state.

Proposition 6.3.16 A Pauli-normalising unitary is Clifford.

Proof Let U be Pauli normalising. Then |U⟩ is a stabiliser state, so that
by Proposition 6.3.9 we can represent |U⟩ by a Clifford ZX-diagram. Then
by bending the top wires in |U⟩ back to be inputs, we can also represent
U as a Clifford ZX-diagram. Proposition 5.3.14 then shows that U must be
equivalent to a circuit of CNOT, Hadamard and S gates.

6.3.4 Putting it all together

We have now seen a lot of different perspectives, definitions and equivalences
between them, so let’s summarise what we have learned.

Theorem 6.3.17 Let U be a unitary. The following are equivalent:

a) U is Pauli normalising.
b) The Choi state |U⟩ of U is a stabiliser state.
c) U can be presented as a Clifford diagram.
d) U is equivalent to a circuit consisting of Hadamard, S and CNOT gates.

Proof a) to b) is Lemma 6.3.15, b) to c) follows from Proposition 6.3.9, c)
to d) is Proposition 5.3.14 and d) to a) is Proposition 6.1.3.

Because of these equivalences we don’t have to make a distinction be-
tween Pauli-normalising unitaries, Clifford unitaries (those built from CNOT,
Hadamard and S), and Clifford unitary diagrams (those whose diagram only
contains π

2 phases), and just refer to any of these as a Clifford unitary.
We can write down a similar set of equivalences for stabiliser states.

Theorem 6.3.18 Let |ψ⟩ be a state. The following are equivalent:

a) |ψ⟩ is a stabiliser state.
b) |ψ⟩ can be presented (up to non-zero scalar) as a Clifford diagram (that

has no inputs).
c) |ψ⟩ is equal (up to non-zero scalar) to a circuit of Hadamard, S and

CNOT gates applied to the |0 · · · 0⟩ state.
d) |ψ⟩ can be written as a graph state with local Cliffords.

Proof a) to b) is Proposition 6.3.9, b) to c) is Proposition 5.3.10, c) to d) is
Theorem 5.3.8 and d) to a) follows from Example 6.3.8 and Proposition 6.3.10.

242 Stabiliser theory

6.4 Stabiliser tableaux
We’ve seen that an n-qubit unitary is Clifford if and only if it maps every
n-qubit Pauli string to a Pauli string under conjugation. There are exponen-
tially many Pauli strings as n increases, but luckily we only have to check a
few of them to verify the unitary is Clifford. In particular, it suffices to check
that the Zi and Xi are mapped to Pauli strings under conjugation. This
gives us 2n conditions to check for an n-qubit unitary. We can present the
resulting information in the form of a table that we call a stabiliser tableau.
This is what we will look at in Section 6.4.2. Another way to present this
information is as a special type of matrix that is called a symplectic matrix.
This is what we will look at in Section 6.4.4. Before we do so however, let’s
look a bit closer at the information encoded by knowing the result of these
Pauli conjugations.

6.4.1 Cliffords are determined by Pauli conjugations

We will show that a Clifford unitary is completely determined by its action
on Pauli strings.

Proposition 6.4.1 Let U1 and U2 be Cliffords such that U1P⃗U
†
1 = U2P⃗U

†
2

for all Pauli strings P⃗ ∈ Pn. Then U1 = eiαU2 for some global phase α.

Proof By Lemma 6.3.15, |U1⟩ and |U2⟩ are stabiliser states. Fix P⃗ and let
Q⃗ be such that U1P⃗ = Q⃗U1. Then we can check that P⃗ T ⊗ Q⃗ is a stabiliser
of |U1⟩ in the same way as in Lemma 6.3.15. Since U1P⃗U

†
1 = U2P⃗U

†
2 we also

have U2P⃗ = Q⃗U2, and hence P⃗ T ⊗ Q⃗ is also a stabiliser of |U2⟩. As P⃗ was
arbitrary, |U1⟩ and |U2⟩ have the same stabilisers and hence are equal up to
a global phase α. Bending the wires back then shows that U1 = eiαU2.

We have been using two similar properties interchangeably: that a Pauli is
mapped to a Pauli under conjugation, and that we can push a Pauli through
a Clifford to get another Pauli. However, the equivalence between these relies
on the map being unitary. It turns out that we can recover unitarity just by
looking at whether we can push the Zi and Xj through the map.

Lemma 6.4.2 Let A : C2n → C2m be a non-zero linear map such that
AZi = P⃗ iA and AXj = Q⃗jA for all i and j, and some Pauli strings P⃗ i and
Q⃗j . Then A is proportional to an isometry. In particular, if n = m, then A

is proportional to a unitary.

Proof Taking adjoints in the equation AZi = P⃗ iA we get ZiA† = A†P⃗ i. We
then calculate: A†AZi = A†P⃗ iA = ZiA

†A. Analogously, A†AXj = XjA
†A

6.4 Stabiliser tableaux 243

for all j. We can then check that the 2n-qubit state |A†A⟩ has the 2n
stabilisers ZiZn+i and XiXn+i for all 1 ≤ i ≤ n so that it is a stabiliser state.
Furthermore, these stabilisers match those of |In⟩, where In is the n-qubit
identity (|In⟩ is just n overlapping cups, connecting qubit i to i+ n). Hence
A†A = eiαIn for some α. However, as A†A is a positive map, we must have
α = 0 so that A is indeed an isometry. Now if n = m then we have an
isometry from the space to itself, and these maps are necessarily unitary.

This lemma will prove useful later in this section.

6.4.2 Stabiliser tableaux

To check whether an n-qubit unitary is Clifford there are 2n conditions we
need to check, corresponding to the conjugation of each of the Zi and Xi

Pauli strings by the unitary for 1 ≤ i ≤ n. We can write this information
succinctly in a table known as a stabiliser tableau. To demonstrate this
principle let’s construct the stabiliser tableau for the CNOT gate. As it is
a 2-qubit gate there are 4 conditions we need to check, corresponding to
the conjugation of X1, Z1, X2 and Z2 by the CNOT. As demonstrated in
Section 6.1.1, conjugating X1 leads to the Pauli string X1X2 and similarly Z1
is mapped to Z1, X2 to X2 and Z2 to Z1Z2. Each of these values corresponds
to a column in the stabiliser tableau, which we can now write down:

Z1 Z2 X1 X2
± + + + +
1 Z Z X I

2 I Z X X

(6.17)

The bottom two rows indicate the Pauli that each of the Pi is sent to on
each of the qubits 1 and 2. The row labelled ± denotes whether the Pauli
is sent to the Pauli listed, or minus that. For instance, conjugating Z by X
gives XZX = −ZXX = −Z, and hence would have a minus sign in the
respective column. This phase can indeed only be a +1 or −1: the Zi and
Xi are self-adjoint, and hence so are UZiU † and UXiU

†.
These minus signs are important as they allow us to distinguish the Paulis

just from their tableaux:

I :
Z1 X1

± + +
1 Z X

X :
Z1 X1

± − +
1 Z X

Z :
Z1 X1

± + −
1 Z X

Y :
Z1 X1

± − −
1 Z X

(6.18)
We can use a stabiliser tableau to understand how the unitary acts on

244 Stabiliser theory

other Pauli strings than just those present in the tableau. For instance,
suppose we wish to know how the Pauli string X1Y2 is changed when we
conjugate it by a CNOT. We realise that X1Y2 is just the product iX1X2Z2
and hence, writing U = CNOT, we get:

U(X1Y2)U † = iU(X1X2Z2)U † = iUX1U
†UX2U

†UZ2U
†.

But this latter expression is just the product of the three columns of the
stabiliser tableau of the CNOT corresponding to X1, X2 and Z2 (multiplied
by a global factor of i). So we look at those columns in (6.17) and multiply
them together:

i

+
X

X

 ∗

+
I

X

 ∗

+
Z

Z

 = i

+ + +
XZ

XXZ

 =

+
Y

Z

Hence, XY is mapped to Y Z. If some of the +’s in these columns where
−, then the standard rules for multiplying phase applies, e.g. “negative
times negative is positive”. For instance, if we take the stabiliser tableau of
Y in (6.18), and wish to find the action of Y1 = iX1Z1, we multiply the
columns together as follows:

i

(
−
X

)
∗
(

−
Z

)
= i

(
+
XZ

)
=
(

+
Y

)
We then see that when Y is conjugated by Y we get Y , as we would expect.

The information presented in a stabiliser tableau is enough to fully char-
acterise a Clifford.

Proposition 6.4.3 Let U1 and U2 be two n-qubit Clifford unitaries. Then
U1 and U2 are equal up to global phase iff they have equal stabiliser tableaux.

Proof Of course, if U1 = eiαU2 for some global phase α, then they have equal
stabiliser tableaux, so let’s prove the converse. We have U1ZiU

†
1 = U2ZiU

†
2

and U1XiU
†
1 = U2XiU

†
2 for all 1 ≤ i ≤ n. These Zi and Xi generate all

n-qubit Pauli strings and hence we have U1P⃗U
†
1 = U2P⃗U

†
2 for all P⃗ ∈ Pn.

The result then follows from Proposition 6.4.1.

Suppose we have a stabiliser tableau for a unitary U1 and another one for
a unitary U2. Can we then easily construct the tableau for the composition of
the unitaries U2 ◦U1? Suppose we wish to know the column in the stabiliser
tableau of U2◦U1 corresponding to a Zi. This is the Pauli string U2U1ZiU

†
1U

†
2 .

Here the inner expression U1ZiU
†
1 corresponds to the column of Zi in the

tableau of U1. This will be some Pauli string P1P2 · · ·Pn, and so we need to

6.4 Stabiliser tableaux 245

know the values U2PjU
†
2 and multiply these together. But the expressions

U2PjU
†
2 can be easily read from the tableau of U2. This means that in order

to know the Pauli on the jth qubit of the Zi column in the tableau of U2U1,
we need to look at the column of Zi in U1, and at the row corresponding to
the jth qubit of the tableau of U2. This feels quite like matrix multiplication.
In the next sections we will see that this is in fact, exactly like matrix
multiplication.

6.4.3 Paulis as bit strings

We can represent elements of the Pauli group as certain bit strings. For
instance, we will write:

X =
(
0 | 1

)
+ Y =

(
1 | 1

)
+ Z =

(
1 | 0

)
+ (6.19)

Generally, an element of the n-qubit Pauli group Pn will be represented as
a vector of 2n bits, followed by an integer that is taken modulo 4:

sP1 ⊗ . . .⊗ Pn =
(
z⃗ | x⃗

)
s . (6.20)

Here, the bits in the length-n bit strings z⃗, x⃗ are given by the Paulis Pi via
the relation Pi = i−zixiZziXxi where zi, xi are the ith bits of z⃗ and x⃗ and
s is a complex number in the set {1, i,−1,−i}. As a shorthand, we write +
and - for 1 and −1.

This mapping between Pauli operations and bit strings is just a convention,
and there are probably other ones that work just as well. The useful feature of
this representation is that multiplication of Pauli group elements corresponds
to addition of bit strings modulo-2, followed by some book-keeping to get
the correct scalar: if we have Pauli strings P⃗ and Q⃗ represented as bit strings
P⃗ =

(
z⃗1 | x⃗1

)
a and Q⃗ =

(
z⃗2 | x⃗2

)
b , then:

P⃗ Q⃗ =
(
z⃗1 ⊕ z⃗2 | x⃗1 ⊕ x⃗2

)
c where c := iz⃗1·x⃗2−z⃗2·x⃗1ab (6.21)

We will use the notation ⋆ to represent combining bit-representations of
Pauli operators in this way. That is:(

z⃗1 | x⃗1
)

a ⋆
(
z⃗2 | x⃗2

)
b :=

(
z⃗1 ⊕ z⃗2 | x⃗1 ⊕ x⃗2

)
iz⃗1·x⃗2−z⃗2·x⃗1ab

A little “gotcha” to watch out for here is that addition of the bit strings is
performed modulo-2, but the dot products that appear in the exponent of i
use normal addition of integers (or addition modulo 4, since i4 = 1). Instead
of talking about ‘bit strings’ and ‘addition modulo-2’ it will be helpful to
use a more mathematical way of talking about this, just like we had done
in Chapter 4. We take the bits to be elements of field with two elements

246 Stabiliser theory

F2 := {0, 1}. Recall from Definition 4.1.1 that the addition operation in
this field is defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0, and the
multiplication is the standard multiplication of the numbers 0 and 1. As this
is a field, we can view the bit strings as being part of a vector space over F2.
In particular, ignoring the global phases for now, we can represent n-qubit
Pauli strings as elements of the vector space F2n

2 .
We can use these bit-representations to read off whether two Paulis com-

mute or not. For Paulis P⃗ =
(
z⃗1 | x⃗1

)
a and Q⃗ =

(
z⃗2 | x⃗2

)
b we have

P⃗ Q⃗ = Q⃗P⃗ ⇐⇒ z⃗1 · x⃗2 ⊕ z⃗2 · x1 = 0 (mod 2).

The reason for this formula is that we are counting the number of places
where there is a Z on a qubit i in P⃗ that matches to an X on a qubit i in Q⃗
(and vice versa for X’s on P⃗ and Z’s on Q⃗). Each of these matches results
in an anti-commutation, but as long as there are an even amount, the Pauli
strings commute.

It turns out that the expression z⃗1 · x⃗2 ⊕ z⃗2 · x⃗1 fits into the language of a
well-studied subject in mathematics: symplectic forms.

Definition 6.4.4 Let F be a field (such as F2), and let V = F2n be an
even-dimensional vector space over this field. Then the symplectic inner
product ω : V × V → F on V is defined as

ω((⃗a, b⃗), (c⃗, d⃗)) = a⃗ · d⃗− b⃗ · c⃗,

where a⃗, b⃗, c⃗, d⃗ ∈ Fn are arbitrary vectors and · denotes the standard dot-
product of elements of Fn: a⃗ · d⃗ =

∑
i aidi.

In words: we take the dot product of the top half of the first vector with
the bottom half of the second vector and subtract from this the dot product
of the bottom half of the first vector with the top half of the second vector.

Another way we could have written this symplectic product is to realise
that it is essentially the standard dot product, except that we have inter-
changed the top and bottom half of the second vector and introduced a
negation. The matrix that does this operation is the following:

Ω :=
(

0n In
−In 0n

)
(6.22)

Here, 0n and In are respectively the n×n zero matrix and the n×n identity
matrix. We can then write the symplectic inner product as ⟨v, w⟩ = vTΩw.

Note that if F = F2 then a⃗ · d⃗− b⃗ · c⃗ = a⃗ · d⃗+ b⃗ · c⃗ (because −1 = 1 modulo 2).
So combining what we’ve seen so far we see that we can represent length n

Pauli strings as elements of the symplectic vector space F2n
2 (ignoring global

6.4 Stabiliser tableaux 247

phase), and that Pauli strings commute precisely when their symplectic inner
product is zero. Additionally, the multiplication of Paulis corresponds (when
we ignore phases) to addition of the vectors in this symplectic vector space.
Let’s capture this in the following proposition.

Proposition 6.4.5 Let Pn be the n-qubit Pauli group. Then there is a
group homomorphism S : Pn → F2n

2 given by mapping a Pauli to its bit
string representation. The kernel of this representation is given by the global
phases: S(P⃗) = 0 iff P⃗ = ikI. Furthermore, we have ⟨S(P⃗), S(Q⃗)⟩ = 0 iff P⃗

and Q⃗ commute, where ⟨·, ·⟩ is the symplectic inner product on F2n
2 .

6.4.4 Cliffords as symplectic matrices

We have now seen that we can just treat Pauli strings as vectors in a sym-
plectic vector space, and that, up to a phase, multiplying Pauli strings
corresponds to adding their bit strings. If we have a Clifford unitary U , then
this maps a Pauli string P⃗ to another Pauli string UP⃗U †, so we should be
able to write this as a map on the symplectic vector space as well, right?
Let’s write Û : Pn → Pn for the group homomorphism on the Pauli group
given by conjugating by U . That is, Û(P⃗) = UP⃗U † (this is indeed a group
homomorphism as UP⃗ Q⃗U † = UP⃗U †UQ⃗U †). Note that Û is in fact an iso-
morphism, as it has an inverse Û †. Let S : Pn → F2n

2 be the map from
Proposition 6.4.5 that maps a Pauli string to its corresponding bit string
in the symplectic vector space. Ignoring the phases in Pn, this map is an
isomorphism of (abelian) groups. We can then make a ‘choice of inverse’
T : F2n

2 → Pn by setting

T (z⃗, x⃗) := iz⃗·x⃗(Zz1 ⊗ · · · ⊗ Zzn)(Xx1 ⊗ · · · ⊗Xxn).

Note that this map produces self-adjoint Pauli strings, but that the map is
not a group homomorphism (you can check that T (1, 1) ̸= T (1, 0)T (0, 1)).
We see then that S ◦ T = idF2n

2
, but in the other direction we only have

TS(P⃗) ∝ P⃗ . Now let’s write Ŝ(U) : F2n
2 → F2n

2 for the map Ŝ(U) := S◦Û ◦T .
What properties does this map have?

Even though T is not a group homomorphism, it is the case that Ŝ(U) is
a group homomorphism of F2n

2 , i.e. a linear map: Ŝ(U)((z⃗1, x⃗1) + (z⃗2, x⃗2)) =
Ŝ(U)(z⃗1, x⃗1)+ Ŝ(U)(z⃗2, x⃗2). This is because T is a group homomorphism ‘up
to phase’, and both Û and S don’t care about this phase, so that it doesn’t
change the outcome. Additionally, Ŝ(U) has an inverse Ŝ(U †) so that it is in
fact a linear isomorphism. But it is not just any isomorphism. If the Pauli
strings P⃗ and Q⃗ commute, then Û(P⃗) and Û(Q⃗) also commute, and similarly,

248 Stabiliser theory

if they didn’t commute, then Û preserves this property as well. We saw in
the previous section that commuting Paulis are mapped by S to vectors
whose symplectic inner product is zero. So putting these two facts together,
we see that Ŝ(U) must be mapping vectors in such a way to preserve the
symplectic inner product. There is a special name for such maps.

Definition 6.4.6 Let F be a field, and let F2n be a symplectic vector space.
We call a linear map A : F2n → F2n symplectic when it preserves the sym-
plectic inner product: ⟨Av,Aw⟩ = ⟨v, w⟩. Symplectic maps are automatically
invertible, and hence form a group that we will call Sp(F2n).

For Hilbert spaces we care a great deal about unitaries, which are maps
that preserve the inner product. Similarly, for symplectic vector spaces, we
care about the maps that preserve the symplectic inner product.

As Û preserves commuting Paulis, Ŝ(U) must be a symplectic map. Writ-
ing Cn for the n-qubit Clifford group, Ŝ then gives a group homomorphism
Ŝ : Cn → Sp(F2n

2). This map is not injective, and that’s because F2n
2 captures

the Pauli group only up to phase. A Clifford U is in the kernel of this homo-
morphism, i.e. Ŝ(U) = IF2n

2
, when Û maps every Pauli to itself up to a phase.

This phase can only be ±1 for each Pauli, as a Clifford maps self-adjoint
Paulis to self-adjoint Paulis under conjugation. The Pauli strings themselves
are examples of Cliffords that are sent to the kernel. When U = P⃗ is a
self-adjoint Pauli string, we see that indeed UQ⃗U † = P⃗ Q⃗P⃗ = ±P⃗ P⃗ Q⃗ = ±Q⃗,
so that Ŝ(U) = IF2n

2
. The converse turns out to also be true.

Proposition 6.4.7 Let U be a Clifford such that for every Pauli string P⃗
we have UP⃗U † = ±P⃗ . Then U is itself a Pauli string (up to global phase).

Proof Write Û for the conjugation map. We will construct a Pauli string Q⃗
that acts the same on all Paulis by conjugation as Û , and hence by Propo-
sition 6.4.1, U must be equal to Q⃗ up to global phase. First we determine
Q1. Write Û(X1) = aX1, Û(Z1) = bZ1 for a, b ∈ {1,−1}. Then if a = b = 1,
we set Q1 = I. If a = −1 and b = 1, we set Q1 = Z. If a = 1 and b = −1
we set Q1 = X, and finally if a = b = −1 we set Q1 = Y . It is then easy to
check that Û(P1) = ˆ⃗

Q(P1) for any Pauli P ∈ {I,X, Y, Z}. We similarly set
Q2, . . . , Qn, so that Û and ˆ⃗

Q agree on all Pauli strings Pi. As these generate
all Pauli strings, we must then have Û = ˆ⃗

Q and we are done.

With this proposition we see that Ŝ(U) = Ŝ(V) iff U = eiαV Q⃗ for some
global phase α and Pauli string Q⃗. So just like how the symplectic rep-
resentation of the Pauli strings ignores the global phase, the symplectic
representation of the Cliffords ignores Paulis.

6.4 Stabiliser tableaux 249

Okay, so when thinking about the symplectic space, and ignoring Paulis,
the Cliffords become symplectic maps. What about the converse? If we are
given a symplectic map on F2n

2 , can we find a Clifford that is mapped to it?
In other words: is Ŝ surjective?

To answer this questions it will be useful to define a ‘standard basis’ of
F2n

2 . Write zi = S(Zi) and xj = S(Xj) for the bit strings corresponding to
the Pauli strings Zi and Xj . These zi and xj of course span the space and
are linearly independent so that they are indeed a basis. Note furthermore
that the symplectic inner products of these are ⟨zi, zj⟩ = ⟨xi, xj⟩ = 0, while
⟨zi, xj⟩ = δij , which encodes the fact that the Zi all mutually commute (and
the same for the Xj), while Zi and Xj anti-commute when i = j.

Proposition 6.4.8 Every symplectic map M : F2n
2 → F2n

2 comes from a
Clifford unitary U via Ŝ(U) = M .

Proof Define vi := Mzi and wj := Mxj , the images of the standard basis
after applying M . As M is symplectic and hence invertible, the vectors vi
and wj must then also be independent. Furthermore, as M preserves the
symplectic inner product we still have ⟨vi, vj⟩ = ⟨wi, wj⟩ = 0 and ⟨vi, wj⟩ =
δij . Let P⃗ i be a self-adjoint Pauli string for which S(P⃗i) = vi and similarly
let Q⃗j be such that S(Q⃗j) = wj (these Pauli strings are unique up to phases
of ±1). Then the Paulis P⃗i are commuting, since ⟨vi, vj⟩ = 0, and similarly
all the Q⃗j are commuting. The only pairs that don’t commute are P⃗i and
Q⃗j when i = j.

We can ‘fix’ this lack of commutation by considering longer Pauli strings.
Consider the following 2n Pauli strings acting on 2n qubits:

Z1 ⊗ P⃗1, . . . Zn ⊗ P⃗n, X1 ⊗ Q⃗1, . . . , Xn ⊗ Q⃗n.

These Pauli strings all commute. Let’s check the only non-trivial commuta-
tion: Zi ⊗ P⃗i and Xj ⊗ Q⃗j . When i ̸= j, we have that Zi and Xj commute,
and P⃗i and Q⃗j commute, so that the full strings obviously commute as well.
When i = j, then Zi and Xi anti-commute, but so do P⃗i and Q⃗i, so that the
complete strings still commute.

We then have built 2n independent, commuting, self-inverse Pauli strings
acting on 2n qubits. These then uniquely define a 2n-qubit stabiliser state
|ψ⟩, which is unique up to scalar. Bending back the top n wires to be inputs,
we then get a linear map A going from n qubits to n qubits. We want to show
it is unitary. As Zi ⊗ P⃗i is a stabiliser of |ψ⟩, we then see that AZi = P⃗iA:

250 Stabiliser theory

ψ ...

...
A

...
... =Zi

... Zi

...
ψ ...

...= Zi

...

P⃗i P⃗i

ψ ...

...
=

...

P⃗i

A
...

... P⃗i=

...
...

...

Similarly, AXj = Q⃗jA. Lemma 6.4.2 then shows that A is (proportional to a)
unitary, and as it comes from a stabiliser diagram it is Clifford. Furthermore
AZiA

† = P⃗iAA
† = P⃗i, so that Ŝ(A)zi = vi. We defined vi to be such

that Mzi = vi, and hence Ŝ(A)zi = Mzi. Completely analogously we have
Ŝ(A)xj = Mxj , so that Ŝ(A) and M agree on a basis of F2n

2 , so that indeed
Ŝ(A) = M .

6.4.5 Adding back in the phases

So far we have ignored the phases in the symplectic representation. What
happens when we try to add them back in? We get stabiliser tableaux!

Let’s look again at the stabiliser tableau for the CNOT gate:

Z1 Z2 X1 X2
± + + + +
1 Z Z X I

2 I Z X X

Now for each of the elements in the table we make the substitutions, corre-
sponding to how we were encoding the Paulis as bitstrings:

I ⇝
(

0
0

)
Z ⇝

(
1
0

)
X ⇝

(
0
1

)
Y ⇝

(
1
1

)

We then get the following matrix of values:

Z1 Z2 X1 X2
± + + + +
1Z 1 1 0 0
1X 0 0 1 0
2Z 0 1 0 0
2X 0 0 1 1

6.4 Stabiliser tableaux 251

Now let’s group the Z and X rows together:

Z1 Z2 X1 X2
± + + + +
1Z 1 1 0 0
2Z 0 1 0 0
1X 0 0 1 0
2X 0 0 1 1

(6.23)

If we squint a bit we can see that this is in fact a symplectic matrix, but
with some additional information to record the phases. If we remove those
phases and the label for the columns and rows we in fact get the symplectic
matrix representation for the CNOT:

Ŝ(CNOT) =

1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

Then if we want to know for instance what happens when we conjugate Y ⊗X
by CNOTs, we first write Y ⊗X as the vector S(Y ⊗X) = (1, 0, 1, 1)T , and
then we just multiply them:

S(CNOT)S(Y ⊗X) =

1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

1
0
1
1

 =

1
0
1
0

This symplectic representation doesn’t contain the phase information though.
We can fix this by just keeping the top row of the tableau 6.23 containing
the phases, and also adding another top row to the Paulis to represent
their global phase. If we do this, we however also have to modify how we
multiply together tableaux and vectors, as the phase gets updated in quite
a complicated way. This is not really relevant for us, so we leave it as an
exercise.

Exercise* 6.15 Find out how to incorporate phases as an additional row
on the symplectic matrix, so that matrix-vector multiplication works out the
way it should.

6.4.6 Putting it all together

Let’s summarise what we have learned. We have seen that we can write a
Pauli string as a bit string, where the first half of the bits tells you where

252 Stabiliser theory

the Z’s are, and the second half tells you where the X’s are (and so the
overlap tells you where the Y ’s are). We can then consider the Pauli group
as a vector space of bit strings F2n

2 .
Paulis either commute or anti-commute. This information is captured in

F2n
2 by whether the associated vectors have a symplectic inner product of

zero (for commuting) or one (for anti-commuting).
As Cliffords map Paulis to Paulis under conjugation, and are completely

determined by this action, we can represent Cliffords as matrices on the sym-
plectic vector space F2n

2 . Conjugating by a Clifford preserves commutation,
so that it preserves the symplectic inner product on this space. This means
that the Cliffords correspond to symplectic maps. Conversely, any symplectic
map on F2n

2 comes from a Clifford unitary.
These constructions with the symplectic phases ignore the phases of the

Paulis, and hence capture the Cliffords only up to local Paulis. We can fix
this by adding some additional phase information to our symplectic space.
This representation is then equivalent to the stabiliser tableau of the Clifford.

6.5 The Clifford hierarchy
In Chapter 5 we introduced Clifford unitaries in a somewhat ad-hoc way as
those unitaries built from CNOT, Hadamard and S gates. In this chapter we
have seen that we can define them in a mathematically nicer way as precisely
those unitaries that send Pauli strings to Pauli strings under conjugation. It
turns out we can extend this idea to a whole hierarchy of gates.

First, let’s denote the set of Pauli gates by C1.

Definition 6.5.1 The kth level of the Clifford hierarchy for k > 1 is
defined as

Ck := {U | ∀P⃗ : UP⃗U † ∈ Ck−1}

The first level of the hierarchy consists of the Paulis by definition, and
the second C2 contains unitaries that map Pauli strings to unitaries in C1,
i.e. the Paulis. Hence, C2 consists precisely of the Cliffords. The third level
C3 then contains unitaries that map Pauli strings to Clifford unitaries. An
example of a third-level unitary is the T gate π

4 :

TZT † = Z TXT † ∝ SX

Similarly, the Z(π8) gate is in the 4th level, and more generally Z(2π
2k) is in

the kth level.
The Clifford hierarchy is useful for thinking about gate teleportation

6.5 The Clifford hierarchy 253

protocols. As the name implies, gate teleportation generalises the idea behind
quantum teleportation of Section 3.3.2. In quantum teleportation we move
information from one qubit to another without changing the state. In gate
teleportation we instead try to apply some specific unitary U to the state,
without directly applying U to that qubit:

aπ

bπ

U

|ψ⟩
= Ubπaπ

(6.24)

In this protocol we entangle our state with a specific maximally entangled
state |ψ⟩ with the goal of executing U . However, we see that instead we
end up with UZbXa. In order to actually end up with U , we hence need
to apply a correction of UXaZbU †. For a general U this doesn’t help us,
since this requires us to execute U on the qubit after all. However, if U ∈ Ck,
then UXaZbU † ∈ Ck−1, so that instead of applying a Ck unitary, we can
execute a Ck−1 unitary. In Eq. (6.24) U is a single-qubit unitary, but the
same idea works for an n-qubit unitary, in which case we essentially do the
same operations on each of the n qubits in parallel, with the correction
depending on a Pauli string of possible measurement outcomes.

These gate teleportation protocols are especially useful when it is hard
to correctly implement U . We can then first try to build the correct |ψ⟩
“offline”, until we get the result we require, and then apply it to the state
we want by gate teleportation. If the correction operation is then easy, we
can just apply that and we are done. For instance, we will see in Chapter 11
that in many fault-tolerant architectures it is difficult to execute a T gate,
while it is easy to implement Clifford gates. As a T gate is in the third level
of the Clifford hierarchy, we can implement it with gate teleportation, and
its correction will be a Clifford. If instead we want to implement a 4th-level
unitary, like

√
T = Z(π8), its correction will be third-level, which we then also

implement with gate teleportation, so that the final correction is a Clifford.
Note that we in fact have already encountered a version of T gate telepor-

tation in the form of state injection in Section 3.3.1:

π
4 aπ

aπ
2

254 Stabiliser theory

This can be rewritten into a more standard gate teleportation protocol:

π
4 aπ

aπ
2

= π
4

aπ

aπ
2

OCM

=
π
4

aπ

aπ
2

(sc)

=
π
4

aπ
2

(sc)

(sp)

aπ = π
4

aπ
2

(sp)

aπ

aπ aπ

Note though that while gate teleportation requires a two-qubit state, magic
state injection requires just a single-qubit state, and hence is more efficient.
In general, we can do the more efficient ‘magic state’ protocol for a unitary
U when U semi-Clifford, which means that U = C1DC2 where C1 and C2
are Clifford and D is diagonal.

While there is a nice connection between the Clifford hierarchy and how
hard it is to implement a unitary through gate teleportation, in pretty much
any other regard the Clifford hierarchy is not very nice at all. In particular,
for k > 2, Ck is not even closed under composition. It is hence not possible
to describe the elements of Ck just by enumerating some small number of
generators. In fact, a full characterisation of Ck for arbitrary number of qubits
and k is not known.

Exercise 6.16 Let C be any Clifford and U ∈ Ck. Show that CU ∈ Ck and
UC ∈ Ck.

Exercise 6.17 Show that U = THT is not anywhere in the Clifford
hierarchy. Hint: Show that UXU † is within a Clifford of U itself, so that
UXU † being in Ck−1 implies U is as well.

When we restrict to the diagonal unitaries in Ck the structure is a lot
clearer. In particular, let Dk ⊂ Ck denote the diagonal unitaries in the kth
level. Then Dk is in fact closed under composition and forms a group, and
is generated by unitaries of the form:

2π
2k

..
.

..
.

up to permutations of the qubits. These diagrams implement the unitary
|x1, . . . , xn⟩ 7→ e

2i π

2k (x1⊕···⊕xn)|x1, . . . , xn⟩ and are the focal point of a lot of
discussion in the next chapter.

6.6 Summary: What to remember 255

6.6 Summary: What to remember
1. The n-qubit Pauli strings form a group Pn.
2. We can represent the projection onto the +1-eigenspace of a Pauli using

a Pauli box. This allows us to treat all Paulis on the same footing
diagrammatically.

3. We call a subgroup S ⊆ Pn a stabiliser group if it stabilises at least one
non-zero state. This is the case exactly when −I /∈ S. Stabiliser groups
are necessarily commutative.

4. The Fundamental Theorem of Stabiliser Theory: If an n-qubit stabiliser
group has k generators, then its stabiliser subspace has dimension 2n−k.

5. Maximal stabiliser groups have precisely n generators, and stabilise a
unique state up to scalar factor. We call states stabilised by a maximal
stabiliser group a stabiliser state.

6. Stabiliser states correspond precisely to the Clifford states of Chapter 5.
7. The Clifford unitaries of Chapter 5 send elements of Pn to Pn under

conjugation. Any unitary with this property is in fact Clifford.
8. We can fully describe a Clifford unitary by a stabiliser tableau, which

lists its action on the Zi and Xi Pauli strings under conjugation.
9. Additionally, we can describe Pauli strings, up to global phase, as ele-

ments of a symplectic vector space.
10. We can then describe Clifford unitaries, up to multiplication with Paulis,

by a symplectic matrix: a matrix preserving the symplectic inner prod-
uct.

6.7 References and further reading
Cliffords as normalising the Pauli group The stabiliser formalism was intro-
duced by Gottesman (1996) and further developed, with the help of some
amusing examples, in Gottesman (1998). In the former paper, it was treated
mainly as a tool for defining quantum error correcting codes, whereas in
the latter as a more general-purpose set of tools for dealing with quantum
operations.

In Chapter 5 we introduced Clifford unitaries as those built out of Hadamard,
S and CNOT gates, and now in this chapter we see that they can also be
understood to be those unitaries that send Paulis to Paulis under conjuga-
tion. Originally, the latter representation came first. That stabiliser unitaries
(those that map Paulis to Paulis) can be implemented just using Hadamard, S
and CNOT gates was noted in the context of error correcting codes in Bennett
et al. (1996), and a proof was given using symplectic matrices in Calderbank

256 Stabiliser theory

et al. (1997). A more concrete proof by induction was presented in Gottes-
man (1997). The modern form of using a stabiliser tableau to simulate a
computation or to produce a normal form for the circuit was presented
in Aaronson and Gottesman (2004). Note that in different papers on this
subject the rows and columns of a tableau might be interchanged.

The Clifford hierarchy The notion of a Clifford hierarchy is from Gottesman
and Chuang (1999) where they also introduce the technique of gate telepor-
tation with these gates. A characterisation of diagonal gates in the Clifford
hierarchy is given in Cui et al. (2017). That you can do gate teleportation
with a smaller ancilla state is the unitary is semi-Clifford is from Zhou et al.
(2000), though the term ‘semi-Clifford’ was only introduced in Gross and
Van den Nest (2008).

7
Universal circuits

We will now turn from studying Clifford circuits to universal ones. Whereas
the Clifford circuits were generated from CNOT, H, and S gates, we can
obtain an exactly universal set of gates by replacing the S := Z[π2] gate with
the family of Z[α] gates for arbitrary angles α. Perhaps more miraculously,
we can obtain an approximately universal set of gates by replacing S with
some fixed phase gate Z[θ] for any θ that isn’t a multiple of π/2, the most
popular choice being T :=

√
S = Z[π4].

This tiny tweak takes us from the safe, efficient world of Clifford circuits to
the wild and wonderful world of full-powered quantum computation. Given
we can no longer efficiently compute the outputs of a universal quantum
circuit with a classical computer, one might wonder how much we can still
reason about these circuits. In this chapter we’ll see that the answer is,
perhaps surprisingly, quite a lot!

In this chapter we will see two different ways to think of universal circuits:
path sums and Pauli exponentials.

Path sums are an extension of the idea of phase polynomials. We already
briefly encountered phase polynomials in Chapter 5 when discussing the AP
normal form. In the same way that we could fully characterise a CNOT
circuit as a parity matrix in Chapter 4, it turns out we can fully characterise
a circuit consisting of CNOT gates and phase gates as a phase polynomial
together with a parity matrix. However, this representation only deals with
Hadamard-free circuits. To also work with Hadamards we need path sums.
We can write the action of a Hadamard as |x⟩

∑
y(−1)x·y|y⟩. In a path sum

we interpret this as introducing a new variable y on your qubit, and adding a
term (−1)x·y to your phase polynomial. The final expression for your circuit
then contains a sum

∑
y over all the different ‘paths’ a computational basis

state can take trough your circuit.

258 Universal circuits

On the other hand, Pauli exponentials offer quite a different perspective on
universal circuits. We have seen in the previous chapters that there is a whole
lot to be said about the Pauli gates. They allow us to define stabiliser theory
and Pauli projections, which lead to the idea of stabiliser states and Cliffords,
which have a rich rewrite theory and will allow us to define quantum error
correction in Chapter 11. But on the other hand the Clifford computation we
have seen is efficiently classically simulable, so if we want to get our money’s
worth with a real quantum computer, we had better do something more
than just Cliffords. Luckily we don’t have to look far, we can still work with
Paulis, but just in a slightly modified form.

It turns out that for any Pauli P⃗ we can construct a family of unitaries
out of it by considering the matrix exponential eiθP⃗ for phases θ ∈ R. The
resulting Pauli exponentials form a universal gate set for quantum com-
puting. Certain Pauli exponentials also correspond to the native gate set
of several types of quantum computers, like ion traps and superconducting
quantum computers.

In fact, Pauli exponentials form arguably the native gate set to understand
quantum computation. They have a natural relation to Clifford computation;
the number of them in a circuit directly corresponds to the cost of classically
simulating a quantum computation; Hamiltonian simulation can be directly
understood in terms of Pauli exponentials; Pauli exponentials can be readily
understood in certain quantum error correcting codes like the surface code;
and finally, which is important for us, Pauli exponentials have a very natural
representation in the ZX-calculus.

7.1 Path sums

7.1.1 Phase polynomials

First, let us recap what we know about phase polynomials. Lets begin with
a neat trick that works for any circuit built only out of CNOT and Z-phase
gates. We already learned back in Chapter 4 that CNOT circuits correspond
to parity maps, i.e. linear maps which send basis states to other basis states
that can be described as the parities of input variables. We also saw that a
convenient way to compute the parity map is to label each input wire with

7.1 Path sums 259

a distinct variable and simply push those variables through the circuit:
x1

x2

x3

x1

x2⊕x3 x1⊕x2⊕x3 x2⊕x3

x1

x2⊕x3

x3x3 x1⊕x2 x2

x1

x1⊕x2⊕x3 (7.1)

That is, we start with only the input wires labelled and work from left to
right. When a CNOT is encountered, we label the output of the control qubit
with the same label as the input of the control qubit and label the output
of the target qubit with the XOR of the labels on the two input qubits.

In fact, this is the same as computing the overall parity matrix by doing
one primitive row operation (i.e. CNOT gate) at a time. Indeed if we look
at the action of the unitary U described in (4.1), it maps basis states to an
XOR of basis states given by the expression on the output wires:

U :: |x1, x2, x3⟩ 7→ |x1, x2 ⊕ x3, x3⟩ (7.2)

We also saw in Chapter 4 that any two CNOT circuits computing the same
parity function are equal. By re-synthesising a circuit according to its parity
function, we can often find a much more efficient implementation. In the
example above, we can implement the unitary U with just one CNOT gate:

x1

x2

x3

x1

x2⊕x3

x3

(7.3)

Now, lets sprinkle some Z-phase gates into the circuit (4.1) above:
x1

x2

x3

x1

x2⊕x3
x1⊕x2⊕x3

x2⊕x3

x1

x2⊕x3

x3x3
x1⊕x2 x2

x1

x1⊕x2⊕x3α

β θ

γ (7.4)

Note that we left the parity labels on the wires. Why are we justified in
doing that? Z-phase gates are diagonal in the Z basis, so they preserve basis
elements, up to a phase which depends on the basis element |x⟩:

Z[α] :: |x⟩ 7→ eiα·x|x⟩

We can now plug a single computational basis element |x1, x2, x3⟩ into
(7.4) and track its progress through the circuit. Applying the first two gates,

260 Universal circuits

we see the CNOT first updates the variables in the ket, then the Z-phase
gate introduces a new phase, which depends on whether x2 ⊕ x3 is 0 or 1:

|x1, x2, x3⟩ 7→ |x1, x2 ⊕ x3, x3⟩

7→ eiα·(x2⊕x3)|x1, x2 ⊕ x3, x3⟩

Continuing this through the rest of the circuit, the overall expression we get
for the unitary V described by circuit (7.4) is:

V :: |x1, x2, x3⟩ 7→ ei[(α+γ)·(x2⊕x3)+β·(x1⊕x2)+θ·x2]|x1, x2 ⊕ x3, x3⟩ (7.5)

More generally, any CNOT+phase circuit yields a unitary of the form:

U :: |x⃗⟩ 7→ eiϕ(x⃗)|Lx⃗⟩

for some F2 matrix L and function ϕ : Fn2 → R. We already met the parity
matrix L, which describes U ’s action on basis vectors as an F2-linear map.
To this we add ϕ, which is called the phase polynomial. This describes the
phase associated with each input as a polynomial over XOR’s of the input
bits.

Just as we could read the parity map off the labelled CNOT circuit (4.1),
we can read both the parity map and the phase polynomial off of the labelled
circuit (7.4). As before, we can read the parity map off the output wires. For
the phase polynomial, we introduce a term of α · (xj1 ⊕ . . . ⊕ xjk) for each
Z-phase gate Z[α] occurring on a wire labelled xj1 ⊕ . . .⊕ xjk .

We can now come up with a new circuit that implements the same parity
map and phase polynomial. We will give a reasonably efficient, general-
purpose circuit synthesis algorithm for this in Section 7.2, but for now lets
just focus on our example. We already saw that, by ignoring the phase gates,
we could produce a very efficient circuit (4.3) to implement the parity map
|x1, x2, x3⟩ 7→ |x1, x2 ⊕ x3, x3⟩ of the unitary V . In order to get the full
unitary, we should inspect the phase polynomial of V :

ϕ(x1, x2, x3) = (α+ γ) · (x2 ⊕ x3) + β · (x1 ⊕ x2) + θ · x2

Going term-by-term, it looks like we need to place Z-phase gates on wires
labelled with the expressions x2 ⊕ x3, x1 ⊕ x2, and x2. Inspecting the circuit
in (4.3), we see that we already have wires labelled by x2 ⊕ x3 and x2.
Unfortunately, x1 ⊕ x2 is missing. However, we can temporarily make this

7.1 Path sums 261

parity available by introducing a redundant pair of CNOT gates:
x1

x2

x3

x1

x2⊕x3

x3

⇝

x1

x2

x3

x1

x2⊕x3

x3

x1⊕x2

x1

x2

We can then recover the full circuit for V by placing Z-phase gates α+ γ on
any wire labelled x2 ⊕ x3, β on x1 ⊕ x2 and θ on x2:

x1

x2

x3

x1

x2⊕x3

x3

x1⊕x2

x1

x2
β α+γθ (7.6)

By computing the phase polynomial and re-synthesising, we reduced the
circuit (7.4), which had 6 CNOT gates and 4 Z-phase gates to (7.6), which
has 3 CNOT gates and 3 Z-phase gates, giving a significant savings. Notably,
if two phases occur at the same parity, even in totally different parts of
the circuit, their angles add in the phase polynomial. Hence they can al-
ways be re-synthesised into the same phase gate. This phenomenon is called
phase-folding, and is one of the major advantages of the phase polynomial
approach. For example, two phase gates in different parts of circuit (7.4)
contributed a single term (α+γ) · (x2 ⊕x3) to the phase polynomial in (7.5).
When we re-synthesised the circuit in (4.3), they became a single phase gate.

Exercise 7.1 Show that the phase polynomial representation also works
for circuits made of CNOT, Z-phase, and X gates, using the fact that an X
gate updates wire labels as follows:

π x⊕1x

More specifically, give an example circuit, compute its parity map and phase
polynomial by wire-labelling, and re-synthesise a smaller circuit.

Finally, show that further simplifications are possible: namely expressions
of the form α · y + β · (y ⊕ 1), where y is some XOR of input variables, can
be simplified in the phase polynomial, up to global phases.

7.1.2 Phase gadgets

Phase polynomials give a very powerful, efficient way to manipulate CNOT+phase
circuits. Some might even (blasphemously!) suggest that they are more effec-
tive than graphical techniques for many applications. However, it is neverthe-
less useful to see how these structures are reflected in the ZX-calculus. Along

262 Universal circuits

the way, we will meet certain little ZX diagrams called phase gadgets,
which correspond exactly to the terms in a phase polynomial. We’ll meet
phase gadgets a lot in the coming chapters, as they are really useful tools for
lots of different applications, so it is worth spending some time now getting
a handle on how and why they work.

In this section, we’ll see how phase polynomials and in particular phase-
folding show up graphically. Note that in some cases phase folding follows
trivially from an application of spider fusion. For example, this circuit:

x1

x2

x1

x1⊕x2 x1⊕x2

x2

α β

gives the following unitary:

U :: |x1, x2⟩ 7→ ei(α+β)·(x1⊕x2)|x2, x1 ⊕ x2⟩

We see that the phases α and β combine in the phase polynomial. This can
also be seen by commuting the α phase gate through the control wire of the
last CNOT gate via spider fusion:

α β

=
α β

=
α+β

However, as we saw in the last section, phases can merge together even
in completely different parts of the circuit. In this case, there is no obvious
way to apply spider fusion to merge them. Hence, we’ll need to develop a
generalisation of spider fusion, which allows distant phases in a CNOT+phase
circuit to find each other.

Let’s start with a slight variation on the example from the previous section:
x1

x2

x3

x1

x2⊕x3
x1⊕x2⊕x3

x2⊕x3

x1

x2⊕x3

x3x3
x1⊕x2 x2

x1

x1⊕x2⊕x3α

β θ

γ x2 (7.7)

All we’ve done is add one more CNOT gate at the end to make the overall
parity map L trivial. This unitary is now diagonal in the computational
basis. That is, if we wrote down its matrix, it would only have a bunch of
phases down the diagonal, as described by the phase polynomial. Explicitly,
the circuit above implements the following unitary:

U :: |x1, x2, x3⟩ 7→ ei[(α+γ)·(x2⊕x3)+β·(x1⊕x2)+θ·x2]|x1, x2, x3⟩ (7.8)

This circuit has 4 unknown, possibly non-Clifford phases in it, so none of

7.1 Path sums 263

the strategies we’ve studied so far let us reduce the whole circuit to any kind
of normal form. However, what we can do is unfuse the unknown phases:

α

β θ

γ =

α β θγ

Now, we can treat the 4 wires connecting to unknown phases as outputs of
the diagram and apply the simplification strategy we used back in Chapter 4
for CNOT circuits to the rest of the (phase-free) ZX-diagram. This diagram
where we treat the phases as additional outputs is an isometry, and so after
simplifying, we’ll get a parity normal form which only has Z spiders adjacent
to inputs and only has X spiders adjacent to outputs and our 4 phases. Here’s
what this gives:

α β θγ

(7.9)

Here, the actual output wires have all ended up with a 2-legged X spider,
i.e. an identity map. This corresponds to the fact that the parity map L is
trivial. We will refer to this reduced form as the phase gadget form of
a ZX diagram. These are so named after phase gadgets, which are little
compound creatures consisting of a Z phase spider connected to a phase-free
X spider with k additional legs:

α

..
. (7.10)

We will often treat these two spiders together as a single node in our
diagram. Seen as a map with k inputs and 0 outputs, a phase gadget takes
a computational basis state to its XOR, then depending on whether the
XOR is 0 or 1, this produces a scalar of either 1 or eiα. To see this, lets first
think about a 1-legged Z spider as a map from 1 qubit to 0 qubits, i.e. it
sends a single-qubit state to a number. On the computational basis, it acts

264 Universal circuits

as follows:

α :: |x⟩ 7→

1 if x = 0
eiα if x = 1

We can summarise this using a very simple phase polynomial:

α :: |x⟩ 7→ eiα·x

Recall from Section 3.1.1 that X spiders act like XORs on computational
basis states, up to a scalar factor:

√
2(k−1) ·

..
. :: |x1, . . . , xk⟩ 7→ |x1 ⊕ . . .⊕ xk⟩

Putting these two together, we see that the phase gadget itself does this:

√
2(k−1) · α

..
. :: |x1, . . . , xk⟩ 7→ eiα·(x1⊕...⊕xk)

In order to get a unitary map from a phase gadget, we can use a bunch of
Z spiders to make a copy of the basis state. One copy is sent to the phase
gadget and one copy is output. This results in the following diagonal unitary:

α

..
.

:: |x1, . . . , xk⟩ 7→ eiα·(x1⊕...⊕xk)|x1, . . . , xk⟩ (7.11)

Note that we have suppressed a
√

2(k−1) scalar factor. Since we’ll be working
with unitaries in the rest of this section, we’ll just assume the overall scalar
is chosen to make everything unitary.

Returning to (7.9), we can see that this diagram can be seen as a compo-
sition of unitaries of the form of (7.11):

α β θγ α

=

β γ θ

U1 U2 U3 U4

7.1 Path sums 265

Each of these phase gadget unitaries contributes one term to the phase
polynomial:

|x1, x2, x3⟩ U17−→ ei[α·(x2⊕x3)]|x1, x2, x3⟩
U27−→ ei[α·(x2⊕x3)+β·(x1⊕x2)]|x1, x2, x3⟩
U37−→ ei[α·(x2⊕x3)+β·(x1⊕x2)+γ·(x2⊕x3)]|x1, x2, x3⟩
U47−→ ei[α·(x2⊕x3)+β·(x1⊕x2)+γ·(x2⊕x3)+θ·x2]|x1, x2, x3⟩

But there’s some redundancy here. As we noted in the previous section, α
and γ are applied to the same parity of input variables x2 ⊕x3. By inspecting
the phase polynomial, we can see that the unitary can be more compactly
represented by just 3 phase gadgets:

α+γ β θ

U ′
1 U2 U4

(7.12)

To see this graphically, we would need a ZX rule that lets us “fuse” the
phases on phase gadgets connected to an indentical set of wires. We indeed
have such a rule, which we call the gadget fusion rule:

= ..
.α + β

α

β

..
.

..
.

..
.

..
.

..
.

(gf)

It is in fact a derived rule, which follows from the usual spider fusion rule
and strong complementarity:

α + β

α

β

..
.

..
.

..
.

∝
(sc)

=
(sp)

α

β

..
.

..
.

..
.

..
.α + β

..
.

..
.

=
(sp)

..
.

..
.

..
.

Since the α and γ phase gadgets connect to the exact same spiders in
(7.9), we can apply (gf) directly to this diagram to simplify it:

266 Universal circuits

α β θγ

(gf)

α+γ β θ

∝

Now, by unfusing spiders, we can see exactly the decomposition into phase
gadget unitaries from (7.12). We can also directly read the phase polynomial
from the diagram:

α+γ

β θg2

g1

g3
⇝ (α+ γ) · (x2 ⊕ x3)︸ ︷︷ ︸

g1

+β · (x1 ⊕ x2)︸ ︷︷ ︸
g2

+ θ · x2︸ ︷︷ ︸
g3

We computed the phase gadget form (7.9) by appealing to the simplifica-
tion strategy for CNOT circuits from Chapter 4. However, there is a more
direct way we can translate CNOT+phase circuits into circuits of phase gad-
gets, by studying the way that phase gadgets commute with CNOT gates.
There are a few cases to think about here. First, is the trivial case where
a phase gadget and CNOT gate share no qubits. Obviously these commute.
Only slightly harder to see is if a phase gadget appears on the control qubit
(i.e. the Z spider) of a CNOT gate. Then, commutation follows from spider
fusion:

α

..
.

=

α

..
.

(sp)
(7.13)

If the phase gadget overlaps with the target qubit (i.e. the X spider) of a
CNOT gate, we can still push a phase gadget through, but it picks up an
extra leg:

α

..
. ∝

α

..
. (7.14)

Just by reading the equation above in reverse, we can also see what happens

7.1 Path sums 267

when a phase gadget overlaps with both qubits of the CNOT gate. It loses
a leg:

α

..
.∝

α

..
. (7.15)

Exercise 7.2 Prove equations (7.14) and (7.15). Use the three “phase-
gadget walking” equations (7.13), (7.14), and (7.15), as well as the fact that
Z-phase gates are equivalent to 1-legged phase gadgets, to show that an
n-legged phase gadget has the following decomposition:

α

∝

α

(7.16)

7.1.3 Universal circuits with path sums

In the previous section, we saw that CNOT+phase circuits can be expressed
compactly as phase polynomials, or equivalently using ZX diagrams with
phase gadgets. Both of these gates send Z basis states to Z basis states (up
to a phase), so they can’t possibly be universal. In order to get a universal
family of circuits, we need to include a gate which can produce superpositions
of Z basis states, like the Hadamard gate.

Unfortunately, Hadamard gates break our nice phase polynomial repre-
sentation. However, we can salvage things somewhat if we are willing to
introduce some extra variables that don’t appear in the input state.

Let’s start by re-visiting the Euler decomposition of a Hadamard gate.

= π
2

π
2

π
2e−iπ

4

Back in Section 3.2.5, we saw that there are in fact equivalent ways to write
the Hadamard. One way is to unfuse the middle π/2 from the X spider and
change its colour:

π
2

π
2

-π
2

=

This gives us a phase gadget connecting the input and the output spiders.

268 Universal circuits

However, unlike the phase gadgets we’ve met so far, this one is not appearing
as part of a diagonal unitary gate like the one depicted in (7.11). That is,
it doesn’t seem to be connected to different qubit wires, which can then
be labelled by the variables in our phase polynomials. We can fix this by
unfusing some spiders:

π
2

π
2

-π
2

=
π
2

π
2

-π
2

=
π
2

π
2

-π
2

The result is a representation of the Hadamard gate where we first prepare
an ancilla in the |+⟩ state, then do a diagonal 2-qubit unitary, and then
post-select the input qubit onto ⟨+|.

We already know how to write the middle part in terms of a phase poly-
nomial:

π
2

π
2

-π
2

x

y

:: |xy⟩ 7→ 1√
2e
i[π

2 ·x+ π
2 ·y− π

2 ·(x⊕y)]|xy⟩

Note that we didn’t supress the 1√
2 factor coming from the phase gadget (as

we did before), so technically this is only unitary up to a scalar. This will
help us get the Hadamard gate on-the-nose.

The Z-spider plugged into the input means we should sum over y:

=
∑
y

|y⟩

whereas the Z-spider plugging into the output means that we should send
the computational basis state |x⟩ to 1 (i.e. delete it), regardless of whether
x = 0 or x = 1:

:: |x⟩ 7→ 1

Putting these pieces together, we see that we can write the action of a
Hadamard gate as something much like the phase polynomial form from
before, but now with an extra variable y getting summed over:

= π
2

π
2

-π
2

:: |x⟩ 7→ 1√
2

∑
y

eiπ[1
2 ·x+ 1

2 ·y− 1
2 ·(x⊕y)]|y⟩ (7.17)

7.1 Path sums 269

The extra variable y is called a path variable and the overall expression is
called a sum-over-paths or path sum representation of the unitary.

The expression we got in (7.17) may not look much like the definition of
a Hadamard gate as we know it, so let’s check that this indeed gives us the
right thing. First, recall that a Hadamard acts like this on computational
basis states:

::

|0⟩ 7→ 1√
2 (|0⟩ + |1⟩)

|1⟩ 7→ 1√
2 (|0⟩ − |1⟩)

We can summarise this as something that looks like a path sum as follows:

:: |x⟩ 7→ 1√
2

∑
y

eiπ·xy|y⟩ (7.18)

That is, we pick up a −1 = eiπ coefficient when the input variable x = 1
AND the summed variable y = 1. However, we don’t (yet) know how to
introduce the AND of two variables into a phase polynomial. We only know
how to introduce XORs using phase gadgets.

Thankfully, for pseudo-boolean functions, i.e. functions from bitstrings
to the real numbers, these two logical operations are related by the following
equation:

xy = 1
2 ·x+ 1

2 ·y + 1
2 ·(x⊕ y) (7.19)

This equation is easy to check just by trying all of values of x, y ∈ {0, 1}.
There is a deeper reason why this (and many related) equations hold, related
to the Fourier transform of a pseudo-boolean function. We’ll see more
about that in Chapter 9. For now, we can see that this is exactly what we need
to show that the two expressions for the Hadamard gate, equations (7.17)
and (7.18), agree.

This trick of replacing a Hadamard gate with phase gadgets will work for
any number of Hadamard gates in a circuit. Hence, for any circuit written
in the Clifford+phase gate set, we can transform it into a phase polynomial
circuit, at the cost of introducing some ancillae and post-selections:

α

β

γ

=

α

β

γ

π
2

π
2

−π
2

π
2

π
2

−π
2

(7.20)

The procedure for computing the path sum expression off of a circuit
with CNOT, phase, and Hadamard gates can therefore be derived from the

270 Universal circuits

simpler one used for CNOT+phase circuits. We start labelling wires with
parities as before, but as soon as a Hadamard gate is encountered, we replace
the label with a new, fresh path variable. We then add 3 new terms to the
phase polynomial and sum over the path variable.

Example 7.1.1 Doing this procedure with the circuit of Eq. (7.20) we see
that we get the path sum

|x, y, z⟩ 7→
∑
h1,h2

ei(αx+βh1+γh1⊕z+ϕH(x⊕y,h1)+ϕH(h1,h2))|x, h2, h1 ⊕ z⟩

where ϕH(a, b) = π
2 (a+ b− a⊕ b) is the phase polynomial that is added by

a Hadamard.

Remark 7.1.2 The physicists among you might be thinking: “hmm, a sum
over paths you say, that sounds familiar.” And indeed they would be right.
The path sums we are using here are exactly a discretised version of the
Feynman path integrals that feature so prominently in quantum mechanics.
Just like how we can view a quantum particle as evolving over a superposition
of paths that interfere together, so we can view a quantum computation as
evolving a computational basis state |x⃗⟩ through a superposition of paths
towards the final outcome.

Exercise 7.3 We know of course that two Hadamards in a row form the
identity.

a) Write down the path sum of a single-qubit circuit containing two Hadamards.
b) Figure out how you could prove from this expression that this is equal to

the identity.

Solution: .

|x⟩ 7→
∑
y1y2

(−1)x·y1(−1)y1·y2 |y2⟩ (7.21)

Note first that (−1)y1·(x1+y2) = (−1)y1·(x1⊕y2). There are then two possibili-
ties for the value of the innermost sum. Either, x1 ⊕ y2 = 1, in which case
it evaluates to

∑
y1(−1)y1·1 = 1 + −1 = 0 so that this term vanishes; or

x1 ⊕ y2 = 0, in which case
∑
y1(−1)y1·0 = 1 + 1 = 2. Hence, the only term

that survives in the pathsum (7.21) is where x1 ⊕ y2 = 0, so that y2 = x1.
It hence simplifies to

∑
y2 2δx1y2 |y2⟩ = 2|x1⟩. The factor of 2 comes from

ignoring the normalisation of the Hadamards.
End Solution .

7.2 Circuit synthesis and path sums 271

7.2 Circuit synthesis and path sums
In the previous section we’ve seen how to convert a circuit into a phase
polynomial or path sum expression. Now we will see how we can go back
and get a circuit back out again.

First of all, why would we want to do this? The obvious first application
for this is circuit optimisation. Namely, we can start with a circuit, compute
its path sum expression, then re-synthesise a (hopefully smaller!) circuit that
implements the same unitary. We have already met this simplify-and-extract
methodology with CNOT circuits in Section 4.2, and we’ll meet it again
a couple more times in this book. We saw an instance of this already in
passing from circuit (7.4) to the smaller circuit (7.6). This was a simple
example, so we were able to find a smaller circuit implementing the same
phase polynomial in an ad hoc way before. In Section 7.2.1 we will explore
some algorithms for this which work for any phase polynomial.

For general path sum expressions there is no known efficient algorithm
for turning it back in a circuit. We will however in Section 7.2.2 consider
a specific example where we can make it work. This actually brings us to
the second application for constructing circuits from these expressions: it
allows you to build new circuits from a higher-level description of the circuit
behaviour. In Chapter 9, we’ll look at this in more detail and see how, thanks
to a bit of boolean Fourier theory, we can build circuits in the Clifford+phase
gate set implementing arbitrary classical functions on quantum data using
phase polynomials and the circuit synthesis techniques from this section.

7.2.1 Synthesis from phase polynomials

Just like how we were able to commandeer the phase-free simplification
algorithm from Chapter 4 to simplify CNOT+phase circuits, we can (essen-
tially) repurpose the phase-free extraction algorithm for the parity form of a
ZX-diagram to extract CNOT+phase circuits from the phase gadget form.

Recall that a ZX-diagram in parity form looks like a row of Z-spiders
connected to a row of X-spiders, e.g.

From this form, we can associate a biadjacency matrix:1 1 0
1 0 1
0 0 1

272 Universal circuits

and performing Gauss-Jordan reduction of this matrix gives us a CNOT
decomposition, where each CNOT operations corresponds to a primitive
column operation:

=

=

= =

Now, suppose we generalise from the parity form to the phase gadget form,
i.e. we add some phase gadgets connected to the input Z-spiders:

α β

(7.22)

This describes a unitary with phase polynomial expression:

U :: |x1x2x3⟩ 7→ eiα·(x1⊕x2)+β·(x2⊕x3)|x1 ⊕ x2, x1 ⊕ x3, x3⟩ (7.23)

The first thing we realise from inspecting (7.22) is that most of the diagram
is already in parity form, except for the two phases themselves:

α β

=

α

β

Writing down the biadjacency matrix, we see that we now get a tall, skinny
matrix, with some extra rows at the beginning corresponding to phase gad-

7.2 Circuit synthesis and path sums 273

gets:

1 1 0
0 1 1
1 1 0
1 0 1
0 0 1

(7.24)

Just like before, precomposing with CNOTs performs primitive column op-
erations. For example, this:

1 1 0
0 1 1
1 1 0
1 0 1
0 0 1

c2:=c2+c1−→

1 0 0
0 1 1
1 0 0
1 1 1
0 0 1

corresponds to this equation of ZX-diagrams:

α

β

=

α

β

But note that the α phase is now attached to a 1-legged phase gadget, i.e.
an identity X-spider. So, we can use spider fusion to pull it out:

α

β

=
α

β

=

β
α

The reason we could do that, is because our primitive column operation
turned one of the rows above the line in matrix (7.24) into a unit vector.
Since this means that phase gadget is now 1-legged, we can always pull it
out to become a Z phase gate. The remaining bit of the diagram in phase
gadget form then has a biadjancency matrix obtained by deleting the first

274 Universal circuits

row:

1 0 0
0 1 1
1 0 0
1 1 1
0 0 1

del(r1)−→

0 1 1
1 0 0
1 1 1
0 0 1

We can now create a unit vector in the first row by adding the second column
to the third column:

0 1 1
1 0 0
1 1 1
0 0 1

c3:=c3+c2−→

0 1 0
1 0 0
1 1 0
0 0 1

Again, the phase gadget turns into a simple Z phase gate, which we can pull
out to the left:

β
α

=

β
α

= β

α

=
α

β

Now that we have no phase gadgets left, there is nothing above the line in our
biadjacency matrix, so we finish off by doing normal Gaussian elimination:

0 1 0
1 0 0
1 1 0
0 0 1

del(r1)−→

1 0 0
1 1 0
0 0 1

 c1:=c1+c2−→

1 0 0
0 1 0
0 0 1

7.2 Circuit synthesis and path sums 275

This then yields as a final circuit:

α β

=
α

β

We can check our work by labelling wires with parities:

α

β

x1

x2

x3

x1 ⊕ x2

x2
x2 ⊕ x3

x1⊕x2

x1⊕x3

x3

Comparing this labelled circuit to the phase polynomial expression in equa-
tion (7.23), we see that we have indeed synthesised a correct circuit for this
unitary.

Hence, the general algorithm for synthesising a circuit from a phase poly-
nomial expression for a unitary U is the following:

1. Form a block diagonal matrix over F2 whose columns are labelled by
input variables x1, . . . , xn, where:

• the first k rows correspond to the k terms in the phase polynomial,
with a 1 in column i iff xi appears in that term, and

• the last n rows correspond to the parity map describing U ’s action
on basis states.

2. Perform primitive column operations (i.e. CNOT gates) until one of the
first k rows is reduced to a unit vector with a 1 in column j

3. Apply a phase gate to the j-th qubit and delete the unit vector.
4. Repeat from step 2 until the top block of the parity matrix is empty.
5. Synthesise a CNOT circuit corresponding to the remaining n rows.

Note that step 2 will always succeed: we can reduce any non-zero row to
a unit vector using primitive column operations, and since steps 2-4 always
remove a row, the algorithm will terminate. However, just as we saw in the
CNOT case, the size of the resulting circuit is very sensitive to which column
operations are performed and in which order. In fact, here we have two
kinds of decisions to make: which rows to eliminate first, and which column
operations should be used to eliminate a given row?

The answer to these questions will depend on what our goals are. Namely,
do we want to choose operations to minimise the depth of the circuit or just

276 Universal circuits

the CNOT count? Or maybe it could be beneficial on our architecture to do
as many phase gates in parallel as possible.

For the remainder of this section, we will discuss some heuristics for
achieving these goals.

[TODO: say something about NP-hardness of optimal solutions? I think
it’s important to communicate that this problem is expected to be hard.
However, the actual known hardness result is a bit subtle, and restricted to
special cases.]

It may also be the case that we cannot apply CNOT gates between arbi-
trary pairs of qubits, but only nearest neighbours in our architecture. We
discuss how to deal with this in the References of this chapter. [TODO:
Add references about routing]

[TODO: Write about Independent set partitioning? Gray codes?]

7.2.2 Quantum Fourier transform

While it is possible to efficiently extract a circuit from a phase polynomial
description, doing the same from a path-sum description is still an open
problem. For certain special cases we can try to make it work just by using
raw brainpower.

In this section we will find a circuit for the Quantum Fourier trans-
form based on its description as a path sum. Recall that this unitary is
for instance the magic trick that makes Shor’s algorithm work. In general,
for a d-dimensional space Cd we define its Fourier transform as follows. Let
|0⟩, . . . , |d− 1⟩ be the standard basis states. Then

QFT :: |x⟩ 7→ 1√
d

d−1∑
y=0

e
2πi

d
xy|y⟩.

For instance, when d = 2 we get |x⟩ 7→ 1√
2
∑
y e

iπxy|y⟩, which is exactly
the Hadamard. We will be interested in the case where d = 2n, so that
the space corresponds to n qubits. We should read the expression xy then
as multiplying the numbers x, y ∈ {0, . . . , 2n − 1}, not as taking the inner
product of two bit strings. But since we do like thinking about bit strings,
let’s define a translation. For a bit string x⃗ ∈ Fn2 , define b(x⃗) := 2n−1x1 +
2n−2x2 + · · · + 20xn. Then we can write the n-qubit QFT as follows:

|x⃗⟩ 7→ 1√
2n

∑
y⃗∈Fn

2

e
2πi
2n b(x⃗)b(y⃗)|y⃗⟩. (7.25)

Exercise 7.4 In this exercise we will use the path-sum formalism to find
a circuit implementing the n-qubit QFT.

7.2 Circuit synthesis and path sums 277

1. To compile the QFT unitary to a quantum circuit, we will need to know
first how to compile controlled phase gates. These are unitaries that act
like |x1, x2⟩ 7→ eiαx1·x2 |x1, x2⟩. Using phase polynomials and the identity
x · y = 1

2(x + y − x ⊕ y) show that the following circuit implements a
controlled phase gate:

α
2

α
2

−α
2

(7.26)

2. For n = 2, expand the definition of b in Eq. (7.25) to write the phase
polynomial as a product of eiαxkyl terms. Argue that the x1y1 term can
be removed without changing the resulting map.

3. Using the path-sum approach, show that the following circuit imple-
ments the 2-qubit QFT, by verifying that it is equal to the expression
you derived above:

π
4

π
4

−π
4

(7.27)

Note that you might need to ‘rename’ the variables y you are getting
out of an application of a Hadamard gate to make sure it matches the
expression you had above.

4. Now for n = 3, again expand the definition of b in Eq. (7.25) to write the
phase polynomial as a product of eiαxkyl terms and remove the terms
that you can remove. Construct a circuit to implement the 3-qubit QFT.

5. Give a recipe for constructing the n-qubit QFT for any n.

Solution: .

1. The path sum you get is |x, y⟩ 7→ ei
α
2 (x+y−x⊕y)|x, y⟩. Using the identity

as listed shows this is a controlled phase gate.
2. The phase term becomes iπ2 (4x1y1 + 2x2y1 + 2x1y2 + x2y2). The x1y1

has weight 2π and hence can be removed without changing the phase
function, as 2π ≡ 0.

3. Straightforward, but the path-variable you introduce for the first Hadamard
should be y2, and for the second one you should introduce y1.

4. We get the phase function iπ4 (4x1y3+4x2y2+2x2y3+4x3y1+2x3y2+x3y3)
after removing the trivial terms. The terms with weight π

4 · 4 = π

correspond to Hadamards. This implies we get a Hadamard on qubit
1 that introduces variable y3, a Hadamard on qubit 2 that introduces
variable y2, and a Hadamard on qubit 3 that introduces variable y1.

278 Universal circuits

The remaining terms are then controlled phase gates. We put this in an
order on the circuit so that all the terms are reached.

5. For n qubits, put a Hadamard on the first qubit and call the new path
variable yn. Then do controlled phase gates to every other qubit k corre-
sponding to the phase terms ei

2π
2n 2n−kyn·xk . Then apply a Hadamard on

qubit 2, corresponding to path variable yn−1. Add controlled phase gates
to every qubit k > 2, corresponding to the phase terms ei

2π
2n 2n−k+1yn−1·xk .

Carry on with this pattern, adding a Hadamard on each qubit j, and
then putting controlled phase gates to every qubit k > j below it with
weight 2π2−k+j . Finally, do a SWAP that maps qubit j to n− j.

End Solution .

7.3 Pauli exponentials
Now we will switch to a very different way of looking at universal quantum
circuits. Not as a series of logic gates that create branches of computational
basis states and evolve these with phase polynomials, but as a series of
applications of rotations around Pauli gates.

7.3.1 Unitaries from Pauli boxes

In Chapter 6, we introduced Pauli boxes, which gave us a way to wrap up
the pair of projectors coming from a Pauli measurement into a single object.
We also saw in Exercise 6.8 that these are special case of measure boxes,
which can represent an arbitrary (2-outcome) measurement using a single
map satisfying the following properties:

M = M
M

= M M =
M

()†

These three conditions are equivalent to the condition that the following
forms a measurement:

M :=
{

M
kπ
}
k

So, we get a measurement when plugging in X spiders into the control
wire. Here’s a (seemingly) random question: what happens if we plug in Z
spiders? To find out, lets see what happens when we form a linear map L as
follows:

L := M
α

7.3 Pauli exponentials 279

Thanks to the third property of measure boxes, we have:

L† = M†-α
=

M

-α

M
-α

=

Using the other two properties:

L†L = M
-α

M
α

= M -α

α

= M = = I

and similarly, LL† = I. So L is a unitary!

Proposition 7.3.1 For any self-adjoint Pauli string P⃗ , the following map:

P⃗..
.

..
.

α

(7.28)

is a unitary.

Proof Follows immediately from the fact that Pauli boxes are measurement
boxes, as shown in Exercise 6.8.

Let’s expand out what is in the Pauli box to see what these unitaries from
Proposition 7.3.1 actually look like. Recall from Definition 6.2.3 that

P1

Pn

..
.

P2P⃗..
.

..
. :=

√
2
n−1

where

I X:= :=

Y
π
2:= -π

2 Z :=

1√
2

280 Universal circuits

Hence, for the special case of P⃗ = Z ⊗ · · · ⊗ Z we get:

Z · · ·Z..
.

..
.

α

∝
Z

Z

..
.

Z

α

=

..
.

α

(7.29)

We get phase gadgets! For a general unitary built from Pauli boxes, we can
adapt Eq. (6.8): for any Pauli string P⃗ = P1 ⊗ . . .⊗ Pn with Pi ∈ {X,Y, Z},
we have:

P⃗..
.

..
.

α

∝

..
.

U1

U2

Un

U†
1

U†
2

U†
n

α

where Ui =

if Pi = X

-π
2 if Pi = Y

if Pi = Z

(7.30)
The general case can be obtained by additionally representing any Pi = I

by simply not connecting to the i-th qubit.
The unitaries built from Pauli boxes in this way hence generalise phase

gadgets: they are just phase gadgets surrounded by some particular single-
qubit Cliffords. We will call such unitaries Pauli exponentials. As the name
suggests, we can view these unitaries as special cases of matrix exponentials,
which we’ll introduce in the next section.

7.3.2 Matrix exponentials

We first mentioned matrix exponentials back in Section 2.2.3 as a means
of constructing solutions to the Schrödinger equation, but avoided giving a
formal definition. We’ll do that now.

At this point, we should be pretty used to raising e to the power of a
complex number z. For instance, when z = iα is imaginary, this is how to
obtain phases. If we crack open a textbook on complex analysis, we’ll see
that ez for any complex number is defined as the following power series:

ez :=
∞∑
k=0

zk

k!

7.3 Pauli exponentials 281

Swapping out the complex number z for a square matrix A gives us a
definition for the matrix exponential:

eA :=
∞∑
k=0

Ak

k! . (7.31)

Here the powers Ak are just multiplying A with itself k times, and in partic-
ular A0 = I is the identity matrix.

There are a few things we should know about matrix exponentials. The first
is that if we are working with a diagonal matrix, then its matrix exponential
is just the exponential of each of its components:

ediag(a1,...,an) = diag(ea1 , . . . , ean). (7.32)

This works because, when we raise a diagonal matrix to a power k, it just
goes inside:

ediag(a1,...,an) =
∞∑
k=0

diag(a1, . . . , an)k

k! =
∞∑
k=0

diag(ak1, . . . , akn)
k!

= diag
(∑

k
ak

1
k! , . . . ,

∑
k
ak

n
k!

)
= diag(ea1 , . . . , ean)

The second thing we need to know is that conjugation by a unitary com-
mutes with exponentiation:

eUAU
† =

∞∑
k=0

(UAU †)k

k! =
∞∑
k=0

UAkU †

k! = UeAU †. (7.33)

With these facts we can easily compute the matrix exponential of any diag-
onalisable matrix. Let A be a matrix with diagonalisation A =

∑
j λj |ϕj⟩⟨ϕj |

for some ONB {|ϕj⟩}. Write U =
∑
j |ϕj⟩⟨j| for the unitary that maps

the computational basis {|j⟩} into the eigenbasis {|ϕj⟩} of A, and write
D =

∑
j λj |j⟩⟨j| = diag(λ1, . . . , λn) for the diagonal matrix of eigenvalues of

A. Then we have A = UDU †. Hence, we calculate eA = eUDU
† = UeDU †.

As eD is the exponential of a diagonal matrix, it is easily calculated and so
we get an easy expression for eA, simply by multiplying out the matrices of
its diagonalisation.

There is one final property of the matrix exponential we will be interested
in. Remember that for regular complex numbers z1 and z2 we have ez1+z2 =
ez1ez2 . The same holds for the matrix exponential as long as the matrices
commute. That is, if we have matrices A and B that commute, then eA+B =
eAeB. When A and B allow diagonalisations, this is easily proven, as we

282 Universal circuits

can then find a joint diagonalisation, and reduce the problem to diagonal
matrices.

Proposition 7.3.2 Let A and B be commuting square matrices. Then
eA+B = eAeB = eBeA. In particular I = e0 = eA−A = eAe−A so that
(eA)−1 = e−A for any matrix A.

When A and B do not commute, we generally have eA+B ̸= eAeB. In fact,
studying ways to approximate the value of eA+B using just eA and eB is
incredibly important for simulating quantum mechanical systems using a
quantum computer. We’ll study this problem in more detail in Section 7.5.

7.3.3 Building unitaries as exponentials

With this mathematical machinery of matrix exponentials in hand, let’s look
at how it can help us understand unitary maps. Suppose we have some n-
dimensional unitary U . As discussed in Section 2.1.3, a unitary is a normal
linear map and hence can be diagonalised: U =

∑
j λj |ϕj⟩⟨ϕj |. Using the

description above we can then also write this as U = V DV † where V is
some unitary and D is some diagonal matrix consisting of the eigenvalues
of U . Now remember that all the eigenvalues of a unitary are phases so that
λj = eiαj for some phases αj . This means that D is a matrix of exponentials.
In the previous section we saw that the exponential of a diagonal matrix is a
matrix of exponentials. The converse is however also true. We can hence write
D = eiD

′ where D′ = diag(α1, . . . , αn). We have here taken out the factor
of i out of the matrix for reasons that will become clear soon enough. So
now we have U = V eiD

′
V †. We can take this conjugation by V inside of the

matrix exponential to get U = eiH where H = V D′V †. Now the eigenvalues
of H are precisely the values in D′, which are real numbers. As we saw in
Exercise 2.4 a matrix whose eigenvalues are real numbers is self-adjoint. We
hence have proven the following result.

Proposition 7.3.3 Any unitary U is the complex exponential of some
self-adjoint matrix H via U = eiH .

Note that H is not unique: we can add 2πI to it and still get the same
result: ei(H+2πI) = eiHei2πI = eiH . Here in the last step we used e2iπ = 1. In
fact, adding any multiple of the identity to H just changes the global phase
of U , and so we don’t care about it.

The converse of Proposition 7.3.3 is also true: if we take some self-adjoint
matrix H, then eiH is unitary (This follows from Exercise 2.4, as the eigen-
values of eiH will all be complex phases). This gives us a way to construct

7.3 Pauli exponentials 283

unitaries. In fact, given a self-adjoint H, it will be useful to consider the
entire family of unitaries constructed by rescaling H: for any t ∈ R we have
that eitH is unitary. We use the letter t here, as this gives the elapsed time
in the Schrödinger equation.

Example 7.3.4 Let Z = diag(1,−1) be the standard Pauli Z. Then for
any t ∈ R we calculate eitZ = diag(eit, e−it) = eit diag(1, e−2it). So we see
that

eitZ ∝ Z(−2t). (7.34)

In particular, the S and T gates can be written (up to global phase) as
S ∝ e−iπ

4Z and T ∝ e−iπ
8Z . It is for this reason that in some works the T

gate is also called the π
8 phase gate.

Example 7.3.5 For the Pauli X gate we can easily calculate its matrix
exponential by realising that X = HZH† (of course H† = H, but it will
be useful to write it like this) and using Eq. (7.33): eitX = eitHZH

† =
HeitZH† ∝ HZ(−2t)H† = X(−2t), where we used Eq. (7.34) to convert the
Z exponential into a Z phase gate. Hence, the exponentiated X matrices
correspond to X phase gates. It is interesting however to see how you would
calculate this directly using the definition of the matrix exponential (7.31).
The trick is to observe that X2 = I, which allows us to split the infinite sum
into two parts:

eitX

(7.31)

=
∞∑
k=0

(itX)k

k! =
∞∑
n=0

i2nt2nX2n

(2n)! +
∞∑
n=0

i2n+1t2n+1X2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n t2n

(2n)!I + i
∞∑
n=0

(−1)n t2n+1

(2n+ 1)!X

= cos(t)I + i sin(t)X

Here in the last step we used the standard Taylor series equality for sin and
cos.

In this direct calculation of the matrix exponential of the Pauli X we
actually only used that X2 = I, and nothing else, so this calculation works
for any matrix with this property. As this is actually quite useful, let’s record
this for later.

Proposition 7.3.6 Let M be any matrix for which M2 = I. Then eitM =
cos(t)I + i sin(t)M .

284 Universal circuits

7.3.4 Pauli exponentials

Now that we can understand any unitary as a matrix exponential, let’s zoom
in a bit and take a look at Pauli exponentials. The Examples 7.3.4 and 7.31
show that we can view the Z and X phase gates as exponentials of Pauli
matrices. It turns out that this holds for essentially all unitaries if we do
the same with multi-qubit Pauli strings. A Pauli string P⃗ is just a tensor
product of single-qubit Paulis P⃗ = eiαP1 ⊗ · · · ⊗ Pn where Pi ∈ {I,X, Y, Z}
and α ∈ R is some global phase. Since we want to take exponentials of
these to construct unitaries, we want P⃗ to be self-adjoint, which requires
eiα ∈ {1,−1}.

Definition 7.3.7 A Pauli exponential is any unitary of the form:

e±iθP1⊗···Pn

where the Pj ∈ {I,X, Y, Z} are Paulis and θ ∈ R is a phase.

Here we write θ instead of t, because we will be thinking of this as an
angle in a rotation, instead of an elapsed time.

Using Proposition 7.3.6 we calculate:

e±iθP1⊗···Pn = cos(θ)I ⊗ · · · ⊗ I ± i sin(θ)P1 ⊗ · · ·Pn. (7.35)

Using this, we see that an identity in a Pauli string makes the Pauli
exponential act as an identity on that qubit:

e±iθI⊗P = cos(θ)I ⊗ I ± i sin(θ)I ⊗P = I ⊗ (cos(θ)I ± i sin(θ)P) = I ⊗ eiθP .

(7.36)
We can use this to calculate a circuit that implements any Pauli expo-

nential using gates we have already encountered. Before we do that in full
generality it will be useful to consider a specific example.

Example 7.3.8 Let’s calculate what unitary eiθZ⊗Z is. First, let’s do it
directly. Note that Z ⊗Z = diag(1,−1,−1, 1). Then using Proposition 7.3.6
we get

eiθZ⊗Z = cos(θ)I ⊗ I + i sin(θ)Z ⊗ Z

= cos(θ) diag(1, 1, 1, 1) + i sin(θ) diag(1,−1,−1, 1)
= diag(eiθ, e−iθ, e−iθ, eiθ).

Here in the last step we used e±iθ = cos(θ) ± i sin(θ).
Now, let’s calculate this in a more systematic way. Note that Z ⊗ Z =

7.3 Pauli exponentials 285

CNOT(I ⊗ Z)CNOT† (see Section 6.1.1). Hence:

e±iθZ⊗Z = e±iθ CNOT(I⊗Z)CNOT† (7.33)= CNOT e±iθI⊗Z CNOT†

(7.36)= CNOT(I ⊗ e±iθZ)CNOT† (7.34)
∝ CNOT(I ⊗ Z(∓2θ))CNOT†

= diag(1, e∓2θe∓2θ, 1).

This last matrix is indeed equal to what we got before, up to global phase.

The expression we got in this example, CNOT(I⊗Z(∓2θ))CNOT consists
only of gates we have already encountered, and that we can in particular
write as a ZX-diagram:

e±iθZ⊗Z ∝ ∓2θ

It is also a phase gadget! This in fact remains true if we add more qubits,
by realising that a CNOT ladder sends Z ⊗ · · · ⊗ Z to Zn:

π

· · ·
· · ·

...

π

...
π

π

π
∝ ⇝ ei±θZ⊗···⊗Z =

∓2θ

· · ·
· · ·

...

(7.37)
By Exercise 7.2 such CNOT ladders with a phase in the middle are phase
gadgets. As the unitaries we constructed from Pauli boxes also were phase
gadgets, we see that we can now relate them:

e−iα
2 Z···Z ∝

Z · · ·Z..
.

..
.

α

=

..
.

α

(7.38)

For a more general Pauli string P⃗ = P1 ⊗ . . .⊗Pn with Pi ∈ {X,Y, Z} we can
use the fact that the Ui from Eq. (7.30) satisfy Pi = UiZU

†
i to then write any

Pauli exponential as a unitary from a Pauli box: setting U = U1 ⊗ · · · ⊗ Un
we have P⃗ = UZ · · ·ZU †, and hence

e−iα
2 P⃗ = Ue−iα

2 Z···ZU † ∝
Z · · ·Z..

.

..
.

α

U†
1

U†
n

U1

Un

=
P⃗..

.

..
.

α

286 Universal circuits

Hence:

e−iα
2 P⃗ ∝

P⃗..
.

..
.

α

(7.39)

It will be helpful to introduce some shorthand for eiθP⃗ . For Z and X

phase gates we have been writing Z(α) for a phase rotation over α. We have
also seen that eiθZ ∝ Z(−2θ), or in other words that Z(α) ∝ e−iα/2Z . This
suggests the following notation for any Pauli string P⃗ :

P⃗ (α) := ei
α
2 e−iα

2 P⃗ . (7.40)

Here we have included a global phase for good measure, so that Z(α) and
X(α) match exactly to the definition of those phase gates that we were using
before. For a multi-qubit Pauli string we will again adopt the shorthand
of not writing the tensor product symbol ⊗. So we will for instance write
ZZ(α) for the unitary eiα/2e−iα/2Z⊗Z .

Note that replacing P⃗ by −P⃗ in a Pauli exponential is equivalent to
flipping the phase of the exponential: eiθ(−P⃗) = e−iθP⃗ . Hence, in the definition
Eq. (7.40) we get [(−1)kP⃗](α) ∝ P⃗ ((−1)kα).

For the future let’s record some useful facts now that we have this cor-
respondence between Pauli exponentials and Pauli boxes. First, we can
represent any Pauli exponential using just a small number of standard gates.

Proposition 7.3.9 Let P⃗ be any n-qubit Pauli string. Then we can repre-
sent eiθP⃗ as a circuit of at most 4n−1 gates of type CNOT, H,X(π2), X(−π

2),
and Z(−2θ).

Second, we see a Pauli exponential is Clifford iff its phase is Clifford.

Proposition 7.3.10 A Pauli exponential P⃗ (α) for a non-trivial P⃗ is Clif-
ford iff α = k π2 for some k ∈ Z.

The condition on ‘non-trivial’ here is necessary since the trivial Pauli
exponential eiθI is of course just the identity gate up to global phase for any
θ.

7.4 Pauli exponential compilation
Now that we know a bit about Pauli exponentials, let’s see how they help
us think about quantum circuits and compilation.

7.4 Pauli exponential compilation 287

7.4.1 Pauli exponentials are a universal gate set

We have already seen that Z and X phase gates can be represented as Pauli
exponentials. This means in particular that any single-qubit unitary can be
represented as a composition of Pauli exponentials. We know that single-
qubit unitaries together with the CNOT gate form a universal gate set, so
if we can show that the CNOT gate can be built out of Pauli exponentials,
then we know that all unitaries are just compositions of Pauli exponentials.

It will in fact be easier to look at the CZ gate. Remember that the CNOT
is just a CZ conjugated by Hadamards on the target qubit:

(3.50) (3.50)
= =

As a Hadamard is just a series of Z and X phase gates, which are Pauli
exponentials, it then indeed remains to look at the CZ.

Lemma 7.4.1 The CZ gate is a composition of Pauli exponentials:

∝
π
2

π
2

−π
2 ∝ Z1

(
π

2

)
Z2

(
π

2

)
ZZ

(
−π

2

)

Proof For the ZX-diagram equality use Eq. (3.83) of Exercise 3.14, spider
fusion (sp) and then the Euler decomposition (eu) of the Hadamard. That
this diagram is indeed the sequence of Pauli exponentials follows because a
phase gadget is just a ZZ Pauli exponential.

Theorem 7.4.2 Pauli exponentials form a universal gate set. Or in other
words, any n-qubit unitary can be written as a composition of Pauli expo-
nentials.

Proof Z and X phase gates are Pauli exponentials (see Examples 7.3.4
and 7.3.5). These gates generate all single-qubit unitaries. Combining this
with the CZ gate gives a universal gate set, and this CZ can also be written
as a Pauli exponential by the previous lemma.

