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ABSTRACT

Many challenging tasks such as managing traffic systems, electricity grids, or supply chains involve
complex decision-making processes that must balance multiple conflicting objectives and coordinate
the actions of various independent decision-makers (DMs). One perspective for formalising and
addressing such tasks is multi-objective multi-agent reinforcement learning (MOMARL). MOMARL
broadens reinforcement learning (RL) to problems with multiple agents each needing to consider
multiple objectives in their learning process. In reinforcement learning research, benchmarks are
crucial in facilitating progress, evaluation, and reproducibility. The significance of benchmarks is un-
derscored by the existence of numerous benchmark frameworks developed for various RL paradigms,
including single-agent RL (e.g., Gymnasium), multi-agent RL (e.g., PettingZoo), and single-agent
multi-objective RL (e.g., MO-Gymnasium). To support the advancement of the MOMARL field, we
introduce MOMALAND, the first collection of standardised environments for multi-objective multi-
agent reinforcement learning. MOMALAND addresses the need for comprehensive benchmarking in
this emerging field, offering over 10 diverse environments that vary in the number of agents, state
representations, reward structures, and utility considerations. To provide strong baselines for future
research, MOMALAND also includes algorithms capable of learning policies in such settings.2

Keywords reinforcement learning · multi-objective optimisation · multi-agent learning · benchmarks · decision-making
∗Work done while at SnT.
2Source code: https://github.com/Farama-Foundation/momaland.

Documentation: https://momaland.farama.org/.
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FIGURE 1: Overview of the libraries related to MOMAland within the Farama Foundation.

1 Introduction

Often, domains of critical social relevance such as smart electrical grids [42], traffic systems [32], taxation policy
design [88], or infrastructure management planning [40] involve controlling multiple agents while making compromises
among several conflicting objectives. The multi-agent aspect of above-mentioned domains has been well studied, and
there is a wealth of literature on multi-agent approaches spanning several decades [25]. Separately, over the last 20
years, there has been an increasing interest in the multi-objective aspect of such domains [29]. However, the intersection
of these two aspects, multi-objective multi-agent decision making (MOMADM), has not received much attention.
Indeed, problems are often simplified by hard-coding a trade-off among objectives or centralising all decisions in a
single agent. We argue that many, if not most, complex problems of social relevance have both a multi-objective and a
multi-agent dimension. This is because such problems often affect multiple stakeholders, who may care about different
aspects of the outcome, and may have different preferences for them. As such, it is crucial to advance the field of
MOMADM to enable future progress in the application of artificial intelligence (AI).

The development of standardised benchmarks is a key factor that has driven progress in various areas of AI over the years.
Without standardised, publicly available benchmarks, researchers spend a lot of unnecessary time re-implementing test
environments from published papers, reproducibility is made much more difficult, and results published in different
papers are potentially incomparable [49, 19]. Suites of standardised benchmarks have helped to address these issues
already in some fields of AI such as reinforcement learning (RL). Such benchmarks are exemplified by the seminal
Gymnasium library [79] for single-objective single-agent RL, the PettingZoo library [75] for multi-agent RL (MARL),
and MO-Gymnasium [3] for multi-objective RL (MORL). Yet, there is no existing library dedicated to multi-objective
multi-agent reinforcement learning (MOMARL).

In this article, we introduce MOMALAND, the first publicly available set of MOMARL benchmarks under standardised
APIs. MOMALAND, incorporated within the Farama Foundation ecosystem (see Figure 1), draws inspiration from
analogous projects and currently offers over 10 configurable environments encompassing diverse MOMARL research
settings. By embracing open-source principles and inviting contributions, we anticipate that MOMALAND will evolve in
tandem with research trends and host new environments in the future. As we discuss further in Section 2, MOMALAND
aims to contribute to the unification of rather fractured evaluation practices, in order to provide researchers with clear
and objective data on how well their algorithms perform with respect to other methods.

Additionally, MOMALAND includes utilities and learning algorithms intended to establish baselines for future research
in MOMARL. Notably, it offers utilities enabling the utilisation of existing MORL and MARL solving methods
through centralisation or scalarisation strategies. Importantly, while the provided baselines can find solutions for
certain MOMARL settings, MOMALAND also features challenges with no known solution concept. Addressing these
challenges requires tackling open research questions before deriving appropriate solving methods. Having set this
framework, we strongly encourage contributing new work in MOMARL to the MOMALAND baselines.

The remainder of this paper is organised as follows: Section 2 describes previous work in this area, Section 3 clarifies
background information on the field of MOMARL, Section 4 illustrates the APIs exposed and utilities provided in
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MOMALAND, Section 5 lists the environments currently included in our library, Section 6 presents algorithms designed
to address the introduced environments along with baseline results, Section 7 discusses future challenges in this new
field of research, and finally, Section 8 concludes our work.

2 Related Work

Unlike traditional machine learning settings that often rely on fixed datasets, RL problems typically do not, making
replication of experimental results challenging [19, 49]. Indeed, although the Markov Decision Process (MDP)
definitions are typically well-specified in research papers, their actual instantiation can be influenced by implementation
decisions. Notably, even minor discrepancies in environment specifications can have a substantial impact on RL
algorithms’ performance. Moreover, re-implementing some of these environments, such as those based on the MuJoCo
engine [78], from scratch would require a significant amount of effort for researchers.

To mitigate these issues and accelerate research in standard RL settings, Gymnasium [79] (formerly known as OpenAI
Gym [13]) introduced a standard API and collection of versioned environments. With millions of downloads, this
library has become the standard for RL research. Gymnasium allows researchers to evaluate the performance of their
contributions on a varied collection of environments with few code changes, and ensures that the environments used for
comparison against state-of-the-art algorithms are the same.

However, Gymnasium is tailored for single-agent, single-objective MDPs, and does not offer support for more complex
domains involving multiple agents or objectives. Hence, it has been extended in various ways, such as PettingZoo [75]
or OpenSpiel [39] for MARL and MO-Gymnasium [3] for MORL. The Farama Foundation, a recently created nonprofit,
takes care of maintaining most of these libraries up to high standards.

Demonstrating the rising interest in settings involving multiple agents and objectives, some initial MOMARL bench-
marks were proposed by Ajridi et al. [2] and Geng et al. [22]. Additionally, Röpke [69] introduced Ramo, a framework
offering a collection of algorithms and utilities for solving multi-objective normal-form games which are a particular
model studied in MOMARL. However, there is currently no widely adopted library providing reliable and maintained
implementations of general MOMARL environments [33], and this is precisely the gap targeted by MOMALAND.

Finally, over time, numerous RL learning libraries containing algorithms that adhere to standardised APIs have been
released. For example, Stable-Baselines3 [56] and cleanRL [34] offer a collection of high-quality implementations of
state-of-the-art algorithms. Libraries for MARL like EpyMARL [48], and for MORL such as MORL-Baselines [19] are
also available. Nonetheless, the recent development of MOMARL and the absence of standardised environments mean
that only a limited number of methods (e.g., MO-MIX [33]) that can operate in these conditions have been developed,
with no dedicated libraries for MOMARL yet. To address this, we also include utilities and baseline algorithms to
provide initial solutions to some of the introduced environments.

3 Multi-Objective Multi-Agent Reinforcement Learning

In this section, a formal definition and notations of the MOMARL problem are first provided in Section 3.1. Then,
solution concepts under different assumptions are discussed in Section 3.2. Following this, metrics for evaluating and
contrasting solving methods in this area are presented in Section 3.3.

3.1 Formal Definition

The most general framework for modelling multi-objective multi-agent decision-making settings is the multi-objective
partially observable stochastic game (MOPOSG). MOPOSGs extend Markov decision processes [52] to both multiple
agents and multiple objectives, under the most general setting in which agents do not observe the full state of the
environment [53].
Definition 1 (Multi-objective partially observable stochastic game). A multi-objective partially observable stochastic
game is a tuple M = (S,A, T,R,Ω,O), with n ≥ 2 agents and d ≥ 2 objectives, where:

• S is the state space;

• A = A1 × · · · × An is the set of joint actions, Ai is the action set of agent i;

• T : S ×A → ∆(S) represents the probabilistic transition function;

• R = R1 × · · · ×Rn are the reward functions, where Ri : S ×A× S → Rd is the vectorial reward function
of agent i for each of the d objectives;

3
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FIGURE 2: Multi-objective multi-agent decision-making models characterised along three axes: (i) observability; (ii) cooperativeness;
(iii) statefulness [53].

• Ω = Ω1 × · · · × Ωn is the set of joint observations, Ωi is the observation set of agent i;

• O : S × A → ∆(Ω) is the observation function, which maps each state – joint action pair to a probability
distribution over the joint observation space.

After every timestep, each agent receives an observation according to the observation function O, instead of directly
observing the state. In this case, memory is required for agents to successfully learn in the environment [73]. A
particular form of this memory occurs when agents consider the complete history of the current trajectory denoted as
h ∈ H [28] (i.e., the complete trace of executed actions and received observations).

By making additional assumptions on the MOPOSG model, regarding observability, the structure of the reward function,
or whether the problem is sequential or not, we can derive a subset of models such as the multi-objective stochastic
game (MOSG), multi-objective decentralised partially observable Markov decision process (MODec-POMDP), multi-
objective Bayesian game (MOBG), multi-objective cooperative Bayesian game (MOCBG), multi-objective multi-agent
Markov decision process (MOMMDP), multi-objective normal form game (MONFG), or multi-objective multi-agent
multi-armed bandit (MOMAMAB), as illustrated in Figure 2 [53].