Remark* 7.4.3 There is a more ‘abstract nonsense’ argument for why you
should be able to construct any unitary by composing Pauli exponentials.
The n-qubit unitaries form a Lie group, a group that is also a differen-
tiable manifold in an appropriate way. When we have a continuous family
of unitaries we can take its derivative to get an associated matrix, which in
this case will be a self-adjoint one. This is in fact the matrix exponentiation
we have been looking at: given a self-adjoint matrix H, we get a family of
unitaries via eitH , and taking the derivative of the function t 7→ eitH gives

288 Universal circuits

you back H (or well, actually iH, but this is just the physicist convention;
mathematicians please don’t get angry at us). All of this is to say that the
self-adjoint matrices form the Lie algebra of the group of unitaries. Now,
there is a result (see the References of the chapter) that says that if we have
a basis of the Lie algebra H1, . . . ,Hk, that then the associated families of
Lie group elements eitH1 , . . . , eitHk generate the entire (connected part of
the) Lie group, meaning that we can write any Lie group element as a finite
combination of elements from these families. It just so happens that the
Paulis form a basis of the n-qubit self-adjoint matrices, and hence the Pauli
exponentials generate the n-qubit unitaries!

7.4.2 Compiling to Pauli exponentials

Theorem 7.4.2 gives one way to write a quantum circuit as a series of Pauli
exponentials, but if we are interested in doing this with a small number
of these, it doesn’t do a very good job. There is in fact a more interesting
way to transform a circuit into Pauli exponentials, which also has practical
relevance in quantum compilation (see the References for this chapter).

To do this we need to use what we learned in the previous chapter. There
we saw that pushing a Clifford unitary U through a Pauli P⃗ gives you another
Pauli: P⃗U = UQ⃗ for some Q⃗. Now, in Eq. (7.33) we saw that conjugating
a matrix exponential is the same thing as exponentiating the conjugated
matrix. This can be recast as a way to commute a unitary through a matrix
exponential:

eAU = UU †eAU

(7.33)

= UeU
†AU . (7.41)

So if our matrix A is actually a Pauli P⃗ , and our unitary U is a Clifford,
then we can push the Clifford through the Pauli exponential to get another
Pauli exponential:

eiθP⃗U = UeiθU
†P⃗U = UeiθQ⃗ (7.42)

Example 7.4.4 Suppose our Pauli exponential is just e−iθZ2 and that we
want to push a CNOT through it. In terms of ZX-diagrams this becomes:

e−iθZ2 CNOT ∝
2θ

∝
2θ

∝
(7.16)

2θ

∝ CNOT e−iθZ⊗Z

How does Eq. (7.42) help us? Well, it helps us if we put on a different
pair of glasses and view our circuit not as being given by X and Z phase

7.4 Pauli exponential compilation 289

gates and CZ/CNOT gates, but instead view it as consisting of Clifford
gates and non-Clifford gates. With this perspective we consider CZ, CNOT,
Hadamard, S and X(π2) gates to all be of the same sort, namely Clifford,
while the other class of gates contains any Z(α) and X(α) where α is not
a multiple of π

2 . These non-Clifford phase gates we can then view as Pauli
exponentials (which are only acting on a single qubit). So wearing these
glasses we see the circuit as a series of Clifford gates and Pauli exponentials,
where each Pauli exponential corresponds to a non-Clifford phase gate:

U = U1e
iθ1P⃗ 1

U2e
iθ2P⃗ 2 · · ·UkeiθkP⃗

k
Uk+1. (7.43)

Here each of the Clifford unitaries Uj can consist of multiple basic Clifford
gates like CNOT, S and H.

Now let’s pick the first non-Clifford Pauli exponential in this circuit eiθ1P⃗ 1

and push it through U1 using Eq. (7.42) to get:

eiθ1Q⃗1
U1U2e

iθ2P⃗ 2 · · ·UkeiθkP⃗
k
Uk+1.

Here Q⃗1 = U †
1 P⃗

1U . We then push eiθ2P⃗ 2 through both U2 and U1 and so on,
until finally we get the circuit:

eiθ1Q⃗1
eiθ2Q⃗2 · · · eiθkQ⃗

k
U1U2 · · ·Uk+1. (7.44)

The circuit now has a very different structure! We see that each non-Clifford
phase gate in the original circuit, which we saw as single-qubit Pauli expo-
nentials, is transformed into some other Pauli exponential, which can now
act on any number of qubits. All the Clifford gates of the original circuit are
still present here, but are now pushed all the way to the end. In Chapter 5
we saw how to optimise Clifford circuits, and in particular that those circuits
can be reduced to a normal form whose maximal size only depends on the
number of qubits (Proposition 5.3.12).

This structure is useful for a variety of reasons that we’ll explore in this
chapter, so let’s give a name to it.

Definition 7.4.5 We say a circuit is in Pauli exponential form when
it consists of a series of Pauli exponentials followed by a Clifford circuit.

We’ll often shorten this to PE form or say it is a PE circuit.

Proposition 7.4.6 A circuit consisting of Clifford gates and k non-Clifford
phase gates can be efficiently transformed into a Pauli exponential form
containing k Pauli exponentials.

As a first result, this form gives us a bound on the number of gates we

290 Universal circuits

need to write down an arbitrary circuit based on the number of non-Clifford
gates it contains.

Proposition 7.4.7 Let U be an n-qubit circuit consisting of Clifford gates
and k non-Clifford phase gates. Then it can be written in the {CNOT, H, S, S†, Z(α)}
gate set using at most k(4n− 1) + 4n(n+ 1) − 1 = O(kn+ n2) gates.

Proof By Proposition 7.4.6 our circuit has k Pauli exponentials, each of
which requires at most 4n− 1 gates to write down in our gate set by Propo-
sition 7.3.9 for a total of k(4n − 1). The final Clifford circuit requires an
additional 4n(n+ 1) − 1 gates (Proposition 5.3.12).

Note that in most useful quantum computations (those that do calculations
that we can’t efficiently do classically) we will have k ≫ n, and hence the
number of gates in Pauli exponential form scales as O(kn).

Let’s zoom out a bit. Why did it make sense to view our circuit as consist-
ing of Clifford and non-Clifford gates, instead of using a more fine-grained
difference between gates? In Chapter 5 we saw that computation involving
just Clifford gates is efficiently classically simulable. The power of compu-
tation must then necessarily come from the inclusion of non-Clifford gates.
We can then interpret a circuit in Pauli exponential form as first doing the
‘actual’ quantum computation using the Pauli exponentials, which are all
non-Clifford, and then doing some final Clifford operations to ‘post-process’
the data in the right way. This analogy of Clifford operations being a type of
post-processing becomes explicit when we are working with quantum error
correcting codes. As we saw in Chapter 6, Clifford operations can often be
done natively in a quantum error correcting code and so are ‘free’ opera-
tions. This is in contrast to non-Clifford operations which often require more
complicated techniques to do fault-tolerantly.

7.4.3 Phase folding

Okay, so we can limit the number of Pauli exponentials we need to write an
arbitrary circuit. But we can do even better!

Remember from Proposition 7.3.2 that if we have two commuting matrices
A and B that then eA+B = eAeB. It will be helpful to think of this going
in the other direction as well: if we have commuting matrices, then we
can combine adjacent matrix exponentials eA and eB into a single matrix
exponential.

In particular, if we have a circuit in PE form then there will be many Pauli
exponentials eiθj P⃗

k in a row. When we then have two Pauli exponentials

7.4 Pauli exponential compilation 291

eiθkP⃗
k and eiθlP⃗

l right next to each other such that P⃗ k and P⃗ l commute
we can combine them into a single exponential. This is especially helpful if
P⃗ k = P⃗ l =: P⃗ . Then we get:

eiθkP⃗
k
eiθlP⃗

l = eiθkP⃗
k+iθlP⃗

l = ei(θk+θl)P⃗

With the notation of Eq. (7.40) we can write this as P⃗ (α)P⃗ (β) = P⃗ (α+ β).
Using Pauli boxes we can write this as:

α

...

P1

P2

Pn

β

...

P1

P2

Pn

=

α

...

P1

P2

Pn

β

(sc)

∝

α

...

P1

P2

Pn

β

(sp)

=

α + β

...

P1

P2

Pn

6.2.7 (7.45)

However, the Pauli exponentials we want to combine into one might not
be next to each other, as there might be other exponentials in the way. But
remember also from Proposition 7.3.2 that if A and B commute, that then
eA and eB will commute as well. So if two Pauli strings commute, then the
associated exponentiated Paulis will commute as well:

P⃗ Q⃗ = Q⃗P⃗ ⇐⇒ P⃗ (α)Q⃗(β) = Q⃗(β)P⃗ (α)

So using this we can move exponentials out of the way in order to combine
the ones we want.

Example 7.4.8 Consider the following circuit:

ZZ(α) XX(β) ZZ(γ)

X(δ)

ZZ(ϕ)

XX commutes with ZZ, and hence we can combine the ZZ(α) and ZZ(γ),
by moving the XX(β) out of the way. However, we can’t combine these with
ZZ(ϕ) as there is an X1(δ) in the way that does not commute with the ZZ
phases (in general of course: if δ = 0 then we can ignore that gate, and if
δ = π, then it is a Pauli X that we can push through the Pauli exponentials).

All of this suggests the following algorithm for reducing the number of Pauli
exponentials needed to write a circuit, which we will call phase folding.

1. Start with a circuit in PE form (Definition 7.4.5)
2. Consider the first (leftmost) Pauli exponential P⃗ (α).

292 Universal circuits

3. If there is another P⃗ (β) in the circuit, look at all the Pauli exponentials
in between P⃗ (α) and P⃗ (β). If P⃗ commutes with all of these, then com-
bine P⃗ (α) and P⃗ (β) into one P⃗ (α+ β). Do this check and combination
for all Pauli exponentials of P⃗ in the circuit.

4. Repeat the procedure for the next Pauli exponential in the circuit.
5. Check if any of the resulting Pauli exponentials is Clifford. If so, push

these Clifford ones past the Pauli exponentials as described in Sec-
tion 7.4.2, resulting in a new circuit in PE form. Repeat the algorithm.
If no Clifford Pauli exponentials were created in the previous steps, we
are done.

7.5 Hamiltonian simulation
Back in Section 2.2.3, we mentioned briefly that the time evolution of a
quantum system comes from taking the matrix exponent of a certain operator,
called the Hamiltonian, which encodes all of the physical interactions going
on. Now, suppose a physicist or an engineer hands us a Hamiltonian, and
asks us to simulate the behaviour of a quantum system it represents. Is there
a way we can do this on a quantum computer?

That is, if we start in a known quantum state |ψ⟩, can we use a quan-
tum computer to efficiently transform this state into it’s time-evolved state
e−itH |ψ⟩, then perform some measurements to learn something about it?

It turns out, if we just want to approximate e−itH |ψ⟩, the answer is yes! One
way to do this is to employ the Suzuki-Trotter method, a.k.a. Trotterization.
In our case, this will let us synthesise a circuit the approximates e−itH using
Pauli gadgets.
H is a self-adjoint operator on n qubits, so a generic H could take an

exponential amount of data to describe. Of course, in that case, we don’t
have any hope of simulating it efficiently, because even reading H will take
exponential time. Thankfully, lots of useful, physically meaningful H’s can
be written as a linear combination of Pauli strings:

H = 1
2

m∑
j=1

αmP⃗j

where m is polynomial in n. Then, if all the P⃗j commute, we’re laughing
because thanks to Proposition 7.3.2, then U(t) := e−itH splits up as a bunch
of Pauli gadgets:

e−itH = e−iαmt
2 P⃗m+...+−iα1t

2 P⃗1 = e−i tαm
2 P⃗m . . . e−i tα1

2 P⃗1

7.5 Hamiltonian simulation 293

i.e.

P⃗1

α1t

P⃗m··
· · · · ··
·

· · ·

e-itH··
·

··
· =

αmt

(7.46)

We already know how to synthesise Pauli gadgets, so we can build a nice
Clifford+phase circuit, parametrised by t, that will perform time evolution
for a generic input state. Life is good.

Unfortunately, if the Pauli strings in H don’t commute, we can’t use
Proposition 7.3.2 to turn a sum in the exponent into a product of matrix
exponents. Nevertheless, we can power on and try to decompose H as a
product of Pauli exponentials, but we might introduce some errors along the
way.

We’ll start with some Hamiltonian that is the sum of just two other
Hamiltonians: H = H1 +H2. In order to decompose its exponential into a
composition of exponentials, we would like it to be the case that:

e-itH··
·

··
· ≈

ϵ

··
·

··
·

e-itH1e-itH2 (7.47)

for some ϵ. Note that here we introduced some new notation for approxi-
mate rewriting by writing an ϵ on top of the ≈ sign. By definition, this
means:

∥e−it(H1+H2) − e−itH1e−itH2∥ ≤ ϵ

It turns out that the left-hand side is bounded by t2κ for some κ > 0, and
hence to make this smaller than epsilon we can choose t small enough such
that t2κ ≤ ϵ.

To see this is true, and to find this number κ, we will need to introduce
some new tools, and to understand these tools, we will first do a warm-up
exercise. We will prove that

∥eiA − eiB∥ ≤ ∥A−B∥

for A and B self-adjoint. Then in particular ∥e−itH1 − e−itH2∥ ≤ ∥−itH1 +
itH2∥ = |t|∥H1 −H2∥, so that in this case the ‘κ’ is ∥H1 −H2∥.

Define the matrix-valued function f(t) = eitAei(1−t)B. Then note that
f(0) = eiB and f(1) = eiA. We hence want to calculate the expression
∥f(1)−f(0)∥. Now, for some of you this might bring back very old memories,
but we will need to use the Fundamental Theorem of Calculus to help
us simplify this. Remember that this says that f(x) − f(y) =

∫ x
y f

′(t)dt

294 Universal circuits

where f ′ is the derivative of the function. This also works for matrix-valued
functions, so that we get

∥eiA − eiB∥ = ∥f(1) − f(0)∥ =
∥∥∥∥∫ 1

0
f ′(t)dt

∥∥∥∥ ≤
∫ 1

0
∥f ′(t)∥dt,

where in the last step we used a version of the triangle inequality for integrals
(which is after all just a limit of sums). So let’s calculate what f ′(t) is, which
we will do using the product rule (f1f2)′ = f ′

1f2 + f1f
′
2:

f ′(t) = (iA)eitAei(1−t)B + eitA(−iB)ei(1−t)B = ieitA(A−B)ei(1−t)B.

Here in the last step we commuted A past eitA and grouped the terms
together. Now, also recall that the norm is unitarily invariant, meaning that
∥UA∥ = ∥A∥ for any unitary U and arbitrary matrix A. As both eitA and
ei(1−t)B are unitaries, we can hence simplify the expression of the norm:
∥f ′(t)∥ = ∥eitA(A− B)ei(1−t)B∥ = ∥A− B∥. Putting it all together, we see
then that:

∥eiA−eiB∥ = ∥f(1)−f(0)∥ ≤
∫ 1

0
∥f ′(t)∥dt =

∫ 1

0
∥A−B∥dt = ∥A−B∥.

Now, for the real deal:

Exercise* 7.5 In this exercise we will show that

∥ei(A+B) − eiAeiB∥ ≤ 1
2∥[A,B]∥, (7.48)

for self-adjoint A and B, where [A,B] := AB−BA denotes the commutator
of A and B. We start by defining the function f(t) = eitAeitBei(1−t)(A+B).

1. Using the product rule and commutations of matrix exponentials, show
that f ′(t) = ieitA[A, eitB]ei(1−t)(A+B).

2. Show that hence ∥ei(A+B) − eiAeiB∥ ≤
∫ 1

0 ∥[A, eitB]∥dt.
3. Define another function g(x) = eixBAe−ixB and show that we can write

∥[A, eitB]∥ = ∥g(t) − g(0)∥.
4. By writing it as an integral, show that ∥g(t) − g(0)∥ ≤ t∥[A,B]∥.
5. Combine what you have now shown to prove that ∥ei(A+B) − eiAeiB∥ ≤∫ 1

0 t∥[A,B]∥dt = 1
2∥[A,B]∥.

Solution: .

7.5 Hamiltonian simulation 295

By the product rule and commuting A past eitA we have

f ′(t) = ieitA(A+B)eitBei(1−t)(A+B)

− ieitAeitB(A+B)ei(1−t)(A+B)

= ieitA
(
(A+B)eitB − eitB(A+B)

)
ei(1−t)(A+B)

= ieitA[A+B, eitB]ei(1−t)(A+B).

= ieitA[A, eitB]ei(1−t)(A+B).

As f(1) = eiAeiB and f(0) = ei(A+B) we get by the Fundamental Theorem
of Calculus:

∥ei(A+B) − eiAeiB∥ = ∥f(1) − f(0)∥ ≤
∫ 1

0
∥f ′(t)∥dt =

∫ 1

0
∥[A, eitB]∥dt,

where in the last step we used the unitary invariance of the norm so that we
can ignore the term eitA on the left, and ei(1−t)(A+B) on the right.

Rewriting this norm we get ∥[A, eitB]∥ = ∥[A, eitB]e−itB∥ = ∥A−eitBAe−itB∥ =
∥g(0) − g(t)∥ = ∥g(t) − g(0)∥. The derivative of g is g′(x) = ieixB(BA −
AB)e−ixB, whose norm is ∥g′(x)∥ = ∥[A,B]∥. Hence ∥g(t)−g(0)∥ ≤

∫ t
0∥g′(x)∥dx =∫ t

0∥[A,B]∥dx = t∥[A,B]∥.
Finally, plugging it all together we get

∥ei(A+B) − eiAeiB∥ ≤
∫ 1

0
∥[eitB, A]∥dt =

∫ 1

0
∥g(t) − g(0)∥dt

=
∫ 1

0
t∥[A,B]∥dt = ∥[A,B]∥(1

212 − 1
202)

= 1
2∥[A,B]∥

End Solution .
Hence, setting A := −tH1 and B := −tH2 we get

∥e−it(H1+H2) − e−itH1e−itH2∥ ≤ 1
2∥[−tH1,−tH2]∥ = 1

2 t
2∥[H1, H2]∥. (7.49)

Hence, setting κ = 1
2∥[H1, H2]∥ we have what we set out to prove!

This basic fact lets us take a Hamiltonian written in terms of Pauli
strings, and “peel off” the Pauli exponentials, one-by-one. That is, for
H = 1

2
∑
k αkP⃗k, there exist some constants κ1, . . . , κm such that:

296 Universal circuits

P⃗1

α1t

··
·

··
·

e-itH··
·

··
· ≈

P⃗1

α1t

P⃗m··
· · · · ··
·

· · ·

≈

αmt

e-itH
′t2κ1

P⃗1

α1t

··
·

··
·≈ e-itH

′′t2κ2
P⃗2

α2t

t2κm
e0· · · = P⃗1

α1t

P⃗m··
· · · · ··
·

· · · αmt

By triangle inequality, we conclude:

e-itH··
·

··
· ≈t

2κ
P⃗1

α1t

P⃗m··
· · · · ··
·

· · · αmt

(7.50)

where κ =
∑
k κk.

So, we have managed to put a bound on our approximation, and hence
the error we’ll give if we try to simulate H. But is this bound any good?
There is no reason κ needs to be small, and in fact usually it won’t be.

Exercise 7.6 Give an explicit form of κ in Eq. (7.50) using Eq. (7.48).

So, our best bet is taking t to be very small. But what if we don’t want
to take t to be small, because we want to simulate H for a larger amount of
time? It turns out there is a nice trick for this: we perform the decomposition
(7.50) many times and compose the results.

That is, we can take advantage of the fact that

e-itH··
·

··
· = e-i

t
d
H

··
·

··
·

d

e-i
t
d
H· · ·

then approximate each of the maps e−i t
d
H individually using (7.50).

Initially, we might think this is a stupid thing to do, since now we’ll be
making even more approximations, so maybe things will get worse. The
crucial point, however, is that the error in (7.50) depends not on t, but on
t2. So, even though we have to make this approximation d times, we can still

7.6 Simplifying universal diagrams 297

bound the error by d · (td)2κ = t2

d κ. Hence, we get:

e-itH··
·

··
· ≈

t2

d
κ

P⃗1

α1
t
d

P⃗m··
· ... ··
·

... αm
t
d

d

··
·

P⃗1

α1
t
d

P⃗m
...

... αm
t
d

(7.51)

Supposing we wish to approximate within some error ϵ, we should choose
d such that t2

d κ ≤ ϵ. When t = 1, we should therefore choose some d ≥ κ
ϵ .

So, we now know how to build a quantum circuit C that approximates
e−itH up to some parameter ϵ. We can use C to do a pretty good job at
predicting how the real system behaves. That is, for a fixed input state |ψ⟩
and any measurement outcome b⃗, the probabilities of seeing b⃗ on the “real”
system described by H and the “simulated” system described by C are pretty
close. To see this, we’ll compare the two probabilities:

Probreal(⃗b) = |r|2 Probsim(⃗b) = |s|2

for amplitudes r := ⟨⃗b|e−itH |ψ⟩ and s := ⟨⃗b|C|ψ⟩. First, since |ψ⟩ and |⃗b⟩ are
normalised, we have:

e−itH ϵ≈ C =⇒ ⟨⃗b|e−itH |ψ⟩ ϵ≈ ⟨⃗b|C|ψ⟩

so r ϵ≈ s. Since taking the adjoint preserves norms, we also have r ϵ≈ s. Since
|r| and |s| must both be less than 1, we have:

|r|2 = rr
ϵ≈ rs

ϵ≈ ss = |s|2

Applying the triangle inequality, we have |r|2 2ϵ≈ |s|2. Hence:

Probreal(⃗b)
2ϵ≈ Probsim(⃗b)

7.6 Simplifying universal diagrams
In this chapter our focus has been on universal circuits. But we of course
shouldn’t be neglecting our diagrams. A universal ZX-diagram is one where
we put no restriction on the phases the spiders may contain. It turns out that
we can apply some of the tricks we’ve been developing for reasoning about
universal circuits to universal ZX-diagrams. In particular, phase gadgets
are also really useful in this broader context. For one, we can use them to

298 Universal circuits

power-up the simplification strategy of Clifford diagrams of the previous
chapter.

Let’s recap this strategy. Recall from Sections 5.2 and 5.3 that we have
two simplification rules, local complementation and pivoting, that allow us
to remove certain spiders with a Clifford phase. We then do the following:

1. First we rewrite the diagram to a graph-like diagram, so that all spiders
are Z-spiders and they are only connected via Hadamard edges.

2. Then using local complementation we remove all internal spiders with
a ±π

2 phase.

3. Similarly, using pivoting we remove any pair of connected spiders that
are both internal and have a 0 or π phase.

Since we’ll need to refer to spiders with a phase of 0 or π a lot in this section,
we’ll give them a name. We will call such a spider a Pauli spider.

Now, using this strategy, if the diagram is Clifford, the only remaining
internal spiders will be Pauli spiders that are only connected to boundary
spiders. In Section 5.3.2 it is described how we can also get rid of these
spiders, so that all internal spiders are removed, and the diagram will be in
GSLC form.

Now, let’s look at what happens if we do the same strategy for a non-
Clifford diagram, i.e. where our spiders are allowed to be labelled by arbitrary
phases. Such a diagram we can still rewrite to graph-like form using Propo-
sition 5.1.8, but now the spiders might carry a Clifford phase (a multiple
of π

2), or a non-Clifford phase (any other value). We can apply the local
complementation and pivoting rewrites as before to remove any internal
spider with a ±π

2 phase and a connected pair of internal Pauli spiders.
When we do this we have several types of internal spiders that can remain.

First, none of these rewrites remove spiders that have a non-Clifford phase,
so if an internal spider has a phase that is not a multiple of π

2 , then it will
still be in the diagram. Second, we can only remove the Pauli spiders that
are connected to other Clifford spiders (either an internal Pauli spider, or an
arbitrary boundary Clifford spider). Hence, we can also have internal Pauli
spiders remaining that are connected only to non-Clifford spiders.

We cannot actually remove these Pauli spiders, but we can do something
interesting with them: transform them into phase gadgets. As we are work-
ing here with graph-like ZX-diagrams, the phase gadgets will look slightly

7.6 Simplifying universal diagrams 299

different:

α

..
.

(cc)

= α

..
. (7.52)

Lemma 7.6.1 We can transform an internal Pauli spider connected to
another internal spider into a phase gadget using pivoting:

jπ

α1

∝
αn

β1

βn

γ

..
.

..
.

...

...

...

...

α1

αn

β1 + jπ

βn + jπ

..
.

..
.

...

...

...

...

(−1)jγ

Proof First push the jπ phase to the right, and then unfuse the γ phase
onto its own spider:

jπ

α1

∝
αn

β1

βn

γ

..
.

..
.

...

...

...

...

α1

αn

β1 + π

βn + π

(−1)jγ..
.

..
.

...

...

...

...

(sp)

(cc)

(π)

α1

αn

β1 + π

βn + π
..
.

..
.

...

...

...

...

=

(sp)

(hh)

(id)

(−1)jγ

* *

Now just apply the regular pivot Lemma 5.2.11 to the two spiders marked
by *.

We see that we end up with the same number of spiders, but that they
are connected differently. The γ phase is now isolated on a spider that only
has arity 1, i.e. it has become a phase gadget. This turns out to have several
benefits.

But first, note that if the internal Pauli spider is only connected to bound-
aries that we can do a similar rewrite.

Lemma 7.6.2 The following boundary pivot simplification holds:

jπ

α1

=

αn

β1

βn

γ

..
.

..
.

αn

β1 + jπα1

..
.

..
.

βn + jπ

...

...

...

...

...

...

...

...

(−1)jγ

jπ jπ

· · ·

· · ·

Here we take the spider with the γ phase to be a boundary spider with the
top wires being inputs and outputs to the diagram.

300 Universal circuits

Proof First add spiders to the outputs of the γ spider as in Eq. (5.15) and
then use Lemma 7.6.1.

As in Section 5.3.2, doing operations on the boundary introduces Hadamards
on the input and output wires of the diagram so that we are working with
graph-like diagrams with Hadamards.

After we’ve applied the rewrites of Lemmas 7.6.1 and 7.6.2 to all the
internal Pauli spiders we see that these internal Pauli spiders are now all
part of a phase gadget. As a side-note, in order to not get stuck in an infinite
loop in doing these rewrites, we should only be applying these lemmas to
Pauli spiders that are not already part of a phase gadget (i.e. we should
check if they do not have any single-arity neighbours).

Example 7.6.3 After we apply the rewrite strategy we described above,
we might be left with a diagram that looks something like the following:

π
2

π
5

3π
4

π
4

2π
3

Every internal spider is either part of a phase gadget or has a non-Clifford
phase.

Remark 7.6.4 In the diagrams we get from this rewrite strategy, none of
the phase gadgets will be connected to each other. To see why this is, note
that in Lemmas 7.6.1 and 7.6.2 the phase gadget we create is connected
to precisely those spiders that the original Pauli spider was connected to.
Our starting assumption was that no Pauli spider is connected to any other
internal Pauli spider, since if that was the case, then we could have just
applied a regular pivot to them to remove them. As each phase gadget is
hence connected to what a Pauli spider was connected to, none of them will
be connected to each other. Conversely, if we were given a diagram where
two phase gadgets are connected to each other, then we could apply a regular
pivot to them, and this would remove the ‘base’ of these gadgets, and change
the phases into ‘regular’ internal spiders.

While these ‘gadgetisation’ rewrites don’t get rid of more spiders, it is
still very useful to do them. First, it turns out that the diagrams we can
bound the size of the diagrams we get in terms of the number of non-Clifford
phases, and second, there are interesting new rewrites that we can apply to
the phase gadgets.

7.6 Simplifying universal diagrams 301

For the first point, note first that if the phase γ in the phase gadget is
Clifford that we can remove the phase gadget.

Exercise 7.7 Show that if we have a phase gadget in a graph-like diagram
with a phase that is a multiple of π

2 , that we can remove it using a series of
local complementation or pivots.

Solution: .
If γ = ±π

2 we apply a local complementation to it, and then to the spider
that was its neighbour; if γ = 0 or π we can apply a pivot to the pair of
spiders making up the phase gadget.
End Solution .

Hence, the only remaining internal spiders are either non-Clifford or are
Pauli spiders part of a non-Clifford phase gadget. As none of our rewrites
introduce new non-Clifford phases, this means that the number of internal
spiders we end up with is bounded by the number of non-Clifford phases we
started out with.

Proposition 7.6.5 Let D be a ZX-diagram with n inputs, m outputs and
k non-Clifford phases. Then we can efficiently rewrite D to a diagram D′

which has at most n+m+ 2k spiders and n+m Hadamards on the inputs
and outputs.

Proof Transform D into graph-like form and apply the rewrites described
above. When we are done with the rewrites we can have a spider for each
of the inputs and outputs, contributing at most n+m spiders. Each of the
remaining internal spiders is either non-Clifford, or is a Pauli spider that is
part of a non-Clifford phase gadget, so that there are at most 2k internal
spiders. Since the resulting diagram is graph-like with Hadamards we can
potentially also have Hadamards on the input and output wires.

This result is in a sense a more fine-grained version of Proposition 5.3.7
that shows that we can rewrite any Clifford diagram to GSLC form: if k = 0
in the proposition above, then the result is a GSLC form diagram. We can
in fact view all the internal spiders and phase gadgets as additional states
and effects plugged into a GSLC diagram (see also Exercise 5.5):

π
2

π
5

3π
4

π
4

2π
3

=

π
2

π
5

3π
4

π
4

2π
3

(sp) (7.53)

302 Universal circuits

This is pointing in the direction of how we can do arbitrary quantum compu-
tations by preparing the right graph state and doing the right measurements.
We will explore this type of measurement-based quantum computing in detail
in Chapter 8.

The fact that the size of our diagram is bounded by the number of non-
Clifford gates, and not by the overall number of spiders in the starting
diagram turns out to be useful when we want to simulate universal quantum
circuits (see Section 7.8.1).

Remark* 7.6.6 So if we can rewrite our diagram to a form that is bounded
in size by the number of non-Clifford spiders, and if the phase gadget rewrites
we need to do to get there don’t remove any spiders, does that mean that
we could have already bounded the size of the diagram before doing these
rewrites? Well, no. This is because Lemmas 7.6.1 and 7.6.2 can actually
result in spiders being removed from the diagram. This happens when we
have two Pauli spiders that are connected to exactly the same set of non-
Clifford spiders. In this case, when we apply Lemma 7.6.1 to one of the Pauli
spiders and one of its neighbours, the other Pauli spider gets completely
disconnected and becomes a scalar, which we can then ignore. In general,
Lemma 7.6.1 will change the connectivity of the Pauli spiders in the diagram,
and hence through a sequence of rewrites we could end up with Pauli spiders
that are connected to the same set of non-Clifford spiders, resulting in more
spiders getting removed by these rewrites.

7.6.1 Removing non-Clifford spiders

Once we have simplified our diagram to a point where all internal spiders are
either non-Clifford or phase gadgets, there are a couple more useful rewrite
rules we can apply that remove additional spiders.

The first is very simple, as it is just a case of removing an identity spider.

Lemma 7.6.7 We can fuse a one-legged phase gadget with its neighbour:

=
β

...

α

α + β

...

Proof

=
β

...

α

α + β

...
=

β

...

α
(id)

β

...

α(hh)

=

(sp)

7.6 Simplifying universal diagrams 303

So whenever we have a phase gadget in our diagram that is connected to
exactly one spider, we can fuse it with its neighbour. There is really nothing
special about phase gadgets here: as noted in Remark 7.6.4, the phase gadget
is connected to what the original Pauli spider was connected to. So if we have
a one-legged phase gadget in our diagram, then the original Pauli spider must
have also already have been an identity spider, and we could have removed
it then and there.

The other rewrite rule we can apply to phase gadgets is one we have
already seen: gadget fusion.

Lemma 7.6.8 We can fuse two phase gadgets connected to the same set
of spiders:

α

β
α1

αn

..
. α + β

α1

αn

..
.∝

...

... ...

...

Proof

α

β

α1

αn

..
.

...

...

=
(sp)

α

β
α1

αn

..
.

...

...

=
(cc)

α

β
α1

αn

..
.

...

...

∝
(sc)

α

β
α1

αn

..
.

...

...

=
(sp)

α1

αn

..
.

...

...
α + β

=
(cc)

α1

αn

..
.

...

...
α + β

So why do we point out these two rewrite rules for getting rid of phase
gadgets? Two reasons: first, note that this phase gadget fusion rule is a
generalisation of the phase-folding we can do in the phase polynomial frame-
work. Second, the rewrites of Lemmas 7.6.7 and 7.6.8 are essentially the
only rewrite rules we can do to get rid of additional non-Clifford phases in a
diagram. Or that is, this is the case when we treat the non-Clifford phases
as ‘black boxes’, where we treat the phase as some arbitrary angle that we
don’t know anything else about. See the References of this chapter for more
details. If we know more about the phases, such as that they are all multiples
of π

4 , then there are other potential rewrites we could apply that simplify
the diagram further. We look at this in detail in Chapter 10.

304 Universal circuits

7.6.2 Circuits from universal diagrams

In previous chapters we have seen that certain gate sets have a natural
diagrammatic counterpart, and that for unitary diagrams we can always
transform them back into circuits over this gate set. In Chapter 4 we saw
that any unitary phase-free diagram can be rewritten into a CNOT circuit,
and in Chapter 5 we saw that any unitary Clifford diagram can be turned
back into a Clifford circuit.

This then raises the question of how we can transform these universal
diagrams back into universal circuits when they are unitary. Perhaps disap-
pointingly, but not too surprisingly, this does not turn out to be efficiently
doable in general.

Exercise* 7.8 In this exercise we will see that if we had some function
CircuitExtraction that takes in a poly-size unitary ZX-diagram and spits
out a poly-size circuit implementing it, that then we could solve NP-complete
problems with it. Hence, there is probably no implementation of Circui-
tExtraction that is efficient. In particular, what we will show is how to
determine whether a Boolean formula f : Fn2 → F2 has a solution using
CircuitExtraction.

1. Let Lf be the linear map defined by Lf |x⃗⟩ = |f(x⃗)⟩. We will see in
Chapter 9 how we can construct maps like Lf efficiently as a ZX-diagram.
Argue that

Lf

... = N0
2n |0⟩ + N1

2n |1⟩ (7.54)

where Na is the number of values x⃗ for which f(x⃗) = a.
2. If we could calculate the value of Eq. (7.54) then we could determine

whether f has a solution. However, CircuitExtraction expects a uni-
tary diagram as input, which Eq. (7.54) is not. So we need to construct
a unitary diagram containing Eq. (7.54) that allows us to determine
N1. Using the fact that a superposition λ0|0⟩ + λ1|1⟩ can be written as
Y (α)|0⟩ show that

Lf

... −π
2 ∝ α (7.55)

and determine α in terms of N1.
3. The left-hand side of Eq. (7.55) is proportional to a unitary diagram,

and hence when given to CircuitExtraction will spit out a 1-qubit
circuit equal to the right-hand side of Eq. (7.55). Argue that with

7.6 Simplifying universal diagrams 305

such a circuit we can efficiently determine α and hence N1 (you may
ignore issues about numerical precision and the precise gate set that
CircuitExtraction is using).

4. Give the full algorithm that takes in a Boolean function f and with a
single call to CircuitExtraction tells you whether f has a solution or
not.

In this procedure we described we actually know more than just whether f
has a solution: we get N1, the total number of solutions. CircuitExtraction
hence doesn’t just allow us to solve NP-complete problems, it allows us to
solve #P-complete problems, which are generally considered to be much
harder.

Solution: .

Lf

... =
∑
x

Lx|x⟩ =
∑
x

|f(x)⟩ = N0
2n |0⟩ + N1

2n |1⟩ =: a0|0⟩ + a1|1⟩

(7.56)
where N1 is the number of solutions of f , N0 = 2n−N1 is the number of ‘non-
solutions’ of f , and we set a0 = N0/N and a1 = N1/N for N := 2n = N0+N1.
The resulting state is not normalised: to normalise it we should multiply
both sides by (a2

0 + a2
1)−1/2. recall that a Y rotation over an angle α applied

to |0⟩ gives Yα|0⟩ = cos(α2)|0⟩ + sin(α2)|1⟩. Hence the state of Eq. (7.56),
when properly normalised, can be written as Yα|0⟩ for α = 2 sin−1 (a1√

a2
0+a2

1
).

We then calculate:

Lf

... −π
2 ∝ α

End Solution .
Universal diagrams can just become too complicated, making it impossible

to efficiently see what circuit it is equal to. Luckily for us though, for many
diagrams we care about we can tame these complications and efficiently
extract out a circuit. This is made possible by a strong connection between
graph-like ZX-diagrams and measurement patterns. The ability to extract
a circuit from the diagram then corresponds to whether the measurement
pattern can be made deterministic. We will explain all of this and more in
detail in the next chapter on measurement-based quantum computing.

306 Universal circuits

7.7 Summary: What to remember
1. A circuit consisting of CNOT and Z phase gates can be represented

by a phase polynomial followed by a linear Boolean map acting on the
computational basis states.

2. In the ZX-calculus a phase polynomial looks like a collection of phase
gadgets.

3. The phase-polynomial representation can be synthesised back into a
CNOT+Phases circuit using a variation on the Gaussian elimination
algorithm of Chapter 4.

4. The pathsum technique allows us to incorporate Hadamards in the phase-
polynomial representation. Each Hadamard gate introduces a new path
variable that replaces the current variable on that qubit. By thinking
about pathsums we can synthesise complex unitaries like the Quantum
Fourier Transform.

5. A different way to think about universal circuits is through Pauli expo-
nentials. Any quantum circuit can be written as a series of (non-Clifford)
Pauli exponentials, followed by a Clifford circuit.

6. The Pauli exponential representation allows us to bound the size of an
n-qubit circuit with k non-Clifford gates by O(kn+ n2).

7. We can construct a quantum circuit for a Hamiltonian evolution e−itH

by splitting it up into small time-slices e−i t
n
H and approximating each

of these by a series of Pauli exponentials.
8. We can use the Clifford simplification strategy of Chapter 5 to optimise

universal diagrams. By using a variation on pivoting we can introduce
phase gadgets in such diagrams, and these can then be merged together.

9. In these optimised graph-like diagrams, the only internal spiders are
those with non-Clifford phases, or they form the ‘base’ of a phase gadget.

10. In general, extracting a circuit out of a unitary ZX-diagram is a hard
problem (though in certain special cases we can do it efficiently).

7.8 Advanced material*

7.8.1 Simulating universal circuits*

Each of the gates we have considered in this chapter—Z phase gates, CNOTs,
and Hadamards—has a different interaction with the path-sum expression
of the circuit.

• A Z phase gate looks at the expression that is currently in the qubit it
acts on, and puts that expression into a phase.

7.8 Advanced material* 307

• A CNOT takes the expression in its control qubit, and XORs it with
that of its target qubit.

• A Hadamard introduces a new path-variable, adds a phase term using
it and the expression in the qubit it acts on, and finally replaces the
expression with the new variable.

What is interesting about these three types of gates is that we truly need
all of them in order to do interesting quantum computations. If we only had
phase gates and CNOTs, then as we saw in Section 7.1.1 we can efficiently
evaluate what it does on a computational basis state, as there is just one
path involved. If we instead only had phase gates and Hadamards, then
all the qubits would be acting on their own, and so there wouldn’t be any
complex behaviour and we could directly calculate the matrices involved.
And finally, if we only had CNOTs and Hadamards, then the circuit would
be Clifford, so that we can also efficiently calculate the outcomes.

The interesting behaviour then comes from a multitude of paths (because
of Hadamards) which are non-trivially using all parts of the available Hilbert
space (because of CNOTs), and each of which can have a different phase so
that when we do a measurement the paths interfere in non-trivial ways.

While these arguments only show that you need at least some of each type
of gates, it turns out that we can prove a bit more. Suppose for instance that
we have a n-qubit circuit with a polynomial number of CNOT, Hadamard
and Z phase gates, but that we only have k logn CNOT gates for some k.
Then this means that most qubits don’t have any CNOT on them: at most
2k logn qubits can be connected by CNOTs. The size of the matrix associated
to these qubits is then O(22k logn) = O(n2k). So calculating what this circuit
is doing can be done in polynomial time just by directly representing the
matrix and calculating the action of all the gates on it one-by-one.

Analogously, if we have only k logn Hadamard gates, then using the path-
sum representation of the circuit we only have to keep track of O(2k logn) =
O(nk) different paths, so that we can efficiently simulate the action of the
circuit as well, just by sampling from this polynomial number of paths.

These two simulation techniques, based on a cost that scales based on the
number of Hadamards or CNOTs are not seriously considered (though lots
of tricks for tensor network contractions are based on understanding where
entanglement is created and how, and so counting where the CNOTs are is
definitely implicitly part of that), but one that is based on a limited number
of non-Clifford phases turns out to work quite nicely.

308 Universal circuits

7.8.1.1 Stabiliser Decompositions
As it turns out, if we only have k logn non-Clifford Z phase gates, then we
can also efficiently strongly simulate the circuit. To see this, let’s assume
that we have some polynomial size circuit of CNOT, Hadamard and Z phase
gates of which t are non-Clifford phases, and that we wish to calculate a
specific amplitude of this circuit (let’s say the amplitude of observing ⟨0 · · · 0|
on input of |0 · · · 0⟩). Then we can write this as a scalar ZX-diagram. We
can rewrite this diagram into graph-like form, and simplify it further to
remove all the Clifford spiders. As described in Section 7.6.1, the number of
spiders in the resulting diagram is then O(2t) as each spider either carries
a non-Clifford phase, or is part of a phase gadget which has a non-Clifford
phase.

In such a diagram, we can’t remove any more Clifford spiders, since there
aren’t any. However, it turns out we can decompose a non-Clifford spider
into a sum of Cliffords, so that then the whole diagram becomes a sum of
‘slightly more Clifford’ diagrams. To do this in a nice generalisable way we
first unfuse the non-Clifford phase onto its own spider:

kπ
2

+ α =

α

..
.

..
. kπ

2..
.

..
.

The remaining phase is then Clifford
Now, this state with the α phase is equal to |0⟩ + eiα|1⟩ and hence can be

decomposed into a sum of two Clifford spiders corresponding to these terms
|0⟩ and |1⟩:

α = 1√
2

(
+ eiα π

)
When we do this unfuse-and-decompose to a single α phase in a bigger

diagram, we are then left with two diagrams that each have one fewer non-
Clifford phase. We can however do this decomposition to all of the non-
Clifford phases in the larger diagram at the same time, giving 2t different
diagrams that are now completely Clifford. Each of these diagrams had O(t)
spiders, and hence to completely ‘simplify away’ these diagrams into a single
scalar number using the Clifford simplification strategy of Chapter 5, requires
O(t3) graph operations. As we have to do this for each of the 2t diagrams,
the total cost is then O(t32t). Hence, if we have a logarithmic number of
non-Clifford phases t = k logn, then the simulation cost is O(k3nk log3 n),
which is polynomial in n for a fixed k.

We could also decide not to decompose all phases simultaneously, but

7.8 Advanced material* 309

instead try to simplify the diagram further after every decomposition. Since
a decomposition makes the diagram look a little more Clifford, the Clifford
rewrites could make the diagram a bit simpler. More importantly, they might
reveal places where the non-Clifford removing rewrites of Section 7.6.1 might
apply, so that there are fewer terms we need to decompose in the first place.

If all the non-Clifford phases are arbitrary, with all the non-Clifford phases
not being equal to each other then this decompose-optimise-repeat strategy
is pretty much the best we can do with this method. However, if the non-
Clifford phases are some specific angles, then there is more interesting stuff
we can do! In particular, if all the non-Clifford phases are multiples of π

4 , for
instance when the circuit we start out with is Clifford+T , then it turns out
that we can decompose a group of π4 phases simultaneously, and this requires
fewer terms. For instance, if we have a pair of |T ⟩ :=

√
2T |+⟩ = |0⟩ + ei

π
4 |1⟩

states, then:

|T ⟩ ⊗ |T ⟩ = |00⟩ + ei
π
4 |01⟩ + ei

π
4 |10⟩ + ei

π
2 |11⟩

= (|00⟩ + ei
π
2 |11⟩) + ei

π
4 (|01⟩ + |10⟩).

Here we’ve grouped the terms together into two Bell-like maximally entangled
states. Written in diagrams we hence have:

π
4

π
4

= π
2 + ei

π
4 π

Naively decomposing these two non-Clifford π
4 phases would give us 4 terms,

but by grouping them into these Clifford states we require only 2 terms.
Hence, if we have t of these π

4 phases, then the amount of terms we get when
we decompose all of them in terms of pairs like this is 2

1
2 t (assuming t is

even for simplicity). This hence scales quadratically better than decomposing
them all separately!

This is an example of a stabiliser decomposition and there are many
interesting things to say about them. A stabiliser decomposition is any
decomposition of a quantum state into a sum of Clifford states. This is
always possible to do, but for an n-qubit state will require in general 2n
stabiliser terms. Finding more efficient decompositions is generally a hard
problem. However, for very special states, like a tensor product |T ⟩⊗· · ·⊗|T ⟩,
much better decompositions are known. For instance, it turns out we can
decompose six copies of |T ⟩ into just 6 terms, meaning we only require
6t/6 = 2t

1
6 log2 6 ≈ 20.43t. There are also specific configurations of π

4 phases
that allow for more efficient decompositions.

310 Universal circuits

7.8.1.2 Gate-by-gate simulation

Note that this stabiliser decomposition simulation technique allows us to
calculate an amplitude. If we want to calculate a marginal probability (cf. Sec-
tion 5.4.2), then we need to ‘double’ the diagram. This doubles the number
of non-Clifford phases, which is a big problem since this method scales
exponentially in the number of non-Cliffords. In practice, the interleaved
optimisation steps do get rid of some of the redundancy in this doubled
representation, but the problem does persist. Usually we are doing strong
simulation, and hence calculation of marginal probabilities, because we are
actually trying to do weak simulation (i.e. sampling). In that case there
are ways around having to double the diagram. One way is to not even try
to calculate amplitudes, but instead directly do sampling by writing our
circuit as a stochastic combination of Clifford computations. We will say a
bit more about this when we are talking about computational universality
in Section 10.5.2. When doing this, we no longer care about the number
of terms in the decomposition, but instead we care about the total weight
of the terms, i.e. the scalar factors in front of them. This weight is known
as the robustness of magic or the stabiliser extent of the state (which
one is used depends on which weights exactly we are talking about, see the
References of this chapter).

But there is another way, where it turns out to be sufficient to calculate
just amplitudes, no marginals necessary. This is known as the gate-by-gate
simulation method. This does come at the cost of having to calculate a
number of amplitudes that scales with the number of gates instead of in the
number of qubits.

To see how this works, let’s suppose our circuit consists of unitaries
U1, . . . , Uk and write Ct := Ut · · ·U1 for the circuit consisting of just the
first t unitaries. Hence C0 is the identity, and Ck is the final circuit. Write
Pt(x⃗) = |⟨x⃗|Ct |⃗0⟩|2 for the probability of measuring the x⃗ outcome when ap-
plying Ut to the all-zero state |⃗0⟩. Our goal is to sample bit strings from the
final distribution Pk. We are going to do that by starting with a sample from
P0 and then transforming this into a sample that matches the distribution
of P1, and then P2, and so on until we get a sample distributed according
to Pk. The reason this is a beneficial thing to do is because sampling from
P0 is trivial (just always output the all-zero bit string 0⃗), and the update
process from a distribution over Pt−1 to one over Pt turns out to not require
any marginal probability calculations.

The reason for that is because the distributions Pt−1 and Pt are the same
for most qubits. They are based on two circuits Ct−1 and Ct that are related

7.8 Advanced material* 311

via Ct = UtCt−1. Let’s assume for now that Ut is a single-qubit gate acting
on the first qubit. Then it turns out the distributions marginalising over x1
are actually equal:

∑
x1

Pt(x1, x2, . . . , xn) =

0

x2

xn

0

0

Ct

··
·

··
·

0

x2 0

xn
0

C†
t

··
·

··
·

=

0

x2

xn

0

0

Ct−1
··
·

··
·

0

x2 0

xn
0

C†
t−1

··
·

··
·Ut U†

t

(7.57)

=
∑
x1

Pt−1(x1, x2, . . . , xn)

Hence, to update a bit string y⃗ distributed according to Pt−1 to one dis-
tributed over Pt, we only need to resample the first bit y1 according to the
conditional distribution Pt(x1|x2 = y2, . . . , xn = yn). When we do this we
indeed get a correct sample, as

Pt(x1, x2, . . . , xn) = Pt(x2, . . . , xn)Pt(x1|x2, . . . , xn).

Rewriting this a bit, we recall that the conditional distribution is defined as:

Pt(y1 = x1|x2 = y2, . . . , xn = yn) = Pt(y1, y2, . . . , yn)∑
x1 Pt(x1, y2, . . . , yn) ,

and hence sampling from it is straightforward: we just calculate pa := Pt(x1 =
a, y2, . . . , yn) for both a = 0 and a = 1, both of which can be done by
amplitude calculations, and then we set y1 = 1 with probability p1/(p0 + p1).
We hence don’t require any calculation of marginals!

We assumed Ut was a single-qubit gate. If it is instead an l-qubit gate, then
in Eq. (7.57) we would have an l-qubit marginal on those l qubits that Ut is
acting on. Then instead of resampling just a single bit, we would resample
these l bits, which would require the calculation of 2l amplitudes. If our
gate set consists of just single-qubit gates and the CNOT, then this would
hence require at most 4 amplitudes calculations per gate, with the two-qubit
CNOT being more expensive. But we can in fact do a bit better.

If Ut is a classical gate, like the CNOT, that maps a computational basis
state to a computational basis state, then the distributions Pt−1 and Pt are

312 Universal circuits

related to each other by a simple relabelling of the outcomes:

0

x2

xn

0

0

Ct−1

··
·

··
·

x1

=

0

x2

xn

0

0

Ct−1

··
·

··
·

x1

⊕ ⊕ =

0

x′2

xn

0

0

Ct

··
·

··
·

x1

Here in the last step we absorbed the first CNOT into Ct−1 to get Ct, and
we absorbed the second CNOT into the effect by setting x′

2 := x1 ⊕ x2.
Hence, when we have a sample according to Pt−1, we can map it to Pt
by just applying the classical gate to the sample directly, no calculation of
amplitudes necessary. This also works for for instance the Toffoli gate, or
even an entire complicated classical oracle. There are also other cases where
updating the sample comes for free. If Ut preserves the computational basis
states, i.e. it is a diagonal phase gate, then the distributions Pt−1 and Pt are
exactly equal, and so then no updating is necessary at all! Hence, if our gate
set consists of CNOT, Hadamard and Z(α) phase gates, then the only time
we have to actually calculate amplitudes in order to update our sample is
when we encounter a Hadamard gate.

Putting this all together, we get Algorithm 3, which allows us to sample
a bit string from a CNOT +Hadamard+Z(α) gate set.

Theorem 7.8.1 Let C be a CNOT+Hadamard+Z(α) circuit with h

Hadamard gates. Then we can produce a sample from the distribution
P (x⃗) = |⟨x⃗|C |⃗0⟩|2 using 2h calculations of amplitudes.

Now recalling that the cost of calculating an amplitude of a Clifford+T
circuit with t T gates was O(t32αt) for some number α ≈ 0.43, we see that we
can sample from such a circuit with cost O(ht32αt) where h is the number of
Hadamard gates. Moreover, assuming that the Hadamards and T gates are
roughly evenly distributed throughout the circuit, most of these amplitude
calculations will be of circuits that contain significantly fewer T gates, so
that their cost of calculation is a lot cheaper.

7.8.2 Higher-order Trotterisation*

The approximation of e−itH we found in Section 7.5 required a number of
decompositions n that scaled as O(ε−1). This is fine. But it does raise the
question of whether we could do better.

Let’s look back at the case with just two terms H1 and H2. The reason we

7.8 Advanced material* 313

Algorithm 3: Gate-by-gate weak simulation by calculating ampli-
tudes
Input: A circuit C = Uk · · ·U1 consisting of CNOT, Hadamard and

Z(α) gates
Output: A sample from the distribution P (x⃗) = |⟨x⃗|C |⃗0⟩|2
Procedure SAMPLE(U1,. . . , Uk)

let C = I

let y⃗ = 0⃗
for t = 1 to k do // forward part

let C := UtC

if Ut is CNOT then
// Update the sample classically
y⃗ := Uty⃗

end
if Ut is Hadamard then

// We calculate some amplitudes in order to update the
sample

let q be target qubit of Ut
let z0 := ⟨y0 · · · yq−10yq+1 · · · yn|C |⃗0⟩
let z1 := ⟨y0 · · · yq−11yq+1 · · · yn|C |⃗0⟩
let p := |z0|2/(|z0|2 + |z1|2)
with probability p set yq := 0, otherwise set yq := 1

end
// If Ut is Z(α) we don’t have to do anything

end
return y⃗

end

didn’t get better scaling than O(ε−1) is because e−itH1e−itH2 only approx-
imates e−it(H1+H2) up to a O(t2) term (Eq. (7.49)). If we could somehow
boost their agreement up to some O(tk) for a k > 2, then we would get better
scaling. Let’s expand both e−itH1e−itH2 and e−it(H1+H2) to see where this
O(t2) approximation error comes from. Recall that we have by definition:

e−itH :=
∞∑
j=0

(−itH)j

j! (7.58)

314 Universal circuits

When we apply this to the expression we want, we get:

e−i(H1+H2)t = I − i(H1 +H2)t− 1
2 t

2(H1 +H2)2 +O(t3)

= I − i(H1 +H2)t− 1
2 t

2(H2
1 +H2

2 +H1H2 +H2H1) +O(t3)
(7.59)

Doing the same on the approximation, we get:

e−iH1te−iH2t = (I − iH1t− 1
2 t

2H2
1 +O(t3))(I − iH2t− 1

2 t
2H2

2 +O(t3))

= I − it(H1 +H2) − 1
2 t

2(H2
1 +H2

2) − t2(H1H2) +O(t3)

= I − it(H1 +H2) − 1
2 t

2(H2
1 +H2

2 + 2H1H2) +O(t3)
(7.60)

where in the last step we grouped together the t2 terms. We see that
Eqs. (7.59) and (7.60) agree on the constant term and the t term, but
differ on the t2 term. Subtracting these two expressions gives:

∥e−it(H1+H2) − e−itH1e−itH2∥ = ∥1
2 t

2(H2H1 −H1H2) +O(t3)∥ (7.61)

≤ 1
2 t

2∥[H1, H2]∥ +O(t3). (7.62)

As we’ve seen in Exercise 7.5, we don’t actually get the O(t3) term, and the
first term in the inequality is already enough to bound it. So if this derivation
of the bound is worse, why did we do it? Well, looking at these expansions
and where they agree and disagree tells us what we need to do to get better
agreement.

Looking at the t2 expressions in Eqs. (7.59) and (7.60) we see that the t2
terms are respectively 1

2(H2
1 +H2

2 +H1H2 +H2H1) and 1
2(H2

1 +H2
2 +2H1H2).

So the only problem is that we get two copies of the term H1H2 instead of
H1H2 +H2H1. If we had decomposed e−itH2e−itH1 instead of e−itH1e−itH2 ,
then we would have lacked the H1H2 term instead of the H2H1 term. This
is pointing us towards the solution: we need to have both e−itH1e−itH2 and
e−itH2e−itH1 in our decomposition.

So let’s see what we get when we decompose the product of these decom-

7.8 Advanced material* 315

positions:(
e−itH1e−itH2

) (
e−itH2e−itH1

)
= I − it(2H1 + 2H2) − t2

2 (2H2
1 + 2H2

2)

− t2(2H1H2 +H2
1 +H2

2 + 2H2H1) +O(t3)

= I − i(2t)(H1 +H2) − (2t)2

2 (H2
1 +H2

2 +H1H2 +H2H1) +O(t3).

Here in the last equality we suggestively grouped together the t2 term in
terms of (2t)2. We see that in this case we get the correct t2 term from
Eq. (7.59). So replacing t by 1

2 t to ensure we get the correct constants, we
see that:

e−it(H1+H2) = e− 1
2 itH1e−itH2e− 1

2 itH1 +O(t3). (7.63)

Exercise* 7.9 In this exercise we will find a way to lift Eq. (7.63) to a
full-fledged procedure for Hamiltonian simulation. Our goal is to find an
approximation of e−itH where H =

∑l
j=1Hj and we have ∥Hj∥ ≤ 1 for all

Hj .

a) Calculate the difference e−it(H1+H2) − e− 1
2 itH1e−itH2e− 1

2 it up to O(t4)
terms. I.e. calculate the t3 term of this difference.

b) Express this difference in terms of (nested) commutators like [H1, [H1, H2]]
and give an inequality of the difference in norm.

c) Let S2({H1, . . . ,Hl}, t) := e− 1
2 itH1 · · · e− 1

2 itHle− 1
2 itHl · · · e− 1

2 itH1 . Give an
upper bound on

∥e−it
∑l

j
Hj − S2({Hj}, t)∥

which depends on t3 (while ignoring the O(t4) terms).
d) Give an upper bound to the difference in norm of ∥e−it

∑l

j
Hj −S2({Hj}, tn)n∥

and use this to show that if we want to make this difference smaller than
ε, that we can then choose n = O(t3/2l3/2/ε1/2).

This approach is known as second-order Trotterization. It is called
second order because it recovers e−it(H1+H2) correctly up to the second
order. It is possible to generalise this technique to kth order. This involves
a map Sk({Hj}, t) that approximates e−it

∑
j
Hj up to a O(tk+1) error. To

approximate it up to an error ε we then split t up into n pieces where
n = O((tl)1+1/kε1/k). While this looks like it is then better to use higher
and higher-order Trotterisations, there are some hidden constants here: the
number of terms in Sk({Hj}, t) scales exponentially with k. As a result it is
often not beneficial to go beyond k = 2, and essentially never to go beyond
k = 8.

316 Universal circuits

7.8.3 Randomised compiling*

It turns out that if we want to approximate a unitary we can also do this
using an ensemble of, somewhat randomly chosen, unitaries instead of just
a single approximating unitary. This turns out to have several benefits.

Let’s see how this could work. Let’s again consider a Hamiltonian H =∑l
j λjHj . Here we choose the decomposition of H such that λj ≥ 0 and

∥Hj∥ = 1 for all j. Then the unitary channel corresponding to a 1/n fraction
of the total time evolution is

Un(ρ) = ei
t
n
Hρe−i t

n
H = ρ+ i

t

n
(Hρ− ρH) +O

(
t2

n2

)

= ρ+ i
∑
j

thj
n

(Hjρ− ρHj) +O

(
t2

n2

)
. (7.64)

We see that up to some error term, this unitary channel can be written
as a sum over some expression involving just a single Hj . This suggests
we should be able to find a probabilistic channel that can approximate
Un, just by sampling from Hj . Let’s give this a try. Let’s define E(ρ) =∑
j pje

iτHjρe−iτHj . Here pj is some probability distribution over the terms
H1, . . . ,Hl, and τ is some fixed number that we will try to determine later.
Now let’s see what happens when we expand E in terms of τ :

E(ρ) = ρ+ i
∑
j

pjτ(Hjρ− ρH) +O(τ2) (7.65)

We see that this matches the expansion in Eq. (7.64) when we have pjτ = hj
t
n .

Since the pj must form a probability distribution, we have
∑
j pj = 1, and

hence

τ =
∑
j

pjτ =
∑
j

hj
t

n
= Λ t

n
,

where we have set Λ =
∑
j hj . Then solving for pj we get pj = hj

Λ .
This means we can approximate the unitary channel Un up to a second

order O(t2
n2) error using a channel that is a probabilistic combination of

unitaries, each of which is just a single simple conjugation with e−iτHj , as
long as we choose τ = Λ t

n and pj = hj

Λ . Here Λ is the sum of all the weights
hj of the sub-Hamiltonians Hj . But of course, we don’t want to approximate
Un, but Un

n . Using a similar type of analysis as we have done before (but
adapted to work with channels instead of unitaries), we can show that we
can approximate Un

n with En up to an error ε, by choosing n ≥ 2Λ2t2/ε. This
is interesting because the amount of terms we need does not depend on l, the

7.9 References and further reading 317

amount of terms in H, but rather on Λ, the sum of the weights of the terms.
This method hence works better than the non-randomised technique when
l is large, but Λ is not so large. But even in the worst case, when we have
Λ = l (this is when λj = 1 for all j), the scaling is n ≥ 2l2t2/ε, which is still
better than the non-randomised version: recall that we got n ≥ 1

2 l
2t2/ε. But

additionally, each iteration required every e−itλjHj to be placed, so that each
iteration consists of l term, giving a total gate count scaling of O(l3t2/ε),
instead of O(l2t2/ε) in the randomised case.

Remark 7.8.2 You might find it very weird or counter-intuitive that we
could approximate a specific unitary by creating an ensemble of random ‘bad’
approximations. However, remember that at the end of a quantum circuit
we need to do measurements, and that our output, the only thing we can
really ‘see’, is just a probability distribution over measurement outcomes.
So the only thing we need for something to approximate a quantum circuit
well, is for all the measurement outcomes to follow the correct probability
distribution. So even though every single run of this protocol might not be a
good approximation to the unitary, because we use a different one for every
run of measurement, the errors can cancel out. We will see a similar idea
explored in Section 10.5.2.

This technique here is a variation on Trotterisation. There are however
also other techniques that can approximate e−it

∑
j
Hj in quite a different

way that also result in very favourable scaling. See the References of this
chapter for more on this.

7.9 References and further reading
Path-sums It is hard to pinpoint the earliest appearance of phase polyno-
mials and/or path-sum techniques in the literature, since essentially any
computation involving Dirac notation and summations is, in some sense, a
path-sum calculation. A notable feature of such a calculation is that it makes
it clear that one doesn’t need exponential space to compute a single ampli-
tude of a state vector prepared using a polynomial-sized quantum circuit.
This insight plays an important role in proving some of the first complexity
bounds for quantum computation, as in e.g. (Bernstein and Vazirani, 1997),
(Adleman et al., 1997), and (Fortnow and Rogers, 1999).

The “wire labelling” trick that we used for computing phase polynomials in
Section 7.1.1 seems to first appear in the work of Dawson et al. (2005), under
the name annotated circuits. The authors use this technique to show that

318 Universal circuits

sum-over-path expressions can be efficiently computed from circuits over
a universal gate set (in their case Toffoli+Hadamard), yielding a simple
way to relate quantum circuit simulation to counting problems involving
boolean polynomials. This was used to give a simplified proof of the inclusion
BQP ⊆ PP♯ ⊆ PSPACE of Bernstein and Vazirani (1997).

Optimisation with phase polynomials Dawson et al. only consider phase-
polynomial expressions of the form (−1)f for f : Fm2 → F2 a boolean
polynomial. More general expressions that can capture T-like phases (i.e.
ei

π
4 ·f) were used by Amy et al. (2013b) to represent CNOT+T circuits and

synthesise exact depth-optimal circuits for low numbers of qubits. The first
algorithm to use phase polynomials to efficiently optimise large circuits was
T-par (Amy et al., 2014), which used the phase polynomial representation
and matroid partitioning to reduce T-depth. The circuit synthesis algorithm
we gave in Section 7.2.1 is essentially a simplified version of this technique.
Subsequently, phase polynomials were used extensively in circuit optimisa-
tion. These essentially fall into two categories: those that are agnostic to the
particular values of non-Clifford phases, such as ‘phase folding’ and parity
network optimisation, and those that rely on phases taking particular values
such as multiples of π/4 (or more generally π/2k for k ≥ 2). We will discuss
the latter kinds of optimisations in more detail in Chapter 10. Good overviews
of phase-polynomial-based synthesis and optimisation methods can be found
in the PhD theses of Amy (2019) and Goubault de Brugière (2020). There
are also techniques for constructing a circuit from a phase-polynomial that
takes into account hardware constraints on two-qubit interactions, see for
instance Meijer-van de Griend and Duncan (2023).

Phase gadgets and Pauli gadgets A unitary exp(−iα2Z ⊗ Z) is sometimes
called an Ising-type interaction and is (up to a global basis change) the
unitary that is implemented by the natural 2-qubit interaction in ion trap
quantum computers, the Mølmer-Sørensen interaction Sørensen and Mølmer
(1999). The diagrammatic form of this expression was first given in Kissinger
and van de Wetering (2019), and it was called a phase gadget for the first
time in Kissinger and van de Wetering (2020b), where the optimisation
routine of Section 7.6 is from. The compilation of an arbitrary circuit to
a series of Pauli exponentials followed by a Clifford circuit is described
in Litinski (2019), where it is used to argue that a simple set of fault-tolerant
operations on the surface code that correspond to Pauli exponentials is
sufficient for implementing any computation. For more about how this works,
see Chapter 11 The original form of Pauli exponentials as ZX-diagrams

7.9 References and further reading 319

was given in Cowtan et al. (2020). The observation that we get a unitary
out of a measurement box if we plug in a Z-spider, but get a projector if
we plug in an X-spider, can be explained in an abstract way as a duality
between measurements and observables that occurs for any pair of strongly
complementary observables Gogioso (2019).

Trotter decompositions Trotterisation is named after H. F. Trotter, for the
techniques he found in Trotter (1959). Masuo Suzuki studied these decompo-
sitions in a series of papers, culminating in the definition of higher-order Trot-
terisations that are now also called Suzuki-Trotter decompositions (Suzuki,
1991). The result from Lie theory that any basis of the Lie algebra generates
the connected part of its Lie group can for instance be found in (Hall and Hall,
2013, Corollary 3.47). The randomised Trotterisation technique is known as
QDRIFT and was developed by Earl Campbell (2019). The current state-
of-the-art higher-order Trotter decompositions are given in Morales et al.
(2022), where they find some settings wherein an 8th order decomposition is
the best possible for some realistic Hamiltonians. The bound on the error of
Hamiltonian approximations of Exercise* 7.5 is from (Gluza, 2024, Appendix
A)

Other techniques for Hamiltonian simulation Instead of using Suzuki-Trotter
decompositions, there are a couple of other techniques that can be used to
do Hamiltonian simulation. There is the technique of linear combination
of unitaries (LCU). This gives an approach to approximately and with
some probability implement a linear map M where M is given as a sum of
unitaries M =

∑m
j αjVj Berry et al. (2015). This technique works as long as

we can implement a controlled version of the Vj , and is efficient when these
implementations are efficient and m is not too large. As long as M is close
to being unitary itself, this technique succeeds with high probability. To use
this for Hamiltonian simulation we realise that by cutting off the Taylor
expansion of eit

∑
j
Hj at a certain order, that we get a linear combination of

products Hj1 · · ·Hjk . As long as each of the Hji is unitary itself (for instance,
when it is a Pauli string), we can use the LCU method. This requires a circuit
consisting of O(lt log(lt/ε)) components. While this is better than any of the
Trotter techniques asymptotically, the circuits themselves are more complex
and require ancillae, so that in practice it might not always be better to use
this technique.

Stabiliser decompositions Using the efficiency of simulating Clifford opera-
tions in order to boost this to an exponential-time universal quantum circuit

320 Universal circuits

simulation scheme was first proposed by Aaronson and Gottesman (2004).
However, the idea of grouping together magic states in order to decompose
them into fewer terms and get better simulation time is from Bravyi et al.
(2016) where they used a simulated annealing algorithm to find a decom-
position of 6 |T ⟩ states into 7 terms. This was later improved to a 6 term
decomposition in Qassim et al. (2021), where they also showed that more
complicated arrangements of magic states into the shape of a ‘cat’ state
allow for even better decompositions. Combining stabiliser decomposition
methods with ZX-based optimising was introduced by Kissinger and van de
Wetering (2022). In the follow-up work (Kissinger et al., 2022) ‘cat’ states
were shown to be related to phase gadgets, giving a nice way to incorporate
the better decompositions for these states into the ZX pipeline. This paper
also introduced the idea of a ‘partial magic state decomposition’, where the
terms in the decomposition don’t necessarily have to be stabiliser themselves,
they only have to have fewer non-Clifford resources then in the ‘mother’ state.
Using this idea, they find a decomposition of |T ⟩⊗5 into 3 terms, each of
which contain a single |T ⟩, this hence ‘effectively’ removes 4 |T ⟩’s at the cost
of 3 terms. This is currently the best known generic decomposition.

Stabiliser extent and weak simulation A stabiliser decomposition allows for
exact strong simulation by just enumerating all the different terms of the
computation. However, we don’t need this exactness when wanting to do
sampling, i.e. weak simulation. In Bravyi and Gosset (2016) they introduce
the concept of an approximate stabiliser decomposition, which only gives
the desired state up to some small error. This already greatly improves
the simulation time. The approximate stabiliser rank of a state |ψ⟩ can be
bounded using the stabiliser extent, which was introduced by Bravyi et al.
(2019), and is equal to

∑
i|λi| minimised over all stabiliser decompositions

|ψ⟩ =
∑
i λi|ϕi⟩. A closely related concept is the robustness of magic (Howard

and Campbell, 2017) which is defined for a mixed state ρ as the minimum
of
∑
i|λi| over all decompositions ρ =

∑
i λi|ϕi⟩⟨ϕi|. Robustness of magic

directly upper bounds the weak simulation cost of a computation (Howard
and Campbell, 2017). Note that these techniques based on approximate
stabiliser rank and robustness of magic are instances of quasiprobabilistic
simulation techniques. Here the ‘quasi’ means that the probabilities are
allowed to be negative, and there also other techniques that belong to this
family (Pashayan et al., 2015). In these methods you have a set of states
that are ‘free’ (like Clifford states), and then you write your non-free states
as a quasiprobabilistic combination over the free states, with the cost of
simulation scaling with the 1-norm of the quasiprobability distribution (the

7.9 References and further reading 321

sum of the absolute weights, also called the negativity of the distribution).
The ‘gate-by-gate‘ simulation technique of Section* 7.8.1.2 was introduced
in Bravyi et al. (2022), where they also already observed that this combines
well with the stabiliser decomposition approach.

8
Measurement-based quantum computation

[TODO: Right now this chapter mostly exists so that we can actually prove
that circuit extraction works. It would be nice if it also had another reason
for existing, some major result or thing we could do with it. Maybe we
can talk about that MBQC is a natural choice for certain computational
platforms like photons, where we build a resource state as we go?] [TODO:
Look at Walther & Kashefi paper about applications of MBQC.]

Up to this point, whenever we talked about a quantum computation, we
were talking about the circuit model. In this model of computation you
start with a simple state, usually |0 · · · 0⟩, which is then inserted into a
quantum circuit, i.e. a collection of simple unitaries that combine to make
something more complex. At the end we measure the qubits in some fixed
basis, and the outcome of these measurements is the outcome of our com-
putation. This model of quantum computation is inspired by classic logic
circuits. It is a universal model, meaning that we can in fact present arbi-
trary quantum computations in this way. This however does not mean that
this is always the best way to think of a quantum computation, or the one
that matches the most closely to how a real-world quantum computer would
function.

There are more ways to implement a computation on a quantum state
than just by directly performing a unitary on it. If we have some entangled
state, then measurement of one part of the state induces an action on the
other part. Depending on the entanglement and the measurement this action
could be unitary or non-unitary. Let’s take for example a slight modification

Measurement-based quantum computation 323

of the teleportation example of Section 3.3.2 that we also saw in Section 6.5:

aπ

bπ

U

|ψ⟩
= Ubπaπ

(8.1)

In this example of gate teleportation we have some maximally entangled
state |ψ⟩, which we entangle with the qubit we want to do a computation
on using a CNOT. By then measuring some qubits, the resulting state
has a unitary U and a Pauli applied to it. The Pauli we apply however is
determined by the measurement outcome. This is an inevitable feature of
using measurements to do computations: measurement non-determinism.
Since we don’t control which Pauli gets applied, and it is ‘stuck’ behind the
U , this seems like it would prevent us to control which computations get
executed. However, it turns out that for smart choices of measurements and
smart choices of U , we can feed-forward the Pauli errors. In this way we
can make the non-determinism ‘deterministic enough’ to work for us.

There are various degrees of how much we can use measurements to do
computations for us. On one end of the spectrum we don’t use measurements
at all, performing all computations with unitary gates. Moving a bit further
along the spectrum we can decide to implement only certain types of gates
using gate teleportation (like in Eq. (8.1)), or using its closely related cousin
of state injection. Even further along the spectrum we can let all multi-qubit
dynamics be taken care of by measurements, which is the case in lattice
surgery or fusion-based computation. We will have a lot more to say about
lattice surgery in Chapter 11. On the extreme end of the measurement-based
scale is the one-way model, where arguably all computation is done by
measurements. In the one-way model we start with a large entangled graph
state, and then we perform single-qubit measurements in different rotated
bases. The choice of which qubit to measure and in what basis it is measured
is informed by the computation you want to do and what the previous
measurement outcomes were, while the starting graph state (apart from its
given size) usually doesn’t depend on the particular computation. In this
model all computation is done by measurements. Such a computation might

324 Measurement-based quantum computation

for instance look like the following:

bπ

π
2

+ aπ

(−1)a π
4

+ cπ

π + dπ

(8.2)

Here we start with a four qubit graph state, and then we measure each of
these in different bases. The Boolean variables a, b, c and d represent each
of the measurement outcomes and are the output of this computation. In
this example we have pre-determined measurement planes, i.e. whether
the measurement takes place in a (rotated) Z or X basis, but some adaptive
measurement angles. I.e. while the top qubit is always measured in a basis
with angle π

2 , the third qubit has a measurement angle (−1)a π4 , meaning
that whether we measure it in the angle π

4 or −π
4 depends on the measure-

ment outcome of the qubit a. This means there is an order fixed on the
measurements of these qubits, with qubit a having to be measured before
qubit c.

Collectively, we call models of quantum computation using measurements
measurement-based quantum computing (MBQC). While the circuit
model is inspired by classical circuits, MBQC has no classical counterpart.
There are various reasons why we might want to consider MBQC as opposed
to quantum circuits:

• Certain unitaries might be tricky to implement, requiring trial and error.
By using a technique like gate injection we can prepare resource states
‘offline’, and have them ready for when they are needed.

• Replacing unitaries for measurements can sometimes help us trade ‘time’
for ‘space’, allowing us to parallelise more computation at the cost of
requiring more qubits.

• For certain types of hardware, it makes less sense to implement oper-
ations using a series of simple unitaries, instead preferring to do more
measurements so that your qubits are shorter-lived. For instance, if
the qubits are photons, we can entangle them by doing a fusion mea-
surement and then doing simple rotations and measurements. This is
preferable since it is hard to store photons for a longer period of time,
so here the trade-off between time and space needs to be more in the
space direction.

• When we consider fault-tolerant models of computation like in Chap-
ter 11, we will be doing constant measurements anyway in order to

8.1 Measurement fragments 325

protect our data against errors, so why not use measurements to enact
operations on our data at the same time.

In this chapter we will look in detail at the one-way model. It turns
out that graph-like diagrams can naturally be understood as measurement
patterns. In this way we can see that we can indeed do universal quantum
computation in the one-way model. We will also see more broadly how we
can determine when a computation can be made deterministic. We do this
by studying generalised flow, or gflow for short, which tells us how to feed-
forward Pauli errors. It turns out that any deterministic measurement pattern
with gflow can be efficiently transformed back into a quantum circuit. This
gives us a triangle of translations, from quantum circuits, to ZX-diagrams, to
measurement patterns, and back to quantum circuits. Because we can rewrite
ZX-diagrams, this gives us a unified way to think about circuit optimisation
and measurement-pattern optimisation.

8.1 Measurement fragments
If we were to formally specify what a computation in the quantum circuit
model is, it would be something like: prepare n qubits in the |0⟩ state,
apply a series of unitary gates G1, . . . , Gk, then measure all n qubits in the
computational basis, giving some bit string x⃗, and finally post-process this
with some output function p(x⃗) giving the final outcome.

In contrast, we might formally specify a one-way computation as follows.

Definition 8.1.1 A one-way model computation consists of the fol-
lowing data:

• A simple undirected graph G = (V,E) specifying the graph state |G⟩
we start the computation with which has m vertices,

• A measurement order f : {1, . . . ,m} → V where f is bijective,
• A measurement-plane function λ : V → {XY,XZ, Y Z} that tells us the

measurement plane of every qubit,
• for every vertex f(k) a measurement-angle function αk : F{1,...,k−1}

2 → R
that determines the measurement angle of f(k), which may depend on
all the previous measurement outcomes,

• An output function p : 2m → S that classically post-processes all the m
measurement outcomes into a final outcome in some set S (for instance
S = F2 if we care about a binary true/false output).

To execute it, we prepare the graph state |G⟩, and measure the qubits one by
one in the order f(1), f(2), . . . giving outcomes x1, x2, They are measured

326 Measurement-based quantum computation

in the plane λ(f(k)) with angle αk(x1, . . . , xk−1). The final outcome of the
computation is p(x⃗).

Note that we will talk about what these ‘measurement planes’ are in more
detail later, for now you can think of the XY plane as corresponding to
Z-spiders and the Y Z plane as corresponding to X spiders.

Remark 8.1.2 In Definition 8.1.1 we are not allowing the measurement-
plane to depend on previous measurement outcomes. This is just for our
convenience, and because this model is already universal.

Definition 8.1.1 specifies a complete calculation from beginning to end
where all qubits end up measured. If we represent it as a ZX-diagram it
hence corresponds to a scalar ZX-diagram, i.e. a diagram with no inputs
or outputs. This is no different from the circuit model, where for a full
computation we also have to fix an input state and end by measuring all
qubits. However, just as it is useful in the circuit model to think of just a
part of a computation which has some input and output qubits, it is also
useful to think of ‘fragments’ of a measurement-based computation that
can be composed together to create more complicated computations. These
fragments have inputs and outputs just like a quantum circuit would. For
instance, a measurement fragment that implements a CNOT gate is given
by the following diagram:

aπ

bπ

1

2

3

4

(8.3)

Here the top qubit is both an input and an output and hence isn’t measured.
The third qubit is an input, but is not an output and hence is measured. The
fourth qubit is an output and hence also isn’t measured. The second qubit is
‘internal’ and is hence prepared and measured as part of this fragment. The
fragment (8.3) implements a CNOT gate up to a known Pauli error that
depends on the measurement outcomes a and b. We can calculate this Pauli
error by simplifying the diagram:

aπ

bπ

aπ

bπ

=

(sp)

(cc)

aπbπ

=

(π)

(id) bπ

=

(sp)

aπ bπ

(8.4)

Hence we end up with the circuit (Zb ⊗ (ZbXa)) ◦ CNOT. Since the error is

8.1 Measurement fragments 327

a known Pauli, later measurements can be adapted to absorb these errors
so that the overall effect of this measurement fragment is the application of
a CNOT gate. We call this process of pushing Pauli errors outside of the
pattern into the future feed-forward.

Let’s give a bit more formal definition of a measurement fragment. For
that we need the concept of an open graph.

Definition 8.1.3 An open graph (G, I,O) is a graph G = (V,E) together
with a list of inputs I and outputs O. These lists consists of vertices of G,
where repetition of vertices is allowed, and the order is relevant.

Definition 8.1.4 A stand-alone measurement fragment consists of

• an open graph (G, I,O) (recall Definition 8.1.3) with G = (V,E) and
where m is the number of non-output vertices |V \O|,

• a measurement order f : {1, . . . ,m} → V \O where f is bijective,
• A measurement-plane function λ : V \O → {XY,XZ, Y Z} that tells us

the measurement plane of every non-output vertex, and
• for every non-output vertex f(k) a measurement-angle function αk :

2{1,...,k−1} → R that determines the measurement angle of f(k) depend-
ing on all the previous measurement outcomes.

The reason we call this a ‘stand-alone’ fragment is because this defini-
tion doesn’t deal with fed-forward Pauli errors. To prevent making this too
complicated for now, we postpone that discussion until later.

This definition is maybe a lot to take in, but the corresponding ZX-
diagrammatic picture should make things more clear. We construct the
ZX-diagram corresponding to a measurement fragment as follows. For every
vertex in V we add a Z-spider, and for every edge in E we add a Hadamard
edge between them. Then we add an input wire on a spider if it is in I and
an output wire if it is in O. This so far gives us a graph-like diagram and
an open graph (where the graph-like diagram is phase-free). However, now
we also add an additional output wire to every non-output spider, to get a
diagram that looks something like this:

I ∋

I ∋

∈ O

∈ O

⇝
additional outputs (8.5)

Now on each of those additional output wires, we are going to plug in a
measurement effect, corresponding to the measurement plane and angle of

328 Measurement-based quantum computation

that vertex:

XY ⇝ αk + bkπ XZ ⇝ αk + bkπ
π
2 Y Z ⇝ αk + bkπ (8.6)

Here the αk denotes the measurement angle of the pattern, and the bk is a
Boolean variable denoting the outcome of the measurement. Note that αk is
actually a function of the variables b1, . . . , bk−1 representing the outcomes of
the previous measurements. These names XY , XZ and Y Z come from the
fact that these effects lie on those corresponding planes of the Bloch sphere:

Z

X
Y

XY

α

α + π

Y Z

α

α + π

XZ
α

α + π

π
2

π
2

We see then that if in the fragment (8.5) we chooseXY for the measurement-
plane of both qubits and we simply set the measurement angles to 0 that
we get precisely the measurement fragment (8.3) implementing the CNOT
gate.

We can also construct a fragment that implements an arbitrary single-
qubit unitary. Recall that we can use the Euler decomposition of such a
unitary to write it as a sequence of a Z phase gate, and X phase gate, and
then another Z phase gate: U = α γβ . Let’s try to write
down a measurement fragment that implements this, by putting each of the
phases α, β and γ into the measurement angle of a qubit:

β + bπ

γ + cπ

dπ

α + aπ

=

β + bπ

γ + cπ

dπ

α + aπ(sp)

(cc)

=

(−1)aβ

(−1)bγ

(a + c)π

(b + d)π

α

(π)

(sp)

β

(−1)bγ

cπ(b + d)π

α + aπ

=

(π)

(sp)

(8.7)

This is not exactly correct. There are a couple of things we need to fix. For
one thing, there is a Pauli error at the end: an X gate depending on b+ d

and a Z error depending on a+ c. We will learn how to deal with such errors
later. But there is also a problem with the phases. We want the phases to
be α, β and γ, but we see that depending on the measurement outcomes
we might have actually gotten −β or −γ. This is where the condition of
Definition 8.1.4 comes in that measurement angles are allowed to depend on
previous measurement outcomes. To make this fragment do what we want it
to do, we need to make it adaptive. We first measure the qubit labelled by

8.1 Measurement fragments 329

the measurement outcome a. If a = 0, we measure the qubit b in the angle β,
which gives what we want. Otherwise we measure it in the angle −β. Hence,
the measurement angle is (−1)aβ. Rerunning the calculation (8.7) with β

replaced by (−1)aβ, we see that we get the final phase of (−1)a(−1)aβ = β,
so that now the final angle no longer depends on the measurement outcome!
We can do the same with γ, letting the measurement angle instead be (−1)bγ.
With these changes the measurement fragment becomes:

(−1)aβ + bπ

(−1)bγ + cπ

dπ

α + aπ

= α γβ (a + c)π (b + d)π
(8.8)

Apart from the Pauli error at the end that we still need to deal with, this
implements the unitary we want. Note that in the fragment implementing
the CNOT (8.3), the measurement angles didn’t depend on each other, so
that the order of measuring the qubits wasn’t important. In (8.8) however,
the measurement angles of some of the qubits depend on the measurement
outcomes of other qubits, so that those qubits have to be measured first.
This gives us a ‘direction of time’ on the pattern. It makes sense that we
need to have some kind of adaptivity or dependency in our calculation. If we
could do universal computation without such dependencies, then we could
measure all qubits simultaneously, and do computations in constant time!

So now we have a measurement fragment implementing a CNOT and
another one implementing arbitrary single-qubit unitaries. Hence, if we can
combine these then we can implement arbitrary unitaries. However, now we
get to why we called these measurement fragments ‘stand-alone’: there is
the problem of the Pauli errors. Let’s see what we can do with them.

If a fragment with a Pauli error occurs at the end of our computation this
is easy enough to deal with. At the end, we measure all the qubits in the
computational basis anyway. This means that these errors just change how
we should interpret the measurement outcomes:

Expected:
aπ

bπ

cπ

Actually:
aπ

bπ

cπ

xπ

zπ

yπyπ

=

(a + x)π

bπ

(c + y)π

So if we were feedforwarding an X error, i.e. x = 1 above, then this changes
how we should interpret the measurement outcome we got. If we observe
the measurement outcome a′ then this is actually a′ = a⊕ x. So to get the
‘actual’ measurement outcome a, we just take a′ ⊕ x = a⊕ x⊕ x = a. A Z

330 Measurement-based quantum computation

error (z = 1) doesn’t change the measurement outcome when we measure in
the computational basis, so we can ignore those in this setting. A Y error,
i.e. where both a Z error and an X error occurred, we can treat the same
as an X error here.

In general though, the measurement fragment will happen somewhere in
the middle of the computation so that the errors will not change the final
measurement outcomes, but change how we should run the next fragments
in the sequence. For instance, let’s see what would have happened if a Pauli
error had happened on the input qubit prior to executing the measurement
fragment (8.8):

(−1)aβ + bπ

(−1)bγ + cπ

dπ

α + aπ

= α γβ (a + c)π (b + d)π
zπ xπ

(8.8)

zπ xπ

= (−1)xα (−1)xγβ (a + c)π (b + d + x)π

(π)

zπ

(sp)

= (−1)xα (−1)xγ(−1)zβ (a + c + z)π (b + d + x)π

(π)

(sp)

(8.9)
We see that we can push these errors to the output of the fragment, at the
cost of changing the angles in the unitary to potentially have minus signs,
and additionally changing our output Pauli error. But these Pauli errors
we have on the input arise from measurements we have done before, so we
know what this error is. This means we can decide the measurement angle
of our measured qubits based on this input Pauli error, in the same way we
also change it based on the measurement outcomes of the qubits internal to
the fragment. The full pattern that can also deal with incoming errors then
becomes:

(−1)a+zβ + bπ

(−1)b+xγ + cπ

dπ

(−1)xα + aπ

zπ xπ

= α γβ (a + c + z)π (b + d + x)π (8.10)

This still gives us a Pauli error at the end, but this is fine since we now know
how to deal with this.

In the definition of a stand-alone measurement fragment Definition 8.1.4
we only allowed the measurement angles to depend on previous measurement
outcomes, and not on Pauli errors being fed-forward into it. Now that we

8.1 Measurement fragments 331

know that we need this kind of adaptivity, we can give a definition of the
kind of fragment we need.

Definition 8.1.5 A measurement fragment consists of

• an open graph (G, I,O) (recall Definition 8.1.3) with G = (V,E) and
where m is the number of non-output vertices |V \O|, and ni = |I| is the
number of input qubits and no = |O| is the number of output qubits,

• a measurement order f : {1, . . . ,m} → V \O where f is bijective,
• A measurement-plane function λ : V \O → {XY,XZ, Y Z} that tells us

the measurement plane of every non-output vertex,
• for every non-output vertex f(k) a measurement-angle function αk :
Fni

2 × Fni
2 × F{1,...,k−1}

2 → R that determines the measurement angle
αk(z⃗, x⃗, a⃗) of f(k) depending on all the fed-forward Z errors z⃗, X errors
x⃗ and previous measurement outcomes a⃗, and

• Boolean functions fZ , fX : Fni
2 × Fni

2 × Fm2 → Fno
2 that determine what

the Pauli Z errors fZ(z⃗, x⃗, a⃗) and X errors fX(z⃗, x⃗, a⃗) are on each output
qubit that we will feed forward, based on the Z errors z⃗ and X errors x⃗
that were fed-forward into the pattern and the measurement outcomes
a⃗ of the qubits in the pattern.

Note that we take it as part of the definition of a measurement fragment
to specify what the output errors are. By specifying what we consider ‘errors’
we are at the same time specifying what our desired outcome is, and hence
what the linear map we are trying to implement is. We also need this error
information as it needs to be fed-forward into the fragments following it.

Example 8.1.6 Translating the diagram (8.10) into the language of Defini-
tion 8.1.5, we see that G is a chain of five vertices, let’s call them a, b, c, d, o

to match with the variables in (8.10). Then I = {a} and O = {o}. We
have m = 4, ni = no = 1. The measurement order f just goes down the
chain: f(1) = a, f(2) = b, f(3) = c, f(4) = d (although actually qubit d
can be measured whenever as nothing else in the fragment depends on this
outcome). The measurement-plane λ is XY for every measured qubit. The
measurement-angle functions are then

f1(z, x) = (−1)xα,
f2(z, x, a) = (−1)a+zβ,

f3(z, x, a, b) = (−1)b+xγ,
f4(z, x, a, b, c) = 0

where here α, β and γ are pre-determined phases corresponding to the unitary

332 Measurement-based quantum computation

we wish to implement. Finally, the Pauli error functions are fZ(z, x, a, b, c, d) =
a+ c+ z and fX(z, x, a, b, c, d) = b+ d+ x.