In such settings, an agent behaves according to a policy πi : H×Ai → [0, 1], that provides a probabilistic mapping
between an agent’s history and its action set. In MOMARL, agents usually aim to optimise their individual expected
discounted return obtained from a joint policy π. Formally,

vπ
i = E

[ ∞∑
t=0

γtRi(st,at, st+1) | π
]

(1)

where π = (π1, . . . , πn) is the joint policy of the agents acting in the environment, γ is the discount factor and
Ri(st,at, st+1) is the vectorial reward obtained by agent i for the joint action at ∈ A at state st ∈ S.

Note that since an agent only directly controls its own policy πi, this introduces subtleties not present in single-agent
settings, such as non-stationarity (stemming from agents simultaneously learning in the environment) and additional
credit assignment challenges (i.e., identifying the individual contribution of agents to the resulting reward signal).
Moreover, as a consequence of the fact that the value function is a vector, vπ

i ∈ Rd, they only offer a partial ordering
over the policy space. Determining the optimal policy requires additional information on how agents prioritise the
objectives or what their preferences over the objectives are. We can capture such a trade-off choice using a utility
function, ui : Rd → R, that maps the vector to a scalar value.

In the context of multi-objective multi-agent decision-making, Rădulescu et al. [53] propose a taxonomy along the
reward and utility axes. Namely, they propose to characterise settings in terms of individual or team rewards and
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individual, team or social choice utility. We will use the same dimensions to characterise the solution concepts presented
below, as well as the environments introduced by MOMALAND.

3.2 Solution Concepts

The multi-objective decision-making literature [66, 29] discusses two distinct perspectives for defining solutions in
multi-objective settings. We briefly discuss each perspective below, tailored to the multi-objective multi-agent setting.

Axiomatic approach

The axiomatic approach designates the Pareto set (PS) as the optimal solution set, under the minimal assumption that
the utility function is a monotonically increasing function. Informally, Pareto dominance introduces a partial ordering
over vectors, where one vector is preferred over another when it is at least equal on all objectives and strictly better on
at least one. We define this formally in the following definition.
Definition 2 (Pareto dominance). Let v,v′ ∈ Rd. We say v Pareto dominates v′, denoted v ≻P v′, whenever

∀j ∈ {1, . . . , d} : vj ≥ v′j ∧ ∃j ∈ {1, . . . , d} : vj > v′j . (2)

When only ensuring that
∀j ∈ {1, . . . , d} : vj ≥ v′j , (3)

we refer to this as weak Pareto dominance and denote this by v ⪰P v′.

Team reward setting When all agents must cooperate, they often share a team reward, i.e. vπ
1 = vπ

2 = . . . = vπ
n ,

denoted as vπ . Given this shared reward, Pareto dominance can be straightforwardly applied. We define this below.
Definition 3 (Pareto dominance for team reward). In a team-reward setting, we say that a joint policy π Pareto
dominates another joint policy π′ whenever vπ ≻P vπ′

.

We subsequently define the set of all joint policies which are not Pareto dominated as the Pareto set.
Definition 4 (Pareto set for team reward). Let Π be a set of joint policies. The Pareto set P(Π) in a team reward
setting contains all joint policies that are pairwise undominated, i.e.

P(Π) = {π ∈ Π | ∄ π′ ∈ Π : vπ′ ≻P vπ}, (4)

The Pareto front (PF), denoted as F(P)3, contains the value vectors corresponding to all Pareto optimal policies
π ∈ P(Π).4 It is usually presented to the decision-maker after the learning process to let them choose the desired
behaviour to deploy. For instance, Figure 3 illustrates the outcomes of running a MOMARL algorithm (Algorithm 1) in
team reward settings. This has been performed in one of our new environments where agents learn to make a formation
around a fixed target. In the depiction, the yellow sphere represents the target, while the agents are depicted by the
red spheres. This environment offers a clear demonstration of the various behaviours achievable by making different
compromises among two objectives involving being close to the target and far from other agents. In this environment,
the agents converge to a final position determined by the desired trade-off specified by the decision-maker. Opting for a
tight formation around the target enhances the surrounding objective, albeit at the expense of greater collision risks. See
Appendix B.6 for further details on the environment.

Individual reward setting While the Pareto set and Pareto front are natural solutions in cooperative settings, extending
this to settings where each agent receives a different reward vector is non-trivial. Observe that the value function
for joint policies, V π = [vπ

1 v
π
2 . . .v

π
n ]

⊺, in multi-agent multi-objective agent settings, is a matrix where each row
represents the payoff vector of a particular agent. A well-known solution concept extending Pareto dominance to this
setting is the Pareto-Nash equilibrium [41] in which each player’s value vector should be in the Pareto front induced by
keeping the opponents’ policies fixed.
Definition 5 (Pareto-Nash dominance). We say a joint policy π Pareto-Nash dominates another joint policy π′, denoted
as V π ≻PN V π′

, whenever

∀i ∈ {1, . . . , n} : vπ
i ⪰P vπ′

i ∧ ∃i ∈ {1, . . . , n} : vπ
i ≻P vπ′

i . (5)
3For simplicity, we often use F to denote the PF, as the expected value vectors are inherently linked to the policies.
4The concepts of PS and PF are often used interchangeably in the literature. We make a clear distinction between the two for

mathematical rigour.
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FIGURE 3: Pareto Front and resulting trade-offs learned on a CrazyRL environment (introduced below).

Note that this definition does not conflict with definition 3 since in team reward settings each row in the value matrix is
equal. The set of all Pareto-Nash equilibria then contains all joint policies which are not dominated.
Definition 6 (Pareto-Nash set). Let Π be a set of joint policies. The Pareto-Nash set PN (Π) contains all joint policies
that are pairwise undominated, i.e.

PN (Π) = {π ∈ Π | ∄ π′ ∈ Π : Vπ′ ≻PN Vπ} (6)

We note that there is little work so far on the individual reward setting with unknown utility functions, so this more
general setting remains an important open challenge in MOMARL. Indeed, to the best of our knowledge, there is a
limited amount of methods capable of identifying a Pareto-Nash set of policies. A notable example, but limited to
games with additional structure (e.g., symmetric games) is introduced in the work of Somasundaram and Baras [72].
All other methods either assume a team reward setting, falling back to a team Pareto set, or assume a known utility
function, falling back to a Nash equilibrium, which we discuss below.

Utility-based approach

The utility-based approach advocates for exploiting any additional domain knowledge that might be available regarding
the user’s utility function. Such additional knowledge can lead to smaller optimal sets (e.g., if the utility function is
known to be linear), or less time spent on exploring regions of the objective space that are not of interest to the user
(e.g., when the user requires some minimum value for a certain objective). When no additional knowledge on the utility
function is available, the utility-based approach falls back on the axiomatic approach.

Roijers et al. [66] define two optimisation criteria in multi-objective decision-making when applying the utility function
to the vector-valued outcomes. One can compute the expected value of the payoffs of a policy first and then apply the
utility function, leading to the scalarised expected returns (SER) optimisation criterion:
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vπui = ui

(
E

[ ∞∑
t=0

γtRi(st,at, st+1) | π
])

(7)

where vπui is the scalarised return derived by agent i. Alternatively, under the expected scalarised returns (ESR)
optimisation criterion [30, 60], the utility function is applied before computing the expectation:

vπui = E

[
ui

( ∞∑
t=0

γtRi(st,at, st+1)

)
| π
]

(8)

Semantically, the two optimisation criteria distinguish between settings in which users are interested in optimising the
utility over multiple policy executions (SER), or over each policy application (ESR).

The majority of work on multi-objective multi-agent decision-making so far has taken a utility-based perspective,
assuming that each agent has some known utility function ui, dictating the preferred trade-off among the objectives
[54, 55, 67], and has mostly focused on stateless settings (i.e., MONFGs).

For the scope of this work, we introduce below one of the solution concepts identified for the individual utility setting,
namely the Nash equilibrium [45]. We define π−i = (π1, . . . , πi−1, πi+1, . . . , πn) to be a strategy profile without
player’s i strategy. We can thus write π = (πi,π−i).
Definition 7 (Nash equilibrium). A joint policy πNE is a Nash equilibrium if, for each agent i ∈ {1, ..., n} and for any
alternative policy πi, no agent can improve its scalarised return by unilaterally changing its policy:

v
(πNE
i ,πNE

−i )
ui ≥ v

(πi,π
NE
−i )

ui . (9)

For a detailed discussion on each of the MOMARL taxonomy settings and solution concepts, we refer to Rădulescu
et al. [53].

3.3 Evaluation of MOMARL algorithms

Because of the additional complexity in MOMARL compared to single-agent, single-objective RL, solution concepts
vary, leading to different evaluation methods for MOMARL algorithms. In this section, we present commonly utilised
evaluation methods in both MORL and MARL domains and examine their suitability for MOMARL settings. First, we
outline performance indicators for settings where the agents’ utilities are unknown, followed by a discussion on settings
where the utilities are known.