Exercise 8.1 Do the same type of analysis of the Pauli errors as was
done for (8.9), but for the CNOT measurement fragment (8.3). Do the
measurement angles in this pattern have to depend on the incoming Pauli
errors? What are the resulting Pauli errors on the output? Translate all this
information into the form of a measurement fragment as in Definition 8.1.5.

Now that our definition of a measurement fragment can specify how incom-
ing Pauli errors should change the measurement angles, and how the resulting
errors should be fed-forward, we can actually compose these fragments to-
gether. We will not formally define how to do so, as this is quite tedious, but
one can visualise it as just connecting the associated ZX-diagrams together
and pushing the internal Pauli errors to the end.

[TODO: Picture?]

Remark 8.1.7 The example fragments we have considered so far, (8.10)
and (8.3), implement a linear map that is independent of the measurement
outcomes in the pattern (up to a known Pauli error that is being fed-forward).
We call such a fragment deterministic, because if we zoom out and consider
the fragment as a single unit, it just implements a fixed unitary. Our definition
of measurement fragment doesn’t require the fragments to be deterministic,
but in practice we will restrict ourselves to deterministic ones. We will have
a lot more to say about determinism in the one-way model in Section 8.2.

8.1.1 Universal resources

We have described a measurement fragment to implement a CNOT gate and
one that can implement an arbitrary single-qubit unitary. As CNOT gates
and single-qubit unitaries form a universal gate set, we see then that we
can construct a measurement fragment for any unitary we would want to
implement. Hurray! Note however that the resulting graph state we need
will depend on the specific unitary we want to implement. There is then still
some ‘information’ about the computation that is present in the starting
resource state. This then raises an interesting question: can we implement
arbitrary unitaries using a measurement fragment that has a fixed graph
state? We need to be a bit careful about how to formally state this question,
because there are unitaries that are really hard to implement, and so we
would expect them to require a large resource state to prepare (put simply:
if we only have k measurements, we could represent at most a k-dimensional

8.2 Determinism and gflow 333

subset of all unitaries, but the space of all unitaries scales exponentially with
the number of qubits). We hence shouldn’t consider a fixed resource, but
rather a family of resource state that is allowed to scale with the cost of the
unitary. A more formal version of the question would hence be something
like:
Does there exist a family of open graphs Gk where Gk consists of poly(k) vertices,
such that for any n-qubit unitary U with m gates, we can find a measurement
pattern implementing U which uses the open graph Gk where k = poly(n,m)?

Maybe perhaps surprisingly, the answer to this is yes! There exist universal
resource states which allow you to implement arbitrary quantum compu-
tations up to some size. A particularly nice example of a family of universal
resource states are the 2D cluster states:

...

...

...

...

I.e. the graph is just a big square grid. The trick to seeing why this is
universal, is that we can use measurements in the Y Z plane to strategically
cut holes into the grid:

aπ

= aπ

aπ

aπ

aπ

= aπ

aπ

aπ

aπ

This allows us to shape the grid into whatever pattern we need it to be to
perform the computation we want.

[TODO: Notebook: cluster states]

8.2 Determinism and gflow
We have now seen that we can do universal computation using the one-way
model. An important part in getting there was knowing how to deal with
the wrong measurement outcomes by finding ways to feed them forward. So
far we have done this essentially by trial and error: we construct a simple

334 Measurement-based quantum computation

fragment, observe that we get the wrong phases sometimes, and then change
them to correct for this. In this section we will find a more systematic way
to think about correcting errors and when we can see that a measurement
fragment can be made deterministic.

But first: let’s look at the connection between measurement fragments and
graph-like diagrams.

8.2.1 Graph-like ZX-diagrams as measurement fragments

It turns out that if we take the ZX representation of a measurement pattern,
ignore the adaptivity needed to correct for ‘wrong’ measurement outcomes,
and fuse some spiders, that we get a graph-like diagram. For instance, doing
this for the fragment (8.7), we get:

β

γ

α

=

(sp) β

γ

α

(8.11)

This graph-like diagram is then a representation of the ‘post-selected’ mea-
surement fragment, where all the measurement outcomes where what we
wanted them to be.

It turns out the converse is also true: any graph-like diagram can be seen
as a post-selected measurement fragment, just by unfusing some phases and
introducing some identities:

α1

=

α5

α2 α3

α4 α6

α1 α5

α2 α3

α4 α6

=

α1 α5

α2 α3

α4 α6

(sp)

(hh)

(id)

(8.12)
If we were to actually try to run this as a measurement fragment, we would of
course usually get some of the ‘wrong’ measurement outcomes. So this frag-
ment is only useful if we know how to deal with all measurement outcomes,
so that we can make the pattern deterministic. Can we do this somehow?

This is not just a niche question we are asking because we like diagrams.
We can write any quantum circuit as a graph-like diagram, so if we could
do this then this would give us an easy way to translate a circuit into a
deterministic measurement fragment.

8.2 Determinism and gflow 335

It turns out that it is in general not possible to turn graph-like diagrams
into deterministic measurement fragments. This is for the simple reason
that we can write down ZX-diagrams that are not isometries. For instance,
consider the following graph-like diagram:

(8.13)

By doing some colour changing and identity removals, we see that this is
just a 2-input, 2-output Z-spider, which is a projection and is not unitary.
If we could deterministically perform such a projection, we could do non-
unitary quantum computation! Or even more simply, consider the graph-like
diagram . If we could implement this ZX-diagram deterministically, we
would be doing post-selection.

So it is not always possible to turn a graph-like diagram into a deterministic
measurement fragment. But can we at least somehow determine when we can
do so? As it turns out: yes. For a particularly strong type of deterministic
measurement pattern there is a one-to-one correspondence to graph-like
ZX-diagrams with a property called gflow.

8.2.2 The measurement correction game

To understand when we can implement a correction strategy for measurement
errors on a graph-like ZX-diagram, let’s consider a small toy diagram to see
what we can do:

α

πerror

γ β

(8.14)

This is of course not a realistic diagram that we would expect to encounter
when doing MBQC, but it will serve to demonstrate the principle of correc-
tion. Here our goal is to get rid of the π phase. We can do this by changing
the spider with the β phase:

α

π

γ β

=

α

π

γ −βπ

(π)

=

α

π

π

γ −β

(π)

(cc)

=

α

γ −β

(sp)

(8.15)
Hence, as long as we measure the qubit with phase β after the one with α,
an error at α can be corrected by changing the measurement angle of the

336 Measurement-based quantum computation

β qubit to be −β. Here we could have also chosen to change γ in order to
correct the error at α.

Finding the right correction was easy here, because the β spider was only
connected to α and nothing else. Let’s consider a slightly more complicated
diagram:

α

π

γ β

δ

(8.16)

In this case, changing the phase of β does still remove the error at α, but it
also changes the phases at the other spiders:

α

π

γ β

δ

=

α

π

γ −β

δ

π

(π)

=

α

γ + π −β

δ + π

(π)

(cc)

(sp) (8.17)

Now if we can run the pattern such that the qubits with the γ and δ phase
can be measured after the α qubit, then this is fine, since we can still decide
to measure them with a different phase to correct for the additional π phase
they have. But if we suppose that we have already measured the qubit with
the γ phase, then this would not be possible. In that case however, we see
that we can apply the same ‘π-pushing’ trick with δ to remove the additional
phase γ got:

α

γ + π −β

δ + π

=

α

γ + π −β

−δ + ππ

(π)

=

α

γ −β + π

−δ + π

(π)

(cc)

(8.18)
This gave us an additional π phase at β as well, but that is fine as we are
already considering changing the phase at β. Hence, to correct the error at
α, we can decide to change the phase at β and δ, and this leaves the phase
at γ invariant.

Let’s try to formalise what is happening here. We see that the trick of
pushing out an X(π) phase affects the phases on all the neighbours of this
vertex, and that if we affect the phase of a vertex twice, that this then cancels
out the effect. The qubits will be measured in some order, so we must make

8.2 Determinism and gflow 337

sure that whatever qubits we affect the phase of must be measured after the
qubit we are trying to correct an error at.

[TODO: Is this a good place for a cute picture of Dave and Coco playing a
game?] We can capture this behaviour in a little game: you are given an open
graph with vertices V where every vertex is labelled with either the presence
or absence of an error (a 1 or 0). You are allowed to do the operation flipv
for a vertex v ∈ V , which flips the value of the error on all the neighbours
of v (but not at v itself). The goal is to move all the 1’s (the errors) to the
output vertices. For example:

I ∋

I ∋ ∈ O

0

0 01

v

∈ O
1

w flipv−−−→
I ∋

I ∋ ∈ O

1

0 10

v

∈ O
1

w flipw−−−→
I ∋

I ∋ ∈ O

0

0 10

v

∈ O
1

w (8.19)

For some open graphs and configurations of errors, this task might be im-
possible. For example, there is no solution for the following graph:

I ∋

I ∋
∈ O

0

0 0

1

Which makes sense, because if we were to try to build a one-way model
computation on this open graph, it would map two qubits to one qubit, so
there is no way we could do such a computation deterministically.

The question then is, for which graphs can you always win this game,
regardless of where the errors occur?

We can see that a winning strategy is the following: first, find an ordering
≺ of vertices which give a direction of ‘time’ going from inputs to outputs,
and find for each non-output vertex u, a correction set g(u) ⊂ V of vertices
in the future of u (with respect to the ordering ≺) such that applying flipv
for all v ∈ g(u) flips the bit on u, and potentially also flips some other bits, as
long as those bits all belong to vertices that are in the future of u (again, with
respect to ≺). Now, for any instance of the game we can apply the following
strategy: find a minimal vertex u (w.r.t. ≺) which has an error. Then apply
flipv to all v ∈ g(u). This removes the error on u, and only introduces new
errors on vertices in the future of u. Then find a new minimal vertex with
an error and repeat until all the errors are moved all the way to the end at
the outputs.

This game describes the property of g(u) in terms of the flip operation,
but we can actually make the description a bit simpler and more natural to
graph-theory language. Namely, we see that a vertex w get its bit flipped
by applying flipv for all v ∈ g(u) precisely when it is connected to an odd

338 Measurement-based quantum computation

amount of vertices in g(u). This is because if it is connected an even amount
of times to vertices in g(u), then it gets its bit flipped twice, so that nothing
happens. Let’s capture this in a definition.

Definition 8.2.1 Let G = (V,E) be an (open) graph, and A ⊆ V some
subset of its vertices. We define the odd neighbourhood of A in G as
OddG(A) := {w ∈ V | |NG(w) ∩ A| mod 2 = 1 }. Here NG(w) denotes the
regular neighbourhood of a vertex w, i.e. its set of neighbours.

Using odd neighbourhoods we can rephrase the condition we needed on the
correction sets g(u): we need u ∈ OddG(g(u)) (applying flip for all vertices
in g(u) results in a flip at u) and if v ∈ OddG(g(u)) then u ≺ v (if v gets
flipped by the corrections for u, then v needs to be in the future of u).

This is in fact exactly what we require, and allows us to give the definition
of the central concept of this chapter: gflow.

Definition 8.2.2 Let G = (V,E, I,O) be an open graph. A gflow (≺, g)
on G consists of a partial order ≺ on the vertices of G, and a correction
set function g : V \O → ℘(V \I) that associates to every non-output vertex
v ∈ V \O a subset of non-input vertices g(v) ⊆ V \I, such that:

1. The inputs are minimal in the partial order ≺ (meaning that if v ≺ i

for some input i, then v = i) and conversely the outputs are maximal;
2. For every u ∈ V \O, we have that u ≺ v and u ̸= v for every v ∈ g(u),

i.e. all the elements in the correction set are in the future of the vertex
being corrected;

3. For every u ∈ V \O we have u ∈ OddG(g(u)), i.e. applying a correction
at all the vertices in the correction set of u, results in a correction at u;

4. For every u ∈ V \O, if v ∈ OddG(g(u)), then u ≺ v. That is, if v is a
vertex that ends up with a correction from the correction set of u, then
v is in the future of u.

We say an open graph has gflow when at least one gflow can be defined on
it.

With what we discussed above we see that if an open graph has gflow,
that this gives us a winning strategy for the error correction game.

Remark 8.2.3 We have here only shown that the existence of gflow gives
us a winning strategy for the error correction game, but not that there might
also be other strategies. It turns out that the open graph of a deterministic
measurement pattern has gflow if and only if it has a particularly well-
behaved kind of determinism. See the References of this chapter for more.

8.2 Determinism and gflow 339

Exercise 8.2 In the definition above we defined OddG(A) by checking
all vertices in G. However, there is also an ‘intrinsic’ definition, given by
OddG(A) = ∆v∈ANG(v). Here ∆ denotes the symmetric difference opera-
tion of sets, where for example {1, 2, 3} ∆ {2, 3, 4} = {1, 4}. Prove that this
definition is equivalent to the one in Definition 8.2.1.

Solution: .
Label the vertices of A as v1, . . . , vk, and let S = NG(v1)∆· · ·∆NG(vk). If w ∈
S, then it must be in at least one of theNG(vi). With the symmetric difference
operation, if it were in another NG(vj) then it wouldn’t be in S. This toggles
for every additional neighbourhood it is in, so that it is in S precisely when
it is in an odd amount of neighbours of the vi, let’s say vi1 , . . . , vil . But we
are working with undirected graphs, so the adjacency relation is symmetric,
and this means that vij ∈ NG(w). Hence the intersection NG(w)∩A contains
an odd amount of vertices. This proves S ⊆ OddG(A). The other direction
is proven just by taking the same argument in reverse.
End Solution .

Exercise 8.3 Show that for any two sets of vertices A,B ⊆ V of G = (V,E)
that OddG(A∆B) = OddG(A) ∆ Oddg(B).

8.2.3 Diagrams with gflow are deterministic measurement pat-
terns

We can use gflow to describe how to transform a graph-like ZX-diagram into
a deterministic measurement pattern.

Let’s assume we have a graph-like ZX-diagram D such that its correspond-
ing open graph G has a gflow (≺, g). We see from Definition 8.1.5 that to
describe a measurement fragment, we need to supply a number of data to
fully define it. The first parts are easy enough to specify:

• We need to specify an open graph. For this we will just take the open
graph we already have: G.

• A measurement order. For this we will take any order that is compatible
with the partial order ≺. That is: we take a minimal vertex v in the
order (which does not have any vertices earlier in the order) and assign
it to be measured first. We then find a new minimal vertex in the set
V \{v} and assign it to be measured second. We repeat this until all
vertices in V \O have been assigned a measurement order.

• A measurement plane function. Here we just assign every measured

340 Measurement-based quantum computation

vertex to be measured in the XY plane (we will discuss this choice in
more detail in Section 8.5).

But now comes the hard part: we need to describe the measurement angles,
and more importantly, how they are affected by the measurement outcomes.
In practice, what this means is that we have a standard measurement angle
α that comes from the angle we had in the ZX-diagram D. But then this α
gains either a +π phase or a negation depending on whether it appears in
any correction sets, or odd neighbourhoods of correction sets of measured
qubits that require a correction.

Let’s write αu for the phase that the spider u has in the original diagram
D and au for the measurement outcome when the spider u is measured.
Hence, if all the measurement outcomes au are 0, then the measurement
angles we want to measure every qubit in is just αu. We will change these
αu to functions α′

u that may depend on the av of qubits v that have been
measured before u.

Let’s first consider an input u ∈ I, which has to deal with a fed-forward
Pauli X error, but no other corrections from inside the pattern:

αu + auπ

zπxπ ...u
=

(sp)
αu + zπ + auπ

xπ ...u
=

(π)
(−1)xαu + zπ + auπ

...u

(cc)
xπ

=

α′
u(z, x) + auπ

...u

xπ

xπ xπ

We see that we should change our initial choice of measurement αu to a
function α′

u(z, x) = (−1)xα + zπ in order to account for the error being
fed-forward into the spider. This doesn’t fully capture the incoming Pauli
error though, as we see that the X error has to be further fed-forward into
the neighbours of u. All this does is change the measurement angle of that
neighbour by xπ, so we will ignore this detail.

While this deals with the incoming Pauli error, it does not deal with the
measurement error av that it produces itself. To correct this we need the
gflow condition. This procedure is the same regardless of whether the spider
is an input or not, so let’s just take u ∈ V \O to be any measured qubit
now. We then have a set of correction qubits g(u) = {v1, . . . , vk} and a set
of ‘corrected’ qubits OddG(g(u)) = {u,w1, . . . , wl}. We then see that by
changing the measurement angles at the correction and corrected qubits, we

8.2 Determinism and gflow 341

can remove the measurement error at u:
αu + auπ

...

αv1

u

=

(π)

αvk

· · ·

αw1

αwl

v1 vk

w1

wl

αu + auπ

...

(−1)auαv1 (−1)auαvk

· · ·

αw1

αwl

auπ auπ

=

(π) αu

...

(−1)auαv1 (−1)auαvk

· · ·

αw1 + auπ

αwl + auπ

(cc)

Here for simplicity we have assumed that each vi and wj is not an output, as
we will deal with that case later. We have given every qubit in this diagram
an additional output wire to denote that it can also be connected to some
other spiders. The last application of (π) does not affect these additional
qubits, precisely because they are not in the odd neighbourhood of the
correction set. So for every v ∈ g(u) we set α′

v(au) = (−1)auαv and for every
w ∈ OddG(g(u)) with w ̸= u we set α′

w(au) = αw + auπ.
In general, a spider could of course be part of multiple correction sets and

odd neighbourhoods of correction sets. It will be useful to give these a name:

S1(v) := {u ∈ V \O | v ∈ g(u)}
S2(v) := {u ∈ V \O | v ∈ OddG(g(u))\{u}}

Then the actual measurement angle, as a function of the previous measure-
ment outcomes, is

α′
v({ au |u ≺ v }) = (−1)

∑
u∈S1(v) au

αv +

 ∑
u∈S2(v)

au

π.
We are now almost done! The above tells us how to change measurement

angles to correct errors when the correction sets g(u) and corrected sets
OddG(g(u)) only contain non-outputs. When instead an output qubit o is
in such a set, then we don’t change the measurement angle of o (which we
can’t do since o is not measured), but we change the Pauli error that is
being fed-forward. If o ∈ g(u), then we get a Pauli X error of auπ, and if
o ∈ OddG(g(u)), then we get a Pauli Z error auπ. In general then, the output
Pauli that gets forwarded at output o is (z, x) = (

∑
u∈S2(o) au,

∑
u∈S1(v) au).

We have now specified what all the measurement angles of the qubits
should be, based on the fed-forward errors and the internal measurement
outcomes, and we have specified what the outgoing fed-forward errors will be
based on the measurement outcomes. This then indeed gives us a measure-
ment pattern. By how we constructed the pattern, we see that it implements
the ZX-diagram we started out with regardless of the internal measurement

342 Measurement-based quantum computation

outcomes (up to the fed-forward Pauli error at the end). We have then proved
the following result.

Theorem 8.2.4 Let D be a graph-like diagram, and G = (V,E, I,O) its
corresponding open graph consisting of a vertex for every spider and edge for
every Hadamard edge, and suppose that G has gflow. Then we can efficiently
construct a deterministic measurement fragment from D and the gflow which
has the same underlying open graph and implements the same linear map
as D.

Remark 8.2.5 The trick we applied here, introducing Pauli X’s to cancel
a Pauli Z at a different location, might have seemed a bit familiar. This
is because it is actually based on the stabilisers of the underlying graph
state (see Example 6.3.8). Applying the flipv operation is like introducing
the graph-state stabiliser Sv consisting of an X at v and a Z at all its
neighbours. The correction set g(u) then says that to correct the error at u,
we need to introduce the stabiliser

∏
v∈g(u) Sv.

8.2.4 From circuits to measurement patterns

We started out this section with the goal of understanding how we can
systematically create measurement fragments that are deterministic. We
have seen that we have one powerful tool for ensuring determinism: the
existence of a gflow. What we have however not yet done is finding a good
source of measurement fragments that have gflow.

As it turns out, if we take a unitary circuit consisting of Clifford and phase
gates, and then turn it into a graph-like diagram by fusing all spiders and
colour changing to Z-spiders as described in Proposition 5.1.8, the resulting
diagram has gflow.

Proposition 8.2.6 Let D be the diagram of some quantum circuit, and
D′ the graph-like diagram produced from D using Proposition 5.1.8. Then
D′ has a gflow.

[TODO: Maybe most of this proof can just be an exercise?]

Proof The idea will be to set g(u) = {v} where v is the spider directly to
the right of u on the same qubit line, and for the partial order to encode ‘is
that spider to the left of me?’

For every spider v of the circuit D we associate a number qv specifying on
which ‘qubit-line’ it appears. We also associate a ‘column-number’ cv ≥ 0
specifying how ‘deep’ in the circuit it appears. Hence, each spider has ‘xy
coordinates’ (cv, qv):

8.2 Determinism and gflow 343

α

β

γ

δ

q = 1

q = 2

q = 3

c = 1 2 3 4 5

Suppose that v and w are connected in D, v ∼ w. If they are on the same
qubit, so qv = qw, then necessarily rv ̸= rw, since they can’t share the same
space. Conversely, if they are on different qubits, qv ̸= qw, then they must
be part of a CZ or CNOT gate, and hence rv = rw.

In D′, every spider arises from fusing together adjacent spiders on the
same qubit line from the original diagram (apart from the additional identity
spiders introduced in the last step, which we will ignore for now):

α

β

γ

δ

q = 1

q = 2

q = 3

c = 1 2 3 4 5 6 7

For a spider v in D′ we can thus associate two numbers sv, and tv, where
sv is the lowest column-number of a spider fused into v, and tv the highest.
For instance, for the second spider on the second qubit, we have s = 3 and
t = 5. Spider fusion in D only happens for spiders on the same qubit-line,
and hence v also inherits a unique qv from all the spiders that got fused into
it.

An identity spider v created by the last step of the translation, must be
attached to either an input or an output. If it is attached to an input, we
set sv = tv = 0. If it is attached to an output we set sv = tv = +∞ (or any
value bigger than the largest value of tv in the diagram). For this proof we
can treat these spiders the same way as the others.

We define a partial order on D′ as follows: v ≺ w if and only if v = w

or tv < tw. It is straightforward to check that this is indeed a partial order.
Now for any u in D′ that is not an output, set g(u) = {v} where v is the
unique neighbour to the right of u on the same qubit-line. We claim (g,≺)
is a gflow.

By construction u ∈ Odd(g(u)) = N(v). We need u ≺ v. The spiders of
D that got fused into the same spider in D′ must have all been adjacent.
Hence, for the distinct spiders u and v in D′ on the same qubit we must have
tv < sw, as they couldn’t have overlap in the spiders that got merged into
them. Hence, tu < sv < tv so that u ≺ v. Suppose w ∈ Odd(g(u)) = N(v) so
that w ∼ v. We need to show that u ≺ w. If u = w this is trivial so suppose
v ̸= w. First suppose that qw = qv (which is also equal to qu). We know v

has a maximum of two neighbours on the same qubit-line (one to the left,

344 Measurement-based quantum computation

and one to the right), and since the one to the left is u, w must be to the
right, so u ≺ v ≺ w. If instead qv ̸= qw then their connection must have
arisen from some CNOT or CZ gate in D, and hence the intervals [sv, tv] and
[sw, tw] must have overlap, so that necessarily sw ≤ tv and sv ≤ tw. Since we
also have tu < sv we get tu < sv ≤ tw so that indeed u ≺ w.

Remark 8.2.7 A gflow like we get here, where each correction set only
contains a single element, is known as a causal flow, or just a flow. This is
the kind of flow that gflow is generalising.

There are also some simple modifications we can make to an open graph
that preserve the existence of a gflow. Like adding new vertices after an
output or adding and removing connections between output vertices.

Exercise 8.4 Let G = (V,E, I,O) be an open graph with a gflow (≺, g)
and suppose that outputs oi, oj ∈ O are connected. Show then that (≺, g) is
also a gflow for the open graph G′ = (V,E′, I, O) where E′ = E\{(oi, oj)},
i.e. the graph where we removed an edge between two outputs. Similarly,
show that adding an edge between two outputs also preserves gflow.

Exercise 8.5 LetG = (V,E, I,O) be an open graph with a gflow (≺, g) and
let o ∈ O be some chosen output. Define G′ = (V ′, E′, I, O′) by V ′ = V ∪{u},
O′ = {u} ∪ O\{o} and E′ = E ∪ {(o, u)}. That is: G′ is just G but with
another vertex u after o that becomes the new output. Show that (≺′, g′) is
a gflow for G′ where ≺′ is just the transitive closure of ≺ with the additional
relation o ≺′ u, and g′(o) = {u}, and g′(v) = v for every other vertex.

Note that these results only talk about creating a new pattern that also
has a gflow. We are not defining an actual measurement pattern, and hence
we are not saying anything about whether this new pattern implements the
same linear map or not.

In Section 8.3 we will prove that some more elaborate ways in which we
can change graphs also preserve the existence of a gflow.

8.2.5 Focussed gflow

The definition of a gflow allows the correction set g(u) to also induce correc-
tions on other vertices, as long as those other vertices are in the future of u.
That is, OddG(g(u)) can contain more than one vertex. It turns out that we
can modify a gflow to just allow u to be corrected and no other measured
vertex (this turns out to be useful later).

Definition 8.2.8 We say a gflow (≺, g) on an open graph G = (V,E, I,O)

8.3 Optimising deterministic measurement patterns 345

is focussed when for every u ∈ V \O, the corrected vertices v ∈ OddG(g(u))
are either v = u or v ∈ O. That is, OddG(g(u))\O = {u}.

Exercise 8.6 Let G = (V,E, I,O) be an open graph with a gflow (≺, g).
Pick some vertex u ∈ V \O. Let A ⊆ V be some set of vertices such that for
any v ∈ A and v ∈ OddG(A) we have u ≺ v and u ̸= v. Show then that the
function g′ defined by g′(u) = g(u) ∆A and g′(w) = g(w) for all w ̸= u also
defines a gflow (≺, g′) on G.
Hint: Use Exercise 8.3.

Exercise* 8.7 Show that if an open graph has a gflow, then it also has a
focussed gflow.
Hint: if you have some u for which OddG(g(u)) contains some vertex v it
shouldn’t, then v has to be in the future of u. Argue that A = g(v) satisfies
the conditions of the previous exercise. Proceed to modify g(u) with A. What
has now changed about OddG(g′(u))?

8.3 Optimising deterministic measurement patterns
In Chapter 5 we saw two rewrites that proved very useful for optimising Clif-
ford diagrams: local complementation and pivoting. These rewrites allowed
us to remove internal spiders from a graph-like diagram. As we’ve seen in this
chapter, we can view graph-like diagrams as measurement patterns, and then
internal spiders become measured qubits. Hence, these rewrites now offer
ways to optimise the number of qubits we need to measure in the pattern.
Of course, this is only useful if it preserves our ability to deterministically
implement the measurement pattern, i.e. if it preserves the existence of a
gflow. That is precisely what we will prove in this section.

While we tried to present the proofs here in as simple a way as possible, it
still requires some stamina to process all the odd-neighbourhood acrobatics.
So perhaps on a first read-through you might want to just read the statements
of Proposition 8.3.2 and 8.3.5 and then move on to the next section to see
what we will use these results for.

Recall that for a graph G, we defined G ⋆ u to be the graph where we
locally complemented about u. In this graph the neighbourhoods have been
updated as follows for any v ∈ V :

NG⋆u(v) =

NG(v) ∆NG(u) ∆ {v} if v ∈ NG(u)
NG(v) otherwise

(8.20)

346 Measurement-based quantum computation

We will also need to know how the odd neighbourhood of a set changes
when you apply a local complementation.

Lemma 8.3.1 Given a graph G = (V,E), A ⊆ V and u ∈ V ,

OddG⋆u(A) =

OddG(A) ∆ (NG(u) ∩A) if u /∈ OddG(A)
OddG(A) ∆ (NG(u) \A) if u ∈ OddG(A)

Proof Using the fact that OddG(A) = ∆
v∈A

NG(v), we calculate:

OddG⋆u(A) = ∆
v∈A

NG⋆u(v)

(8.20)=
(

∆
v∈A∩NG(u)

NG(v) ∆NG(u) ∆ {v}
)

∆
(

∆
v∈A\NG(u)

NG(v)
)

=
(
∆
v∈A

NG(v)
)

∆
(

∆
v∈A∩NG(u)

NG(u)
)

∆
(

∆
v∈A∩NG(u)

{v}
)

Here in the last step we simply regrouped the terms: we used the fact that
the NG(v) term appears in both the terms above it so that we can combine
them into ∆

v∈A
NG(v), and we separated out the other terms. We then see

that the first term is precisely OddG(A), while the last term is just a union
of all the {v} in A ∩NG(u). This expression hence simplifies to

OddG⋆u(A) = OddG(A) ∆
(

∆
v∈A∩NG(u)

NG(u)
)

∆ (A ∩NG(u))

It remains to simplify the middle expression. This is just a symmetric differ-
ence of NG(u) with itself a number of times. This term hence only appears
when |A ∩NG(u)| ≡ 1 mod 2. This is precisely the case when u ∈ OddG(A).
Hence, if u /∈ OddG(A), OddG⋆u(A) = OddG(A) ∆ (A ∩NG(u)). Otherwise,
if u ∈ OddG(A), we get OddG⋆u(A) = OddG(A) ∆ NG(u) ∆ (A ∩ NG(u)).
We can simplify this expression by using the property B ∆ (A ∩B) = B \A
(convince yourself that this is true). The expression for OddG⋆u(A) then
becomes exactly what we wanted to prove.

Proposition 8.3.2 Let G = (V,E, I,O) be an open graph with a gflow
(≺, g) and let u ∈ V \ (I ∪O) be an internal vertex. Then G′ := (G⋆u) \ {u},
the open graph we get by doing a local complementation about u and then
removing u, also has gflow.

Proof By Exercise 8.7 we may assume that the gflow g of G is focussed,
i.e. that OddG(g(w)) only contains {w} and outputs of G for any w.

8.3 Optimising deterministic measurement patterns 347

We then claim that the function g′ : V \ (O ∪ {u}) → ℘(V \ (I ∪ {u}))
defined by

g′(w) :=

g(w) if u /∈ g(w)
g(w) ∆ {u} ∆ g(u) otherwise

(8.21)

gives a gflow (≺, g′) on (G ⋆ u) \ {u}. We haven’t changed the partial order,
so we just need to check the different conditions that g′ has to satisfy. First,
note that it is well-defined: none of the g′(w) contain u. In the first case this
is true by construction, and in the second case we know that u ∈ g(w), so
that g(w) ∆ {u} = g(w) \ {u}.

Now we have to check three things:

1. All the elements of g′(w) are in the future of w.
2. All the elements of OddG⋆u(g′(w)), except for w itself are in the future

of w.
3. OddG⋆u(g′(w)) contains w.

For the first point, note that if u /∈ g(w), that then g′(w) = g(w), in which
case all of g′(w) is definitely in the future of w (since we haven’t changed
the partial order ≺). Otherwise u ∈ g(w), and hence w ≺ u, so that all the
elements of g(u) are in the future of w. Hence g′(w) = g(w) ∆ {u} ∆ g(u)
only contains elements in the future of w.

Then for the second and third point. Because g is focussed and u is not
an output, we know that u /∈ OddG(g(w)) if w ≠ u. This means that when
we use Lemma 8.3.1 to calculate OddG⋆u(g(w)) the first case applies and we
get OddG(g(w)) ∆ (NG(u) ∩ g(w)).

So now let’s again make the case distinction on whether u ∈ g(w). If this
is not the case, then g′(w) = g(w), and hence

OddG⋆u(g′(w)) = OddG⋆u(g(w)) = OddG(g(w)) ∆ (NG(u) ∩ g(w)).

Both the elements of OddG(g(w)) and (NG(u) ∩ g(w)) ⊆ g(w) are certainly
in the future of w, so that this odd neighbourhood lies in the future of
w. Additionally, OddG(g(w)) contains w, while g(w) does not, so that w ∈
OddG⋆u(g(w)). Hence, points 2 and 3 are satisfied for those w where u /∈ g(w).

It then remains to check OddG⋆u(g′(w)) for the w that satisfy u ∈ g(w).
To calculate this set it will be useful to first calculate OddG⋆u(g(u)). As
u ∈ OddG(g(u)), the second case of Lemma 8.3.1 applies. We hence get

OddG⋆u(g(u)) = OddG(g(u)) ∆ (NG(u) \ g(u)).

Then using the definition of g′(w) in Eq. (8.21) and the linearity property of

348 Measurement-based quantum computation

odd neighbourhoods, OddG(A∆B) = OddG(A) ∆ OddG(B), we calculate:

OddG⋆u(g′(w)) = OddG⋆u(g(w)) ∆ OddG⋆u({u}) ∆ OddG⋆u(g(u))
= OddG⋆u(g(w)) ∆NG(u) ∆ OddG(g(u)) ∆ (NG(u) \ g(u))
= OddG⋆u(g(w)) ∆ OddG(g(u)) ∆ (g(u) ∩NG(u))

Here in the last step we used the property A ∆ (A \ B) = B ∩ A where
A = NG(u) and B = g(u). We have already seen that every element of
OddG⋆u(g(w)) is in the future of w. Since we are assuming u ∈ g(w), we
have w ≺ u, and hence both g(u)∩NG(u) ⊆ g(u) and OddG(g(u)) are in the
future of w. It remains to verify that w ∈ OddG⋆u(g′(w)), but this follows
because w ∈ OddG⋆u(g(w)).

We hence see that g′ is indeed a gflow. Note that while we started with a
focussed gflow g, the new gflow g′ is not necessarily focussed.

Proving that pivoting preserves gflow is done quite similarly. Just like how
we needed a lemma that told us how odd neighbourhoods evolved under
application of a local complementation, we need one that tells us what
happens when a pivot happens. For this it will be helpful to introduce a
little bit of extra notation.

Definition 8.3.3 We define the closed neighbourhood of a vertex u as
NG[u] := NG(u) ∆ {u} = NG(u) ∪ {u}. Similarly we define the closed odd
neighbourhood of a set A as OddG[A] := ∆u∈ANG[u] = OddG(A) ∆A.

Let u and v be some vertices of G, and write G ∧ uv for the graph where
we pivoted along uv. Then for any w we have:

NG∧uv(w) =

NG(w) ∆NG[u] ∆NG[v] if w ∈ NG[u] ∩NG[v]
NG(w) ∆NG[v] if w ∈ NG[u] \NG[v]
NG(w) ∆NG[u] if w ∈ NG[v] \NG[u]
NG(w) otherwise

(8.22)

Exercise 8.8 Calculate using this equation, that when w = u we get
NG∧uv(u) = (NG(v) ∪ {v}) \ {u} as we expect (since u and v essentially just
swap places in the graph).

8.3 Optimising deterministic measurement patterns 349

Lemma 8.3.4 Given a graph G = (V,E), A ⊆ V , u ∈ V , and v ∈ NG(u),

OddG∧uv(A) =

OddG(A) if u, v /∈ OddG[A]
OddG(A) ∆NG[v] if u ∈ OddG[A], v /∈ OddG[A]
OddG(A) ∆NG[u] if u /∈ OddG[A], v ∈ OddG[A]
OddG(A) ∆NG[u] ∆NG[v] if u, v ∈ OddG[A]

(8.23)

Exercise* 8.9 Prove Lemma 8.3.4.
Hint: You will need the same tricks that were used to prove Lemma 8.3.1.

Solution: .
We make case distinctions based on whether the elements of A are in NG[u],
NG[v] or both:

OddG∧uv[A] = ∆
w∈A

NG∧uv(w)

=
(
∆w∈A∩NG[u]∩NG[v]NG∧uv(w)

)
∆
(
∆w∈A∩NG[u]c∩NG[v]c NG∧uv(w)

)
∆(

∆w∈A∩NG[u]c∩NG[v]NG∧uv(w)
)

∆
(
∆w∈A∩NG[u]∩NG[v]c NG∧uv(w)

)
=
(
∆w∈A∩NG[u]∩NG[v]NG(w) ∆NG[u] ∆NG[v]

)
∆
(
∆w∈A∩NG[u]c∩NG[v]c NG(w)

)
∆(

∆
w∈A∩NG[u]c∩NG[v]

NG(w) ∆NG[u]
)

∆
(

∆
w∈A∩NG[u]∩NG[v]c

NG(w) ∆NG[v]
)

= OddG(A) ∆
(

∆
w∈A∩NG[v]

NG[u]
)

∆
(

∆
w∈A∩NG[u]

NG[v]
)

Notice that |A∩NG[u]| ≡ 1 mod 2 iff u ∈ OddG[A], and similarly for v. This
then gets us Lemma 8.3.4.
End Solution .

Proposition 8.3.5 Let G = (V,E, I,O) be an open graph with a gflow
(≺, g) and let u, v ∈ V \ (I ∪O) be connected internal vertices. Then G′ :=
(G∧ uv) \ {u, v}, the open graph we get by doing a pivot along uv and then
removing u and v, also has gflow.

Proof Again we will assume that g is focussed. We then define a gflow g′

for G ∧ uv \ {u, v} as follows: for every w ∈ V \ (O ∪ {u, v}) set g′(w) :=
g(w)\{u, v}. Every condition needed for g′ to be a focused gflow then follows
immediately except for checking that OddG∧uv\{u,v}(g′(w)) contains w and
lies in the future of w.

Note that OddG[g(w)] = OddG(g(w)) ∆ g(w) ⊆ {w} ∪ O ∪ g(w) by the

350 Measurement-based quantum computation

focussed property, so that u ∈ OddG[g(w)] ⇐⇒ u ∈ g(w) and similarly for
v. Now, to look at the odd neighbourhoods of the correction sets we will
make a case distinction on w based on whether u ∈ g(w) or v ∈ g(w).

• If u, v /∈ g(w), then also u, v /∈ OddG[g(w)] and hence by Lemma 8.3.4
OddG∧uv(g(w)) = OddG(g(w)). Since g′(w) = g(w) \ {u, v} = g(w) we
are then done.

• If u, v ∈ g(w), then also u, v ∈ OddG[g(w)] and g′(w) = g(w) \ {u, v} =
g(w) ∆ {u, v}. Hence:

OddG∧uv(g′(w)) = OddG∧uv(g(w) ∆ {u, v})
= OddG∧uv(g(w)) ∆ OddG∧uv({u, v})

(Lem. 8.3.4) = OddG(g(w)) ∆ (NG[u] ∆NG[v]) ∆ OddG({u, v})
= OddG(g(w)) ∆ OddG({u, v}) ∆ OddG({u, v})
= OddG(g(w))

Note that we used here the fact that u ∈ NG(v) and v ∈ NG(u), so that
NG[u] ∆NG[v] = NG(u) ∆NG(v) = OddG({u, v}).

• If u ∈ g(w) and v /∈ g(w),

OddG∧uv(g′(w)) = OddG∧uv(g(w) ∆ {u})
= OddG∧uv(g(w)) ∆ OddG∧uv({u})

(Lem. 8.3.4) = OddG(g(w)) ∆NG[v] ∆ OddG({v})
= OddG(g(w)) ∆ {v}

Here we have used that OddG∧uv({u}) = NG(v). As we are deleting u
and v from the final graph, we can ignore the fact that we get {v} in
the odd neighbourhood.

• If u /∈ g(w) and v ∈ g(w) we prove it similarly to the previous case.

We hence see that we can indeed do the spider-removing version of local
complementation and pivoting while preserving the existence of gflow. You
might at this point wonder whether we couldn’t just do the local complemen-
tation without removing the spider, and whether this preserves gflow. It in
fact does not, but that is because we aren’t using the right notion of gflow for
this: the spider-preserving version of local complementation (Lemma 5.2.4)
introduces a X(π2) phase on the spider being pivoted on. This makes it so
that we can no longer interpret this spider as being measured in the XY
plane. The solution to this is to treat it as a qubit measured in a different
type of plane. We will see how to do this in Section 8.5.

8.4 From measurement patterns to circuits 351

Remark 8.3.6 Propositions 8.3.2 and 8.3.5 are results about open graphs,
not measurement patterns. Hence, we can in general apply these to make
new kinds of measurement patterns, which might not implement the same
linear map as before. If we want to apply these in a way that preserves the
linear map the pattern is implementing, we also need to consider the specific
measurement angles the pattern must have and how these get updated by the
rewrite. For this we would need to reference the ZX local complementation
and pivot simplifications of Lemma 5.2.9 and 5.2.11.

8.4 From measurement patterns to circuits

Starting with a quantum circuit, we can transform it into a graph-like dia-
gram which has gflow (Proposition 8.2.6), and hence we can turn this circuit
into a deterministic measurement pattern. We have also seen several ways in
which we can change a measurement pattern while preserving gflow. These
patterns we get don’t necessarily look very circuit-like any more, so it is not
obvious any more how the connections and measurements in this pattern
correspond to unitaries acting on an input state.

In this section we will see that nevertheless we can transform an arbitrary
deterministic measurement pattern with gflow back into a circuit that imple-
ments the same linear map. Since these patterns are deterministic, we can
represent the linear map they implement just as a graph-like ZX-diagram,
like we did in Section 8.2.1. The input of our algorithm will be a graph-like
diagram whose underlying open graph has a gflow, and the output should
be an equivalent quantum circuit. We call this process circuit extraction.
The basic idea will be similar to the CNOT circuit extraction algorithm we
saw way back in Chapter 4, but instead of doing one round of Gaussian
elimination to get a circuit out, we will be doing ‘a little bit’ of row elim-
ination in order to extract a single internal spider from the pattern. We
repeat this until the diagram contains no more internal spiders. We then
have a diagram looking very similar to the Clifford GSLC normal form of
Section 5.3.3, which we know how to turn into a circuit.

Since our algorithm doesn’t work with measurement patterns directly, but
with ZX-diagrams, we can let the input be any graph-like diagram whose
underlying open graph has gflow. Such a diagram will then look something

352 Measurement-based quantum computation

like this:

π
2

π
4

5π
4

π
2

π
4

π
4

π
4

π
4

π

7π
4

π

(8.24)

We put some phases on the spiders for concreteness, but as our only consid-
eration is whether the diagram has gflow, these are pretty much irrelevant
to the steps we need to do to extract a circuit out of a diagram.

So let’s start trying to make this diagram more circuit like. As in Sec-
tion 5.3.3, we first observe that the spiders on the boundary already directly
correspond to quantum gates: either single-qubit gates or two-qubit CZ gates:

π
2

π
4

5π
4

π
2

π
4

π
4

π
4

π

extractedunextracted

π

π
4

7π
4

(8.25)

Here we mark the two parts of the diagram by ‘unextracted’ and ‘extracted’
to denote that we are done with the part on the right. This part already looks
like a circuit now, so we don’t have to do anything with that anymore. We
will refer to the spiders on the boundary of the extracted and unextracted
part as the frontier. We will be applying operations to the frontier in such
a way that we can move frontier spiders to the extracted part and internal
spiders onto the frontier. The reason we start at the end of the diagram
instead of at the beginning is because it will be easier to show that such
operations preserve the existence of a gflow on the remaining diagram. The
extraction algorithm is only guaranteed to work if the diagram has gflow, so
it is important that all the steps change the diagram in ways which preserve
the existence of a gflow. For instance, in Eq. (8.25) the underlying graph of
the unextracted part only changed in having no more connections between
the output vertices. This is exactly the transformation that we showed in
Exercise 8.4 preserves gflow.

In the case of the GSLC normal form of Section 5.3.3, we realised that the
internal connectivity of the diagram corresponds to a CNOT circuit. Here
we can do something similar, but instead of rewriting the entire diagram to
a CNOT circuit directly, we can ‘extract’ a single CNOT in order to change
the connectivity of the diagram:

Proposition 8.4.1 For any graph-like diagram D, the following equation

8.4 From measurement patterns to circuits 353

holds:

..
.

M

..
.

..
.

D = ..
.

M ′

..
.

..
.

D

where M describes the biadjacency matrix of the relevant vertices, and M ′

is the matrix produced by starting with M and then adding row 1 to row
2, taking sums modulo 2. Furthermore, if the diagram on the left has gflow,
then the graph-like part on the right also has gflow.

Proof For clarity we will not draw the entire diagram, but instead we focus
on the relevant part. First of all we note that we can add CNOTs in the
following way while preserving equality:

..
.

M

..
. = ..
.

M

..
. = ..
.

M

..
.

..
.

..
.

..
.

(8.26)
Now let A denote the set of vertices connected to the top vertex, but not

to the vertex beneath it, B the set of vertices connected to both, and C the
vertices connected only to the bottom one. Further restricting our view of
the diagram to just these two lines, we see that we can apply a pivot:

A

B

C

pivot

=

A

B

C

=

A

B

C

Looking at the connectivity matrix, it is straightforward to see that the
matrix M has now been changed in exactly the way described.

To see that these operations preserve the existence of a gflow, note first
that we can view the rewrite of Eq. (8.26) as adding some identity spiders
to the outputs of a diagram, and adding connections between these outputs.
Hence, by Exercises 8.4 and 8.5 the resulting diagram still has gflow. We
then do a pivot, which also preserves gflow by Proposition 8.3.5, and finally
we consider the last CNOT as no longer being part of the graph-like diagram,

354 Measurement-based quantum computation

which on the level of the underlying open graph looks like removing some
output spiders, which can also be shown to preserve gflow.

To demonstrate how we can use this, let us write down the biadjacency
matrix from the frontier to the other spiders in our example diagram:

π
2

π
4

5π
4

π
2

π
4

π
4

π
4

π
1

2

3

4

ab

c

d

e f

↭

a b c d e f

1 1 0 0 0 1 0
2 1 1 1 0 1 0
3 0 0 1 1 0 1
4 0 0 0 1 0 1

(8.27)

We see that if we add the fourth row to the third row that there will be only
a single 1 on the third row. This means that the third frontier spider is only
connected to a single internal spider, and hence corresponds to an identity
spider that can be removed:

π
2

π
4

5π
4

π
2

π
4

π
4

π
4

π

extractedunextracted

∝
8.4.1

π
2

π
4

5π
4

π
2

π
4

π
4

π
4

π

extractedunextracted

=
π
2

π
4

5π
4

π
2

π
4

π
4

π
4

π

extractedunextracted

(id)

(8.28)
We now have one less spider in the unextracted part. We can again unfuse
the phase of the frontier spider into the extracted part, and the same for
the connections between the frontier spiders. We then rinse and repeat,
extracting the spiders one by one. But why can we always do this? This is
where gflow comes into play.

Using gflow we can show that the biadjacency matrix always has this
property that we can reduce at least one of the rows to contain a single 1
using row operations: Suppose we have a graph-like diagram D and that
its underlying open graph G has a gflow (≺, g). Pick now the vertex u

that is maximal according to the partial order ≺ in the set V \O. That
is, u corresponds to the last measured qubit. Now we know that g(u) and

8.4 From measurement patterns to circuits 355

OddG(g(u))\{u} only contain vertices in the future of u. So in this case they
must only contain outputs. So let o1, . . . , ok be the outputs that form g(u).
Their sets of neighbours N(oj) then correspond to rows of the biadjacency
matrix we wish to simplify. We are assuming we have already gotten rid of
any connections between outputs, so that there are no outputs in the set
N(oj). We know that OddG(g(u)) ⊆ O∪{u} and furthermore OddG(g(u)) =
N(o1) ∆ · · · ∆N(ok) (Exercise 8.2). So in fact OddG(g(u)) = {u}.

Now here comes the kicker: Taking the symmetric difference of sets follows
exactly the logic of addition in F2! If we ‘add’ two sets A∆B, then if there
is an s with s ∈ A and s ∈ B, then s ̸∈ A∆B, exactly how 1⊕1 = 0. All the
other cases are checked similarly. So when we were adding together rows in the
biadjacency matrix, what we were really doing was calculating the symmetric
difference of the neighbourhoods. So since N(o1) ∆ · · · ∆N(ok) = {u}, that
means if we add together the rows of the biadjacency matrix corresponding to
the outputs oj , then the resulting row has just a single 1, which corresponds
to u. Hence, gflow tells us exactly which rows we can add together, and
hence which CNOTs we need to place, in order to make progress. As we can
do row operations on our biadjacency matrix using Proposition 8.4.1 and
this preserves gflow, we will have after extracting a vertex still a diagram
which has gflow. And hence when we repeat this procedure we will always
be able to find some rows in the biadjacency matrix that combine together
to form a row with a single 1, whose spider can then be extracted.

Note that this is a similar procedure to how we extracted a circuit from
a CNOT+Phase diagram in Section 7.2: there we did column operations
in order to reduce a column to contain just a single 1. Because we are
extracting from the right here, we are doing row operations instead. At
some point we will have removed all internal spiders, in which the case the
remaining diagram is like the GSLC normal form of the previous chapter,
except that the phases on the spiders can be arbitrary. This final bit can
then also be transformed into a circuit using a variation on the procedure
described in Section 5.3.3 and then we are done.

We can then conclude with the following theorem.

Theorem 8.4.2 Let D be a graph-like diagram whose underlying open
graph has a gflow and which has the same number of inputs as outputs.
Then we can efficiently extract a unitary circuit that implements the same
linear map as D.

In Exercise 7.8 we saw that extracting a circuit from a ZX-diagram is in
general a very hard problem. But now we see that if the diagram has gflow,

356 Measurement-based quantum computation

that this ‘smooths’ it out enough so that it becomes much easier to extract
a circuit from it.

Since any measurement pattern corresponds to a graph-like ZX-diagram
with some additional information on how the measurement outcomes should
be propagated, we can also use this result to conclude that any measurement
pattern with gflow must be unitary.

Theorem 8.4.3 A deterministic measurement fragment with gflow and
the same number of inputs as outputs implements a unitary.

8.5 Measurements in three planes
So far we have restricted all our thinking on determinism and gflow to
measurements all occurring in the same plane, namely the XY plane. With
some small modifications we can also make it work for measurement patterns
where the measurements occur in all three planes. Before we see how that
works, let’s answer an important question first: why bother? We’ve seen
that we can do universal computation with measurement patterns where all
measurements are in the XY plane, and that any circuit can be transformed
into a single-plane measurement pattern. So why should we even talk about
measurements in other planes.

There are a couple of reasons. First, in our discussion on universal resource
states in Section 8.1.1 we saw that cluster states can be used to perform
arbitrary computations. This however crucially depends on ‘carving out’
paths by doing strategic measurements in the Y Z plane. It is possible to do
it without this feature, but it makes it harder and less intuitive. Second, in
the previous chapter we’ve seen how useful phase gadgets are. Phase gadgets
are however not compatible with single-plane gflow. Consider the following
simple diagram containing a phase gadget connected to just one spider:

α
gadget (8.29)

This diagram is of course unitary, and if we were to simplify the gadget to
a phase gate, the diagram would definitely have gflow. So what about this
diagram itself? Consider the following two facts about gflow that we know:
the phases of spiders are not important for having gflow or not; and if you
have gflow, the diagram must be unitary. Combining these facts we see that
if the diagram (8.29) were to have gflow, then the following diagram would

8.5 Measurements in three planes 357

also have gflow, and hence would need to be unitary for all α and β:

β

α

(8.30)

But if we pick α = β = π
2 , we can show that the diagram disconnects, and

so it is not unitary.
So what is the issue here? We see that the problem with unitarity arises

when we put a non-zero phase on the ‘base’ of the gadget. Doing this stops
it from being a phase gadget, and makes it just a stack of two spiders with
some phase. Instead, we should be treating the two spiders of the gadget as
a single ‘unit’ where we can’t change the phase of the base. We can do this
by treating a phase gadget as a qubit measured in a different basis than a
regular spider. This then necessitates using multiple measurement axes.

The final reason for considering multiple measurement planes, closely
related to allowing for phase gadgets, is that it allows us to be more efficient
about our computations. It turns out we can do the same computations with
fewer measured qubits.

So with all this in mind, let’s see how we should think about measurements
happening in all three principal planes of the Bloch sphere. Recall first that
these measurement bases have a nice representation in the ZX-calculus:

XY ⇝ αk + bkπ XZ ⇝ αk + bkπ
π
2 Y Z ⇝ αk + bkπ (8.31)

Here, as before, αk denotes the measurement angle of this specific effect,
and the bk is a Boolean variable denoting the outcome of the measurement.
The XY and Y Z plane measurements correspond to natural structures in
a graph-like diagram: ‘regular’ internal spiders, and phase gadgets. We can
view the ‘regular’ internal spiders of a graph-like diagram as qubits measured
in the XY plane:

α1

=

α5

α2 α3

α4 α6

α α1 α5

α2 α3

α4 α6

α XY
(sp)

(8.32)

If we instead have a phase gadget, then we can view this as a qubit measured
in the Y Z plane:

α1

=

α5

α2 α3

α4 α6

α

α1 α5

α2 α3

α4 α6

Y Z
(cc)

gadget
α

(8.33)

358 Measurement-based quantum computation

Measurements in the XZ plane don’t naturally occur in the graph-like
diagrams we consider, because the π

2 phase on the spider would have meant
it would’ve been removed by applying a local complementation. Another
‘explanation’ to why we don’t need XZ-plane measurements, is that we see
that XY measurements correspond to Z-spiders, while Y Z measurements
correspond to X-spiders. Hence, XZ-plane measurements correspond to
‘Y -spiders’, which we also don’t need to use.

Remark 8.5.1 It might be a bit confusing to remember that XY mea-
surements correspond to Z spiders and so on for the other types of effects.
The trick is to remember that the type of spider is the letter that does not
appear in the name. So for XY , the corresponding spider is Z, and for Y Z
it is X.

We see then that to view a graph-like diagram as a measurement pattern,
we need to interpret phase gadgets as qubits measured in the Y Z plane,
while every other non-output spider is treated as a qubit measured in the
XY plane.

Now, let’s consider what the corresponding notion of gflow should be for
a 3-plane measurement pattern. To do so, let’s go back to the examples we
looked at at the start of Section 8.2. There we considered an XY vertex that
had an error:

α

πerror

γ β

We could then correct this by pushing out an X(π) phase from the XY
vertex with phase β. When we push this X(π) phase, it becomes a Z(π) at
the location we want it:

α

π

γ β

=

α

π

γ −βπ

(π)

=

α

π

π

γ −β

(π)

(cc)

=

α

γ −β

(sp)

We captured the more general version of this idea with the gflow correction
sets g(u). Here the set g(u) tells us where we have to extract out X(π) phases
in order to get a Z(π) at the desired location. In particular, we get Z(π)
phases at all the vertices in OddG(g(u)). The conditions on g(u) for u an
XY vertex are hence that u ∈ OddG(g(u)) and u ̸∈ g(u) (since we can’t
extract out an X(π) phase from u itself). We see then that we interpret g(u)
as the vertices where we need to push out an X(π) and OddG(g(u)) where

8.5 Measurements in three planes 359

we need to push out a Z(π). The properties of an XY -plane measured vertex
u tell us what the relations to g(u) and OddG(g(u)) need to be.

Let’s now consider the same example, but with a Y Z vertex instead:

α

πerror

γ β

We see then that now we need to correct an X(π) error instead of a Z(π)
error. Still treating g(u) as the ‘set of vertices where we push out an X(π)’
we see then that now we do need u ∈ g(u) to correct this error, as pushing
out another X(π) from u corrects the error present. Analogously, we now do
not want a Z(π) to appear at u, so we must have u ̸∈ OddG(g(u)).

Putting it succinctly: g(u) are the X-corrections, while OddG(g(u)) are
the Z-corrections. The measurement plane of the vertex determines which
correction its measurement outcome needs. Note that there is no restriction
on what types of vertices can appear in g(u) or OddG(g(u)), as it is possible
to extract both Z(π) phases and X(π) phases from a vertex used in a
correction set, regardless of which measurement plane that vertex has.

In order to give a formal definition of a gflow on multiple measurement
planes we need to work with a labelled open graph, where each non-output
vertex u is labelled by its type t(u). We take this type to be a set that is
either {X,Y }, {Y,Z} or {X,Z} (defining it as a set likes this makes the
following definition nicer).

Definition 8.5.2 Let G = (V,E, I,O, t) be a labelled open graph with
types t. A 3-plane gflow (≺, g) on G consists of a partial order ≺ on
the vertices of G, and a correction set function g : V \O → ℘(V \I) that
associates to every non-output vertex u ∈ V \O a subset of non-input vertices
g(u) ⊆ V \I, such that for every non-output vertex u the following conditions
hold:

1. The inputs are minimal in the partial order ≺ (meaning that if v ≺ i

for some input i, then v = i) and conversely the outputs are maximal;
2. We have u ≺ v for every v ∈ g(u) and v ∈ OddG(g(u)), i.e. corrections

lie in the future of u.
3. u ∈ OddG(g(u)) if and only if X ∈ t(u),
4. u ∈ g(u) if and only if Z ∈ t(u).

We say an open graph has 3-plane gflow when at least one 3-plane gflow can
be defined on it.

360 Measurement-based quantum computation

This definition might look a bit weird, but we can check that this gives the
correct behaviour for all three types of measurement plane. If t(u) = {X,Y },
then we see that condition 3 gives u ∈ OddG(g(u)), while condition 4 gives
u ̸∈ g(u). This is because condition 4 is an ‘if and only if’. Hence, as we do
not have X ∈ t(u), we also do not have u ∈ g(u). In the same way we can
check that for t(u) = {Y, Z} we get u ̸∈ OddG(g(u)) and u ∈ g(u) as we
expect.

For the final type t(u) = {X,Z} we see that we get the conditions u ∈
OddG(g(u)) and u ∈ g(u). This means that to correct an error at u, we
should get both an X(π) and a Z(π) there. We can check that this is indeed
what is necessary:

α + ππ
2 ∝

(π)

α−π
2π =

(sp)

απ
2π π

(8.34)

We indeed see that the wrong measurement outcome in a XZ-plane measured
vertex requires both a Pauli X and Z to correct it.

With this discussion we see then that 3-plane gflow allows us to correct the
wrong measurement outcome in every measured vertex. We can then write
down a 3-plane version of Theorem 8.2.4. As the fully-correct adaptation is a
bit technical to write down, we will instead give a more informal description.

Theorem 8.5.3 Let D be a graph-like ZX-diagram and let (G, I,O, t) be
its underlying labelled open graph, where t is a choice of measurement planes
‘compatible’ with D (e.g. the plane is XY for a ‘regular’ spider and Y Z for
a phase gadget). Then if its associated labelled open graph has a 3-plane
gflow, we can efficiently construct a deterministic measurement pattern from
D that implements the same linear map as D.

Remark 8.5.4 The reason we write ‘compatible with’ above, is because
in general there are multiple measurement planes that we can associate to a
spider. This happens when the spider has a Clifford phase, or more generally
when the diagram is an isometry instead of a unitary.

We can see something nice in Definition 8.5.2 that simplifies our life
somewhat: each 3-plane gflow is compatible with exactly one choice of types.
This is because conditions 3 and 4 are if-and-only-if. Just by inspecting
whether u ∈ OddG(g(u)) and u ∈ g(u) we can exactly determine which of
the three types t(u) is. Hence, if we are given a labelled open graph with a
3-plane gflow, we don’t actually need to know the labels as we can recover
them from the gflow itself. With slight abuse of notation we will hence just
say that an (unlabelled) open graph has a 3-plane gflow, and that the label
of a vertex is determined by the properties of its correction set.

8.5 Measurements in three planes 361

8.5.1 Rewriting 3-plane gflow

Measurement patterns with 3-plane gflow allow some rewrites that have no
counterpart in the single measurement-plane model. For instance, we can
actually remove any vertex that is not measured in the XY plane.

Exercise 8.10 Let G be an open graph with 3-plane gflow (g,≺). Let u
be a non-output, with u ∈ g(u), i.e. t(u) ̸= {X,Y }. Show that then u can
be removed from G while preserving the existence of a 3-plane gflow and
that furthermore, this gflow can be chosen in such a way to preserve the
measurement plane of all vertices. Hint: On the new graph with u removed,
define a new gflow g′ as g′(v) = g(v) if u ̸∈ g(v) and g′(v) = g(v)∆g(u)
otherwise.

While it might be surprising at first that we can just remove qubits while
preserving gflow, note that these Y Z and XZ measurements we can remove
are essentially phase gadgets. When we set the phase of a phase gadget
to zero, they do not contribute to the linear map. Since determinism must
hold regardless of the measurement angle, the determinism must hence not
‘depend’ on the phase gadget’s existence.

In Proposition 8.3.2 we showed that we can do the spider-removing version
of local complementation while preserving single-plane gflow. It turns out
that we can split this up into its component parts: local complementation,
and spider removing. Exercise 8.10 already shows how to remove a spider
while preserving existence of gflow.

Proposition 8.5.5 Let (g,≺) be a 3-plane gflow for an open graph (G, I,O),
and let u be an internal vertex. Then the local complementation of G about
u, written G ⋆ u has a 3-plane gflow (g′,≺) where g′ is defined by

g′(u) :=

g(u) if t(u) = {Y,Z}
g(u)∆{u} else

g′(v) :=

g(v) if u ̸∈ OddG(g(v))
g(v)∆g′(u)∆{u} if u ∈ OddG(g(v))

where v is any non-output vertex not equal to u.

The proof of this proposition is similar to that of Proposition 8.3.2, though
with more case distinctions for all the different measurement planes u and v
can have. We leave the proof to the particularly motivated reader.

Exercise* 8.11 Prove Proposition 8.5.5.

362 Measurement-based quantum computation

In Proposition 8.5.5 we didn’t write out the measurement planes of the
of the vertices in G ⋆ u. But it is important to keep in mind that these do
change. Way back in Section 5.2.1 we saw that we can perform a local com-
plementation on a graph state by adding some local Cliffords. In particular,
on u we add an X(±π

2) phase, while all of its neighbours get a Z(∓π
2) phase.

These π
2 phases change the measurement planes of u and its neighbours. For

instance, suppose that t(u) = {X,Y }. Then when its spider gains an X(−π
2)

phase, we see that:

α ⇝ α−π
2 = α−π

2

(cc)

= α + π
2

π
2

(eu)

(sp) (8.35)

Hence, it becomes a spider measured in the XZ plane. This gives us a new
perspective on the spider-removing version of local complementation: the
local complementation changes the measurement plane from XY to XZ,
and then Exercise 8.10 shows us that we can remove a spider measured in
the XZ plane without losing the existence of gflow.

A pivot along the edge between vertices u and v is just a triple of local
complementations on u, then v, and then u again. Hence, we see that a
(regular, non-spider-removing) pivot also preserves gflow! As we saw in Sec-
tion 5.2.2, the spiders being pivoted on gain (or lose) a Hadamard on their
output wire:

...
...

...

...

u v

=

...

u v
π π

... ...

...

In our setting of measurement planes, this again means that their measure-
ment planes will change. In particular, the Z-spider of an XY measurement,
becomes the X-spider of an Y Z measurement. This again allows us to decom-
pose the preservation of gflow under the spider-removing pivot as a sequence
of two operations: first we pivot to change the XY vertices into Y Z vertices,
and then we remove these vertices while preserving gflow using Exercise 8.10.

This also immediately gets us the gflow preservation of variations on the
pivot we’ve seen. In particular, the gadget pivot of Lemma 7.6.1 we can see
as doing a regular pivot on a pair of XY vertices, where we then only remove
the resulting Y Z vertex corresponding to the Pauli spider:

8.5 Measurements in three planes 363

jπ

α1

∝
αn

β1

βn

γ

..
.

..
.

...

...

...

...

α1

αn

β1 + jπ

βn + jπ

..
.

..
.

...

...

...

...

(−1)jγ

The new phase gadget we get is the second spider of the pivot, which trans-
forms from XY to Y Z. As pivoting preserves gflow, we see that the gadget
pivot (which we now see is just a regular pivot followed by a vertex removal)
also preserves gflow. Hence, we can introduce phase gadgets while preserving
the existence of a 3-plane gflow!

Exercise 8.12 Prove that local complementation and pivoting have the
following effects on measurement planes:

• For local complementation target: XY goes to XZ, and vice versa, while
Y Z stays fixed.

• For local complementation neighbours: XY stays fixed, while XZ and
Y Z switch.

• For pivoting targets: XY switches with Y Z, XZ stays fixed.
• For pivoting neighbours: everything stays fixed.

We said at the start of this section that 3-plane patterns can be more
efficient in the number of qubits measured. We can now see why. In Section 7.6
we observed that local complementation and pivoting do not necessarily
remove all internal Pauli spiders. In order to do so, we had to turn them into
the base of a phase gadget. While this does not decrease the total number of
spiders in the diagram, when viewing the diagram as a measurement pattern,
the two spiders of a phase gadget correspond to a single qubit measured in
the Y Z plane. If the phase gadget has a Clifford phase, we can remove it,
so we observed that every internal spider either has a non-Clifford phase, or
is part of a phase gadget with a non-Clifford phase. Phrasing this in terms
of measurement patterns, we see that these rewrite rules allow us to remove
all non-input qubits that are measured in a Clifford angle. Since all steps
preserve gflow, the resulting compact pattern can still be deterministically
implemented.

Theorem 8.5.6 For every 3-plane measurement fragment containing k

non-Clifford non-input measured qubits, we can efficiently find an equivalent
measurement fragment that contains at most k non-input measured qubits.

364 Measurement-based quantum computation

8.5.2 Circuit extraction, now phase gadget compatible

It turns out we can also extract circuits from 3-plane patterns. To do this
we need to slightly modify the algorithm we described in Section 8.4.

First, let’s see how that algorithm will go wrong when we have measure-
ments not in the XY plane. Let’s consider the following example where
we have a phase gadget (i.e. a Y Z plane measurement) connected to the
frontier:

1

2

c

d

α

a

b

↭

 a b c d

1 1 0 1 0
2 0 0 1 1

 (8.36)

Looking at the connectivity matrix we see there is no way to do row op-
erations to reduce any row to just have a single one. So our strategy for
extracting spiders one-by-one fails here. But remember that we introduced
phase gadgets into our diagrams by doing pivots (Lemmas 7.6.1 and 7.6.2).
So if a pivot got us into this mess, perhaps another pivot can get us out of
it:

α

=

α

*
*

=
π

α

(id)

(hh)

5.2.11 1

2

a
b

c

↭

 a b c

1 1 1 1
2 0 1 1

(8.37)

Success! Looking at the connectivity matrix we see that a single row operation
from qubit 2 to qubit 1 gives us the right connectivity to extract the spider
with the α phase.

In general, the way we do circuit extraction is as follows. First, we need
to make sure our pattern only contains XY and Y Z measurements, no XZ
measurements allowed (we describe how to do this later). Then, as long as
we have XY vertices we can extract, we extract them. When we get stuck,
it must be because there are Y Z vertices in the way. We do a pivot on them
to change them into XY vertices, and then we continue the process. Since
all steps preserve gflow, this procedure works and allows us to extract the
full diagram.

[TODO: The following explanation is a bit annoying to follow. Add pic-
tures?] So how do we get rid of the XZ measurements? We can do this by
doing a series of smart pivots and local complementations to change the
measurement planes in useful ways (see Exercise 8.12). First, if a XZ is
connected to a Y Z, we do a pivot on them. This transforms the Y Z to XY ,

8.6 There and back again 365

but keeps the XZ as is. Once this is done to all XZ vertices, they are only
connected to XY vertices and other XZ vertices. Then for each XZ vertex,
we do a local complementation on them. This changes it into an XY vertex.
Neighbouring XY vertices stay the same, but neighbouring XZ turn into
Y Z. Hence, each application reduces the number of XZ vertices, so that
we can get rid of all of them. All of these steps preserve gflow and don’t
increase or decrease the number of measurements (although they do change
the connectivity of the pattern).

Theorem 8.5.7 We can efficiently turn a graph-like diagram with 3-plane
gflow into an equivalent quantum circuit.

8.6 There and back again
Let’s summarise some of the things we have seen in this chapter. We intro-
duced a new way to perform quantum computations: using measurements.
This lead us to the notion of a measurement pattern, where we describe a set
of inputs, outputs, measurements and corrections. This model is also univer-
sal for quantum computing, as we can implement arbitrary single-qubit gates
and CNOTs and compose these together. If we consider a single branch of a
measurement fragment (where we fix all the measurement outcomes), this
can be represented directly as a graph-like ZX-diagram. Conversely, a graph-
like ZX-diagram can be easily understood as a branch of a measurement
fragment. In this sense, graph-like diagrams and measurement fragments are
‘the same thing’. This misses an important detail though: determinism.

A measurement fragment is deterministic when we can perform the desired
computation regardless of the observed measurement outcomes, by applying
the appropriate corrections. If our measurement fragment is not deterministic
it is considerably less useful, as it doesn’t allow us to always calculate what
we want. In that case we would need to post-select, i.e. keep running the
computation until we get the desired measurement outcomes, to perform the
correct calculation. We introduced a useful tool for thinking of determinism:
gflow. Gflow is not a property of a specific measurement fragment, but rather
of the underlying graph structure, and is agnostic to the specific measurement
angles in the pattern.

To specify a full deterministic measurement pattern we have to describe
how all the measurement angles change depending on the observed measure-
ment outcomes. If instead we know the pattern has gflow, then this is already
sufficient, as this allows us to construct a correction strategy. Instead of de-
terministic measurement patterns we can hence consider the weaker notion

366 Measurement-based quantum computation

of graph-like diagram with gflow: the graph-like diagram tells us what the
map should be when we get the ideal outcomes, and the gflow tells us how
to correct when we get the wrong outcomes. This notion is weaker, because
there might also be other correction strategies that do not correspond to a
gflow strategy, or even measurement patterns that do not have gflow but are
still deterministic for ad-hoc reasons.

When we have such a graph-like diagram with gflow, we can efficiently
convert this back into a measurement-free (i.e. ancilla-free) quantum circuit.
Conversely, when we have a unitary quantum circuit, we can write this as a
graph-like diagram with gflow.

By using ZX-diagrams as an intermediary, we can translate back-and-
forth between representing a computation as a circuit vs a deterministic
measurement fragment:

α1 α5

α2 α3

α4 α6

Graph-like ZX-diagram

α1 α5

α2 α3

α4 α6

Measurement fragment

α5

α3

α6

Circuit

α1

α2

α4

Extraction

Translation

Optimisation

Fusion

Interpretation

In Chapters 5 and 7 we saw strategies for optimising ZX-diagrams, and in
particular to remove spiders from the diagram. In this chapter we have seen
that these rewrites based on local complementation and pivoting preserve
the existence of gflow on the underlying open graph. This allows us to think
of these rewrites not just as spider-removing simplifications on ZX-diagrams,
but as ‘qubit-removing’ (or ‘measurement-removing’) simplifications on de-
terministic measurement patterns. Essentially, these rewrites, even a variant
like the gadget pivot, can be seen as ways to get rid of qubits measured in a
Clifford angle. This is yet another way in which we can think of the Clifford
operations as being ‘easy’: when we measure a qubit in a Clifford angle, we
can find an equivalent pattern where that qubit wasn’t necessary in the first
place.

8.7 Other stuff

8.7.1 Depth of a computation

8.8 Other MBQC models 367

8.8 Other MBQC models

8.8.1 Hypergraph state-based models

8.8.2 Phase gadget-based models

8.9 Summary: What to remember
1. In measurement-based quantum computing we use quantum measure-

ments as an integral part of the computation, instead of just using them
at the end to get the result out of the final computation.

2. There are many different variants on measurement-based quantum com-
puting, but one particularly well-studied model that lies on the extreme
end of doing all computations via measurements is the one-way model.

3. In the one-way model you start by preparing a graph-state. Then single-
qubit measurements are performed in rotated bases in order to do com-
putations. Later measurement angles are allowed to depend on previous
measurement outcomes.

4. Just like how a quantum circuit is built out of gates, we can view a one-
way model computation as being built out of measurement fragments.

5. An important consideration for a measurement fragment is whether it
is deterministic, meaning that regardless of all the intermediate mea-
surement outcomes, the overall linear map that is performed is the
same.

6. One particular strategy for ensuring a fragment is deterministic is for
the underlying open graph to have a property called gflow.

7. We can view measurement fragments as graph-like ZX-diagrams, and
vice versa we can interpret a graph-like ZX-diagram as a measurement
fragment without a specified order of measurement.

8. There is an efficient strategy to translate a circuit into a measurement
fragment with gflow.

9. There is an efficient strategy to translate a measurement pattern with
gflow, or equivalently a ZX-diagram with gflow, back into a circuit.

10. While the one-way model with just measurements in the XY plane is
already universal, allowing measurements in all three principal planes
allows for more compact patterns. There is a notion of gflow that works
for measurements in all three planes, and the circuit extraction algorithm
can be adapted to work for that.

11. The ZX rewrite strategy of Chapter 7 preserves the existence of 3-plane
gflow.

368 Measurement-based quantum computation

8.10 References and further reading
The one-way model The one-way model was originally proposed by Raussendorf
and Briegel (2001), where they also immediately showed how the cluster
state can be used as a universal resource for quantum computation. The
cluster state itself was introduced by the same authors in a paper earlier that
year (Briegel and Raussendorf, 2001). In a paper the following year they for-
malised the model underlying the one-way model more, and they showed that
a Clifford computation can be performed in a single time-step (Raussendorf
and Briegel, 2002). These authors revisit computing on cluster states in more
detail in Raussendorf et al. (2003) which also coins the term ‘measurement-
based quantum computing. The authors together with several others review
all the progress made on the one-way model some years later (Briegel et al.,
2009).

Measurement patterns and fragments The notion of a measurement pattern
was formalised in Danos et al. (2007), and how to compose these together
as fragments and ‘normalise’ them into a standard format where we first do
all state preparations and only then do measurements in Danos et al. (2009).
How to represent these patterns in ZX was first described by Duncan and
Perdrix (2010).

Flow and determinism The notion of causal flow was introduced by Danos
and Kashefi (2006). This was later extended to generalised flow, or gflow,
by Browne et al. (2007), where they show that certain graph states do not
allow causal flow, but do allow gflow. This paper defined both the single-
plane gflow and three-plane gflow, though our presentation of three-plane
gflow is a bit simplified. Furthermore, Browne et al. (2007) showed that a
measurement pattern has a gflow if and only if the pattern is uniformly,
strongly and stepwise deterministic. Uniformity means that the determinism
holds for any choice of measurement angle. Strong determinism means that
every measurement outcome happens with equal probability. The stepwise
determinism means that we retrieve a deterministic pattern after every single
measurement. Or in other words, that the necessary corrections depend only
on a single previous outcome. Hence, while there are deterministic patterns
that do not have gflow, when they are sufficiently ‘regular’ and the reason
for their determinism ‘not too complex’, it will have a gflow. Finally, Browne
et al. (2007) also introduced Pauli flow, which can deal with patterns where
some qubits are designated to be measured in a Clifford angle. Hence, the
uniformity condition doesn’t apply to these qubits. Because measurements

8.10 References and further reading 369

in a Clifford angle essentially belong to two principal planes of the Bloch
sphere at the same time, they can be corrected, and be part of correction
sets, in more ways than general measurements, so that their gflow conditions
can be less strict.

Circuit extraction An algorithm for extracting a circuit without ancilla from
a measurement pattern with single-plane gflow was given by Miyazaki et al.
(2015). This was based on finding a path-cover of the open graph, and then
resolving ‘acausal’ CZ gates by pushing them through other gates until they
were acting at the same point in time on the two qubits. Independently, a
different algorithm phrased in the language of ZX was given in Duncan et al.
(2020). This was then extended to work for three-plane gflow in Backens
et al. (2021). The procedure we show in this chapter is based on that article.

Rewriting measurement patterns How a local complementation changes a
graph state was noted in Elliott et al. (2008), and specifically for pivots
in Mhalla and Perdrix (2013). That these operations preserve gflow was
shown in Duncan et al. (2020), that they preserve 3-plane gflow in Backens
et al. (2021) and that they preserve Pauli flow in Simmons (2021). This
chapter is based on Duncan et al. (2020) and Backens et al. (2021).

Other measurement-based models The one-way model is not the only way
to do measurement based quantum computing. We can also do universal
computation using AKLT states (Wei et al., 2011), a state based on phase
gadgets (Kissinger and van de Wetering, 2019), or generalisations of graph
states known as hypergraph states, that are built using multi-qubit controlled-
Z operations (Miller and Miyake, 2016; Takeuchi et al., 2019). For a ZX per-
spective on hypergraph states, see Lemonnier et al. (2020). We can also view
the lattice surgery operations we will explore in Chapter 11 as a measurement-
based model, see de Beaudrap et al. (2020b).

Applications of MBQC There are several suggested applications of MBQC
that don’t make sense when just talking about circuits. Representing a circuit
by a measurement pattern allows you to parallelise more operations, creating
a less deep, but more wide computation Broadbent and Kashefi (2009), in
some cases even being able to reduce a computation from linear depth to
logarithmic depth. The notion of blind quantum computation (Broadbent
et al., 2009) was also demonstrated using MBQC. In blind computation, a
client which only has the ability to prepare single-qubit states and transmit
them, can delegate a computation to a server in such a way that the server

370 Measurement-based quantum computation

does not know what it is computing. Hence, in this way you can do quan-
tum computations ‘on the cloud’ without you having to share your data or
what you are trying to compute. MBQC is ideally suited for such a scheme,
because the qubits sent by the client either generate or block entanglement
when the server tries to make a graph state with them. Finally, MBQC is
also a natural framework for understanding computations with photons as
the qubits. Photons are then non-deterministically entangled using ‘fusion’
operations (which are not the same as spider fusions, though they are re-
lated (de Beaudrap et al., 2020b)), which results in a resource state which has
some random structure. By analysing average case behaviour, deterministic
computations can still be run on such a ballistic state Morley-Short et al.
(2017); Gimeno-Segovia et al. (2015).

9
Controlled gates and classical oracles

In Chapter 7 we looked at universal quantum circuits built from low-level
gates: CNOTs, phase gates, and Hadamards. These are the types of gates you
might be able to implement on the hardware level of a quantum computer.
However, many useful quantum algorithms will contain higher-level primi-
tives: classical oracles, controlled unitaries, adders, etc. In this chapter we
will see how we can translate these higher-level constructions into the lower-
level ones, and how we can reason with the higher-level constructions directly.
To do this we will introduce a new derived generator for ZX-diagrams: the
H-box. This is a spider-like contraption that allows us to easily represent
AND-like gates, just like how the X-spider allows us to represent XOR-like
gates.

9.1 Controlled unitaries
Let’s take a look first at controlled unitaries. First, what is a controlled
unitary? Given some n-qubit unitary U , the k-controlled U is an (n + k)-
qubit unitary that applies U to the bottom n qubits if and only if the top k
qubits are all in the |1⟩ state. In terms of quantum circuit notation we write
the following:

U

...k

n ...

:: |x1, . . . , xk⟩⊗|ψ⟩ 7→

|x1 . . . , xk⟩ ⊗ U |ψ⟩ if x1 · · ·xk = 1
|x1, . . . , xk⟩ ⊗ |ψ⟩ otherwise

(9.1)
We refer to the top k qubits here as the ‘control wires’, with the bottom n

qubits being the ‘target wires’.
We use quantum circuit notation here, instead of ZX-diagrams, because

372 Controlled gates and classical oracles

there is no easy way to represent controlled unitaries in ZX. We’ll see later
in this chapter how to remedy this.

Example 9.1.1 We have already encountered a couple of simple examples
of controlled unitaries: the CNOT and CZ gates. In the CNOT gate we have
added one control to the single-qubit X gate, while for the CZ gate we have
added one control to the single-qubit Z gate.

When dealing with controlled unitaries, we will often talk about the unitary
‘firing’ or ‘not firing’. By this we mean whether the qubits on the control wires
are in the state that makes U get applied on the target wires, or whether
the identity happens instead. For instance, in the CNOT gate, the NOT
gate fires when the top qubit is in the |1⟩ state. When analysing the logic
of a circuit containing controlled gates, we can often reduce the analysis to
a case distinction where we consider the situation where the gate fires, and
where it does not fire (see the next proposition for an example of this). As
an example of this kind of logic, let’s prove the following proposition.

Proposition 9.1.2 Let U and V be n-qubit unitaries. Then conjugating
the controlled U gate by V is the same thing as controlling the V UV † gate:

U

...

... V † V

=

V UV †

...

...

Proof Note that the controlled unitary on the left-hand side fires iff that
on the right-hand side fires. Let’s check the two cases of firing and not firing
to see that they agree on both cases. If the gate does not fire, then the
right-hand side is the identity. On the left-hand side, if U doesn’t fire, then
the V † and V cancel so that it also gives the identity. If instead the gates do
fire then both sides implement the V UV † gate on the bottom qubits.

Example 9.1.3 We have seen that we can construct the CZ gate by
conjugating the bottom qubit of a CNOT by Hadamards. This works because
HXH = HXH† = Z so that the previous proposition applies.

9.1.1 The Toffoli gate

A controlled unitary of particular importance is the Toffoli gate. This is the
controlled CNOT gate, or equivalently, the two-qubit-controlled X gate.

Definition 9.1.4 The Toffoli gate is the three-qubit unitary defined by
|x, y, z⟩ 7→ |x, y, (x · y) ⊕ z⟩. That is, it XORs the value of the third qubit

9.1 Controlled unitaries 373

with the AND of the first two qubits. In quantum circuit notation we write
the Toffoli gate as:

TOF =
⊕

The Toffoli gate is important for a number of reasons. First, it is universal
for classical reversible logic. Let’s unpack that statement a bit. What do we
mean by classical reversible logic? A classical function is any map f : Fn2 →
Fn2 . Such a map only corresponds to a unitary via Uf |x⃗⟩ = |f(x⃗)⟩ iff f is a
bijection, and hence has an inverse. When a classical function has an inverse,
we say it is reversible. As it turns out, any classical reversible function
can be decomposed into a sequence of generalised Toffoli gates. These are
the n-qubit generalisations of the Toffoli gate that control a NOT gate on
n−1 wires (hence, the NOT and CNOT gates also count as such generalised
Toffoli gates). As we will see later, if we allow for clean ancillae initialised
in the 0 state that also have to be brought back to the 0 state at the end of
the circuit, then we can implement any reversible function using just (the
three-bit) Toffoli and the NOT gate. It is in this sense that the Toffoli gate
is universal for classical reversible logic.

Second, the Toffoli gate is essentially the ‘quantum AND gate’: if we input
a |0⟩ on the input of the target, and post-select the controls to |+⟩ we can
easily verify that:

⊕|0⟩

|x⟩
|y⟩

⟨+|
⟨+| ∝ |x · y⟩

Since we also have a NOT gate, we can combine these two gates to perform
arbitrary classical logic in a quantum circuit (although because the above
construction uses post-selection, we will have to be a bit smarter about this).

Third, which is related to the previous point, we can use Toffoli gates to
add control wires to other unitaries:

⊕|0⟩
U

⊕
=

|0⟩
U

If it is not clear why this works, don’t worry, we will analyse constructions
like this in more detail in Section 9.4.2. The point we want to make here is
that Toffoli gates are very useful, and that it is worthwhile understanding
how to construct them.

374 Controlled gates and classical oracles

9.1.2 Diagonal controlled gates and phase polynomials

Before we will look at how to construct Toffoli gates, it will first be helpful to
take a bit of a detour. As the Toffoli is just an X gate with two controls, we
can conjugate its target qubit by Hadamards to reduce this to a Z gate with
two controls; see Proposition 9.1.2. The resulting CCZ gate is a diagonal
unitary, which makes it easier to think about in some ways. In this section
we will see how we can construct the CCZ gate, and related unitaries, using
phase gadgets.

But first, let’s start by looking at a simpler gate: the CZ.
This gate applies a Z gate—i.e. Z|y⟩ = (−1)y|y⟩—to the second qubit, if

the first qubit is in the |1⟩ state, and applies the identity otherwise. It turns
out we can efficiently write down this operation as CZ|x, y⟩ = (−1)x·y|x, y⟩
(convince yourself of this by plugging in different values of x, y ∈ {0, 1}).
Interestingly, (−1)x·y is not the only way in which we can represent the
phase function of CZ.

We’ve seen two ways to write down a CZ gate as a ZX-diagram:

=
π
2

π
2

−π
2 (9.2)

We recognise the right-hand side as a circuit consisting of two phase gates
and one two-qubit phase gadget. We can hence represent the action of this
circuit as |x, y⟩ 7→ ei

π
2 (x+y−x⊕y)|x, y⟩.

As we already saw in Section 7.1.3, the reason these two diagrams, corre-
sponding to the expressions (−1)x·y and ei

π
2 (x+y−x⊕y) are equal is because

we have:

x · y = 1
2(x+ y − x⊕ y) ∀x, y ∈ {0, 1}. (9.3)

This formula allows us to construct other diagonal controlled gates. For
instance, if we want to construct the controlled Z(α) gate, we first realise
that this gate has a phase function of eiα(x·y), which we can transform
using Eq. (9.3) to ei

α
2 (x+y−x⊕y). Then we can simply write this as a phase

polynomial circuit:

CZ(α) =
α
2

α
2

−α
2 (9.4)

But what if we want to construct multiply-controlled gates? For the CCZ
gate, the controlled CZ gate, the phase function is eiπ(x·y·z), so we need
some way to decompose x · y · z into a phase polynomial. We can do this by

9.1 Controlled unitaries 375

generalising Eq. (9.3) to more bits:

(x · y) · z

(9.3)

= 1
2(x · z + y · z − (x⊕ y) · z)

(9.3)

= 1
4(x+ z − x⊕ z + y + z − y ⊕ z − (x⊕ y + z − x⊕ y ⊕ z))

= 1
4(x+ y + z − x⊕ y − x⊕ z − y ⊕ z + x⊕ y ⊕ z) (9.5)

So the phase polynomial of the CCZ gate is ei
π
4 (x+y+z−x⊕y−x⊕z−y⊕z+x⊕y⊕z).

We can hence represent it using the following ZX-diagram:

CCZ =

π
4

π
4

π
4

−π
4

−π
4

−π
4

π
4

(9.6)

We can generalise Eq. (9.5) to work for any number of k bits. This will re-
sult in an expression with 2k−1 XOR terms and a constant of 1/2k−1. Hence,
the phase polynomial of an n-controlled Z(α) gate consists of 2n−1 −1 phase
gadgets with a phase of ±α/2n−1. On the one hand this is great, as it means
we can represent arbitrary controlled phase gates using a phase polynomial
circuit. On the other hand, we need exponentially many exponentially small
phase gates if the number of controls is high. Luckily there are ways around
this exponential cost, as we will explore in this chapter.

For now though, let’s see how we can use these multiply-controlled phase
gates to construct arbitrary diagonal unitaries. Note that the matrix of an
(n − 1)-controlled Z(α) gate is diag(1, . . . , 1, eiα). This matrix is diagonal,
and it only applies an eiα phase if the input is in the |1 · · · 1⟩ state, and
applies a trivial phase of 1 otherwise. So the matrix consists of all 1’s on
the diagonal except for an eiα in the bottom corner. The reason it appears
in the bottom corner is because we are controlling the phase on the all-1
state. By conjugating some of the qubits with a NOT gate we can instead
make it controlled on some other specific bit-string. This moves the position
of the eiα on the diagonal. For instance, for a CZ(α) gate, the matrix is
diag(1, 1, 1, eiα). If we conjugate the second qubit by NOT gates, the eiα
fires on the |10⟩ state instead, and the matrix looks like diag(1, 1, eiα, 1).
Another way of saying this, is that an n-controlled Z(α) gate on an n + 1
qubit circuit which is conjugated by NOT gates implements a ‘Dirac delta’
diagonal unitary Uy⃗|x⃗⟩ = eiαδy⃗(x⃗)|x⃗⟩. Here δy⃗(x⃗) = 1 iff y⃗ = x⃗ and is 0

376 Controlled gates and classical oracles

otherwise. But we can write an arbitrary phase function in terms of these
delta functions!