3.3.1 Performance Indicators for Unknown Utility

First, it is important to acknowledge that, due to the scarcity of research in general settings, there are few, if any,
established methods for evaluating the effectiveness of approaches that identify a Pareto-Nash set. Nevertheless, as
discussed above, when the agents’ utilities remain unknown and under the team reward setting, the Pareto set and Pareto
front (Definition 4) are usually designated as optimal solution sets. These solution concepts have been well studied in
multi-objective optimisation literature, as well as in MORL more recently.

Compared to single-objective RL, the assessment and comparison of PFs obtained by different algorithms pose
challenges due to the PFs being collections of points, i.e. there is no existing ordering of PFs. Defining such an order is
not straightforward for two main reasons. Firstly, Pareto fronts discovered by various algorithms can be intertwined,
meaning that one algorithm may outperform another in a portion of the objective space while the opposite may hold
true in another portion. Secondly, PFs in high dimensions present difficulty in visualisation. In practice, performance
indicators become useful to transform a PF into a scalar value. This establishes an order among PFs and enables
comparisons. Various types of performance indicators have been introduced in the MO literature for this purpose.
However, it is important to note that compressing a set of points into a single scalar value inevitably introduces bias.
Hence, multiple performance indicators (assessing different criteria) are often used in practice when comparing PFs.
These criteria include convergence, which assesses how close to optimality the discovered policies are, and diversity,
which evaluates the variety of compromises the discovered policies offer to the user.

Similar to solution concepts, performance indicators can be categorised into two groups: axiomatic indicators, which
do not make any assumptions about the decision maker’s (DM’s) utility, and utility-based indicators, which assume
specific restrictions on the DM’s utility function, e.g. linearity. Several of these indicators, employed throughout this
work, are given below.
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Cardinality. This metric is computed by considering the number of points within the approximated PF found by the
algorithm (F̃). It offers insights into the diversity of F̃ by indicating the number of trade-offs identified.

C(F̃) = |F̃ |.

Hypervolume. This is a hybrid metric quantifying both a PF’s convergence and diversity. Given an approximate PF, F̃ ,
and a pessimistic reference point, zref, the hypervolume indicator represents the volume of the objective space starting
from zref that is weakly dominated by F̃ . Formally, the hypervolume metric [90] is defined as:

HV(F̃ , zref) = Λ


⋃

vπ∈F̃
vπ⪰P zref

Box(vπ, zref)

 ,

where Λ(·) is the Lebesgue measure and Box(vπ, zref) = {p ∈ Rd | vπ ⪰P p ⪰P zref} denotes the box delimited
above by vπ ∈ F̃ and below by zref. The reference point used in the hypervolume computation is typically an estimate
of the worst-possible value per objective.

Expected utility. In the case where the utility function of the DM, u, is linear, it becomes feasible to represent the
expected utility over a distribution of reward weights, W , using the expected utility (EU) metric [89]. The EU metric is
then defined as:

EU(F̃) = Ew∼W

[
max
vπ∈F̃

vπ ·w
]
.

3.3.2 Performance Indicators for Known Utility

Another setting for evaluating MOMARL algorithms is when the utility of the agents is known a priori. This allows
falling back to single-objective MARL solution concepts and using the indicators provided in this field. A few examples
of how one can evaluate the performance of agents in this case, depending on the nature of the task at hand include
learning curves depicting achieved individual or joint utility over the learning process; analysing the cooperation or
coordination capacity of the learned policies [24]; using game theoretic concepts such as convergence to social optimum
(i.e., outcome maximising population welfare), Nash equilibria [67], correlated equilibria [54], or cyclic equilibria [70]).

4 APIs and Utilities

MOMALAND extends both PettingZoo APIs by returning a vectorial reward (i.e., a NumPy [27] array) instead of a
scalar for each agent.

1 from momaland.envs.multiwalker_stability import momultiwalker_stability_v0 as _env
2

3 env = _env.parallel_env(render_mode="human")
4 observations, infos = env.reset(seed=42)
5 while env.unwrapped.agents:
6 actions = {agent: policies[agent](observations[agent]) for agent in env.unwrapped.agents}
7

8 # vec_reward is a dict[str, numpy array]
9 observations, vec_rewards, terminations, truncations, infos = env.step(actions)

10

11 env.close()

LISTING 1: Parallel API usage.

The first API, referred to as parallel, enables all agents to act simultaneously, as demonstrated in Listing 1. In this
mode, signals such as observations, rewards, terminations, truncations, and additional information are consolidated into
dictionaries, mapping agent IDs to their respective signals (line 9). Similarly, all actions are provided simultaneously to
the step function as a dictionary, mapping each agent’s ID to its corresponding action (line 6).

8
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1 from momaland.envs.multiwalker_stability import momultiwalker_stability_v0 as _env
2

3 env = _env.env(render_mode="human")
4 env.reset(seed=42)
5 for agent in env.agent_iter():
6 # vec_reward is a numpy array
7 observation, vec_reward, termination, truncation, info = env.last()
8 if termination or truncation:
9 action = None

10 else:
11 action = policies[agent](observation)
12 env.step(action)
13 env.close()

LISTING 2: AEC API usage.

The second API, termed agent-environment cycle (AEC), is suitable for turn-based scenarios, such as board games [75].
A typical usage of this API is depicted in Listing 2. In this setup, each loop provides information solely for the
agent currently taking its turn (line 7). For additional notes on the APIs, we refer to the documentation website:
https://momaland.farama.org/api/aec/.

These APIs enable modelling all our benchmarking environments and offer the advantage of aligning closely with
PettingZoo’s conventions, thus facilitating comprehension for MARL practitioners and reuse of existing utilities such as
SuperSuit’s wrappers [76]. Additionally, MOMALAND provides utilities to expose most environments through both
APIs (with the exception of some board games, where support for the parallel API is deemed unnecessary).

4.1 Utilities

In addition to environments and standard APIs, MOMALAND provides several utilities that help algorithm designers in
creating and evaluating algorithms in the proposed environments.

The library offers wrappers that allow modifying one aspect of the environment, such as normalising observations.
Importantly, MOMALAND environments are compatible with PettingZoo and SuperSuit wrappers, as long as they do
not alter the reward vectors. This allows relying on stable implementations and avoiding code duplication. Nevertheless,
MOMALAND provides wrappers dedicated to handling the vectorial rewards, as this is the main difference with
PettingZoo. For instance, the NormaliseReward(idx, agent) wrapper facilitates the normalisation of the idxth immediate
reward component for a specified agent. Furthermore, the LineariseReward wrapper enables the transformation of agent
reward vectors into scalar values through a weighted sum of reward components, thereby converting multi-objective
environments into single-objective ones under the standard PettingZoo API, see Figure 1. This adaptation allows for the
utilisation of existing multi-agent RL algorithms to learn for a designated trade-off. Moreover, the CentraliseAgent
wrapper compresses the multi-agent dimension into a single centralised agent, providing direct conversion to the
MO-Gymnasium API [3]. This adaptation enables learning using multi-objective single-agent algorithms, such as those
featured in MORL-Baselines [19].

Additionally, MOMALAND includes a set of baseline algorithms showing example usage of the API and previously
discussed utilities. These baselines are discussed in more detail in Section 6.

5 Environments

MOMALAND provides a variety of environments which offer a diverse range of challenges to benchmark MOMARL
algorithms. Table 1 shows an overview of all environments, according to the criteria depicted in Figure 2, which
describe all multi-objective multi-agent settings. Our environments cover a spectrum of features, including discrete and
continuous state and action spaces, stateless and stateful environments, cooperative and competitive settings, as well as
fully and partially observable states. Notably, the current set of environments provided within MOMALAND covers all
configurations depicted in Figure 2, except MOBG and MOCBG. Some environments are multi-objective extensions of
PettingZoo domains, others have been implemented from the current literature in MOMARL, and some are introduced
in this work, e.g. the CrazyRL variants. In the following, we briefly outline each environment; see Appendix B for
more details.
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MO-BPD 2-n 2 ✗∗ ✗ ✓ ✓ ✓ d d
MO-ItemGathering 2-n 2-d ✗∗ ✓ ✗ ✓ ✓ d d
MO-GemMining 2-n 2-d ✗∗ - - ✓ ✗ - d
MO-RouteChoice 2-n 2 ✗∗ - - ✗ ✓ - d
MO-PistonBall 2-n 3 ✗∗ ✗ ✓ ✗ ✓ c d/c
MO-MW-Stability 2-n 2 ✗ ✓ ✓ ✓ ✓ c c
CrazyRL/Surround 2-n 2 ✗ ✓ ✗ ✓ ✓ c c
CrazyRL/Escort 2-n 2 ✗ ✓ ✗ ✓ ✓ c c
CrazyRL/Catch 2-n 2 ✓ ✓ ✗ ✓ ✓ c c
MO-Breakthrough 2 1-4 ✗ ✓ ✗ ✗ ✓ d d
MO-Connect4 2 2-20 ✗ ✓ ✗ ✗ ✓ d d
MO-Ingenious 2-6 2-6 ✗ ✓ ✓ ✓ ✓ d d
MO-SameGame 1-5 2-10 ✗∗ ✓ ✗ ✓ ✓ d d

TABLE 1: Overview of MOMALAND environments. State observability and discreteness are not specified for MO-GemMining and
MO-RouteChoice as these are stateless domains. Upper limits specified as n or d signal that the environment in question does not
enforce an upper limit on the number of agents or objectives, respectively. (*) These environments can have randomised starting

states, but otherwise no stochastic transitions.

FIGURE 4: Visualization of some environments in MOMALAND. From left to right: MO-Connect4, CrazyRL/Surround, MO-
MultiWalker-Stability, MO-ItemGathering.

Multi-Objective Beach Problem Domain (MO-BPD) The Multi-Objective Beach Problem Domain (MO-BPD)
[44] is a setting with two objectives, reflecting the enjoyment of tourists (agents) on their respective beach sections
in terms of crowdedness and diversity of attendees. Each beach section is characterised by a capacity and each agent
is characterised by a type. These properties, together with the location selected by the agents on the beach sections,
determine the vectorial reward received by agents. The number of agents is configurable.

The MO-BPD domain has two reward modes: (i) individual reward, where each agent receives the reward signal
associated with its respective beach section; and (ii) team reward, where the reward signal for each agent is an objective-
wise sum over all the beach sections. In terms of mathematical frameworks, under the individual reward setting, the
MO-BDP is a MOPOSG, while the team reward setting casts the problem as a MODec-POMDP.

MO-ItemGathering The Multi-Objective Item Gathering domain (Figure 4, rightmost picture), adapted from
Källström and Heintz [37], is a multi-agent grid world, containing items of different colours. Each colour represents
a different objective and the goal of the agents is to collect as many objects as possible. The environment is fully
configurable in terms of grid size, number of agents, and number of objectives.
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MO-ItemGathering is fully observable and has two reward modes: individual rewards (MOSG), where agents are
rewarded only for their own collected items, or team rewards (MOMMDP), where agents receive a reward for any
object collected by the group.

MO-GemMining In Multi-Objective Gem Mining, extending Gem Mining / Mining Day [7, 61, 65] to multiple
objectives, a number of villages (agents) send workers to extract gems from different mines. Each gem type represents
a different objective. There are restrictions on which mines can be reached from each village. Furthermore, workers
influence each other in their productivity. The number of different gem types, villages, and workers per village are
configurable.

MO-GemMining is stateless; each action corresponds to one independent mining day. It is fully cooperative and can be
modelled as a multi-objective multi-agent multi-armed bandit (MOMAMAB).

MO-RouteChoice MO-RouteChoice is a multi-objective extension of the route choice problem [77], where a number
of self-interested drivers (agents) must navigate a road network. Each driver chooses a route from a source to a
destination while minimising two objectives: travel time and monetary cost. Both objectives are affected by the selected
routes of the other agents, as the more agents travel on the same path, the higher the associated travel time and monetary
cost. The number of agents is configurable. The environment contains various road networks from the original route
choice problem [58, 77], including the Braess’s paradox [12] and networks inspired by real-world cities.

MO-RouteChoice is a stateless environment, thus a MONFG, where each agent chooses one of the possible routes from
its source to its destination and receives an individual reward based on the joint strategy of all agents.

MO-PistonBall MO-PistonBall is based on an environment published in PettingZoo [75] where the goal is to move a
ball to the edge of the window by operating several pistons (agents). This environment supports continuous observations
and both discrete and continuous actions. In the original environment, the reward function is individual per piston
and computed as a linear combination of three components. Concretely, the total reward consists of a global reward
proportional to the distance to the wall, a local reward for any piston that is under the ball and a per-timestep penalty.
In the MOMALAND adaptation, the environment dynamics are kept unchanged, but now each reward component is
returned as an individual objective. The number of agents is configurable.

This environment is a MOPOSG, where the only stochastic transition dynamics occur when determining the initial state
of the ball.

MO-MW-Stability Multi-Objective Multi Walker Stability (Figure 4, third picture from the left) is another adaptation
of a PettingZoo environment, originally published in Gupta et al. [26], to multi-objective settings. In this environment,
multiple walker agents aim to carry a package to the right side of the screen without falling. This environment also
supports continuous observations and actions. The multi-objective version of this environment includes an additional
objective to keep the package as steady as possible while moving it. Naturally, achieving higher speed entails greater
shaking of the package, resulting in conflicting objectives. The number of agents is configurable.

This environment is cooperative and agents only have a partial view of the global state. Hence, it is a MODec-POMDP.

CrazyRL CrazyRL (Figure 4, second picture from the left) consists of 3 novel continuous 3D environments in which
drones (agents) aim to surround a potentially moving target. The two objectives of the drones are to minimise their
distance to the target while maximising the distance between each other. The 3 environments differ in the behaviour of
the target, which can be static, move linearly, or actively try to escape the agents.

These environments are cooperative and agents can perceive the location of everyone else. Hence, they are all
MOMMDPs.

MO-Breakthrough MO-Breakthrough is a multi-objective variant of the two-player, single-objective turn-based
board game Breakthrough. In MO-Breakthrough there are still two agents, but up to three objectives in addition to
winning: a second objective that incentivizes faster wins, a third one for capturing opponent pieces, and a fourth one for
avoiding the capture of the agent’s own pieces. The board size is configurable as well.

As the game is competitive and fully observable, MO-Breakthrough falls into the category of MOSGs.

MO-Connect4 MO-Connect4 is a multi-objective variant of the two-player, single-objective turn-based board game
Connect 4 (Figure 4, leftmost picture). In addition to winning, MO-Connect4 extends this game with a second objective
that incentivizes faster wins, and optionally one additional objective for each column of the board that incentivizes
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Algorithm
Single or

multi compromises
Reward Utility

Obs.

space

Act.

space

MOMAPPO Multi Team
Team

Linear
c/d c/d

Scalarized IQL [44] Single Individual
Individual

Linear
d d

Centralisation wrapper

+ MORL algorithm
Any Team

Team

Any
d d

Scalarisation wrapper

+ MARL algorithm
Single Any

Individual

Linear
c/d c/d

TABLE 2: Baseline algorithms implemented in MOMALAND.

having more tokens than the opponent in that column. As the board size is configurable, so is the number of these
objectives.

MO-Connect4 is competitive and fully observable and therefore a MOSG.

MO-Ingenious MO-Ingenious is a multi-objective adaptation of the zero-sum, turn-based board game Ingenious. The
game’s original rules support 2-4 players collecting scores in multiple colours (objectives), with the goal of winning by
maximising the minimum score over all colours. In MO-Ingenious, we leave the utility wrapper up to the users and only
return the vector of scores in each colour objective. The number of agents, objectives, and board size in MO-Ingenious
are configurable.

MO-Ingenious has two reward modes: (i) individual reward, where each agent receives scores only for their own
actions; and (ii) team reward, where all collected scores are shared by all agents. Furthermore, it can be played with (i)
partial observability as the original game, or in a (ii) fully observable mode. In terms of mathematical frameworks, this
environment is therefore a MOPOSG, which can be configured to become a MODec-POMDP when playing in team
reward mode, a MOSG when playing in fully observable mode, or a MOMMDP when using both.

MO-SameGame MO-SameGame is a multi-objective, multi-agent variant of the single-player, single-objective
turn-based puzzle game called SameGame. All legal moves in the game remove a group of tokens of the same colour
from the board. The original game rewards the player for each action with a number of points that is quadratic in the
size of the removed group. MO-SameGame extends this to a configurable number of agents, acting alternatingly, and a
configurable number of different types of colours (objectives) to be collected.

MO-SameGame has two reward modes: (i) individual reward, where each agent receives points only for their own
actions; and (ii) team reward, where all collected points are shared by all agents. It is fully observable and can therefore
be modelled as a MOSG in individual reward mode, or a MOMMDP when using team rewards.

6 Baselines

After introducing our collection of challenging environments and utilities, this section demonstrates typical learning
results derived from the solution concepts and metrics presented earlier. We provide baselines that allow learning under
different settings. These baselines are listed in Table 2. The second column describes whether the algorithm aims at
learning one or multiple policies associated with different trade-offs within the multi-objective dimension. The third
and fourth columns refer to the classification made in the work of Rădulescu et al. [53] and discussed in Section 3.2. It
is worth noting that these algorithms do not aim for maximum efficiency, but provide a solid foundation for future work.
The rest of this section illustrates results obtained by using the algorithms on some of the proposed environments.
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Algorithm 1 MOMAPPO using Decomposition
Input: Number of weight vector candidates n, stopping criterion per weight stop, Environment MOMAenv .
Output: A Pareto set of joint policies P .

1: P = ∅
2: F = ∅
3: for i ∈ {1, . . . , n} do
4: w = GenerateWeights(F)
5: NormEnv = NormalizeRewards(MOMAenv)
6: MAEnv = LinearizeRewards(NormEnv ,w)
7: π = MAPPO(MAEnv , stop)
8: ṽπ = EvaluatePolicy(MOMAenv , π)
9: Add π to P and ṽπ to F if ṽπ non-dominated in F

10: end for
11: return P
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FIGURE 5: Average and 95% confidence intervals of multi-objective performance indicators on training results from MOMAPPO
with 20 uniform weights on mo-multiwalker-stability-v0. The Pareto Front plot has been extracted from the run with the largest

hypervolume.

6.1 Team Reward with Unknown Team Utility

As explained earlier, this setting aims at finding the same solution concepts as single-agent multi-objective RL, i.e., a
Pareto set of policies and its linked Pareto front.