Let f : Fn2 → R be some phase function. The delta functions δy⃗ : Fn2 →
R form a basis for the space of phase functions, and hence we can write
f =

∑
y⃗∈Fn

2
αy⃗δy⃗. Hence, to implement the diagonal unitary Uf that acts as

Uf |x⃗⟩ = eif(x⃗)|x⃗⟩, we can multiply together unitaries implementing the delta
phase functions αy⃗δy⃗. This means we can implement an arbitrary n-qubit
diagonal unitary using 2n (n− 1)-controlled phase gates.

Proposition 9.1.5 Any n-qubit diagonal unitary can be constructed using
O(2n) (n− 1)-controlled phase gates and NOT gates.

Each of the controlled-phase gates can be decomposed into O(2n) phase
gadgets. The NOT gates conjugating some of the qubits of these controlled-
phase gates can then be absorbed into the phase gadgets, so that any circuit
of such NOT-conjugated controlled-phase gates can be reduced to a circuit of
just phase gadgets. While we are decomposing each of the O(2n) controlled-
phase gates into O(2n) phase gates, the phase gates acting on the same
qubits combine, so that in the end the circuit only requires O(2n) of them
(and not O(2n · 2n)).

Proposition 9.1.6 Any n-qubit diagonal unitary can be constructed using
O(2n) phase gadgets.

As the group of diagonal unitaries has O(2n) degrees of freedom, this
construction is essentially optimal.

9.1.3 Fourier transforming diagonal unitaries

In the previous section we converted controlled phase gates to phase gadgets,
but this translation goes both ways. In fact, the relationship between these
two types of phase gates is closely related to the pseudo-Boolean Fourier
transform.

A pseudo-Boolean function is any function f : Fn2 → R, where F2 =
{0, 1} is the Booleans. We can decompose a pseudo-Boolean function into
primitive terms in a number of ways. We already saw that we can write it in
terms of delta functions, which we can treat as a set of ‘maximally controlled’
expressions. These delta functions could be translated into XOR terms, and
hence that gives us a different decomposition:

f(x⃗) =
∑
y⃗∈Fn

2

λy⃗y⃗ · x⃗. (9.7)

9.2 H-boxes 377

Here the λy⃗ are real coefficients that determine f and · is the dot product of
bit strings, which for a fixed y⃗ represents an XOR of bits of x⃗. For instance,
if y⃗ = 101, then y⃗ · x⃗ = x1 ⊕ x3. Note that in Eq. (9.7) we are treating the
Booleans 1 and 0 both as Booleans and as real numbers. This decomposition
contains 2n independent parameters λy⃗. As f has 2n possible inputs, we see
that each pseudo-Boolean function can indeed uniquely be written in this
way. The phase polynomials of Chapter 7 are examples of pseudo-Boolean
functions written as XOR terms.

Instead of using XOR as the primitive function to decompose it to, we
can also use AND:

f(x⃗) =
∑
y⃗∈Fn

2

λ̂y⃗
∏

x⃗y⃗.

Here x⃗y⃗ is the bit string xy1
1 x

y2
2 · · ·xyn

n where we set 00 = 1 and 10 = 1. Hence,
if y⃗ = 101 then x⃗y⃗ = x11x3, so that

∏
x⃗y⃗ = x1 ∧ x3. Again, as there are 2n

independent terms in this decomposition, any pseudo-Boolean function can
be written in this way.

The transformation of a pseudo-Boolean function written as sums of XOR
terms to one written as sums of AND terms and back is what we call the
Fourier transform of such a function.

This Fourier transform essentially boils down to Eq. (9.5) and its n-bit
generalisation. In particular, to transform back from XOR to AND, we use
its ‘inverse’:

(x⊕ y) ⊕ z = x⊕ z + y ⊕ z − 2(x · y) ⊕ z

= x+ z − 2(x · z) + y + z − 2(y · z) − 2(x · y) − z + 4(x · y · z)
= x+ y + z − 2(x · y + x · z + y · z) + 4(x · y · z)

By using this translation we can hence also write an arbitrary diagonal
unitary as a circuit of controlled-phase gates where now we do not need
any NOT gates and we use controlled gates acting on different numbers of
qubits.

9.2 H-boxes
The representation we found of the CCZ gate in Eq. (9.6) looks a bit messy.
The reason for this is that we had to translate the phase function (−1)x·y·z

into a sum of XOR phase functions. This is because the Z- and X-spiders can
directly represent these XOR phases, while they cannot directly represent
these ‘multiplicative’ phases. We can solve this issue by introducing a new
generator for ZX-diagrams: H-boxes.

378 Controlled gates and classical oracles

We define H-boxes as follows (why we call these things H-boxes will become
clear soon enough):

a nm ..
.

..
. := 1√

2
∑

ai1...imj1...jn |j1 . . . jn⟩⟨i1 . . . im| (9.8)

The sum in this equation is over all i1, . . . , im, j1, . . . , jn ∈ {0, 1} and a is an
arbitrary complex number. Hence, an H-box represents a matrix with, up
to a global factor of

√
2, all entries are equal to 1, except the bottom right

element, which is equal to a. We have for instance

a = 1√
2

(
1 1 1 1
1 1 1 a

)
and a = 1√

2

(
1 1
1 a

)
. (9.9)

Hence, in particular, when a = −1, the 1-input 1-output H-box is just the
Hadamard:

= −1 (9.10)

We can then view H-boxes as a generalisation of Hadamard gates to an
arbitrary number of inputs and outputs (hence, the letter ‘H’). Just as
spiders with a zero phase are depicted without a phase label, we will depict
H-boxes with a label of −1 without any label:

..
.

..
.

nm := ..
.−1..
.

nm (9.11)

We will call such H-boxes phase-free. Note that this convention means that
the 1-input 1-output phase-free H-box is denoted exactly the same as the
Hadamard gate in the ZX-calculus, which is fine since they represent the
same matrix.

The linear maps that H-boxes represent have all the symmetries that
spiders have:

a==a a = aa..
. =..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
. ..
.

..
.

..
. (9.12)

We can hence bend the wires of an H-box however we want.
We will introduce some rewrite rules for H-boxes, but for now let’s check

that they indeed help us accomplish our goal of having a nicer representation
of a CCZ gate. First note that:

= 1√
2
∑
x,y,z

(−1)x·y·z|x, y, z⟩ (9.13)

9.2 H-boxes 379

We can use this state to represent a CCZ gate:

CCZ =
√

2 (9.14)

Exercise 9.1 Verify Eq. (9.14) by plugging in computational basis states
and checking that it gives the correct phase.

Exercise 9.2 The state of Eq. (9.13) turns out to be the CCZ magic
state, meaning we can use it to construct a CCZ gate by doing some Clifford
unitaries and measurements. Show that the following post-selected unitary
that uses a CCZ magic state indeed implements a CCZ gate, by rewriting it
to Eq. (9.14):

We will later introduce some rewrite rules for H-boxes that allow us to prove
that this construction works regardless of the measurement outcome, by
doing some Clifford corrections.

Now, we introduced H-boxes as a new ‘generator’ of ZX-diagrams. But
we also know that ZX-diagrams were already universal. This means there
must be some way to represent the H-boxes just using spiders. In fact, that
is actually what the relations Eqs. (9.3), (9.5) and their generalisations allow
us to do:

eiα ∝ α eiα ∝
α
2

α
2

−α
2 eiα ∝

α
4

α
4

α
4

−α
4

−α
4

−α
4

α
4

(9.15)
In general, for an arity n H-box this construction requires 2n − 1 phase
gadgets. If the parameter of the H-box is not a complex phase eiα we can
still represent the H-box using spiders, but it is a bit more complicated: see
Exercise 9.19.

380 Controlled gates and classical oracles

9.2.1 AND gates

Using an H-box we can easily represent the CCZ gate. But of course the CCZ
gate is related to the Toffoli by conjugating the target by a Hadamard, so
with some rewriting we can get an interesting representation of the Toffoli:

TOF = =

(cc)

(9.16)

The reason this is interesting is because it is showing directly the two compo-
nents that make up the Toffoli: calculating the AND of the first two qubits,
and then XORing it with the third qubit. Indeed, we can calculate:

=
(

1 1 1 0
0 0 0 1

)
(9.17)

Hence:

yπ

xπ

∝ (x · y)π (9.18)

We can then directly verify that Eq. (9.16) implements a Toffoli:

xπ

yπ

zπ

∝
(sc)

∝ =

xπ

yπ

((x · y) ⊕ z)π

(sp)

xπ

yπ

zπ

xπ

yπ

(9.18)

xπ

yπ

zπ

(x · y)π

(9.19)

Remark 9.2.1 Since a 2-to-1 H-box followed by a Hadamard implements
an ‘AND gate’, it is reasonable to wonder why we didn’t just define an
‘AND-box’ as a new element of ZX-diagrams. This would make it a nice
counterpart to the X-spider that implements an XOR. However, one of the
main symmetries present in the Z- and X-spiders does not hold for this
hypothetical AND-box (which can be verified by calculating the associated
matrices):

AND ̸= AND= but

(9.20)
This symmetry, known as flexsymmetry, does hold for the H-box (see
Eq. (9.12)). Hence, by splitting up the AND gate into an H-box and Hadamard,

9.2 H-boxes 381

we still get the benefit of having a compact representation of the AND, while
also only dealing with components that have all the symmetries we want,
meaning we can still think of ZX-diagrams as undirected graphs.

9.2.2 Rules for the H-box

Of course we wouldn’t be introducing a new graphical part to the ZX-
calculus, if it didn’t allow us to do some more rewriting! There are some
H-box specific rewrite rules that we can use to reason about, for instance,
controlled unitaries, and Toffoli gates.

First, let us recall that arity-1 H-boxes labelled by a complex phase are
just Z-spiders:

eiα ∝ α (9.21)

In particular, taking respectively α = 0 and α = π, we get:

1 ∝ ∝ π (9.22)

Most of the other H-box rewrite rules we will use can be motivated by the
relation between an H-box and the AND gate. To understand these it will
be helpful to use multi-input AND gates:

AND..
. = ..
. (9.23)

A rule on H-boxes we have already seen is that two Hadamard gates cancel:
= . Using our interpretation of multi-input AND gates (9.23)

as H-boxes we can get a different view on this equation. Using Eq. (9.23) we
see that two Hadamard gates in a row correspond to an AND gate with a
single input, and this gate is of course the identity.

Our first new rule expresses how a sequence of ANDs can be combined
into a single multi-input AND:

AND

..
.

AND..
.

=
AND

..
.

..
.

↔

..
.

..
.

=

..
.

..
.

(9.24)
This rule can be presented a bit more generally as an H-box fusion rule:

a..
.

a =..
.

..
.

..
. (9.25)

Note that whereas two spiders fuse together when they are connected by a
leg, for an H-box, this connection needs to be a Hadamard edge.

382 Controlled gates and classical oracles

An important consequence of this rule is that H-boxes absorb |1⟩ states:

..
.

π a =

(cc)

..
.

π a ∝
(9.22)

..
.

a =

(9.25)

..
.

a (9.26)

Using this we can show for instance that inputting a |1⟩ on one of the controls
of a Toffoli reduces it to a CNOT:

∝
π

(sc)
ππ

(9.26)

∝
π

(hh)

=

π

(9.27)

We will see later in (9.31) that, in contrast, a |0⟩ ‘explodes’ an H-box into
Z-spiders.

In Section 3.2.4 we saw how the interpretation of the Z- and X-spider as
respectively COPY and XOR lead us to the strong complementarity rule
that allowed us to push (phaseless) Z- and X-spiders through each other.
This equation (3.55) involving COPY and XOR holds in exactly the same
way when XOR is replaced by AND:

=COPYAND

COPY

COPY AND

AND

(9.28)

We can directly translate this into a rule involving Z-spiders and H-boxes:

=··
·

··
·

nm ··
·

··
·

nm (9.29)

By pushing the Hadamard through the Z-spider and cancelling some Hadamards
we can also present this in a format that is often more convenient:

=··
·

··
·

nm ··
·

··
·

nm (9.30)

As in (3.69), the right-hand side of both of these equations is a fully connected
bipartite graph. Note that as a special case of the second equation (taking
n = 0) we get the following useful state-copy rule, which is a counterpart
of (9.26):

a =··
·

··
·

··
·=

a

··
·

a

=

(9.25) (9.30)

(9.31)

Here in the last step we dropped the scalar subdiagram, as it only contributes

9.2 H-boxes 383

a (usually irrelevant) non-zero scalar. Using this rule we can show that
inputting a |0⟩ on a control wire of a Toffoli reduces it to an identity:

=

(sc)

=

(9.31)

=

(cc)

(sp)

=

(id)

(9.32)

Exercise 9.3 Using Eqs. (9.30) and (9.31) (and the standard ZX rules),
prove that two CCZs in a row equal the identity:

∝

Solution: .

=

(sp)

=

(9.30)

=

(3.64)

=

(9.31)

=

(id)

(sp)

End Solution .

Exercise 9.4 Prove that we can commute a NOT gate through an H-box,
resulting in a CZ on the other side:

=π

Hint: Unfuse the π phase onto its own spider, and then apply Eq. (9.30).

Solution: .

=π

π

=

π

(9.30)

=

(9.26)

End Solution .

Exercise 9.5 In Exercise 9.2 we saw that with post-selection, a CCZ gate
can be implemented by using a magic state and post-selection. However, this

384 Controlled gates and classical oracles

post-selection is not necessary, as the other measurement outcomes can be
corrected by applying the right gates in the future. For instance, if we get
the ⟨1| outcome on the first measured qubit instead, we can correct this with
a CZ gate on the second and third output qubits. Show this by proving that:

π

=

Bonus exercise: figure out what the correction operator is when both the
first and second measured qubits get the ⟨1| outcome.

Solution: .
Correction operator in last case is CZ1,3CZ2,3Z3.
End Solution .

Another consequence of Eq. (9.30) is that the identification of a 1-labelled
H-box with a Z-spider of (9.22) can be generalised to higher arity as follows:

=1

. . .
(9.25)

. . .

1

∝
(9.22)

. . .
(cc)

. . .

=

(9.31)
. . .

= (9.33)

Let us now introduce the last pair of AND-inspired rewrite rules for H-
boxes. These are based on the following identities:

AND = AND π ∝
π

π
(9.34)

The first is quite self-evident: if we copy a value and then AND those values
together, it is the same thing as doing nothing to the value. The second
requires a bit more explanation. It expresses a fact about the possible ways
that AND can return |1⟩. Indeed, as a linear map, we can write AND as
|0⟩⟨00| + |0⟩⟨01| + |0⟩⟨01| + |1⟩⟨11|, and hence post-selecting the output of
AND with ⟨1| we calculate ⟨1| AND = ⟨11|.

Writing the ANDs as H-boxes and simplifying the expressions a bit we get
the following rewrite rules:

= π ∝
π

π
(9.35)

Note that using (9.22) we could also have written the second equation

9.2 H-boxes 385

=

a..
.

a =..
.

..
.

..
.

=··
·

··
·

··
·

··
·

=

1

π

∝

∝

Figure 9.1 The basic rules for H-boxes.

of (9.35) as:

= (9.36)

The rules introduced so far are summarised in Figure 9.1.
We have now covered all the ‘AND inspired’ H-box rules. In fact, these

rules, together with the phase-free ZX-calculus rules we have been using
throughout the book (that is, those of Figure 4.1), are already complete for
a useful fragment of quantum computing. Namely, if we restrict ourselves
to phase-free H-boxes, and spiders that only have 0 or π phases, then we
can represent precisely those linear maps that can be built by post-selected
quantum circuits consisting of Toffoli and Hadamard gates. It turns out that
Toffoli-Hadamard circuits are already enough to perform arbitrary quantum
computations (see Section* 10.7.4 for more details on that), and hence this
fragment of diagrams can represent many interesting maps. Proving that the
rules of Figures 9.1 and 4.1 are complete for this fragment is quite difficult
(see the References of this chapter for some notes), but let’s note that this
completeness does say something interesting on how to reason about quantum
computations: the ZX rules we have been using are complete for Clifford
diagrams (Theorem 5.5.7), while the new rules for H-boxes of Figure 9.1
are all directly related to Boolean identities. Hence, somehow ‘classical logic’
plus ‘reasoning with Cliffords’ gives us the full power of quantum computing.

[TODO: Phase-free ZH-completeness? Maybe just write about it in the
references.]

9.2.3 Constructing controlled unitaries using H-boxes

A useful feature of the ZH-calculus is that it allows us to quite easily see
how to make a controlled-unitary out of a unitary given as a ZH-diagram.
This is perhaps most easily demonstrated by the difference between a CZ

386 Controlled gates and classical oracles

and a CCZ gate in the ZH-calculus:

CZ ∝ CCZ ∝ (9.37)

This suggests a general procedure for adding a control qubit: identify which
H-box ‘activates’ the application of your gate, and add another wire to it
which connects to a Z-spider on your control qubit. Sometimes, one has to
work a bit to uncover the correct H-box. For instance, to see how a Z gate
relates to a CZ, we unfuse its phase:

π =

(sp) π

∝
(9.22)

⇝
(9.38)

This procedure also works for making controlled-phase gates if the phase is
something other than π:

CZ(α) ∝ eiα (9.39)

For diagrams containing X-spiders we will usually have to convert these to
Z-spiders using (cc) in order to see where we should add the control wire.
For instance, to go from a CNOT to a CCNOT (Toffoli):

=

(cc)

⇝ =

(cc)
(9.40)

Note that we here added a control wire to the ‘middle’ H-box, but left the
Hadamards on the qubit wire alone. This is a general rule for constructing a
controlled diagram. For instance, it might be tempting to define a controlled-
Hadamard as follows:

(9.41)

While this does indeed implement a Hadamard gate when the control qubit
is in the |1⟩ state, it does not reduce to the identity when the control qubit
is |0⟩:

∝
(sc)

∝
(9.31)

(9.42)

To construct the actual controlled-Hadamard we need to find the ‘hidden’ H-
boxes in the Hadamard gate. The way we do this is by using its decomposition

9.2 H-boxes 387

into Euler angles:
= π

2
π
2

π
2e−iπ

4 (9.43)

We can now make each of these phase gates into controlled phase gate
using (9.39). When transforming this Euler decomposition into its controlled
version, the ignorable global phase e−iπ

4 becomes a local phase that must
be taken into account. This is in fact another instance of finding the hidden
H-boxes of the diagram, as a scalar is just an H-box with zero wires. We
hence get the following transformation:

π
2

π
2

π
2

e−iπ
4

=

(cc)

π
2

π
2

π
2

e-i
π
4

⇝ e-i
π
4 ei

π
2 ei

π
2 ei

π
2

=

−π
4

i i i

(9.21)

(sp)

(9.44)

Where in the last step we used the identity ei
π
2 = i.

While this procedure works and gives the correct diagram for a controlled-
Hadamard, it is not the most efficient implementation of a controlled-Hadamard.
A better version is realised by making the observation that if we only control
the middle phase-gate and the global phase of (9.43) that we get a diagram
that implements a Hadamard when the control is |1⟩, and implements an X
gate otherwise:

∝
π
2

π
2

−π
4

i

(sc)

π
2

π
2

i ∝
(9.31)

π
2

π
2

=

(sp)

π

(id)
(9.45)

Hence, to make this a controlled-Hadamard, we need to add an X gate on the
target wire to cancel the already existing X gate, but doing this will result
in the wrong unitary being implemented when the control is |1⟩. To remedy
this error we add another gate to the circuit: a CNOT (i.e. a controlled-X
gate). We hence arrive at the final controlled-Hadamard circuit:

−π
2

π
2

−π
4

i (9.46)

Note that we get the −π
2 X-phase by combining the first π

2 phase of (9.45)
with the added π phase coming from the X gate. The gate (9.46) is indeed
what one would find for a controlled-Hadamard in a standard textbook
(although if one starts with a different Euler decomposition of the Hadamard

388 Controlled gates and classical oracles

gate, one might get a CZ gate instead of a CX gate, along with some other
permutations of the gates). We can further decompose the ‘controlled-i’ gate
using what we have seen in Section 9.1.2.

Exercise 9.6 By decomposing and simplifying Eq. (9.46) even further,
find an implementation of the controlled-Hadamard gate that requires just
two T gates, and one CNOT gate.

Solution: .

−π
2

π
2

−π
4

i

−π
2

π
2

π
4

−π
4

π
4

= −π
4

−π
2

π
2

π
4

=

−π
4

−π
2

π
2

π
4

∝
−π

4

End Solution .

Exercise 9.7 Construct an implementation of the controlled-Hadamard
gate using just one controlled-phase gate, but starting with the Euler De-
composition = −π

2
−π

2
−π

2ei
π
4 , instead of with Eq. (9.43).

It is currently not clear how one would relate (9.46) and the more compli-
cated (9.44) via an intuitive diagrammatic transformation (as the calculus
is complete, there is a set of graphical rewrites that transforms one into
the other, but this is likely to be a complicated affair). So how would one
find (9.46)? The crucial observation is that only controlling a single phase
in the diagram, instead of all three, already resulted in a gate close to the
one we desired. The remainder of the construction was then to keep adding
simple gates until we get the exact gate we wanted. Experience shows that
this method of experimentation and trial-and-error is often successful.

Let’s demonstrate this with one more often-encountered controlled uni-
tary: the controlled swap (also sometimes called the Fredkin gate). Our
starting point is the implementation of a swap using three CNOTs:

∝ (9.47)

We could make this controlled by transforming each of the CNOTs into a
Toffoli. However, just as with the controlled-Hadamard, we realise that if we

9.3 Reversible Logic synthesis 389

‘deactivate’ the middle CNOT, that the outer CNOTs cancel each other, and
hence it suffices to add a control to the middle CNOT:

9.3 Reversible Logic synthesis
An important part of many quantum algorithms are classical oracles. These
are classical functions that are performed on a quantum state (a state that
is often in a superposition of many computational basis states). For instance,
Shor’s algorithm consists of two components: a classical oracle performing
modular exponentiation followed by a quantum Fourier transform. In terms
of gate cost, the classical oracle is by far the most expensive part (the
quantum Fourier transform can be implemented quite efficiently as we saw
in Section 7.2.2). In Grover’s algorithm it is again the classical oracle that
pinpoints which elements we are interested in that is the most expensive
to implement. As classical oracles form such an important part of these
algorithms (and many others), we better understand very well how to actually
implement these on quantum computers.

The first step is to realise that usually the function we want to implement
is not reversible, so that we can’t implement it directly as a unitary. We can
however make it reversible by adding some additional scratch space.

Definition 9.3.1 Let f : Fn2 → Fm2 be some classical function. Its re-
versibilisation fr : Fn+m

2 → Fn+m
2 is defined as fr(x⃗, y⃗) = (x⃗, y⃗ ⊕ f(x⃗)).

Here the XOR ⊕ acts componentwise on the bit string.

It is clear that fr is always reversible, as it is its own inverse.

Definition 9.3.2 A classical oracle for f : Fn2 → Fm2 is an (n+m)-qubit
unitary Uf given by Uf |x⃗, y⃗⟩ = |fr(x⃗, y⃗)⟩ = |x⃗, y⃗ ⊕ f(x⃗)⟩.

Example 9.3.3 The classical oracle for the NOT operation is the CNOT
gate, and the classical oracle for the AND operation is the Toffoli gate.

So the question is: how do we efficiently construct reversible functions using
simple gates? It turns out that this question has many different answers
depending on what your requirements are. The field of reversible circuit
synthesis is vast, and we will only be scratching the surface in this section.

Let’s suppose we have some classical function f : {0, 1}n → {0, 1}m that

390 Controlled gates and classical oracles

we want to implement. To simplify our life we will assume that we want the
output of f to appear on some additional bits. That is, we have our register
of bits x⃗ that are our inputs, and then we also have a supply of bits given
to us in the 0 state. Some of these bits will be used to store intermediate
computations, while others will be used as the final output. So, in total, we
are looking for a unitary U that implements U |x⃗, 0⃗, 0⃗⟩ = |x⃗, f(x⃗), 0⃗⟩. Here
the first additional register of bits stores the output, while the other register
was just used during the computation. Note that it is important that we
reset these ‘helper bits’ to 0 when we are done with them: as long as we
stick to classical computations their state doesn’t matter, but as soon as
superpositions of states are involved, they will cause interferences that we
don’t want.

Let’s look at a small example to make this a bit more concrete. Suppose
we want to calculate the three-bit function x1 ∧x2 ∧x3. We can split this up
into two operations acting on fewer bits, by first calculating z1 := x1 ∧ x2,
and then calculating z2 := z1 ∧ x3. This final bit z2 then carries our output.
So this results in the following circuit:

⊕

x1
x2
x3

0

0

x1x2x3
x1x2

⊕

x1
x2
x3

Here we write x1x2 for x1 ∧ x2 as a shorthand. This indeed calculates the
function we want, but we also have the outcome z1 = x1x2 still floating
around. We get rid of this by ‘undoing’ the operations done to it. As a
Toffoli is its own inverse, this is easy enough:

⊕

x1
x2
x3

0

0

x1x2x3
x1x2

⊕

x1
x2
x3

⊕ 0

(9.48)

In general, let’s assume that f is given to us as a sequence of AND, OR and
NOT operations since of course any Boolean function can be decomposed
into these operations. For simplicity we will assume that m = 1, i.e. that f
only has a single output we care about, although the constructions we will
talk about can be easily generalised to multiple outputs.

We can then interpret f as a DAG: a directed acyclic graph. In this
graph, the input variables are the vertices at the start, and all the other
vertices correspond to operations done to these variables or intermediate
results. There is a directed edge from vertex v to w when the operation w

9.3 Reversible Logic synthesis 391

uses the outcome v. For instance, suppose that f is the MAJ function on
3 bits that calculates whether at least two of the bits (i.e. the majority)
are 1. One possible way we can decompose MAJ into more fundamental
operations is MAJ(x1, x2, x3) = (x1 ∧ (x2 ∨x3)) ∨ (x2 ∧ (x1 ∨x3)). The DAG
corresponding to this decomposition is:

x1

x2

x3

∨

∨ ∧

∧
∨

When we have this DAG, translating it to an implementation on a circuit is
straightforward. We allocate for each internal vertex a bit prepared in the 0
state, we apply the operations in an order compatible with the DAG (that
is, we only apply an operation once we have done the operations associated
to its parents first), and at the end once we have calculated what we wanted
to calculate, we undo all the operations in the reverse order on all the extra
bits we used.

For the DAG above this could for instance result in the following circuit:

⊕

x1
x2
x3

0

0

x1
x2
x3

0

∨∨1,3

⊕

⊕0 0

⊕0 0

⊕0 MAJ(x1, x2, x3)

∨ ⊕
⊕

⊕

∨ ∨1,3

⊕ 0
(9.49)

Note that the box with a ∨ can be implemented using a Toffoli and some
NOT gates using de Morgan’s rule.

We see that each operation is applied to a fresh 0 bit, before finally getting
the calculation we want in the final bit. We then repeat all the operations
we have done in reverse order to undo our temporary calculations.

We don’t actually have to wait until the end to undo operations. We can
do this as soon as an intermediate calculation is no longer needed. After
this uncomputation this bit is then put back into the 0 state, so that we
can reuse it for additional computations. This hence results in needing fewer

392 Controlled gates and classical oracles

additional bits. For instance:

⊕

x1
x2
x3

0

0

x1
x2
x3

0

∨∨1,3

⊕

⊕0 0
⊕

0 ⊕ MAJ(x1, x2, x3)

∨ ⊕
⊕

⊕

∨ ∨1,3

⊕ 0

0
(9.50)

Here we could uncompute one intermediate calculation early in order to save
one bit in comparison to Eq. (9.49).

The number of additional bits we need to calculate a function correspond-
ing to a DAG hence doesn’t depend on the number of vertices in the DAG,
but rather on the amount of computations we have to ‘keep in memory’.
But suppose we want to reduce the number of additional bits as much as
possible, could we do even better? In order to do so, we would need to free up
memory that contains computations that we will need later. This means that
we will have to recompute these when needed. Finding optimal trade-offs in
uncomputing the right things and allocating the bits you have smartly is an
interesting problem, but also a bit beyond what we can discuss in this book.
See the References of this chapter for some more pointers.

But there is another trick we can exploit to reduce the cost of implementa-
tion. This is based on the observation that calculating XORs is much cheaper
than calculating ANDs, since calculating an AND requires a Toffoli, while
calculating an XOR requires a CNOT. So instead of allocating a new bit for
every operation, we can decide to only allocate a bit for every AND, and do
all the XORs ‘in place’, uncomputing these immediately after we are done
using the outcome. This means we will need to do more XOR operations,
but will require less additional bits.

For example, another way we could write the MAJ function is as

MAJ(x1, x2, x3) = x2 ⊕ ((x1 ⊕ x2) ∧ (x2 ⊕ x3)) (9.51)

(to see why this works, do a case distinction on x2). We can then store x1 ⊕x2
in the x1 bit, store x2 ⊕ x3 in the x2 bit, and apply a Toffoli to calculate
their AND. Then undoing the XORs, we have the x2 value available to do
the final XOR:

x1
x2
x3

0

x1
x2
x3

⊕ MAJ(x1, x2, x3)(x1 ⊕ x2)(x2 ⊕ x3)

⊕

⊕

x1 ⊕ x2

x2 ⊕ x3 ⊕

⊕

⊕
x3

x1

(9.52)

Well this circuit is certainly a lot smaller! It only requires one Toffoli gate

9.4 Constructing Toffoli gates with many controls 393

and one additional bit. In fact, using this trick, the cost of implementing a
classical function depends on its multiplicative complexity, the number
of AND operations needed to write it down.

But what if we really don’t want to use additional bits? What can we do
in just the space of the inputs? As it turns out, quite a lot. It turns out that
we can decompose any classical reversible function into just many-controlled
Toffoli gates without using any ancillae. The details are a little technical, and
the result actually not that practically useful, so we refer to Section* 9.7.1
for the details.

9.4 Constructing Toffoli gates with many controls
Toffoli gates with many controls form a core part of many algorithms, and
as we saw in the previous section, they are also essential in constructing
arbitrary classical reversible circuits. In this section we will study several
ways in which we can decompose Toffoli gates with many controls into Toffoli
gates with fewer controls. This is necessary to do, because most physical
architectures do not have many-controlled Toffoli gates as native operations,
and so they must be decomposed into more elementary building blocks. We
could do this directly using the results from Sections 9.1.2 and 9.1.3, but
these require an exponential number of gates in the number of controls, and
so this is not efficient. In this section we will work through several ways to
decompose a Toffoli with k controls into a circuit consisting of a polynomial
number of regular Toffolis with 2 controls. These Toffolis can then further
be decomposed into CNOTs and single-qubit unitaries.

It turns out that to do this we need to have at least one ancilla available
(the proof for this you can find in Section* 9.7.1).

So let’s assume we have an additional bit available. For concreteness,
suppose we wish to construct the Toffoli gate with 3 controls:

⊕

x
y

z

t
a

t⊕ xyz

x
y

z

a

This actually calculates a function very similar to Eq. (9.48), but let’s
think through it again how to construct this.

First, suppose for simplicity that we knew the extra bit was supplied to
us in the 0 state. Then we can use it to store an intermediate result, which

394 Controlled gates and classical oracles

we can then use in a later operation:

⊕

x
y

z

t

0

t⊕ xyz

x
y

z

xy
⊕

xy

(9.53)

We indeed get the correct result on the target bit! Unfortunately, we have
now polluted the state of our extra bit, so we wouldn’t be able to apply this
trick again. We have ‘burned’ this resource. We can fix this issue by cleaning
up after ourselves. Luckily, a Toffoli is self-inverse and we haven’t changed
the state of the x and y bits, so this clean-up is easy:

⊕

x
y

z

t

0

t⊕ xyz

x
y

z

⊕
xy ⊕ xy ⊕ xy = 0

(9.54)

But suppose we didn’t know that the bit was supplied to us in the 0 state
(maybe because we aren’t sure the previous person cleaned up after them-
selves...), how do we implement the gate we want? In this case, a picture is
worth more than a thousand words:

⊕

x
y

z

t

b

t′

x
y

z

⊕
b⊕ xy

⊕t⊕ zb

b⊕ xy

(9.55)

Here t′ = t ⊕ zb ⊕ z(b ⊕ xy) = t ⊕ zb ⊕ zb ⊕ zxy = t ⊕ xyz is exactly what
we want. The reason this works is because we apply the operation to the
target t twice, so that the dependency on b disappears: the first Toffoli puts
the information about b into t, the second Toffoli changes the information
in b, and then the final Toffoli cancels the value of b in t, leaving only the
information we wanted to put into it.

This construction didn’t clean up after itself though, as it left the value in
b changed, so lets add an additional Toffoli to get the construction we want:

⊕

x
y

z

t

b

x
y

z

⊕ ⊕
⊕

⊕

x
y

z

t
a

t⊕ xyz

x
y

z

a

t⊕ xyz

b

= (9.56)

So we have constructed a 3-controlled Toffoli using 4 regular Toffoli gates and
one additional bit. This additional bit was provided to us in an unknown state,

9.4 Constructing Toffoli gates with many controls 395

and was left at the end in that same unknown state, so on the right-hand
side of Eq. (9.56) it looks like we haven’t even touched this bit. Its presence
was however crucial to the success of this procedure as the argument of the
previous section on the impossibility of realising many-controlled Toffolis
from regular ones showed. We will call such a bit a borrowed bit. While
the state of borrowed bits is not changed, their presence can serve as an
important catalyst for certain constructions (as Eq. (9.56) shows).

The constructions above are not reserved to just regular 2-controlled Toffoli
gates. They in fact work for Toffoli gates with an arbitrary number of controls:

⊕

=

...

...

⊕

...

...

⊕
⊕

⊕

n

m

n+m

(9.57)

Exercise 9.8 Prove Eq. (9.57) using the rules for H-boxes of Section 9.2.2.

We can iterate this procedure. For instance, starting with a Toffoli with
5 controls, we use Eq. (9.57) to decompose it into four Toffoli gates with 3
controls each (pick n = 3 and m = 2). Then each of those we decompose
into four standard Toffoli’s each:

⊕

=

⊕
⊕

⊕
⊕

=

⊕
⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕

⊕

(9.58)
We have marked the places were a bit has been borrowed with a dashed box
on the right-hand side. Note that we constantly switch which bit is borrowed.
That’s the beauty of this system: since the borrowed bit can be in any state
and is returned to the same state, we can pick any bit to be the borrowed
one.

You might have noticed that the number of Toffolis required blows up
quite a lot as the number of controls increases. In fact, if we have k controls
(assuming k is odd for simplicity) then this splits into four gates with (k+1)/2
controls. So if we take k = 2n + 1, then after the first step we have Toffolis
with 2n−1 + 1 controls. So doing this n times we are left with 4n regular
Toffolis. As 4n = (2n)2 ≤ (2n + 1)2 = k2, we see that in general we require
O(k2) Toffolis.

It turns out we can do better than an O(k2) scaling in the number of

396 Controlled gates and classical oracles

controls. To do this we need the observation that after the first split in
Eq. (9.57) we have many more borrowed bits available. So let’s try to use
them!

To see how this works we will again first look at a construction where the
additional bits are supplied in the 0 state and we don’t care in which state
we leave them. It turns out that to apply this trick to decompose a Toffoli
with k controls, we need k − 2 additional bits. Let’s look at the simplest
example: k = 4.

⊕

x
y

0
z

0 xyz⊕

xy

w

t t⊕ xyzw⊕

(9.59)

We have interspersed the 0 bits throughout the circuit, to make it look a bit
nicer. We see that we can simply build a larger and larger product of bits
by storing the intermediate results in these additional bits we have lying
around.

If we wanted to return the bits to their zero state, we can just add another
staircase of Toffoli gates to undo the action done to them:

⊕

x
y

0
z

0 xyz⊕

xy

w

t t⊕ xyzw⊕

⊕

⊕ 0

0
(9.60)

But what if we didn’t know that the bits were 0. Then we can apply a
similar trick to what we did in Eq. (9.55): we reverse the direction of the
staircase (compare Eq. (9.55) with Eq. (9.54) where the order of the Toffoli
gates was also reversed):

⊕

x
y

a

z

b b⊕ az⊕
w

t t⊕ xyzw

⊕

⊕

⊕

a⊕ xy

b⊕ xyz

t⊕ bw

(9.61)

Note that the last two Toffoli gates cancel out respectively the az and bw

term. Finally, if we want to make these bits borrowed, then we need to undo

9.4 Constructing Toffoli gates with many controls 397

the Toffoli gates that affect them, which means we need to add another
staircase:

⊕

x
y

a

z

b ⊕
w

t

⊕

⊕

⊕

⊕

⊕

⊕
t⊕ xyzw

x
y

a

z

b
w

=

⊕

x
y

a

z

b
w

t

x
y

a

z

b
w

t⊕ xyzw

(9.62)

If instead of 4 controls and 2 borrowed bits we had k ≥ 4 controls and k− 2
bits, then we could simply make the staircases longer. The first staircase
’going up’ has k − 1 gates, then the one going down has k − 2 gates, the
second going up also has k − 2 gates, and the final going down has k − 3
gates, for a total of 4k − 8 Toffoli gates. If we had this many borrowed bits
lying around we can hence decompose a k-controlled Toffoli in O(k) regular
Toffoli gates!

So let’s get back to the case where we start out with a single borrowed
bit. Then we can apply the trick of Eq. (9.57) once to decompose our k-
controlled Toffoli into smaller Toffoli gates. If k is odd, we split it into four
k+1

2 -controlled Toffoli gates. We then have k+1
2 borrowed bits available for

each of these Toffoli gates. If instead k is even, then we split into two Toffoli
gates with k

2 controls and two with k
2 + 1 controls. In this case we will have

at least k
2 borrowed bits available. In both cases this is enough space to

apply the construction of Eq. (9.62). Each of those Toffoli gates can then be
decomposed into ≈ 4 · (k/2) = 2k gates. As we have four of them, the final
cost is then 8k Toffoli gates.

Proposition 9.4.1 A single k-controlled Toffoli can be decomposed into
a circuit of fewer than 8k regular Toffoli gates as long as we have a single
borrowed bit available.

While it might be possible to improve the constants, this is asymptotically
optimal, as we certainly need to at least touch every qubit involved with a
Toffoli, and this requires O(k) gates.

Exercise 9.9 In Eq. (9.60) each of the Toffoli gates used a qubit that
the previous gate also used so that its circuit depth is also linear in the
number of controls of the Toffoli we are constructing. But it is possible to
do it more efficiently. Show that we can implement the k-controlled Toffoli
in logarithmic depth using O(k) regular Toffoli gates if we are supplied k− 2
bits in the 0 state, and make sure the ancilla bits are returned to the 0 state
at the end. You may restrict to k = 2m for simplicity.

398 Controlled gates and classical oracles

Solution: .
In the first round calculate the values of xixi+1 into k/2 ancillae. Then
multiply the values of those ancillae together into k/2/2 ancillae. Repeat
until we can apply a final Toffoli from the remaining one or two ancillae into
the target bit. This requires k/2 + k/4 + k/8 + . . .+ 2 = k − 2 ancillae, and
only log k layers of Toffolis. We then do another layer of uncomputation on
the ancillae to reset the ancillae to the 0 state.
End Solution .

9.4.1 Quantum tricks for optimising Toffoli gates

So far we have only studied classical functions using classical means. But this
is of course a book about quantum computing, so let’s see what we can do
once we’re allowed to use quantum gates and techniques to construct these
classical functions. In this section we will find better ways to decompose
certain combinations of Toffoli gates, so that we can implement these more
cheaply as quantum circuits.

First, recall that we could decompose the Toffoli gate into a combination
of seven T gates and phase gadgets:

⊕
= = =

−π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

(9.63)
We have here grouped the gates in a suggestive way, with all the gates on
the control qubits together. We can then recognise this as the shape of a
CZ(π2) = CS gate; see Eq. (9.4). Hence, while a Toffoli gate requires 7 T
gates, if we can somehow combine this with a CS† = CZ(−π

4) gate, then 3
of those T gates cancel and we only require four of them:

⊕
S† =

−π
4

−π
4

π
4

π
4

(9.64)

As we will see in Chapter 11, T gates are actually quite expensive to imple-
ment in the fault-tolerant setting, and so finding ways to reduce the T -count
is an important thing to try to do (and we will find more advanced ways

9.4 Constructing Toffoli gates with many controls 399

to do so in Chapter 10. But even without this consideration, getting rid of
this additional phase gadget needed for the CS gate means fewer entangling
gates are needed.

Now, usually we don’t have spare CS gates lying around to cancel T
gates with, but we can introduce them in pairs at the cost of a Clifford:
I = CS† ◦ CZ ◦ CS†. This means that whenever we have a pair of Toffoli
gates that have the same two control wires and nothing acting in between
them on those wires, that we can use this trick to reduce the T-count. In
the previous section we saw many examples of such a pair of Toffoli gates.
For instance, we can use it to reduce the cost of Eq. (9.54):

⊕
⊕

⊕

=

⊕
⊕

⊕

S† Z S†

(9.65)

Now instead of the construction costing 3·7 = 21 T gates, it costs 2·4+7 = 15
T gates! Additionally, since we have to synthesise fewer phase gadgets, the
construction will also require less two-qubit gates.

Note that this trick is not reserved to just the Toffoli gates that share two
controls. Sharing a control and a target also works. For instance, starting
with Eq. (9.55):

⊕
⊕ ⊕

= =

(hh)

(cc)

=

Z⊕ ⊕
H

H

H

H

(9.66)

Now we have a pair of Toffoli’s sharing two controls and we can apply the
trick as before.

But what if we don’t have a pair of Toffoli gates with matching controls or
targets, what can we do then? Is there any way we can reduce the number
of T gates we need? Well, there is some good news and some bad news.

The bad news is that all possible three-qubit Clifford+T circuits with up
to six T gates have been enumerated by brute force methods, and none of
those circuits were equal to a Toffoli. So there is no circuit with fewer than
seven T gates that implements a Toffoli.

400 Controlled gates and classical oracles

So what is the good news? Well, this enumeration only looked at uni-
tary circuits. It doesn’t say anything about circuits involving ancillae and
measurements. It turns out that if we do allow non-unitary constructions
that we can do better. To see how we can do this, let’s take another look at
Eq. (9.64), but now using H-boxes. To simplify the presentation a little, we
will be working with a CCZ gate instead of a Toffoli, and a CS gate instead
of a CS† gate. So let’s see how we could rewrite this construction:

i
=

i
(sp)

(9.67)

Okay, this first step was obvious: there are spiders of the same colour con-
nected to each other, so we should fuse them. But now it is a little less
obvious. However, note that we now have two H-boxes that share two Z-
spiders. This looks a lot like the right-hand side of Eq. (9.30). In fact, by
doing some clever unfusion, we can actually apply this rule:

=
i

(sp)

(9.25)

i =

(9.30)
i

(9.21)

π
2

=

(cc)

(9.68)

Here in the last step we used the the fact that an H-box with a single wire
and a complex phase is just a spider (Eq. (9.21)): eiα = α (and of
course i = eiπ/2).

Okay, this looks promising! A CCZ followed by a CS, which is cheaper
than just a CCZ, corresponds to a CCZ with this X(π2) on one of its legs.
So how do we transform this into something that looks more like a circuit?
The answer is that we have to view the X(π2)-phase as happening on its own
ancilla qubit. We do this by introducing some identity spiders and unfusing:

π
2

=

(id)

π
2

=

(sp)

π
2

=
|+⟩ ⟨0|

Z

X(π
2
) ⊕

(9.69)

This is now a post-selected circuit (we’ll get to how to deal with the ‘wrong’
measurement outcome later), where the only non-Clifford gate is the CCZ.
So we have managed to get rid of the CS gate!

But of course we want to go the other way: instead of removing a CS gate,
we want to introduce one. We can however do this procedure in the opposite
direction quite easily. The crucial step happened in Eq. (9.68) where we

9.4 Constructing Toffoli gates with many controls 401

transformed the CS gate into an X-phase on the other side of the H-box. It
turns out that it is often useful to apply this rewrite rule in the opposite
direction, so let’s write it down explicitly:

··
·

α ··
·=

α

··
·=

eiα

(9.21)

··
·=

(9.25)

eiα

(sp)

(cc) (9.30)
(9.70)

So now, starting with a CCZ, let’s introduce some X-phases, so that we can
push one of them through the H-box to make a CS gate appear:

=

(sp)

(id)

−π
2

π
2

=

(9.78)

π
2

(sp) −i

=
π
2

(sp) −i

(id)

(9.71)

Now we could decompose the combined CCZ and CS gate using just 4 T

gates. So by introducing an ancilla, we can make a post-selected circuit that
implements a CCZ gate using fewer T gates than is possible with any unitary
circuit. It turns out we can get rid of the post-selection as well. If we get
the wrong measurement outcome, then we can push the resulting NOT gate
back through the CCZ using Eq. (9.70):

=
π
2

(sp)

−i (π)

π π
2

−i

π

π
=

(π)

π
2

−i(9.78)

=
π
2

−i(sp)

(9.72)

So the wrong measurement outcome leads to an additional CZ gate applied
after the circuit. Since we know the measurement outcome, we can correct
for this by applying the inverse of a CZ gate. This inverse is of course also a
CZ gate. As this is Clifford, this does not increase the number of T gates we
need. So we can indeed deterministically implement a CCZ gate using four
T gates.

It turns out we can do something similar, when we have a ‘compute-
uncompute’ pair of Toffoli gates. That is, a pair of Toffoli gates that undo
each others action, such that the target is not changed in the mean time.
Let’s use Eq. (9.54) again as an example, but with the qubits rearranged to

402 Controlled gates and classical oracles

make the presentation a bit nicer:

⊕

⊕

⊕
=

(sp)

=

(9.29)

=

(sc)

(sp)

=

(9.73)
We see that whereas we had three Toffoli gates in the start, we ended up
with just two of them in the end, as the pair that computed and uncomputed
the AND of two bits was ‘fused’ together. This unitary is again post-selected,
but on the wrong outcome we can push out the π phase outwards to become
a CZ and Z correction.

Exercise 9.10 Prove that the correction operator of Eq. (9.73) for the ⟨−|
measurement outcome is indeed CZ ⊗ Z.

So while Eq. (9.65) allowed us to reduce the cost of a matching pair of
Toffoli gates from 14 to 8, with Eq. (9.73) we can reduce it even further to
just 4! But even if we don’t care about decomposing into T gates, we see
that this construction requires just a single Toffoli per compute-uncompute
pair, as the uncomputation can instead be done by a measurement and a
correction.

Note that this form of an optimised compute-uncompute pair of Toffolis
is often used in the context where they are targetting a zeroed ancilla which
is ‘cleaned up’ at the end. In that case we can simplify the expression a bit
more, and for concreteness we will add in the X(π2) phases to make it clear
that this construction indeed only requires 4 T gates:

=

(9.81)

=

(sc)

(sp)

=

(9.79)

π
2

−i

=

(sp)

π
2

−i(cc)

(9.74)

Exercise 9.11 Prove a version of Eq. (9.74), but where there are is an

9.4 Constructing Toffoli gates with many controls 403

additional pair of CNOTs involved in the computation-uncomputation:

(9.75)

What is the correction operation for the post-selected ancilla?

Exercise 9.12 Show that we can implement a CS gate using a single Toffoli
and S gate, where we measure an ancilla and perform a CZ correction:

aππ
2

aπ

Does a construction like this also work for any other controlled-phase gates
apart from CS?

Exercise 9.13 In this exercise we will show that we can construct the
CCCZ gate (i.e. the 3-controlled Z gate) using 6 T gates.

a) Prove using the ZH-calculus that the following post-selected circuit im-
plements a CCCZ gate:

⊕ ⊕|0⟩ S ⟨+|

S†

S†

Hint: Use Eq. (9.70) to bring the CS gates into the H-box, and then
combine the π/2 phases using an appropriate Euler decomposition of the
Hadamard.

b) Find the correction operator for if the measurement got the wrong out-
come instead.

c) Conclude that we can hence deterministically implement the CCCZ gate
using 6 T gates. Hint: use Eq. (9.64).

Note: There is also a different way to see that this construction works. We
can decompose the phase function (−1)xyzw of the CCCZ as eiπ(xy)(zw) =
ei

π
2 (xy⊕zw−xy−zw) and these three phase terms correspond to the two CS

gates and the S gate on the ancilla (the two Toffoli gates precisely prepare
the xy ⊕ zw state on the ancilla).

404 Controlled gates and classical oracles

9.4.2 Adding controls to other quantum gates

Using what we’ve learned about Toffoli gates, we can also start to construct
other unitaries with many controls.

The easiest construction for a many-controlled unitary U , which requires
one clean ancilla, and the ability to construct a singly-controlled U , is the
following:

U

|0⟩

...

⊕ ⊕

=
U

|0⟩

...

(9.76)

We have drawn U here as a single-qubit unitary, but this of course works
when U targets multiple qubits as well.

This is nice and all, but it still means we need to know how to construct
U with a single control. This might be problematic if we want to restrict
our gates to be from a particular gate set. For instance, it is not possible
to construct a controlled-T gate without ancillae and using only Clifford+T
gates. Luckily, in this case, we can adapt Eq. (9.76) for the special case of
U = Z(α):

Z(α)|0⟩

...

⊕ ⊕

=
Z(α)

|0⟩

...

(9.77)

The reason this works is because Z(α) acts as the identity when the input
is |0⟩, so that it only fires when the first Toffoli puts the ancilla into the |1⟩
state. Another way to look at it, is that a Z(α) phase gate is like a ‘controlled
global eiα phase’ gate, which applies a global phase of eiα iff its control wire
(the qubit it acts on) is in the |1⟩ state. Hence, Eq. (9.77) is just a special
case of Eq. (9.76) where the control wire is the target wire.

Exercise 9.14 Prove Eq. (9.77) using the ZH-calculus.

If we want to implement a many-controlled X(α) gate, we can realise
that X(α) = HZ(α)H, and that these conjugations by a unitary (like H)
commute with controls:

Z(α)|0⟩

...

⊕ ⊕

=
X(α)

|0⟩

...

Z(α)

|0⟩

...

H H
=

H H

(9.85)

(9.78)

9.5 Adders 405

So now we know how to implement Z and X rotations with an arbitrary
number of controls. By taking the Euler decomposition of a unitary, we can
hence implement arbitrary many-controlled single-qubit unitaries.

Proposition 9.4.2 Let U be an n-qubit unitary implemented by a circuit
of m CNOT, Z(α) and X(α) phase gates. Then we can construct a circuit
for a U with k controls using O(km) gates and one additional zeroed ancilla.

[TODO: More stuff about when the ancilla is not clean? Include stuff
about the Reinfurter(?) decomposition?]

In Section* 9.7.2 we look at 2-level operators, which are a class of ‘maxi-
mally controlled’ unitaries that are a useful primitive when thinking about
exact synthesis of unitaries.

9.5 Adders
Let’s put all we’ve learned to the test and build an efficient quantum circuit
for a certain primitive that is an important component of many quantum
algorithms: addition.

Recall that we can interpret an n-bit number a ∈ N as a n-qubit quantum
state |a⟩ = |an−1an−2 · · · a0⟩ where the |aj⟩ are just computational basis
states and a = 2n−1an−1 + 2n−2an−2 + · · · + 20a0. Our goal then now is
to build a (2n + 1)-qubit quantum circuit we will call Add that acts as
Add|a, b⟩ = |a, a+ b⟩. Note that here a + b is addition of natural numbers,
and not componentwise addition of bit strings! This circuit requires 2n+ 1
qubits because the sum of two n-bit numbers requires n + 1 bits to write
down, and hence the register containing a+ b consists of n+ 1 qubits.

We will build the circuit for Add by mimicking how you would add together
numbers by hand: by starting at the least significant digit and proceeding
upwards while keeping track of the carry. Let’s call the outcome of the
addition s = a + b, for sum. Calculating the least significant bit s0 is very
simple: it is just a0 ⊕ b0. But now for the second bit s1 we care about the
carry value of the first bit. This carry bit is c0 := a0 · b0, since it is only
non-zero if both a0 and b0 are 1. The value of s1 is then the sum of a1, b1
and the carry c0 modulo 2: s1 = a1 ⊕ b1 ⊕ c0. That still isn’t too bad, but
now we need to calculate the carry of this second bit s1, and this is a bit
more complicated, because now there are multiple ways in which the carry
can be 1: we can either have both a1 and b1 be 1, or one of these values and
the carry c0, or all three of these values. We can however capture this in a
nice symmetric function that we have already seen: the MAJ function that
calculates whether the majority of values (in this case 2 out of 3) are 1. Recall

406 Controlled gates and classical oracles

from Eq. (9.51) that we have MAJ(x1, x2, x3) = x2 ⊕ ((x1 ⊕ x2) ∧ (x2 ⊕ x3)).
Hence, setting x1 = a1, x2 = s0 and x3 = b1, we see that we can calculate
the carry bit using the circuit:

c0
a1

b1
0 ⊕ MAJ(a1, c0, b1)

⊕
⊕

⊕
⊕

⊕

c0
a1

b1 (9.79)

Calculating all the other bits now follows similarly: we set s2 = a2⊕b2⊕c1 and
c2 = MAJ(a2, b2, c1). Or in general, for the kth bit we have sk = ak⊕bk⊕ck−1
where ck = MAJ(ak, bk, ck−1).

Putting this all together, we can then write down a circuit for the adder,
for instance for n = 3 we have:

b0
0
a1

b1

⊕

⊕
⊕

⊕

a0

⊕
⊕s0
c0

0
a2

c1

⊕
⊕ ⊕ ⊕ s1

a0
s0
c0
a1
s1
c1

b2
0 ⊕

⊕
⊕

⊕c2
⊕

⊕ ⊕ ⊕ s2

a2
s2
c2

(9.80)

Here we have drawn a dashed box around the calculation of the MAJ function
for the second and third carry bits. There are a couple of issues with this
construction of the adder right now. First, it obviously contains some CNOT
gates that can be cancelled against each other, and hence can be made a bit
more efficient. But more importantly: we are not yet uncomputing the carry
bits, which is important if we wish to use this Adder in superposition, so
let’s do that:

b0
0
a1

b1

⊕

⊕
⊕

⊕

a0

⊕
⊕

c0

0
a2

c1

⊕
⊕ ⊕ ⊕

a0
s0

a1
s1

b2
0 ⊕

⊕
⊕

⊕c2
⊕

⊕ ⊕ ⊕ s2

a2
s2
c2

⊕

⊕
⊕

⊕c1
⊕

⊕
0

⊕ 0

(9.81)

9.5 Adders 407

Let’s cancel some matching CNOTs:

b0
0
a1

b1

⊕

⊕
⊕

⊕

a0

⊕
⊕

c0

0
a2

c1
⊕

a0
s0

a1
s1

b2
0 ⊕

⊕
⊕

⊕c2
⊕

⊕ s2

a2
s2
c2

⊕

⊕

⊕c1 0

⊕ 0

0

s1

c0 0

(9.82)

Here we have grouped together the different components that make up
the computation: the calculation of first c0, c1, c2 and s2, followed by the
uncomputation of c1, the computation of s1, the uncomputation of c0 and
finally the computation of s0. This pattern extends to the addition of an
arbitrary number of bits: first calculate all the carries, and then alternate
calculating the sum of a bit and uncomputing the matching carry. We see
then that the total cost consists of n zeroed ancillae and 2n− 1 Toffoli gates:
1 each for the computation of a carry and 1 each for the uncomputation of
all the carries except for the last one. Using the quantum tricks we have
seen, we can however halve the cost of this addition circuit.

In the circuit (9.82) we have connected together the matching compute and
uncompute pairs by dashed lines. These compute-uncompute pair Toffolis
can be replaced by just a single Toffoli using the constructions of Eq. (9.74)
(in the case of c0 which is computing with just a Toffoli) and Exercise 9.11
(for c1, as this involves both a CNOT and a Toffoli). The final carry does not
have to be uncomputed and hence uses a single Toffoli regardless. The total
number of Toffoli gates is then just n instead of 2n − 1, and furthermore,
each Toffoli can be implemented using just 4 T gates instead of 7.

Putting these optimisations together we see that we have reduced the
original T count of 7 · (2n− 1) = 14n− 7 to 4n.

Exercise 9.15 The construction of the adder described above is very
efficient in the number of (Toffoli) gates, but it does require n ancillae, one
for each of the carry bits. We can also construct an adder without using any
ancillae, but using more gates.

1. Argue that the following circuit implements a ‘decrement by 1’ opera-

408 Controlled gates and classical oracles

tion:
⊕

⊕
⊕

⊕
· · ·...

a0

a1

a2

an−1

...

(a− 1)0

(a− 1)1

(a− 1)2

(a− 1)n−1

−1
= (9.83)

That is, given a computational basis input |⃗b⟩ encoding a number b ∈
Z2n , it produces b− 1 modulo 2n.

2. Argue that the following circuit of cascading ‘controlled decrementers’
implements the subtract operation |a, b⟩ 7→ |a, b− a⟩:

b0

b1

bn−1

...

(b− a)0

(b− a)1

(b− a)n−1

−1

a0

a1

an−1

...

−1

−1

a0

a1

an−1

...· · ·
(9.84)

3. Argue that the adjoint of the above circuit hence implements an adder.
4. What is the cost in the number of standard 2-controlled Toffoli gates of

this construction? You can use any decomposition of the many-controlled
Toffoli gates that we have seen in this chapter (that fits in the available
number of qubits).

9.6 Summary: what to remember
1. There is a Boolean Fourier transform from an XOR of bits, to an AND

of bits. This allows us to relate phase gadgets (which are based on XOR),
to diagonal controlled-unitaries (which are based on AND).

2. The H-box is a spider-like linear map that allows us to more compactly
represent controlled unitaries. There are a variety of rewrite rules in-
volving H-boxes that correspond to useful identities involving Toffoli
gates and the Boolean AND. See Figure 9.1.

3. If we are given a Boolean formula, then we can implement it as a
quantum circuit by storing intermediate computations on additional
bits. By representing a classical reversible function directly as a truth
table we can instead decompose it in terms of 2-cycles, which correspond
to many-controlled Toffoli gates.

9.7 Advanced Material* 409

4. We can implement a k-controlled Toffoli gate with O(k) regular Toffoli
gates with the help of a single borrowed ancilla.

5. By introducing, measuring and correcting an ancilla, we can implement
a Toffoli using 4 instead of 7 T gates. We can even implement a compute-
uncompute pair of a Toffoli using a single ancilla and just 4 T gates.

6. Putting these tricks together allows us to create an n-qubit adder circuit
that uses just n Toffoli gates, or 4n T gates.

9.7 Advanced Material*

9.7.1 From truth tables to Toffolis*

Instead of being given a concrete specification of a classical function as a
collection of simple operations performed in sequence, we can also consider
it as just a truth table that tells us where every bit string is mapped to. In
this section we will see how we can decompose such functions into cycles
and how each cycle can be implemented using Toffoli gates. In this way we
will also be able to prove that certain functions, like a generalised Toffoli
with n− 1 controls, requires at least one additional ancilla to be constructed
using gates acting on fewer qubits.

So let us suppose we are given a reversible function f : Fn2 → Fn2 . As f is
a bijection, we can see this as a permutation on the set of bit strings {0, 1}n.
The set of n-bit reversible functions hence forms the permutation group
on 2n elements. Now, if you know a little bit of group theory, then you will
know that a permutation group is generated by cycles, or more specifically,
2-cycles.

Definition 9.7.1 Let G be a permutation group on some set S (like the
set length-n bit strings). A k-cycle σ ∈ G is a permutation where there are
k distinct elements x1, . . . , xk ∈ S such that

• σ(xi) = xi+1 (and we set xk+1 = x1),
• σ(y) = y for any y ∈ S not equal to one of the xi,
• and there is no smaller k with the above two properties.

We say two cycles are disjoint when they don’t have any elements they act
non-trivially on in common (for σ and σ′ that are not equal, this is equivalent
to them commuting). We denote a k-cycle on x1, . . . , xk by (x1 x2 · · · xk).

So a k-cycle is a permutation that cycles the value of x1 to x2 to x3, and
so on, to xk and then back to x1. It acts as the identity on all the other

410 Controlled gates and classical oracles

elements. A standard result from group theory is that any permutation can
be written as a composition of disjoint cycles.

Exercise 9.16 Let G be a permutation group on some set S and let σ ∈ G

be any permutation. Then σ = σ1 · · ·σl for some disjoint cycles σj .

Solution: .
Pick some element x1 ∈ S that is not a fixed point of σ (i.e. σ(x1) ̸= x1).
If σ only has fixed points, then it is the identity and we are done. Then set
x2 = σ(x1). Set x3 = σ(x1). Note that we can’t have x3 = x2, since then
both x1 and x2 would map to x2, which is not possible in a permutation. If
x3 ̸= x1, then we set x4 = σ(x3). Again, x4 cannot be equal to x3 or x2. We
keep repeating this procedure as long as we get new elements out, until we get
to some k such that xk+1 = x1. Let σ1 = (x1 · · · xk) and define σ′ = σ−1

1 ◦σ.
Note that all the xi are fixed points of σ′, as σ maps xi to xi+1, and then
σ−1

1 maps xi+1 back to xi. So σ′ has more fixed points then σ. We can now
repeat the procedure for σ′. It is guaranteed to terminate as the number of
fixed points keeps increasing until we have reduced it to the identity. Then
we have some sequence of cycles σ1, . . . , σl such that σ−1

l ◦ · · · ◦ σ−1
1 ◦ σ = id.

Hence σ = σ1 · · ·σl. It is easy to see that all the cycles are disjoint.
End Solution .

Lemma 9.7.2 Let G be a permutation group on some set S. Then G is
generated by 2-cycles.

Proof Exercise 9.16 shows that G is generated by cycles, so it suffices
to show that each cycle can be built out of 2-cycles. This is easily done:
(x1 . . . xk) = (x1 x2) ◦ (x2 x3) ◦ . . . ◦ (xk−1 xk). For each xi with i < k

we can easily check that only exactly one of these 2-cycles does something
non-trivial to it, and maps it to xi+1. For xk, instead all the 2-cycles apply,
mapping it first to xk−1, then to xk−2, and so on, until it is finally mapped
to x1.

Okay, so any permutation can be built out of 2-cycles. So if we want to
know how we can construct an arbitrary reversible function, it suffices to
show how we can construct an arbitrary 2-cycle on bit strings. That is, we
need to construct for any choice of bit strings x⃗ and y⃗, the function Px⃗,y⃗ that
maps x⃗ to y⃗ and vice versa, and acts as the identity on all other bit strings.

So let’s suppose x⃗ and y⃗ given. We will first simplify our lives somewhat
by taking x⃗ to be equal to the all 1 bit string. We can do this by using
the following identity for permutation groups (convince yourself that this

9.7 Advanced Material* 411

works):
σ ◦ (x y) ◦ σ−1 = (σ(x) σ(y)) (9.85)

In this case we will take σ to be the bit string function

z⃗ 7→ (z1 ⊕ x1 ⊕ 1, . . . , zn ⊕ xn ⊕ 1),

which indeed maps x⃗ to 1⃗. Note that this function is implemented by applying
a NOT gate on the indices i where xi = 0. Hence, Px⃗,y⃗ is equivalent to P1⃗,y⃗′

up to some NOT gates. Note that because we started with x⃗ ̸= y⃗, that we
now have y⃗′ ̸= 1⃗. Furthermore, by rearranging bits (for instance by applying
some swap gates before and after the desired operations), we may assume
that y⃗′ = 1 · · · 10 · · · 0. That is, y⃗′ is a series of 1’s followed by a series of 0’s
So let’s suppose that y⃗′ consists of k 0’s and n− k 1’s. Note that k > 0 as
otherwise y⃗′ = 1⃗. We can now easily write down the required circuit:

P1⃗,y⃗′ =

...n− k

k − 1 ...

⊕ ⊕
⊕

⊕
· · · ⊕

⊕
⊕· · ·

(9.86)

We can check that is correct by verifying the three possibilities for the input:
1⃗, y⃗′, or some other bit string. First, the case where all the inputs are 1⃗:

...

...

⊕ ⊕
⊕

⊕
· · · ⊕

⊕
⊕· · ·

1

1

1

1

1 0

1

1

1

1

0 1

1

1

0

0

1 0

1

1

1

1

This output indeed matches y⃗′ = 1 · · · 10 · · · 0. Let’s check what happens
when we input y⃗′ instead:

...

...

⊕ ⊕
⊕

⊕
· · · ⊕

⊕
⊕· · ·

1

1

0

0

0 1

1

1

1

1

1 0

1

1

1

1

0 1

1

1

1

1

We also get the correct output of 1⃗! We just need to check that this circuit
does not do anything when we input any other state.

Exercise 9.17 Prove, by doing smart case distinctions, that the circuit
of Eq. (9.86) acts as the identity when the input bit string is not 1⃗ or
y⃗′ = 1 · · · 10 · · · 0.

412 Controlled gates and classical oracles

Hint: if the input is such that the Toffoli does not fire, then the CNOT
and NOT gates cancel each other out. In which situations can the Toffoli
gate fire?

Solution: .
First notice that if any of the top n−k wires is 0 that the middle Toffoli does
not fire and that hence all the remaining CNOT and NOT gates cancel each
other out, so that the circuit implements the identity in this case. So let’s
assume that all those inputs are 1. Second, if the final input bit is 0, then the
first set of CNOTs fire, toggling all the k− 1 bits, or if it was 1, then they all
do not fire. This means that the middle Toffoli can only fire if all the k − 1
have the same value, either all 1 or all 0. So if these values don’t match, the
circuit is also the identity. Hence, assume also that these k− 1 bits carry the
same value. Now, if the value of the last bit also matches that of these k− 1
bits, then the input state was either 1⃗ or y⃗′, which we are assuming is not
the case. Hence, the two remaining cases are 1 · · · 10 · · · 01 and 1 · · · 11 · · · 10.
It is also easy to check that in both cases the Toffoli cannot fire, so that the
circuit implements the identity.
End Solution .

We hence have the following.

Proposition 9.7.3 We can implement any 2-cycle on n bits using a single
(n− 1)-controlled Toffoli and O(n) CNOT and NOT gates.

Theorem 9.7.4 Any n-bit reversible function can be implemented using
O(n2n) (n− 1)-controlled Toffoli, CNOT, and NOT gates.

Proof A reversible function can be decomposed into 2n disjoint 2-cycles,
and each 2-cycle can be implemented using O(n) gates, requiring a total of
O(n2n) gates.

Now, it might seem like this procedure is very inefficient. After all, we
first decompose the permutation down into 2-cycles, and then painstakingly
construct each of these 2-cycles. Surely there must be a more efficient way,
using k-cycles or some other trick, in order to use less than O(n2n) gates.
While yes, there are clever ways to reduce the constants and to do better, on
an asymptotic level, this construction is already close to optimal: we could
only improve it up to a logarithmic factor.

Proposition 9.7.5 There exist reversible functions on n ≥ 2 bits that re-
quire at least cn2n/ logn Toffoli, CNOT and NOT gates for c = 1

6 (assuming
that log = log2).

9.7 Advanced Material* 413

Proof Counting the placement of gates on different bits as distinct, there are
n different Toffoli gates with n−1 controls, n different NOT gates, and n(n−
1) different CNOTs. Hence, n(n−1)+n+n = n2 +n different 1 gate circuits.
Using N gates we can hence construct at most (n2 + n)N different maps.
There are (2n)! different reversible functions on n bits (where k! represents the
factorial function k! = k(k− 1) · · · 2 · 1). In order to write down all reversible
functions we hence need a number of gates N such that (n2 + n)N ≥ (2n)!.
Stirling’s formula for the factorial gives us log(k!) ≥ 1

2k log k. So by taking
logarithms on both sides we get the inequality N log(n2 + n) ≥ 1

22n log 2n =
1
2n2n log 2. Assuming n ≥ 2 and using n3 ≥ n2 +n we get 3N logn ≥ log 2

2 n2n

and hence N ≥ cn2n/ logn for c = log 2
6 = 1

6 (using log 2 = log2 2 = 1).

At this point you might wonder if we really need a Toffoli gate with this
many controls. Couldn’t we make do with just a regular Toffoli with two
control wires? The answer is no. We cannot decompose such a Toffoli into
gates acting on fewer bits, at least in the current setting.

To understand this limitation, we need to know the concept of the par-
ity of a permutation. We write the parity of a permutation σ as sgn(σ)
and we define this inductively by setting the parity of each 2-cycle to be
−1: sgn((x y)) = −1, and making it respect composition: sgn(σ1σ2) =
sgn(σ1)sgn(σ2). Hence the parity of a permutation captures whether we
need an even or odd number of 2-cycles to write it down (it is a bit non-
trivial to see that this is actually well-defined). We call a permutation σ even
when sgn(σ) = 1 and odd when sgn(σ) = −1.

Now comes the catch: from the definition of parity we immediately see
that when we compose even permutations, we get another even permutation.
It just so happens to be that an (n− 1)-controlled Toffoli acting on n bits
is an odd permutation, while any gate acting on fewer bits is even. This
means there is no way we can combine these gates to construct the (n− 1)-
controlled Toffoli. To see these gates indeed have these parities, first note
that a (n − 1)-controlled Toffoli acting on n bits is a 2-cycle that maps
the bit string 1 · · · 11 to 1 · · · 10 and vice versa, so that it is indeed an odd
permutation. Suppose instead we have a gate that does not act on at least
one bit. Denote its corresponding permutation by σ, and let σ′ denote the
permutation where we have chopped of the last bit (the one it doesn’t act
on). Let σ′ = (x⃗1 y⃗1) · · · (x⃗k y⃗k) be a decomposition of σ′ into 2-cycles. Then
in the decomposition of σ, each of these 2-cycles must occur twice, one for
each possible value of the last bit. That is, a decomposition of σ is given by
σ = (x⃗10 y⃗10)(x⃗11 y⃗11) · · · (x⃗k0 y⃗k0)(x⃗k1 y⃗k1). Since the permutation then
consists of an even number of 2-cycles, it is an even permutation.

414 Controlled gates and classical oracles

There are two ways around this issue: use non-classical, i.e. quantum,
gates, or use additional bits as ‘scratch space’.

9.7.2 2-level operators*

Let U be a single-qubit unitary. If we consider an n-qubit circuit containing
just a (n− 1)-controlled U gate, its matrix has a very particular shape:

U

...
=

1

. . .
1

u11 u12
u21 u22

 (9.87)

Here all the empty spots in the matrix are zeroes.
This shape comes from the fact that this gate only does something non-

trivial on the basis states |1 · · · 10⟩ and |1 · · · 11⟩, since the first n− 1 wires
have to be in the |1⟩ state for it to fire. This unitary is a special case of a
2-level operator, a unitary that acts non-trivially on just 2 basis states.

To make this more clear, instead of labelling all our basis states as bit
strings, we will label them as numbers 1, 2, 3, . . . , 2n. Denoting i = 2n − 1
and j = 2n, we will call the above controlled gate U[ij], and it acts as follows:

U[ij]

ψ0
...
ψ2n

 =

ψ′

0
...
ψ′

2n

 where
(
ψ′
i

ψ′
j

)
= U

(
ψi
ψj

)
and for k ̸= i, j : ψ′

k = ψk.

(9.88)
A general 2-level operator is defined the same, but then i and j are allowed
to be arbitrary values (as long as i ̸= j of course). We have in fact already
seen other examples of 2-level operators: the 2-cycles that swap just two
basis states and leave every other one invariant. A 2-cycle that swaps the
basis states |k⟩ and |l⟩ is just the 2-level X[kl] gate. Because we know how to
construct these 2-cycles and the (n− 1)-controlled U , we have in fact all we
need to construct arbitrary 2-level operators. This is because we have the
relation X[kj]U[ij]X[kj] = U[ik] as long as k ̸= i, j: The first X[kj] moves |k⟩
to |j⟩, so that the U[ij] can apply to it, and then we move it back to the |k⟩
spot by another application of X[kj]. So with 2-cycle gates we can move the
places where a 2-level operator acts non-trivially.

A 2-level operator acts non-trivially on two different basis states, but
we also have 1-level operators that act just on a single basis state. An

9.7 Advanced Material* 415

example of this is the (n − 1)-controlled Z(α) gate. The Z(α) gate only
fires when all the controls are in the |1⟩ state, but additionally the Z(α)
only does something non-trivial when its target is also in the |1⟩ state; the
|0⟩ state is left alone. We could hence call this gate Z(α)[j] where j = 2n.
By conjugating by X[kj] we can change this gate to Z(α)[k], which acts as
Z(α)[k]|j⟩ = eiαδjk |j⟩, where δjk is the Kronecker delta.

There is a little bit of a subtlety around constructing these 1-level and
2-level operators: we saw in the previous section that in general we need to
have a zeroed ancilla in order to construct unitaries with many controls. We
hence can’t easily make (n− 1)-controlled single-qubit unitaries on a n-qubit
circuit, since we need to have the additional space for an ancilla available
to us. But then the gate is no longer controlled on all the values, and it
stops being a 2-level operator (it will instead be a 4-level operator, since it
acts non-trivially on its states regardless of the state of the ancilla). This
will usually not be a problem however if we are assuming that the ancilla
is zeroed, since it ends up back in the zeroed state. Since the |1⟩ state of
the ancilla doesn’t come into play, the unitary will ‘effectively’ be a 2-level
operator.

We will need these 2-level and 1-level operators when we talk about which
unitaries we can exactly write down using Clifford+T gates in Chapter 10,
specifically in Section*10.7.1.

9.7.3 More rules for the H-box*

In Section 9.2.2 we covered the rules involving H-boxes that come up the
most often, which are summarised in Figure 9.1. But there is another set
of rewrite rules that deal specifically with H-boxes that are not labelled by
−1, but instead can be labelled by arbitrary complex numbers. Whereas
those rules of Figure 9.1 give us completeness of the phase-free fragment of
H-boxes when combined with the phase-free ZX rules of Figure 4.1, adding
the rules we will see in these sections give us completeness for the universal
fragment where we can represent arbitrary linear maps over the complex
numbers.

The first two of the new rules allow us to perform arithmetic with H-boxes:

b

a

∝ ab

a

b

∝ a+b
2

π (9.89)

We call these the multiply rule and the average rule. When a and b are
complex phases, the multiply rule is just an instance of the adding of phases

416 Controlled gates and classical oracles

when spiders fuse, cf. (9.21) and (3.35). The average rule has no counterpart
in the standard ZX-calculus.

The multiply rule can be generalised to H-boxes of arbitrary arity:
a

b

∝ ab..
.

..
. (9.90)

I.e. when two H-boxes are connected to exactly the same set of Z-spiders,
then we can fuse the H-boxes together. With the rules we have seen before,
the proof of this generalisation is straightforward:

a

b

= ab.=
a

b

(9.25)

=
a

b

(9.29)
. . . ∝ ab

(9.37)
. . .

(9.25)

(9.91)
Using this rule we can prove that two controlled-phase gates combine

together:

eiα eiβ

=
ei(α+β)

(sp)

(9.38)

This should all look quite familiar: Eq. (9.90) is like the phase gadget fusion
rule of Section 7.1.2. While a phase gadget adds a phase depending on the
XOR of the inputs, a controlled-phase gate build using an H-box adds a
phase based on the AND of the inputs.

Then there is only one more rule we will need, the introduction rule:
a

a

∝
π

a (9.92)

We call it the introduction rule, because it allows us to introduce additional
edges to an H-box (at the cost of copying the H-box). As do many of the
previously introduced rules, it has a generalisation to H-boxes of arbitrary
arity:

a

a

∝
π

a ..
.

..
. (9.93)

Exercise 9.18 Prove Eq. (9.93), using Eq. (9.92) and the previously intro-
duced H-box and ZX rules.

Most of the use-cases of this rule are when it is applied from right-to-left.
Indeed, it is a close cousin of the multiply rule (9.90). Both rules target
pairs of H-boxes connected to the same set of Z-spiders, although in the

9.7 Advanced Material* 417

case of the introduction rule, they must also differ by a NOT gate on one
of the connections, and have the same label. As an example, we can use the
introduction rule to prove that if we apply both a controlled-phase gate, and
a NOT-conjugated controlled-phase gate that this reduces to just a simple
phase gate:

=

(π)

eiα eiα

π π

eiα eiα

π ∝
(9.40)

eiα
∝
(id)

α

(9.21)

α =

(sp)

(9.94)
As noted above, the ‘AND inspired’ rules together with the ZX-calculus

rules are complete for diagrams generated by Toffoli and Hadamard gates.
When we add these three additional rules, multiply, average and introduction,
we get a rule set that is complete for all diagrams. Hence, we can, in principle,
replace all reasoning about qubit linear maps with diagrammatic reasoning.
Whether it is beneficial to do so of course depends on the situation.

Note that in Section 10.5.3 we will see a different way in which we can
extend the fragment of phase-free H-boxes to larger fragments while retaining
completeness.

Exercise* 9.19 We allowed H-boxes to be labelled by an arbitrary complex
number, but it turns out that we can represent all of these using just H-boxes
which are labelled by a complex phase. You may ignore scalar factors in this
exercise.

a) Show that 0 = . Hint: Use the average rule with a = 1, b = −1.
b) Show that for any 0 ≤ r ≤ 1 we can find an α such that we can represent

the r-labelled H-box using an eiα-labelled H-box and an e−iα-labelled
H-box.

c) Show that 1/a =a a π . Hint: use the multiply rule and the
‘zero wire version‘ of Eq. (9.93).

d) Show that we can represent (up to non-zero scalar) an arbitrary a-labelled
H-box using spiders and complex-phase labelled H-boxes. Hint: first write
a in the polar decomposition a = reiθ for some r ≥ 0 and θ ∈ R. Then
make a case distinction based on whether r > 1 or not.

9.7.4 W-spiders*

In this chapter we introduced the H-box to help us reason about Toffoli-
like gates. The H-box is nice to work with, because it acts like a spider

418 Controlled gates and classical oracles

(Eq. (9.25)), and it interacts via a bialgebra rule with the Z-spider, as we
saw in (9.29):

=··
·

··
·

nm ··
·

··
·

nm (9.95)

This works because an H-box followed by a Hadamard is equal to the classical
AND operation acting on computational basis states. In the same way, the
X-spider has a bialgebra rule with the Z-spider, because the X-spider is equal
to the classical XOR.

It turns out that up to some trivial modifications, there is exactly one
other spider-like map that interacts with the Z-spider via a bialgebra rule,
and that is the partial map Add:

Add|x, y⟩ =

|x+ y⟩ if x · y ̸= 1
0 otherwise

That is: it adds together the value of the two basis states, as long as their
sum is not greater than 1. If both x and y are 1, then their sum should be 2,
but this doesn’t ‘fit’ into a single qubit, and so it is sent to the scalar zero.
It is hence quite similar to the XOR, except that the |11⟩ input is sent to
zero. As matrices:

XOR =
(

1 0 0 1
0 1 1 0

)
Add =

(
1 0 0 0
0 1 1 0

)
We saw in Section 9.2.1 that the reason we work with H-boxes instead of
AND gates directly, is because H-boxes have flexsymmetry, meaning we
can treat inputs and outputs on the same footing and bend wires as we wish.
To make the AND flexsymmetric, we had to compose it with a Hadamard.
In an analogous way, the Add map, and its n-qubit input generalisation, is
not flexsymmetric, but we can make it flexsymmetric by composing it with
a NOT. We can easily see this when we write Add in terms of kets and bras:

Add = |0⟩⟨00|+|1⟩⟨01|+|1⟩⟨10| NOT◦Add = |1⟩⟨00|+|0⟩⟨01|+|0⟩⟨10|

This ‘flexsymmetrised’ Add consists of all ket-bra pairs that have exactly
one |1⟩, with the same role being played by inputs and outputs. Hence, when
we bend the wires so that it is a state, we get the following:

Add π = |001⟩ + |010⟩ + |100⟩ (9.96)

where |x⃗| is the Hamming weight of the bitstring x⃗, i.e. the number of

9.7 Advanced Material* 419

1s that appear in x⃗. This state is known as the W-state. The W-state is
important in entanglement theory as it is a nice representative of a certain
type of genuine three-party entanglement, where one party can do a mea-
surement, and the other two parties are still left with a maximally entangled
state (compare this to the GHZ state |000⟩ + |111⟩ where when someone
does a measurement, the state completely disconnects). But for us that is
all not important, except that it motivates the name for the W-spider:

..
.

..
. =

∑
x⃗,y⃗

|x⃗|+|y⃗|=1

|y⃗⟩⟨x⃗| (9.97)

The 0-input 3-output W-spider is the W-state, while with a single input and
output we get the NOT gate:

= |1⟩⟨0| + |0⟩⟨1| = π (9.98)

The W-spider (9.97) has all the same symmetries that Z- and X-spiders
have: we can permute inputs and outputs freely, and we can interchange
inputs with outputs using cups and caps.

However, just as with H-boxes, it has a modified spider-fusion rule, which
requires a 2-ary spider to be in the middle (cf. (9.25)):

..
. =..
.

..
.

..
. (9.99)

For the H-box we needed something in the middle, as the H-box followed
by a Hadamard was the AND map, which could fuse together due to its
associativity. We have the same situation with the W-spider, but now using
the associativity of Add:

Add= (9.100)

As promised, this relation to Add means that the W-spider interacts with
the Z-spider via a bialgebra rule:

= (9.101)

There are a number of other rules governing the interaction between the Z-
and W-spider:

=

π =
π

π
=

π
=

=

(9.102)

420 Controlled gates and classical oracles

In fact, we could build a whole calculus to rival the ZX-calculus using just
the Z- and W-spider, which is called the ZW-calculus. We didn’t really
give it a name before, but just thinking about Z-spiders and H-boxes, and
viewing the X-spiders as derived from their interactions, we can call this the
ZH-calculus. Note however that these calculi—ZX, ZW, ZH—can represent
the same linear maps, and hence have the same expressive power. However,
certain constructions will look more natural using one type of generator
versus another. Using Z- and X-spiders we can easily reason about Cliffords
and phase gates, with XOR-like phases captured with phase gadgets. Instead
using Z-spider and H-boxes we can easily represent controlled gates and mul-
tiplicative phases. Using W-spiders we can easily represent additive structure,
which is not very prominent in quantum circuits, but is useful when thinking
about more general linear maps, and for proving completeness. For instance,
we can use a W-spider to represent the ‘addition’ of two H-boxes:

a

b
= a + b (9.103)

Note that a 3-ary W-spider can be decomposed into the ZH-calculus quite
easily:

∝ π (9.104)

This works because the W-spider is almost the Add, which is just the XOR
with the |11⟩ output projected away. That projection is done by the H-box
gadget in front of the X-spider:

∝ 0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (9.105)

We won’t be using the W-spider in this book, but it would be remiss of
us to not mention it in a book that is all about graphical reasoning. The
W-spider and the ZW-calculus has played a crucial role in the history of the
ZX-calculus and its completeness. See the References for more pointers on
this.

[TODO: could talk about W as “controlled wire-breaker”, i.e. transis-
tor/multiplexor. Justifies inclusion in Controlled gates section.]

[TODO: It would be nice to say a little bit more about phase-free ZH-
completeness.]

9.8 References and further reading 421

9.8 References and further reading
Reversible circuit synthesis The relation between Boolean functions and
DAGs was taken from Meuli et al. (2019a). They also introduce a ‘pebbling’
strategy that we alluded to, where values are uncomputed and recomputed
in order to stay under a circuit budget of additional memory bits. They do
this by encoding the synthesis as a SAT instance and then SAT solving it,
increasing the number of allowed gates and memory bits until they find a
satisfying solution.

The trick to reduce the number of bits needed by always computing and
uncomputing XORs was taken from Meuli et al. (2019b). See also Meuli et al.
(2020). Both these papers also use a pebbling strategy, but one that takes
into account the fact that XORs are cheap.

H-boxes The H-box was introduced by Backens and Kissinger (2019), which
proved completeness of the calculus in the universal fragment. This was fol-
lowed up by Backens et al. (2023) which proved that the phase-free fragment
could also be made complete. The Fourier decomposition of an H-box is
from Kuijpers et al. (2019). The term ‘flexsymmetry’ was coined in Carette
(2021).

Decomposing Toffoli gates Section 9.4 on how to decompose many-controlled
Toffoli’s into smaller Toffoli’s was heavily inspired by a blogpost by Craig
Gidney Gidney (2015), from which we have also taken the term ‘borrowed bit’.
That at least 7 T gates are necessary to implement a Toffoli or CCZ when
restricting to unitary circuits was shown in Amy et al. (2013a); Di Matteo
and Mosca (2016). That a Toffoli gate combined with a CS gate is cheaper
was first realised by Selinger Selinger (2013). Jones came up with the trick to
use an ancilla to reduce the cost Jones (2013) to four T gates. The ‘compute-
uncompute’ construction that reduces the cost of a pair of Toffoli gates to
just four T gates was found by Gidney Gidney (2018). This paper also gives
the description of the adder circuit we use in Section 9.5. The graphical
approach to deriving these identities was developed in Kuijpers et al. (2019).
The 6 T construction of the CCCZ in Exercise 9.13 is from Gidney and Jones
(2021). A structured approach to finding these types of decompositions is
given in Amy and Ross (2021).

W-spiders The W-spider was introduced in Coecke and Kissinger (2010b).
This was extended to a complete ZW-calculus by Hadzihasanovic (2015b). It
was this ZW-calculus that formed the basis for the first completeness results

422 Controlled gates and classical oracles

of a universal fragment of the ZX-calculus Hadzihasanovic et al. (2018);
Jeandel et al. (2018). That ZX, ZW, and ZH are essentially the only three
possible graphical calculi for qubits was shown in Carette and Jeandel (2020).
Using W-spiders to represent arithmetic was first done in Coecke et al. (2010),
and then developed much further in Wang et al. (2022), where they show
how to represent the sum of two diagrams as a single diagram. This was
done independently in Jeandel et al. (2024), although there the W-spiders
are a bit more hidden by the use of the ‘triangle generator’. For more details
on how these different generators of H-boxes, W-spiders and triangles relate
to each other, we refer the reader to (van de Wetering, 2020, Section 9).

10
Clifford+T

In the previous chapters, we have often seen a dichotomy between two classes
of quantum computations. On the one hand, we have Clifford computations,
which have a great deal of structure we can exploit to efficiently solve prob-
lems like circuit synthesis, deciding equality of computations, and strong
classical simulation. On the other hand, we have looked at universal quan-
tum computation, typically arising from adding Z[α] gates for arbitrary
angles α ∈ [0, 2π]. While Clifford angles, i.e. integer multiples of π

2 , satisfy
many identities, we have so far treated non-Clifford angles as “black boxes”,
which don’t seem to satisfy any extra rules, except for trivial ones coming
from the spider fusion rule like

α β = α+β

and variations thereof. It turns out that for generic angles, this is pretty
much all we can do. In fact, as we’ll explain in the References, there is a way
to make this statement precise.

However, for dyadic angles, i.e. angles of the form π
2k for some integer k,

there is a great deal more structure at play. As we’ll see in this chapter, we
can take advantage of this dyadic structure in a variety of ways.

First, we will see that it simplifies the problem of synthesising generic
unitary maps using just Clifford gates and the first non-Clifford dyadic
phase gate T := Z[π4]. We can characterise the set of unitary matrices that
we can synthesise exactly using Clifford+T gates as those whose entries are
all within a certain subset, called D[ω], of the complex numbers. Using some
special properties of this set, and a little (light) ring theory, we can figure
out precisely how many gates we need to synthesise such a matrix exactly
and do this synthesis efficiently. Note, here “efficient” means efficient in the
size of the matrix, not the number of qubits. For generic unitaries, this is
the best we can hope for. We’ll also see that for any tolerance ϵ > 0, we can

424 Clifford+T

approximate any unitary matrix within ϵ with a D[ω]-matrix, which we can
in turn synthesise exactly using Clifford+T gates.

Second, we will see that for dyadic angles, new rules start to hold that
wouldn’t for generic angles. In particular, certain complex configurations of
phase gadgets can all cancel each other out in ways that are not implied
by the gadget-fusion law we met back in Chapter 7. These so-called spider
nest identities come from a particular interaction between the parity (i.e.
mod-2) structure of the phase gadget itself and the mod-2k structure of its
angle.