6.1.1 Solving MOMARL Problems Using Decomposition

Algorithm 1 describes a simple extension of the MAPPO algorithm [87] to return a Pareto set of multi-agent policies
in cooperative problems. Similar to the works of Felten et al. [18, 20], it employs the decomposition technique to
divide the multi-objective problem into a collection of single-objective problems which can then be solved by a
multi-agent RL algorithm. In this context, a scalarisation function, parameterised by weight vectors, allows performing
the decomposition and targeting various areas of the objective space. The most common scalarisation function, weighted
sum, is used in this algorithm for its simplicity (through our LineariseReward wrapper, line 6). Notice that the rewards
of the environment are first normalised to mitigate the difference in scale of each objective (line 5). The weight
vectors can be generated using various techniques from MORL and MO optimisation, e.g., optimistic linear support
(OLS) [62], GPI-LS [4], uniformly [15, 9], or randomly (line 4). After training a multi-agent policy for a given trade-off
using MAPPO [87], the policy is evaluated on the original environment, allowing to compute an estimate of vπ (line
8) and add the policy to the Pareto set of policies if it is non-dominated (line 9). Finally, the algorithm returns all
non-dominated multi-agent policies (line 11).

Figure 5 illustrates the typical metrics results that can be obtained by running MOMAPPO (Algorithm 1) on a
cooperative environment, mo-multiwalker-stability-v0 in this case. For these runs, the algorithm generated 20 weight
vectors uniformly to explore the objective space, more details on experimental settings are available in Appendix A. The
performance indicators plotted have been averaged and the 95% confidence interval is represented by the shaded area.
These reflect the general performance of the algorithm over random seeds ranging between 0 and 9 included. Moreover,
the PF plot gives an idea of the final result for a given run. The reference point used for hypervolume calculation is
[−300,−300].
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FIGURE 6: Average and 95% confidence intervals of multi-objective performance indicators on training results from GPI-LS and
PCN on moitem_gathering_v0, using the centralised agent wrapper.

The first thing to notice in the plots is that, on average, this algorithm is able to improve its PF over the training process.
Indeed, all indicators improve over the training course. The PF plot reveals that 4 non-dominated policies out of 20
weight vectors have been identified. It is worth noting that this algorithm is a straightforward adaptation of MARL
and MORL techniques. It can be improved by including techniques coming from existing MORL works, such as
cooperation between single-objective subproblems, e.g. conditioned networks [1] or transfer [46], or more advanced
weight vector generation method such as OLS [62]. A thorough review of such techniques in the context of single-agent
MORL is given in the work of Felten et al. [20].

6.1.2 Solving MOMARL Problems Using Centralisation

As mentioned in Section 4.1, MOMALAND also provides a CentraliseAgent wrapper that turns a multi-agent multi-
objective environment into a single-agent multi-objective environment by providing a centralised observation as well as
a single vectorial reward signal. The composition method of the vectorial reward is determined by a parameter and
can be either a component-wise sum or average of the individual agent rewards. This allows the direct application of
methods featured in MORL-Baselines [19].

To illustrate the compatibility between MOMALAND environments using the CentraliseAgent wrapper and MORL-
Baselines, we select two approaches, that make different assumptions regarding the environment or utility characteristics.
Pareto Conditioned Networks (PCN) [59] is a multi-policy approach designed for deterministic environments. PCN will
return an approximate Pareto front as a solution. On the other hand, Generalised Policy Improvement Linear Support
(GPI-LS) [4] assumes the utility function is linear and will thus return the convex hull as a solution [29].

We present in Figure 6 the results obtained by GPI-LS and PCN on the moitem_gathering_v0 environment. The
experiments are run on the default map of the environment, namely an 8× 8 grid, with 2 agents and 3 different object
types (i.e., 3 objectives). The centralised vectorial reward signal is obtained using a component-wise addition over all
agents’ rewards. The number of timesteps is set to 50 and the results are averaged over 5 runs (random seeds ranging
from 40 to 44), with the shaded area representing the 95% confidence interval. The reference point for the hypervolume
calculation is [0, 0, 0]. More experimental details are available in Appendix A.

We observe that for this instance of the MO-ItemGathering environment, both PCN and GPI-LS show consistent
learning behaviour over the runs, reaching similar performance in terms of hypervolume and expected utility. In terms of
cardinality (i.e., number of solutions in the identified solution set), PCN manages to identify on average one additional
solution, in comparison to GPI-LS.

6.2 Individual Reward and Known Utility Function

Here we consider the setting of independent learners, and known linear utility functions, reducing the problem to
independent multi-agent RL. To demonstrate this setup, we run experiments on two MOMALAND environments,
namely mobeach_v0 and moroute_choice_v0. The considered learning approach is scalarised independent Q-learning
(IQL) [44], since we investigate congestion domains that are fairly simple in terms of state and actions spaces, but that
involve a large number of agents (i.e., 50, 100 and 4200 agents).
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FIGURE 7: Average and 95% confidence intervals of scalarised team reward on training results from IQL on mobeach_v0.

MO-BPD For evaluating the Multi-Objective Beach Problem Domain, we aim to reproduce the empirical studies
performed by Mannion et al. [44]. We note that in comparison to the original MO-BPD, evaluated under tabular
approaches, MOMALAND augments the agents’ individual observation with additional information5, potentially
requiring function approximation-based techniques. However, MOMALAND also includes an additional wrapper, to
make the environment equivalent to the original one introduced in Mannion et al. [44]. For mobeach_v0, using the
aforementioned wrapper, our setup is identical to the two empirical studies of Mannion et al. [44]. First we consider 50
agents (35 type A, 15 type B), with 5 sections, each with capacity 3. The second setup includes 100 agents (70 type A,
30 type B), 5 sections, all with capacity 5. In both cases, agents have homogeneous preferences over the two objectives,
with weights equal to [0.5, 0.5]. We also use a fixed initial distribution of agents over sections (half of the agents start in
section 1 and half in section 3). Additional experimental details are available in Appendix A.

Figure 7 presents the learning curves of scalarised IQL. The independent Q-learners are studied under two different
vectorial reward signals, namely individual reward (each agent receives the reward corresponding to its local section)
and team reward (agents receive the same reward describing the entire beach, but still use an individual learning
approach). Our results match the ones presented in [44]: the team reward represents a more informative signal for the
independent learning setup, leading to better performance. We also notice that the initial exploration, at the start of the
learning process, leads agents to a higher averaged scalarised reward. However, the independent Q-learners are not able
to retain the configuration, signalling that additional coordination mechanisms are required for this setting.

MO-RouteChoice For moroute_choice_v0, we consider the Braess’s paradox [12] road network, depicted in Fig-
ure 8(a), with 4200 agents that can choose between three routes (i.e, (1) s− v − t, (2) s−w− t, (3) s− v −w− t), to
travel from the starting node s, to the destination node t. The reward for the travel time component is depicted on each
edge of the road network, while the cost component is calculated using the marginal cost tolling scheme (more details
on the reward function are presented in Appendix B.4).

Congestion problems exhibiting the Braess’s paradox, under the travel time reward component, have already been
studied in the literature [85, 81, 68]. This class of problems famously demonstrates the effect of the tragedy of the
commons, in which the selfish maximisation of resource use at an individual level will lead to worse outcomes at a
societal level. We illustrate this phenomenon in Figure 8(b) versus Figure 8(c): the Nash equilibrium leads all agents to
select route (3) s− v − w − t for an average travel time of 18, while the social optimum of the system is for agents to
ignore section v − w, and to equally split between the remaining two routes, for an average travel time of 15.

In Figure 9 we analyse the behaviour of the independent Q-learners, under different linear utility functions. For example
IQL : [0.3, 0.7] denotes the setting in which all agents assign a weight of 0.3 for the travel time objective and 0.7 for the
cost objective. When all agents exclusively value the travel time objective (i.e., [1.0, 0.0]), the population converges to
the Nash equilibrium (Figure 8b), with the worst outcome for the average travel time, 18. This phenomenon is mitigated
when even a small mass is shifted towards the cost objective (e.g., [0.9, 0.1]). We notice how agents converge to the
social optimum in the cases in which the weight for the cost objective is ≥ 0.5, with an average travel time of 15.
These results are in line with the work of Ramos et al. [57], that demonstrated that marginal-cost tolling leads agents to
socially-desirable outcomes.

5https://momaland.farama.org/environments/mobeach/
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the configuration of the Nash equilibrium and social optimum for this setting.
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7 Open Challenges

In this section, we highlight some of the key challenges for future research on MOMARL.

7.1 Solution Concepts for MOMARL

In Section 3.2 we briefly outlined some possible solution concepts for MOMARL, focusing on the two main approaches
in the literature: the axiomatic approach and the utility-based approach. To date, the utility-based approach has generally
been the most common approach for MOMARL problems, as it allows for prior knowledge about the agents’ preferences
over objectives to be incorporated to simplify the problem.

When following the utility-based approach, solution concepts from traditional single-objective game theory can be
extended to multi-objective settings by measuring agent incentives with respect to individual utility (rather than with
respect to individual rewards/payoffs in single-objective game theory). For example, Rădulescu et al. [54] extended the
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well-known Nash equilibrium and correlated equilibrium solution concepts to MOMA settings using the utility-based
perspective. Much of the analysis to date on solution concepts has focused on stateless single-shot settings (MONFGs),
so further empirical studies are required in sequential settings. Extending existing solution concepts to MOMA settings
is not trivial when following the utility-based approach, as one must consider the effect of the choice of optimisation
criterion, either SER or ESR, as outlined in Section 3.2. The choice of the correct optimisation criterion is crucial when
the utility functions are non-linear; selecting SER in place of ESR (or vice versa) can drastically alter the collective
behaviour of the agents. For example, it has been demonstrated that it may not be possible for agents to reach a stable
outcome, e.g., Nash equilibria may not exist under SER [53] or stable coalitions may not exist in coalition formation
games [36]. It is also possible to have a mixture of optimisation criteria within the same system, where some agents
follow SER and others follow ESR [67]. Work on such settings has been extremely limited to date and therefore further
work is required to better understand the implications of mixed optimisation criteria.

Research on the axiomatic approach to MOMA problems is even less mature than the utility-based approach. The
axiomatic approach may be a suitable fallback in settings where no information is available about the agents’ utilities,
although the space of joint policies that could be optimal is potentially much larger when no information is available
about the utilities. As shown in Section 6.1, applying the axiomatic approach in team reward settings, where all agents
receive the same reward vectors, is relatively straightforward and the problem is fully cooperative as all agent incentives
are perfectly aligned. The Pareto optimal set in team reward settings simply includes all joint policies where the
return vector is non-dominated. For individual reward settings (e.g., adversarial or mixed settings), Pareto optimal
sets could be defined individually for each agent, as a joint policy that is Pareto optimal with respect to one agent’s
reward function may not necessarily be Pareto optimal for other agents. Such individual Pareto optimal sets would
need to be conditioned on the behaviour of other agents in the system, so would in effect be a set of non-dominated
responses to the other agents’ policies [53]. When policies are deterministic with a finite number of discrete actions,
the non-dominated response set for an agent would also have a finite number of policies. In settings with probabilistic
policies, the non-dominated response set could potentially have an infinite number of policies.

Finally, the relationship between the axiomatic and utility-based approaches in MOMA systems is currently not well
understood and merits further study. Initial work by Mannion and Rădulescu [43] in a team reward individual utility
setting demonstrated that it is possible to have settings where none of the Nash equilibria are Pareto optimal, depending
on the preferences of agents over objectives.

7.2 Utility Modelling and Preference Elicitation

In single-agent settings, it is possible to elicit and align preferences with respect to different trade-offs between
objectives by directly interacting with the users [51, 64]. This is because it is beneficial for both the agent and the user
to share such preferences openly. In multi-agent team utility settings, this would still be the case.

However, once we find ourselves in the individual utility case, the process becomes significantly harder. One may look at
the problem from multiple perspectives: agents can interact and model the preferences of their users, however agents can
now also potentially model their opponents’ utility function, in order to gain an advantage in the strategic interactions.
To the best of our knowledge, interactive MOMARL, where agents have to concurrently learn their associated user’s
preferences, as well as how to optimally act in the environment, has not yet been explored. Overcoming the difficulties
posed by misalignment of preferences, as well as the fact that it might no longer be in the agents’ best interest to share
their preferences openly (on the contrary, it might even be better to actively hide this information) are still very much
open challenges. Potential directions for approaching these challenges include negotiation [21, 5], or social contracts
[31].

7.3 Algorithms and Environments for MOMARL

Because it is a relatively new area, limited research has been focused on MOMARL. Moreover, although there is a
wealth of problems documented in the literature that involve both multiple agents and objectives [86, 50], they are often
simplified and not treated as MOMA. This prevents easy identification of contributions and comparison to the current
state of the art in the field.

Consequently, few solving methods addressing both dimensions of the problem exist. Indeed, most works operate in
the known utility setting, effectively relying on or adapting MARL methods, e.g. Mannion et al. [44], Rădulescu et al.
[55]. A notable exception to this is MO-MIX [33], which is able to learn a Pareto set of multi-agent policies in the team
reward setting. As previously stated, additional research is required in general settings to establish solution concepts
and develop algorithms that can identify these.
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Before MOMALAND, very few environments have been identified, modelled, and made available as MOMA problems.
Although we offer a preliminary set of intriguing challenges, we think this collection can be expanded and invite
external contributions of new and interesting environments. For instance, the majority of the suggested environments
lack a known optimal Pareto front. Knowing the optimal Pareto front would enable algorithm developers to confirm the
optimality of their approaches. Another example would be contributing MOBG or MOCBG environments to the library
(Figure 2). Finally, we also invite collaborations and proposals of domains based on industrial applications, especially
involving environments with stochastic dynamics.

Hence, by making MOMALAND open-source and open to contributions, we hope to receive external contributions of
new algorithms and environments from the research community.

8 Conclusion

In this paper, we introduced MOMALAND, the first publicly available benchmark suite for MOMARL problems. Our
library includes a collection of over 10 environments under two different APIs for turn-based or simultaneous actions.
These environments offer a diverse set of challenges, varying in the number of agents, state and action spaces, reward
structures, and utility considerations. Notably, some of these challenges have no known solution concept.

We showed how to leverage existing literature from both multi-objective RL and multi-agent RL to construct new
MOMARL algorithms able to solve some of the presented challenges. These baselines, along with useful utilities, are
also made available to help algorithm designers in their future research endeavours.

While the release of MOMALAND addresses one of the key challenges required to progress the field of MOMARL,
many open challenges remain, as highlighted in Section 7. We hope this benchmark suite will be a valuable asset to the
research community and that our work will inspire and enable future progress in the field.

Acknowledgments

This research has received funding from the project ALIGN4Energy (NWA.1389.20.251) of the research programme
NWA ORC 2020 which is (partly) financed by the Dutch Research Council (NWO), and from the European Union’s
Horizon Europe Research and Innovation Programme, under Grant Agreement number 101120406. The paper reflects
only the authors’ view and the EC is not responsible for any use that may be made of the information it contains. This
work was also supported by the Fonds National de la Recherche Luxembourg (FNR), CORE program under the ADARS
Project, ref. C20/IS/14762457, and by funding from the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” program and by the Research Foundation Flanders (FWO), grant number
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Appendix A Reproducibility

Hyperparameter Value
MAPPO Actor hidden layers [256, 256]

Critic hidden layers [256, 256]
Activation tanh
Anneal learning rate true
Clip epsilon 0.2
Entropy coefficient 0.
γ 0.99
GAE lambda 0.99
Learning rate 0.001
Max grad norm 0.5
Number of minibatches 2
Number of steps per epoch 1280
Updates per epoch 2
VF coefficient 0.8

MOMAPPO Timesteps per weight 500,000
Num weights 20
Weight generation Uniform [9]

TABLE 3: Hyperparameter values used for MOMAPPO.

Hyperparameter Value
GPI-LS Hidden layers [256, 256]

Batch size 256
γ 0.99
Initial ϵ 1.0
Final ϵ 0.05
ϵ decay steps 75000
Prioritized experience replay false
Gradient updates 10
Target net update frequency 200
Learning rate 0.0003
Timesteps per iteration 10,000
Total timesteps 150,000

PCN Learning rate 0.001
Hidden layers [256]
Batch size 256
γ 0.99
Scaling factor 1 (for all objectives and the horizon)
Total timesteps 150,000
TABLE 4: Hyperparameter values used for GPI-LS and PCN.

Table 3 lists the hyperparameter values used to conduct the experiments involving MOMAPPO (Algorithm 1). Table 4
presents the hyperparameters used for the experiments involving the CentraliseAgent wrapper, for PCN and GPI-
LS (Section 6.1.2). We report the hyperparameters that differ from the default values specified in the MORL-
baselines repository [19]. Table 5 reports the hyperparameters used for the IQL experiments on the mobeach_v0 and
moroute_choice_v0 environments (Section 6.2).

Our experiments have been carried out on the high-performance computers of the University of Luxembourg [82] and
of the Vrije Universiteit Brussels – provided by the VSC (Flemish Supercomputer Center), funded by the Research
Foundation - Flanders (FWO) and the Flemish Government. Raw data of the training results can be found in Open RL
Benchmark [35] and https://wandb.ai/rradules/MOMAland-IG-3.
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Hyperparameter Value
IQL Learning Rate 0.5

Learning Rate Decay 1
Learning Rate Min. 0.
Exploration Rate 0.05
Exploration Rate Decay 0.9999
Exploration Rate Min. 0.
γ 0.9

TABLE 5: Hyperparameter values used for IQL.

Appendix B Environment details

B.1 Multi-Objective Beach Problem Domain (MO-BPD)

The Multi-Objective Beach Problem Domain (MO-BPD) was introduced by Mannion et al. [44] and extends an earlier
single-objective version introduced by [80, 16]. In MO-BPD, each agent represents a tourist starting at a specific beach
section, and then deciding at which section of the beach they will spend their day. Agents can choose to move to an
adjacent section (move_left or move_right), or to stay_still.

Each beach section is characterised by a capacity ψ and each agent is characterised by one of two static types: A or B.
These properties, together with the location of the agents on the beach sections, determine the vectorial reward received
by agents, having two conflicting objectives: “capacity” and “mixture”.

The environment can be configured in two modes, “individual” or “team” reward: the agents can either receive their
own individual local rewards, based on the beach section they are located in (i.e., individual reward setting), or the
global reward, based on the sum of rewards over all the available beach sections (i.e., team reward setting).