Similar to the representation from Chapter 7 of CNOT+phase circuits,
we can represent phase gadgets as collections of binary vectors representing
parities of qubits where phases get applied, and as before we can stick these
vectors together into a matrix. We introduce a new Scalable ZX notation
so that we can directly represent these matrices in an efficient way in our
diagrams. Using these matrices representing collections of phase gadgets
we can also recognise which configurations of π

4 phase gadgets will cancel
out. Namely, it will be those whose “gadget matrix” satisfies a condition
called strongly 3-even. In this chapter, we will work out some properties
of strongly 3-even matrices and a closely related F2-linear structure called
Reed-Muller codes. Finally, we will put the pieces together by classifying
all the spider nest identities and explaining how they can be used for T count
optimisation.

Clifford+T circuits are especially important for fault-tolerant quantum
computation, so in this chapter we will also be (secretly) laying the ground-
work for Chapter 11, where we explain techniques for implementing universal
quantum computation within a quantum error correcting code. In particular,
in Section 10.5 we will see how we can relate circuits over different types
of gate sets together using a technique called catalysis that allows you to
perform certain ‘hard’ operations in an easy way as long as you have a suit-
able catalyst state lying around. Together with the classification of spider
nest identities this will prove very handy for when we want to implement
non-Clifford gates in fault-tolerant architectures.

10.1 Universality of Clifford+T circuits
Back in Chapter 2, we noted that CNOT gates plus arbitrary single-qubit
unitaries are universal for quantum computation, in the sense that they can
be used to build arbitrary unitaries over n qubits. In this section, we will
show that, in fact Clifford+T circuits are approximately universal, in the
sense that they can get arbitrarily close to any n-qubit unitary.

10.1 Universality of Clifford+T circuits 425

One way to show this, is to show how for any single-qubit unitary U there
exists some U ′ arbitrary close to U expressed totally in terms of H and T

gates. There are several ways to prove this. The “classic” way is to show that
V := HT corresponds to a rotation about some axis of the Bloch sphere by
an irrational multiple of π. Then, by raising V to larger and larger powers,
we will eventually land close to any possible rotation around that axis. We
can do the same around some other axis, e.g. with V ′ = TH, to obtain a
pair of rotation gates that suffice to build any single-qubit unitary.

It takes quite some work to spell out the details of this argument, and
this has been done in several standard textbooks on quantum computing.
There are also many variations one can use to obtain more or less efficient
decompositions of single-qubit unitaries. We’ll give some pointers to where
you can find all the gory details of this approach and variations at end of
this chapter.

However, in this section, we will start with a totally different approach to
synthesis of unitaries in Clifford+T, which is based on number theory. This
approach starts from the realisation that the numbers appearing in a unitary
matrix built from CNOT, H, and T are not just any old complex numbers,
but are actually quite special. First, lets have a look at the matrices again:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 H = 1√
2

(
1 1
1 −1

)
T =

(
1 0
0 eiπ/4

)

Clearly any U that we can construct from these gates will have as its
entries sums and products of integers, 1√

2 , and the complex phase ω := eiπ/4.
If we think about where ω lies on the complex plane:

1
π
4

1√
2

i√
2

(10.1)

we see that ω = 1+i√
2 and ω = −ω3 = 1−i√

2 . Using these facts, it’s not hard to
see that we can already build 1√

2 using just integers, 1
2 , and ω:

1
2(ω − ω3) = 1√

2

If we look at just the numbers we can build with integers and 1
2 , this

426 Clifford+T

consists of precisely the rational numbers whose denominator is a power of
two. We give this set of numbers a special name.

Definition 10.1.1 The dyadic rational numbers D consist of all rational
numbers of the form z

2k for z, k ∈ Z.

Clearly 0, 1 ∈ D, and for q, r ∈ D, −q, q + r and qr are also in D. Hence,
D forms a ring. However, unlike the full set of rational numbers, not every
q ∈ D has a multiplicative inverse in D, so it is not a field. It turns out that,
for the purposes of circuit synthesis, this is not a bug, but a feature, since
rings can have very interesting properties owing to the fact that we cannot
arbitrarily divide numbers by each other.

To discuss the single-qubit synthesis algorithm, there are two relevant
rings based on D we need to study. The first is D[ω], the ring obtained by
allowing arbitrary sums and products of dyadic rationals with the complex
number ω. The second is Z[ω] ⊊ D[ω], which is restricted just to integer
multiples of powers of ω.

Such rings are called ring extensions, i.e. rings obtained by adding one
or more elements outside of the original ring and closing under sums and
products. Since ω4 = eiπ = −1, we can concretely represent elements of Z[ω]
and elements of D[ω] using quadruples of numbers taken respectively from
Z or D:

Z[ω] := { a+ bω + cω2 + dω3 | a, b, c, d ∈ Z }
D[ω] := { a+ bω + cω2 + dω3 | a, b, c, d ∈ D }

Exercise 10.1 Define ring addition and multiplication for Z[ω] and D[ω]
as operations acting on quadruples (a, b, c, d) of numbers respectively taken
from Z and D.

Clearly any unitary matrix built out of CNOT, H, and T will consist
of elements from D[ω]. Perhaps surprisingly, the converse is also true: any
unitary matrix whose elements are in D[ω] can be constructed exactly as a
composition of CNOT, H, and T gates. We will show this by giving a concrete
algorithm for synthesising unitaries over D[ω] in the following sections, then
conclude with some remarks on how this lifts to an approximate synthesis
algorithm for unitaries over all complex numbers.

10.1.1 Exact synthesis of one-qubit gates

We’ll begin by considering the simplest non-trivial synthesis problem we can
have: namely preparation of an arbitrary single-qubit state |ψ⟩. That is, we

10.1 Universality of Clifford+T circuits 427

want to find a sequence of H and T to transform |0⟩ into |ψ⟩. Equivalently,
we can find a sequence of H and T transforming |ψ⟩ into |0⟩, then take the
adjoint.

One way to do this is starting with a state whose entries are in D[ω], and
then applying gates to it until all of the entries are in Z[ω]. The following
lemma should make clear why this helps us.

Lemma 10.1.2 If |ψ⟩ is normalised and all of its entries are in Z[ω], then
it must be a computational basis vector, up to a global phase.

Proof For any element z = a+bω+cω2 +dω3 in D[ω], we can get an explicit
form for |z|2 = zz in terms of

√
2 = ω − ω3:

|z|2 = zz = (a2 + b2 + c2 + d2) + (ab+ bc+ cd− da)
√

2. (10.2)

If we suppose that all the a, b, c, d are integers, then the only way to have
0 ≤ |z|2 ≤ 1 is when the

√
2 part here is negative.

Let |ψ⟩ =
∑
i ψi|i⟩ be a normalised state with entries in Z[ω]. Writing

|ψi|2 = ni + mi

√
2 where ni,mi ∈ Z and ni ≥ 0 and mi ≤ 0, we have

1 = ⟨ψ|ψ⟩ =
∑
i|ψi|2 =

∑
i(ni +mi

√
2). Since we know that the total sum is

1, the
√

2 components should cancel:
∑
imi = 0. But all the mi are negative,

so the only way this can happen is if all mi = 0. Similarly, since all the ni
are positive integers and they sum to 1, they must all be zero except for one
nj which is equal to 1. But then exactly one of aj , bj , cj and dj is ±1, and
the rest are zero. Hence |ψ⟩ = ωk|j⟩ for some i, k.

If we get to ωj |0⟩, mission accomplished, up to a global phase. If we get
to ωj |1⟩, we simply apply an X gate (i.e. HT 4H) and again we are done. So,
the name of the game is turning the coefficients of |ψ⟩ into elements of Z[ω].
One potential strategy is to factor |ψ⟩ as:

|ψ⟩ = 1
2k (x|0⟩ + y|1⟩) for x, y ∈ Z[ω]

then apply gates to |ψ⟩ to try and make the coefficients x and y into even
numbers. Then, we can factor out a 2 from x and y and the leading scalar
becomes 1

2k−1 and we’ve made some progress toward getting a state whose
coefficients are in Z[ω]. This does work, but it is a bit tricky to find the gates
we need to apply to |ψ⟩ to “make progress”.

We can make life a bit easier if we express |ψ⟩ differently, as:

|ψ⟩ = 1
δk

(x|0⟩ + y|1⟩) for x, y ∈ Z[ω] (10.3)

where δ := 1 + ω is a “special” number that has some nice number-theoretic

428 Clifford+T

properties that will help with our synthesis algorithm (for more details on
the number theory side of things, check out the advanced section 10.7.1).

First, we should be able to check that |ψ⟩ is indeed a vector over D[ω].
For this, we should check that 1

δ ∈ D[ω], which is not immediate because not
every element in D[ω] has a multiplicative inverse. The elements of a ring
that do have multiplicative inverses are called units. We can see that δ is a
unit in D[ω] by letting δ−1 := 1

2(1 − ω + ω2 − ω3) and calculating δδ−1 = 1.
Conversely, we would like to know that any |ψ⟩ with coefficients in D[ω]

can be written in the form of (10.3). This is true if any q ∈ D[ω] can be
written as x

δk for some x ∈ Z[ω] and a high enough power k of δ. Put another
way, we need to prove the following property of δ.

Exercise 10.2 Show that, for any q ∈ D[ω], there exists k such that
δkq ∈ Z[ω]. Hint: Using the fact that

√
2 = ω−ω3, first show that δ2 = λ

√
2,

where λ := 1 + ω + ω2 is in Z[ω].

The smallest k needed to express |ψ⟩ in the form of equation (10.3) is
called the least denominator exponent (lde). If the lde is 0, then |ψ⟩ is
already has coefficients in Z[ω], so by Lemma 10.1.2, it must be a basis state,
up to a phase. It is easy to see that k is minimal precisely when x and y are
not both divisible by δ, i.e. when there exists no pair a, b ∈ Z[ω] such that
aδ = x and bδ = y.

We can easily check divisibility by δ using δ−1. Since δ−1 /∈ Z[ω], then it
is not necessarily the case that zδ−1 ∈ Z[ω] for some x ∈ Z[ω]. In fact, it
will be in Z[ω] precisely when δ divides x.

The final piece of the puzzle is the following lemma, which lets us decrease
the lde by applying H and T gates.

Lemma 10.1.3 Let |ψ⟩ = 1
δk (x|0⟩ + y|1⟩) be a state where x, y ∈ D[ω]

are non-zero. Then there exists some l ∈ {0, . . . , 7} such that HT l|ψ⟩ =
1
δk (x′|0⟩ + y′|1⟩) for x′, y′ divisible by δ.

Since x′, y′ become divisible by δ, we can factor a δ out and reduce the
least denominator exponent by 1. If we repeat this process over and over,
eventually the lde will be 0, so by Lemma 10.1.2 it will be a basis vector.

The reason why Lemma 10.1.3 works has to do with the special behaviour
of δ within the ring Z[ω]. Namely, if we start computing numbers modulo
δ (or powers of δ) in Z[ω], we will see that x and y can always be broken
down into a particular form that tells us how many T gates to apply to make
progress. To understand this, we will need to define the notion of a residue
class, which lets us formalise what it means to work “modulo” some element

10.1 Universality of Clifford+T circuits 429

of an arbitrary ring. We will do this and provide a proof for Lemma 10.1.3
in Section 10.7.1.

However, if we believe the lemma, we now have a synthesis algorithm for
qubit states. In fact, this also already gives a synthesis algorithm for single-
qubit unitaries. This is because the columns of a unitary matrix must be
orthogonal, so if we send the first column to a basis vector, the second column
will also get sent to a basis vector, up to a phase. So after transforming the
basis vector to the correct positions and phases, we will have synthesised the
entire single-qubit unitary. We summarise this procedure in Algorithm 4.

Algorithm 4: Exact synthesis for qubit Clifford+T gates
Input: A unitary U with elements in D[ω]
Output: A list of H and T gates implementing U

1. Let |ψ⟩ and |ϕ⟩ be the columns of U . Since U is unitary, |ψ⟩ and |ϕ⟩
must be orthogonal.

2. Express |ψ⟩ as:

|ψ⟩ = 1
δk

(x|0⟩ + y|1⟩) for x, y ∈ Z[ω]

where k is the least denominator exponent.
3. Try to apply HT l for all l ∈ {0, . . . , 7} to x|0⟩ + y|1⟩ to obtain
x′|0⟩ + y′|1⟩ where δ divides x′ and y′.

4. Factor out a δ to obtain:

|ψ′⟩ = HT l|ψ⟩ = 1
δk−1

(
x′|0⟩ + y′|1⟩

)
5. Repeat until the lde is 0 to obtain a sequence of gates sending |ψ⟩ to
ωj |i⟩. Optionally, apply a final X gate to send |ψ⟩ to ωj |0⟩.

6. Since unitaries preserve orthogonality, the same sequence of gates will
send |ϕ⟩ to ωj′ |1⟩. Perform a final T j−j′ to remove the relative phase
between |0⟩ and |1⟩. Then Gs . . . G1U = ωjI.

7. Return G†
1 . . . G

†
s, which implements U up to a global phase.

Example 10.1.4 Consider the following unitary over D[ω]:

U = 1
2

(
1 − ω3 −1 + ω

−ω2 + ω3 −1 + ω3

)

We need to first express U in terms of a Z[ω] matrix multiplied by 1
δk , where

k is the lde of U . This can be accomplished by multiplying U by δ repeatedly

430 Clifford+T

until we get a matrix U ′ whose entries are in Z[ω]. For our chosen U , we
needed to multiply by δ three times to get a Z[ω] matrix, giving us the
following expression:

U = 1
δ3

(
2 + 3ω + 2ω2 −1 − ω + ω3

−ω − ω2 − ω3 −2 − 3ω − 2ω2

)

So, we have an initial lde of 3. We then try to apply T l for some l ∈ {0, . . . , 7}
followed by an H gate to reduce the lde. Picking l = 0 (i.e. just applying an
H gate) does not reduce the lde, but l = 1 reduces the lde from 3 to 2:

U π
4 = 1

δ2

(
1 + ω − ω3 −1 − ω − ω2

1 + ω + ω2 ω + ω2 + ω3

)
The lde is not zero yet, so we do another iteration, this time finding we can
reduce the lde at l = 3. Namely, if we apply T 3 followed by H, we reduce
the lde from 2 to 0:

U π
4

3π
4 =

(
0 −1

−ω3 0

)
Our matrix now contains only elements of Z[ω], so we know the first column
must be a basis vector, up to a phase. We find it is −ω3|1⟩. We can change
it to −ω3|0⟩ by applying an X gate:

U π
4

3π
4

π =
(

−ω3 0
0 −1

)
Finally, we finish by correcting the relative phase with a final application of
T 3, obtaining identity, up to a global phase:

U π
4

3π
4

π 3π
4 = −ω3

(
1 0
0 1

)
Moving everything but U to the RHS, we conclude that:

U ∝ -π
4-3π

4
π-3π

4

10.1.2 Approximating arbitrary single-qubit gates

Suppose we want to use the exact synthesis algorithm from the previous
section to approximate arbitrary, single-qubit unitaries. We now know that
we can build any 2 × 2 unitary matrix over the ring D[ω], and it is not hard
to see that any complex number can be approximated to arbitrarily high
precision by some element of D[ω]. Indeed, if we take a

2j + b
2kω

2 = a
2j + b

2k i

10.2 Scalable ZX notation 431

for a, b ∈ Z and some suitably high values of j, k ∈ N, we can get as close as
we like to an arbitrary complex number.

We seem to be most of the way there on coming up with an approximate
synthesis algorithm. The problem is, if we go through a complex-valued
unitary matrix U element-by-element and approximate each complex number
with an element of D[ω], odds are we won’t get something unitary but just
very nearly unitary.

So we need a better idea. Like in the exact synthesis case, inspiration
comes from looking at the least denominator exponenent. The idea is, for
a target unitary matrix U and a fixed error bound ϵ > 0, we progressively
raise the denominator exponent k until we can find some V = 1

δkV
′ where

1. V ′ is a matrix over Z[ω],
2. V is unitary, and
3. for some global phase α, ∥V − eiαU∥ ≤ ϵ.

It turns out condition 2 is already quite restrictive. Since V is a unitary,
its columns need to be normalised. Hence, the norm-squared of the columns
of V ′ must be |δ|2k. Using this fact, we can prove that for fixed k, there are
only finitely many V ′ to choose from.

Exercise 10.3 Show that, for a fixed k ∈ N, there are only finitely many
x, y ∈ Z[ω] such that |x|2 + |y|2 = |K|2 for any constant K ∈ Z[ω]. Show
that this implies there are only finitely many matrices V ′ over Z[ω] such
that V = 1

δkV
′ is unitary for any fixed k. Hint: Use (10.2) to get an explicit

form for |x|2 and |y|2 in terms of their integer coefficients.

Since we already know that there are finitely many V satisfying conditions 1
and 2 above for fixed k, we know that there must also be finitely many V

satisfying all 3 conditions. Hence, we can enumerate them for a fixed k. If
we find a solution, we accept it. Otherwise, we increase k and try again.

It turns out that there is a way to do this enumeration of candidates
satisfying conditions 1–3 efficiently, and that it terminates for k = O(log 1

ϵ).
The way this works has to do with properties of certain discrete subsets of
the complex plane, which are a bit advanced for our purposes. Hence, we’ll
finish our story on synthesis here, and make a few more remarks about this
in the advanced Section* 10.7.3.

10.2 Scalable ZX notation
[TODO: this looks a bit out of place here, since its not really about Clif-
ford+T. The first part of this section could go in phase-free chapter after

432 Clifford+T

discussion of parity matrices and normal forms, then just keep the scalable
phase gadget stuff here as a subsectino of the next section.]

So far in this book we have used ZX-diagrams where each wire represents a
single qubit. As we have seen, this already allows us to do a lot of interesting
stuff. However, sometimes there is repetitive structure in the diagram that
we should really try to abstract away, so that we don’t miss the forest
for the trees. The way we do that will be with scalable ZX notation.
This notation allows us to compactly represent operations on registers of
many qubits, while still maintaining much of the flavour of calculations with
standard ZX-diagrams.

We will represent a register of qubits as a single thick wire:

:=n

..
. n (10.4)

Sometimes we will need to split a register into two registers, peal one qubit
off to do something with, or merge registers together again. For that we
introduce a little bit of extra notation:

n+m

n

m

n+m

n

m

n+ 1

n

n+ 1

n

(10.5)

We call these operations divide and gather. They don’t actually do anything
as linear maps (they are just the identity), but they help us compactly write
down more complicated maps. They come with some simple rewrites:

n+m

n

m

n+m

n

m

n+m

n

m

= n+m

=

n

m

(10.6)

Note that in general we will only label the thick wires with the number of
qubits they represent when it is necessary for clarity, and leave it implicit
otherwise.

Just being able to represent a qubit register as a single wire is not that
useful, so let’s introduce some things we can do with them. We will use bold
spiders (with a thick border) to represent a product of (unconnected) copies

10.2 Scalable ZX notation 433

of a Z or X spider as a bold spider:

:=

..
.

..
.

..
.

..
.

..
.

..
.

α

α

..
.

..
.

..
.

..
.

..
.

α :=

..
.

..
.

..
.

..
.

..
.

..
.

α

α

..
.

..
.

..
.

..
.

..
.

α (10.7)

Note that in this notation each thick wire connected to the same spider needs
to represent the same number of qubits, otherwise it is not a valid diagram.
These bolded spiders can be labelled by a phase, and this phase then gets
applied to each qubit separately. As the bolded Z- and X-spiders represent
non-interacting parallel spiders, all the standard ZX rewrites still apply
to them, and hence we can still do spider fusion, strong complementarity,
etc. We can push spiders through a dividers and this in fact gives us a
type of bialgebra between the Z/X spider and the dividers and gatherers
(cf. Section 3.2.4):

α
... =

α

α

...

n

m

n+m

n+m

n

m

n

m

n+m

n+m
(10.8)

Note that this also works when the spider has no additional outputs:

α =
α

α

n

m

n

m
(10.9)

The most important component of the scalable notation, and what makes
all of this worthwhile, is a new piece of notation called the matrix arrow, or
just arrow for short, which allows us to represent arbitrary connectivity from
m Z-spiders to n X-spiders using an n×m biadjacency matrix A ∈ Fn×m

2 :

A
:=

..
...
.

..
.

A

..
.

n m (10.10)

Taking the convention that Aji represents the entry in the i-th column and
j-th row of the matrix A, we have in Eq. (10.10) that Aji = 1 if and only if the
i-th Z-spider on the left is connected to the j-th X-spider on the right. Just
using a single matrix arrow we can hence write down an arbitrary phase-free
ZX-diagram in parity normal form (Definition 4.2.2), by directly writing the
biadjacency matrix A on the matrix arrow.

Concretely, Eq. (10.10) corresponds, up to scalar factors, to a linear map

434 Clifford+T

that acts as A on computational basis vectors:
A :: |⃗b⟩ 7→ |Ab⃗⟩ (10.11)

Note that we treat the bit string b⃗ as a column vector for the purposes of
matrix multiplication. Let’s consider some special cases for the matrix arrow,
an all zero matrix and the identity:

0
=

I
= (10.12)

Using Eq. (10.11), we can see that when we compose matrix arrows, we just
calculate the matrix product:

A B ∝ BA (10.13)

We can also prove this diagrammatically by unrolling the definitions and
using strong complementarity on all the internal spiders (this is essentially
doing the reduction to parity normal form from Chapter 4).

Spiders and arrows interact in nice ways. First, we have two “copy” laws
allowing us to push arrows through spiders:

A
=

A

A

A
=

A

A
(10.14)

These can be proven by unrolling the definitions and using strong comple-
mentarity and spider fusion.

Example 10.2.1 Let A =
(

1 0
1 1

)
. Then:

=

(sc)

(sp)

=

(id)

(sp)

=

(sp)

A
=

A

A=

10.2 Scalable ZX notation 435

Second, we can express block matrices in terms of spiders:
(
A
B

)

=

A

B

(A B)
=

A

B
(10.15)

We can combine these operations to get a decomposition of a matrix into
smaller matrices:

(
A B
C D

)

=

A

B

C

D

(10.16)

We could view this as the definition of the matrix arrow, because this allows
us to define it inductively, starting from trivial components and combining
these into larger matrices.

The block matrix and composition rules also imply a graphical rule for
the sum of two matrices.

Proposition 10.2.2 For any F2 matrices A,B, we have:

A+B

A

B
=

Proof Starting from the LHS, we can decompose A = AI and B = BI and
apply (10.13) and (10.15):

A

B
=

A

B

I

I
=

A

B

(
I
I

)

=

(
I
I

)

(A B)
=

(
I
I

)

(A B)
∝

A+B

436 Clifford+T

10.2.1 Scalable phase gadgets

Collections of phase gadgets turn out to look quite simple when using scalable
ZX notation. First, let’s see how we can represent a single phase gadget:

π
4

...

=

(sp)

π
4

...

...

=

π
4

(10.14)

(10.17)
1⃗T

(10.17)

Here 1⃗T is the row vector (1 · · · 1), and hence the matrix arrow represents a
collection of Z-spiders connected to a single X-spider, as needed. If instead
the phase gadget is only connected to a subset of the wires, then we can
replace 1⃗ by a vector v⃗ where vi = 1 iff the gadget is connected to the ith
qubit. We can then see how we can represent a composition of phase gadgets
in scalable notation:

π
4

v⃗T
π
4

w⃗T

=

(sp)

π
4

v⃗T

π
4

w⃗T

=

(10.22)

π
4

π
4

(
v⃗T

w⃗T

)

=

(10.14) π
4

(
v⃗T

w⃗T

)

(10.18)
This construction generalises to any number of phase gadgets, for which we
then get:

π
4

M
n

k (10.19)

In this k × n matrix M each of the k rows describes a phase gadget, and
each of the n columns corresponds to a qubit. Hence, M j

i = 1 iff the jth
phase gadget is connected to the ith qubit.

Note that we can prove the gadget fusion rule of Section 7.1.2 in the
scalable setting using what we have seen. This applies when we have two
phase gadgets with the same connectivity, and hence the same row appears
twice in the matrix:

π
4

v⃗T

v⃗T

M

=

(10.22)

π
4

v⃗T

π
4

v⃗T

π
4

M

=

(10.21)

π
4

π
4

v⃗T

π
4

M
(sp)

=

(10.22)

π
2

π
4

(
v⃗T

M

)

(sp)

(10.16)

(10.20)
Conversely, if we have gadgets with phases that are not π

4 , but multiples

10.3 Rewriting Clifford+T diagrams 437

of that, we can also represent them like (10.19), by unfusing them into
additional rows of the matrix (doing (10.20) in reverse).

10.3 Rewriting Clifford+T diagrams
In Chapter 9 in order to construct the Toffoli and CCZ gate using more
low-level gates, in particular T gates, we used a Boolean Fourier transform
to switch from the multilinear phase polynomial (−1)xyz used in the CCZ
gate to a phase polynomial built out of XOR terms that can be constructed
using phase gadgets. In essence this all boiled down to the equation:

x · y · z = 1
4(x+ y + z − x⊕ y − x⊕ z − y ⊕ z + x⊕ y ⊕ z) (10.21)

We used this equation to argue for the following diagrammatic equality:

=

π
4

π
4

π
4

−π
4

−π
4

−π
4

π
4

(10.22)

But there is nothing special about the phase of the CCZ gate here, and in
fact we can write a similar equation for a CCZ(α) gate:

eiα
=

α
4

α
4

α
4

−α
4

−α
4

−α
4

α
4

(10.23)

Now when α = 0 both sides of this equation are obviously equal to the
identity (just copy some spiders and cancel some identity spiders). But this
should then also hold for α = 2π, and then this fact becomes less obvious.
On the left-hand side we then have ei2π = 1 so that it is still the identity,
but on the right-hand side we get a bunch of e±i2π/4 = e±iπ/2 phases. In that
case we can show this by using the Y eigenstate identity of Exercise 3.14,
the Euler decomposition of the Hadamard and local complementation:

π
2

π
2

π
2

−π
2

−π
2

−π
2

π
2

=

3.15

π
2

π
2

π
2

π
2

π
2

π
2

−π
2

(sp)

=

(eu)

−π
2

−π
2

−π
2

−π
2

=

(cc)

5.2.9(cc)

(10.24)

438 Clifford+T

In this case we can hence still prove this identity with the tools we have
already seen. But when we generalise Eqs. (10.21) and (10.23) to work
with more than 3 wires we start getting new and very useful identities.
As the number of XOR terms blows up exponentially it will be helpful to
introduce a slightly more compact way to talk about them. Note that we
can represent a parity like x1 ⊕ x3 ⊕ x4 with a bit string y⃗ = 1011 since
y⃗ · x⃗ = y1x1 ⊕ y2x2 ⊕ y3x3 ⊕ y4x4 = x1 ⊕ x3 ⊕ x4. We can hence write
Eq. (10.21) more compactly as

x1 · x2 · x3 = −1
4
∑
y⃗ ̸=0⃗

(−1)|y⃗|y⃗ · x⃗.

Here x⃗ = x1x2x3 and the sum over the y⃗ goes over all the bit strings F3
2

except for 0⃗ = 000. We can then easily write down the generalisation of this
equation to n variables x1, . . . , xn as follows:

x1 · . . . · xn = − 1
2n−1

∑
y⃗ ̸=0⃗

(−1)|y⃗|y⃗ · x⃗. (10.25)

Now if we take n = 4, and we consider the CCCZ gate, which applies the
phase polynomial eiπx1x2x3x4 , then applying Eq. (10.25) would result in a
bunch of phase gadgets with a phase of ±π

8 . But this is the Clifford+T
chapter, so we want ±π

4 phases. We can get those by instead considering the
trivial phase polynomial e2πix1x2x3x4 . This then results in a constellation of
24 − 1 = 15 ±π

4 phase gadgets:

π
4

π
4

π
4

π
4

−π
4

π
4

π
4

π
4

π
4 =

−π
4

−π
4

−π
4

−π
4

−π
4

−π
4

(10.26)

While this might look like some sort of confusing alien spacecraft, there is
some order to the picture above: it contains all the possible phase gadgets
on four qubits: all those with one leg (the π

4 phases directly on the qubit
wires), two legs, three legs, and the single four-legged one. All the gadgets
with an odd number of legs have a phase of π

4 , and all the gadgets with an
even number of legs have a phase of −π

4 .
Eq. (10.26) is a genuinely new diagrammatic equation, a type of equation

10.3 Rewriting Clifford+T diagrams 439

we call a spider-nest identity. As we will see in this chapter and the next,
there are many uses of such equations.

As a first application, note that if we bring the four-legged phase gadget
to the other side of the equation that this says that whenever we have a
four-legged gadget with a ±π

4 phase, we can replace it by a collection of 14
three-, two- and one-legged phase gadgets involving all of the four-legged
phase gadget’s legs. In fact, we can decompose any n-legged phase gadget
with a phase of ±π

4 into a collection of phase gadgets with a most 3 legs. For
instance, when n = 5:

π
4

=
π
4

=

(10.9)
1–3 legged

phase
gadgets

=
1–4 legged

phase
gadgets

=
1–3 legged

phase
gadgets

(10.9)

(10.27)
So while we would a priori think that we could need O(2n) different phase
gadgets, one for each possible parity, we see that we actually only need O(n3),
only those with at most three legs.

A different use-case for Eq. (10.26) is that we can use it to optimise the
number of T gates needed for a circuit. When we have a collection of phase
gadgets with π

4 phases we can look for any subset of four qubits that has
many phase gadgets and then use a version of Eq. (10.26) where we have
those phase gadgets on the left and all the other parities on the right. Then
by applying this equation we essentially ‘toggle’ which phase gadgets on
these four qubits were present. As long as we started out with at least half
of all the possible phase gadgets present, so at least 8, we end up with fewer
phase gadgets. If we had 8 phase gadgets, then we get 15 − 8 = 7 phase
gadgets at the end. If we had 10, then we end up with 15 − 10 = 5 of them.
The exact phases, whether +π

4 or −π
4 is not important for this, since if the

signs don’t match, this just introduces a π
2 Clifford phase gadget.

Exercise 10.4 In Eq. (10.26) the two-legged and four-legged phase gadgets
have a −π

4 phase. Show that by unfusing a −π
2 phase gadget from the four-

legged one and applying a set of rewrites similar to those in Eq. (10.24) that
we can rewrite it to a collection of phase gadgets all having a +π

4 phase.

10.3.1 Spider nests as strongly 3-even matrices

Using scalable ZX notation, we can represent a collection of phase gadgets
using a parity matrix to describe the connectivity of the gadgets as in (10.19).

The 4-qubit spider nest identity of Eq. (10.26) with 15 gadgets (more

440 Clifford+T

specifically, the modified version of Exercise 10.4 where all the phases are
+π

4 so that we can get rid of the repeated rows) then corresponds to the
following 15 × 4 matrix:

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T

(10.28)

Note that we write here the transpose of the matrix to use the space on the
page a bit better.

Any spider nest identity will be an identity of the form:
π
4

M
n

k = (10.29)

This means that when hunting for such identities, we are really looking for
a particular type of boolean matrix. To find out what kind of matrices we
need, we need to look at the pseudo-Boolean Fourier transform again. This
time however, we want to translate phase gadgets back into controlled phase
gates. The ‘inverse’ of the equation (10.25) which relates an AND to a sum
of XORs is given by:

x1 ⊕ · · · ⊕ xn =
∑
S⊆[n]

(−2)|S|−1 ∏
i∈S

xi. (10.30)

Here [n] := {1, . . . , n}, and |S| is the number of elements of S. Hence,
each term

∏
i∈S xi = xi1 ∧ · · · ∧ xik has a weight that is a power of 2 in

the decomposition. Now, if we are considering this in a phase polynomial,
where our phase gadget has a coefficient of π

4 , then in the decomposition the
different terms will have a weight of ±2|S| π

8 . Since these are phases, we are
working modulo 2π so that when |S| > 3 each term is a multiple of 2π and
disappears:

ei
π
4 x1⊕···⊕xn = exp

i
π

4
∑
j

xj − π

2
∑
i<j

xixj + π
∑
i<j<k

xixjxk − 2π · · ·

= exp

i
π

4
∑
j

xj − π

2
∑
i<j

xixj + π
∑
i<j<k

xixjxk

 (10.31)

Hence, each phase gadget corresponds to a collection of T gates (the linear

10.3 Rewriting Clifford+T diagrams 441

terms), CS gates (quadratic terms) and CCZ terms (cubic terms).

π
4

π
4

π
4

π
4

=
−i

−i

−i

(10.32)

If instead of a single gadget we have a collection of phase gadgets, then we
can add together the respective T, CS and CCZ gates of their decompositions.
It turns out that such a circuit can only be equal to the identity if all the
gates cancel in the trivial way. That is, each qubit should have a number of
T gates that is multiple of 8 since T 8 = I, each pair of qubits should have a
multiple of 4 CS gates and each triple should have an even number of CCZ
gates.

Exercise 10.5 Let C be a circuit consisting of T , CS and CCZ gates and
suppose we have done all trivial cancellations as described above. Show that if
C implements the identity, that then C must be the empty circuit. Hint: First
consider input states |x⃗⟩ with Hamming weight 1 to show using C|x⃗⟩ = |x⃗⟩
that there can’t be any T gates, then consider inputs with Hamming weight
2 to show there can’t be CS gates, and finally consider input states with
Hamming weight 3 to rule out CCZ gates.

From Eq. (10.31) we see that if a phase gadget involves the qubit j, that
then a T gate appears on that qubit. If it connects to both qubits j1 and j2
then there will be a CS gate on those qubits, and similarly a CCZ appears
when the qubits j1, j2 and j3 are in the phase gadget. Hence, a collection of
phase gadget implements the identity when each qubit is part of 0 mod 8
gadgets (T 8 = I), each pair of qubits is part of 0 mod 4 gadgets (CS4 = I),
and each triple is part of 0 mod 2 gadgets (CCZ2 = I).

We can formalise this cancellation property as follows.

Definition 10.3.1 We say a matrix M is strongly 3-even when

∀i :
∑
l

M l
i = 0 (mod 8)

∀i < j :
∑
l

M l
iM

l
j = 0 (mod 4)

∀i < j < k :
∑
l

M l
iM

l
jM

l
k = 0 (mod 2).

That is, when each column, product of pairs of columns and product of
triples of columns has a Hamming weight that is a multiple of respectively 8,
4 and 2. We say M is 3-even when all three conditions only hold modulo 2.

442 Clifford+T

When we represent a collection of π/4 phase gadgets as a set of bit strings
y⃗1, . . . , y⃗m, where yli = 1 means the lth phase gadget is connected to the ith
qubit and set the matrix M j

i = yji we see that M is strongly 3-even precisely
when the gadgets make a spider nest.

Proposition 10.3.2 Let M be a k × n boolean matrix. Then
π
4

M
n

k =

if and only if M is strongly 3-even.

Being just 3-even, as opposed to strongly 3-even, is a weaker condition
that means the collection of gadgets is not exactly equal to the identity, but
instead are equal to some Clifford unitary: instead of the T gates exactly
cancelling due to them appearing a multiple of 8 times, they only appear a
multiple of 2 times on each qubit and hence combine into T 2 = S gates, which
are Clifford. Similarly, the CS gates appear an even number of times to create
CZ gates, and the CCZ gates still completely cancel. For convenience we will
also call a set of gadgets that is equal to a Clifford (and hence corresponds
to a 3-even matrix) a spider nest identity. We can find which Clifford it
implements by rewriting all the gadgets using Eq. (10.31). However, if we
have gadgets with many legs this can involve exponentially many terms.
There is also an efficient way to do it.

Exercise 10.6 Describe an efficient procedure that determines the sta-
biliser tableau for a circuit consisting of π

4 phase gadgets with the promise
that it implements a Clifford unitary. Hint: It is diagonal, so all the Pauli
Z’s trivially commute through. Pushing an X through the circuit however
results in some additional π

2 phase gadgets that can be commuted to the end.
If the unitary is Clifford these should all be decomposable into Paulis.

10.3.2 Proving all spider nest identities

We can now see when a collection of phase gadgets is a spider nest identity:
check whether its associated parity matrix is strongly 3-even. Diagrammat-
ically this is not very satisfying however, as it doesn’t tell us how to find
strongly 3-even matrices or what is required to diagrammatically prove all
these identities. In this section we will see that we can build all spider nest
identities from one particular one.

To do so, we need to go back to the 4-qubit spider nest Eq. (10.26) which

10.3 Rewriting Clifford+T diagrams 443

we arrived at by decomposing the ‘trivial’ phase polynomial e2πix1···x4 into
phase gadgets using Eq. (10.25). We can similarly get a 5-qubit spider nest
by decomposing e4πix1···x5 . This then will have 25 − 1 = 31 different phase
gadgets. Note the factor of 4π instead of 2π which is needed to get a collection
of ±π

4 phases instead of ±π
8 phases. We can in the same way build an n-qubit

spider nest by decomposing e2n−3πix1···xn , which will result in a spider nest
with 2n − 1 phase gadgets with a ±π

4 phase.
Now, let’s take the 5-qubit spider nest, and then ‘subtract’ the 4-qubit

spider nest from it:

all 1–5
legged
phase
gadgets

(
all 1–4
legged
phase
gadgets

)†
all phase
gadgets
involving
qubit 1

= (10.33)

Here on the left-hand side we first have all the phase gadgets on five qubits,
but then we subtract from those all the phase gadgets that don’t act on
the first qubit. On the right-hand side we are then left with precisely those
phase gadgets that do involve the first qubit. These are hence the parities
like x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5. Since these parities can involve
any combination of the other four qubits, there are 24 = 16 such parities
(or alternatively you can see that we subtract 15 parities from 31 parities in
Eq. (10.33) to arrive at 16 parities).

Exercise 10.7 Generalise Exercise 10.4 by showing that for any n ≥ 4,
the collection of all phase gadgets with phase +π

4 is the identity. Use this
to argue that in the identities described above where we subtract two fully
connected spider nests from each other we also get an identity that only has
positive +π

4 phases.

It is this 16-gadget identity (10.33) that turns out to generate all the
other ones. We need to do some work to see that though. The first step is
to construct such collections of phase gadgets in a more systematic way.

Definition 10.3.3 The spider-nest maps sn : 1 → n are constructed
inductively as follows:

sn :=

sn-1

sn-1

s0 := π
4

n n-1

(10.34)

444 Clifford+T

Intuitively, this inductive definition results in a phase gadget connecting
the single input wire to every subset of the output wires. For example:

s1 =

s0

s0
= π

4

π
4(10.34)

(10.34)

(sp)

s2 =

s1

s1
=

π
4

π
4

π
4

= π
4

π
4

π
4

π
4

(10.34)

π
4

(sc)

(sp)

where the last step follows from applying strong complementarity to the
marked spider pair, and then applying spider fusion (sp) as much as possible.

Let’s formalise this intuitive explanation of sn using scalable notation. Let
Bn be the n× 2n matrix whose 2n rows consist of all n-bit strings. That is,
the matrix defined inductively as follows:

B0 = () Bn =
(
Bn−1 0⃗
Bn−1 1⃗

)

where 0⃗ and 1⃗ are respectively the column vectors of all 0’s and all 1’s. For
example, we have:

B1 =
(

0
1

)
B2 =

0 0
1 0
0 1
1 1

 (10.35)

Lemma 10.3.4 For all n, we have:

sn =
1⃗ Bn

π
4

(10.36)

10.3 Rewriting Clifford+T diagrams 445

Proof First, note that:

Bn
=

Bn−1

0⃗

Bn−1

1⃗

=

Bn−1

Bn−1

1⃗

(10.19)

(10.23)

(10.13)

(10.37)

=

Bn−1

1⃗
=

Bn−1

Bn−1

1⃗

(10.21)(id)

Using this equation and the scalable rules, we can prove (10.36) from
(10.34) by induction on n:

sn =

sn-1

sn-1

n-1
(10.34)

=

(ind)
n-1

1⃗ Bn−1

π
4

1⃗ Bn−1

π
4

n

=

(10.14)
n-1

1⃗
π
4

π
4

Bn−1

1⃗

1⃗
=

(sp)

n-1

(
1⃗

1⃗

)
π
4

π
4

Bn−1

1⃗

(10.14)

=

(10.8)

1⃗ Bn

π
4

=
n1⃗

π
4

π
4

(10.37) Bn

(10.9)

(10.6)

Now, we can put s4 in a circuit and it can represent exactly the 16-gadget

446 Clifford+T

5-qubit identity (10.33):

s4

=
(10.38)

By plugging into all the inputs and yanking the first output to be an
input we can present this in a slightly simpler way:

s4 = (S4)

We call this the (S4) rule, and it is enough to prove all the spider nest
identities. First, let’s note that because s4 disconnects, all the sn for n ≥ 4
also disconnect.

Lemma 10.3.5 For n ≥ 4, the Clifford ZX-calculus augmented with the
S4 rule implies:

sn
n

=
n

(10.39)

Exercise 10.8 Prove Lemma 10.3.5 by induction on n with the base case
n = 4 being (S4).

Solution: .
Ignoring the right gatherers and dividers we have:

sn =

sn-1

sn-1

n
n-1

=
n-1

=
n-1

End Solution .
In Eq. (10.38) we used s4 to represent the spider nest consisting of all

gadgets connected to the first qubit. By using sn for n ≥ 4 and using
Lemma 10.3.5 we see then that the collection of all gadgets on n+ 1 qubits
that are connected to the first qubit is also an identity.

We can generalise this to the set of all gadgets connected to the first k

10.3 Rewriting Clifford+T diagrams 447

qubits. To do this, note that if we connect sn to an X-spider on the left that
we obtain the following:

sn =
1⃗ Bn

π
41⃗T 1⃗T

sn ..
.

..
. =

1 Bn

π
4

=

10.2.4 (10.20)

(10.40)
where 1 is the k × 2n matrix where every entry is 1. Hence, to represent a
connection to the first k qubits, we can just compose sn with an X-spider
on its inputs. This then also leads to an identity:

sn

..
.

=1 Bn

π
4

k

n

=

..
.

..
.

..
.

..
.

..
. =

..
.

..
.

(10.40)

10.2.4 10.2.5

(sc)

(sp)

(10.41)
Note that the special case of k = 0 gives us the set of all phase gadgets on a
set of wires, like the 15-gadget identity (10.26) (in that case Bn has 16 rows,
but the all-zero row of Bn corresponds to an unconnected phase that can be
removed as a scalar).

As it turns out, every spider nest identity can be decomposed into a
composition of the identities of the form (10.41), and so (S4) indeed suffice
to prove all of them. To show this we will need some more machinery however.

10.3.3 Spider nests as Boolean polynomials

In the previous sections we saw that we can reduce a collection of phase
gadgets to a series of bit strings denoting the connectivity of the gadgets:

π
4

π
2

−π
4π

4

⇝ x4, x1 ⊕ x2 ⊕ x4, x3 ⊕ x4 ⇝ 0001, 1101, 0011

Here we are ignoring the phase gadget with a π
2 phase, as it is Clifford.

We saw in Eq (10.19) that these bit strings can be stored in one big
matrix and in this way we can efficiently write down a collection of gadgets
in scalable notation. Storing them all in a matrix is however not the only
way in which we could capture the information of a set of bit strings. We
could instead represent them using its Boolean indicator function. That is,

448 Clifford+T

to a set of bit strings S ⊆ Fn2 we associate the function fS : Fn2 → F2 defined
by fS(y⃗) = 1 iff y⃗ ∈ S.

We should note two important details about representing a collection of
gadgets by its indicator function. First, this representation cannot deal with
repeated gadgets / bit strings, and so this does not capture the exact phase
of the gadgets (whether it is +π

4 or −π
4 for instance). This means that when

representing a collection of gadgets by its indicator function that we only
represent it up to some Clifford information. Second, because 0⃗ corresponds
to a phase gadget not interacting with any qubit, we don’t care about the
value of the function at this value. It would hence be more accurate to write
the functions as f : Fn2 \ {⃗0} → F2, but we will ignore this detail for now.

Any Boolean indicator function f : Fn2 → F2 corresponds to a collection of
phase gadgets: a gadget with connectivity y⃗ is in the collection if f(y⃗) = 1.
Some collections of gadgets are spider nests, so let’s call f a spider-nest
function when its corresponding collection of gadgets forms a spider nest
(up to a possible Clifford unitary). I.e. if a collection of bit strings S forms
the rows of a 3-even matrix, then fS is a spider-nest function.

The indicator function of the 4-qubit spider nest of Eq. (10.26) is the
constant function 14 : F4

2 → F2 that always returns 1, since every phase
gadget is part of the spider nest. The 5-qubit spider nest of Eq. (10.38)
that contains all the gadgets using the first qubit has as indicator function
X1 : F5

2 → F2 that maps X1(y⃗) = y1, since any bit string y⃗ is part of the
set of gadgets if y1 = 1. The spider nest of Eq. (10.41) that uses all gadgets
touching the first k qubits has indicator function X1 · · ·Xk : Fk+n

2 → F2,
which acts as X1 · · ·Xk(y⃗) = y1 ∧ · · · ∧ yk.

These spider-nest functions are examples of Boolean monomials. A mono-
mial is a function constructed by multiplying simple bit-indicator functions
Xj together. For instance X1X3X4(y⃗) = X1(y⃗) ·X3(y⃗) ·X4(y⃗) = y1 ∧ y3 ∧ y4.
We call the number of bit-indicator functions in such an expression the
degree of the monomial. For instance the spider-nest function X1 · · ·Xk

has degree k. It turns out that in general, any monomial of degree at most
n − 4 corresponds to a spider-nest identity. Indeed, X1 · · ·Xk : Fk+n

2 → F2
for n ≥ 4 is a spider-nest function. By permuting the qubits these give us
all monomials of degree at most n− 4. The number 4 in n− 4 comes from
the fact that the smallest spider-nest identity, corresponding to the Boolean
function 14 acts on four qubits.

Note that the spider-nest functions form a linear space: suppose that
both fS1 , fS2 : Fn2 → F2 correspond to spider nests. Then if we take the
composition of all the phase gadgets with parities in S1 and that of S2 we
end up with a new set of phase gadgets covering all the parities in S1 and of

10.3 Rewriting Clifford+T diagrams 449

S2. However, the gadgets that are in both S1 and S2 will fuse and hence get
a Clifford phase. We are ignoring the Clifford unitaries, so we see then that
the collection of non-Clifford phase gadgets corresponds to the symmetric
difference S1∆S2. The indicator function is then fS1∆S2 = fS1 ⊕ fS2 . As
this XOR of functions is just the sum in F2, we see that any sum of spider-
nest functions is again a spider-nest function, so that the spider-nests form
a linear subspace of all Boolean functions. In particular, we can take a
sum of monomials that are all spider-nest functions and create a Boolean
polynomial that is a spider-nest function.

Any Boolean function f : Fn2 → F2 can be written in a unique way as a
polynomial f =

⊕
a⃗ λa⃗X

a1
1 · · ·Xan

n where λa⃗ ∈ F2 are the coefficients that
determine which monomials are in the decomposition of f . The degree of
a polynomial is then the maximum degree of its monomials. As a sum of
spider-nest functions is still a spider-nest function, we then see that any
Boolean polynomial of degree at most n− 4 is a spider-nest function. What
about the converse? Does any spider-nest function correspond to a degree
at most n− 4 polynomial?

Lemma 10.3.6 A matrix M with n columns is 3-even if and only if its
indicator polynomial fM is of degree at most n− 4.

Proof Let M ′ be a matrix obtained from M by removing all repeated pairs
of rows. M is 3-even if and only if M ′ is, and both matrices have the same
indicator polynomial. Hence, we can assume without loss of generality that
M has no repeated rows. Write f = fM for the indicator function of M .

Let P (r, n) denote the set of n-bit polynomials of degree at most r. We
need to show that f ∈ P (n − 4, n). Define an inner product on Boolean
functions by ⟨g1, g2⟩ =

⊕
y⃗ g1(y⃗) ∧ g2(y⃗) =

∑
y⃗ g1(y⃗)g2(y⃗) (mod 2). We call

g1 and g2 orthogonal when ⟨g1, g2⟩ = 0 and we define P (r, n)⊥ as the space
of functions that are orthogonal to all functions in P (r, n). We claim that
P (r, n)⊥ = P (n− r − 1, n). With this claim it then remains for us to show
that f ∈ P (3, n)⊥. Let’s do that first.

Let g = Xjf . This is then a polynomial with g(⃗b) = 1 iff bj = 1 and
f (⃗b) = 1. Hence

∑
b⃗
g(⃗b) is equal to the Hamming weight of the jth column

of M . This also works for products of columns: for h = XiXjXkf , we have∑
b⃗
h(⃗b) equal to the Hamming weight of the element-wise product of the

i, j and kth rows, which is hence zero mod 2 because of 3-eveness. Now∑
b⃗
h(⃗b) (mod 2) = ⟨XiXjXk, f⟩ so that f is orthogonal to all degree-3

monomials XiXjXk. These span P (3, n), and hence f ∈ P (3, n)⊥ as desired.
Now to prove the claim P (r, n)⊥ = P (n − r − 1, n) first note that if a

polynomial f of n variables has degree less than n, then
∑
b⃗
f (⃗b) = 0 (mod 2).

450 Clifford+T

This is easy to check for monomials, as any monomial of degree < n must
omit some variable xj , so that∑

b⃗

f (⃗b) =
∑
b⃗,bj=0

f (⃗b) +
∑
b⃗,bj=1

f (⃗b) = 0 (mod 2)

By F2-linearity of the map f 7→
∑
b⃗
f (⃗b) (mod 2) this then holds for all

polynomials. Now, for any polynomial f of degree at most r and g of degree
at most n−r−1, f ·g has degree at most n−1. Hence ⟨f, g⟩ =

∑
b⃗
(f ·g)(⃗b) =

0 (mod 2). This implies P (n−r−1, n) ⊆ P (r, n)⊥. To show this is actually an
equality, we will do dimension counting. Note that for a F2-vector space V and
A ⊆ V we have dim(A⊥) = dim(V) − dim(A) because the dimension of A⊥

is restricted by independent linear equations specified by a basis of A. Since
P (r, n) has the monomials of degree ≤ r as its basis, dim(P (r, n)) =

∑r
d=0

(n
d

)
.

By manipulating binomial coefficients, we can then see that:

dim(P (r, n)) + dim(P (n− r − 1, n))

=
r∑

d=0

(
n

d

)
+
n−r−1∑
d=0

(
n

d

)
=

r∑
d=0

(
n

d

)
+

n∑
d=r+1

(
n

d

)
= 2n = dim(F2n

2),

so that dim(P (n − r − 1,m)) = dim(P (r, n)⊥) and these spaces must be
equal.

We then see that we have proven the following.

Theorem 10.3.7 Let y⃗1, . . . , y⃗k describe the connectivities of k gadgets
with a π

4 phase acting on n qubits. Then the following are equivalent.

• The gadgets form a spider-nest identity (i.e. the circuit is equal to a
Clifford).

• The matrix with entries M j
i = yji is 3-even.

• The indicator polynomial of the set {y⃗1, . . . , y⃗k} is of degree at most
n− 4.

Theorem 10.3.8 The Clifford ZX rules plus the (S4) rule suffice to prove
all spider-nest identities. That is, given any collection of π

4 gadgets that
implements a Clifford unitary, we can rewrite this into this Clifford unitary
using just the regular Clifford ZX rewrite rules together with (S4).

Proof Let M be the n× k 3-even matrix describing a spider-nest identity.
Then its corresponding indicator polynomial fM is a sum of monomials
fM =

∑l
jmj of degree at most n − 4. Let the corresponding matrices of

these monomials be M1, . . . ,Ml. We have already shown how to prove the

10.3 Rewriting Clifford+T diagrams 451

spider-nest identities corresponding to the Mj in Eq. (10.41), hence we can
freely introduce them into the circuit of gadgets described by M :

π
4

M
=

π
4

M

π
4

M1

...
π
4

Ml

=

π
4

L :=

M
M1

...
Ml

(10.41) (10.23)

(sp)

Then, the indicator polynomial of L is fM +
∑
jmj = 0. Hence, every row in

L appears an even number of times. Using gadget-fusion, we can therefore
reduce all angles to integer multiples of π/2. Hence, the entire diagram is
then Clifford and can be rewritten into a Clifford circuit.

We see then that when we restrict to just thinking about what we can
do with diagrams, all the complexity of strongly 3-even matrices and degree
n− 4 Boolean polynomials reduces to just adding (S4) to the Clifford rules.
Do note though that in the proof above we needed to know about Boolean
polynomials and its decomposition into low-degree monomials in order to
find which rewrites we should be applying to prove the spider-nest identity.
In addition, the matrices corresponding to the monomials Mj might contain
exponentially many rows, and hence this rewriting is not efficient. In fact,
it seems very likely that an efficient rewrite strategy for spider nests should
not exist (see Exercise 10.9).

Forgetting about all these details again, we can see that we can rephrase
this result into a completeness result, which very neatly ties in some of the
earlier completeness results we have seen.

Theorem 10.3.9 The Clifford rules plus (S4) are complete for CNOT+T
circuits. That is, given two CNOT+T circuits U and V written as ZX-
diagrams, we can rewrite U into V using just the Clifford rules and (S4).

Proof Note that we can trivially rewrite U to UV †V by consecutively in-
troducing pairs of cancelling gates from V † and V . Hence, if we can show
that U †V can be rewritten to the identity we are done. In Section 7.1 we saw
how we can write any CNOT+Phases circuit into a layer of phase gadgets
followed by a CNOT circuit. Now since U †V = I, it must be the case that
both the phase gadget part and the CNOT circuit implement the identity.
Hence, we can use the completeness of phase-free ZX (Theorem 4.3.6) to
rewrite the CNOT circuit into the identity and Theorem 10.3.8 to rewrite
the collection of phase gadgets, which necessarily forms a spider-nest iden-
tity, into a Clifford. This Clifford still must be equal to the identity, and
hence by Clifford completeness (Theorem 5.5.7) it can be rewritten into the
identity.

452 Clifford+T

10.4 Advanced T-count optimisation
We have now seen that there is a large number of configurations of T gates
that actually correspond to Clifford circuits. Getting rid of non-Clifford parts
of a circuit is usually a good thing, as we’ve seen that we can do a lot of
rewriting and simplification with the Clifford parts of a circuit. In addition,
as we will see in Chapter 11, the T gate in particular is quite costly to
implement in many fault-tolerant architectures, and so we want to include
as few of them as possible.

The spider-nest identities suggest a simple rewrite strategy to optimise the
number of T gates in a Clifford+T circuit. First, since spider nest identities
apply to a collection of phase gadgets, and hence to CNOT+T circuits, we
need to split up our Clifford+T circuit into CNOT+T subcircuits. We can
view the Clifford+T gate set as consisting of CNOT, Hadamard, S and T .
Of these, only the Hadamard is not in the CNOT+T set, and so we need to
‘split our circuit on Hadamards’. Then, pick a number of identities, preferably
not containing too many gadgets and not acting on too many qubits. We
want to see where in the CNOT+T circuit we can apply an identity so
that it reduces the T -count. This is done as described in the beginning of
Section 10.3: for each identity in our list, we check whether more than half
of the gadgets are present in the circuit. If this is the case, then we add all
the gadgets from the identity to the circuit, which by gadget fusion makes
the matching gadgets already present in the circuit into Cliffords, and adds
the other gadgets as non-Cliffords. This is repeated greedily until none of
the identities has an overlap of more than half with the gadgets present in
the circuit.

Note that if we have n qubits in our circuit, then to match an m-qubit
spider-nest identity, we need to check

(n
m

)
different groupings of m qubits to

see whether the identity ‘matches’ there. Hence, as long as m is bounded,
the complexity of this algorithm is polynomial: O(nm). In practice, only
checking spider nests with up to 5 qubits, and using a simple heuristic based
on the ‘density’ of the number of gadgets on a set of qubits, the run-time
can be made quite reasonable.

[TODO: arguable whether quintic time is reasonable...]
Of course such an algorithm is only a heuristic, and is heavily dependent

on the type of identities we include in our search, and since we are applying
the identities greedily, you might get stuck in a local optimum. The problem
of optimisation of CNOT+T circuits using spider nests is actually related to
two well-known problems in computer science, which offer interesting and
useful perspectives on this problem.

10.4 Advanced T-count optimisation 453

10.4.1 Reed-Muller decoding

We have seen that n-qubit spider nests correspond to Boolean polynomials
of degree at most n − 4. In addition, we have a correspondence between
Boolean functions f and collections of spider nests specified by their parities
as {y⃗ | f(y⃗) = 1}. Let’s call the set of all n-bit Boolean functions Bn, and
the set of n-bit spider-nest functions Sn ⊆ Bn.

Now, if we naively implement the set of gadgets corresponding to f by
just implementing each of the gadgets in turn, then this will require |f | :=∑
y⃗ ̸=0⃗ f(y⃗) number of T gates. We call |f | the Hamming weight of f . It

is the number of 1s in f ’s truth table. Note that we do not include f (⃗0) in
this sum, as this corresponds to the trivial phase gadget not connected to
any qubit.

However, we don’t have to naively implement f , because we know that
all g ∈ Sn are actually free to implement: these correspond to Cliffords and
hence do not require any T gates. Instead of directly implementing f , we
can implement f ⊕ g, which corresponds to applying the spider nest identity
of g to the collection of gadgets of f . The cost of this implementation will
then be |f ⊕g|. To implement f with as few T gates as possible we are hence
looking for a g ∈ Sn such that |f ⊕ g| is minimal.

Let’s state this problem again in a slightly different way, and a bit more
abstractly. We have a vector space V with a specified subspace S ⊆ V . Given
a vector v ∈ V , we want to find the closest s ∈ S to v, i.e. such that v − s

is as small a vector as possible (in some norm). This is known as a linear
decoding problem, where S is our code space consisting of code words
s ∈ S, and v is our ‘noisy message’ we are trying to decode. We will spare
you the details for now, as we will have a lot more to say about linear codes
in Chapter 11.

In our case the subspace Sn consists of the spider-nest functions, which
we know to be all the degree n − 4 Boolean polynomials. This code space
actually has a name: it is the degree n− 4 Reed-Muller code, and hence
optimising the T -count of a CNOT+T circuit corresponds to decoding the
Reed-Muller code. To summarise this optimisation approach now a bit more
concretely: We start with a unitary U that is built out of phase gadgets with
phases that are multiples of π

4 . We take its corresponding Boolean function
f ∈ Bn. We then find the ‘closest’ degree n− 4 polynomial g ∈ Sn such that
|f⃗⊕g| is as low as possible (corresponding to decoding the Reed-Muller code).
We then implement the circuit U ′ corresponding to f ⊕ g by composing its
phase gadgets. We know that U is equal to U ′ up to some Clifford. We find

454 Clifford+T

the Clifford C such that U = U ′C (see Exercise 10.6). Then U ′C is our new
circuit, and this has T -count |f ⊕ g|.

Reed-Muller codes are used a lot in practice and their decoding problem
has been extensively studied. So in principle we could use such a decoder to
optimise the T-count of a circuit. However, the codes that are used in practice
mostly have a size, corresponding in our case to the number of qubits n, that
is not too large. However, we don’t want to restrict to just small n, so that is
a problem. Decoding Reed-Muller codes for large n is believed to be a hard
problem, so we don’t expect there to be an efficient algorithm to optimally
minimise the T-count of a CNOT+T circuit. For optimising the T-count of
general Clifford+T circuits (that are allowed to contain Hadamards), there
is a simple argument to see that T-count optimisation is NP-hard.

Exercise* 10.9 In this exercise we will work towards a simple proof
that determining whether a Boolean function is satisfiable reduces to T -
count optimisation of general Clifford+T circuits, and hence is T -count
optimisation is NP-hard. Let f : Fn2 → F2 be some Boolean function, which
is described as some poly-size Boolean expression consisting of AND, XOR
and NOT terms. We we want to determine whether there is a x⃗ ∈ Fn2 such
that f(x⃗) = 1. We have seen in Chapter 9 how we can construct Uf , the
(n + 1)-qubit unitary acting as Uf |x⃗, y⟩ = |x⃗, y ⊕ f(x⃗)⟩, using Clifford+T
gates.

1. Let the circuit Cf be defined as follows:

Uf

...
...

T † T

Cf

...
...

:= Uf

...
(10.42)

Show that Cf is a diagonal unitary which can be described by the
following path-sum expression:

Cf |x⃗, y⟩ = ei
π
4 (1−2y)f(x⃗)|x⃗, y⟩. (10.43)

2. Show that if f is not satisfiable or everywhere satisfiable (meaning
f(x⃗) = 1 for all x⃗) that then Cf is a Clifford unitary (up to global phase)
and hence can be implemented with T -count zero.

3. If f is satisfiable but not everywhere satisfiable, then by definition there
exist z⃗1 and z⃗2 such that f(z⃗1) = 1 and f(z⃗2) = 0. Then it is easy to
see from Eq. (10.43) that

Cf |z⃗1, 0⟩ = ei
π
4 |z⃗1, 0⟩ and Cf |z⃗2, 0⟩ = |z⃗2, 0⟩.

10.4 Advanced T-count optimisation 455

Show that in this case Cf is not Clifford and hence it’s T -count non-zero,
by finding a Pauli string P⃗ such that C†

f P⃗Cf is not in the Pauli group.
Hint: You don’t have to calculate the full operator C†

f P⃗Cf . For the right
choice of P⃗ it is enough to observe that C†

f P⃗Cf |z⃗1, 0⟩ maps |z⃗1, 0⟩ to
something that a member of the Pauli group could not.

Now, note that if we could efficiently determine the optimal T -count of any
circuit, then for a given f we could construct Cf and ask whether it’s T -count
is zero: if it is not then we know it has to be satisfiable. If it is zero, then
either the circuit is not satisfiable or everywhere satisfiable. We then just
check the value f(0 · · · 0) to see which is the case. We can hence in either
case efficiently determine whether f is satisfiable, an NP-complete task.
Solution: .

(a) First note that Uf is it’s own inverse. Representing the input state as
|x⃗, y⟩, the T † gate gives a term of e−iπ

4 y. The Uf then changes the state
to |x⃗, y ⊕ f(x⃗)⟩ so that the following T gate adds a term of ei

π
4 y⊕f(x⃗).

Finally, the next Uf uncomputes the outcome, putting back the state
|x⃗, y⟩, so that it is indeed diagonal. The phase term is then π

4 (−y + y ⊕
f(x⃗)), using the identity a ⊕ b = a + b − 2ab, we can rewrite this to
π
4 (−y + y + f(x⃗) − 2yf(x⃗)) = π

4 ((1 − 2y)f(x⃗)) as desired.
(b) Using Eq. (10.43) we see that if f(x⃗) = 0 for all x⃗, that the path sum

simplifies to just Cf |x⃗, y⟩ = |x⃗, y⟩, which is just the identity, which is
certainly Clifford. Otherwise, if always f(x⃗) = 1, then it simplifies to
Cf |x⃗, y⟩ = ei

π
4 (1−2y)|x⃗, y⟩ = ei

π
4 e−iπ

2 y|x⃗, y⟩, which is up to a global phase
of ei

π
4 an S† gate on the last qubit, and hence also Clifford.

(c) Picking P⃗ := X z⃗1⊕z⃗2 := X(z⃗1⊕z⃗2)1 ⊗ · · · ⊗X(z⃗1⊕z⃗2)n we see that

C†
fX

z⃗1⊕z⃗2Cf |z⃗1, 0⟩ = ei
π
4C†

fX
z⃗1⊕z⃗2 |z⃗1, 0⟩ = ei

π
4C†

f |z⃗2, 0⟩ = ei
π
4 |z⃗2, 0⟩,

and hence C†
fX

z⃗1⊕z⃗2Cf is not a member of the n-qubit Pauli group, since
no Pauli could produce a π

4 phase on a computational basis state.

End Solution .

10.4.2 Symmetric 3-tensor factorisation

There is another way we can formalise the optimisation of the number of T
gates in a diagonal CNOT+T circuit. To do this, we again need to consider

456 Clifford+T

the multilinear decomposition of a phase gadget as in Eq. (10.31):

ei
π
4 x1⊕···⊕xn = exp

i
π

4
∑
j

xj − π

2
∑
i<j

xixj + π
∑
i<j<k

xixjxk

 (10.44)

In particular, the action of an arbitrary collection of π
4 phase gadgets can

be represented by some degree-3 multilinear polynomial
π

4
∑
j

ajxj + π

2
∑
i<j

bijxixj + π
∑
i<j<k

cijkxixjxk.

Here the coefficients aj can be taken modulo 8, bij modulo 4 and cijk modulo
2. By Exercise 10.5 two collections of phase gadgets correspond to the same
polynomial if and only if they implement the same linear map. Similarly, two
phase gadget circuits are equal up to a Clifford when the coefficients of their
polynomials have the same parities aj (mod 2), bij (mod 2), cijk (mod 2).
Hence, if we don’t care about the Clifford part of a computation, we can
forget that the coefficient aj should be taken modulo 8, and instead take it
modulo 2. Similarly we can take bij modulo 2 instead of 4.

This is nice, because this information about the coefficients modulo 2 can
be captured in a single object.

Definition 10.4.1 An n-dimensional binary 3-tensor is an element S ∈ Fn3
2

where we label the components of the vector by Sijk for indices 1 ≤ i, j, k ≤ n.
We say S is symmetric when Sijk = Sjik = Sikj = Skji = Skij = Sjki for
all indices i, j, k, i.e. when S is invariant under permuting its indices.

We define the symmetric 3-tensor Sijk corresponding to a degree-3 multi-
linear polynomial by setting

Siii = ai

Sijj = bij

Sijk = cijk

for i < j < k. All other coefficients of S are then completely determined by
symmetry. It is clear that from any symmetric 3-tensor we can also read of
the coefficients of a degree-3 multilinear polynomial, which then corresponds
to a phase gadget circuit. Note though that if we start with a phase gadget
circuit, find its 3-tensor, and then translate it back into a phase gadget
circuit, that we do lose some Clifford information in the process, and the
resulting circuit is only equal to the original one up to some Clifford.

Let’s look at what the 3-tensor of a single phase gadget looks like. Let
y⃗ ∈ Fn2 describe the connectivity of the phase gadget. Then by Eq. (10.44)

10.5 Catalysis 457

the corresponding multilinear polynomial has coefficients ai = yi, bij = −yiyj
and cijk = yiyjyk. That is: there is a T gate on all the qubits the gadget is
connected to, a CS† on all pairs of qubits it is connected to, and a CCZ on
all triples of qubits it is connected to. This means the 3-tensor corresponding
to the gadget S y⃗ has a particularly simple form: S y⃗ijk = yiyjyk. 3-tensors
that have this form are said to have rank 1. When we have a set of gadgets
y⃗1, . . . , y⃗k, the circuit has the corresponding tensor S = S y⃗

1 + · · · +S y⃗
k , and

hence it is a sum of rank 1 tensors. Conversely, any way to write S as a sum
of rank 1 tensors corresponds to a way to implement it as a series of phase
gadgets.

Definition 10.4.2 A symmetric 3-tensor is rank 1 when it is of the form
Sijk = yiyjyk for some vector y⃗. For a general symmetric 3-tensor S its rank
is the minimal number of terms needed to write S as a sum of rank 1 tensors,
and we call such a sum a decomposition of S.

We see then that we have the following strategy for optimising the T -count
of a phase gadget circuit: first find its corresponding 3-tensor. Then find a
decomposition of this tensor into as few rank 1 tensors as possible. These
rank 1 tensors directly correspond to an optimised set of phase gadgets which
implements the same linear map as the original circuit up to a Clifford. Find
what Clifford this is using the procedure of Exercise 10.6. The resulting
T -count of the circuit is exactly equal to the rank of the decomposition
we found. In particular, determining the optimal T -count of a given phase
gadget circuit is equivalent to determining the rank of a symmetric 3-tensor.
Unfortunately, determining the rank of a (symmetric) 3-tensor is believed
to be a hard problem. Fortunately, there are some good heuristics that try
to find low rank decompositions that work well in practice. We will say a bit
more about these in the References of this chapter.

10.5 Catalysis
We saw way back in Section 3.3.1 that we can implement a T gate by injecting
the |T ⟩ := T |+⟩ magic state into the circuit:

π
4 aπ

aπ
2

=
π
4

aπ
2

aπ

(sp)

∝
(−1)a π

4

aπ
2(π)

=
π
4

aπ
2(sp)

−aπ
2 = π

4

(sp)

This is useful, because it is sometimes difficult to directly implement the T
gate (as we will see in the next chapter), and instead having the ability to
prepare magic states ‘offline’ and inject them when needed is preferable.

458 Clifford+T

However, in this circuit we consume the magic state when we inject the T
gate. Wouldn’t it be nice if we could preserve this state instead? This does
turn out to be possible, if we use a different injection circuit that contains
some other non-Clifford gates.

In particular, using a CS gate and a single |T ⟩ state, we can apply a T
gate and get the starting |T ⟩ state back:

π
4

i =
π
4

π
4

π
4

−π
4

=
π
4

π
4

π
4

−π
4

=

π
4

π
4

=

π
4

π
4

(10.45)
Here we used the decomposition of the CS gate written using an H-box
(Section 9.2) into elementary gates:

i =

π
4

π
4

−π
4

π
4

π
4

=−π
4

(9.15) (7.16)

(10.46)

Just using Clifford operations and CS gates, it is not possible to construct a
T gate. We can see this, because the matrices produced by the Clifford+CS
gate set have entries in a ring that does not include ei

π
4 . However, with

Eq. (10.45) we see that as soon as we have just one |T ⟩ state available to us,
we can use CS gates to apply as many T gates as we want:

⇝
π
4

π
4

π
4

π
4

i i i

This is an example of what we call catalysis: a process that needs some
resource to be present, but doesn’t consume that resource. In this case the
resource is |T ⟩ and the process is the implementation of a T gate using a CS
gate.

Another example of catalysis is using a |CCZ⟩ := CCZ|+ + +⟩ magic state,

10.5 Catalysis 459

Clifford operations and a single T gate in order to get 3 |T ⟩ states out:

π
4

−π
4

π
4

=

= =

= π
4

π
4

=
π
4

(9.78)

(9.72) (7.15)

(π)(sp)

π
2

π
4 π

i

π
4 π

π π

π
4

π
4

−π
4

(sc)

π

π
4

π
4

−π
4

(10.47)

[TODO: this doesn’t technically use (9.64), but actually its adjoint. This
should be explained or be made consistent.] So again, if we can perform CCZ
and Clifford gates and have just a single |T ⟩ available, then we can inject as
many T gates as we want.

There are three things we can do with catalysis of |T ⟩ magic states that
we will explore in this section. First, in some cases it turns out to be easier or
cheaper to perform a CS or CCZ gate than a T gate, and then these methods
allow us to save resources. Second, they allow us to prove that some gate
sets are already computationally universal, even if they are not (obviously)
approximately universal for unitary synthesis. And third, catalysis gives us
a nice way to extend complete graphical calculi to larger domains.

10.5.1 Catalysis as a resource for compilation

In this section we will see how catalysis can be used to derive an efficient
way to implement small angle rotations.

To do that we first need to generalise Eq. (10.45) to allow us to implement
controlled-phase gates. To see how this works it will be helpful to first write
Eq. (10.45) in circuit notation:

⊕
=

Z(2α)|Z(α)⟩

Z(α)

|Z(α)⟩
(10.48)

Here we wrote a slightly more general circuit where we replace the T and
controlled-S gates with Z(α) and controlled-Z(2α) gates. As a shorthand
we write |Z(α)⟩ := Z(α)|+⟩ as a generalisation of |T ⟩ = T |+⟩. Since this is

460 Clifford+T

a circuit equality that holds on the nose (with a correct global phase), it
should continue to hold when we add additional control wires:

⊕

=

Z(2α)|Z(α)⟩

Z(α)

|Z(α)⟩

...
...

(10.49)

We can prove this is correct using some H-box rules (see Figure 9.1):

α

=

...

ei2α

...

α

...(9.25)

(sp)

ei2α

=

α

...(9.29)

ei2α

=

α

...(10.62)

α

=

α

...

(9.21)

eiα(9.25)

Exercise 10.10 Applying Eq. (10.49) to implement a CS gate requires
using both a Toffoli and a CCZ. It turns out there is a different construction
that only requires a single CCZ and some real Clifford operations (those
that do not contain numbers with an imaginary part like CNOT, Hadamard,
CZ, X). Prove the following identity:

aπ

π
2

aπ

aπ

=
i

π
2

Hint: First prove the identity for a = 0, and then show for a = 1 how the aπ
phase can be pushed through the circuit to cancel

Solution: .

10.5 Catalysis 461

π
2

=
i

π
2

=

(sp)

(id)

π
2

=

π
2

π
2

(eu)

(gf)

To check that the correction for a = 1 is correct we just push the aπ phase
at the measurement outcome to the other parts of the circuit.
End Solution .

Because we can apply catalysis equally well to controlled phases, we can
start iterating the procedure producing bigger and bigger controlled-phase
gates, where the phase being controlled is also increasingly large. For instance,
if we want to implement a T gate, we can do the following:

⊕
−→

S|T ⟩
T

(10.45)

⊕
−→

|T ⟩

(10.46)

Z|S⟩ ⊕
⊕

−→
|T ⟩

(10.46)

|S⟩ ⊕
Z2|Z⟩ ⊕
(10.50)

Here in the last step we are left with a controlled Z2 operation. But since
Z2 = id this does not do anything and we can remove it. So at this point
we can stop the iteration of the catalysis. We see then that we can imple-
ment a T gate just using multiple-controlled Toffoli gates, if we have the
right catalysis states lying around. This procedure works to implement any
Z(2π/2k) gate: we then get a ladder of k Toffoli gates. We have actually seen
such a Toffoli ladder before: in Exercise 9.15 we saw that this is actually a
controlled-decrementer circuit that decreases the value of an n-bit number by
1, controlled on the top wire. In that same exercise we saw that we can build a
subtraction circuit if we make a ladder of these controlled-decrementers. For
this reason, when we apply a subtraction circuit to a collection of catalysis

462 Clifford+T

states, this implements phase gates on on the top qubits:

|T ⟩
|S⟩
|Z⟩

Sub

−1 −1
−1

|T ⟩
|S⟩
|Z⟩

=

(9.94)

−1
−1

|T ⟩
|S⟩
|Z⟩

=

(10.47)

T

−1

|T ⟩
|S⟩
|Z⟩

=

(10.47)

T

S

|T ⟩
|S⟩
|Z⟩

=

(10.47)

T

S

Z

(10.51)

The reason this is nice, is because in Section 9.5 we found a very efficient
construction of the adjoint of the subtraction circuit: the adder. So if we can
transform Eq. (10.51) slightly, so that it uses an adder instead of a subtracter,
this gives us a way to efficiently implement a whole collection of phase gates
at once. The way we do this is by taking Eq. (10.51) and composing both
sides on the right by Add = Sub†, and on the left by (T ⊗ S ⊗ Z)†. After
cancelling with the adjoints we are then left with the following equation:

|T ⟩
|S⟩
|Z⟩

Add=
|T ⟩
|S⟩
|Z⟩

T †

S†

Z† (10.52)

We showed the construction here for 3 bits, but this works for any number
of bits n, in which case the smallest phase we implement is Z(2π/2n). While
this is nice and all, this might not seem immediately useful: we have this
pattern of phase gates appearing in parallel, where we have a small-angle
phase gate, a slightly-large-angle one, and so on. You might wonder, surely
it will not happen often that we can use this exact pattern of phases in
a real quantum circuit, and you would be wondering right. However, with
the magic of ancillae we can pick and choose exactly which phases we want
to appear and where. We can transfer the application of a phase gate to a

10.5 Catalysis 463

zeroed ancilla:

α

=
α

(sp)

=
α

(id)

= α

(sp)

(10.53)

Now when we have a complicated phase, we can decompose it into simple
components, and put each of these onto its own ancilla. Suppose for instance
we want to implement the phase Z(11

8 π). We can then write 11 bitwise as
1011 so that Z(11

8 π) = Z(2π/24(23 + 21 + 20)). We can then put each of
these component phases onto their own ancilla to get:

π
8

=11
8
π π π

4
π
8 =

π
4

π
2

π

(10.54)

We have here also sneakily added a zeroed ancilla that gets a Z(π2) applied
that does nothing. We need this qubit though to complete the pattern: we
see then that we get the right shape needed to use Eq. (10.52). However,
note that Eq. (10.52) has adjoint phases, instead of the actual phases we
need. There are multiple ways we can deal with this. One way is to realise
that for phase gates, the adjoint is the conjugate: T † = T . Hence, if we take
the conjugate of both sides of Eq. (10.52) we do get the right phases. Since
the Adder is a real matrix, this stays the same, but the states needed for the
catalysis also flip: |T ⟩ = |T †⟩. We then have everything we need to produce
the circuit we are after:

=11
8
π

−π
8

−π
4

−π
2

π

Add

−π
8

−π
4

−π
2

π

(10.51)

(10.49)

(10.55)

Well, that certainly seems like overkill. Why would we go through all this
trouble just to prepare a single phase rotation. Well, it turns out that in a
fault-tolerant setting we can’t just go and do whatever gate we want to do.
We are restricted to just a small set of gates we can (cheaply) implement. So

464 Clifford+T

if our computation requires us to do some phase rotation on a weird angle,
we have to find a way to this with the gates that we have access too. One
way to do this would be to approximate the phase rotation by combining
together unitary Clifford+T gates like in Section 10.1.2. But as we have now
seen, another way to do it is to prepare just a single copy of each |Z(2π/2k)⟩
state to serve as a catalyst which can be reused, and then apply some CNOTs
and an adder. Because the catalysts can be reused, the asymptotic cost of
this procedure is just the cost of the adder and the CNOTs. Let’s calculate
more accurately what the cost then is.

Suppose we want to implement a phase gate with angle α up to a precision
ε. We then find the smallest n such that 2−n < ε. We can then approximate α
by a phase α̂ = a2π/2n where a < 2n is an integer such that |α−α̂| < 2−n < ε.
It hence suffices to implement α̂ instead. Since a is an n-bit number, we can
implement the Z(α̂) gate using a generalisation of Eq. (10.55) to n bits. We
saw in Section 9.5 that we can implement an n-qubit quantum adder using
n Toffoli gates. In a fault-tolerant architecture the implementation of these
Toffoli gates is what dominates the cost. As 2−n < ε we have log2 1/ϵ < n,
and hence we can express the cost also in terms of the error budget, and say
that we require log2 1/ϵ Toffoli gates. Decomposing each Toffoli with 4 T

gates we see that we can equivalently say that the cost is 4 log2 1/ϵ T gates.

10.5.2 Computational universality via catalysis

Using catalysis we can replace any occurrence of some gate (likeT) with
some other gate (like CS), as long as we have access to some special catalyst
ancilla state. We can use this idea to prove that certain gate sets are also
universal for quantum computing. In this section we will demonstrate this
idea by showing the Clifford+CS gate set is universal.

This notion of universality we will use is however not the approximate
universality like that of the Clifford+T gate set we demonstrated in Sec-
tion 10.1.2. Instead it is what we will call computational universality.
Approximate universality requires that we can approximate any unitary
and hence quantum circuit arbitrarily well. But such a strong condition is
actually not needed for a gate set to be useful. It is sufficient if we can
just simulate the run of an arbitrary quantum circuit using some runs of a
quantum computer using the restricted gate set.

Let’s work through an example to make this more clear. For this section
we will say that the purpose of a quantum computer is to estimate the
expectation value of some observable O. We start with some state |ψ⟩, apply
some unitary U to it, and then do measurements and post-process these

10.5 Catalysis 465

measurements to get an estimate of O. After many such runs we will get
a close approximation of O. Mathematically we can represent the exact
expectation value as:

⟨O⟩ = ψ U O U† ψ
...

... (10.56)

However, when we are trying to estimate this observable, we don’t have to do
this with just a single quantum circuit we run over and over again. Instead
we could have a collection of different quantum circuits Vj (potentially acting
on a different number of qubits), input states |ψj⟩, and observables Oj , such
that taking a particular weighted average gets us the outcome we are after:

⟨O⟩ =
∑
j

λj ψj Uj Oj U†
j

ψj

...
... =

∑
j

λj⟨O⟩j , (10.57)

where here we define ⟨O⟩j to be the expectation value of Oj with respect to
Vj and |ψj⟩. We see then that if we can estimate each of the ⟨O⟩j , that we can
also estimate ⟨O⟩ itself, by just summing our estimates like ⟨O⟩ =

∑
j λj⟨O⟩j .

This might seem like quite a hypothetical situation, so let’s give a concrete
example. Suppose we have a Clifford+T circuit C applied to the input state
|ψ⟩. Then we can transform C into a circuit C ′ containing just Clifford gates
and CS gates using catalysis, so that C ′|ψ⟩|T ⟩ = C|ψ⟩|T ⟩. If we were trying
to estimate the observable O we can then check that:

ψ

C′
O

(C′)†
ψ

...
...

π
4

−π
4

= ψ C O (C)† ψ
...

...

π
4

−π
4

(10.42)

1√
2

1√
2

1
2

= ψ C O (C)† ψ
...

...

(sp)

(10.58)

So instead of just running the circuit C, we can run C ′, which doesn’t contain
any T gates. This is then an example of Eq. (10.57) where the sum is over just
one term and we have λ1 := 1, U1 := C ′, |ψ1⟩ := |ψ⟩ ⊗ |T ⟩ and O1 := O ⊗ I.

But now suppose we don’t even want to use that single |T ⟩ we need for
the catalysis. What we can do then is decompose this magic state into a
sum of Clifford states. Because each term in the sum needs to retain the
form of an expectation value like (10.56), we can’t just decompose |T ⟩ into
pure states |ϕj⟩, instead we need to decompose |T ⟩⟨T | into a sum of |ϕj⟩⟨ϕj |

466 Clifford+T

density matrices. One way to do this is the following:

|T ⟩⟨T | = 1
2

(
1 eiπ/4

e−iπ/4 1

)
= 1

2

(
1 1+i√

2
1−i√

2 1

)

= 1√
2

|+⟩⟨+| + 1√
2

|−i⟩⟨−i| −
√

2 − 1
2 (|0⟩⟨0| + |1⟩⟨1|) . (10.59)

Hence, we can decompose |T ⟩⟨T | into four Clifford states |ϕ1⟩ = |+⟩, |ϕ2⟩ =
|−i⟩, |ϕ3⟩ = |0⟩ and |ϕ4⟩ = |1⟩ with weights λ1 = λ2 = 1√

2 and λ3 = λ4 =

−
√

2−1
2 . Starting with the left-hand side of Eq. (10.58) we then have:

ψ

C′
O

(C′)†
ψ

...
...

π
4

−π
4

=

(10.42)

1
2

ψ

C′
O

(C′)†
ψ

...
...

π
4

1
2

−π
4

ψ

C′
O

(C′)†
ψ

...
...

ϕj ϕj

=

(10.56)

∑
j λj

= ψ

C′
O

(C′)†
ψ

...
...

ϕjϕj

∑
j λj

(10.60)
We see then that this is a case of Eq. (10.57) with |ψj⟩ := |ψ⟩ ⊗ |ϕj⟩ and

Oj := O ⊗ I and Uj = C ′ for all j ∈ {1, 2, 3, 4}.
While we can reduce the calculation of an expectation value to the cal-

culation of a sum of (potentially simpler to calculate) expection values in
this way, there is an important issue here that we have however glossed over.
We can only ever estimate the expectation value, not get an exact value.
Generally, we want to determine an error budget for how close we want the
estimate to be, and then that determines how many times we need to sample
from the quantum computation. Since we are summing together different
expectation values, we need to be careful that we aren’t blowing up the error
in the estimates. Suppose for instance that some λk = 100. Then a small
error in our estimate of ⟨O⟩j will blow up by a factor of a 100. On the other
hand, if λk = 1/100, then any error will also be decreased by a factor of
a 100, so that even a large error is not that important. In you want to be
efficient and not over-sample a given expectation value, so that we get its
estimate at just the right target precision we then need to sample ⟨O⟩j a
number of times proportional to |λj |. We can calculate that this summing
approach gives a total overhead in the number of samples of |λj | compared to
just determining the desired expectation value ⟨O⟩ with the original circuit.

For instance, in the above example where we decomposed |T ⟩⟨T | into four

10.5 Catalysis 467

terms, we have
∑
j |λj | = 2

√
2 − 1 ≈ 1.83. Hence, if we decompose the magic

state in this way we need to collect 1.83 samples more than we would have
needed to if we did use the magic |T ⟩ state directly.

Summarising the full procedure we see then that we need to do the follow-
ing:

1. Start with the Clifford+T computation you want to calculate.
2. Replace all T gates by a CS gate catalysis circuit using a |T ⟩.
3. Replace the |T ⟩ state needed for all the catalysis by the Clifford states

|ψj⟩.
4. Run each of the resulting four circuits a number of times proportional

to |λj |.
5. Combine the resulting estimates of the observable by scaling by λj to

get the final outcome.

When we have Clifford gates and CS gates, the gate set is generated by
CNOT, Hadamard, S and CS. Of course, CNOT can be constructed using
CS and Hadamard, and if we allow states to be prepared into |0⟩ and |1⟩,
then we can also prepare an S using a CS. Hence, this gate set is equivalent
to just the CS and Hadamard gate. We see then that we have proven the
following.

Theorem 10.5.1 The CS+Hadamard gate set is computationally uni-
versal. In particular, a Clifford+T computation can be simulated by a
CS+Hadamard computation with a linear overhead in the number of samples,
qubits and gates needed.

Remark 10.5.2 Our decomposition (10.59) of |T ⟩⟨T | is a stabiliser de-
composition, a concept we also looked at in Section* 7.8.1. But as we saw
here, the simulation overhead was not based on the number of terms in the
decomposition, but rather on the weight

∑
j |λj | = 1.83. This value is known

as the stabiliser extent, or equivalently, the robustness of magic of the
decomposition. Without using any catalysis, we could have chosen to write
each of the T gates as a magic state injection, and then replace each of the
|T ⟩⟨T | states by its stabiliser decomposition. When we do this however, the
stabiliser extent scales as 1.83t where t is the number of T gates, so that
the simulation overhead becomes exponential in the number of non-Clifford
gates. We expect such an exponential dependence, since replacing all the
T gates gives us a Clifford circuit, and we don’t expect this gate set to be
computationally universal. Note that this however does give us a classical
simulation technique: write a Clifford+T circuit as a Clifford circuit where
each T gate is replaced by a magic state injection using the |ϕj⟩ Clifford

468 Clifford+T

states, and then efficiently classically simulate each of these Clifford circuits.
The cost of this method is then roughly O(k(n + t)31.83t) where n is the
number of qubits, and k is the total number of gates in the circuit.

Remark* 10.5.3 We haven’t actually given a formal definition of what
‘computational universality’ really is. There are multiple ways we could define
it that all differ in the details. One particular way we could define it, which
we could also call ‘BQP-completeness’ is as follows: for a given gate set G
define the complexity class BQPG as the types of decision problems that
can be solved with high probability by a quantum computer just using gates
from G. Then G is BQP-complete if PBQPG = BQP. That is, if a classical
computer that can query a quantum computer using gates from G can solve
the same problems in polynomial time as a universal quantum computer.

Because we can also catalyse T gates using a CCZ gate, we can also prove
a version of Proposition 10.5.1 for the Clifford+CCZ gate set, showing that
Clifford+CCZ is also computationally universal. In fact, we can restrict the
gate set a bit more, as Toffoli+Hadamard is itself already computationally
universal. This however requires a different argument then we have been
using here, and hence we leave this for the advanced section 10.7.4.

10.5.3 Catalysing completeness

We saw in Theorem 10.3.9 that the (S4) spider nest rule combined with the
standard ZX rules we have been using throughout the book is enough to get
a complete set of rules for CNOT+T circuits. However, this extended rule
set is not enough to prove all identities of ZX-diagrams in the π

4 -fragment.
For instance, a simple identity that cannot be proven is the following rule
known as supplementarity:

π
4

π
4

π

∝ (10.61)

Formally showing that this cannot be proven using the ZX+(S4) rules is
difficult, but intuitively we can see this because none of the standard ZX rules
have any special behaviour for π

4 phases, while all the spider nest identities
only deal with at least 15 π

4 phases, so there is nothing that says anything
about the pair of π

4 phases here.
Finding a rule set and then proving it is complete is usually a difficult

challenge. However, using catalysis it turns out we can make our lives much
simpler, and simply extend an existing complete calculus.