The capacity reward function is designed to return the highest value when the number of agents present is equal to the
capacity of the section. Sections which are either too crowded or too empty receive lower rewards. The local capacity
reward Lcap(b) for a particular section is calculated as:

Lcap(b) = xbe
−xb
ψ (10)

where b is the beach section, and xb is the number of agents present at that section. The global capacity reward is then
defined as:

Gcap =
∑
b∈B

Lcap(b) (11)

The maximum mixture reward for a section is received when the number of A agents in attendance is equal to the
number of B agents, while sections with an unequal mixture of agents receive a lower reward as they are less desirable.
The local mixture reward Lmix(b)

6 for a particular section is calculated as:

Lmix(b) =
min(|Ab| , |Bb|)
|Ab|+ |Bb|

(12)

where |Ab| is the number of agents of type A present at that section, |Bb| is the number of agents of type B present
at that section. The global mixture utility can then be calculated as the summation of Lmix(b) over all sections in
MO-BPD:

Gmix =
∑
b∈B

Lmix(b) (13)

6We note that in the initial version of the environment by Mannion et al. [44], the local mixture component was further normalised
by the number of beach sections, diminishing the ‘local’ (i.e., individual) perspective of the signal.
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A drawback of the original version of the benchmark derived from the fact that rewards were specified per timestep,
meaning that increasing the number of timesteps also changed the Pareto front. To rectify this issue in our implementation
rewards are received only in the last timestep.

The congestion condition in MO-BPD is only available when the number of agents is greater than the total capacity
of the sections. Furthermore, as noted in Mannion et al. [44], there are a few additional ways to ensure that no trivial
solutions exist: by using odd values for ψ implies that Lcap and Lmix cannot both be maximised at the same time at
any one section and by using different proportions of A and B agents.

In terms of mathematical frameworks, under the individual reward setting, the MO-BDP is a MOPOSG, while the team
reward setting casts the problem as a MODec-POMDP.

B.2 MO-ItemGathering

FIGURE 10: Illustration of the MO-ItemGathering with 10 agents and 3 objectives on a 8x8 grid.

The MO-ItemGathering environment is an extension of the two agent problem from Källström and Heintz [37]. In
the original setting, agents must collect red, green and yellow items (representing the objectives) in a 8x8 grid world.
However, in their implementation, only one agent was controlled by MORL, the other agent used a hand-coded policy
(always go for the closest red item). MOMALAND extends the environment to any number of agents, objectives (i.e.,
item colours) and grid dimensions. An illustration of the environment is presented in Figure 10.

MO-ItemGathering is a fully observable environment, where the state received by an agent is a tuple comprising a
matrix encoding the items’ and agents’ locations, together with the agent’s id. The action space for each agent is
discrete, with a size of 5, representing the cardinal directions and staying at the current position.

Agents acquire rewards upon stepping in a cell occupied by items, and receive a reward of +1 for the corresponding
objective (i.e., colour). The vectorial reward has two modes, either an individual reward, where agents only receive
rewards for the items they collect, or a team reward, where all agents receive a reward when an item is picked up
in the environment. In the individual reward mode the environment is a MOSG, while in the team reward mode the
environment is a MOMMPD.

B.3 MO-GemMining

In Multi-Objective Gem Mining (which extends Gem Mining / Mining Day [7, 65] to multiple objectives), a mining
company mines gems from a set of mines (local reward functions) located in the mountains (see Figure 11). The mine
workers live in villages at the foot of the mountains. The company has one van in each village for transporting workers
and must determine every morning to which mine each van should go.
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FIGURE 11: Illustration of the Multi-objective Gem Mining. Each village represents an agent, each mine represents a local reward
function.

Each village/van represents one agent. The action space of each agent is the set of mines that that agent can go. Please
note that vans can only travel to nearby mines (which is represented in the graph connectivity). If multiple vans (from
different villages) end up at the same mine, the total number of workers at those mines is summed. Workers are more
efficient when there are more workers at a mine: the probability of finding a gem of a given type in a mine is x · bw−1,
where x is the base probability of finding a gem of that type in the mine and w is the number of workers at the mine.
b is a bonus factor per worker and has a b = 1.03 default. It is possible to truncate the probability of finding gems
(across all types) to a maximum probability. By default, this truncation probability is set to 0.9. Please note that the
truncation probability should not be higher than 1. When the number of workers at a mine is 0, no gems will be found.
The number of gem types, i.e., objectives, is configurable.

We can generate instances of Multi-Objective Gem Mining for any number v > 0 of villages (agents). As a default, we
randomly assign 1− 5 workers to each village and connect it to 2 – 4 mines, but both lower and both upper limits are
configurable. Each village is only connected to mines with a greater or equal index, i.e., if village i is connected to m
mines, it is connected to mines i to i +m − 1. The last village is connected to the maximum number of connected
mines (default 4) and thus the number of mines is v plus this maximum minus one (default v + 3).

The environment is a multi-objective multi-agent multi-armed bandit MOMAMAB, which extends the multi-agent
multi-armed bandit (MOMAB) setting [7, 83, 8] to multiple objectives, and/or the multi-objective coordination graph
(MOCoG) setting [63, 61] to reinforcement learning.

B.4 Multi-Objective Route Choice Domain (MO-RouteChoice)

MO-RouteChoice is a multi-objective extension of the route choice problem [77]. In the route choice problem, N
independent drivers must choose routes to travel from a source to a destination while minimising their own travel time
and considering the effect caused by other drivers.

The road network is represented as a directed graph G = (V,E), where nodes V correspond to intersections and links
E represent the roads/segments connecting them. Each link l ∈ V has two associated costs: travel time (cTl : xl → R+)
and monetary cost (cMl : xl → R+). Both costs are influenced by the flow xl of vehicles on the link. As more drivers
use a specific link, it becomes more congested, increasing the costs for all drivers on that link.

During the initialisation of a chosen problem instance, each driver is assigned a fixed source node and destination
node from the available origin-destination pairs. In each episode, every agent selects a route, which is a set of links
connecting their assigned source and destination nodes. The costs associated with travelling a route are the sum of the
costs of all its links: CT

R =
∑

l∈R c
T
l and CM

R =
∑

l∈R c
M
l . The set of possible routes for each agent is predefined

based on their assigned origin-destination pair and the available routes in the chosen problem.

MO-RouteChoice has two individual objectives: minimising travel time and minimising monetary cost. The monetary
cost can be assigned to routes in two ways: either a random percentage of roads are tolled (controlled by a parameter),
or all roads are tolled based on their occupancy (marginal-cost tolling).

The environment contains all road networks from the original route choice problem [58, 77]. This includes Braess
paradoxes and their extensions, as well as larger road networks inspired by real-world cities.

An initial MO perspective on this problem, with linear preferences, is presented in [58]. MO-RouteChoice is a MONFG.
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B.5 Multi-Objective PettingZoo Environments

This section describes PettingZoo [75] environments that have been adapted to multi-objective settings. Documentation
related to the original versions of these environments can be found at https://pettingzoo.farama.org/.

B.5.1 MO-PistonBall

The MO-PistonBall environment is a MOPOSG that features multiple pistons whose overall goal is to move a ball
to the edge of the screen. We keep all environment dynamics as in the original PettingZoo implementation, which
ensures that the environment is partially observable as each piston can only observe its neighbours. Furthermore,
while the environment is technically stochastic, the only stochasticity comes from selecting the initial start state. For
our multi-objective extension, we decompose the original reward function, which was a linear combination of three
components. Our reward function is defined as follows,

R1
i (st,at) = 100× xt − xball

x0 − xwall
(global reward) (14)

R2
i (st,at) =

xt − xball

2
local reward for every piston under the ball (15)

R3
i (st,at) = −0.1 global time penalty unless the episode is over (16)

In this reward function, eq. (14) is a global reward shared by all agents and measures the distance travelled by the ball
in the latest step, while eq. (15) is a local reward that is only received by pistons that are underneath the ball at that time.
Finally, eq. (16) is a time penalty that all agents receive for every timestep that the ball has not reached the wall yet.

While the reward function was originally intended to induce a common goal, the individual nature of eq. (15) may result
in unexpected results. For example, it may be possible to push the ball, hoping that it bounces back such that it can
obtain additional rewards. We note, however, that we have not yet observed such behaviour.

The environment is a multi-objective POSG where the only environment stochasticity comes from the initial state
distribution.

B.5.2 MO-MultiWalker-Stability (MO-MW-Stability)

This problem is a MODec-POMDP that involves multiple bipedal walkers (agents) collaboratively carrying a package
to the right side of the screen without falling. The package is placed on top of the walkers at the beginning of each
episode, is so large that it stretches across all walkers, and too large for any single walker to move on its own. In the
original version of MultiWalker [26, 75], each walker i receives an individual reward defined by:

Ri(s,a) =


−100, package fallen, or package on the left (17)
−110, walker fallen and terminate on fall enabled (18)
shaped− 10, walker fallen and not terminate on fall (19)
shaped, otherwise. (20)

Where:
shaped =

forward_reward×∆xpackage × 130

SCALE
− 5×∆anglehead,

In Equations 17–20, line 17 penalizes the agents in case of package fall or going in the wrong direction, line 18
terminates the game with a penalty if one walker falls, lines 19 and 20 use a shaped reward to make the package
move forward, as well as avoid brutal change of angle of the walker’s head. Then, the rewards are combined as
r = local_ratio× ri + (1− local_ratio)× ri, where ri is the average individual reward.

Our multi-objective version of multi-walker adds another dimension to the problem, that is keeping the package stable
by reducing the angle changes of the package. Essentially, the new reward dimension is identical to Equations 17–20,
but replaces the shaped reward by stability = ∆anglepackage.

In this version, the rewards are defined as follows:

28

https://pettingzoo.farama.org/


MOMALAND

R1
i (s,a) =


−100, package fallen, or package on the left
−110, walker fallen and terminate on fall enabled
shaped− 10, walker fallen and not terminate on fall
shaped, otherwise.

R2
i (s,a) =


−100, package fallen, or package on the left
−110, walker fallen and terminate on fall enabled
stability− 10, walker fallen and not terminate on fall
stability, otherwise.

This environment is cooperative and agents only have a partial view of the global state. Hence, it is a MODec-POMDP.

B.6 CrazyRL

The CrazyRL7 environments are 3 MOMMDPs designed to facilitate the learning of high-level swarm formations
around potentially moving objects for multiple drones [17]. These environments rely on high-level control commands,
such as a 3D speed vector, indicating where each drone should go, rather than low-level control like torque in the engine.
This choice significantly simplifies the state and action spaces of the agents, enabling them to focus on the core problem
of learning formation and eliminating the need for heavier robotics simulators such as Gazebo [38] or Pybullet [14, 74].

In practice, each agent (drone) perceives its current x, y, and z coordinates (denoted as xi, yi, zi for agent i) along
with the target coordinates (xtarg, ytarg, ztarg). Additionally, agents also perceive the positions of other agents, making
the environment fully observable. At each time step, agents select a 3D speed vector as their action, dictating the
direction in which they wish to move, i.e. ai ∈ [−1, 1]3, ∀i ∈ [1, n]. The drones’ movements are discrete, with their
positions updated at each step by applying these action vectors, effectively "teleporting" them. If the moves lead outside
coordinates specified by the map size, the new coordinates of the agents are clipped to stay inside the map. The global
state is a concatenation of all known positions (agents and targets). Episodes terminate upon drone collisions, contact
with the floor or target, or when a predefined number of time steps is reached.

In the three specified environments, the reward function encompasses two conflicting objectives: (1) minimizing the
distance to the shared target while simultaneously (2) maximizing the distance from the other agents. In multi-objective
settings, the goal is generally to maximize all objectives, requiring the need to transform the minimizing objective
into a maximization of its negation. However, we noticed that transforming the first reward component into a negative
value and maximizing both components can adversely affect learning performance on the studied policy optimization
algorithm (PPO) [71]. Therefore, we opted to convert the first objective into a potential-based reward instead [47].

For each agent i, the rewards can be formally defined as follows:

R1
i (s,a) = ∥(xt−1

i , yt−1
i , zt−1

i )− (xt−1
targ , y

t−1
targ , z

t−1
targ )∥2

− ∥(xti, yti , zti)− (xt−1
targ , y

t−1
targ , z

t−1
targ )∥2,

R2
i (s,a) =

∑
j ̸=i∥(xti, yti , zti)− (xtj , y

t
j , z

t
j)∥2

n− 1
,

where Ro
i (s,a) is the oth objective value of agent i, and xti denotes the x position of agent i at time step t. These

individual rewards are then aggregated to form a multi-objective team reward: R(s,a) =
∑

i∈[1,n] Ri(s,a).

These environments are cooperative and agents can perceive the location of everyone else. Hence, they are all
MOMMDPs.

Surround In this environment, the objective is for the drones to establish a stable formation around a fixed target.

Escort This environment is an extension of the previous one and introduces the added challenge of a moving target.
In this scenario, the target is assigned an initial position and a final position, and it moves linearly from the former to
the latter in a specified number of time steps.
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FIGURE 12: Target move decision in the Catch environment (flattened to 2 dimensions for illustrative purpose).

Catch In this last environment, an element of intelligence is introduced into the target’s behaviour. Specifically, the
target tries to escape the agents by calculating an average position of these and endeavours to move in the opposite
direction. However, if the computed average position is too close to the current target position, the target resorts to
random movement as a strategy. An example of this strategy in 2 dimensions is exposed in Figure 12.

B.7 Multi-Objective Board Games

B.7.1 MO-Breakthrough

MO-Breakthrough is a multi-objective variant of the two-player, single-objective turn-based board game Breakthrough.
In Breakthrough, players start with two rows of identical pieces in front of them and try to reach the opponent’s home
row with any piece. The first player to move a piece on their opponent’s home row wins. Players move alternatingly,
and each piece can move one square straight forward or diagonally forward. Opponent pieces can also be captured, but
only by moving diagonally forward, not straight.

MO-Breakthrough optionally extends this game with one to three additional objectives: a second objective that
incentivizes faster wins, a third one for capturing opponent pieces, and a fourth one for avoiding the capture of the
agent’s own pieces. The various possible trade-offs between these objectives could lead to e.g. more aggressive vs.
more defensive playstyles, or more patient strategies aiming at winning eventually vs. more risky strategies aiming at
winning quickly. Additionally, the board width can be modified from 3 to 20 squares, and the board height from 5 to 20
squares.

As the game is competitive and fully observable, MO-Breakthrough falls into the category of MOSGs.

FIGURE 13: (MO-)Breakthrough (adapted from [6]). The left-side image shows the starting position of the game, and the right side
shows a possible terminal position in which Black won.

7An implementation of these environments in Jax [11] (Figure 3) and the code to fly real drones are available in the original
repository: https://github.com/ffelten/CrazyRL. The name "CrazyRL" is a contraction of Crazyflie drones [23] and RL.

30

https://github.com/ffelten/CrazyRL


MOMALAND

B.7.2 MO-Connect4

MO-Connect4 is a multi-objective variant of the two-player, single-objective turn-based board game Connect 4. In
Connect 4, players can win by connecting four of their tokens vertically, horizontally or diagonally. The players drop
their respective tokens in a column of a standing board (of width 7 and height 6 by default), where each token will fall
until it reaches the bottom of the column or lands on top of an existing token. Players cannot place a token in a full
column, and the game ends when either a player has made a sequence of 4 tokens, or when all columns have been filled
(draw).

MO-Connect4 extends this game with a second objective that incentivizes faster wins, and optionally one additional
objective per column for having more tokens than the opponent in that column. While the default objective of winning
and the second objective of winning quickly could allow for finding trade-offs between more patient and more risky
playstyles, the column objectives are more directly in conflict with each other, as having more tokens in one column
means having fewer in another. Different trade-offs between them will lead to strategies that e.g. favour one side of the
board over another, and are relatively easy to validate. Additionally, the width and height of the board can be set to
values from 4 to 20.

MO-Connect4 is competitive and fully observable and therefore a MOSG.

FIGURE 14: (MO-)Connect4 (adapted from [6]). White won the game by playing the marked move.

B.7.3 MO-Ingenious

MO-Ingenious is inspired by a competitive, turn-based board game for multiple players [10]. 2-6 players can play
(default is 2), on a hexagonal board with an edge length of 3-10 (default is number of players + 4). Each player has 2-6
(default is 6) tiles with colour symbols on their rack, which is only observable to themselves (in the default rules). In
sequential order, players play one of their tiles onto the hexagonal board, with the goal of establishing lines of matching
symbols emerging from the placed tile. This allows the players to increase their score in the respective colours, each
colour representing one of 2-6 (default is 6) objectives. After a tile has been played, a new one is randomly drawn into
the player’s rack.

When the board is filled, the original game rules define the winner as the player who has the highest score in their
lowest-scoring colour; for a player with (red=5, green=2, blue=9) for example, the relevant score would be 2. Our
implementation exposes the colour scores themselves as different objectives, allowing arbitrary utility functions to be
defined over them by the user. In addition, MO-Ingenious extends the original game rules with an optional team reward
mode, in which agents share all scores and play cooperatively, and an optional fully observable mode, in which agents
can observe all racks.

In terms of mathematical frameworks, this environment is therefore a MOPOSG, which can be configured to become a
MODec-POMDP when playing in team reward mode, a MOSG when playing in fully observable mode, or a MOMMDP
when using both.

B.8 MO-SameGame

MO-SameGame is a multi-objective, multi-agent variant of the single-player, single-objective turn-based puzzle game
called SameGame. 1 to 5 agents can play (default is 1), on a rectangular board with width and height from 3 to 30
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FIGURE 15: Ingenious (public domain image retrieved from [84]).

squares (defaults are 15), which are initially filled with randomly coloured tiles in 2 to 10 different colours (default is 5).
Players move alternatingly by selecting any tile in a group of at least 2 vertically and/or horizontally connected tiles
of the same colour. This group then disappears from the board. Tiles that were above the removed group “fall down”
to close any vertical gaps; when entire columns of tiles become empty, all columns to the right move left to close the
horizontal gap.

The original single-player, single-objective SameGame rewards the player with n2 points for removing any group of n
tiles. MO-SameGame can extend this in two ways. Agents can either only get points for their own actions, leading to
competition between them, or all rewards can be shared in “team reward” mode. Additionally, points for every colour
can be counted as separate objectives, allowing for different trade-offs between colours, or they can be accumulated in a
single objective like in the default game variant, essentially providing a single-objective wrapper for the game.

MO-SameGame is fully observable and can therefore be modelled as a MOSG in individual reward mode, or a
MOMMDP when using team rewards.

FIGURE 16: The mechanics of SameGame (adapted from [6]).
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