10.5 Catalysis 469

Recall that in Chapter 9 we introduced a new type of generator for ZX-
diagrams we called H-boxes. In particular we found a number of rewrite
rules for phase-free H-boxes in Section 9.2.2, summarised in Figure 9.1.
We remarked there that when we restrict to spiders with 0 and π phases,
together with phase-free H-boxes, that these rules give us a complete calculus
for postselected Toffoli-Hadamard circuits. Such diagrams correspond to a
specific type of matrices. Namely, all such matrices are of the form (1√

2)kM
where M is an integer matrix. Hence, the matrix entries are from a subset of
the ring Z[1/

√
2]. As these matrices are just integer matrices up to a global

scalar of
√

2 we will call this the Z fragment. Note that in particular there
are no complex numbers in this calculus. Using catalysis we can make the
set of matrices this calculus can represent larger in a ‘controlled way’ where
we can also see which rules we need to add to preserve completeness.

To see how this works, we want to first generalise the T gate catalysis of
Eq. (10.45). First, as our goal will just be to produce states, we can plug
|+⟩ into the top wire of Eq. (10.45). We can then simplify the expression to
a more symmetric form:

π
4

i=

π
4

π
4

π
4

π
4

= i= π
4 i= π

4

(10.45)

(10.62)

We can then identify the underlying reason this catalysis works. It is because:

eiπ/2 = −π
4

π
4

i =
π
4

= e−iπ
4

ei
π
4

ei
π
4

(10.63)

Here we suggestively used Eq. (9.15) to write the phases as H-boxes. We do
this because such a rule doesn’t just hold for an H-box with a label that is
a complex phase like eiα, it in fact holds for any complex a ̸= 0:

a = 1√
a

√
a

√
a

(10.64)

This then allows us to write down a generalisation of Eq. (10.62) to arbitrary

470 Clifford+T

H-boxes:

a2 =a a 1
a

a

a

(10.61)

=

a

1
a

a

a

(sp)

(sc)

= 1

a

a

(9.37)

(9.22)

=

a

a

=
a

a

(10.65)

Here we wrote a2 in the 2-ary H-box instead of a so that we don’t have to
work with square roots. When we take a = ei

π
4 we get Eq. (10.62), but this

works for any value. A particularly simple, but still interesting case is when
a = ei

π
2 = i. Translating this back into circuit form gives us a catalysis of

|i⟩ := |0⟩ + i|1⟩ states using a CZ. While this might seem trivial (it is after
all provable using Clifford rewrite rules) in the context of the phase-free
H-boxes it allows us to add complex numbers to the fragment.

Namely, we can just add as a generator i , a single-ary H-box with label
a = i to the calculus, and this in fact turns out to be sufficient to then
represent any matrix 1√

2kM where M now has entries in Z[i]. We will call
this the Z[i] fragment. However, just getting this universality was the easy
part. How do we know what new equations to add to this calculus to make
it complete again? Generally, proving completeness is very difficult, as you
first need to search for new equations, and then show that those equations
are sufficient to prove all true equalities. However, as it turns out, adding
the rule Eq. (10.65) for a = i to the already existing rules for the label-free
fragment is already almost enough to get a complete calculus for this bigger
fragment Z[i] which includes i .

To see this, let’s first consider what a generic diagram in the Z[i] frag-
ment looks like. We added the generator i , so now a diagram consists of
generators from the old phase-free fragment plus this new generator. These
generators could all combine to give us really complicated rewrites, so we
want to prevent them from combining. Using Eq. (10.65) we can reduce all
these separate instances of i into just one of them, reducing the com-
plexity of the diagram. That is, given some diagram D in the Z[i] fragment,
we can rewrite it to a diagram D′ containing just generators from the Z

10.5 Catalysis 471

fragment such that:

D
...

... = D′...
...

i

(10.65)

(10.66)

Or, as it turns out, this is possible for most diagrams in the Z[i] fragment
(Can you see for which ones it doesn’t work? If not, don’t worry, the authors
of this book also originally forgot about this case. As we said: completeness
is hard). We will talk about the failing case later, but for now let’s assume
that our diagram satisfies Eq. (10.66).

As a shorthand, we will write D′[|ψ⟩] for the diagram we get when we plug
|ψ⟩ into the bottom input in Eq. (10.66). So here we have D = D′[i]. Note
that i = |0⟩ + i|1⟩. Hence, if we expand it like this we see that D is equal
to a sum of two diagrams: D′ where we plugged in |0⟩ into the bottom wire,
and iD′ where we plugged |1⟩ into the bottom wire: D = D′[|0⟩] + iD′[|1⟩].

Now suppose we have two diagrams D1 and D2 in the Z[i] fragment and
that they implement the same linear map: D1 = D2. We can both decompose
them as described above to get D′

1[|0⟩] + iD′
1[|1⟩] = D′

2[|0⟩] + iD′
2[|1⟩]. Each

of these D′
j [|x⟩] diagrams represents a matrix that is entirely real, so the

only way for this equation of complex matrices to hold, is if it holds for the
real part and for the complex part separately:

D′
1[|0⟩] = D′

2[|0⟩] D′
1[|1⟩] = D′

2[|1⟩] (10.67)

We then conclude that D′
1 and D′

2 are equal when we input either |0⟩ or |1⟩
into the bottom wire. As these states form a basis, this must then hold for
any input. We can then leave this wire open and still have an equality:

=D′
1

...
... D′

2

...
... (10.68)

Now we are in business! We have this equality as linear maps, but both
diagrams are in the Z fragment for which we have completeness. We hence
know how to rewrite one into the other. This gives us then a path to rewrite
the original D1 into D2:

=D′
1

...
...

i

D′
2

...
...

i

(*)

D1

...
... = D2

...
...=

(10.62) (10.62)

(10.69)

Here each equality is now a diagrammatic equality, and with (*) we denote
we are using rewrites from the original complete calculus for the Z fragment.

472 Clifford+T

We have then very easily proven completeness for this larger fragment, all
made possible using a single rule about catalysis.

Well..., we would have proven completeness, if it were true we could always
rewrite a diagram in the Z[i] fragment as in Eq. (10.66). We however made
a hidden assumption: that there is at least one generator i present in the
diagram. When that is the case we can use Eq. (10.65) to reduce all these
instances of the generator to just a single copy. But if the diagram didn’t
contain any i to start with, then this rule does not apply. In fact, we
currently have no rewrite rules that relate a diagram containing a i to one
that does not contain any i . This means in particular that our current
rule set cannot prove the following true equation:

i = (10.70)

However, when we also add Eq. (10.70) as an additional rule, then this
problem is solved and it is true that we can then always rewrite a diagram
in the Z[i] fragment as in Eq. (10.66): if the diagram contains at least one
i we can already use Eq. (10.65) to transform to the form of Eq. (10.66),
and if it doesn’t we use Eq. (10.70) once to introduce one i , in which case
it is also in the form of Eq. (10.66).

Proposition 10.5.4 The Z fragment of Z- and X-spiders with 0 and
π phases and phase-free H-boxes, augmented with the i generator, the
catalysis rule Eq. (10.65) for a = i, and the rule i = is complete
for matrices of the form 1√

2kM where M has entries in Z[i].

This trick for extending the calculus doesn’t just work for i: it works
for any complex number a ̸= 0 such that a2 ∈ Z. Let’s for example take
a =

√
3. We can then do all the steps as before, translating a diagram D

containing an arbitrary number of the H-box with label
√

3 into a diagram
D′ in the Z fragment which just requires a single input of the

√
3 H-box:

D = D′[|0⟩+
√

3|1⟩] = D′[|0⟩]+
√

3D′[|1⟩]. If we then have an equality between
two diagrams D1 and D2 in the Z[

√
3] fragment, we get D′

1[|0⟩]+
√

3D′
1[|1⟩] =

D′
2[|0⟩] +

√
3D′

2[|1⟩]. Because each of the component diagrams only contains
integers, this equation can only hold if the integer part and the

√
3 part

hold separately. We hence again get two equalities D′
1[|0⟩] = D′

2[|0⟩] and
D′

1[|1⟩] = D′
2[|1⟩], which allows us to conclude that D′

1 = D′
2 with the wire

left open. We can then use a modified version of Eq. (10.69) to conclude
that we have completeness. We also have a modified version of Eq. (10.70)
that continues to be true: √

3 = . Adding the catalysis rule and
this scalar rule then gives us a complete calculus for the ring Z[

√
3].

Although this covers many possible extensions, it does not cover one we

10.6 Summary: What to remember 473

care about: extending it with a T gate. This is because taking a = ei
π
4

we see that a2 = i ̸∈ Z. However, it turns out we can just iterate the
catalysis procedure to get larger and larger calculi. Starting now with the
calculus for the Z[i] fragment, we can add the H-box with the label ei

π
4

and add its catalysis rule. When we then go through the motions of the
completeness proof again we will end up at the equationD′

1[|0⟩]+ei
π
4D′

1[|1⟩] =
D′

2[|0⟩] + ei
π
4D′

2[|1⟩], where now each of the diagrams D′
j [|x⟩] has entries in

Z[i] instead of Z. Luckily for us, ei
π
4 is still ‘independent’ of the entries of

Z[i] so that again the only way for this equation to hold is if it holds for
each component separately, so that the proof goes through without change.
Since ei

π
4 = (1 + i)/

√
2, this calculus can represent arbitrary matrices with

entries in the ring Z[i, 1√
2].

Theorem 10.5.5 The Z fragment of Z- and X-spiders with 0 and π phases
and phase-free H-boxes, augmented with H-boxes with a label of i and ei

π
4

and the catalysis rule Eq. (10.65) and scalar rule a = for a = i

and a = ei
π
4 is complete for matrices with entries in the ring Z[i, 1√

2].

Exercise* 10.11 Two copies of a ei
π
4 H-box can be used to represent an

H-box with an i label. So instead of adding the i generator, we could only
add the ei

π
4 generator. We then have to modify the catalysis rules: instead

of having two separate ones, we need to stack them together into a single
one. Find a modified catalysis rule that works in the label-free ZH-calculus
augmented with just an H-box with a label of ei

π
4 and find which other rules

you need to get completeness.

Exercise* 10.12 Prove supplementarity (10.61) using the phase-free H-
box rules and the catalysis rules.

10.6 Summary: What to remember
1. The Clifford+T gate set is approximately universal.
2. In particular, it can exactly represent unitary 2n × 2n matrices with

entries in the ring D[ω] = Z[1
2 , e

iπ
4].

3. We can efficiently approximately synthesise single-qubit unitaries over
the Clifford+T gate set. To achieve a precision of ε requires O(log 1/ε)
number of gates.

4. The scalable ZX notation allows us to represent large collections of
parities as a single diagram. This is especially useful in representing
large collections of phase gadgets.

474 Clifford+T

5. Certain collections of phase gadgets with phases that are multiples of π
4

correspond to Clifford unitaries or the identity. We call such collections
of phase gadgets spider nest identities.

6. A collection of gadgets represents an identity if its corresponding parity
matrix is strongly 3-even, meaning that the Hamming weight of every
column is a multiple of 8, of the product of every pair of columns is a
multiple of 4, and the product of every triple of columns is a multiple of
2. The collection of gadgets is a Clifford if it’s parity matrix is 3-even,
meaning that the three previous conditions only hold modulo 2.

7. We can instead represent a collection of n-qubit gadgets by its indicator
function. If this is a polynomial of degree at most n− 4, then it is equal
to a Clifford.

8. Using this representation we can show that the standard ZX rewrite
rules plus one additional rule (S4) suffice for completeness of CNOT+T
circuits.

9. Optimising the number of T gates in a CNOT+T circuit is equiva-
lent to decoding a Reed-Muller code, or equivalently to finding a rank
decomposition of a symmetric 3-tensor.

10. We can relate gate sets involving the CCZ, CS or T gate together using
the framework of catalysis, where we can interchange the role of one
gate with another using a resource state that we call a catalyst. This
catalyst is not consumed in the process and hence can be reused.

11. Using catalysis we can find an efficient way to implement small-angle
rotations, prove the computational universality of a gate set, and prove
completeness by extending other complete rule sets.

10.7 Advanced Material*

10.7.1 Exact synthesis of Clifford+T states*

In this section we will take another look at the exact synthesis algorithm for
Clifford+T unitaries described in Section 10.1.1, but now we will consider
multi-qubit unitaries and fill in the number theory details. As we saw in
that section, when we understand how to synthesise a state, an algorithm
for synthesising a unitary follows easily, so let’s look at synthesising states
first.

So let’s suppose we have a normalised vector |ψ⟩ ∈ D[ω]2n . Our task is to
find a Clifford+T unitary U such that U |ψ⟩ = |0 · · · 0⟩.

Writing |ψ⟩ = (ψ1, · · · , ψ2n) we can represent the vector components ψi
as ψi = aiω

3 + biω
2 + ciω + di where ai, bi, ci, di ∈ D. In Lemma 10.1.2 we

10.7 Advanced Material* 475

saw that if these coefficients are integers, that then all the entries except
one must be zero and hence |ψ⟩ is a unit vector. For a single-qubit state,
the only possible unit vectors are |0⟩ and |1⟩, so if we got |1⟩ we just apply
an X gate to get it to be the |0⟩ we want. However, now the state can be
any |x⃗⟩ up to global phase. We can map this to |⃗0⟩ by applying X gates
wherever xi = 1. While this is fine if we are synthesising a state, this messes
things up when we are synthesising this state as part of a bigger unitary
synthesis routine where we care about many columns being sent to the right
location. In that case we need to apply the appropriate 2-cycle classical gate
(see Section* 9.7.2 for how these can decomposed into Clifford+T gates), to
transform |x⃗⟩ into |⃗0⟩, or whatever basis state we need it to be. We can also
get rid of its phase ωk by applying the 1-level T−k

[1] gate that adds a ω−k

phase just to the |00 · · · 0⟩ state. Because these 2-level and 1-level operations
only change the basis states we are interested in, they do not mess up any
of the other columns of the unitary we are synthesising.

So as in the single-qubit case, if all the components in the vector are
integers we are essentially done. We then just need to find a strategy to
make the vectors be ‘closer to being integers’, i.e. elements of Z[ω]. The
obvious metric for how far an element in D[ω] is from being an element in
Z[ω] is the smallest power of 2 we have to multiply the element with to get
an integer. However, this turns out not to be the best choice. This is because
2 is not a prime number in Z[ω]. The ‘magic number’ δ = 1 + ω we saw in
Section 10.1.1 is a prime in Z[ω].

Definition 10.7.1 Let R be a ring and a ∈ R. We say a is a unit if there
exists b ∈ R such that ab = 1. We instead say a is prime if a is not a unit
or 0, and if for any decomposition a = bc with b, c ∈ R we have that either
b or c is a unit.

Example 10.7.2 In Z the only units are 1 and −1, while in any field,
like C, every non-zero element is a unit. The primes of Z are precisely the
prime numbers and their negations (since if a is prime, then multiplying a by
any unit gives you another prime). In Z[ω] examples of units are ω, because
ωω7 = 1, and 1 +

√
2, because (1 +

√
2)(

√
2 − 1) = 1.

We can prove δ is prime in Z[ω] by defining a new kind of norm on Z[ω].

Exercise 10.13 On the ring Z[ω] we have a norm given by Nω(z) =
zz. This norm has some nice properties, namely that it is multiplicative,
Nω(z1z2) = Nω(z1)Nω(z2), and that it sends elements to positive elements
of Z[

√
2]. We can define a different norm with similar properties on Z[

√
2].

476 Clifford+T

For a+ b
√

2 ∈ Z[
√

2] define the conjugate to be (a+ b
√

2)′ = a− b
√

2, and
then define the new norm by N√

2(z) := zz′.

a) Show that the conjugate on Z[
√

2] is multiplicative: (z1z2)′ = z′
1z

′
2. Use

this to show that the norm N√
2 is multiplicative.

b) For z ∈ Z[ω] define N(z) := N√
2(Nω(z)) = (zz)(zz)′. Argue that N is

also multiplicative, and that it maps all z to positive integers.
c) Show that z is a unit of Z[ω] if and only if N(z) = 1. Hint: For the if

direction the definition of the norm already gives you the inverse of z.
d) Show that z is prime if N(z) is prime in Z.
e) Calculate N(δ), N(

√
2) and N(2), and conclude that N(δ) is prime, but

the others are not.

So now we know that δ is prime while
√

2 (and hence 2) is not. But it
turns out that δ is also a prime factor of

√
2 (and hence 2).

Exercise 10.14 Let δ = 1 + ω.

a) Write δ2 and δ3 as a+ bω + cω2 + dω3 for some integers a, b, c, d.
b) Using the fact that ω + ω−1 =

√
2, write δ2ω−1 as x + y

√
2 for some

integers x and y.
c) Define the unit λ := 1 −

√
2. Show that δ2ω−1λ =

√
2.

So we see that
√

2 can be decomposed up to units into two copies of δ, and
hence 2 can be decomposed into four copies. Hence, instead of considering
the smallest power of 2 we have to multiply a number in D[ω] with to get
something in our integer ring Z[ω], we instead consider the smallest power
of δ, as this is a more finegrained metric.

For a z ∈ D[ω], we call the smallest k such that δkz ∈ Z[ω] the least
denominator exponent (lde) of z. For a vector of values |ψ⟩ ∈ D[ω]N , we
call its least denominator exponent the smallest k such that δk|ψ⟩ ∈ Z[ω]N .
Of course if the lde of a vector is 0, then it already consists of elements in
Z[ω], and we know that such a normalised vector must be very simple. So
if we can just find some procedure to iteratively reduce the lde to 0, then
we are happy. The goal then is to find, for a given |ψ⟩ with lde k, a set of
unitaries G1, . . . , Gl such that |ψ⟩′ = Gl · · ·G1v has lde at most k− 1. Then
we could just repeat this procedure until we get to denominator exponent 0.

Given a |ψ⟩ with lde k, we can define the vector |u⟩ := δk|ψ⟩ ∈ Z[ω]N . After
making some modifications to |u⟩ by applying gates to get a |u′⟩ ∈ Z[ω]N ,
we are interested in whether this modification has reduced the lde. In order
to see when this is the case, we hence need to know when we can divide |u′⟩
by δ, and still get a vector in Z[ω]N . Of course, when we start caring about

10.7 Advanced Material* 477

divisibility by some number, we will need to talk about calculating modulo
this number. So in the same way as we have been talking about parities,
which are elements of Z modulo 2, now we are going to work with residues,
which are elements of Z[ω] modulo δ.

For elements x, y ∈ Z[ω] we will write x ≡δ y to denote that x − y = aδ

for some a ∈ Z[ω]. For instance, in the exercise above we saw that
√

2 =
(δω−1λ)δ, and hence

√
2 ≡δ 0. It is not hard to see that ≡δ is an equivalence

relation, and that it is preserved by addition and multiplication: if a ≡δ b and
c ≡δ d, then a+ c ≡δ b+d and ac ≡δ bd. We then also have 2 ≡δ

√
2
√

2 ≡δ 0.

Lemma 10.7.3 For any z ∈ Z[ω] we have z ≡δ 0 or z ≡δ 1.

Proof We have δ ∼=δ 0, and as δ = 1 + ω, we calculate then that

ω ≡δ ω + 0 ≡δ ω + 2 ≡δ δ + 1 ≡δ 1.

Hence for any j we have ωj ≡δ 1, so that a+ bω+ cω2 + dω3 ≡δ a+ b+ c+ d.
Since furthermore 2 ≡δ 0, we see that hence the residue of an element modulo
δ is either 0 or 1.

Given some |u⟩ = δk|ψ⟩ ∈ Z[ω]N our goal is to apply operations to |u⟩ to
make all the components divisible by δ, and hence have zero residue. The
components with residue 1 are then the ‘obstacles’ we want to get rid of.

Lemma 10.7.4 Let |ψ⟩ ∈ D[ω]N be a normalised vector with lde k > 0,
so that |u⟩ = δk|ψ⟩ ∈ Z[ω]N . Then there are at least 2 components ui and
uj of |u⟩ that have residue 1.

Proof |u⟩ is divisible by δ iff uj ≡δ 0 for all j. But assuming that k was
the lde of |ψ⟩, then by definition it won’t be divisible, and so there will
be at least one uj with non-zero residue. By normalisation of |ψ⟩ we have
⟨ψ|ψ⟩ = 1 and hence

∑
j ujuj = ⟨u|u⟩ = δkδ

k ≡δ 0. Since residues are either
0 or 1, we then know that there are an even number of cases where ujuj ≡δ 1.
The residue is multiplicative, so for these j we must then also have uj ≡δ 1.
Hence, if |u⟩ is not divisible by δ there must be at least a pair of elements
ui and uj that each have non-zero residue.

The fact that non-zero residues come in pairs is good, because it turns
out we can only reduce the residue of elements of |u⟩ in pairs.

We are working with Clifford+T gates. The CNOT, S and T only contain
non-zero elements that are units in Z[ω] and have at most one non-zero
entry per row, and hence applying these gates does not affect the residues
of the state. The only gate then that can affect residues is the Hadamard

478 Clifford+T

H = 1√
2

(
1 1
1 −1

)
. We see that the Hadamard creates sums ui + uj and

differences ui −uj of elements of the vector, which can lead to lower lde, but
then it also divides the elements by

√
2, which can increase the lde. Because√

2 contains two powers of δ, we need to look at the vector elements modulo
δ3 (the next power up), to see if applying a Hadamard will result in lower
lde.

Exercise 10.15 We have δ3 = 1 + 3ω + 3ω2 + ω3. Show that any element
in Z[ω] is equivalent modulo δ3 to an element in the set

{0, 1, ω, ω2, ω3, 1 + ω, 1 + ω2, 1 + ω3}.

Hint: First note that 2 ≡δ3 0, so that we only have to deal with elements
a+ bω + cω2 + dω3 where a, b, c, d ∈ {0, 1}. Then argue that when a = b =
c = d = 1, the residue is zero, so that you only have to consider the cases
where at most two of a, b, c or d are 1.

Note that from this above exercise we immediately get the following, just
by checking all the possible cases:

Lemma 10.7.5 If z ∈ Z[ω] has z ≡δ 1, then z ≡δ3 ωj for some j ∈
{0, 1, 2, 3}.

Now we have all the tools we need to solve the problem at hand. For
simplicity, let’s again first assume we are dealing with a single-qubit vector
|u⟩ = (u1, u2) ∈ Z[ω]2. If it is not already divisible by δ then we must
have u1 ≡δ u2 ≡δ 1, since the non-zero residues come in pairs. Then by
the previous lemma we have u1 ≡δ3 ωl and u2 ≡δ3 ωk. In other words:
u1 = ωl + xδ3 and u2 = ωk + yδ3 for some x, y ∈ Z[ω]. Then we see that if
we apply a T l−k gate to this vector that we get:

T l−k|u⟩ = T l−k
(
ωl + xδ3

ωk + yδ3

)
=
(

ωl + xδ3

ωk+l−k + ωl−kyδ3

)
=
(
ωl + xδ3

ωl + y′δ3

)
,

where we have defined y′ := ωl−ky.
Now comes the magic trick: we apply a Hadamard, and we use the fact

that
√

2 = δ2ω−1λ, and hence δ2 =
√

2ωλ−1 where λ is the unit from
Exercise 10.14:

HT l−k|u⟩ = 1√
2

(
2ωl + (x+ y′)δ3

(x− y′)δ3

)
=
(
δ2ω−1λωl + (x+ y′)ωλ−1δ

(x− y′)ωλ−1δ

)
.

(10.71)

10.7 Advanced Material* 479

We see now that every term has at least one factor of δ, so we can factor it
out:

HT l−k|u⟩ = δ

(
δω−1λ+ (x+ y′)ωλ−1

(x− y′)ωλ−1

)
. (10.72)

Success! Because this means that HT l−k|u⟩ is divisible by δ. As |u⟩ = δk|ψ⟩,
this means that HT l−k|ψ⟩ now has lde smaller than k. We can now repeat
this procedure until we get to lde 0, in which case we know the vector we
have is a basis vector, and we are done.

This just covers the single-qubit case, but reducing the lde of a multi-qubit
normalised vector |ψ⟩ ∈ D[ω]2n is done very similarly. Defining |u⟩ = δk|ψ⟩,
where k is the lde of |ψ⟩, we saw that there must be an even number of
elements of |u⟩ with non-zero residue. We can hence pick a pair (ui, uj)
that both have non-zero residue, and then apply the above technique, just
‘targeting’ this pair to zero out their residues. We can do this targetting
by replacing the Hadamard and T gates above with the 2-level and 1-level
operators H[ij] and T[j] that hence only change the residues of the elements
ui and uj . The constructions in Section 9.7.2 show how to implement these
gates using just Clifford+T gates. We do this reduction of lde with every
pair that needs it, until all the residues are zero, in which case the modified
|u⟩ is divisible by δ. This then means that the modified |ψ⟩ has lower lde.
We then just repeat until the lde is zero and we are left with a basis vector.

Pfew, that was a lot, so let’s summarise what we have actually done to
get to the solution:

1. We started out with a 2n × 2n unitary U where all the entries are in the
ring Z[1√

2 , i].
2. Then we realised in Eq. (10.73) that we wanted to find a unitary G that

reduces the first column of U to a standard basis vector.
3. Finding such a unitary G is equivalent to finding a way to reduce an

arbitrary normalised vector |ψ⟩ to |0 · · · 0⟩ using G: G|ψ⟩ = |0 · · · 0⟩.
4. Instead of writing |ψ⟩ as a vector over Z[1√

2 , i], we write it as a vector
over D[ω]. We find its least denominator exponent k: the smallest number
such that δk|ψ⟩ ∈ Z[ω], where δ = 1 + ω. We picked δ as the base, since
it is prime in Z[ω].

5. We look for two components ui and uj of |u⟩ = δk|ψ⟩ such that the
residues ui ≡δ uj ≡δ 1. If there is such a pair we apply 2-level Hadamard
and 1-level T gates to zero out their residues.

6. If there isn’t such a pair of components left, then we have transformed

480 Clifford+T

|u⟩ to be divisible by δ, so that the new |ψ⟩ we found must have lower
least denominator exponent.

7. We then repeat this procedure until |ψ⟩ has lde 0, in which case it is a
standard basis vector up to a phase, which is easily permuted into the
desired basis vector, and its phase removed by applying the appropriate
1-level gate.

8. We have now found our desired unitary G1 that we can apply to U to
simplify its first column. Because U is unitary, this means its first row
must now also be simplified.

9. Now just rinse and repeat for all the other columns of U , resulting in a
series of Clifford+T unitaries G1, . . . , G2n such that G2n · · ·G1U = I.

10. We hence have U = G−1
2n · · ·G−1

1 .

10.7.2 Exact unitary synthesis*

Let’s fill in the details on how to exactly synthesise an entire unitary and not
just a single state. We have a 2n × 2n unitary U with matrix entries in D[ω].
Let |u1⟩ be the first column of U , and V1 the Clifford+T unitary satisfying
V1|u1⟩ = |⃗0⟩ that we can find using the procedure described in the previous
section. Then we have:

G1U =

1 0 · · · 0
0
... U ′

0

 . (10.73)

Note that here the first row also becomes a unit vector, because of the
orthogonality conditions between the columns of the unitary G1U . Now we
can take the first column of the smaller unitary U ′ and synthesise it as a
state again. We have to be careful to not undo the work we did with reducing
the first column of U , and hence we need to use 2-level and 1-level operators
to only touch the elements of the matrix we want to.

Repeating this procedure, we see that we get Clifford+T unitaries V1, . . . , V2n

satisfying V2n · · ·V1U = I. Hence, we have synthesised U as V †
1 · · ·V †

2n . All
of this is a bit reminiscent of the CNOT synthesis algorithm using Gaussian
elimination of Chapter 4. However, there we could encode the entire function
of the CNOT circuit into an n× n matrix, while here we are working with a
2n × 2n matrix. Hence, even if each Vi is a small circuit, the overall circuit
synthesising U might still be exponentially large. We would not expect to do
any better as we are now dealing with an approximately universal gate set,

10.7 Advanced Material* 481

and hence there are simply too many possible unitaries we can synthesise
for all circuits implementing them to be small.

Let’s record what we have now seen in a Theorem.

Theorem 10.7.6 Let U be an n-qubit unitary with entries in D[ω]. Then
U can be realised by a Clifford+T circuit using at most one zeroed ancilla.

Proof In these sections we have found a method to write U using 2-level
Hadamard and X operators and 1-level T operators. As described in Sec-
tion 9.7.2, these can be built using gates with n− 1 controls, which require a
single zeroed ancilla to be implemented over the Clifford+T gate set (cf. Sec-
tion 9.4.2).

These techniques we have seen for exact synthesis are not unique to
Clifford+T . They work for many gate sets that can at least express the
2-level operators necessary to move elements of the vector to the place where
they are needed.

One particularly simple example of this is the correspondence between
circuits of Toffoli, CNOT, NOT and Z gates, and unitaries over the ring
Z. Since all the entries in such a unitary U are integers, the normalisation
of the column means that there is at most one non-zero element and that
this element is ±1. Hence, ignoring the possible −1 phases, such a unitary
is just a big permutation of the basis vectors, which we know we can realise
using a Toffoli circuit V (Section 9.7.1). The resulting unitary V U is then
diagonal and only has ±1 phase. The −1 phases can be realised by 1-level
Z operators, and then we are done!

Proposition 10.7.7 Let U be an n-qubit unitary with entries in the ring
of integers Z. Then U can be realised by a quantum circuit consisting of
Toffoli, CNOT, NOT, and Z gates, using at most one zeroed ancilla.

There are several other results like this that make a correspondence be-
tween a certain quantum gate set and the set of matrices over a given ring.

Theorem 10.7.8 Let U be an n-qubit unitary and let R be a ring such
that all the matrix entries of U are in R. Then U can be synthesised as a
quantum circuit over the gate set G using at most one zeroed ancilla when:

• R = Z and G = {TOF,CNOT, X, Z}.
• R = Z[i] and G = {TOF,CNOT, X, S}.
• R = Z[1

2] and G = {TOF,CNOT, X,H ⊗H}.
• R = Z[1√

2] and G = {TOF,CNOT, X,H,CH}.
• R = Z[1√

2 , i] = D[ω] and G = {CNOT, H, T}.

482 Clifford+T

Hence, we see that the exact synthesis of Clifford+T circuits doesn’t exist
in a vacuum, but is in fact part of a ladder of increasingly more powerful
gate sets corresponding to larger rings.

This ladder can be continued, by replacing the T = Z(π4) gate by Z(2π
2k)

for some k > 3. The ring that corresponds to the resulting Clifford+Z(2π
2k)

gate set is D[ei
2π

2k].

10.7.2.1 Optimality of single-qubit Clifford+T unitary synthesis*
Using the exact synthesis algorithm for Clifford+T unitaries generally results
in very large circuits. The exception is when we apply it to single-qubit
unitaries, for which it is in fact optimal in the number of gates needed.

As we already saw in Section 10.7.2.1, for a single-qubit unitary, the
Clifford+T exact synthesis takes a particular nice form. We start with some
unitary

U =
(
ψ1 ψ2e

iα

ψ2 −ϕ1e
iα

)
. (10.74)

Then we find a unitary V built out of H and T gates that synthesises
|ψ⟩ = (ψ1, ψ2) so that V |ψ⟩ = |0⟩. Then

V U =
(

1 0
0 eiα

′

)
(10.75)

for some α′ which is a multiple of π
4 . Hence we can further reduce V U to the

identity by applying the appropriate power of T . Up to some small constant,
synthesising a single qubit unitary hence costs just as much as synthesising
a single-qubit state |ψ⟩. The cost of synthesising |ψ⟩ is directly related to its
lde k. To reduce it to lde 0 we need to apply for each reduction a Hadamard
gate and some power Tm of the T gate where m = 1, 2 or 3. If m ̸= 1 we can
see this as applying a T gate and/or an S gate. We hence get a sequence of
H, T and S gates, where each application of the Hadamard reduces the lde
by at least 1. The total number of gates is hence at most 3k, and the number
of Hadamard gates and T gates is each at most k. You could wonder whether
there is any way we could do better, but it turns out that this number of
gates is actually optimal!

Suppose we start from the state |0⟩ and we apply Hadamard, S and T

gates to it. Then we end up with some state that we can write as

|ψ⟩ = 1
δk

(
x+ yδ

z + wδ

)
, (10.76)

where k is its least denominator exponent. Assuming that k > 0 we see

10.7 Advanced Material* 483

that x + yδ ≡δ z + wδ, as |ψ⟩ is normalised. Hence x ≡δ z. Furthermore,
we necessarily have x ≡δ z ≡δ 1 since otherwise both expressions would be
further divisible by δ contradicting k being the lde. Applying an S and T

gate to this state doesn’t change the denominator exponent, but a Hadamard
can change the lde. We calculate then:

H|ψ⟩ = 1
δk

1√
2

(
x+ z + (y + w)δ
x− z + (y − w)δ

)
. (10.77)

Since x ≡δ z, we see then that each of the components of the vector x+ z +
(y+w)δ and x− z+ (y−w)δ are divisible by δ. As furthermore

√
2 is δ2 up

to some unit ω−1λ, we see then that

H|ψ⟩ = 1
δk

1
δ2

(
a′δ

b′δ

)
= 1

δk+1

(
a′

b′

)
(10.78)

for some numbers a′ and b′. Applying a Hadamard can hence only increase
the lde by at most 1. So if we got some state |ψ⟩ with lde k, then we know
the circuit building it must contain at least k Hadamards. But our synthesis
algorithm requires at most k Hadamards to synthesise it. Hence the lde is
exactly equal to the optimal number of Hadamards needed to synthesise it.
Or, well, this is almost true, because our argument above only holds if k > 0.
If we have k = 0, so that |ψ⟩ is a unit vector up to some phase, applying
a Hadamard increases the lde by 2. So the number of Hadamards is k − 1.
This is actually what our synthesis algorithm above also finds if we were
to analyse it a bit more carefully, because it turns out that there are no
normalised vectors that have lde 1, so that in Eq. (10.72) our lde would
actually reduce by 2 if we had k = 2 to start with.

Exercise 10.16 Prove that there are no normalised vectors that have lde 1.
Hint: This corresponds to showing that there are no vectors |u⟩ ∈ Z[ω]N for
which ⟨u|u⟩ = δδ = 2 +

√
2. Now use Eq. (10.2) for the component norms

|ui|2, and argue that the only possible solution to
∑
i|ui|2 = 2 +

√
2 is the

one where there is a single non-zero component which is in fact divisible by
δ.

To conclude we hence see that if we have a vector with lde k, then our
synthesis algorithm requires an optimal number of k − 1 Hadamards to
synthesise it, and up to k T gates. This last part is because we can have a
T gate after every Hadamard, but we can also have one appear before the
first one.

484 Clifford+T

10.7.3 Approximate single-qubit Clifford+T synthesis*

In Section 10.1.2 we hinted at how we can do approximate synthesis of
arbitrary single-qubit unitaries using a Clifford+T circuit. In this section we
will fill in some more details on how this works, though some parts are a bit
too technical even for this advanced section, and so we will just refer to the
References for details on how to do that.

So we have some arbitrary single-qubit unitary we want to approximate
using Clifford+T gates. First we recall that any single-qubit unitary can
be written as Z(α)X(β)Z(γ) for some phases α, β, γ. Additionally, X(β) =
HZ(β)H, so if we know how to synthesise Z(α) gates, then we can synthesise
arbitrary single-qubit unitaries.

Let’s assume then that our goal is to approximate a Z(α) gate for some
arbitrary α using just single-qubit Clifford+T gates. First, it will be useful
to work with matrices that have determinant 1, so we write our Z(α) and
our approximating unitary U as follows:

Z(α) =
(
e−iα/2 0

0 eiα/2

)
U = 1

√
2k

(
u −t
t u

)
(10.79)

Here u, t ∈ Z[ω]. Note this this means our definition of Z(α) is different from
the one we have been using in this book by a global phase. Note also that we
wrote our approximation unitary with a factor of 1√

2k in front of it, instead
of a power of δ. This turns out to be nicer for this algorithm.

We will fix an error budget ϵ ∈ R, and require ∥U − Z(α)∥ < ϵ. If we
found a U with this property, then we know how to synthesise it using the
algorithm we described in the previous section, and this synthesis will have
an optimal number of Hadamards and T gates, given the lde k. So our goal
then is to find a U within ϵ of Z(α), with as low a k as possible. Given that
we know how to determine whether a solution exists for a given k, we can
find the optimal value of k by just starting low and increasing it until we
find a solution. Since k won’t be too big (it will be O(log 1/ϵ)), this will still
be efficient. We can hence assume that k and ϵ are fixed, and then we need
to determine whether a solution exists, and if it does, what this solution is.
In practice the finding of the solution will also tell us whether there is a
solution, so we will focus on that.

Our goal then is to find a U as in Eq. (10.79) for some given k and α, such
that ∥U − Z(α)∥ < ϵ for some given ϵ. In order to help us do that, we need
to have a more concrete description of the norm ∥U −Z(α)∥ in terms of the
matrix elements.

10.7 Advanced Material* 485

Lemma 10.7.9 Let un = 1√
2ku and tn = 1√

2k t be the normalised versions

of u and t, and define z = e−iα/2. Then:

∥U − Z(α)∥2 = |un − z|2 + |tn|2

Proof Note first that ∥U−Z(α)∥ = ∥I−U †Z(α)∥ by the unitary invariance
of the operator norm. Now, U †Z(α) is unitary, and hence has two eigenvectors
|ϕj⟩ with eigenvalues eiαj . Because U and Z(α) both have determinant 1 we
have 1 = det(U †Z(α)) = eiα1eiα2 , and hence setting α := α1 we necessarily
have α2 = −α. The eigenvectors of U †Z(α) are also eigenvectors of I−U †Z(α)
and have eigenvalue 1 − e±iα, so that ∥I − U †Z(α)∥ = |1 − eiα|.

Recall that the Hilbert-Schmidt norm of a matrix A is given by ∥A∥2
HS :=∑

j∥A|ψj⟩∥2 =
∑
j⟨ψj |A†A|ψj⟩ where the {|ψj⟩} form an orthonormal basis.

It is a standard exercise in linear algebra to show that the Hilbert-Schmidt
norm is independent of choice of orthonormal basis. Choosing the eigenbasis
of U †Z(α) we see that ∥I − U †Z(α)∥2

HS = 2|1 − eiα|2 = 2∥I − U †Z(α)∥2, as
both eigenvalues have equal magnitude.

Instead picking |0⟩, |1⟩ for our orthonormal basis, we calculate that ∥U −
Z(α)∥2

HS = 2|un − z|2 + 2|tn|2 by just evaluating the matrices.
Putting these different expressions for the norm together, we calculate:

∥U − Z(α)∥2 = ∥I − U †Z(α)∥2 = 1
2∥I − U †Z(α)∥2

HS

= 1
2∥U − Z(α)∥2

HS = |un − z|2 + |tn|2

Now, using the fact that unun + tntn = 1 and zz = 1, we can expand
|un − z|2 + |tn|2 further and simplify some more:

|un − z|2 + |tn|2 = (un − z)(un − z) + tntn

= unun − unz − zun + zz + tntn

= 2 − 2ℜ(zun).

Here ℜ(zun) denotes the real part of the complex number zun. So if U
is a solution to our approximation problem, then 2 − 2ℜ(zun) ≤ ϵ2, or
equivalently ℜ(zun) ≥ 1 − ϵ2

2 . Interestingly, this does not depend on tn, but
only un. Furthermore, if we write un = a+ bi and z = x+ yi, then we can
interpret them as 2-dimensional real vectors u⃗n = (a, b) and z⃗ = (x, y), and
then ℜ(zun) = u⃗n · z⃗ is just a dot-product.

We hence want to solve the following problem: given a 2-dimensional real
unit-vector z⃗, find a subnormalised vector u⃗n = (a, b), such that u⃗n·z⃗ ≥ 1− ϵ2

2 ,
where a, b ∈ Z[1√

2] and we allow some maximal power of 1√
2 depending on

k. We call this a grid problem, because we have some target region, the

486 Clifford+T

vectors whose inner product with z⃗ is very close to 1, and a grid of points,
given by Z[1√

2]2, and we want to find a point on this grid that is in the
target region. It turns out that this problem is efficiently solvable, although
describing in full how to do so is quite lengthy (see the References of this
chapter).

So let’s suppose that we can solve the grid problem, and hence that we
get a u⃗n satisfying u⃗n · z⃗ ≥ 1 − ϵ2

2 . This then gives us the candidate u we are
looking for. But we then still need to find a t, so that the matrix U defined
as in Eq. (10.79) is in fact unitary. The only equation we need to satisfy for
this matrix to be unitary is |u|2 + |t|2 = 2k, as this means that the columns
of the matrix correspond to normalised vectors. We know the expression
for a norm for an element in Z[ω], this is namely given by Eq. (10.2): for
z = aω3 + bω2 + cω + d we have

|z|2 = zz = (a2 + b2 + c2 + d2) + (cd+ bc+ ab− da)
√

2.

Rewriting the equation |u|2 + |t|2 = 2k to isolate our unknown t we get
|t|2 = 2k − |u|2. But this right-hand side will now be some ζ = x + y

√
2

for integers x, y. Writing t = aω3 + bω2 + cω + d, we can also expand the
left-hand side. We then have a part of the equation that results in an integer,
and a different part that results in an integer multiple of

√
2. These need

to be independently satisfied, so that we can split the equation up into two
parts:

a2 + b2 + c2 + d2 = x

ab+ bc+ cd− da = y

This is a pair of quadratic equations over the integers, and is hence a special
case of a Diophantine equation. While these are in general hard to solve,
in this particular case it turns out that a large proportion of them are fast
to solve. So in practice, we can try a bunch of candidates until we find one
for which our solution strategy works.

Once the details about solving the grid problem and this Diophantine
equation are filled in, this gives an algorithm that gives an approximation
of the phase gate Z(α) using Clifford+T gates that uses an optimal number
of Hadamard and T gates. The length of the circuit scales quite well with
the desired precision. For instance, we can approximate Z(π/128) to within
ϵ = 10−10 with a circuit containing 102 T gates.

This algorithm turns out to be both efficient and optimal. However, this
optimality guarantee only applies when we restrict to unitary ancilla-free
circuits. If we allow ancillae, measurements or classical control it is possible

10.7 Advanced Material* 487

to do better by some constant factors. The optimal number in the unitary
ancilla-free case scales as 3 log2(1/ϵ) + C for some small constant C, while
the best known protocol when we allow measurements and classical control
scales as 1

2 log2(1/ϵ) + C ′ (see the References of this chapter).

10.7.4 Computational universality of Toffoli-Hadamard*

In this section we will show that the set of real-valued unitaries, i.e. where
all matrix entries are real numbers, is computationally universal. Then we
will show that in fact the restriction to just Toffoli and Hadamard is already
computationally universal.

First, obviously real-valued unitaries are not approximately universal as we
can never approximate any complex-valued unitary (like the S gate). But as
we saw in Section 10.5.2 for a different gate set, it turns out we can ‘simulate’
complex-valued unitaries using a real-valued one on a larger set of qubits.

For a (complex-valued) n-qubit unitary U , let ℜ(U) be the real part of
U . That is: ℜ(U)ij = ℜ(Uij). Similarly define the complex part ℑ(U). Then
U = ℜ(U) + iℑ(U). Now define the (n+ 1)-qubit unitary Ũ via

Ũ(|0⟩ ⊗ |ψ⟩) := |0⟩ ⊗ (ℜ(U)|ψ⟩) + |1⟩ ⊗ (ℑ(U)|ψ⟩)
Ũ(|1⟩ ⊗ |ψ⟩) := −|0⟩ ⊗ (ℑ(U)|ψ⟩) + |1⟩ ⊗ (ℜ(U)|ψ⟩)

While it is clear that Ũ is real-valued, it is not immediately obvious that
it is unitary.

Exercise 10.17 In this exercise we will show that Ũ is indeed unitary for
any choice of U .

a) Express ℜ(U †) and ℑ(U †) in terms of ℜ(U) and ℑ(U).
b) Express ℜ(UV) and ℑ(UV) in terms of ℜ(U), ℜ(V), ℑ(U) and ℑ(V).
c) Show that ((⟨0| ⊗ ⟨ψ|)Ũ †)(Ũ(|0⟩ ⊗ |ψ′⟩)) = ⟨ψ|ψ′⟩. Hint: You will need

ℜ(U †U) = ℜ(I) = I.
d) Show that ((⟨0|⊗⟨ψ|)Ũ †)(Ũ(|1⟩⊗|ψ′⟩)) = 0. Hint: You will need ℑ(U †U) =

ℑ(I) = 0.
e) Conclude that Ũ is indeed unitary.

Solution: .

a) ℜ(U †) = ℜ(U)†. ℑ(U †) = −ℑ(U)†.
b) ℜ(UV) = ℜ(U)ℜ(V) − ℑ(U)ℑ(V). ℑ(UV) = ℜ(U)ℑ(V) + ℑ(U)ℜ(V).

488 Clifford+T

c) First note that (⟨0| ⊗ ⟨ψ|)Ũ † = (Ũ(|0⟩ ⊗ |ψ⟩))† = ⟨0| ⊗ (⟨(|ψ)ℜ(U †)) −
⟨1| ⊗ (⟨ψ|ℑ(U †)). Hence, using ⟨0|1⟩ = 0 the inner product reduces to
⟨ψ|ℜ(U †)ℜ(U)|ψ′⟩−⟨ψ|ℑ(U †)ℑ(U)|ψ′⟩ = ⟨ψ|(ℜ(U †)ℜ(U)−ℑ(U †)ℑ(U))|ψ′⟩ =
⟨ψ|ℜ(U †U)|ψ′⟩ = ⟨ψ|ℜ(I)|ψ′⟩ = ⟨ψ|ψ′⟩.

d) Similar to the above.
e) Let |ψk⟩ form an orthogonal basis of n-qubit state space. The above two

points show that Ũ preserves the orthogonality of {|ψk⟩ ⊗ |0⟩, |ψk⟩ ⊗ |1⟩}.
Hence, since it sends an orthogonal basis to an orthogonal basis, it is
unitary.

End Solution .
The encoding into Ũ is also compositional, meaning we can apply it itera-

tively to a sequence of unitaries.

Exercise 10.18 Show that ŨV = Ũ Ṽ . Hint: Use a case distinction on
input states |0⟩ ⊗ |ψ⟩⊗ and |1⟩ ⊗ |ψ⟩.

Note that this construction is in fact an example of catalysis, as:

Ũ

...
...

−π
2

= U
...

...

−π
2

(10.80)

Exercise 10.19 Prove Eq. (10.80).

We can however not use the argument of Section 10.5.2 to use this to
show real-valued unitaries are computationally universal as there is no way
to write the |−S⟩⟨−S| catalyst state in terms of states that can be prepared
by real-valued unitaries. We can however use a different argument to prove
computational universality.

Proposition 10.7.10 Real-valued unitaries are computationally universal.

Proof Suppose C is an n-qubit circuit built out of unitaries as C = U1 · · ·Uk.
We then build the real-valued (n+1)-qubit circuit C̃ by C̃ = Ũ1 · · · Ũk. Then
note that:

(⟨0| ⊗ ⟨ψ|)C̃(|0⟩ ⊗ |ψ′⟩) = ⟨ψ|ℜ(C)|ψ′⟩
(⟨1| ⊗ ⟨ψ|)C̃(|0⟩ ⊗ |ψ′⟩) = ⟨ψ|ℑ(C)|ψ′⟩.

Hence, if we input |0⟩ ⊗ |ψ′⟩ into C̃ and do a measurement marginalising
over the first qubit we also get the probabilities:∑

x=0,1
|⟨x, ψ|C̃|0, ψ′⟩|2 = |⟨ψ|ℜ(C)|ψ′⟩|2 + |⟨ψ|ℑ(C)|ψ′⟩|2.

10.7 Advanced Material* 489

Now, we can also, with some effort, calculate that |⟨ψ|C|ψ′⟩|2 = |⟨ψ|ℜ(C)|ψ′⟩|2+
|⟨ψ|ℑ(C)|ψ′⟩|2. Hence, the probability distribution we get for C is the same
as that for C̃ when we prepare the first qubit in the |0⟩ state and ignore its
measurement outcome.

Because we can simulate complex-valued quantum circuits using real-
valued unitaries in this direct manner, we don’t need all the real-valued
unitaries. Given some approximately universal gate set G we only need to
be able to represent Ũ for U ∈ G.

For instance, let’s take the Clifford+T gate set G = {T,H,CNOT}. Now,
H and CNOT are already real-valued, and it is easy to see that Ũ = I ⊗ U

if U is real-valued, so that it remains to see what gates we need for T̃ .
Calculating its matrix, we see that it is

T̃ =

1 0 0 0
0 1√

2 0 − 1√
2

0 0 1 0
0 1√

2 0 1√
2

 .
It is straightforward to verify that this is equal to:

T̃
H

=
Z (10.81)

We can construct the CZ gate using H and CNOT so that we only addition-
ally need the controlled-Hadamard gate.

Proposition 10.7.11 The gate set {CNOT,CH} is computationally uni-
versal.

Proof We can use an ancilla in the |1⟩ state and a CH gate to create the
Hadamard. Using Hadamard and CNOT we can construct the CZ gate.
We can hence represent T̃ , H̃ = I ⊗ H and ˜CNOT = I ⊗ CNOT. Since
{T,H,CNOT} is approximately universal, this means that we can use the
{X,CNOT,CH} gate set to arbitrarily closely simulate any unitary.

The controlled-Hadamard is a bit of an arbitrary choice of gate. It turns
out that the gate set of Hadamard and Toffoli is also computationally uni-
versal. This is a very pleasing result, because the Toffoli gate is universal for
reversible classical computing, while the Hadamard gate is the single-qubit
Fourier transform. So this in a way shows that the extra power of quantum
computing comes from having access to this Fourier transform. The way we
prove its computational universality, is by showing that Toffoli-Hadamard

490 Clifford+T

‘simulates’ the CS-Hadamard gate set, which we know is computationally
universal by Proposition 10.5.1.

The real-valued encoding C̃S of the CS gate is equivalent to a Toffoli up
to some swaps. With the Hadamard we just get H̃ = I ⊗ H. Hence, when
we encode the CS+Hadamard gate set, we get the Toffoli+Hadamard gate
set. We can hence do the following: starting with a Clifford+T computation,
we write it as an ensemble of CS+Hadamard circuits. We then encode each
of these circuits into a real-valued Toffoli+Hadamard circuit. By doing this
we can efficiently simulate the original Clifford+T circuit. We see then that
Toffoli+Hadamard circuits are also computationally universal.

Theorem 10.7.12 The Toffoli+Hadamard gate set is computationally
universal.

So just using Hadamard gates and Toffoli gates we can simulate any
quantum computation to any desired precision.

The computational universality of real-valued quantum computing has
an interesting philosophical consequence. One could wonder why quantum
mechanics uses complex numbers. Why not just stick to regular old real
numbers? The results of this section show that one plausible answer is in
any case not a solution: we don’t need the complex numbers to reach a
certain computational complexity, as we could have done the same with real
numbers.

10.8 References and further reading
Exact Clifford+T synthesis That unitaries over the ring D[ω] can be exactly
synthesised over the Clifford+T gate set was proved in Giles and Selinger
(2013). The presentation we use here was originally given in Seth Greylyn’s
Master thesis (Greylyn, 2014).

Approximating unitaries with Clifford+T gates The first paper to give an ef-
ficient algorithm for approximating single-qubit phase gates with Clifford+T
gates was given in Selinger (2015), which found a T-count complexity of
4 log2(1/ϵ). This was improved to the optimal 3 log2(1/ϵ) in Ross and Selinger
(2016). A good reference for reading about the improvements made to ap-
proximate Clifford+T synthesis by incorporating ancillae, measurements and
classical control is Kliuchnikov et al. (2023).

Spider nests That a 4-qubit phase gadget can be decomposed into the col-
lection of all phase gadgets with at most 3 legs first appeared in Amy et al.

10.8 References and further reading 491

(2018), which hence gives the first appearance of a spider nest identity. The
name ‘spider nest’ was coined in de Beaudrap et al. (2020c) which also de-
scribed the optimisation technique based on toggling gadgets based on small
spider nest identities. The notion of a strongly 3-even matrix was introduced
in Bravyi and Haah (2012). The relation between strongly 3-even matrices
and T -count optimisation seems to have been folklore for a number of years
as the strongly 3-even matrices were mostly used in the context of quan-
tum error correcting codes to understand when a code has a transversal T
gate (we will have a lot more to say about all that in the next chapter).
The relation between strongly 3-even matrices and spider-nest identities was
formally spelled out in Kissinger and van de Wetering (2024). In Amy and
Mosca (2019) it was shown that phase gadgets with dyadic angles are the
only gadgets that allow non-trivial identities. If we for instance have gad-
gets with phases that are multiples of π

3 , then the only way they can cancel
out is if they do so in the trivial way where the gadgets fuse together. See
also van de Wetering et al. (2024) where they show that in certain settings
the only optimisation we can do to ‘black-box’ non-Clifford phases is to fuse
them.

T-count optimisation The idea to use small spider nests to optimise T -count
was introduced in de Beaudrap et al. (2020c) and later improved upon in
followup work by the same authors (de Beaudrap et al., 2020a). The relation-
ship between T-count optimisation and Reed-Muller codes was established
in Amy and Mosca (2019) and the relation to symmetric 3-tensor factorisa-
tion in Heyfron and Campbell (2018). It is the representation as a symmetric
3-tensor that is currently the leading approach in T-count optimisation, with
the current best methods being Ruiz et al. (2024); Vandaele (2024). The
NP-hardness of T-count optimisation was established in van de Wetering
and Amy (2024).

Scalable ZX The scalable ZX-calculus was formally introduced in Carette
et al. (2019), though many of the new features appeared in an informal way
in an earlier preprint Chancellor et al. (2016). The CNOT+T completeness
in scalable ZX of the Clifford rules plus the (S4) rule appeared in Kissinger
and van de Wetering (2024). Note that Clifford+(S4) is not complete for
the full fragment of ZX-diagrams where the phases are multiples of π

4 . This
is because (S4) preserves the same invariant that was used in Perdrix and
Wang (2016) to argue that the Clifford rules are incomplete for the universal
fragment of ZX-diagrams. In Jeandel et al. (2018) a complete rule set for
ZX-diagrams with π

4 phases was given.

492 Clifford+T

Catalysis The CCZ to 2 |T ⟩ catalysis was first described in Gidney and
Fowler (2019), while the T -CS catalysis seems to be more of a folklore
result. The idea of using catalysis to relate different gate sets was introduced
in Amy et al. (2023). The synthesis of small phase gates using an adder and
measurement-based uncomputation was described in Gidney (2018). The
relation between catalysis, computational universality and completeness was
studied by the authors of this book in Kissinger et al. (2024). This paper
serves as the basis for Section 10.5.

Toffoli-Hadamard universality The original proof that Toffoli+Hadamard is
computational universal is given in Shi (2002) (this also seems to be the paper
that coined the term ‘computational universality’). This actually shows this
property for a wider set of gates. Namely, if you have a Toffoli gate and any
non-computational-basis-preserving gate, then this will lie dense in the group
of special orthogonal matrices. A simpler proof of Toffoli+H universality,
which is what we use, is given in Aharonov (2003), which also used the term
‘computational universality’. They show this easily by establishing that the
gate set consisting of the controlled-S gate and the Hadamard gate maps to
the Toffoli+Hadamard gate set. The approximate universality of the CS+H
gate set was shown in (Kitaev, 1997, Lemma 4.6 on p. 1213). Kitaev proves
this using a ‘geometric lemma’ that adding a gate to a set of gates that
stabilises a given state creates a larger-dimensional space of gates. This
proof is not constructive. He then proves his Solovay-Kitaev algorithm to
show how you would do it constructively (that proof only requires that the
set of gates does in fact lie dense in the group). Note that what he calls S is
the Hadamard gate, and K is the S gate. In this book we instead show that
CS+H is ‘just’ computationally universal, as this follows much more directly
using catalysis. This proof originally appeared in Kissinger et al. (2024).

11
Quantum error correction

Classical error correction is ubiquitous in modern computing. The basic
idea is to pad out a message we want to send with some extra redundant
data, which give us enough info to recover the original message as long as
no (catastrophically bad) errors occurred. In the 1990s, people started to
notice that many of the same concepts could be applied to quantum data.
Namely, by encoding some qubits into a higher-dimensional system and
making careful choices of measurements, we can often detect whether errors
occurred and even correct them (again if they are not too bad).

One of the key ideas behind quantum error correction is identifying analo-
gous notions between classical, linear, error correction and stabiliser theory.
We have already seen in previous chapters that there are several deep connec-
tions between stabiliser (i.e. Clifford) states and F2-linear structures, and it
just so happens that F2-linear structures are the bread and butter of classical
error correction. In this chapter, we will start to cash out these connections
and show how quantum error correction can be done in a way that is, in
many ways, similar to its classical counterpart.

For example, if I want to send you three bits, (x, y, z) and actually I
send you six bits (x, y, z, x⊕ y, y ⊕ z, x⊕ z), then I can always recover the
original message even if one of these six bits gets flipped. In this simple
example, we encode our message (an element of F3

2) into a 3D subspace
S = {(x, y, z, x ⊕ y, y ⊕ z, x ⊕ z) |x, y, z,∈ F2} of F6

2 called the codespace.
If a single error occurs in such an encoded bit string, it leaves the codespace,
so we can detect it just by checking if the last three bits are indeed the
correct parities of the first three. Furthermore, there is at most 1 element
in the codespace that is within 1 bit flip of any string of six bits, so we
can actually correct a single error. Hence, a major aspect of designing good
error correcting codes is finding particular subspaces of Fn2 that have nice
properties like this, as we’ll discuss in Section 11.1.

494 Quantum error correction

Quantum error correcting codes can be defined as subspaces of (C2)⊗n , the
space of n qubits, which have analogous nice properties. Unlike the classical
case, these are going to be huge C-linear subspaces, namely 2k-dimensional
subspaces of the 2n-dimensional space (C2)⊗n . As a result, it is not practical
to work with these spaces explicitly (e.g by enumerating a spanning set of
vectors). However, as we have already seen in Chapter 6, stabiliser theory
gives us a powerful tool for efficiently representing complicated subspaces
of (C2)⊗n. Thanks to the Fundamental Theorem of Stabiliser Theory,
we can fix a 2k-dimensional stabiliser subspace of (C2)⊗n by giving n − k

independent generators of the stabiliser group.
[TODO: introduce the concept of encoders and ftqc]

11.1 Classical codes and parameters
Let’s look again at the codespace

S := {(x, y, z, x⊕ y, y ⊕ z, x⊕ z) |x, y, z,∈ F2} ⊆ F6
2 (11.1)

We claimed before that S can correct a single error. That is, if I start
with a vector in S and flip 1 bit, this vector will no longer be in S, and
furthermore, there is a unique vector in S that is one bit-flip way. For example,
if I receive the string: (1, 1, 0, 0, 0, 0), I can tell there is an error somewhere,
since x = y = 1 and z = 0, but x ⊕ z = y ⊕ z = 0. It could be that either
my first 3 data bits are wrong, or it could be that the parity bits are wrong.
However, there is only one way to satisfy all the parities by flipping a single
bit, namely setting z := 1. Similarly, if I look at a string (0, 0, 1, 0, 1, 0), the
only possibility for a single-bit error is that the final parity bit x⊕ z = 0 is
wrong.

Since S is a linear subspace, it turns out we can succinctly capture the
property of being able to detect any of some family of errors (e.g. single
bit-flips) and to correct those errors in a single concept called code distance.

Definition 11.1.1 For a linear subspace S ⊆ Fn2 , the code distance of S
is the smallest non-zero Hamming weight of a vector in S.

Suppose we could flip a single bit of a vector v⃗ ∈ S and obtain another
vector w⃗ ∈ S. Then, their sum v⃗⊕ w⃗ is also in S, and it would just be a unit
vector consisting of a single 1 in the location of the flipped bit, e.g.

(1, 0, 1, 1) ⊕ (1, 1, 1, 1) = (0, 1, 0, 0)

The same applies if we flip d bits: the sum will have 1’s in precisely the
locations of the flipped bits. So, saying that flipping d bits leaves S is the

11.1 Classical codes and parameters 495

same thing as saying there is no vector in S with Hamming weight d. In
other words, a space S with code distance d can detect any amount of errors
strictly less than d.

It is also the case that being able to correct a given number of errors can
be stated in terms of the code distance. We noted before that the code S in
(11.1) has the property that, if we take any vector v⃗ ∈ S and flip a single bit,
there is no other vector w⃗ ∈ S that is a single bit-flip away. In other words,
there are no two vectors v⃗, w⃗ ∈ S that are two bit-flips apart, or equivalently,
S has a code distance of (at least) 3. In fact, the code distance is exactly 3,
which we can see by enumerating all 8 vectors in this 3D subspace:

S =

0
0
0
0
0
0

,

0
0
1
0
1
1

,

0
1
0
1
1
0

,

0
1
1
1
0
1

,

1
0
0
1
0
1

,

1
0
1
1
1
0

,

1
1
0
0
1
1

,

1
1
1
0
0
0

and noting that all the non-zero vectors have Hamming weight 3 or more.
This is a general feature: any code with distance d = 2e + 1 can always
correct an error consisting of at most e bit flips.

To move toward the quantum analogue of classical linear codes, we can
proceed by thinking of stabiliser measurements as analogous to classical
parity checks. As we already mentioned, for classical codes, we can very
quickly check whether v⃗ ∈ S by taking XORs of certain bits. For the code
S in (11.1), then (v1, v2, v3, v4, v5, v6) is in S precisely when the following
linear equations are satisfied:

v1 ⊕ v2 ⊕ v4 = 0
v2 ⊕ v3 ⊕ v5 = 0
v1 ⊕ v3 ⊕ v6 = 0

As we saw in Chapter 4, given a system of homogeneous F2-linear equations
fixing a linear subspace S essentially the same as giving a spanning set for
S⊥. In this case, this is:

S⊥ = Span

1
1
0
1
0
0

,

0
1
1
0
1
0

,

0
1
1
0
0
1

496 Quantum error correction

To check v⃗ ∈ S, it suffices to check w⃗Ti v⃗ = 0 for each of the basis vectors
w⃗i of S⊥. If this holds, then we can be sure no error of weight < d has
occurred. If w⃗Ti v⃗ = 1, this is called a syndrome, because it indicates that
there is an error somewhere in v⃗.

11.2 Quantum stabiliser codes
In this section, we’ll expand on the analogy between parity checks and sta-
biliser measurements, and show how to define the notion of code distance
for a stabiliser subspace. Fix a stabiliser group S = ⟨P⃗1, . . . , P⃗m⟩ with asso-
ciated stabiliser subspace S ⊆ (C2)⊗n. Since we can use stabiliser subspaces
to correct errors, we will from henceforth use the terms stabiliser subspace
and stabiliser code interchangeably. This is analogous to the classical case,
where we referred to subspaces of Fn2 as codes.

Thanks to the Fundamental Theorem of Stabiliser Theory from Chapter 6,
we know that S is 2k-dimensional, for k := n − m. Hence, we can think of
the stabiliser subspace as encoding k logical qubits in n physical qubits.
This gives us quantum analogues to the parameters n and k from classical
codes. To build up to the notion of code distance, let’s have a look at how
we can use S to detect and correct errors.

We can treat the generators of S as “quantum parity checks” in a very
specific way. If we measure an arbitrary state |ψ⟩ ∈ (C2)⊗n with one of
stabiliser generators, we can compute the Born rule probability as:

Prob(sj | |ψ⟩) = ⟨ψ|Π(sj)
P⃗j

|ψ⟩ =:
P⃗..

.

..
.

sjπ
1√
2

ψ ψ

If we restrict to the case where |ψ⟩ ∈ S, then P⃗j |ψ⟩ = |ψ⟩, then by
Proposition 6.2.2 we know Π(0)

P⃗j
|ψ⟩ = |ψ⟩. Hence:

Prob(0 | |ψ⟩) =
P⃗..

.

..
.

1√
2

ψ ψ = ..
.ψ ψ = 1

So, we will always get outcome sj = 0 if no error occurred on |ψ⟩. From this,

11.2 Quantum stabiliser codes 497

we can also conclude that we’ll never get outcome sj = 1:

Prob(1 | |ψ⟩) =
P⃗..

.

..
.

π
1√
2

ψ ψ = 0

Now, suppose an error does occur on |ψ⟩. For simplicity, we’ll initially
assume that this error takes the form of a self-adjoint Pauli string Q⃗. In
Section 11.2.2, we’ll show that arbitrary errors can be reduced to this case.
Namely, if we can detect/correct Pauli errors, then we can detect/correct
arbitrary errors.

There are two possibilities, either the error commutes with P⃗ or it anti-
commutes with P⃗ . These two possibilities translate into the following com-
mutation rule with respect to the Pauli box P⃗ .

Exercise 11.1 Show that:

P⃗..
.

..
.

Q⃗ ..
. = P⃗ ..
.

..
.

Q⃗..
.

kπ

where k = 0 if P⃗ Q⃗ = Q⃗P⃗ and k = 1 if P⃗ Q⃗ = −Q⃗P⃗ .

As a consequence of Exercise 11.1, if a commuting error Q⃗ happens to |ψ⟩,
the outcome of measuring P⃗j is unaffected:

P⃗..
.

sjπ
1√
2

ψ ψQ⃗ ..
.

..
.

Q⃗ ..
. = P⃗..
.

sjπ
1√
2

ψ ψQ⃗..
.

..
.

Q⃗ ..
. = P⃗..
.

sjπ
1√
2

ψ ψ..
.

So, Prob(sj | Q⃗|ψ⟩) = Prob(sj | Q⃗|ψ⟩). Hence, we’ll again get outcome sj = 0
with certainty. However, if Q⃗ anti-commutes with P⃗j , it kicks a π up into
the measurement outcome, so the probabilities flip:

P⃗..
.

sjπ
1√
2

ψ ψQ⃗ ..
.

..
.

Q⃗ ..
. = P⃗..
.

(sj + 1)π
1√
2

ψ ψQ⃗..
.

..
.

Q⃗ ..
. = P⃗..
.

(sj + 1)π
1√
2

ψ ψ..
.

498 Quantum error correction

Hence, we’ll get outcome sj = 1 with certainty.
We can measure all m stabilisers generating S. Since all of the stabilis-

ers commute, we can either think of doing each of these measurements in
sequence (where the order doesn’t matter), or equivalently, doing one big
measurement whose outcome is given by:

Prob(s1, . . . , sm | |ψ⟩) =
P⃗1..

. ...

s1π
1√
2

ψ ψP⃗m ..
.

smπ
1√
2

P⃗2..
.

s2π
1√
2

...

If |ψ⟩ is of the form Q⃗|ϕ⟩ for some state |ϕ⟩ in the stabiliser subspace
and some (possibly trivial) Pauli error Q⃗, this will yield some particular
bitstring of outcomes with certainty. If Q⃗ = I, the outcome will always be
(s1, . . . , sm) = (0, . . . , 0). Hence, each time sj = 1, this indicates that (1)
some non-trivial error Q⃗ has occurred, and (2) that error anti-commutes
with the j-th stabiliser P⃗j . By analogy to the classical case, this vector of
measurement outcomes is called the syndrome.

If we are lucky, this syndrome will provide us with enough information
to send |ψ⟩ back to the error free state |ϕ⟩. For example, if it uniquely fixes
the Pauli string Q⃗, that is definitely good enough, because we can then just
apply Q⃗ again to get Q⃗|ψ⟩ = Q⃗2|ϕ⟩ = |ϕ⟩. However, we don’t even need to
hit Q⃗ on-the-nose, because if we correct |ψ⟩ with some Q⃗′ that is the product
of Q⃗ and some stabiliser S⃗ ∈ S, we get:

Q⃗′|ψ⟩ = Q⃗S⃗Q⃗|ϕ⟩ ∝ Q⃗2S⃗|ϕ⟩ = S⃗|ϕ⟩ = |ϕ⟩

So, we again recover the state |ϕ⟩, possibly up to an irrelevant global phase.
Lets see how this works by means of a simple example. Consider the

following stabiliser group on three qubits:

S = ⟨Z⃗1 = Z ⊗ Z ⊗ I, Z⃗2 = I ⊗ Z ⊗ Z⟩

S has two independent stabilisers, so dim(Stab(S)) = 23−2 = 2. Hence, this
code, called the GHZ code encodes one qubit into three. Fixing a basis for
Stab(S), we have

Stab(S) = Span{|000⟩, |111⟩}

For the following discussion, it will be conventient to write Stab(S) as the
image of a map from one qubit into three qubits, called the encoder of S.
We will say more about encoders in the following sections, including how to

11.2 Quantum stabiliser codes 499

build them from stabiliser codes. But for now, note that:

:: |i⟩ 7→ |iii⟩ (11.2)

It thus follows that:

Stab(S) = Im
()

Hence, we can write a generic state |Ψ⟩ ∈ Stab(S) as:

ψ

As before, we can look at the Born rule probabilities associated with
measuring the stabiliser generators Z⃗1 and Z⃗2. As was shown in Exercise 6.7,
all-Z and all-X Pauli projectors take a particularly simple form:

Π(k)
Z...Z =

..
.

kπ

Π(k)
X...X =

..
.

kπ

This generalises to Pauli strings formed just from Z and I (or just X and
I) by connecting the projector to just the subset of qubits were a Z (or X)
appears. For example, we have:

Π(k)
ZZI =

kπ

Π(k)
IZZ =

kπ

Applying Π(k)
ZZI to an encoded state:

ψ

kπ

= ψ

kπ

= ψ

kπ

= ψδ0,k

we see that, as expected:

ProbZZI
(
k

∣∣∣∣ ψ

)
= δ0,k

By symmetry, we see the same probabilities for measuring I ⊗ Z ⊗ Z. This
is consistent with what we saw before: measuring states in Stab(S) with the
generators of S will leave the states unchanged, and yield outcome 0 with
probability 1.

500 Quantum error correction

However, suppose we introduce an error to our encoded state, such as a ‘bit
flip’, i.e. a Pauli X applied to the first qubit. Since X ⊗ I ⊗ I anti-commutes
we Z ⊗ Z ⊗ I, we get:

ψ

kπ

= ψ

(k + 1)π

= = δ1,k

π π

ψ

(k + 1)π
π

ψ

π

Hence the Born rule probabilities are flipped:

ProbZZI
(
k

∣∣∣∣ ψ

π)
= δ1,k

so we obtain s1 = 1 for out first syndrome bit. On the other hand, if we
measure I ⊗ Z ⊗ Z instead, this commutes with X ⊗ I ⊗ I, so:

ψ

kπ

= ψ

kπ

= = δ0,k

π π

ψ

kπ
π

ψ

π

so we obtain outcome s2 = 0 for the second syndrome bit. By symmetry, it
is easy to check that each of the single bit-flip errors can be associated with
a unique syndrome:

X ⊗ I ⊗ I ↔ (s1, s2) = (1, 0)
I ⊗X ⊗ I ↔ (s1, s2) = (1, 1)
X ⊗ I ⊗ I ↔ (s1, s2) = (0, 1)

Hence, if any single bit-flip error occurs, we always know how to fix it. We
just need to measure the stabiliser generators and apply a Pauli X on the
correct qubit to cancel out the error.

Unfortunately, the GHZ code is not good enough to correct arbitrary single
qubit errors. Notably, if a Pauli Z error occurs on one of the qubits (which is
sometimes called a ‘phase-flip’ error), it commutes with all of the generators
of S. Hence, the syndrome will always be (0, 0), and we’ll have no idea that
the error even happened.

In this sense, the GHZ code is not very good at detecting or correcting
errors. By analogy to the classical case, this a distance-one code, meaning
that there are even single-qubit errors that can go undetected. In order to
understand what this means (and ultimately to find codes which can detect
and correct errors), we will now formalise the notion of code distance for
quantum stabiliser codes.

11.2 Quantum stabiliser codes 501

11.2.1 Code distance for stabiliser codes

We saw in Section 11.1 that we could quantify the number of detectable errors
using the classical code distance. We can do a similar thing for stabiliser
codes, where the following notion plays the role of the Hamming weight.

Definition 11.2.1 The weight |P⃗ | of a Pauli string P⃗ is the number of
non-identity Pauli operators that appear in P⃗ .

For example, the Pauli string X ⊗ Z ⊗ I has weight 2 and the identity
string always has weight 0.

Exercise 11.2 Show that we can bound the weight of a product of two
Pauli strings as follows:

|P⃗ Q⃗| ≤ |P⃗ | + |Q⃗|

Using this notion, we can quantify the number of detectable errors. Note
that an error produces a non-zero syndrome if and only if it anti-commutes
with at least one of the generators of the stabiliser group. So, to be unde-
tectable, it must commute with everything in S. Furthermore, we only care
about errors that actually mess up the states in our stabiliser subspace, so
we shouldn’t count elements of the stabiliser group itself as errors.

Definition 11.2.2 For a stabiliser group S, we define the distance of the
associated stabiliser code as the minimum weight d := |P⃗ | of a Pauli string
P⃗ /∈ S that commutes with every element in S.

Note that, since S is a subgroup, I ∈ S, so P⃗ must have non-zero weight.
Also, note that P⃗ commutes with everything in S if and only if it commutes
with each of the generators, so we can efficiently decide whether P⃗ commutes
with everything in S. However, like in the classical case, we cannot in general
compute the code distance efficiently, since we need to show that all Pauli
strings with |P⃗ | < d are either in S or anti-commute with something in S.

If a stabiliser code has distance d, it can detect any error with |Q⃗| < d. In
other words, it can detect up to d − 1 single-qubit errors. Similarly to the
classical case, it can also correct up to ⌊(d − 1)/2⌋ errors. More precisely,
errors Q⃗ with |Q⃗| ≤ ⌊(d− 1)/2⌋ are uniquely fixed, up to stabilisers.

Theorem 11.2.3 Suppose S = ⟨P⃗1, . . . , P⃗m⟩ defines a stabiliser code with
distance d. Then if two errors Q⃗1, Q⃗2 with |Q⃗i| ≤ ⌊(d− 1)/2⌋ yield the same
syndrome (s1, . . . , sm), then Q⃗1 = S⃗Q⃗2 for some S⃗ ∈ S.

Proof If sj = 0, then Q⃗1 and Q⃗2 both commute with the j-th stabiliser
generator P⃗j , whereas if sj = 1, then they both anti-commute with P⃗j . In

502 Quantum error correction

either case, the product Q⃗1Q⃗2 commutes with all of the generators of S. By
Exercise 11.2, we know |Q⃗1Q⃗2| ≤ |Q⃗1|+ |Q⃗2| ≤ 2⌊(d−1)/2⌋ ≤ d−1. Because
S has distance d, Q⃗1Q⃗2 equals some S⃗ ∈ S. Hence S⃗Q⃗2 = Q⃗1Q⃗

2
2 = Q⃗1.

So, as in the classical case, a quantum code can correct e errors if 2e+1 ≤ d.
Putting the three parameters together, we will write [[n, k, d]] to indicate a
quantum error correcting code that encodes k logical qubits in n physical
qubits, with code distance d.

Example 11.2.4 The following 7-qubit code is called the Steane code:

X⃗1 := X⊗I⊗I⊗I⊗X⊗X⊗X
X⃗2 := I⊗X⊗I⊗X⊗I⊗X⊗X
X⃗3 := I⊗I⊗X⊗X⊗X⊗I⊗X
Z⃗1 := Z⊗I⊗I⊗I⊗Z⊗Z⊗Z
Z⃗2 := I⊗Z⊗I⊗Z⊗I⊗Z⊗Z
Z⃗3 := I⊗I⊗Z⊗Z⊗Z⊗I⊗Z

Since it consists of 7 physical qubits and 6 stabiliser generators, it encodes
7−6 = 1 logical qubit. Any Pauli consisting of a Z on one or two qubits anti-
commutes with at least one of X⃗i generators, whereas any Pauli consisting of
X on one or two qubits anti-commutes with at least one of the Z⃗i generators.
Any Pauli string Q⃗ of weight ≤ 2 can be written as a product of an all-X
string of weight ≤ 2 and an all-Z string of weight ≤ 2. Hence Q⃗ must anti-
commute with some generator. On the other hand, I⊗ I⊗ I⊗Z⊗Z⊗Z⊗ I

commutes with all of the generators above and can’t be obtained as a product
of them. Hence, this code has a distance of 3, i.e. it is a [[7, 1, 3]] code.

If we don’t care about error correction and just want to be able to detect
an arbitrary weight-1 error, the following code will work.

Example 11.2.5 The following is a J4, 2, 2K error detecting code:

X⃗1 := X⊗X⊗X⊗X
Z⃗1 := Z⊗Z⊗Z⊗Z

Clearly any weight-1 Pauli will anti-commute with one of the two stabilisers
above, hence it detects a single error. Furthermore, since it has only 2
stabilisers for 4 physical qubits, it encodes 2 logical qubits.

In the last two examples, the codes were split into all-X and all-Z gener-
ators, which as we’ll see in Section 11.3 has some nice consequences which
make them easier to work with. However, if we drop this restriction, we can
find even smaller distance 3 codes.

11.2 Quantum stabiliser codes 503

Example 11.2.6 The following is a [[5, 1, 3]] code:

S⃗1 := X⊗Z⊗Z⊗X⊗I
S⃗2 := I⊗X⊗Z⊗Z⊗X
S⃗3 := X⊗I⊗X⊗Z⊗Z
S⃗4 := Z⊗X⊗I⊗X⊗Z

In the next section, we will see how the code distance enables us to detect
and correct not just Pauli errors, but a large class of errors.

Exercise 11.3 Consider the following encoder map, which is a “doubled
up” version of the GHZ encoder from the previous section:

(11.3)

It embeds 1 logical qubit into 9 physical qubits, so its image should have 8
stabilisers. What are they? What is the code distance?

11.2.2 Detecting and correcting quantum errors

A natural question arises when one first encounters quantum error correcting
codes: why the fixation on Pauli errors? In the classical case, it is quite natural
to focus on bit-flips (and sometimes bit-loss) as the only basic kinds of errors
we care about. Intuitively, these are the only kinds of errors that can occur
for classical data. However, there are many ways for a qubit to experience
an error, so why is it we can get away with just Pauli X, Y, and Z?

Indeed, quantum theory says that the physical processes that cause quan-
tum errors could act in infinitely many ways on our qubits, and even interact
our qubits with some external systems outside our control, introducing un-
wanted entanglement. To capture all such possibilities, a generic error can
be modelled as a unitary like this:

E..
.

..
.

C2

C2

H

n

where the first n qubits represent the system we are actually doing the
computation on, and the extra system H represents some environment that
those qubits might interact with when the error occurs.

504 Quantum error correction

The key trick at this point is to realise that the Pauli matrices I,X, Y, Z
span the whole 4D space of 2 × 2 matrices.

[TODO: this exercise could probably go much earlier]

Exercise 11.4 For a matrix:

M =
(
a b

c d

)

find complex numbers λi such that M = λ0I + λ1X + λ2Y + λ3Z.

Consequently, Pauli strings of length n span the whole space of 2n × 2n
matrices. Using this fact, we can decompose E as follows:

E..
.

..
.

P⃗..
.

..
.

DP⃗

∑

P⃗∈Pn

=

where DP⃗ : H → H is some linear map on the rest of the space that can
vary with P⃗ . We don’t expect to be able to correct all errors of this form.
For example, if E simply swapped all our qubits out into H and replaced
them with garbage from the environment, there is no way to recover. So, we
should put some kind of reasonable restriction on E . First, let’s split E into
two parts based on the weight of the Pauli strings:

E..
.

..
.

P⃗..
.

..
.

DP⃗

∑

P⃗ ,|P⃗ |<d

= +
P⃗..

.

..
.

DP⃗

∑

P⃗ ,|P⃗ |≥d

For reasonably well-behaved error processes, the second part of the sum
will get exponentially small as we increase d. So, in true physicist style, we
will just ignore it! This gives us the following pretty good approximation for
E :

E..
.

..
.

P⃗..
.

..
.

DP⃗

∑

P⃗ ,|P⃗ |<d
≈ (11.4)

This is a non-trivial assumption, which comes from the fact that we as-
sume the interference from the environment is relatively localised (cf. Re-
mark 11.2.7). An important consequence is that as d gets larger, the form
(11.4) gives us a better approximation of an arbitrary error process.

Remark 11.2.7 We can motivate the form of a “reasonably well-behaved”

11.2 Quantum stabiliser codes 505

error process (11.4), by considering only those that come from local interac-
tions with the environment. Recall from Section 7.5 that unitary evolutions
in quantum theory are generated by Hamiltonians, so we can write E = eitH

for some Hamiltonian H. Many physical interactions are well-approximated
by so-called K-local Hamiltonians, which are those H that can be written
as linear combinations of operators with weight at most K. Usually K is
small (e.g. 2), so terms of high weight in E all come from higher-order terms
in the Taylor expansion (i.e. terms with high j in equation (7.58) from Sec-
tion 7.5). When t is small, these terms get exponentially close to zero as we
increase j.

Let’s use this form of an error to talk about a single round of error
detection or correction. We’ll start by assuming that we can perform stabiliser
measurements perfectly (i.e. without introducing more errors). This is of
course not the case, as we’ll see when we discuss fault-tolerant measurements
in Section 11.4.2.

Fix a stabiliser code of distance d given by the stabiliser group S =
⟨P⃗1, . . . , P⃗m⟩. Suppose we start with a state |ψ⟩ ∈ Stab(S) at t0, then measure
the generators of S at t1. If we assume an arbitrary error of the form of
(11.4) could happen between t0 and t1, the resulting state, which depends on
the measurement outcomes s1, . . . , sm looks like this, up to normalisation:

E
P⃗1..

. ...

s1π

ψ P⃗m ..
.

smπ

P⃗2..
.

s2π ...

..
.

t0 t1

(11.5)

If we did not detect an error, this means we get outcome (s1, . . . , sm) =
(0, . . . , 0). In that case, the resulting state is the following:

E
P⃗1..

. ...ψ P⃗m ..
.

P⃗2..
.

...

..
.

t0 t1

(11.6)

506 Quantum error correction

From (11.4), we can expand E as a sum over Pauli strings P⃗ with |P⃗ | < d:

P⃗1..
. ...ψ P⃗m ..
.

P⃗2..
.

...

..
.

P⃗

DP⃗

∑

P⃗ ,|P⃗ |<d

(11.7)

Then, since S has distance d, all P⃗ are either elements of S or anti-commute
with at least one P⃗j ∈ S. However, terms in (11.4) corresponding to anti-
commuting Pauli strings vanish. To see this, note that stabiliser generators
all commute, so we can always move the projector corresponding to P⃗j to
the front of the list of projectors in (11.4). Then:

P⃗jψ P⃗ ∝ P⃗jψ P⃗P⃗j· · · · · ·
(∗)

= P⃗jψ P⃗ P⃗j

π

· · · = 0

where (∗) is using the fact that Π(0)
P⃗j

|ψ⟩ = |ψ⟩ since |ψ⟩ ∈ Stab(S).

The only remaining terms are those where P⃗ ∈ S. But then, P⃗ |ψ⟩ = |ψ⟩.
Combining this with the fact that |ψ⟩ is also invariant under the projection
on to Stab(S), (11.6) reduces to:

P⃗1..
. ...ψ P⃗m ..
.

P⃗2..
.

...

..
.

P⃗

DP⃗

∑

P⃗∈S,|P⃗ |<d

∝ ψ ..
.

DP⃗

∑

P⃗∈S,|P⃗ |<d

= ψ ..
.

D

where D :=
∑
P⃗∈S,|P⃗ |<dDP⃗ is some (irrelevant) process acting independently

on the environment, without disturbing |ψ⟩. Hence, even though E might
not be a Pauli string, if we perform a round of stabiliser measurements and
detect no errors, we will nevertheless project back on to the error-free state
|ψ⟩.

But what happens if we do detect errors? Then, we can attempt to decode
the error syndrome by finding some Pauli string Q⃗ /∈ S that could have
produced that error and undo it. In fact, for reasons that will soon become
clear, we often want to find such a Q⃗ with weight as small as possible.

Definition 11.2.8 For a stabiliser code defined by S = ⟨P⃗1, . . . , P⃗m⟩ and
syndrome (s1, . . . , sm), a minimum weight decoding is a Pauli string

11.2 Quantum stabiliser codes 507

Q⃗ of minimal weight that anti-commutes with P⃗j if and only if sj = 1.
Diagrammatically, we have for all j:

P⃗j..
.

..
.

Q⃗ ..
. = P⃗j ..
.

..
.

Q⃗..
.

sjπ

Clearly if (s1, . . . , sm) = (0, . . . , 0), the minimum weight decoding is 1⃗.
Otherwise, Q⃗ will always be a non-trivial Pauli string. If we post-compose
the result of a round of stabiliser measurements (11.5) with Q⃗, we can push
Q⃗ inside, which cancels out the sj :

E
P⃗1..

. ...

s1π

ψ P⃗m ..
.

smπ

P⃗2..
.

s2π ...

..
.

Q⃗ ..
. =

E
P⃗1..

. ...

s1π

ψ P⃗m..
.

smπ

P⃗2..
.

s2π ...

..
.

Q⃗ ..
.

s1π smπs2π ...

=
E′ P⃗1..

. ...ψ P⃗mP⃗2..
.

...

..
.

..
.

Hence, we obtain the form of (11.6) for a new error process E′. If E is a
sum over Paulis with weight ≤ ⌊(d− 1)/2⌋, and |Q⃗| ≤ ⌊(d− 1)/2⌋, then E′

is a sum over Paulis with weight at most d− 1. Hence, if S has distance d,
we can use the same argument as before to reduce the expression above to
|ψ⟩ ⊗D, so we have successfully corrected the error E.

Note that the weight of the terms in E′ depends on the weight of Q⃗. This
is why we try to find Q⃗ with weight as small as possible, to give the greatest
chance to correcting the error. Naïvely, we can find Q⃗ by enumerating all
of the Pauli strings of weight 1, 2, 3, . . . until we find one with the correct
syndrome. Clearly this will take exponential time, so it becomes infeasible
for large codes.

Minimum weight decoding for stabiliser codes is (at least) as hard as for
classical codes, which is already known to be NP-hard for some families of
error correcting codes. Hence, for a stabiliser code to be useful, it needs to

508 Quantum error correction

not only have good parameters [[n, k, d]], but also an efficient way to find
minimum weight (or at least low weight) decodings.

11.2.3 Encoders and logical operators

An [[n, k, d]] stabiliser code is defined by a stabiliser group S with m = n−k

generators and fixes a 2k-dimensional subspace Stab(S) ⊆ (C2)⊗n. Hence,
we can think of this as k logical qubits embedded in a space of n physical
qubits. Stab(S) tells us where those qubits lie within the big space, but it
does not tell how exactly how those qubits are embedded. For example, if we
are encoding 2 qubits, which part of Stab(S) corresponds to the first qubit
and which to the second qubit? How do unitaries applied to the physical
qubits map on to transformations of the logical qubits?

If we only intend to use quantum error correction for quantum memory,
the answers to these questions are not too important. However, as we will
see in Section 11.4, they are of central importance when we start wanting to
perform fault-tolerant computations on encoded qubits.

For that reason, it is useful to define an explicit isometry E : (C2)⊗k →
(C2)⊗n such that the image of E is Stab(S). This isometry is called an
encoder associated with code S:

E..
.

..
.k n

We already saw some explicit examples of encoder maps, built as ZX diagrams
in Equations (11.2) and (11.3).

On some occasions, we may actually want to implement the encoder phys-
ically, e.g. as a unitary circuit with ancillae. However, this need not be the
case, and in fact most of the time, it suffices to treat this as a purely math-
ematical object, tracking how our k logical qubits are embedded into the
space of n physical qubits.

Most importantly, it tracks the relationship between logical maps per-
formed on our k logical qubits and the associated physical maps performed
on the n physical qubits.

Definition 11.2.9 A map F : (C2)⊗n → (C2)⊗n is said to implement a
map f : (C2)⊗k → (C2)⊗k in a stabiliser code with encoder E if:

E..
.

..
.

F ..
.=E..
.

..
.

f ..
. (11.8)

Intuitively, F acts like f on the codespace of S, which is isomorphic to
the space of k qubits. To formalise exactly what “acts like f” means, we

11.2 Quantum stabiliser codes 509

need to choose an isomorphism between this subspace and (C2)⊗k, which
is exactly what E does for us. This is a very important concept, since in
order for quantum error correction to work, our quantum data needs to be
continuously protected from errors. Hence, we cannot decode and re-encode
qubits every time we want to apply a gate. As we will see in Section 11.4,
finding an F satisfying equation (11.8) will help us to implement fault
tolerant operations on encoded qubits.

Given a generating set of stabilisers for S, we can always derive an encoder
by following the procedure we used to prove the FTST in Section 6.2.1.
Namely, we can on to Stab(S) by finding an isometry E such that Π = E†E:

..
.

U

..
.

E

U†∝

..
.

..
.

· · ·

· · ·

..
.

..
.

..
.

..
.

..
.

..
.

P⃗1 P⃗m

..
.

E†

(11.9)

Furthermore, an encoder derived this way will always be a Clifford isometry,
so it is easy to reason about the propagation of Pauli errors.

Note that the stabiliser group S only fixes the image of E (or equivalently,
the projector Π). There are many different ways to split a projector, so
following the procedure from the proof of the FTST gives us just one possible
choice. In particular, for any unitary U : (C2)⊗k → (C2)⊗k, the encoders E
and E′ := EU have the same image in (C2)⊗n, hence they correspond to the
same stabiliser code S.

However, whenever E is Clifford, we can perform a nice trick to describe
E fully in terms of Pauli strings: we bend the wires! If we bend the input
wires around using cups, we obtain an n+ k qubit state |E⟩:

E ..
.

..
.

..
.

Now, we know from the Fundamental Theorem of Stabiliser Theory that
n+ k independent stabilisers will uniquely fix |E⟩, and hence will uniquely
fix E. We already have n − k stabilisers given by the generators of S =

510 Quantum error correction

⟨P⃗1, . . . , P⃗n−k⟩:

..
.

P⃗i ..
.

E

..
.

..
.

(11.10)

So, the question is: where can we find 2k more stabilisers? The first thing
to note is, assuming E is a Clifford isometry, we can always push arbitrary
Pauli strings from its inputs to its outputs, thanks to Proposition 6.1.6. In
particular, we can always push single-qubit Pauli X and Z gates through
E. As a consequence, we can always find a Pauli string X⃗i that implements
(in the sense of Definition 11.2.9) a Pauli X gate applied in the i-th logical
qubit, i.e.

E..
.

..
. X⃗i ..
.=E..
.

..
.

..
.π

..
.

..
. (11.11)

Similarly, for a Z gate on the i-th qubit, there exists a different Pauli string
Z⃗i such that:

E..
.

..
. Z⃗i ..
.=E..
.

..
.

..
.π

..
.

..
. (11.12)

This gives us 2k Pauli strings {X⃗1, . . . , X⃗k, Z⃗1, . . . , Z⃗k} called the logical
operators associated with E.

Exercise 11.5 Show that the logical operators {X⃗1, . . . , X⃗k, Z⃗1, . . . , Z⃗k}
are self-adjoint and commute with every element of the stabiliser group S.
Furthermore, show that the pair of logical operators X⃗i and Z⃗i anti-commute
for all i and all other pairs of logical operators commute.

Solution: .
Pauli strings are either Hermitian or anti-Hermitian. If X⃗i is anti-Hermitian,
then:

I = XiE
†EXi = E†X⃗ †

i EXi = −E†X⃗iEXi = −E†EX2
i = −I

which is a contradiction. Hence, X⃗i (and similarly Z⃗i) is Hermitian.
The commutation properties can be proved similarly, since Paulis either

commute or anti-commute. For every pair of Paulis Q⃗1, Q⃗2, we just need
to determine the sign k such that Q⃗1Q⃗2 = (−1)kQ⃗2Q⃗1. We can do this by
considering expressions of the form:

E†Q⃗1Q⃗2E = (−1)kE†Q⃗2Q⃗1E

11.2 Quantum stabiliser codes 511

and solving for k. If Q⃗i are logical operators such that Q⃗iE = EOi, then
Q⃗1, Q⃗2 commute if and only if O1 and O2 do:

O1O2 = O1E
†EO2 = E†Q⃗1Q⃗2E = (−1)kE†Q⃗2Q⃗1E = (−1)kO2O1

If the logical operators of the form X⃗i, Z⃗i, then O1 and O2 are Pauli X and
Z operators on the i-th qubit, which anti-commute. All other pairs of logical
operators correspond to commuting pairs O1, O2, hence they commute.

If we take Q⃗1 to be a logical operator and Q⃗2 to be a stabiliser, then
Q⃗2E = EI, so O2 = I. Since O1I = IO1, k must be 0. Hence, logical
operators commute with all stabilisers.
End Solution .

Exercise 11.6 Let S = ⟨S⃗1, . . . , S⃗m⟩ be a stabiliser group and let X⃗1, . . . , X⃗k, Z⃗1, . . . , Z⃗k

be the logical operators. Show that the group C(S) of Pauli strings that com-
mute with all elements of S is ⟨S⃗1, . . . , S⃗m, X⃗1, . . . , X⃗k, Z⃗1, . . . , Z⃗k⟩. Hint: If
an element T⃗ ∈ C(S) commutes with all Zi, then T⃗ is an element of the
maximal stabiliser group ⟨S⃗1, . . . , S⃗m, Z⃗1, . . . , Z⃗k⟩, and hence a product of
these elements. If instead it does not commute with some Zi show that we
can still write it as a product of the logicals and stabilisers.

Solution: .
If T⃗ does not commute with Zi, then consider instead T⃗ ′ := T⃗Xi, which
then does commute with Zi. Do this for all the logical Z operators it anti-
commutes with, until we get something that does commute with them all
and hence is part of the maximal commutative subgroup generated by the
Z logicals and the stabilisers (it is maximal since k +m = n). T⃗ is hence a
product of logicals and stabilisers as required.
End Solution .

By moving the X gate to the right-hand side of (11.11) and bending the
wires, we see that each logical operator X⃗i gives us a stabiliser for the Choi
state |E⟩:

E ..
. X⃗i ..
.

=

..
.

..
.

π

..
.

..
.

E ..
...
.

..
.

..
.

..
.

(11.13)

512 Quantum error correction

Similarly, each Z⃗i gives us a stabiliser for |E⟩:

E ..
. Z⃗i ..
.

=

..
.

..
.

π

..
.

..
.

E ..
...
.

..
.

..
.

..
.

(11.14)

Note that the operators of the form (11.13) and (11.14) all pairwise commute.
This is because the −1 coming from anti-commuting an X and Z on the i-th
qubit is always cancelled out by anti-commuting X⃗i with Z⃗i on the last n
qubits (cf. Exercise 11.5).

If we combine the stabilisers coming from S in equation (11.10) with those
coming from the logical operators, we obtain n− k + 2k = n+ k stabilisers
for |E⟩, which is by construction an n + k qubit state. Hence, E is totally
fixed up to a scalar factor.

Hence, if we perform the method from Section 6.2.1 for the full set of n+k

stabilisers for |E⟩, then bend the wires, we’ll get the encoder associated with
a stabiliser group and a set of logical operators. In general, this will be a
relatively deep ZX-diagram, with approximately one layer for each stabiliser
and logical operator. We could then try and simplify things to get a more
compact form, e.g. by reducing to GSLC or AP form, but in general this
picture of the encoder might be a bit awkward to work with.

However, as we’ll see in Section 11.3, for a certain family of codes, called
CSS codes, things get a lot simpler!

11.2.4 The decoder

The encoder has a dual operation, which we call the ideal decoder, or simply
the decoder. This is slightly more difficult to work with than the encoder,
so whenever possible we will state things in terms of the encoder rather than
the decoder. However, having a way to at least in principle decode n physical
qubits back into k logical qubits while detecting/correcting errors is still a
useful thing to have in our back pocket.

The encoder is an isometry, so we know how to implement it straight away
as a unitary circuit with ancillae. In fact, this definition of E is already clear
from the definition of the encoder in equation (11.9) in terms of the splitting
of the projectors onto the stabiliser subspace.

However, we can’t deterministically implement E† because it would require
performing the unitary U † then post-selecting each of the ancilla qubits on

11.2 Quantum stabiliser codes 513

to ⟨0|. However, we can measure those ancillae instead:

1√
2m

..
.

U†

..
.

..
.

..
.

s1π

smπ

But what are these measurement outcomes (s1, . . . , sm)? Recall the following
equation from Exercise* 6.10:

..
.

U

..
.

n−m

m

U†∝

..
.

..
.

· · ·

· · ·

..
.

..
.

..
.

..
.

..
.

..
.

P⃗1

s1π

P⃗m

smπ

s1π s1π

smπ smπ

..
.

This implies that for an encoded state |Ψ⟩, performing U † and measuring the
ancillae will give us the same outcome s⃗ as measuring all of the stabilisers.

Hence, we can use the measurement outcomes from the ancillae to do error
detection or correction. If we get outcome s⃗ = (0, . . . , 0), we can conclude
that no logical error has occurred with weight < d. If we get any other
syndrome, we can do least-distance decoding to find the smallest weight
physical error Q⃗ with error syndrome s⃗, and then figure out the appropriate
correction to do on the k logical qubits we have left. Since U † is Clifford, we
can do this efficiently.

Exercise 11.7 Fix a stabiliser code with generators {P⃗1, . . . , P⃗m} and
distance d. For a syndrome s⃗, let Q⃗s⃗ be a Pauli of minimal weight with that
syndrome, and let P⃗s⃗ be the first k qubits of the Pauli string U †Q⃗s⃗U . Show
that for any Pauli string Q⃗ with syndrome s⃗ and weight t where 2t+ 1 ≤ d,
we have:

..
.

U†

..
.

..
.

..
.

s1π

smπ

Q⃗

..
.

..
.

P⃗s⃗ ..
.

∝

..
.

U†

..
.

..
.

..
.

= E†..
.

..
.

Solution: .
By construction, U †Q⃗s⃗ = (P⃗s⃗ ⊗ P⃗ ′)U † for some P⃗ ′. Since Q⃗s⃗ has sydrome s⃗,

514 Quantum error correction

it must be the case that P⃗ ′ on the j-th qubit anti-commutes with Z if and
only if sj = 1. Hence Pj ∈ {X,Y }, which means ⟨0|Pj ∝ ⟨1|. From this, we
can conclude that:

U†

..
.

..
.

..
.

Q⃗s⃗

..
.

..
.

..
.

∝

..
.

U†

..
.

s1π

smπ

..
.

..
.

P⃗s⃗ ..
.

Now bring Q⃗s⃗ to the right-hand side to finish the proof. If Q⃗s⃗ and Q⃗ have
the same syndrome, then their product commutes with the stabiliser group.
Since we chose Q⃗s⃗ of minimal weight, its weight must be ≤ t. Hence, the
product Q⃗s⃗Q⃗ has weight < d and therefore must be a stabiliser.
End Solution .

Given this, we therefore define the decoder as a non-deterministic process
consisting of a measurement yielding syndrome s⃗ followed by the associated
Pauli correction P⃗s⃗ defined as in Exercise 11.7:

..
.

U†

..
.

s1π

smπ

..
.

..
.

P⃗s⃗ ..
.

Ds⃗..
.

..
. := 1√

2
m (11.15)

When s⃗ = 0⃗, P⃗s⃗ = I, so D⃗0⃗ = E†. Hence this process acts like E† in the
error-free case, but it additionally also “swallows” any correctable errors
when s⃗ ̸= 0⃗.

Remark* 11.2.10 If we don’t care about the outcome of the syndrome
measurement and just want the error-corrected state out, we can represent
the decoder as a single quantum channel (cf. Section* 2.7.1) with Kraus
operators {Ds⃗}s⃗∈Fm

2
, i.e.

D(ρ) :=
∑
s⃗∈Fm

2

Ds⃗ρD
†
s⃗

One can check this is trace-preserving and for any correctable Pauli error Q⃗,
we have D(Q⃗ρQ⃗†) = D(ρ).

11.3 CSS codes 515

11.3 CSS codes
In this section, we’ll define a family of stabiliser codes called Calderbank-
Shor-Steane codes, or CSS codes for short. As you may have already
noticed from Examples 11.2.4 and 11.2.5, some stabiliser codes have gen-
erators that split nicely into an all-X part and an all-Z part. In a sense,
such codes behave like two classical error correcting codes mushed together,
where the parity checks of one code become the Z stabilisers (which detect
bit errors) and those of the other code become the X stabilisers (which detect
phase errors).

That is pretty much all there is to defining a CSS code, once you addition-
ally account for the fact that all of the stabilisers need to commute. It turns
out there is a very natural way to impose this in terms of bitstrings.

Exercise 11.8 Suppose we define two Pauli strings from the bitstrings v⃗
and w⃗ as follows:

X⃗ :=
n⊗
j=1

Xvj Z⃗ :=
n⊗
j=1

Zwj

Show that X⃗ and Z⃗ commute if and only if v⃗ and w⃗ are orthogonal, i.e.
v⃗T w⃗ = 0 (mod 2).

Hence, if we fix two classical codespaces, one for the X-stabilisers and one
for the Z-stabilisers, all the stabilisers will commute precisely when those
subspaces are mutually orthogonal. We say two subspaces S, T are orthogonal
if v⃗T w⃗ = 0 for all v ∈ S,w ∈ T , or equivalently T ⊆ S⊥.

Definition 11.3.1 The CSS code generated by orthogonal subspaces S, T ⊆
Fn2 is a stabiliser code whose generators are of the following form:

X⃗i :=
n⊗
k=1

X(vi)k Z⃗j :=
n⊗
k=1

Z(wj)k

where {v⃗1, . . . , v⃗p} is a basis spanning S and {w⃗1, . . . , w⃗q} a basis spanning
T . A CSS code is called maximal if T = S⊥.

That is, we let the basis vectors of S define the X generators and we let
the basis vectors of T define the Z generators. Since addition in F2 is taken
modulo 2, orthogonality guarantees that each X generator overlaps with a Z
generator in an even number of places, which makes the group commutative.
Using this fact, it is easy to verify the resulting group is a stabiliser group.

516 Quantum error correction

Example 11.3.2 Let S be a 3D subspace of F7
2 spanned by:

{(1, 0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1, 1), (0, 0, 1, 1, 1, 0, 1)}

This particular subspace is known as a Hamming code. It’s classical code
distance is 3, and it has the nice property that S is orthogonal to itself.
Hence, we can use S to derive both the X and Z generators of a CSS code.
In fact, we already saw this code: it is the Steane code from Example 11.2.4.

X⃗1 := X⊗I⊗I⊗I⊗X⊗X⊗X
X⃗2 := I⊗X⊗I⊗X⊗I⊗X⊗X
X⃗3 := I⊗I⊗X⊗X⊗X⊗I⊗X
Z⃗1 := Z⊗I⊗I⊗I⊗Z⊗Z⊗Z
Z⃗2 := I⊗Z⊗I⊗Z⊗I⊗Z⊗Z
Z⃗3 := I⊗I⊗Z⊗Z⊗Z⊗I⊗Z

11.3.1 Stabilisers and Pauli ZX diagrams

Recall from Section 4.3 that phase-free ZX-diagrams can always be put into
Z-X or X-Z normal form, which correspond respectively to representations
of an F2-linear subspace S using a basis for S or a basis for S⊥:

vk

..
.

..
.

v1
∝

∑
b∈S

|b⟩ where S = Span{v1, . . . , vk}

wj

..
.

..
.

w1

∝
∑
b∈S

|b⟩ where S⊥ = Span{w1, . . . , wj}

If we combine this knowledge with these equations, which follow from (π):

..
.

π

π

π =

..
.

..
.

π

π

π =

..
. (11.16)

we can see immediately how to derive a generating set of stabilisers for a
phase-free ZX-diagram. As we’ll see in this section, those stabilisers always
generate a CSS code, and conversely any CSS code can be presented using
a phase-free ZX-diagram.

11.3 CSS codes 517

11.3.2 Maximal CSS codes as ZX diagrams

Eq. (11.16), plus the two normal forms from Section 4.3.1, will give us
everything we need to prove our main theorem.

Theorem 11.3.3 For any F2-linear subspace S ⊆ Fn2 , |ψ⟩ is stabilised by
the maximal CSS code (S, S⊥) if and only if it is equivalent, up to a scalar
factor, to a phase-free ZX diagram with an X-Z normal form given by S (or
equivalently with a Z-X normal form given by S⊥).

Proof Suppose |ψ⟩ is described by a phase-free ZX-diagram. Then it can be
translated into X-Z normal form, for some basis {v1, . . . , vp} of an F2-linear
space S. Then, for each vi, we can apply Eq. (11.16) to introduce an X phase
of π on every wire adjacent to the Z spider labelled by vi and commute it
to the output using (sp’):

vp

..
.

..
.

v1

vi

..
.

=

(vi)1π

..
.

..
.

..
.

=

..
.

..
.

..
.

(vi)nπ

(vi)1π

(vi)nπ

..
.

..
.

..
.

=
π

π

..
.

(vi)2π (vi)2π

This shows that |ψ⟩ is invariant under the action of the Pauli operator Xi :=⊗n
k=1X

(vi)k . Hence, |ψ⟩ is the +1 eigenstate of all of the p independent X
stabilisers of the maximal CSS code (S, S⊥). Similarly, we can compute the Z-
X normal form of |ψ⟩ and show that it is the +1 eigenstate of all q independent
Z stabilisers Zj :=

⊗n
k=1 Z

(wj)k . This gives p+ q = n independent stabilisers
for |ψ⟩, hence it is uniquely fixed by the FTST Theorem 6.2.11. Conversely,
any maximal CSS code fixes a state whose stabilisers are given by Xi and Zj

as before, so they will be equal to a phase-free ZX diagram with X-Z normal
form given by S, or equivalently, with Z-X normal form given by S⊥.

This proof gives us an evident way of translating the stabiliser genera-
tors of a maximal CSS code into a ZX diagram. In fact, it gives us two
equivalent ways, using the Z-X normal form, which gives us a generating set
of X stabilisers, or the X-Z normal form, which gives us the Z stabilisers.
Interestingly, we only ever need to represent one kind of stabilisers for a
maximal CSS code diagrammatically, because S⊥ is uniquely fixed by S and
vice-versa.

518 Quantum error correction

11.3.3 Non-maximal CSS codes as ZX encoder maps

For a non-maximal CSS code, we should end up with an encoder map from
k logical qubits to n physical qubits. Since we already know how to turn
CSS stabilisers into phase-free diagrams, we can use the wire-bending trick
from Section 11.2.3 to treat logical operators as stabilisers on a bigger n+ k

qubit state and therefore add them to the diagram as well.
As an example, lets return to the 7-qubit Steane code from Example 11.3.2.

We will switch to a more compact notation for writing its stabilisers, where
Xi (resp. Zi) corresponds to an n-qubit operator acting non-trivially on the
i-th qubit with a Pauli X (resp. Z):

X⃗1 := X1X5X6X7 X⃗2 := X2X4X6X7 X⃗3 := X3X4X5X7

Z⃗1 := Z1Z5Z6Z7 Z⃗2 := Z2Z4Z6Z7 Z⃗3 := Z3Z4Z5Z7

This CSS code is non-maximal, and encodes 7 − 6 = 1 logical qubits. Hence
we should fix 2 additional logical operators X⃗ := X4X5X6, Z⃗ := Z4Z5Z6. As
we noted before, we only need one kind of stabiliser to build the ZX diagram,
so applying the recipe from the previous section to the X stabilisers and
logical operator, we obtain the following picture, where we label the logical
qubit 0 and the physical qubits 1-7. We can then put the logical qubit on
the left and rearrange some of the physical qubits to obtain the following:

1
2
3
4
5
6
7

0

X⃗1

X⃗2

X⃗3

X⃗

⇝
1

2

3

4

5

6

7

X⃗1

X⃗2

X⃗3

0
X⃗

Note that, if we follow this recipe, we will always get identity spiders on
the inputs, which are redundant. If we simplify them away, we’ll always
end up with something in generalised parity form (for the X form of the
encoder) or the colour-reverse of generalised parity form (for the Z form of
the encoder).

= (11.17)

11.3 CSS codes 519

As a result, we can always write a CSS encoder map in generalised parity
form using just its X-stabilisers and X-logical operators as follows:

1. Place an output X-spider on all n outputs.
2. For each of the k X-logical operator, add an input Z-spider connected

to the output X-spiders of its support.
3. For each X-stabiliser generator, add an internal Z-spider connected to

the output X-spiders of its support.

Equation (11.17) gives the X-form of the Steane code encoder. If we used
the Z-stabilisers and logicals instead, we’ll obtain the Z-form. In the case of
the Steane code, this is the exact same picture, but with the colours reversed:

= (11.18)

This will not always be the case, and it comes from the fact that the Steane
code is self-dual. We’ll discuss self-dual codes more in Section 11.4.1.1.

Example 11.3.4 Recall the J4, 2, 2K error detecting code from Exam-
ple 11.2.5:

X⃗1 := X⊗X⊗X⊗X
Z⃗1 := Z⊗Z⊗Z⊗Z

This has two stabilisers on 4 qubits, so it encodes 2 logical qubits. Hence,
in order to fully specify the encoder map, we should fix two pairs of anti-
commuting logical operators which commute with the stabilisers and each
other. There are multiple solutions to this problem, so we will just choose
one:

X⃗1 := X⊗X⊗I⊗I
Z⃗1 := Z⊗I⊗Z⊗I
X⃗2 := X⊗I⊗X⊗I
Z⃗2 := Z⊗Z⊗I⊗I

These all have weight 2, so they will have even overlap with both stabilisers
(and hence commute with them). It is also easy to check that X⃗iZ⃗i = −Z⃗iX⃗i

and all other pairs of logicals commute. We can now use this data to construct

520 Quantum error correction

the X-form and Z-form of the encoder for the J4, 2, 2K code:

= (11.19)

So, we have seen how to turn any CSS code described by stabilisers and
logical operators into a phase-free ZX-diagram of its encoder. Conversely, we
can treat any isometry described by a phase-free ZX diagram as a CSS code
just by computing its generalised parity form. Recall from Chapter 4 that
the generalised parity form looks like this:

..
.

..
.

m

n

j

k ..
.

..
.

..
.

Furthermore if E is an isometry, we can conclude from Proposition 4.2.8
that j = 0, giving us:

..
.

..
.

m

nk ..
.

..
.

From this picture, we can immediately read off the m X-stabilisers and k

X-logical operators associated with E. If do everything colour-reversed, we’ll
get a different normal form for the encoder:

..
.

..
.

m′

nk ..
.

..
.

from which we can read off the Z-stabilisers and Z-logical operators.
In summary, we have given an efficient procedure for writing a phase-

free isometry from a CSS code with logical operators and for turning any
phase-free isometry into its associated CSS code and logical operators.

11.3 CSS codes 521

11.3.4 The surface code

One particular family of CSS codes has been so well-studied in recent years
that it deserves some special attention. The surface code is a family of CSS
codes that encode a single logical qubit in a square (or rectangular) lattice
of physical qubits. Larger lattices define codes with a higher code distance.

While they aren’t the most memory-efficient codes we know about, surface
codes have a number of nice properties coming from this regular geomet-
ric structure. For one thing, they can be implemented using only nearest-
neighbour gates on a 2D architecture, so there is never any need to perform
swap gates or otherwise break planarity. [TODO: back-reference to a rout-
ing section, if we have one] A second nice feature is that even for surface
codes with very high code distances, we have efficient algorithms for decoding
error syndromes, as we’ll see in Section 11.3.4.1 below. Finally, they serve
as a useful baseline for fault-tolerant computation, as we know (at least in
principle) how to implement all the ingredients needed to implement univer-
sal quantum computation on surface-code-encoded qubits in a fault-tolerant
manner. In fact, fault-tolerant computation in the surface code has one of
the best thresholds we know about. That is, they can tolerate quite a bit
of noise at the hardware level while still being able to supress errors. More
on that later. [TODO: I’m not sure how/if we should introduce the concept
of a threshold or threshold theorem.]

In this section, we will use the slightly more compact, “rotated” version of
the surface code. Stabilisers are defined as follows. We start with a rectan-
gular lattice with d× e vertices, corresponding to qubits. We aim to encode
a single logical qubit, so we need to fix de− 1 stabilisers. To do so, we first
colour in the lattice in a chequerboard pattern, where each red (darker)
area corresponds to an X stabiliser on all of its adjacent qubits, whereas
each green (lighter) area corresponds to a Z stabiliser. Colouring the inside
of the lattice in this way gives (d − 1)(e − 1) stabilisers. To get all de − 1
stabilisers, we still need to fix d+ e− 2 additional stabilisers. To get these,
we introduce weight-2 stabilisers along the boundaries at every other edge,
which we depict as “blobs”. We colour these blobs in the oppose colour to

522 Quantum error correction

the nearest tile, obtaining the following picture:

1 2 3

4 5 6

7 8 9

⇝

X⃗1 := X2X3X5X6 X⃗2 := X4X5X7X8

X⃗3 := X1X4 X⃗4 := X6X9

Z⃗1 := Z1Z2Z4Z5 Z⃗2 := Z5Z6Z8Z9

Z⃗3 := Z2Z3 Z⃗4 := Z7Z8

(11.20)
There are 2(d− 1) + 2(e− 1) edges around the whole boundary, so adding a
“blob” to every other edge gives us (2(d− 1) + 2(e− 1))/2 = d+ e− 2 more
stabilisers as required. By design, all stabilisers of different types overlap on
two qubits, so they commute. Since we alternate edges, one pair of opposite
boundaries (in this case the left and right) will end up with X-blobs and
one pair (top and bottom) with Z-blobs. In the literature, these are called
X-boundaries and Z-boundaries, respectively.

The logical X⃗ operator consists of a line of Pauli X operators connecting
the two X-boundaries, whereas the logical Z⃗ operator consists of a line
connecting the two Z-boundaries:

π π π

1 2 3

4 5 6

π

π

π

2 3

5 6

8 9

⇝ X⃗ := X7X8X9 ⇝ Z⃗ := Z1Z4Z7

Note that the specific choice of path between the boundaries is not im-
portant and we are even allowed to cross tiles diagonally. However, it is
important that the path touches each area of the opposite colour an even
number of times. This ensures that the logical operator commutes with all
of the stabilisers. In the example above we could have equivalently chosen
X4X5X6 or X5X6X7 for X⃗ , but not X7X8X5X6, because the latter touches
a green tile 3 times.

Using the stabilisers and the logical operators for the surface code, we can
apply the recipe from the previous section to construct its encoder. In fact,
we can represent the encoder using two equivalent ZX diagrams, one based

11.3 CSS codes 523

on the X-stabilisers and one on the Z-stabilisers:

= (11.21)

Note how the diagrams of the encoders have a direct visual relationship to
the picture (11.20): to draw the X-stabilisers, we put an X spider on every
vertex, place a Z spider in the centre of each red region in (11.20), and
connect it to all of the adjacent vertices. Finally, we “embed” the logical X
operator by placing a Z spider on the input and connecting it to each of
the vertices where X⃗ has support. For the Z-stabilisers, we apply the same
routine, reversing the roles of X and Z.

In the surface code, we can topologically deform a logical operator by mul-
tiplying it by any stabiliser. We can perform the same calculation graphically
using strong complementarity. As we saw in the proof of Lemma 4.3.4, we
can treat spiders as bit-vectors, and by applying strong complementarity, we
can “add” the neighbourhood of one spider to that of another, modulo 2.
Applying this concept to the surface code, we obtain for example:

u

v w =

u+v

v w =

u+v+w

v w

(11.22)
This just amounts to changing the basis for the linear space S represented
by this normal form, which has the same effect as changing the generators
for the associated stabiliser group.

11.3.4.1 Decoding errors in the surface code
Aside from the fact that they can be implemented with nearest-neighbour
operations in a 2D architectures, surface codes are also popular because
error syndromes can be efficiently decoded by taking advantage of their
geometric structure. Recall from Section 11.2.2 that the decoding problem
for stabiliser codes refers to the problem of mapping the outcome of a sydrome
measurement to a Pauli correction Q⃗ that is most likely to recover our error-
free state.

There are many proposals for fast decoders for the surface code. Here,
we will sketch how one of the simplest ones, based on minimum weight

524 Quantum error correction

perfect matching works. First note that since surface codes are CSS codes,
we can identify Z-errors in Q⃗ using the outcomes of X stabiliser measurements,
and vice-versa. Hence, we can treat these two types of errors independently.

Suppose a certain configuration of Z errors occurs on our physical qubits.
Much as we did in Section 11.2.2, we can figure out where the error syndrome
will be by “pushing” the error through the Pauli projectors corresponding
to X measurements, using the π-copy rule, and seeing which projectors end
up with a π:

π

π

π

...

...

...

...

...... ...

......

=
2π

2π

π

π

π

...

...

...

...

π

...... ...

π

......

This is the same thing as figuring out which stabilisers anti-commute with the
given error. If an even number of Z errors lie in the support of an X projector,
a pair of π phases will cancel out, yielding a 0 measurement outcome. Hence,
the syndrome only reveals the places where an odd number of errors overlap
with a stabiliser. As a consequence, error syndromes will always appear as
the endpoints of a “path of errors” through the lattice:

π

π

π

...

...

...

...

π

...... ...

π

......

(11.23)

These paths will always either connect a pair of locations where the error
syndrome is 1, as we see above, or they will connect a single syndrome-1

11.3 CSS codes 525

location to a boundary of the surface, as in this example:

π

π

π

...

...

...

...

......

=
π

π

π

π

...

...

...

...

......

Since Z boundaries don’t have any X stabiliser measurements, this also
works.

Hence, if we get just two syndrome-1 outcomes far from the boundary,
the most likely place errors occurred were along the shortest path between
those two spots (assuming as we have been that errors occur independently
and with the same probability on every qubit, since a longer path must have
involved more errors occurring). If we get just one syndrome-1 outcome, the
most likely place errors occurred was along the shortest path between that
syndrome and the boundary without non-commuting stabilisers.

“Hang on!” you might say, “there can be multiple shortest paths between
points!” And you’d be right. However, all of these paths are equivalent, up to
stabilisers. For example, there are 3 shortest paths between the syndromes in
(11.23). The 2 other ones can be obtained from the one shown by multiplying
by Z stabilisers:

π

π

π

...

...

...

...

π

...... ...

π

......

=

π

...

...

...

...

π

...... ...

π

......

π

π

(π)

(sp)

(11.24)
Here we started with the diagram (11.23), composed with one of the Z
stabilisers that is not shown explicitly in this Z-X normal form. Since sta-
bilisers don’t change the encoded state, correcting errors along any of these
3 paths (or actually any path between these endpoints) will have the same
effect. The reason this works is, as we showed for the logical embedding at
the end of the previous section, the stabilisers of the surface code relate
topologically-equivalent paths through the surface, provided they have the
same end points.

526 Quantum error correction

Of course, this only tells us what to do if we see zero, one, or two syndrome-
1 measurements. However, we can extend this to an algorithm that does a
pretty good job decoding any syndrome. First, we make a graph whose nodes
correspond to places where we observe a syndrome-1 outcome (and an extra
dummy node for the boundary). We label the edges with a weight indicating
the length of the shortest path between those locations, e.g.

v1

v2

v3

b

895

8

7 4

(11.25)

A perfect matching is then a subset of the edges of this graph, where
every node (except the “dummy” node for the boundary) is adjacent to
exactly 1 edge. A minimum weight perfect matching (MWPM) is a
perfect matching where the sums of the weights on the chosen edges is
minimal. An example of a MWPM for the graph above is:

v1

v2

v3

b

895

8

7 4

The simplest minimum weight perfect matching decoder therefore proceeds
as follows. For the X stabiliser measurements, make a syndrome graph as in
equation (11.25) and compute its MWPM. Then, correct Z errors along the
paths indicated by the MWPM. After that, rinse and repeat for Z stabiliser
measurements and X errors.

It is worth noting that this algorithm does not always find the minimum
weight error associated with a syndrome, but it often gets pretty close,
especially in the case where there aren’t too many syndrome-1 outcomes. It is
also very fast, particularly if we are allowed to just approximate the MWPM
and/or compute in parallel. We will briefly discuss various implementations
of this algorithm and their performance in the References of this chapter.

11.3.5 Scalable ZX notation for CSS codes

As might be clear from diagrams like (11.17), writing CSS encoder maps
explicitly can start to get unwieldy for large numbers of stabilisers or sta-
bilisers with relatively high weight. Later on, we will also want to prove some

11.3 CSS codes 527

generalities about all CSS codes, so it would be useful to come up with some
notation for writing a generic CSS code as a ZX-diagram.

Thankfully, the scalable ZX-calculus, which was introduced in Section 10.2,
can solve both of these problems. To see how this works, we can start from
the recipe given in the previous section for building an encoder for a CSS code
from its X-logical operators and X-stabilisers. Suppose we represent this data
as a pair of boolean matrices LX and SX , whose columns correspond to each
of the operators and whose rows correspond to qubits, where a 1 indicates
the presence of an X. For example, the matrices (LX , SX) associated with
the Steane code are the following:

X⃗ := I⊗I⊗I⊗X⊗X⊗X⊗I
}
⇝ LX :=

(
0 0 0 1 1 1 0

)T

X⃗1 := X⊗I⊗I⊗I⊗X⊗X⊗X

X⃗2 := I⊗X⊗I⊗X⊗I⊗X⊗X

X⃗3 := I⊗I⊗X⊗X⊗X⊗I⊗X

 ⇝ SX :=

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

T

Whereas in the previous section, we needed to say in words how to build
the encoder out of X operators, we can now do it succinctly as a single
diagram, which works for any CSS code described by the pair (LX , SX):

LX

SX

n

k

m
(11.26)

Inspecting this picture, we can indeed see that it is saying to introduce k
input spiders for the X-logicals, and connect them according to where X’s
appear, then introduce m internal spiders for the X-stabilisers and again
connect them to outputs according to where X’s appear.

This gives us the X form for the encoder, but of course we should also be
able to construct a Z form by reversing the role of the two colours of spider.
To get the colour reverse of a matrix arrow, we can just reverse the direction
and take the transpose of the matrix:

A
:=

..
...
.

..
.

A

..
.

n m ⇝ AT

:=

..
. ..
.

..
.

A

..
.

n m (11.27)

Hence, if we equivalently present a CSS code as a pair of matrices (LZ , SZ)
describing the Z-logical operators and Z-stabilisers, respectively, we can write

528 Quantum error correction

the associated encoder map as:

LX

SX

n

k

m
=

LT
Z

ST
Z

n

k

m′ (11.28)

This not only gives us convenient notation for the encoder, but also for the
stabiliser measurements themselves. It was shown in Exercise 6.7 that the
Pauli projectors associated to all-X or all-Z Pauli stabiliser measurements
take a particularly simple form:

Π(s)
Z...Z =

..
.

sπ

Π(s)
X...X =

..
.

sπ

If s = 0, the projector on to a stabiliser Z⃗j consists of an isolated X-spider
connected to Z-spiders on the support of the Z⃗j . If we compose all of the
projectors on to Z-stabilisers together and fuse spiders, we’ll obtain this
picture:

ST
Z (11.29)

Similarly, if we project on to the 0 outcome with all of the X stabilisers, we’ll
obtain:

SX (11.30)

Exercise 11.9 Show that for any A, the following maps are always projec-
tors, up to a scalar:

A A

If we simply compose maps (11.29) and (11.30), we will get the projection
onto the stabiliser subspace Stab(S). This is what happens if we measure all
of the stabilisers and get outcome 0. To represent other outcomes, we should
place a 0 or a π on each of the internal spiders of the Pauli projections. To
do this for generic outcomes, we need to extend the scalable notation a bit.

Back when we introduced the scalable notation, we interpreted a scalable
spider labelled by a phase α as n spiders, all with the same phase α on them.
However, we could just as well label a spider with a vector of different phases

11.3 CSS codes 529

α⃗ = (α1, . . . , αn) and define scalable spiders as:

:=
..
.

..
.

..
.

..
.

..
.

..
.

αn

α1

..
.

..
.

..
.

..
.

..
.

α⃗ :=

..
.

..
.

..
.

..
.

..
.

..
.

αn

α1

..
.

..
.

..
.

..
.

..
.

α⃗

Of particular interest for us are vectors of 0s and πs, i.e. vectors of the form
b⃗ · π := (b1π, . . . , bnπ) for some boolean vector b⃗ ∈ Fn2 .

Using this extended notation, a full stabiliser measurement for a CSS code
with outcome syndrome s⃗ = (x⃗, z⃗) can be written compactly as:

SX

x⃗·π

ST
Z

z⃗ ·π
(11.31)

For a CSS code, we can assume without loss of generality that all of the X-
logical operators and X-stabilisers are linearly independent. In other words,
we can assume the block matrix (LX SX) is injective. Consequently, there
exists some parity matrix J such that:

LX

SX

=
(10.15)J J(LX SX)

= k +mk +m (11.32)

Since injective parity maps are always isometries, we have:
LX

SX

n

k

m

LX

SX

k

m

k

m
= (11.33)

This implies that the encoder (11.28) is an isometry, and is in fact a strictly
stronger condition.

Exercise* 11.10 In Exercise 11.5, you were asked to show that for logical
operators, X⃗i anti-commutes with Z⃗j if and only if i = j. We can express
this condition in terms of boolean matrices by stating that LTZLX = I. In
terms of scalable notation, this implies that:

k
LX

k
LT
Z k ∝ (11.34)

We also know that stabilisers should commute with logical operators and with

530 Quantum error correction

each other. In terms of matrices, we can express this as STZLX = STZSX =
LTZSX = 0. Pictorially:

SX
k

LT
Z k ∝ k k

SX
k

ST
Z k ∝

LX
k

ST
Z k ∝

(11.35)
Give a graphical derivation of (11.34) and (11.35) using just (11.28), the
scalable ZX rules, and the fact that the encoder is an isometry. Hint: Start
by composing the Z-form of the encoder with its adjoint and applying idem-
potence to remove one projector from the middle before applying (11.28).
[TODO: It would be nice to cut this up a bit more, so that it can be a
non-starred exercise.]

Solution: .
By isometry of the encoder and (11.28), we have:

ST
Z

=
LT
Z LT

Z

ST
Z

=
LT
Z LT

Z

ST
Z

=
LX LT

Z

SX

=
LX LT

Z

SX

LT
Z

Hence we get:

=
LX LT

Z

SX

LT
Z

Composing both sides with the projector gives:

=
LX LT

Z

SX

LT
Z

SX

LT
Z

SX

LT
Z

=
LX LT

Z

SX

LT
Z

=

Hence:

=
LX LT

Z

SX

LT
Z

=
LX LT

Z

11.4 Fault-tolerance 531

[TODO: finish proof for commuting cases.]
End Solution .

This gives us some nice tools for working with CSS codes generically, which
we’ll use several times when it comes to deriving fault-tolerant operations in
Section 11.4.

11.4 Fault-tolerance
If we want to perform quantum computations in a way that can withstand
errors, coming up with a good quantum error correcting code is only half
the story.

We also need to figure out how to perform state preparations, gates, and
measurements on encoded qubits. Suppose that every time we performed a
gate we had to decode our n physical qubits into k logical qubits, perform the
gate, then re-encode. This seems like a lot of work just to do one gate, but
what is actually worse is that our logical state will be completely unprotected
between when we decode and re-encode our qubits. We will run into similar
problems with state preparations and measurements.

We saw half of a solution to this problem already in Section 11.2.3 with
Definition 11.2.9. If we want to perform a unitary gate U on our logical
qubits, we can find some other Ũ acting on the physical qubits, satisfying:

E..
.

..
.

Ũ ..
.=E..
.

..
.

U ..
.

Essentially the same idea applies to state preparations, except there are
no input wires, so we don’t need an encoder on the RHS. That is, we can
implement the preparation of a logical state |ψ⟩ by preparing some physical
state |ψ̃⟩ satisfying:

..
.=E..
.

..
.ψ ψ̃

Of course, one could prepare |ψ̃⟩ by preparing |ψ⟩ then performing the
encoder isometry as an actual quantum operation, which we could implement
using unitaries and ancillae. However, as we’ll see later, there are various
reasons we might want to prepare |ψ̃⟩ directly in a different way.

Finally, implementing measurements on encoded qubits is also a similar
idea, but with a little twist accounting for the fact that our physical mea-
surement might have more outcomes than our logical one. While we might

532 Quantum error correction

in general want to implement arbitrary measurements on encoded qubits,
lets focus just on ONB measurements to make things a bit simpler.

Let [m] := {1, 2, . . . , n} be a finite set of indices for any m ∈ N. We
say a physical ONB measurement M̃ = {|ϕ̃j⟩}j on n qubits implements a
logical ONB measurement M = {|ϕi⟩}i on k qubits if there exists a function
ℓ : [2n] → [2k] where, for all states |ψ⟩, we have:

∣∣∣∣ ..
. ϕiψ

∣∣∣∣2 =
∑

j,ℓ(j)=i

∣∣∣∣∣∣ ..
.

E ϕ̃j..
.ψ

∣∣∣∣∣∣
2

(11.36)

This condition says that, for any logical state, the Born rule probabilities
obtained from measuring M can be computed in terms of the probabilities
of M̃ measurements. Normally the function ℓ is very simple, e.g. if k = 1, it
could be simply computing the parity of boolean outcomes on the n physical
qubits.

In Section 11.2.3, we mentioned that we usually don’t actually perform the
encoder map on our quantum computer, but use it purely as a mathematical
object to relate the logical qubits to the physical ones. Now we can see why
that is the case. If we can find encoded states, gates, and measurements,
then we can simulate any logical computation on k qubits using a physical
one on n qubits without ever explicitly performing E.

Suppose we are interested in the results of a logical computation involving
applying a sequence of gates U1, . . . , Ut to a state |ψ⟩ and measuring in the
logical ONB {|ϕi⟩}i. Then we would like to sample from this distribution:

Prob(i | |ψ⟩) =
∣∣∣∣ ..

.ψ U1 ..
. U2 ..
. Ut ..
. ϕi

∣∣∣∣2
Then, we can translate the logical measurement into a physical measure-

ment using (11.36):

... =
∑

j,ℓ(j)=i

∣∣∣∣∣∣ ..
.ψ U1 ..
. U2 ..
. Ut ..
.

..
.

E ϕ̃j

∣∣∣∣∣∣
2

We can keep pushing logical gates through the encoder to get physical ones:

... =
∑

j,ℓ(j)=i

∣∣∣∣∣∣ ψ ..
.

ϕ̃jE..
.

..
.

Ũ1 ..
.

Ũ2 ..
.

Ũt

∣∣∣∣∣∣
2

Finally, when we push the logical state through, the encoder is gone, and

11.4 Fault-tolerance 533

we’re left with a fully encoded computation that simulates our logical com-
putation:

... =
∑

j,ℓ(j)=i

∣∣∣∣∣∣ ..
.

ϕ̃j..
.

Ũ1 ..
.

Ũ2 ..
.

Ũtψ̃

∣∣∣∣∣∣
2

Great! We’re doing everything on physical qubits encoded in our error
correcting code the whole time. We only forgot one thing: we need to do
error correction! That was of course the point of this whole exercise. If we
are being particularly conservative, we can do one or more rounds of error
correction, i.e. measuring all of the stabilisers and applying a Pauli correction,
at each step of the computation:

..
.

ϕ̃j..
.

Ũ1 ..
.

Ũ2 ..
.

Ũtψ̃

error correction

...

We should also try to engineer our encoded operations, and the error correc-
tion itself, in such a way that they avoid spreading errors uncontrollably. For
example, if Ũi involves multi-qubit gates, this turn a single error into multiple
errors. In this section, we will see how to implement (almost) everything we
need for universal computation in such a way that we can keep errors under
control. This property of encoded gates is what is known as fault tolerance.

There are several definitions of fault tolerance in the literature, with
various levels of mathematical rigour. Here’s the one we will use. Note that
we refer to a single collection of n physical qubits encoded in an error
correcting code as a code block.

Definition 11.4.1 (Fault tolerance) An operation Õ on a single code block
is called fault tolerant if, whenever there are errors on at most u qubits
before applying Õ, and then v faults occur while performing Õ, there are
errors on at most u+ v qubits afterwards.

An example of an operation that doesn’t spread errors is a transversal
gate. For a single code block, transversal gates are simply tensor products
of single-qubit operations. An example of something that does spread errors
is a multi-qubit gate involving physical qubits in the same code block. For
example, a CNOT gate can spread Pauli X errors from its control to its
target qubit:

π

=
π

π

534 Quantum error correction

In this case, there was originally 1 error on the physical qubits, but afterwards
there are 2.

Note that we were not too specific about what it means for a fault to
occur during the performance of Õ. What counts as a single fault depends
on how we represent the operation Õ and how we will choose to model
potential errors that could happen while attempting to perform Õ, i.e. the
error model we are using. By their nature, error models are always a
simplification of what happens in reality. One of the simplest error models is
the phenomenological error model with Pauli errors. In this model, we
decompose Õ into basic gates and assume at each time step, a Pauli error
could occur on each qubit with some fixed (hopefully small) probability p.

Consider implementing a swap gate on our physical qubits with three
CNOT gates:

t2

=

t1 t3t0

The swap gate never multiplies Pauli errors. So, if u Pauli errors occur at
t0, then only u errors will come out at t3. However, if an error happens in
the process of implementing Õ, e.g. an X error on qubit 2 at t2, then it will
propagate to X errors on qubits 2 and 5 at t3.

In some circumstances, this model is somewhat overly optimistic. For
example, one would expect that most physical implementations of 2-qubit
gates can actually lead to correlated errors on the qubits involved, while
we just assume that an error happens on each of the qubits independently
with some fixed probability. However, this will be good enough for our
purposes of illustrating the basic principles of constructing fault-tolerant
implementations. For more elaborate and realistic error models, we point to
the References of this chapter. [TODO: add this to FR]

We’ll conclude this section by noting that Definition 11.4.1 extends to a
slightly more flexible notion of “not spreading errors” when multiple code
blocks are involved.

Definition 11.4.2 (Multi-block fault tolerance) An operation Õ on b

code blocks is called fault tolerant if, whenever u1, . . . , ub errors only occur
within each code block, and v faults occur with performing Õ, then afterwards
at most

∑
i ui + v errors occur in each code block.

This definition allows errors to propagate between the code blocks, as long
the number of errors appearing in a single block after the operation don’t
exceed the total number of errors from before the operation. Consider for

11.4 Fault-tolerance 535

example applying a CNOT gate between the i-th qubit of one codeblock and
the i-th qubit of another one:

(11.37)

Then errors could indeed multiply:

=

π

π

π

π

π

π

Even though there are a total of 4 errors after performing this tower of
CNOT gates, there are only 2 errors in each code block, which is the same
as the number of errors we started with. This is still okay for fault tolerance,
as we can then perform error correction independently on each code block.

The map (11.37) is an example of a transversal, multi-block operation. We
will look at these, and transversal gates in general, in the next section. After
that, we will turn to the somewhat trickier issue of fault-tolerant stabiliser
measurements.

We call a recipe for constructing a universal set of fault-tolerant operations
in a given code or code family a fault-tolerant scheme. It makes intuitive
sense that having a fault-tolerant scheme is A Good Thing if we want to get
to the end of a computation with a relatively low probability of suffering an
uncorrectable error. But we can make it more precise why this is the case
by discussing the threshold of a fault-tolerant scheme.

While we can never push the probability of a logical error occurring all
the way to zero, one could imagine having an infinite series of fault-tolerant
simulations {FTl(C)}l∈N of a given circuit C, each producing a better and
better approximation of a logical circuit C on physical hardware, at the
cost of extra resources needed to do more and more error correction. The
main example of such a series would be an infinite family of quantum error
correcting codes with increasing distance, such as the surface code, and

536 Quantum error correction

recipes for implementing a universal family of fault-tolerant operations Õ on
an any code in that family.

Definition 11.4.3 The threshold of a fault-tolerant scheme is a prob-
ability pth such that for any circuit C, if all physical operations produce
a fault with probability p < pth, the family of fault-tolerant simulations
{FTl(C)}l∈N has the property that for any ϵ > 0, there exists some l such
that the output probabilities of FTl(C) are ϵ-close the those of the ideal
circuit C.

The notion of a threshold is an important one, and perhaps the most
important in fault-tolerant quantum computation. Performing encoded oper-
ations and error correction involves more basic quantum operations, which
of course will produce more errors. However, under some critical hardware
error rate, a fault-tolerant scheme will start to suppress more errors than it
generates. This means that, if we can demonstrate a threshold, it is possible
(at least in principle), to perform arbitrarily large quantum computations
on noisy hardware.

The threshold theorem states that, under certain assumptions, any
universal set of fault-tolerant operations can be turned into a family of fault-
tolerant simulations with a threshold pth > 0, and furthermore the overhead
scales reasonably in the size of the circuit C and error parameter ϵ. Proving
this theorem is complicated, so we will leave it to other resources that have
done this in detail (see the Reference), and we will proceed now to the
practical construction of fault-tolerant operations in a given error-correcting
code.

11.4.1 Fault-tolerant computation with transversal gates

Transversal unitary gates are the easiest kind of fault-tolerant operation to
understand, although for a given error correcting code, it can be highly non-
trivial to characterise the set of transversal gates that can be implemented
in that code.

Definition 11.4.4 A transversal implementation Ũ of a logical unitary
U on a single code block is a gate of the form Ũ = U1 ⊗ . . .⊗ Un where the
Ui are all single-qubit unitaries. A transversal implementation of a logical
unitary acting on multiple code blocks consists of n unitaries each acting
only on the i-th qubit of each code block, for i ∈ 1, . . . , n.

An example of a transversal unitary on multiple code blocks is the transver-
sal CNOT we saw in (11.37). It is easy to check that transversal gates satisfy

11.4 Fault-tolerance 537

the fault-tolerance conditions laid out in Definitions 11.4.1 and 11.4.2. So, if
we can find a universal set of transversal gates, life is good! Unfortunately,
there is this little nugget:

Theorem 11.4.5 (Eastin-Knill) For any error-correcting code capable
of detecting an arbitrary single-qubit error, the set of logical unitaries U
with a transversal implementation Ũ is finite. In particular, no non-trivial
error-correcting code has a universal set of transversal gates.

The proof of this theorem uses some tricks from Lie theory which are a bit
technical for our purposes, so we won’t reproduce it here (see the References).
Very roughly, the proof shows that the error-detection property of the code
forces the group of distinct unitaries U with transversal implementations to
be discrete: there is no way to “nudge” U a small distance in any direction,
while keeping Ũ transversal. But then the group of all logical unitaries must
also be compact, and any discrete subgroup of a compact group is finite.

If that explanation didn’t do much for you, don’t worry. The main thing
you should get is that Theorem 11.4.5 is Bad News if we were hoping to
do all of our fault-tolerant computation with transversal gates. However,
many codes still have lots of useful transversal gates. Also, as we’ll see in
Section 11.5, we can still achieve universal computation fault-tolerantly, but
we’ll need to go beyond transversal unitaries to find a bit of extra magic.

11.4.1.1 Transversal Clifford gates
Transversal Clifford gates are usually the easiest fault-tolerant operations
to understand for stabiliser codes. In the general case, we can use stabiliser
theory to find the transversal gates of a stabiliser code and compute how
they act on logical qubits.

Exercise* 11.11 Let E be the encoder of a stabiliser code S = ⟨S⃗1, . . . S⃗m⟩
and Ũ a Clifford unitary. Show that we have:

E..
.

..
.

Ũ ..
.=E..
.

..
.

U ..
.

for some Clifford unitary U if and only if we can push stabilisers through Ũ .
That is, for all S⃗ ∈ S there exists T⃗ ∈ S such that S⃗Ũ = Ũ T⃗ .

[TODO: this should probably be a theorem, where we show how to
compute U from Ũ]
Solution: .
Assume that Ũ maps stabilisers of E to stabilisers under conjugation. Let Zi

and Xi be the k encoded logical operators. Then {Z1, . . . ,Zk, S⃗1, . . . , S⃗m}

538 Quantum error correction

forms a complete set of n independent Pauli strings. Under conjugation by Ũ ,
these get mapped to n different Pauli strings, of which m new generators of
the stabiliser group. Since Ũ preserves the independence of the Pauli strings,
the Zi get mapped to new independent operators that still commute with
the stabilisers. Then by Exercise 11.6, these must be products of logical
operators and stabilisers Z̃i. There is then some Pauli P⃗i that gets mapped
by E to Z̃i (up to multiplication by stabilisers). Similarly there must be Q⃗j
that get mapped by E to X̃j . Let U be the Clifford specified by the tableau
that maps Zi 7→ P⃗i and Xj 7→ Q⃗j . We can then see that

Ũ †EUZi = Ũ †EP⃗iU = Ũ †Z̃iEU = ZiŨ
†EU⃗

and similarly for Xj . Hence, Ũ †EU has the same action on a basis of Pauli
strings as E, so that E = Ũ †EU , or equivalently ŨE = EU .

For the converse direction, assume ŨE = EU . We need to show Ũ sends
stabilisers of E to stabilisers. Let ŨSj = S̃jŨ . We claim that S̃j commutes
with all the stabilisers. Suppose it does not commute with some Si. Then:

ŨE = ŨSjE = S̃jŨE = S̃jEU = S̃jSiEU = −1 · SiS̃jŨE
= −1 · SiŨSjE = −1 · SiŨE = −1 · SiEU
= −1 · ŨE

which is a contradiction since ŨE is an isometry and can’t be zero. Hence,
each S̃j is a product of stabilisers and logicals by Exercise 11.6. Suppose it
contains some non-trivial logicals so that S̃jE = EPj for some non-trivial
Pj . Then:

ŨE = ŨSjE = S̃jŨE = S̃jEU = EPjU = ŨEQj ,

where Qj = U †PjU . Now let |ψ⟩ be a −1 eigenstate of Qj , we see then that
ŨE|ψ⟩ = ŨEQj |ψ⟩ = −1 · ŨE|ψ⟩, so that ŨE sends |ψ⟩ to zero, which is
not possible since it is an isometry. Hence, all the stabilisers Sj must not
contain any logicals and must be sent to stabilisers.
End Solution .

In particular, as soon as we have a Clifford unitary Ũ that has the “sta-
biliser pushing” property, we can compute U just by looking at how Ũ acts on
the logical operators X⃗i, Z⃗i. We can perform all the computations involving
stabiliser groups efficiently, e.g. using the symplectic matrix representation
from Section 6.4.4. Hence, a naïve way to find all the transversal Clifford
gates in a code is to just enumerate every local Clifford Ũ and check if it
sends all the generators of the stabiliser group to stabilisers.

Of course, there are exponentially many local Clifford operations, so it may

11.4 Fault-tolerance 539

not be practical to enumerate them all for large n. However, there are many
results that show that some families of codes always have certain transversal
Clifford gates.

To start, the definitions of the logicalX and Z operators (11.11) and (11.12)
essentially say that any stabiliser code has transversal implementations of
all the logical Z and X operators:

E..
.

..
. X⃗i ..
.=E..
.

..
.

..
.π

..
.

..
.

E..
.

..
. Z⃗i ..
.=E..
.

..
.

..
.π

..
.

..
.

A bit less trivially, one of the most well-known results about transversality
says that CNOT gates are transversal for CSS codes. In its simplest version,
this means that applying a CNOT gate transversally across all physical
qubits of two identical codeblocks has the effect of applying a CNOT across
all logical qubits. We can formalise this using the scalable notation as follows.

Theorem 11.4.6 CNOT gates are transversal for CSS codes. That is:

=

SX

LX

SX

LX

SX

LX

SX

LX

(11.38)

Proof We begin with the right-hand side of (11.38) and rewrite the encoder
of the second code block into Z-form:

=

SX

LX

SX

LX

SX

LX

ST
Z

LT
Z

We can then push the CNOT through the encoders using strong complemen-
tarity and the scalable ZX rules:

540 Quantum error correction

SX

LX

ST
Z

LT
Z

SX

LX

ST
Z

LT
Z

= SX

LX

ST
Z

LT
Z

= SX

SX

LX LX

LT
Z LT

ZST
Z ST

Z

then apply equations (11.34) and (11.35):

LX

ST
Z

LT
Z

∝ SX

LX

ST
Z

LT
Z

=
SX

(11.27)

· · ·
(11.28)

Rewriting the second encoder back into X-form yields the left-hand side of
(11.38).

All CSS codes have transversal CNOT gates. However, it might not be so
convenient to implement a CNOT between each qubit in the code block. For
example, as the surface code is a CSS code, we know it has a transversal
CNOT, which looks like this:

=

Note however, that implementing it would ruin the nice 2D structure which
makes the surface code so attractive for some hardware platforms. We’ll see
in Section 11.4.3 that there is another way to implement 2-qubit gates in
the surface code and friends without destroying planarity.

Not all CSS codes admit transversal H gates, but quite a few do. To

11.4 Fault-tolerance 541

see what conditions we need, let’s start with a transversal H and see what
happens when we push it into the encoder. First, we can introduce a scalable
H gate to mean n copies of the H gate:

:= ..
.

Then the usual colour change rules work just like they would for the normal
H gate, but we also get an additional rule. Using (11.27), we can push a
scalable H gate through an arrow as follows:

A
=

AT (11.39)

Using this new rule, we can introduce H gates on all of the physical qubits
of the encoder in Z-form and push it to the left:

= =

SZ

LZ =

ST
Z

LT
Z

ST
Z

LT
Z

SZ

LZ

(11.40)
The RHS almost looks like a layer of Hadamard gates followed by the X-form
of the encoder, but not quite. The X-form should be labelled by LX and
SX , not LZ and SZ . We could therefore consider codes where LX = LZ and
SX = SZ and we’d be done. However, it turns out that is stricter than we
need, so we’ll consider codes where just the X-stabilisers and Z-stabilisers
are the same.

Definition 11.4.7 A CSS code is self-dual if SX = SZ .

Examples of self-dual CSS codes are the J4, 2, 2K code from Example 11.2.5
and the Steane code.

Continuing from (11.40) with a self-dual code, we can see that we almost
get to the form we need:

=

ST
Z

LT
Z

SZ

LZ =

SX

LZ

(11.40)

(11.41)

but the logical operators on the RHS are still the wrong type to get an
encoder in X-form.

The trick now is to realise that even though the X-logical and Z-logical
operators might still be different in a self-dual CSS code, they always generate
the same subspace together with the stabilisers. Hence, we can prove the
following proposition.

542 Quantum error correction

Proposition 11.4.8 For any self-dual CSS code, there exist matrices M,N

such that LZ = LXM + SXN .

Proof Suppose SZ = SX consists of m independent stabilisers, then the
whole CSS code has 2m stabilisers. It must then have n − 2m X-logical
operators. Hence, the columns of LX and SX together consist of n−2m+m =
n − m independent vectors in cols(SZ)⊥. Since cols(SZ) is m-dimensional,
that means they span the whole space. But then, SZ = SX , so each column
of LZ is in cols(SX)⊥ = cols(SZ)⊥. Hence, we can write each column of
LZ as a linear combination of columns from LX and SX , i.e. we can find
matrices M,N such that LZ = LXM + SXN .

Exercise 11.12 Show using the scalable rules from Section 10.2 and Propo-
sition 11.4.8 that, for a self-dual code, we have for some matrix M :

∝

SX

LXM

SX

LZ

Hint: Recall Proposition 10.2.2.

Solution: .
The trick is to use the stabilisers to “project out” the SXN part from
Proposition 11.4.8. First use Proposition 11.4.8 to replace LZ with LXM +
SXN for some M,N :

=

SX

LXM + SXN

∝

SX

LXM

SXN
=

SX

LXM

SXN
??

SX

LZ

Then apply the scalable rules as follows:

· · · =

SX

LXM

SXN ∝

LXM

SX

N ∝

LXM

SXN

∝ =

SX

LXM

LXM

SX

11.4 Fault-tolerance 543

End Solution .

Theorem 11.4.9 H gates are transversal for self-dual CSS codes. That is,
for any self-dual CSS code, there exists a CNOT circuit with parity matrix
M such that:

=

SX

LXM

SX

LX (11.42)

Proof Starting from the RHS of (11.42), we can switch to the Z-form of
the encoder and apply the derivation in (11.41) and Exercise 11.12:

ST
Z

LT
Z =

SX

LZ

SX

LX = ∝

SX

LXM
(??) ??

M is the parity matrix of a CNOT circuit if and only if it is invertible
(Proposition 4.2.12). This follows immediately from the fact that the map
above is an isometry, and hence in particular is non-singular.

This means applying a transversal Hadamard at the physical level is not
necessarily the same thing as applying a transversal Hadamard at the logical
level. However, it always does something non-trivial to our logical qubits,
consisting of a layer of Hadamard gates followed by some (possibly trivial)
CNOT circuit. In the case the Steane code, the logical operators are identical,
so applying H to every physical qubit is the same as applying H to the single
logical qubit:

= =
(cc) (??)

However, the J4, 2, 2K code from Example 11.3.4 has X-logical operators
and Z-logical operators that differ by a logical swap:

= =

(cc) (??)

544 Quantum error correction

In this case, the parity matrix from Theorem 11.4.9 is

M :=
(

0 1
1 0

)

corresponding to a swap gate (or equivalently, 3 CNOTs).
Note that the surface code almost has a transversal H gate. When we

apply H everywhere on the X-form of the encoder, we get the following:

= =
(cc) (11.17)

We almost get back to where we started, except the encoder has “rotated
90◦”, which follows from applying the colour-reverse of equation (11.21).
Technically this is a different error-correcting code. But of course this new
code has all the same properties as before, since it is just a permutation of
the physical qubits. As long as we keep track of where the qubits are, this is
“close enough” to a transversal H for many purposes.

We could at this point complete the Clifford story and give the conditions
for a CSS code to have transversal S gates. Rather than working this out
explicitly, we will go first to the harder case of transversal T gates, which as
we will explain in Remark 11.4.13, generalises readily to a characterisation
of transversal Z(π

2ℓ−1) gates for all ℓ ≥ 1.

11.4.1.2 Transversal T gates
We now turn to the somewhat thornier question of when stabiliser codes
admit transversal non-Clifford gates. For the sake of simplicity, we will start
with T gates, but in fact the story will be much the same in the next section
when we talk about all diagonal gates on the third level of the Clifford
hierarchy. Once we pass to non-Clifford gates, we can’t expect to be able
to just conjugate each of the generators of the stabiliser group and get
Paulis again. Hence, we no longer have such an easy way to check if a given
operation on physical qubits preserves the codespace.

Anyway, we still have the ZX-calculus at our disposal, so let’s be brave.
Just like we did with transversal Hadamards, we can start with a transversal
application of T gates on the physical qubits and try to push it through the
encoder of a CSS code. If it comes out as some non-trivial unitary on the k
logical qubits, we’re golden. Since we’ve left Clifford-land, we don’t expect

11.4 Fault-tolerance 545

life to be that easy, but we will just start and see where we get stuck. We
begin by applying strong complementarity and the scalable rules:

LX

SX

π
4

∝

π
4

∝

π
4

LX

SX

LX

SX

LX SX

=LX

SX

π
4

(11.43)
This gets us pretty far, but we still have that pesky SX connecting our phase
gadgets to some wires that don’t correspond to logical qubits. In order to
preserve the codespace, we want to end up with some phase gadgets just
supported on the logical qubits. Just like in the case of Hadamards, this
could act differently on the logical space from the physical space, so we don’t
know a priori what this action is.

We will start with the simplest case, where T⊗n on the physical qubits
acts as (T †)⊗k on the logical qubits. That is, we want to satisfy this equation:

π
4

LX SX

∝ −π
4

k

m

k

m

(11.44)

The reason it is easier to use T † and not T is we can now move everything
to one side and we’ll only have π

4 phase gadgets:
π
4

LX SX

∝ π
4

k

m

k

m

∝ k

m

π
4

(I 0)

π
4

(LX SX)

Now, we can “zip up” this equation into a single matrix over a register of
k +m qubits:

k +m ∝

π
4 (

I 0
LX SX

)

k +m

(11.45)

Thanks to Section 10.3.1, we know that a configuration of π4 phase gadgets
equals the identity if and only if its associated matrix is strongly 3-even.

546 Quantum error correction

Hence, we are ready to characterise when CSS codes have transversal T
gates.

Definition 11.4.10 A CSS code (LX , SX) is called triorthogonal if the
following matrix is 3-even:

M =
(
I 0
LX SX

)
(11.46)

and a code is called strongly triorthogonal if the matrix above is strongly
3-even.

Theorem 11.4.11 A CSS code (LX , SX) admits a transversal T in the
sense that:

∝LX

SX

−π
4

LX

SX

π
4 (11.47)

if and only if it is strongly triorthogonal.

Proof First assume the CSS code is strongly triorthogonal. From the cal-
culations above, this is equivalent to equation (11.44). Hence, following
calculation (11.43), we have:

LX

SX

π
4 ∝

π
4

LX

SX

LX SX −π
4

∝ LX

SX

(??)(??)

Conversely, if (LX , SX) satisfies Eq. (11.47), then:

∝ LX

SX

π
4LX

SX

π
4

π
4

LX SX

∝
LX

SX

π
4

(??)

We can then apply Eq. (11.33) to cancel most of the encoder from both sides:

11.4 Fault-tolerance 547
π
4

LX

∝
π
4

SX

Note that the right-hand side consists of a diagonal unitary applied to
|+ . . .+⟩, but diagonal unitaries send the state |+ . . .+⟩ to itself if and only
if they are the identity. Hence, we can conclude M from Definition 11.4.10
is strongly 3-even and hence (LX , SX) is strongly triorthogonal.

Exercise 11.13 Show that triorthogonal codes implement a transversal
T gate, possibly up to a diagonal Clifford map on the outputs. That is, for
some A:

∝LX

SX

−π
4

LX

SX

π
4

π
2

A

Hint: Use equation (11.32) to move a diagonal Clifford map on the logical
side to the physical side.

Example 11.4.12 The degree-1 monomial x1 ∈ RM(1, 5) gives the follow-
ing strongly 3-even matrix:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

T

The matrices (LX , SX) on the right define a J15, 1, 3K quantum Reed-Muller
code. This is, by definition, a strongly triorthogonal code, so applying T⊗15

on the physical qubits results in a logical T †. This property will be used to
perform a protocol called magic state distillation in Section 11.5.

Remark 11.4.13 Note that almost the exact same argument as above can
be given for transversal Z(π

2ℓ−1) gates for any ℓ > 1. We can define strongly
ℓ-even matrices as those whose columns sum to 0 mod 2ℓ, pairs of columns
sum to 0 mod 2ℓ−1, and so on up to groups of ℓ columns summing to 0
mod 2. Following essentially the same reasoning as Section 10.3.1, we can
conclude that

548 Quantum error correction
π

2ℓ−1

M ∝

for any strongly ℓ-even matrix M . Hence, any CSS code whose matrix

M =
(
I 0
LX SX

)

is strongly ℓ-even has a transversal Z(π
2ℓ−1) gate. Furthermore, we can gen-

eralise Exercise 11.13 to show that if M is only ℓ-even rather than strongly
ℓ-even, it is transversal up to a 2ℓ−2 phase gadget. In particular, if the matrix
M is 2-even, the code has transversal S gates up to Paulis, and hence it can
implement a logical S transversally.

11.4.1.3 Transversal Clifford hierarchy gates
We can generalise from characterising transversal T or T † gates to transversal
implementations of more general unitaries in the third level of the Clifford
hierarchy. Recall from Section 6.5 that the third level of the Clifford hierarchy
C3 consists of all the unitary maps U with the property that, for all Pauli
strings P⃗ , UP⃗U † is Clifford.

While it seems to be a difficult problem to characterise all transversal gates
in C3, it is much easier if we just focus on the diagonal unitaries D3 ⊂ C3.
As noted also in Section 6.5, D3 forms a group which is generated by the π

4
phase gadgets. Consequently, an arbitrary unitary in D3 can be written as

DM :=
π
4

M (11.48)

for some boolean matrix M .
We can also capture what it means to be a transversal unitary on n qubits

in D3. These consist precisely of some power T p on each qubit. Hence, a
transversal gate in D3 is of the form DP for some matrix P where each row
contains exactly one 1. Such a matrix represents a T gate on the j-th qubit
by containing the j-th unit vector as a row. We can then represent higher
powers T p as repeated rows.

Example 11.4.14 The following is a transversal application of powers of

11.4 Fault-tolerance 549

T and its associated P -matrix:

DP =

π
4

3π
4

π
2

for P =

1 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

From here, the story goes much like in the previous section. Rather than

focusing just on T⊗n, we can start with any transversal D3 unitary and try
to push it past the encoder:

LX

SX

P

π
4

∝
P

π
4

∝

π
4

P

LX

SX

LX

SX

LX SX

∝

π
4

LX

SX

PLX PSX

(11.49)
Now, in order to preserve the codespace, the resulting diagonal unitary
should be supported only on the logical qubits. That is, for some H, we
should have:

π
4

PLX PSX

∝

−π
4

H
k

m

k

m

As in the previous section, it is convenient to use −π
4 phase gadgets on the

right-hand side, but note that, since H can now be arbitrary, this generates
the same set of unitaries as π

4 phase gadgets. Moving everything to one side,
we get:

π
4

PLX PSX

∝

π
4

H
k

m

k

m

550 Quantum error correction

...or equivalently, in “zipped up” form:

k +m ∝

π
4 (

H 0
PLX PSX

)

k +m

(11.50)

Hence, we can now state a generalised version of Theorem 11.4.11.

Theorem 11.4.15 A CSS code with X-logical operators and X-stabilisers
LX and SX admits a transversal implementation of a logical gate

D†
H =

−π
4

H

if and only if there exists a matrix P whose rows are unit vectors, such that
the matrix

M =
(

H 0
PL PS

)
(11.51)

is strongly 3-even.

Exercise 11.14 Generalise the proof of Theorem 11.4.11 to a proof of
Theorem 11.4.15.

Example 11.4.16 The constant polynomial 1 ∈ RM(0, 4) gives us a
strongly 3-even matrix whose columns are all the 4-bitstrings. If we par-
tition the matrix as follows:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

T

(11.52)

then this gives a matrix of the form (11.51) with P = I, with (LX , SX)
defining the X-logical operators and X-stabilisers of an J8, 3, 2K CSS code,
which is sometimes called the “smallest interesting colour code” (see the
References for why). It has three X-logical operators and 1 X-stabiliser:

X⃗1 := I⊗X⊗I⊗X⊗I⊗X⊗I⊗X

X⃗2 := I⊗I⊗X⊗X⊗I⊗I⊗X⊗X

X⃗3 := I⊗I⊗I⊗I⊗X⊗X⊗X⊗X

X⃗1 := X⊗X⊗X⊗X⊗X⊗X⊗X⊗X

We can draw this encoder as a cube, with the X-logical operators connecting
to 3 adjacent faces and the X-stabiliser connecting to everything:

11.4 Fault-tolerance 551

In the upper left corner of the matrix (11.52), we see the phase gadgets of a
CCZ gate as in equation (9.6), hence this code admits a logical CCZ† = CCZ,
implemented via 8 physical T gates:

E π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

E =

Remark 11.4.17 While Theorem 11.4.15 gives a complete characterisation
for the transversal D3 gates in a CSS code, it is not obvious from the
statement whether it can be used to efficiently find such gates. However, it
turns out that this is possible. In fact, there are three related problems: (1)
for fixed logical D†

H find transversal gates DP , (2) for fixed DP find D†
H ,

and (3) compute a generating set of all logical gates and their associated
transversal implementations. All three of these problems can be posed as a
system of linear equations over the ring Z8, and can be solved in polynomial
time using a generalisation of Gaussian elimination that works over more
general kinds of rings. We will say a bit more about this in the References.

[TODO: possibly add a section on fault-tolerant logical measurements]

11.4.2 Fault-tolerant Pauli measurements

In order to do error correction, we should be able to do stabiliser measure-
ments on our physical qubits. Since any non-trivial stabiliser generator will
have support on multiple qubits, these will in general be entangling opera-
tions involving multiple physical qubits, so it is not immediately obvious we
can perform such measurements fault-tolerantly.

Before we think about a fault-tolerant implementation of a Pauli mea-
surement, we should think about how we would even implement a generic
Pauli measurement in the first place. For the first part of this section, we
will focus on measuring Z ⊗ . . .⊗Z, but everything we say below will apply
to measuring any Pauli string just by conjugating by the appropriate local
Cliffords:

552 Quantum error correction

..
.

sπ

C†
1 C1

C2C†
2

C†
n Cn

:=
P⃗

sπ

..
.

..
.

It could be that our hardware natively implements multi-qubit Z measure-
ments, however at the time of writing, this is not possible (or at least quite
challenging) on most quantum hardware platforms. Even if it were possible
to implement high-weight Pauli measurements on physical qubits, we might
not want to, as it could introduce errors on many qubits at once. Hence,
the first thing we should do is decompose this measurement into more basic
operations like basic gates and single-qubit demolition measurements.

This is particularly nice in ZX, because it just amounts to coming up with
a good way to unfuse the big spider in the projector. One such unfusion is:

..
.

sπ

=

..
.

sπ

=

..
.

sπ

(11.53)

We can now interpret the right-hand side as preparing an ancilla in the |0⟩
state, applying a series of CNOT gates, then measuring the ancilla in the Z
basis.

In terms of not spreading errors on the physical qubits, this is actually
pretty good. Z-errors will just commute through, whereas X-errors will copy
on to the ancilla and flip the measurement outcome:

..
.

sπ

= ..
.

sπ

π π

π

= ..
.

(s ⊕ 1)π

π

...which is what they are supposed to do!
The problem comes from errors that might occur on the ancilla qubit

while implementing the measurement. If an X error occurs on the ancilla,
the whole measurement will report the wrong outcome:

..
.

sπ

= ..
.

(s ⊕ 1)ππ

11.4 Fault-tolerance 553

This is bad of course, because doing error correction depends on being able to
report the results of syndrome measurements reliably. However, this kind of
error is not fatal. As long as the error rate is not too high, we can increase the
reliability of our stabiliser measurements just by repeating the measurement
multiple times and reporting whatever outcome we got the majority of the
time.

The worse thing that can happen is Z-errors, i.e. “phase flips” occurring
on the ancilla, because these can propagate out to errors on data qubits:

sπ

=

π sππ

π

π
∝

sπ

π

π

Worse still, it doesn’t change the measurement outcome, so this measurement
has introduced a new, undetected multi-qubit error.

We hence see that in the naïve implementation of a multi-qubit Z mea-
surement, a single fault causes multiple errors on the data qubits. Hence, it
doesn’t satisfy the fault-tolerant criterion from Definition 11.4.1. To solve
this problem, we need to come up with a “better unfusion” of this Pauli
measurement. One pretty good solution is, rather than unfusing the X-spider
sequentially, we unfuse it in parallel:

sπ

=
s1π

s2π

s3π

s4π

(11.54)

where s1 ⊕ s2 ⊕ s3 ⊕ s4 = s.
Now, rather than having a single ancilla prepared in the |0⟩ state, we have

w ancillae for a Pauli measurement of weight w prepared in a generalised
GHZ state, with respect to the X basis: |+⟩⊗w + |−⟩⊗w. Especially in the
context of fault-tolerance, this is often called a cat state. Then, we perform
a CNOT between the i-th data qubit and the i-th qubit of the cat state
and measure each of the ancilla qubits in the Z basis. The XOR of all the
measurement outcomes then gives the result of the syndome measurement.
This implementation of a multi-qubit measurement is called a Shor fault-
tolerant measurement. For the sake of concreteness, we have shown the

554 Quantum error correction

4-qubit Shor measurement, but this generalises in the obvious way to Pauli
measurements of higher weight.

There are a few things to say about Shor measurements. First, notice
how in the process of unfusing spiders, we can turn one measurement into
multiple measurements. Second, we have now fixed the problem that our
naïve implementation had: single Z errors in the RHS of (11.54) now result
only in single errors on the data qubits, e.g.

=
s1π

s2π

s3π

s4π

π

s1π

s2π

s3π

s4π

π

π

=
s1π

s2π

s3π

s4π

π

However, this doesn’t fully solve the problem yet: it has shifted the difficulty
of fault-tolerantly measuring Z ⊗ . . . ⊗ Z to fault-tolerantly preparing cat
states.

If we assume that our basic operations are single-qubit preparations and
measurements, as well as basic 2-qubit gates like CNOT, then we can prepare
cat states using some ladder of CNOTs like this:

= (11.55)

There are many basic circuits that can prepare a cat state, but they all
have one thing in common: there is always some location where a single error
in the preparation can propagate out to multiple errors on the cat state, and
hence the measurement (11.54). For example:

π

=
π

π

To solve this issue, we can perform some rudimentary error detection or
correction on the cat state. The first thing to note is that, because of the
orientation of CNOT gates, X errors will only possibly mess up the mea-
surement outcome, but never otherwise effect the data qubits. As mentioned
before, we can mitigate this by simply repeating the measurement and taking

11.4 Fault-tolerance 555

the outcome we get the majority of the time. Hence, we can focus just on Z
errors.

For a cat state prepared as in (11.55), the only place a single Z error
during preparation can result in 2 errors on the cat state is the one shown
above. We can therefore detect this error by measuring any stabiliser of the
cat state that anti-commutes with this error. X ⊗ I ⊗ I ⊗X will work:

=

tπ tπ

If we get outcome t = 1, we can just throw out the cat state and try again.
This is called a repeat-until-success strategy for state preparation.

But then, what if this nested error-detection measurement propagates
errors? Do we need to do error-detection on it? Is it Turtles All the Way
Down? Thankfully no. Due to the direction of the CNOT gates, there is no
way for this nested measurement to propagate additional Z errors into the
cat state. This nested measurement could indeed cause more bit errors into
the cat state, but as in the case of our naïve measurement, bit errors on the
ancillae are not a bit deal. They can lead to an erroneous syndrome, which
can be mitigated by repeated measurements, but crucially they won’t cause
any additional errors on the data qubits.

There exist several refinements to the idea behind Shor measurements,
which consist of preparing (possibly elaborate) ancilla states, performing
some transversal CNOTs and doing single-qubit measurements. One that
is particularly nice to analyse in the scalable ZX-calculus is the Steane
fault-tolerant measurement protocol. This protocol works for any CSS
code, and allows one to extract syndrome information for all the stabilisers
of a single kind (X or Z) at once.

First, it relies on being able to reliably prepare the encoded |0 . . . 0⟩ and
|+ . . .+⟩ states associated with a CSS code. We can see what these look like
by plugging the all-0 and all-plus logical states into the CSS encoder:

∝LX

SX SX

=
SX

(11.56)

∝LX

SX

LT
Z

ST
Z

∝

ST
Z

=
ST
Z

(11.57)

556 Quantum error correction

Now, suppose we start with an ancilla system prepared in the encoded
|0 . . . 0⟩ state, perform a transversal CNOT between the ancilla and a block
of our CSS code, then measure all the qubits of the ancilla system. Here is
what we’ll get:

SX

x⃗ · π
∝

SX

x⃗ · π
SX ∝

x⃗ · π

SX

SX
(11.58)

We can reduce this further once we know how the arrow acts on the x⃗ · π
effect corresponding to our measurement outcome x⃗ arising from doing a Z-
measurement on all the physical qubits. First, note that an X-spider labelled
by x⃗ · π corresponds to the computational basis state |x⃗⟩. We already know
that map described by parity matrix A sends a state |x⃗⟩ to the state |Ax⃗⟩.
Hence:

x⃗ · π
A ∝ (Ax⃗) · π

Applying the colour-change rule for the arrow (11.39), we get:

x⃗ · π
A

= x⃗ · π
A

= x⃗ · π
AT

∝ (AT x⃗) · π ∝ (AT x⃗) · π

Continuing from (11.58), we have:

SX

x⃗ · π
∝

x⃗ · π

SX

SX

∝
(ST

X x⃗) · π

SX

We now have a protocol for measuring all of the X-stabilisers at once. We
apply the fault-tolerant circuit on the left-hand side above, obtain an outcome
x⃗, then compute the X part of the error syndrome as s⃗ = STX x⃗.

Similarly, we can measure the Z part of the syndrome, by reversing all the
colours:

ST
Z

z⃗ · π
∝

ST
Z

z⃗ · π
ST
Z ∝

z⃗ · π

ST
Z

ST
Z

∝
(ST

Z z⃗) · π
ST
Z

Thus we obtain the Z part of the error syndrome as t⃗ = STZ z⃗. Performing
these two protocols in sequence therefore gives us a full round of syndrome
extraction:

11.4 Fault-tolerance 557

ST
Z

z⃗ · π
∝

(ST
Z z⃗) · π

ST
Z

SX

x⃗ · π (ST
X x⃗) · π

SX

Assuming we have fault-tolerant protocols to prepare the two ancilla states,
everything else in sight is fault-tolerant. There are a handful of ways to do
this. For example, to prepare the encoded all-0 state, one can start with |0⟩⊗n

and do several rounds of SX measurements using some other fault-tolerant
protocol, such as the Shor method. One could also attempt to detect errors
that occured during preparation with an extra layer of error detection or do
some sort of “distillation” procedure akin to the magic state distillation we
will discuss in Section 11.5.

One limitation of the Steane method is it only works for CSS codes. The
following exercise describes a procedure that works for all stabiliser codes.

Exercise* 11.15 Consider the following “logical Bell state”, prepared on
two blocks of an Jn, k, dK stabiliser code with encoder E:

E

E

n

n

k

The Knill fault-tolerant measurement protocol measures the full error
syndrome by performing a multi-qubit Bell meausurement between our data
and one code block of this state:

E

E

z⃗ · π
n

n

k

x⃗ · π
n

Show that this acts the same on the quantum state as measuring all of
the stabilisers, and show how the syndrome can be computed from the
measurement outcome (x⃗, z⃗). [TODO: This is pretty hard on its own, so
probably needs more hints. The trick is to use the representation of E as
U(I⊗|0 . . . 0⟩), relate UT to U † (they are related by a Pauli string, depending
on which stabilisers are self-transposed), and show how to represent the
outcome of a syndrome measurement in terms of U † and U .]

[TODO: explain hook errors in the surface code]
[TODO: Fault-tolerance with flag qubits. Here are the figures I’ve made

so far:

558 Quantum error correction

kπ

f2πf1π f3π f4π f5π

f6π

f7π

kπ

]

11.4.3 Lattice surgery

As we mentioned in Section 11.4.1.1, the transversal CNOT gate might not
be the most convenient way to implement multi-qubit operations in the
surface code, because it breaks the 2D planar structure. It would be nice if
there was a way to implement multi-qubit operations between neighbouring
patches of surface code that only touch the boundaries of the code patches,
hence not requiring lots of non-local gates, which might be hard to implement
on platforms where qubits are embedded in the plane.

This is where lattice surgery comes in. This is a particular technique for
implementing multi-qubit operations in the surface code (or CSS codes with
similar structure) fault-tolerantly. Unlike the transversal gates we considered
before, these operations are not unitaries.

The first class of operation splits a logical qubit into two, and comes in
two varieties:

Z-split := X-split :=

As these are both isometries, they can be performed deterministically. How-
ever, the dual operation that merges two logical qubits into one is non-
deterministic:

Z-merge :=
{

kπ

}
k=0,1

X-merge :=
{

kπ

}
k=0,1

11.4 Fault-tolerance 559

In other words, each of these operations is a degenerate measurement that
projects the 4D space of two logical qubits onto a 2D space, which we can
then treat as a single logical qubit.

These operations can be combined to produce multi-qubit operations such
as a CNOT on the logical level:

kπ =
kπ

=

kπ

up to a possible Pauli error, which can be corrected for in subsequent opera-
tions. If one is additionally able to prepare single logical qubits in a handful
of fixed states, and can use merge operations to obtain arbitrary single-qubit
gates, and hence a universal model of computation.

This explains how lattice surgery works on the logical level. To explain
what is happening at the physical level, we can push these operations through
the encoder. However, unlike previous examples, these operations can actu-
ally change the code we are using to encode our logical qubits. The surface
code works for any d× e grid of qubits, and has distance min(d, e).

To explain the split and merge operations, we will use not one encoder but
a whole family of encoders of the form Ed×e which embed a single logical
qubit into a grid of the appropriate size. Then, the physical operations
operations SPLIT and {MERGEk}k=0,1 should commute with this family of
encoders as follows:

Ed×2e

de

de SPLIT

de

de
=

Ed×e

Ed×e

de

de

de

de MERGEk

de

de
=

de

de

Ed×e

Ed×e

E2d×e

kπ

We’ll demonstrate these operations concretely on 3×3 surface code patches,
but in fact the same derivation will work for surface code patches of any size.
Let’s start with the Z-split, which is performed on a d× 2e patch of surface
code by performing X ⊗ X measurements down the e-th column as if this
were the rightmost X boundary of a d× e surface code patch. This will have
the overall effect of splitting the patch in twain.

For this derivation, it will be most convenient to use the X-form of the
encoder. To perform the split itself, we do X ⊗X measurements down the
3rd column as if this were the right boundary of a 3 × 3 surface code patch.

560 Quantum error correction

In this case, there is only one XX measurement to do. We can then use the
π-copy rule to push the jπ phase coming from the measurement outcome on
to the outputs:

≡ = (∗)
e.c.

jπ
=

jπ

jπ

jπ

jπ

Note we write e.c.≡ to mean the two diagrams are equal up to “error correction”,
i.e. Pauli operators applied just on the outputs. These can be treated as
errors on the physical qubits and corrected later, so we will disregard them
in our calculation.

Using the complementarity rule (c), we see that the existing X⊗4 stabiliser
becomes a pair of X⊗2 stabilisers. This can then be translated into a Z-copy
followed by two encoders by unfusing the bottom spider:

(∗) = =

=

Next we do an X-merge by performing X stabiliser measurements along
the boundary between two vertically-stacked surface code patches, as if these
were stabilisers of one big 6 × 3 patch. We can eliminate the π phases from
the encoder by error correction, but this time we pick up a phase of kπ
where k = j1 ⊕ j2 on the input (or more generally k = j1 ⊕ . . .⊕ jq for bigger

11.4 Fault-tolerance 561

patches). We can then use the “deformation” trick from equation (11.22)
to move the two logical operators on top of each other and apply strong
complementarity:

j2π ≡e.c.j1π
kπ

kπ

=

kπ

=

Note that the applications of the spider law, complementarity, strong
complementarity, and π-copy rules in these two derivations extend naturally
to larger surface code sizes. Also note that reversing the colours of these two
derivations and rotating 90◦ gives recipes for remaining two operations of X-
split and Z-merge, using the Z-representation of the surface code embedding
rather than the X-representation.

This gives us a nice 2D way to build CNOT gates, as well as more general
multi-qubit operations described by phase-free ZX diagrams, using just local
measurements in the surface code. We already noted in Section 11.4.1.1 that
we nearly have transversal Hadamards in the surface code, as long as we
are willing to account for the fact that our surface might get rotated 90◦. If
we only had T gates, we would have a universal set of gates which can be
conveniently performed on surface-code-encoded qubits.

We can check that the surface code is not a triorthogonal code, so it

562 Quantum error correction

definitely doesn’t have a transversal T gate. More generally, due to the
Eastin-Knill theorem 11.4.5, we know it doesn’t have any universal set of
transversal one-qubit gates. So, we need a different idea. This is where magic
state distillation comes in.

11.5 Magic state distillation
We saw all the way back in Section 3.3.1 that if we have access to states of
the form:

|T ⟩ := π
4

then we can do magic state injection using just CNOT, S, and a Pauli
measurement:

π
4 aπ

aπ
2

=
π
4

aπ
2

aπ

(sp)

∝
(−1)a π

4

aπ
2(π)

=
π
4

aπ
2(sp)

−aπ
2 = π

4

(sp)

In fact, with lattice surgery in the surface code, we can do this even more
directly, since we can just MERGE the magic state right in:

aππ
4

aπ
2 ∝ (−1)a π

4
aπ

2 = π
4

In the case of the surface code, we don’t have a transversal S gate to perform
the classical correction. However, if we do state injection for S we only need
to do a Pauli correction:

aππ
2

aπ ∝ (−1)a π
2 aπ = π

2

Paulis are just logical operators, so they are always transversal in any error
correcting code. Even better, if we have an |S⟩ state and access to H and
CNOT, we can use it to catalyse as many S gates as we want, following
Section 10.5:

π
2

=
π
2

∝
π
2

π
2(10.48)

Thus, all we need to boost the surface code (and actually quite a wide
family of stabiliser codes) to computational universality is access to one |S⟩
state and lots of |T ⟩ states. In fact, as soon as we have |T ⟩ states, we can
build |S⟩ states, at least probabilistically, so all we really need is enough |T ⟩
states. That is what makes these states so magic.

We found a code with a transversal T gate (Example 11.4.12) and one

11.5 Magic state distillation 563

with a transversal CCZ (Example 11.4.16), but these codes are actually not
that good. They are not high distance, and they can’t perform some other
useful gates transversally. However, even though these codes are not any
good for doing all of our quantum computation, they can help us prepare
magic states |T ⟩ (and later |CCZ⟩) using a technique called magic state
distillation.

Magic state distillation works by taking many noisy copies of a state and
turning them into one less noisy one. To do this, we first form the encoded
|+⟩ state, then apply a noisy T gate to each of our qubits using a bunch of
noisy |T ⟩ states and magic state injection, then decode back to a 1-qubit
state to produce a less noisy |T ⟩ magic state.

To convince ourselves this could work, let’s start with an idealised case
where we want to produce a |T ⟩ magic state on a single qubit and we have
access to two things:

1. perfect, noiseless Clifford operations, and
2. a procedure that produces a “good” magic state |T ⟩ with probability

1 − pe and an erroneous magic state Z|T ⟩ with probability pe.

We’ll see how to get something approximating these assumptions on our
actual hardware later, but this simple case will be enough to get the main
idea.

Now, let’s start with an S|+⟩ state, which we prepare using our “perfect”
Clifford operations, and encode it with some error correcting code with a
transversal T gate, such as the J15, 1, 3K code from Example 11.4.12. We
can then do magic state injections on all 15 of the physical qubits using 15
(possibily erroneous) magic states. We can then decode back to a single qubit
using the decoder described in Section 11.2.4, post-selected onto syndrome 0⃗:

π
2 E D0⃗

π
4 a⃗ · π

a⃗ · π
2 ∝ π

2 E D0⃗
π
4

15 15

= π
2 E D0⃗

−π
4 = π

4

(11.59)

If no errors occurred in this process, we will indeed always get a syndrome
0⃗ which is what we want. If instead we get a non-zero syndrome s⃗ ̸= 0⃗, then
we throw away the resulting state away and try again. Note that since we
are assuming that all Clifford operations are perfect and noiseless, that the
only way we could get a non-zero error is because of some fault in the |T ⟩
states. Hence if we indeed got a syndrome of 0⃗, then the resulting ‘distilled’

564 Quantum error correction

|T ⟩ state only contains an error if the noisy |T ⟩ introduced some undetected
error. Since the code has distance three, at least three magic states needed to
get an error. If we assume the errors occur independently, this probability is
at most

(15
3
)
p3
e (ignoring the much less likely scenario of getting more than 3

errors). In fact, even distance-3 codes can detect some 3-qubit errors, so the
probability can actually be a bit lower than that. For the case of the J15, 1, 3K,
there are just 35 undetectable triplets of errors, and so the probability is
35p3

e. Hence, while we started with 15 |T ⟩ states that have probability pe
of getting an error, we ended up with 1 |T ⟩ state with probability 35p3

e of
having an error. Hence, as long as pe > 35p3

e, we have made progress. In fact,
for reasonably small pe, we have made a LOT of progress.

Let’s do some calculations to see how much we have accomplished. First,
note that pe > 35pe3 when pe < 1/

√
35 ≈ 0.17. So even if we start with

|T ⟩ states that have an error rate of up to 17% we can use this protocol to
improve them. But let’s suppose we start with pe,0 = 10−2, a 1% error rate.
There are already many quantum devices that are below this error rate. We
see that after a single successful round distillation, we have pe,1 = 3.5·10−5. If
this isn’t good enough, we just take 15 of these better states and use them in
another round of distillation. After a second round we have pe,2 ≈ 1.5 · 10−12.
A third round gives pe,3 ≈ 1.18 · 10−34. This is already a much better error
rate then we would ever need to do any realistic computation.

So, doing successive rounds of magic state distillation exponentially sup-
presses the probability of an error. However, it also has an exponential cost
in noisy |T ⟩ states. For example, doing three rounds of this 15-to-1 protocol
requires at least 15 · 15 · 15 = 3375 noisy |T ⟩ states. However, we haven’t yet
accounted for the states we have to throw away when the protocol fails.

Our protocol aborts when we get a non-trivial syndrome. By far the most
likely reason to get a non-trivial syndrome is when we see 1 error. The
probability of this happening is 15pe. So in the first layer of distillation,
when we have pe,0 = 0.01, the probability the protocol fails is 15%. To get
the actual cost estimate, we hence need to multiply the cost of running the
protocol once by the estimated number of runs we need to get a successful
run. For the first layer this is 15/(1 − 0.15) ≈ 17.6. Hence, the expected
|T ⟩ cost to produce one |T ⟩ state of error pe,1 = 3.5 · 10−5 is 17.6 instead
of 15. By the time we get to the second and third layers, the probability of
getting an error is already so small that the expected cost is very close to
15. Multiplying 17.6 · 15 · 15, we see we can distill a very, very good |T ⟩ state
for an expected cost of around 4000 noisy ones. Inserting some magic into
our computation sure seems to come at a cost.

But while this is expensive, it is not totally crazy. This was one of the

11.5 Magic state distillation 565

first protocols for doing magic state distillation, and its possible to bring
this cost down quite a bit by finding better codes and protocols. In the next
section, we will show a state-of-the-art distillation protocol using almost all
of the ingredients we’ve covered in this book so far, but before we get there,
let’s revisit the two simplifying assumptions we made at the start. The first
was that we can do perfect, noiseless Clifford operations. Of course, nothing
in quantum-computing land is noiseless, but if we have a family of error
correcting codes of increasing distance with fault-tolerant implementations
of all Clifford operations, we can perform Cliffords with arbitrary low levels
of noise.

To benefit from this, we can do magic state distillation inside of another
code Ec that has high-distance and fault-tolerant implementations of Clifford
gates. Rather than starting with 15 physical |T ⟩ states and performing a
round of distillation using physical gates and measurements, we prepare 15
noisy logical |T ⟩ states:

|T̃ ⟩ := π
4 Ec ..

.

and then perform the whole protocol (11.59) encoded within Ec. Since Ec
doesn’t have transversal T gates, we can’t prepare |T̃ ⟩ fault-tolerantly, but
we can still prepare possibly faulty |T̃ ⟩ states, which we then distill to get
better ones.

Generally to make this procedure as efficient as possible, we want to pick an
‘ambient’ code Ec whose probability of producing a logical error during the
distillation protocol is just a bit lower than the logical error of the produced
distilled states. This makes the Clifford operations ‘just good enough’ so
that we can treat them as perfect, while not being overkill by using an overly
expensive code.

Remark 11.5.1 The surface code doesn’t have transversal S gates, so we
don’t know yet that it implements the full Clifford group. Nevertheless, we
can still perform the analogous protocol to (11.59) using only CNOT, H, and
Paulis in order to distill an |S⟩ state. As we already remarked at the end of
Section 11.4.3, once we have one good |S⟩ state, we can use it to catalyse as
many fault-tolerant S gates as we need, and hence the full Clifford group.

The second assumption was that the only kind of error we get is getting
Z|T ⟩ instead of |T ⟩ with some probability pe. Of course, many kinds of errors
could happen when trying to prepare |T̃ ⟩, not just those that make a logical
error of Z̃|T̃ ⟩ = Z⃗|T̃ ⟩. [TODO: notation clash for logical operators of a code
vs “implementation” notation. maybe we can just use tilde for everything.]

566 Quantum error correction

However, there is a nice trick, called twirling, which we can use to project
all the other kinds of errors that might happen down to either “no error” or
a Z error. Start with a |T̃ ⟩ state subject to arbitrary noise, and then with
50% probability, apply a logical unitary S̃X̃. After we do this, we can treat
the resulting state as either staying the same (|T ⟩ is an eigenstate of SX
after all) or flipping to Z|T ⟩ with some small probability. It probably seems
rather counter-intuitive that this works. The best way to understand this is
in the language of quantum mixed states and channels from Section* 2.7.1.
We leave the details as a starred exercise:

Exercise* 11.16 In this exercise we will find out why we may assume that
the error in preparing a |T ⟩ is only a Z, and nothing else.

a) Show that |T ⟩ and Z|T ⟩ are eigenstates of the operator SX.
b) Let Φ be the quantum channel acting on a qubit density matrix ρ via

Φ(ρ) = 1
2ρ + 1

2(SX)ρ(SX)†. Show that |T ⟩⟨T | and Z|T ⟩⟨T |Z are fixed
points of Φ and that it sends |T ⟩⟨T |Z and Z|T ⟩⟨T | to zero.

c) Conclude that Φ is a projector to the space spanned by |T ⟩⟨T | and
Z|T ⟩⟨T |Z.

d) Argue that we hence have Φ(ρ) = (1 − pe)|T ⟩⟨T | + peZ|T ⟩⟨T |Z for some
probability pe.

We see then that the resulting mixed state is a convex combination of the
pure states |T ⟩ and Z|T ⟩, which behaves identically to a perfect |T ⟩ state
that gets a Z-flip with probability pe.

In summary, we have managed to convince ourselves that magic state
distillation works, even starting from fairly realistic assumptions about what
we can do on a real quantum computer. However, 4000-to-1 is still pretty
expensive, so let’s see if we can bring that cost down.

11.5.1 CCZ distillation and catalysis

We can use magic state distillation to build other kinds of non-Clifford states
as well. A particularly handy one is the CCZ magic state:

|CCZ⟩ := CCZ|+++⟩ =

In this section, we’ll build a distillation protocol for it based on the J8, 3, 2K
code given in Example 11.4.16. In this code we can use 8 T gates to implement
a CCZ gate:

11.5 Magic state distillation 567

E π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

E =

Using this property, we can start with an encoded |+++⟩ state and apply
transversal T gates to end up with a |CCZ⟩ magic state. This in turn can be
used to inject a CCZ gate at will using the procedure described in Exercise 9.5
using just Clifford operations. [TODO: Picture of |CCZ⟩ generation here?]

We can use this 3-to-8 code to distil a |CCZ⟩ with a lower error proba-
bility than the input |T ⟩ states using the repeat-until-success approach we
described above. Because the code is distance 2, it can detect up to one error.
As there is just one X stabiliser with support on all 8 qubits, we know that
any combination of two errors leads to a trivial syndrome and hence will not
be detectable, so that any pair of two errors will lead to the protocol failing.
An input error probability of pe,0 for the T gates hence gets boosted to(8

2
)
pe,0

2 = 28pe,02. This procedure then has a threshold of pe < 1/28 ≈ 0.036,
or 3.6% for improving the error in the CCZ.

Note that this protocol is not directly stackable: it takes in |T ⟩ magic
states, but outputs a |CCZ⟩ magic state.

For this reason (and another one we will see soon), this distillation protocol
is mostly used as a final stage, where we already have relatively high-quality
|T ⟩ states, and we wish to convert them into a still higher quality |CCZ⟩.

Suppose for instance that we start with |T ⟩ states with an error rate of
pe,0 = 10−3 (current machines get pretty close to being able to prepare states
with this precision). Then one round of the 15-to-1 distillation described
above gives us pe,1 = 35pe,03 = 3.5 · 10−8. Using these states in our CCZ
distillation protocol gives us a CCZ gate which has an error probability of
pe,2 = 28 · pe,12 = 3.43 · 10−14. That is: we can expect to do about 30 trillion
CCZ gates before we encounter one that is faulty. The cost for this is only
about 15 · 8 = 120 noisy |T ⟩ states per distilled CCZ.

Instead of using the |CCZ⟩ magic states to implement a CCZ gate, we can
also use them to implement T gates. As we saw in Section 10.5, a CCZ gate
can be converted back into two separate |T ⟩ states using catalysis.

If we do that with the CCZs produced by this protocol, this then gives
us a pipeline to convert 8 T gates into one better CCZ, which is then
converted into 2 T gates. This is then effectively an 8-to-2 protocol with an
error improvement of pe → 28pe2. But there is an important detail here we
shouldn’t forget: when the protocol fails, i.e. more than one error happens so
that we get a CCZ with an error, then when we convert this CCZ into two |T ⟩

568 Quantum error correction

states, both of these states will potentially inherit this error. Hence, when we
do this we will get correlated errors. If these T gates are directly used in the
final computation we wish to execute, this is not a problem since there we
would consider any single error already catastrophic, so the probability of a
double error being higher doesn’t affect the overall success probability of the
computation. However, if we were to reuse these potentially “damaged” |T ⟩
states in another round of distillation, we might get a much higher chance
of the protocol failing, and hence not get as good a quality of |T ⟩ states out
of it as we would expect.

Despite these problems, the fact that we can distil at a rate of 8-to-2 is
clearly a lot higher than 15-to-1, and as such this catalysis-based protocol,
or variations of it, form part of some of the best-performing proposals for
magic state distillation out there. In particular, as it takes 120 |T ⟩ for one
CCZ, catalysing this back into 2 |T ⟩’s gives an effective rate of 60 |T ⟩ states
with error 10−3 getting converted into 1 |T ⟩ state with error 3.43 · 10−14.

11.6 Summary: What to remember
1. A quantum error correcting code is a subspace of n-qubit space. It lets

us detect and correct errors by performing measurements to see if we
have left the subspace.

2. Stabiliser codes are a family of quantum error correcting codes we can
efficiently represent and manipulate using stabiliser theory and/or the
Clifford ZX-calculus. They are subspaces of the form:

Stab(S) := { |ψ⟩ | P⃗ |ψ⟩ = |ψ⟩,∀P⃗ ∈ S}

for a stabiliser group S = ⟨P⃗1, . . . , P⃗m⟩.
3. An Jn, k, dK stabiliser code encodes k logical qubits in n physical qubits

and can detect any Pauli error of weight < d and correct any error of
weight t where 2t+ 1 < d.

4. We can relate logical qubits to physical qubits via an isometry called
the encoder map:

E..
.

..
.k n

5. For CSS codes, the encoder can always be written in one of two simple
equivalent forms: the X-form and the Z-form. Using the scalable ZX

11.6 Summary: What to remember 569

calculus, these are:

LX

SX

n

k

m
=

LT
Z

ST
Z

n

k

m′

where the columns of LX and SX represent X-logical operators and
X-stabilisers, respectively, and similarly the columns of LZ and SZ
represent Z-logical operators and Z-stabilisers.

6. The surface code is a well-studied family of codes, with many nice
properties such as high levels of noise resistance, efficient decoding, and
the ability to implement it using just 2D nearest-neighbour gates.

1 2 3

4 5 6

7 8 9

⇝

7. In order to achieve fault-tolerance, we must find ways to implement
error correction, as well as the building blocks of universal quantum
computation (e.g. state preparation, unitaries, and measurements) on
encoded qubits without spreading errors.

8. Transversal unitary operations are fault tolerant because they only in-
volve tensor products of operations on one qubit from each code block.
However, no single code admits a universal set of transversal gates, due
to the Eastin-Knill theorem.

9. CNOT gates are transversal for CSS codes and H gates are transversal
for self-dual CSS codes:

=

SX

LX

SX

LX

SX

LX

SX

LX

=

SX

LXM

SX

LX

10. Strongly triorthogonal codes have transversal T gates:

∝LX

SX

−π
4

LX

SX

π
4

570 Quantum error correction

and triorthogonal codes have transversal T gates up to a (possibly non-
transversal) Clifford unitary on the physical qubits.

11. Fault-tolerant syndrome-extraction protocols perform stabiliser mea-
surements without spreading errors on the data qubits. Many of these
protocols, like Shor’s, can be seen as “unfusing” the Pauli projector:

sπ

=
s1π

s2π

s3π

s4π

12. Magic state distillation lets us turn many noisy copies of a magic state
into fewer, less-noisy copies:

π
2 E D0⃗

π
4 a⃗ · π

a⃗ · π
2 ∝ π

2 E D0⃗
π
4

15 15

= π
2 E D0⃗

−π
4 = π

4

This can be very costly, requiring thousands of noisy |T ⟩ states to distil
a very clean one.

13. Using a high-distance code with transversal Clifford operations, such
as the surface code, along with magic state distillation, is a promising
method for implementing universal fault-tolerant quantum computation.

11.7 References and Further Reading
[TODO:

• origins of QEC DONE
• stabiliser codes DONE
• CSS codes DONE
• surface code DONE
• ZX picture of CSS code, starting with Duncan and Lucas (2014) then

grok papers (Kissinger, 2022a) (Kissinger and van de Wetering, 2024)
DONE

11.7 References and Further Reading 571

• fault-tolerance and threshold theorem. “proto” threshhold theorem by
Shor (Shor, 1996) DONE

• transversal clifford gate theorems (all CSS has CNOT, all self-dual has
H)

• transversal T gates and triortho codes
• FT syndrome extraction: Shor (Shor, 1996), Steane, and Knill DONE
• lattice surgery and ZX picture DONE
• magic state distillation. first prep of CCZ magic states (Shor, 1996)

DONE
• further reading: MacWilliams and Sloane for classic EC, road to FT

for survey (although old now), game of surface codes, gottesman book.
DONE

]

Origins of quantum error correction All the core ideas of quantum error
correction—quantum codes, fault-tolerant computations, the treshold theo-
rem, stabiliser theory—originated in a flurry of activity between 1995 and
1999, with especially significant contributions by Shor, Steane, Gottesman
and Kitaev. Many ideas were discovered independently by several people
at the same. The original idea of quantum error correction was introduced
independently by Shor (1995) and Steane (1996a). General conditions that
any (not necessarily stabiliser) code must satisfy to correct errors were in-
dependently found in (Bennett et al., 1996) and Knill and Laflamme (1997)
and are now sometimes called the Knill-LaFlamme conditions. The “History
and further reading” section of Chapter 10 of Nielsen and Chuang (2010)
provides many more references to the early developments in quantum error
correction.

Origin of some quantum codes The 9-qubit Shor code was discovered by,
well, Shor (Shor, 1995) and the 7-qubit Steane code by, you guessed it,
Steane (Steane, 1996a). The 5-qubit code was discovered independently
(again) by both Bennett et al. (1996) and Laflamme et al. (1996). Stabiliser
theory and the idea of stabiliser codes was introduced by Gottesman (1997).
The idea to combine a pair of orthogonal classical codes into a single quan-
tum code was discovered independently by Calderbank and Shor (1996)
and Steane (1996b) and hence these are named Calderbank-Shor-Steane
(CSS) codes in their honour. The J8, 3, 2K ‘smallest interesting colour code’
was described as such by Campbell (n.d.), where Campbell shows that this
code has a transversal CCZ gate (note that the 7-qubit Steane code is the

572 Quantum error correction

smallest non-trivial colour code, but since it has no non-Clifford transversal
gates it was not interesting according to that post).

Fault tolerance An early statement and proof of a fault-tolerant threshold
theorem goes back to Shor (1996). This was improved upon by many other
groups, including Aharonov and Ben-Or (1997), Knill et al. (1998), Kitaev
(2003), and Aliferis et al. (2005) under various assumptions and error models.
Shor’s protocol for fault-tolerant stabiliser measurements is from (Shor, 1996),
Steane’s from (Steane, 1997), and Knill’s from (Knill, 2005).

Transversal gates A characterisation of when a stabiliser code has a transver-
sal Hadamard, S or CNOT gate was given in for instance the thesis of Gottes-
man (1997). There he in fact shows that if a stabiliser code has a transversal
CNOT, then it must be a CSS code. The characterisation of transversal
diagonal gates from the Clifford hierarchy is based on Webster et al. (2023),
though the ZX version we present here is from Kissinger and van de Weter-
ing (2024). In Webster et al. (2023) they also give an efficient algorithm for
finding codes with transversal diagonal gates.

Surface codes The surface code was introduced by Bravyi and Kitaev (1998),
based on the slightly older toric code of Kitaev (Kitaev, 1997, 2003) which
considers a 2d lattice defined on a torus, i.e. a donut. So whereas the sur-
face code has an actual boundary where the lattice ends, in the toric code
the surface loops around to create the surface of a donut. An in-depth
study of correcting errors on the surface code by identifying connecting lines,
and doing universal computation using transversal CNOT gates and magic
state injection was done in Dennis et al. (2002). There they also found a
first estimate of a treshold for the surface code. Transversal CNOTs are
of course not practical for surface codes. In (Raussendorf and Harrington,
2007; Raussendorf et al., 2007) they use the method of introducing punctures,
i.e. holes, into a surface code in order to encode multiple qubits into a single
surface. The distance of the code is then the distance between two holes
and the boundary. We can then perform two-qubit gates by deforming the
code and ‘rotating the holes around each other’. They find that this way of
performing computations gives a threshold of 0.75% (later improved to > 1%
in Wang et al. (2011)). A more accessible description of these results is given
in Fowler et al. (2009), and an extensive review of this topic in Fowler et al.
(2012) where they also give an estimate that running Shor’s algorithm to
factor a 2000-bit number would take about 200 million qubits and a full day

11.7 References and Further Reading 573

of computation. The more compact, ‘rotated’ version of the surface code we
use was first introduced in (Horsman et al., 2012, Section 7.1).

Decoding and perfect matching Decoding classical linear codes is in general
NP-hard (Berlekamp et al., 1978), and even approximating the minimal-
weight decoding remains NP-hard (Arora et al., 1997). This remains the
case for quantum (stabiliser) codes (Hsieh and Le Gall, 2011) (note that this
not obviously follows, since for stabiliser codes we only care about decoding
up to stabilisers and this kind of degeneracy is not present in the classical
case, so that a priori the problem might become easier). However, this hard-
ness only holds for arbitrary codes with non-local stabiliser generators. The
minimum-weight perfect matching problem can be efficiently solved using
the blossom algorithm (Edmonds, 1965). However, even though it is efficient
in the asymptotic sense, for a practical implementation it must be really
fast, and hence people have spent a lot of effort to make refined algorithms
that lose optimality, but can run very fast or only using a local amount of
data (Vittal et al., 2023; Higgott et al., 2023; Delfosse, 2020; iOlius et al.,
2023; Skoric et al., 2023). PyMatching is an open-source Python package
that implements several methods for decoding topological codes (Higgott,
2022).

Lattice surgery As might be clear from those latter numbers, performing
CNOTs by rotating qubits around each other tends to be expensive. The
idea of merging and splitting rectangular patches of surface codes by lattice
surgery was introduced by Horsman et al. (2012). That this indeed seems
to be much more efficient than braiding was argued in Fowler and Gidney
(2018). An experimental demonstration of lattice surgery on real hardware
was presented in Erhard et al. (2021).

Error correcting codes and ZX The surface code was first presented in the ZX-
calculus by Horsman (2011), who also found that the logical function of the
merging and splitting operation is actually just Z- and X-spiders de Beaudrap
and Horsman (2020). Duncan and Lucas (2014) was the first paper to use
ZX-calculus to verify the correctness of an error correcting code (the Steane
code), which was followed up by a verification of ‘the smallest interesting
colour code’ Garvie and Duncan (2018), which we gave in Example 11.4.16.
In Chancellor et al. (2016) they used a proto version of scalable ZX notation
to find a new class of quantum codes. The correspondence between phase-free
ZX-diagrams and CSS codes was established by Kissinger (2022b), where
he also proved the correctness of lattice surgery. The ZX description of

574 Quantum error correction

transversal non-Clifford gates in triorthogonal codes is from Kissinger and
van de Wetering (2024).

Magic state distillation The concept of distilling a noisy non-Clifford state
by encoding it in a code with a transversal non-Clifford gate was intro-
duced by Bravyi and Kitaev (2005), where they found the 15-to-1 protocol.
This was generalised to an entire family of protocols based on triorthogonal
codes in Bravyi and Haah (2012). A protocol based on using the transversal
Hadamard in the J4, 2, 2K code was given in Meier et al. (2013). This works
a bit differently, as we use the transversal Hadamard to perform a logical
Hadamard eigenbasis measurement, which distills the Hadamard eigenstate,
which is Clifford equivalent to |T ⟩. The CCZ distillation used to implement T
gates via catalysis was introduced in Gidney and Fowler (2019). A comprehen-
sive analysis of running Shor’s algorithm to factor a 2048-bit number using
surface code lattice surgery with this improved catalysed CCZ distillation
scheme was given in Gidney and Ekerå (2021), where they find you require
20 million qubits and 8 hours of computation time, a large improvement over
the older scheme using braiding and iterated 15-to-1 distillation.

Even further reading An excellent overview of quantum error correction and
fault-tolerance can be found in the book of Gottesman (2024), which at
the time of this writing was available as a preprint freely online. A stan-
dard, comprehensive, and approachable text on classical error correction
is (MacWilliams and Sloane, 1977). An accessible and quite comprehen-
sive fault-tolerant quantum computing scheme based on surface code lattice
surgery and magic state distillation is A Game of Surface Codes by Litinski
(2019).

References

Aaronson, Scott, and Gottesman, Daniel. 2004. Improved simulation of stabilizer
circuits. Physical Review A, 70(5), 052328.

Abramsky, S., and Coecke, B. 2004. A categorical semantics of quantum protocols.
Pages 415–425 of: Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science (LICS). arXiv:quant-ph/0402130.

Adleman, Leonard M, DeMarrais, Jonathan, and Huang, Ming-Deh A. 1997. Quan-
tum computability. SIAM Journal on Computing, 26(5), 1524–1540.

Aharonov, Dorit. 2003. A simple proof that Toffoli and Hadamard are quantum
universal. arXiv preprint quant-ph/0301040.

Aharonov, Dorit, and Ben-Or, Michael. 1997. Fault-tolerant quantum computation
with constant error. Pages 176–188 of: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing.

Aharonov, Dorit, and Naveh, Tomer. 2002. Quantum NP-a survey. arXiv preprint
quant-ph/0210077.

Alber, Gernot, Beth, Thomas, Horodecki, Michał, Horodecki, Paweł, Horodecki,
Ryszard, Rötteler, Martin, Weinfurter, Harald, Werner, Reinhard, Zeilinger,
Anton, Beth, Thomas, et al. 2001. Quantum algorithms: Applicable algebra and
quantum physics. Quantum information: an introduction to basic theoretical
concepts and experiments, 96–150.

Aliferis, Panos, Gottesman, Daniel, and Preskill, John. 2005. Quantum accuracy
threshold for concatenated distance-3 codes. arXiv preprint quant-ph/0504218.

Ambainis, A. 2010. New developments in quantum algorithms. arXiv:1006.4014.
Amy, M., Maslov, D., Mosca, M., and Roetteler, M. 2013a. A Meet-in-the-Middle

Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32(6), 818–830.

Amy, Matthew. 2019. Formal methods in quantum circuit design. Ph.D. thesis,
University of Waterloo.

Amy, Matthew, and Mosca, Michele. 2019. T-count optimization and Reed-Muller
codes. Transactions on Information Theory.

Amy, Matthew, and Ross, Neil J. 2021. Phase-state duality in reversible circuit
design. Phys. Rev. A, 104(Nov), 052602.

Amy, Matthew, Maslov, Dmitri, Mosca, Michele, and Roetteler, Martin. 2013b.
A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum

576 References

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 32(6), 818–830.

Amy, Matthew, Maslov, Dmitri, and Mosca, Michele. 2014. Polynomial-time T-
depth optimization of Clifford+ T circuits via matroid partitioning. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
33(10), 1476–1489.

Amy, Matthew, Chen, Jianxin, and Ross, Neil J. 2018. A finite presentation of
CNOT-dihedral operators. In: Coecke, Bob, and Kissinger, Aleks (eds), Pro-
ceedings 14th International Conference on Quantum Physics and Logic, Ni-
jmegen, The Netherlands, 3-7 July 2017. Electronic Proceedings in Theoretical
Computer Science, vol. 266. Open Publishing Association.

Amy, Matthew, Crawford, Matthew, Glaudell, Andrew N, Macasieb, Melissa L,
Mendelson, Samuel S, and Ross, Neil J. 2023. Catalytic embeddings of quantum
circuits. arXiv preprint arXiv:2305.07720.

Arora, Sanjeev, Babai, László, Stern, Jacques, and Sweedyk, Z. 1997. The Hardness
of Approximate Optima in Lattices, Codes, and Systems of Linear Equations.
Journal of Computer and System Sciences, 54(2), 317–331.

Backens, Miriam. 2014a. The ZX-calculus is complete for stabilizer quantum me-
chanics. New Journal of Physics, 16(9), 093021.

Backens, Miriam. 2014b. The ZX-calculus is complete for the single-qubit Clif-
ford+T group. Pages 293–303 of: Coecke, Bob, Hasuo, Ichiro, and Panan-
gaden, Prakash (eds), Proceedings of the 11th workshop on Quantum Physics
and Logic. Electronic Proceedings in Theoretical Computer Science, vol. 172.
Open Publishing Association.

Backens, Miriam, and Kissinger, Aleks. 2019. ZH: A Complete Graphical Calculus
for Quantum Computations Involving Classical Non-linearity. Pages 18–34 of:
Selinger, Peter, and Chiribella, Giulio (eds), Proceedings of the 15th Interna-
tional Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June
2018. Electronic Proceedings in Theoretical Computer Science, vol. 287. Open
Publishing Association.

Backens, Miriam, Perdrix, Simon, and Wang, Quanlong. 2016. A Simplified Sta-
bilizer zx-calculus. In: Proceedings of the 13th International Conference on
Quantum Physics and Logic. arXiv:1602.04744.

Backens, Miriam, Miller-Bakewell, Hector, de Felice, Giovanni, Lobski, Leo, and
van de Wetering, John. 2021. There and back again: A circuit extraction tale.
Quantum, 5(3), 421.

Backens, Miriam, Kissinger, Aleks, Miller-Bakewell, Hector, van de Wetering, John,
and Wolffs, Sal. 2023. Completeness of the ZH-calculus. Compositionality,
5(7).

Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor,
P. W., Sleator, T., Smolin, J. A., and Weinfurter, H. 1995. Elementary gates
for quantum computation. Physical Review A, 52, 3457–3467.

Benioff, P. 1980. The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing machines.
Journal of Statistical Physics, 22, 563–591.

Bennett, Charles H., DiVincenzo, David P., Smolin, John A., and Wootters,
William K. 1996. Mixed-state entanglement and quantum error correction.
Phys. Rev. A, 54(Nov), 3824–3851.

References 577

Berlekamp, E., McEliece, R., and van Tilborg, H. 1978. On the inherent intractabil-
ity of certain coding problems (Corresp.). IEEE Transactions on Information
Theory, 24(3), 384–386.

Bernstein, Ethan, and Vazirani, Umesh. 1997. Quantum Complexity Theory. SIAM
Journal on Computing, 26(5), 1411–1473.

Berry, Dominic W., Childs, Andrew M., Cleve, Richard, Kothari, Robin, and Somma,
Rolando D. 2015. Simulating Hamiltonian Dynamics with a Truncated Taylor
Series. Phys. Rev. Lett., 114(Mar), 090502.

Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. 2014. Interacting bialgebras
are Frobenius. Pages 351–365 of: International Conference on Foundations of
Software Science and Computation Structures. Springer.

Bravyi, Sergey, and Gosset, David. 2016. Improved Classical Simulation of Quantum
Circuits Dominated by Clifford Gates. Phys. Rev. Lett., 116(Jun), 250501.

Bravyi, Sergey, and Haah, Jeongwan. 2012. Magic-state distillation with low over-
head. Phys. Rev. A, 86(Nov), 052329.

Bravyi, Sergey, and Kitaev, Alexei. 2005. Universal quantum computation with
ideal Clifford gates and noisy ancillas. Physical Review A, 71(2), 022316.

Bravyi, Sergey, Smith, Graeme, and Smolin, John A. 2016. Trading classical and
quantum computational resources. Physical Review X, 6(2), 021043.

Bravyi, Sergey, Browne, Dan, Calpin, Padraic, Campbell, Earl, Gosset, David, and
Howard, Mark. 2019. Simulation of quantum circuits by low-rank stabilizer
decompositions. Quantum, 3(9), 181.

Bravyi, Sergey, Gosset, David, and Liu, Yinchen. 2022. How to Simulate Quan-
tum Measurement without Computing Marginals. Phys. Rev. Lett., 128(Jun),
220503.

Bravyi, Sergey B, and Kitaev, A Yu. 1998. Quantum codes on a lattice with
boundary. arXiv preprint quant-ph/9811052.

Briegel, Hans J, and Raussendorf, Robert. 2001. Persistent entanglement in arrays
of interacting particles. Physical Review Letters, 86(5), 910.

Briegel, Hans J, Browne, David E, Dür, Wolfgang, Raussendorf, Robert, and Van den
Nest, Maarten. 2009. Measurement-based quantum computation. Nature
Physics, 5(1), 19–26.

Broadbent, A., Fitzsimons, J., and Kashefi, E. 2009. Universal Blind Quantum
Computation. Annual Symposium on Foundations of Computer Science. IEEE
Computer Society. Pages 517–526.

Broadbent, Anne, and Kashefi, Elham. 2009. Parallelizing quantum circuits. Theo-
retical Computer Science, 410(26), 2489–2510.

Browne, Daniel E., Kashefi, Elham, Mhalla, Mehdi, and Perdrix, Simon. 2007. Gen-
eralized flow and determinism in measurement-based quantum computation.
New Journal of Physics, 9(8), 250.

Calderbank, A. R., and Shor, Peter W. 1996. Good quantum error-correcting codes
exist. Phys. Rev. A, 54(Aug), 1098–1105.

Calderbank, A. R., Rains, E. M., Shor, P. W., and Sloane, N. J. A. 1997. Quantum
Error Correction and Orthogonal Geometry. Phys. Rev. Lett., 78(Jan), 405–
408.

Campbell, Earl. The Smallest Interesting Colour Code. https://earltcampbell.
com/2016/09/26/the-smallest-interesting-colour-code/.

Campbell, Earl. 2019. Random Compiler for Fast Hamiltonian Simulation. Phys.
Rev. Lett., 123(Aug), 070503.

https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/

578 References

Carette, Titouan. 2021. When Only Topology Matters. arXiv preprint
arXiv:2102.03178.

Carette, Titouan, and Jeandel, Emmanuel. 2020. A Recipe for Quantum Graphical
Languages. Pages 118:1–118:17 of: Czumaj, Artur, Dawar, Anuj, and Merelli,
Emanuela (eds), 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 168. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

Carette, Titouan, Horsman, Dominic, and Perdrix, Simon. 2019. SZX-Calculus:
Scalable Graphical Quantum Reasoning. Pages 55:1–55:15 of: Rossmanith,
Peter, Heggernes, Pinar, and Katoen, Joost-Pieter (eds), 44th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 138. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Chancellor, Nicholas, Kissinger, Aleks, Roffe, Joschka, Zohren, Stefan, and Horsman,
Dominic. 2016. Graphical Structures for Design and Verification of Quantum
Error Correction. arXiv preprint arXiv:1611.08012.

Chi-Chih Yao, A. 1993 (Nov.). Quantum circuit complexity. Pages 352–361 of:
Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

Coecke, B., and Kissinger, A. 2010a. The compositional structure of multipartite
quantum entanglement. Pages 297–308 of: Automata, Languages and Program-
ming. Lecture Notes in Computer Science. Springer. arXiv:1002.2540.

Coecke, B., and Pavlovic, D. 2007. Quantum measurements without sums. Pages
567–604 of: Chen, G., Kauffman, L., and Lamonaco, S. (eds), Mathematics
of Quantum Computing and Technology. Taylor and Francis. arXiv:quant-
ph/0608035.

Coecke, B., Kissinger, A., Merry, A., and Roy, S. 2010. The GHZ/W-calculus
contains rational arithmetic. Electronic Proceedings in Theoretical Computer
Science, 52, 34–48.

Coecke, B., Pavlović, D., and Vicary, J. 2013. A new description of orthogonal
bases. Mathematical Structures in Computer Science, to appear, 23, 555–567.
arXiv:quant-ph/0810.1037.

Coecke, Bob, and Duncan, Ross. 2008. Interacting quantum observables. In: Pro-
ceedings of the 37th International Colloquium on Automata, Languages and
Programming (ICALP). Lecture Notes in Computer Science.

Coecke, Bob, and Duncan, Ross. 2011. Interacting quantum observables: categorical
algebra and diagrammatics. New Journal of Physics, 13, 043016.

Coecke, Bob, and Gogioso, Stefano. 2023. Quantum in Pictures.
Coecke, Bob, and Kissinger, Aleks. 2010b. The compositional structure of multi-

partite quantum entanglement. Pages 297–308 of: Automata, Languages and
Programming. Lecture Notes in Computer Science. Springer.

Coecke, Bob, and Kissinger, Aleks. 2017. Picturing Quantum Processes: A First
Course in Quantum Theory and Diagrammatic Reasoning. Cambridge Univer-
sity Press.

Coecke, Bob, and Wang, Quanlong. 2018. ZX-rules for 2-qubit Clifford+ T quantum
circuits. Pages 144–161 of: International Conference on Reversible Computa-
tion. Springer.

Coecke, Bob, Duncan, Ross, Kissinger, Aleks, and Wang, Quanlong. 2012. Strong
Complementarity and Non-locality in Categorical Quantum Mechanics. Pages
245–254 of: 2012 27th Annual IEEE Symposium on Logic in Computer Science.

References 579

Cowtan, Alexander, Dilkes, Silas, Duncan, Ross, Simmons, Will, and Sivarajah,
Seyon. 2020. Phase Gadget Synthesis for Shallow Circuits. Pages 213–228
of: Coecke, Bob, and Leifer, Matthew (eds), Proceedings 16th International
Conference on Quantum Physics and Logic, Chapman University, Orange,
CA, USA., 10-14 June 2019. Electronic Proceedings in Theoretical Computer
Science, vol. 318. Open Publishing Association.

Cross, Andrew, Javadi-Abhari, Ali, Alexander, Thomas, De Beaudrap, Niel, Bishop,
Lev S, Heidel, Steven, Ryan, Colm A, Sivarajah, Prasahnt, Smolin, John,
Gambetta, Jay M, et al. 2022. OpenQASM 3: A broader and deeper quantum
assembly language. ACM Transactions on Quantum Computing, 3(3), 1–50.

Cross, Andrew W, Bishop, Lev S, Smolin, John A, and Gambetta, Jay M. 2017.
Open quantum assembly language. Preprint.

Cui, Shawn X., Gottesman, Daniel, and Krishna, Anirudh. 2017. Diagonal gates in
the Clifford hierarchy. Physical Review A, 95(1), 012329.

Dalzell, Alexander M, McArdle, Sam, Berta, Mario, Bienias, Przemyslaw, Chen, Chi-
Fang, Gilyén, András, Hann, Connor T, Kastoryano, Michael J, Khabiboulline,
Emil T, Kubica, Aleksander, et al. 2023. Quantum algorithms: A survey of
applications and end-to-end complexities. arXiv preprint arXiv:2310.03011.

Danos, V., and Kashefi, E. 2006. Determinism in the one-way model. Physical
Review A, 74(052310).

Danos, Vincent, Kashefi, Elham, and Panangaden, Prakash. 2007. The measurement
calculus. Journal of the ACM (JACM), 54(2), 8–es.

Danos, Vincent, Kashefi, Elham, Panangaden, Prakash, and Perdrix, Simon. 2009.
Extended measurement calculus. Semantic techniques in quantum computation,
235–310.

Dawson, Christopher M, and Nielsen, Michael A. 2005. The solovay-kitaev algorithm.
Preprint.

Dawson, Christopher M, Hines, Andrew P, Mortimer, Duncan, Haselgrove, Henry L,
Nielsen, Michael A, and Osborne, Tobias J. 2005. Quantum computing and
polynomial equations over the finite field Z2. Quantum Information & Com-
putation, 5(2), 102–112.

de Beaudrap, Niel, and Horsman, Dominic. 2020. The ZX calculus is a language for
surface code lattice surgery. Quantum, 4.

de Beaudrap, Niel, Bian, Xiaoning, and Wang, Quanlong. 2020a. Fast and Effective
Techniques for T-Count Reduction via Spider Nest Identities. Pages 11:1–
11:23 of: Flammia, Steven T. (ed), 15th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2020). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 158. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

de Beaudrap, Niel, Duncan, Ross, Horsman, Dominic, and Perdrix, Simon. 2020b.
Pauli Fusion: a Computational Model to Realise Quantum Transformations
from ZX Terms. Pages 85–105 of: Coecke, Bob, and Leifer, Matthew (eds), Pro-
ceedings 16th International Conference on Quantum Physics and Logic, Chap-
man University, Orange, CA, USA., 10-14 June 2019. Electronic Proceedings
in Theoretical Computer Science, vol. 318. Open Publishing Association.

de Beaudrap, Niel, Bian, Xiaoning, and Wang, Quanlong. 2020c. Techniques to
Reduce π/4-Parity-Phase Circuits, Motivated by the ZX Calculus. Pages 131–
149 of: Coecke, Bob, and Leifer, Matthew (eds), Proceedings 16th International
Conference on Quantum Physics and Logic, Chapman University, Orange,

580 References

CA, USA., 10-14 June 2019. Electronic Proceedings in Theoretical Computer
Science, vol. 318. Open Publishing Association.

de Brugière, Timothée Goubault, Baboulin, Marc, Valiron, Benoît, Martiel, Simon,
and Allouche, Cyril. 2020. Quantum CNOT circuits synthesis for NISQ archi-
tectures using the syndrome decoding problem. Pages 189–205 of: Reversible
Computation: 12th International Conference, RC 2020, Oslo, Norway, July
9-10, 2020, Proceedings 12. Springer.

Dehaene, Jeroen, and De Moor, Bart. 2003. Clifford group, stabilizer states, and
linear and quadratic operations over GF(2). Physical Review A, 68(4), 042318.

Delfosse, Nicolas. 2020. Hierarchical decoding to reduce hardware requirements for
quantum computing. arXiv preprint arXiv:2001.11427.

Dennis, Eric, Kitaev, Alexei, Landahl, Andrew, and Preskill, John. 2002. Topological
quantum memory. Journal of Mathematical Physics, 43(9), 4452–4505.

Deutsch, D. 1989. Quantum computational networks. Proceedings of the Royal
Society of London, 425.

Deutsch, D., and Jozsa, R. 1992. Rapid solution of problems by quantum computa-
tion. Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences, 439(1907), 553–558.

Deutsch, David. 1985. Quantum theory, the Church–Turing principle and the
universal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 400(1818), 97–117.

Di Matteo, Olivia, and Mosca, Michele. 2016. Parallelizing quantum circuit synthesis.
Quantum Science and Technology, 1(1), 015003.

DiVincenzo, David P. 1995. Two-bit gates are universal for quantum computation.
Physical Review A, 51(2), 1015.

Duncan, Ross, and Dunne, Kevin. 2016. Interacting Frobenius Algebras are Hopf.
Pages 1–10 of: 2016 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). IEEE.

Duncan, Ross, and Lucas, Maxime. 2014. Verifying the Steane code with Quan-
tomatic. Pages 33–49 of: Coecke, Bob, and Hoban, Matty (eds), Proceedings
of the 10th International Workshop on Quantum Physics and Logic, Castellde-
fels (Barcelona), Spain, 17th to 19th July 2013. Electronic Proceedings in
Theoretical Computer Science, vol. 171. Open Publishing Association.

Duncan, Ross, and Perdrix, Simon. 2009. Graph states and the necessity of Euler
decomposition. Mathematical Theory and Computational Practice, 167–177.

Duncan, Ross, and Perdrix, Simon. 2010. Rewriting measurement-based quantum
computations with generalised flow. Pages 285–296 of: International Collo-
quium on Automata, Languages, and Programming. Springer.

Duncan, Ross, and Perdrix, Simon. 2013. Pivoting Makes the ZX-Calculus Complete
for Real Stabilizers. In: QPL 2013-10th Workshop on Quantum Physics and
Logic.

Duncan, Ross, Kissinger, Aleks, Perdrix, Simon, and van de Wetering, John. 2020.
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus.
Quantum, 4(6), 279.

Edmonds, Jack. 1965. Paths, trees, and flowers. Canadian Journal of mathematics,
17, 449–467.

Elliott, Matthew B, Eastin, Bryan, and Caves, Carlton M. 2008. Graphical descrip-
tion of the action of Clifford operators on stabilizer states. Physical Review A,
77(4), 042307.

References 581

Erhard, Alexander, Poulsen Nautrup, Hendrik, Meth, Michael, Postler, Lukas,
Stricker, Roman, Stadler, Martin, Negnevitsky, Vlad, Ringbauer, Martin,
Schindler, Philipp, Briegel, Hans J, et al. 2021. Entangling logical qubits
with lattice surgery. Nature, 589(7841), 220–224.

Feynman, R. P. 1982. Simulating physics with computers. International journal of
theoretical physics, 21, 467–488.

Fortnow, Lance, and Rogers, John. 1999. Complexity limitations on quantum
computation. Journal of Computer and System Sciences, 59(2), 240–252.

Fowler, Austin G, and Gidney, Craig. 2018. Low overhead quantum computation
using lattice surgery. arXiv preprint arXiv:1808.06709.

Fowler, Austin G., Stephens, Ashley M., and Groszkowski, Peter. 2009. High-
threshold universal quantum computation on the surface code. Phys. Rev. A,
80(Nov), 052312.

Fowler, Austin G., Mariantoni, Matteo, Martinis, John M., and Cleland, Andrew N.
2012. Surface codes: Towards practical large-scale quantum computation. Phys.
Rev. A, 86(Sep), 032324.

Garvie, Liam, and Duncan, Ross. 2018. Verifying the Smallest Interesting Colour
Code with Quantomatic. Pages 147–163 of: Coecke, Bob, and Kissinger, Aleks
(eds), Proceedings 14th International Conference on Quantum Physics and
Logic, Nijmegen, The Netherlands, 3-7 July 2017. Electronic Proceedings in
Theoretical Computer Science, vol. 266. Open Publishing Association.

Gidney, Craig. 2015 (June). Constructing Large Controlled Nots. Blogpost.
https://algassert.com/circuits/2015/06/05/Constructing-Large-
Controlled-Nots.html.

Gidney, Craig. 2018. Halving the cost of quantum addition. Quantum, 2(6), 74.
Gidney, Craig, and Ekerå, Martin. 2021. How to factor 2048 bit RSA integers in 8

hours using 20 million noisy qubits. Quantum, 5(4), 433.
Gidney, Craig, and Fowler, Austin G. 2019. Efficient magic state factories with a

catalyzed |CCZ⟩ to 2|T ⟩ transformation. Quantum, 3(4), 135.
Gidney, Craig, and Jones, N Cody. 2021. A CCCZ gate performed with 6 T gates.

arXiv preprint arXiv:2106.11513.
Giles, Brett, and Selinger, Peter. 2013. Exact synthesis of multiqubit Clifford+T

circuits. Physical Review A, 87(3), 032332.
Gimeno-Segovia, Mercedes, Shadbolt, Pete, Browne, Dan E., and Rudolph, Terry.

2015. From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic
Universal Quantum Computation. Physical Review Letters, 115(2), 020502.

Gluza, Marek. 2024. Double-bracket quantum algorithms for diagonalization. Quan-
tum, 8(4), 1316.

Gogioso, Stefano. 2019. A Diagrammatic Approach to Quantum Dynamics. Pages
19:1–19:23 of: Roggenbach, Markus, and Sokolova, Ana (eds), 8th Conference
on Algebra and Coalgebra in Computer Science (CALCO 2019). Leibniz In-
ternational Proceedings in Informatics (LIPIcs), vol. 139. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Gottesman, Daniel. 1996. Class of quantum error-correcting codes saturating the
quantum Hamming bound. Physical Review A, 54(3), 1862.

Gottesman, Daniel. 1997. Stabilizer codes and quantum error correction. arXiv
preprint quant-ph / 9705052.

Gottesman, Daniel. 1998. The Heisenberg representation of quantum computers.
arXiv preprint quant-ph/9807006.

https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html

582 References

Gottesman, Daniel. 2024. Surviving as a quantum computer in a classical world.
Textbook manuscript preprint.

Gottesman, Daniel, and Chuang, Isaac L. 1999. Demonstrating the viability of
universal quantum computation using teleportation and single-qubit operations.
Nature, 402(6760), 390–393.

Goubault de Brugière, Timothèe. 2020. Methods for optimizing the synthesis of
quantum circuits. Ph.D. thesis, Université Paris-Saclay.

Green, Alexander S, Lumsdaine, Peter LeFanu, Ross, Neil J, Selinger, Peter, and
Valiron, Benoît. 2013. Quipper: a scalable quantum programming language.
Pages 333–342 of: Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation.

Greylyn, Seth. 2014. Generators and relations for the group U(Z[1/
√

2, i]). M.Phil.
thesis, Dalhousie University.

Gross, David, and Van den Nest, Maarten. 2008. The LU-LC conjecture, diagonal
local operations and quadratic forms over GF(2). Quantum Info. Comput.,
8(3), 263–281.

Grover, Lov K. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
Pages 212–219 of: Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing. STOC ’96. New York, NY, USA: ACM.

Hadzihasanovic, A. 2015a. A diagrammatic axiomatisation for qubit entanglement.
In: Proceedings of the 30th Annual IEEE Symposium on Logic in Computer
Science (LICS). arXiv:1501.07082.

Hadzihasanovic, Amar. 2015b. A diagrammatic axiomatisation for qubit entangle-
ment. Pages 573–584 of: 2015 30th Annual ACM/IEEE Symposium on Logic
in Computer Science. IEEE.

Hadzihasanovic, Amar, Ng, Kang Feng, and Wang, Quanlong. 2018. Two Complete
Axiomatisations of Pure-state Qubit Quantum Computing. Pages 502–511 of:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’18. New York, NY, USA: ACM.

Hall, Brian C, and Hall, Brian C. 2013. Lie groups, Lie algebras, and representations.
Springer.

Heunen, Chris, and Vicary, Jamie. 2020. Categories for Quantum Theory: an
introduction. Oxford University Press, USA.

Heyfron, Luke E, and Campbell, Earl T. 2018. An efficient quantum compiler that
reduces T count. Quantum Science and Technology, 4(015004).

Higgott, Oscar. 2022. PyMatching: A Python Package for Decoding Quantum Codes
with Minimum-Weight Perfect Matching. 3(3).

Higgott, Oscar, Bohdanowicz, Thomas C., Kubica, Aleksander, Flammia, Steven T.,
and Campbell, Earl T. 2023. Improved Decoding of Circuit Noise and Fragile
Boundaries of Tailored Surface Codes. Phys. Rev. X, 13(Jul), 031007.

Horsman, Clare. 2011. Quantum picturalism for topological cluster-state computing.
New Journal of Physics, 13(9), 095011.

Horsman, Dominic, Fowler, Austin G, Devitt, Simon, and Van Meter, Rodney. 2012.
Surface code quantum computing by lattice surgery. New Journal of Physics,
14(12), 123011.

Howard, Mark, and Campbell, Earl. 2017. Application of a Resource Theory
for Magic States to Fault-Tolerant Quantum Computing. Phys. Rev. Lett.,
118(Mar), 090501.

References 583

Hsieh, Min-Hsiu, and Le Gall, François. 2011. NP-hardness of decoding quantum
error-correction codes. Physical Review A—Atomic, Molecular, and Optical
Physics, 83(5), 052331.

IBM. Qiskit. https://www.ibm.com/quantum/qiskit.
iOlius, Antonio deMarti, Martinez, Josu Etxezarreta, Fuentes, Patricio, and Cre-

spo, Pedro M. 2023. Performance enhancement of surface codes via recursive
minimum-weight perfect-match decoding. Phys. Rev. A, 108(Aug), 022401.

Jeandel, Emmanuel, Perdrix, Simon, and Vilmart, Renaud. 2018. A Complete
Axiomatisation of the ZX-calculus for Clifford+T Quantum Mechanics. Pages
559–568 of: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science. ACM.

Jeandel, Emmanuel, Perdrix, Simon, and Veshchezerova, Margarita. 2024. Addition
and Differentiation of ZX-diagrams. Logical Methods in Computer Science,
Volume 20, Issue 2(5).

Jones, Cody. 2013. Low-overhead constructions for the fault-tolerant Toffoli gate.
Physical Review A, 87(2), 022328.

Jordan, Stephen. 2022. The Quantum Algorithms Zoo. https://
quantumalgorithmzoo.org.

Jozsa, R. 1997. Quantum algorithms and the Fourier transform. In: Proceedings of
the Santa Barbarba Conference on Coherence and Decoherence. Proceedings
of the Royal Society of London.

Kaye, Phillip, Laflamme, Raymond, and Mosca, Michele. 2007. An introduction to
quantum computing. Oxford University Press.

Kelly, Gregory M, and Laplaza, Miguel L. 1980. Coherence for compact closed
categories. Journal of pure and applied algebra, 19, 193–213.

Kissinger, Aleks. 2022a. Phase-free ZX diagrams are CSS codes (... or how to
graphically grok the surface code). arXiv preprint arXiv:2204.14038.

Kissinger, Aleks. 2022b. Phase-free ZX diagrams are CSS codes (...or how to
graphically grok the surface code). arXiv preprint arXiv:2204.14038.

Kissinger, Aleks, and de Griend, Arianne Meijer-van. 2020. CNOT circuit extrac-
tion for topologically-constrained quantum memories. Quant. Inf. Comput.,
20(arXiv: 1904.00633), 581–596.

Kissinger, Aleks, and van de Wetering, John. 2019. Universal MBQC with gen-
eralised parity-phase interactions and Pauli measurements. Quantum, 3(4),
134.

Kissinger, Aleks, and van de Wetering, John. 2020a. PyZX: Large Scale Automated
Diagrammatic Reasoning. Pages 229–241 of: Coecke, Bob, and Leifer, Matthew
(eds), Proceedings 16th International Conference on Quantum Physics and
Logic, Chapman University, Orange, CA, USA., 10-14 June 2019. Electronic
Proceedings in Theoretical Computer Science, vol. 318. Open Publishing
Association.

Kissinger, Aleks, and van de Wetering, John. 2020b. Reducing the number of
non-Clifford gates in quantum circuits. Physical Review A, 102(8), 022406.

Kissinger, Aleks, and van de Wetering, John. 2022. Simulating quantum circuits
with ZX-calculus reduced stabiliser decompositions. Quantum Science and
Technology, 7(4), 044001.

Kissinger, Aleks, and van de Wetering, John. 2024. Scalable Spider Nests (...Or
How to Graphically Grok Transversal Non-Clifford Gates). Pages 79–95 of:
Díaz-Caro, Alejandro, and Zamdzhiev, Vladimir (eds), Proceedings of the 21st

https://www.ibm.com/quantum/qiskit
https://quantumalgorithmzoo.org
https://quantumalgorithmzoo.org

584 References

International Conference on Quantum Physics and Logic, Buenos Aires, Ar-
gentina, July 15-19, 2024. Electronic Proceedings in Theoretical Computer
Science, vol. 406. Open Publishing Association.

Kissinger, Aleks, and Zamdzhiev, Vladimir. 2015. Quantomatic: A proof assistant
for diagrammatic reasoning. Pages 326–336 of: International Conference on
Automated Deduction. Springer.

Kissinger, Aleks, van de Wetering, John, and Vilmart, Renaud. 2022. Classical
Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decom-
positions. Pages 5:1–5:13 of: Le Gall, François, and Morimae, Tomoyuki (eds),
17th Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2022). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 232. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

Kissinger, Aleks, J. Ross, Neil, and van de Wetering, John. 2024. Catalysing
Completeness and Universality. arXiv preprint arXiv:2404.09915.

Kitaev, A Yu. 1997. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, 52(6), 1191.

Kitaev, A Yu. 2003. Fault-tolerant quantum computation by anyons. Annals of
physics, 303(1), 2–30.

Kliuchnikov, Vadym, Lauter, Kristin, Minko, Romy, Paetznick, Adam, and Petit,
Christophe. 2023. Shorter quantum circuits via single-qubit gate approximation.
Quantum, 7(12), 1208.

Knill, Emanuel. 2005. Quantum computing with realistically noisy devices. Nature,
434(7029), 39–44.

Knill, Emanuel, and Laflamme, Raymond. 1997. Theory of quantum error-correcting
codes. Phys. Rev. A, 55(Feb), 900–911.

Knill, Emanuel, Laflamme, Raymond, and Zurek, Wojciech H. 1998. Resilient
quantum computation. Science, 279(5349), 342–345.

Kotzig, Anton. 1968. Eulerian lines in finite 4-valent graphs and their transforma-
tions. Pages 219–230 of: Colloqium on Graph Theory Tihany 1966. Academic
Press.

Kuijpers, Stach, van de Wetering, John, and Kissinger, Aleks. 2019. Graphical
Fourier Theory and the Cost of Quantum Addition. Preprint.

Lack, S. 2004. Composing PROPs. Theory and Applications of Categories, 13,
147–163.

Laflamme, Raymond, Miquel, Cesar, Paz, Juan Pablo, and Zurek, Wojciech Hubert.
1996. Perfect Quantum Error Correcting Code. Phys. Rev. Lett., 77(Jul),
198–201.

Landauer, R. 1961. Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development, 5(3), 183–191.

Lemonnier, Louis, van de Wetering, John, and Kissinger, Aleks. 2020. Hyper-
graph simplification: Linking the path-sum approach to the ZH-calculus. arXiv
preprint arXiv:2003.13564.

Litinski, Daniel. 2019. A Game of Surface Codes: Large-Scale Quantum Computing
with Lattice Surgery. Quantum, 3(3), 128.

Mac Lane, Saunders. 2013. Categories for the working mathematician. Vol. 5.
Springer Science & Business Media.

MacLane, Saunders. 1965. Categorical algebra. Bulletin of the American Mathe-
matical Society, 71(1), 40–106.

References 585

MacWilliams, F.J., and Sloane, N.J.A. 1977. The Theory of Error-Correcting Codes.
North-Holland Mathematical Library, vol. 16. North Holland Publishing Co.

Manin, Y. I. 1980. Vychislimoe i Nevychislimoe. Sovetskoye Radio.
Markov, Ketan, Patel, Igor, and Hayes, John. 2008. Optimal synthesis of linear

reversible circuits. Quantum Information and Computation, 8(3&4), 0282–
0294.

Maslov, Dmitri, and Roetteler, Martin. 2018. Shorter stabilizer circuits via Bruhat
decomposition and quantum circuit transformations. IEEE Transactions on
Information Theory, 64(7), 4729–4738.

Maslov, Dmitri, and Zindorf, Ben. 2022. Depth optimization of CZ, CNOT, and
Clifford circuits. IEEE Transactions on Quantum Engineering, 3, 1–8.

Meier, Adam M., Eastin, Bryan, and Knill, Emanuel. 2013. Magic-state distillation
with the four-qubit code. Quantum Info. Comput., 13(3–4), 195–209.

Meijer-van de Griend, Arianne, and Duncan, Ross. 2023. Architecture-Aware Syn-
thesis of Phase Polynomials for NISQ Devices. Pages 116–140 of: Gogioso,
Stefano, and Hoban, Matty (eds), Proceedings 19th International Conference
on Quantum Physics and Logic, Wolfson College, Oxford, UK, 27 June - 1
July 2022. Electronic Proceedings in Theoretical Computer Science, vol. 394.
Open Publishing Association.

Mermin, N David. 2007. Quantum computer science: an introduction. Cambridge
University Press.

Meuli, Giulia, Soeken, Mathias, Roetteler, Martin, Bjorner, Nikolaj, and De Micheli,
Giovanni. 2019a. Reversible pebbling game for quantum memory management.
Pages 288–291 of: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE.

Meuli, Giulia, Soeken, Mathias, Campbell, Earl, Roetteler, Martin, and de Micheli,
Giovanni. 2019b. The Role of Multiplicative Complexity in Compiling Low T -
count Oracle Circuits. Pages 1–8 of: 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

Meuli, Giulia, Soeken, Mathias, Roetteler, Martin, and De Micheli, Giovanni. 2020.
ROS: Resource-constrained Oracle Synthesis for Quantum Computers. Pages
119–130 of: Coecke, Bob, and Leifer, Matthew (eds), Proceedings 16th In-
ternational Conference on Quantum Physics and Logic, Chapman University,
Orange, CA, USA., 10-14 June 2019. Electronic Proceedings in Theoretical
Computer Science, vol. 318. Open Publishing Association.

Mhalla, Mehdi, and Perdrix, Simon. 2013. Graph States, Pivot Minor, and Uni-
versality of (X,Z)-measurements. International Journal of Unconventional
Computing, 9(1-2), 153–171.

Microsoft. Announcing the Microsoft Quantum Development Kit. https:
//azure.microsoft.com/en-us/blog/quantum/2017/12/11/announcing-
microsoft-quantum-development-kit/.

Miller, Jacob, and Miyake, Akimasa. 2016. Hierarchy of universal entanglement in
2D measurement-based quantum computation. npj Quantum Information, 2,
16036.

Miyazaki, Jisho, Hajdušek, Michal, and Murao, Mio. 2015. Analysis of the trade-
off between spatial and temporal resources for measurement-based quantum
computation. Physical Review A, 91(5), 052302.

Montanaro, A. 2015. Quantum algorithms: an overview. arXiv:1511.04206.
Morales, Mauro E. S., Costa, Pedro C. S., Burgarth, Daniel K., Sanders, Yuval R.,

https://azure.microsoft.com/en-us/blog/quantum/2017/12/11/announcing-microsoft-quantum-development-kit/
https://azure.microsoft.com/en-us/blog/quantum/2017/12/11/announcing-microsoft-quantum-development-kit/
https://azure.microsoft.com/en-us/blog/quantum/2017/12/11/announcing-microsoft-quantum-development-kit/

586 References

and Berry, Dominic W. 2022 (Oct.). Greatly improved higher-order product
formulae for quantum simulation. arXiv:2210.15817 [quant-ph].

Morley-Short, Sam, Bartolucci, Sara, Gimeno-Segovia, Mercedes, Shadbolt, Pete,
Cable, Hugo, and Rudolph, Terry. 2017. Physical-depth architectural require-
ments for generating universal photonic cluster states. Quantum Science and
Technology, 3(1), 015005.

Mosca, Michele. 2008. Quantum algorithms. arXiv preprint arXiv:0808.0369.
Nash, Beatrice, Gheorghiu, Vlad, and Mosca, Michele. 2020. Quantum circuit

optimizations for NISQ architectures. Quantum Science and Technology, 5(2),
025010.

Ng, Kang Feng, and Wang, Quanlong. 2017. A universal completion of the ZX-
calculus. Preprint.

Nielsen, M. A., and Chuang, Isaac L. 2010. Quantum computation and quantum
information. Cambridge university press.

Ömer, Bernhard. 2002. Procedural quantum programming. Pages 276–285 of: AIP
Conference Proceedings, vol. 627. American Institute of Physics.

Pashayan, Hakop, Wallman, Joel J., and Bartlett, Stephen D. 2015. Estimating
Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. Phys.
Rev. Lett., 115(Aug), 070501.

Perdrix, Simon, and Wang, Quanlong. 2016. Supplementarity is Necessary for Quan-
tum Diagram Reasoning. Pages 76:1–76:14 of: 41st International Symposium
on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 58.

Poór, Boldizsár. 2022. A unique normal form for prime-dimensional qudit Clifford
ZX-calculus. M.Phil. thesis, University of Oxford.

Preskill, John. 2015. Quantum computation lecture notes. http://theory.caltech.
edu/~preskill/ph229/.

Qassim, Hammam, Pashayan, Hakop, and Gosset, David. 2021. Improved upper
bounds on the stabilizer rank of magic states. Quantum, 5(12), 606.

Quantinuum. TKET. https://www.quantinuum.com/developers/tket.
Raussendorf, R., and Briegel, H. J. 2001. A one-way quantum computer. Physical

Review Letters, 86, 5188.
Raussendorf, R., Harrington, J., and Goyal, K. 2007. Topological fault-tolerance in

cluster state quantum computation. New Journal of Physics, 9, 199.
Raussendorf, Robert, and Briegel, Hans J. 2002. Computational model underlying

the one-way quantum computer. Quantum Info. Comput., 2(6), 443–486.
Raussendorf, Robert, and Harrington, Jim. 2007. Fault-Tolerant Quantum Compu-

tation with High Threshold in Two Dimensions. Phys. Rev. Lett., 98(May),
190504.

Raussendorf, Robert, Browne, Dan E., and Briegel, Hans J. 2003. Measurement-
based quantum computation on cluster states. Physical Review A, 68(2),
22312.

Ross, Neil J., and Selinger, Peter. 2016. Optimal Ancilla-Free Clifford+T Approx-
imation of z-Rotations. Quantum Information and Computation, 16(11–12),
901–953.

Ruiz, Francisco JR, Laakkonen, Tuomas, Bausch, Johannes, Balog, Matej,
Barekatain, Mohammadamin, Heras, Francisco JH, Novikov, Alexander, Fitz-
patrick, Nathan, Romera-Paredes, Bernardino, van de Wetering, John, Fawzi,
Alhussein, Meichanetzidis, Konstantinos, and Kohli, Pushmeet. 2024. Quantum
Circuit Optimization with AlphaTensor. arXiv preprint arXiv:2402.14396.

http://theory.caltech.edu/~preskill/ph229/
http://theory.caltech.edu/~preskill/ph229/
https://www.quantinuum.com/developers/tket

References 587

Schröder de Witt, Christian, and Zamdzhiev, Vladimir. 2014. The ZX-calculus is
incomplete for quantum mechanics. Pages 285–292 of: Coecke, Bob, Hasuo,
Ichiro, and Panangaden, Prakash (eds), Proceedings of the 11th workshop
on Quantum Physics and Logic, Kyoto, Japan, 4-6th June 2014. Electronic
Proceedings in Theoretical Computer Science, vol. 172. Open Publishing
Association.

Schwinger, J. 1960. Unitary operator bases. Proceedings of the National Academy
of Sciences of the U.S.A., 46, 570–579.

Selinger, Peter. 2010. A survey of graphical languages for monoidal categories. Pages
289–355 of: New structures for physics. Springer.

Selinger, Peter. 2013. Quantum circuits of T-depth one. Physical Review A, 87(4),
042302.

Selinger, Peter. 2015. Efficient Clifford+T Approximation of Single-Qubit Operators.
Quantum Info. Comput., 15(1–2), 159–180.

Shi, Yaoyun. 2002. Both Toffoli and controlled-NOT need little help to do universal
quantum computation. Preprint.

Shor, P. W. 1994. Algorithms for quantum computation: discrete logarithms and
factoring. Pages 124–134 of: Proceedings of the 35th Annual Symposium on
Foundations of Computer Science. IEEE.

Shor, P. W. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5),
1484–1509.

Shor, Peter W. 1995. Scheme for reducing decoherence in quantum computer
memory. Phys. Rev. A, 52(Oct), R2493–R2496.

Shor, Peter W. 1996. Fault-tolerant quantum computation. Pages 56–65 of: Pro-
ceedings of 37th conference on foundations of computer science. IEEE.

Simmons, Will. 2021. Relating Measurement Patterns to Circuits via Pauli Flow.
Pages 50–101 of: Heunen, Chris, and Backens, Miriam (eds), Proceedings 18th
International Conference on Quantum Physics and Logic, Gdansk, Poland,
and online, 7-11 June 2021. Electronic Proceedings in Theoretical Computer
Science, vol. 343. Open Publishing Association.

Skoric, Luka, Browne, Dan E, Barnes, Kenton M, Gillespie, Neil I, and Campbell,
Earl T. 2023. Parallel window decoding enables scalable fault tolerant quantum
computation. Nature Communications, 14(1), 7040.

Sørensen, Anders, and Mølmer, Klaus. 1999. Quantum computation with ions in
thermal motion. Physical review letters, 82(9), 1971.

Steane, A. M. 1996a. Error Correcting Codes in Quantum Theory. Phys. Rev. Lett.,
77(Jul), 793–797.

Steane, A. M. 1996b. Simple quantum error-correcting codes. Phys. Rev. A, 54(Dec),
4741–4751.

Steane, Andrew M. 1997. Active stabilization, quantum computation, and quantum
state synthesis. Physical Review Letters, 78(11), 2252.

Suzuki, Masuo. 1991. General theory of fractal path integrals with applications to
many-body theories and statistical physics. Journal of Mathematical Physics,
32(2), 400–407.

Takeuchi, Yuki, Morimae, Tomoyuki, and Hayashi, Masahito. 2019. Quantum
computational universality of hypergraph states with Pauli-X and Z basis
measurements. Scientific reports, 9(1), 1–14.

Trotter, Hale F. 1959. On the product of semi-groups of operators. Proceedings of
the American Mathematical Society, 10(4), 545–551.

588 References

van de Wetering, John. 2020. ZX-calculus for the working quantum computer
scientist. arXiv preprint arXiv:2012.13966.

van de Wetering, John, and Amy, Matthew. 2024. Optimising quantum circuits is
generally hard. arXiv preprint arXiv:2310.05958.

van de Wetering, John, Yeung, Richie, Laakkonen, Tuomas, and Kissinger, Aleks.
2024. Optimal compilation of parametrised quantum circuits. arXiv preprint
arXiv:2401.12877.

Van den Nest, M., Dehaene, J., and De Moor, B. 2004a. Graphical description of
the action of local Clifford transformations on graph states. Physical Review
A, 69(2), 9422.

Van Den Nest, Maarten. 2010. Classical Simulation of Quantum Computation,
the Gottesman-Knill Theorem, and Slightly Beyond. Quantum Info. Comput.,
10(3), 258–271.

Van den Nest, Maarten, Dehaene, Jeroen, and De Moor, Bart. 2004b. Graphical
description of the action of local Clifford transformations on graph states.
Physical Review A, 69(2), 022316.

Vandaele, Vivien. 2024. Lower T -count with faster algorithms. arXiv preprint
arXiv:2407.08695.

Vilmart, Renaud. 2019. A Near-Minimal Axiomatisation of ZX-Calculus for Pure
Qubit Quantum Mechanics. Pages 1–10 of: 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS).

Vittal, Suhas, Das, Poulami, and Qureshi, Moinuddin. 2023. Astrea: Accurate
Quantum Error-Decoding via Practical Minimum-Weight Perfect-Matching.
In: Proceedings of the 50th Annual International Symposium on Computer
Architecture. ISCA ’23. New York, NY, USA: Association for Computing
Machinery.

Wang, David S., Fowler, Austin G., and Hollenberg, Lloyd C. L. 2011. Surface code
quantum computing with error rates over 1Phys. Rev. A, 83(Feb), 020302.

Wang, Quanlong, Yeung, Richie, and Koch, Mark. 2022. Differentiating and Inte-
grating ZX Diagrams with Applications to Quantum Machine Learning. arXiv
preprint arXiv:2201.13250.

Watrous, John. 2006. Quantum computation lecture notes. https://cs.uwaterloo.
ca/~watrous/QC-notes/.

Watrous, John. 2018. The theory of quantum information. Cambridge university
press.

Webster, Mark A, Quintavalle, Armanda O, and Bartlett, Stephen D. 2023. Transver-
sal diagonal logical operators for stabiliser codes. New Journal of Physics,
25(10), 103018.

Wei, Tzu-Chieh, Affleck, Ian, and Raussendorf, Robert. 2011. The 2D AKLT state
is a universal quantum computational resource. Bulletin of the American
Physical Society, 56.

Xanadu. PennyLane. https://pennylane.ai/.
Zhou, Xinlan, Leung, Debbie W., and Chuang, Isaac L. 2000. Methodology for

quantum logic gate construction. Phys. Rev. A, 62(Oct), 052316.

https://cs.uwaterloo.ca/~watrous/QC-notes/
https://cs.uwaterloo.ca/~watrous/QC-notes/
https://pennylane.ai/

Index

K-local Hamiltonians, 505
X-basis, 40
Y -basis, 40
Z-basis, 38, 40
F2-linear relations, 165
π-copy rule, 97
k-cycle, 409
(S4) rule, 446
1-level operators, 414
2-level operator, 414
3-even, 441
adjoint, 18
affine subspace, 186
affine with phases, 184
annotated circuits, 317
anti-commute, 218
approximate rewriting, 293
approximately universal, 53
arg, 16
arity, 74
average rule, 415
Bell state, 29
Bennett trick, 49
Bernstein-Vazirani algorithm, 58, 114
Bernstein-Vazirani problem, 57
biadjacency matrix, 141
bialgebra, 102, 164
bialgebra rule, 102
big O notation, 61
bit, 23
Bloch sphere, 38
Boolean

monomial, 448
polynomial, 449

Born rule, 43
borrowed bit, 395
boundary, 180
bra, 19
bra-ket, 19
cap, 33

cartesian form, 15
cartesian product, 23
cat state, 553
catalysis, 458
causal flow, 344
CCZ gate, 374
CCZ magic state, 379
channels, 66
Choi state, 240
circuit extraction, 351
circuit model, 322
circuit-like, 118
classical oracle, 389
classical oracles, 389
Clifford circuit, 166, 167
Clifford conjugation, 220
Clifford group, 239
Clifford hierarchy, 252
Clifford state, 168
Clifford unitaries, 167
Clifford ZX-calculus, 94
Clifford ZX-diagram, 166, 167
Clifford+T, 54, 423
cluster states, 333
CNOT circuit synthesis, 136
CNOT circuits, 133
CNOT gate, 48
code block, 533
code distance, 494
codespace, 493
collapse, 44
commutator, 294
complementarity, 104
complex conjugation, 15
complex plane, 15
complexity classes, 62
conditional probability distribution, 202
conjugate-linear, 17
control, 53
control qubit, 49
controlled swap, 388

590 Index

correction set, 337
correction set function, 338, 359
counting argument, 162
CSS code

self-dual, 541
CSS codes, 515
cup, 33
dagger-special commutative Frobenius

algebras, 128
decision problems, 62
decoder, 514
decoding

for stabiliser codes, 506
decoding problem, 523
degree

monomial, 448
deterministic, 332
diagonalisation, 22
diagrammatic reasoning, 4
Diophantine equation, 486
Dirac bra-ket notation, 19
Dirac notation, 14
Dirac-von Neumann axioms, 34
direct image, 160
directed acyclic graph, 390
distance, 501
doubling, 35
dual space, 19
dyadic angles, 423
dyadic rational numbers, 426
Eastin-Knill, 537
eigen...

basis, 22
value, 22
vector, 22

elementary graph operations, 197
encoder, 498

of a stabiliser code, 508
equivalent under local operations, 178
error model, 534

phenomenological, 534
Euler decomposition, 41
exactly universal, 53
fault tolerance, 533

on multiple codeblocks, 534
fault-tolerant

threshold, 536
theorem, 536

fault-tolerant measurement
Knill, 557
Shor, 553
Steane, 555

fault-tolerant scheme, 535
feed-forward, 323, 327
field with 2 elements, 133
flexsymmetry, 380, 418
focussed, 345

Fourier transform, 377
of pseudo-boolean function, 269

fragment, 132
fragments, 10
Fredkin gate, 388
frontier, 352
fully connected ZX-diagram, 175
function problems, 63
Fundamental Theorem of Calculus, 293
gadget fusion, 265
gate, 3, 47

universal gate set, 48
gate teleportation, 252, 323
gate-by-gate simulation, 310
Gauss-Jordan reduction, 138
generalised parity form, 144
gflow, 325, 338

3-plane, 359
GHZ code, 498
Gottesman-Knill theorem, 196, 214
graph state, 172
graph state with local Cliffords, 173
graph-like diagram, 169

has gflow, 338
with Hadamards, 189

grid problem, 485
group theory

normaliser, 239
GSLC form, 190
H-box

phase-free, 378
H-boxes, 377
Hadamard edge, 169
Hadamard gate, 51
Hadamard transform, 52
Hamming weight, 418, 453
hidden subgroup problem, 60
Hilbert space, 16
homogeneous F2-linear equations, 157
Hopf algebra, 104
Hopf rule, 104
idempotent, 36
identity removal, 95
implementation of a logical map, 508
inner product, 17
input spider, 144
inputs, 327
interacting bialgebras, 164
interchange law, 30
internal, 180
internal spider, 144
introduction rule, 416
isometry, 21
ket, 19
Kraus operators, 69
Kronecker delta, 18
Kronecker product, 25

Index 591

Lüder’s rule, 43
least denominator exponent, 428, 476
Lie algebra, 288
Lie group, 287
linear combination of unitaries, 319
linear decoding problem, 453
local complementation of G about u, 174
logical operators, 510
logical qubits, 496
magic state

CCZ, 379
magic state distillation, 547, 563
magnitude, 15
marginal probability distribution, 202
marginalise, 202
matrix arrow, 433
matrix exponential, 42, 281
measure box, 229
measurement, 43

back-action, 46
ONB, 44

measurement fragment, 326, 331
measurement non-determinism, 323
measurement planes, 324
measurement-based quantum computing, 324
minimum weight perfect matching, 523, 526
mixed state

Born rule, 67
mixed states, 66
multiplicative complexity, 393
multiply rule, 415
mutually unbiased, 104
neighbourhood, 237

closed, 348
closed odd, 348

norm, 18
normal, 21
normal form

AP, 184
GSLC, 190
Pauli exponential, 289
reduced AP, 209
X-Z, 157
Z-X, 152

normalised, 18
NP-complete, 63
observables, 46
odd neighbourhood, 338
one-way model, 323
one-way model computation, 325
open graph, 327
operator norm, 54
orthogonal, 18
orthogonal subspace, 157
orthonormal basis, 18
output spider, 144
outputs, 327

parallel composition, 27
parity, 78, 133
parity map, 135
parity matrix, 136
parity normal form, 142
parity of permutation, 413
path sum, 269
path variable, 269
Pauli

independent, 223
Pauli box, 225, 227
Pauli exponential, 280, 284
Pauli exponential form, 289
Pauli group, 50, 218, 219
Pauli matrices, 50, 217
Pauli normalising, 239
Pauli projections, 216
Pauli projectors, 224
Pauli spider, 298
Pauli string, 219

self-adjoint, 219
permutation group, 409
phase, 15, 23

angle, 16
global, 35

phase folding, 291
phase gadget form, 263
phase gadgets, 12, 263
phase gate, 50
phase polynomial, 188, 260

multilinear form, 188
phase-folding, 261
phase-free, 75
phase-free ZX-calculus, 132
pivot of G along uv, 178
polar form, 15
positive, 22
primitive row and column operations, 137
product basis, 23
product state, 24
projection

split projection, 230
projector, 22
PROPs, 165
pseudo-Boolean Fourier transform, 376
pseudo-Boolean function, 376
pseudo-boolean function, 269
PyZX, 3
quantum channel, 68, 69

unitary, 69
quantum circuit, 3, 47
quantum circuit model, 47
quantum circuit notation, 56
quantum compilation, 2
Quantum Fourier transform, 276
quantum gate, 3
quantum oracle, 49, 57
quantum picturalism, 15

592 Index

quantum state, 36
quantum Turing machine, 70
quasiprobabilistic simulation techniques, 320
qubit, 37
qubits, 3, 21
range, 36
rank-n projector, 36
reduced AP-form, 209
reduced oracle, 58
Reed-Muller code, 453
repeat-until-success, 555
residue class, 428
resolution of the identity, 22
reversibilisation, 389
reversible, 373
ring extensions, 426
ring theory

prime, 475
residue, 477
unit, 475

robustness of magic, 310, 467
rules, 73
S gate, 51
scalable ZX

divide, 432
gather, 432

scalable ZX notation, 432
scalar ZX-diagrams, 87
Schrödinger equation, 42
SCUM postulates, 9, 34
second-order Trotterization, 315
self-adjoint, 22
semi-Clifford, 254
sequential composition, 27
Simon’s problem, 59
Solovay-Kitaev theorem, 55
sound, 121
spider fusion, 94
spider-nest function, 448
spider-nest identity, 439
stabiliser, 217
stabiliser code, 496
stabiliser decomposition, 309, 467
stabiliser extent, 310, 467
stabiliser formalism, 216
stabiliser group, 222

maximal, 236
stabiliser state, 237
stabiliser states, 216
stabiliser subspace, 222
stabiliser tableau, 243
stabiliser theory, 216

fundamental theorem, 233
stand-alone measurement fragment, 327
state-copy rules, 98
Steiner trees, 164
string diagram, 4

String diagram notation, 15
string diagram notation, 20
strong complementarity, 102, 105
strongly 3-even, 441
strongly simulates, 201
subspace

affine, 186
supplementarity, 468
surface code, 521
swap, 31
symmetric difference, 339
symplectic, 248
symplectic inner product, 246
syndrome, 496, 498
synthesis

Clifford+T, 474
exact, 480

T gate, 51
target qubit, 49
tensor

decomposition, 457
rank, 457
symmetric, 456

tensor network, 30
tensor product, 23, 27
tensors, 26
thresholds, 521
time evolution operator, 42
Toffoli gate, 48, 372
trace, 32
transversal, 536
transversal gate, 533
triorthgonal

strongly, 546
triorthogonal, 546
Trotterization, 292
twirling, 566
two-coloured, 143
unit in a ring, 428
unitary, 21
universal, 53
universal gate set, 48
universal resource states, 333
universality, 92

computational, 464
W-spider, 419
W-state, 419
weakly simulates, 201
weight

of a Pauli string, 501
X-Z normal form, 157
yanking equation, 29
Z-X normal form, 152
ZH-calculus, 420
ZW-calculus, 420
ZX diagrams with causal flow, 118
ZX-calculus, 92

	About This Version
	Introduction
	How to read this book
	From scratch
	Coming from Picturing Quantum Processes
	Coming from another quantum computing background

	Organisation

	The Quantum Circuit Model
	Preliminaries
	Some things you should know about complex numbers
	Hilbert spaces
	Types of linear maps
	Tensors and the tensor product
	Sums and diagrams
	Tensor networks and string diagrams
	Cups and caps

	A bluffer's intro to quantum theory
	Quantum states
	Qubits and the Bloch sphere
	Unitary evolution
	Measurements and the Born rule

	Gates and circuits
	Classical computation with quantum gates
	Pauli and phase gates
	Hadamard gates
	Controlled unitaries
	(Approximate) universality
	Quantum circuit notation

	A dash of quantum algorithms
	A dash of complexity theory
	Asymptotic growth
	Classical complexity classes
	BQP

	Summary: What to remember
	Advanced Material*
	Quantum mixed states and channels*

	References and further reading

	The ZX-Calculus
	ZX-diagrams
	Spiders
	Defining ZX-diagrams
	Symmetries
	Scalars
	Adjoints, transpose and conjugate
	Hadamards
	Universality

	The rules of the ZX-calculus
	Spider fusion and identity removal
	The copy rule and pi-commutation
	Colour changing
	Strong complementarity
	Euler decomposition

	ZX in action
	Magic state injection
	Teleportation
	Detecting entanglement
	The Bernstein-Vazirani algorithm

	Extracting circuits from ZX-diagrams
	ZX-diagrams to circuits with post-selection
	Circuit-like diagrams and optimisation

	Summary: What to remember
	Advanced Material*
	Formal rewriting and soundness*
	Dealing with scalars*

	References and further reading

	CNOT circuits and phase-free ZX-diagrams
	CNOT circuits and parity matrices
	The two-element field and the parity of a bit string
	From CNOT circuits to parity maps
	CNOT circuit synthesis

	The phase-free ZX calculus
	Reducing a ZX-diagram to normal form
	Graphical CNOT circuit extraction

	Phase-free states and F2 linear subspaces
	Phase-free completeness
	X-Z normal forms and orthogonal subspaces
	Relating parity matrices and subspaces

	Summary: What to remember
	Advanced Material*
	Better CNOT circuit extraction*

	References and further reading

	Clifford circuits and diagrams
	Clifford circuits and Clifford ZX-diagrams
	Graph-like diagrams
	Graph states

	Simplifying Clifford diagrams
	Transforming graph states using local complementation
	Pivoting
	Removing spiders in Clifford diagrams

	Clifford normal forms
	The affine with phases normal form
	GSLC normal form
	Normal form for Clifford circuits

	Classical simulation of Clifford circuits
	Simulating Cliffords efficiently
	Weak vs strong simulation

	Completeness of Clifford ZX-diagrams
	A normal form for scalars
	A unique normal form for Clifford diagrams

	Summary: What to remember
	References and further reading

	Stabiliser theory
	Paulis and stabilisers
	Clifford conjugation, a.k.a. pushin' Paulis
	Stabiliser subspaces

	Stabiliser measurements
	The Fundamental Theorem of Stabiliser Theory

	Stabiliser states and the Clifford group
	Maximal stabiliser groups
	Stabiliser states
	The Clifford group
	Putting it all together

	Stabiliser tableaux
	Cliffords are determined by Pauli conjugations
	Stabiliser tableaux
	Paulis as bit strings
	Cliffords as symplectic matrices
	Adding back in the phases
	Putting it all together

	The Clifford hierarchy
	Summary: What to remember
	References and further reading

	Universal circuits
	Path sums
	Phase polynomials
	Phase gadgets
	Universal circuits with path sums

	Circuit synthesis and path sums
	Synthesis from phase polynomials
	Quantum Fourier transform

	Pauli exponentials
	Unitaries from Pauli boxes
	Matrix exponentials
	Building unitaries as exponentials
	Pauli exponentials

	Pauli exponential compilation
	Pauli exponentials are a universal gate set
	Compiling to Pauli exponentials
	Phase folding

	Hamiltonian simulation
	Simplifying universal diagrams
	Removing non-Clifford spiders
	Circuits from universal diagrams

	Summary: What to remember
	Advanced material*
	Simulating universal circuits*
	Higher-order Trotterisation*
	Randomised compiling*

	References and further reading

	Measurement-based quantum computation
	Measurement fragments
	Universal resources

	Determinism and gflow
	Graph-like ZX-diagrams as measurement fragments
	The measurement correction game
	Diagrams with gflow are deterministic measurement patterns
	From circuits to measurement patterns
	Focussed gflow

	Optimising deterministic measurement patterns
	From measurement patterns to circuits
	Measurements in three planes
	Rewriting 3-plane gflow
	Circuit extraction, now phase gadget compatible

	There and back again
	Other stuff
	Depth of a computation

	Other MBQC models
	Hypergraph state-based models
	Phase gadget-based models

	Summary: What to remember
	References and further reading

	Controlled gates and classical oracles
	Controlled unitaries
	The Toffoli gate
	Diagonal controlled gates and phase polynomials
	Fourier transforming diagonal unitaries

	H-boxes
	AND gates
	Rules for the H-box
	Constructing controlled unitaries using H-boxes

	Reversible Logic synthesis
	Constructing Toffoli gates with many controls
	Quantum tricks for optimising Toffoli gates
	Adding controls to other quantum gates

	Adders
	Summary: what to remember
	Advanced Material*
	From truth tables to Toffolis*
	2-level operators*
	More rules for the H-box*
	W-spiders*

	References and further reading

	Clifford+T
	Universality of Clifford+T circuits
	Exact synthesis of one-qubit gates
	Approximating arbitrary single-qubit gates

	Scalable ZX notation
	Scalable phase gadgets

	Rewriting Clifford+T diagrams
	Spider nests as strongly 3-even matrices
	Proving all spider nest identities
	Spider nests as Boolean polynomials

	Advanced T-count optimisation
	Reed-Muller decoding
	Symmetric 3-tensor factorisation

	Catalysis
	Catalysis as a resource for compilation
	Computational universality via catalysis
	Catalysing completeness

	Summary: What to remember
	Advanced Material*
	Exact synthesis of Clifford+T states*
	Exact unitary synthesis*
	Approximate single-qubit Clifford+T synthesis*
	Computational universality of Toffoli-Hadamard*

	References and further reading

	Quantum error correction
	Classical codes and parameters
	Quantum stabiliser codes
	Code distance for stabiliser codes
	Detecting and correcting quantum errors
	Encoders and logical operators
	The decoder

	CSS codes
	Stabilisers and Pauli ZX diagrams
	Maximal CSS codes as ZX diagrams
	Non-maximal CSS codes as ZX encoder maps
	The surface code
	Scalable ZX notation for CSS codes

	Fault-tolerance
	Fault-tolerant computation with transversal gates
	Fault-tolerant Pauli measurements
	Lattice surgery

	Magic state distillation
	CCZ distillation and catalysis

	Summary: What to remember
	References and Further Reading

	References
	Index

