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Abstract. To design agents capable of navigating sequential
decision-making problems, it is essential to address the multi-
objective nature of many real-world settings. We study agents op-
erating in multi-objective problems while optimising for a known,
but possibly non-linear, utility function. We extend the expert itera-
tion framework, a technique combining reinforcement learning and
planning, to multi-objective settings and demonstrate how to apply
strong baselines such as AlphaZero and Gumbel AlphaZero, using
a scalarisation scheme. As an alternative to direct scalarisation, we
propose Distributional Search with Complex Objectives (DISCO),
which extends the expert iteration framework to learn a distribution
over vector returns. This distribution may subsequently be used dur-
ing learning or to enable transfer to different utility functions after
learning. Through experiments, we demonstrate that DISCO is com-
petitive to the baselines while opening avenues for future research.

1 Introduction
To navigate the complexities of real-world environments, agents
must construct temporally extended plans where each decision influ-
ences future outcomes [33]. Examples of sequential decision-making
problems include NP-hard problems such as the travelling salesman
problem and job-shop scheduling, as well as popular games such as
2048 or MsPacman. While most research focuses on environments
with a clear goal, exemplified by the prevalence of game-like envi-
ronments where the sole objective is to win [30], many real-world
scenarios are more complex [20, 37]. For instance, the travelling
salesman problem may involve additional objectives such as min-
imising gas emissions and ensuring safety conditions [29].

To solve single-objective sequential decision-making problems,
the expert iteration approach combines model-based reinforcement
learning with planning [3]. Expert iteration proposes a two-phase
process where an expert generates trajectories in the environment
and an apprentice is trained on the collected dataset to imitate the
expert. Alternating between these phases results in strong policies
that achieve super-human performance in various challenging set-
tings [42, 26, 40, 31].

In this work, we extend the expert iteration framework to multi-
objective sequential decision-making. Specifically, we consider an
agent optimising its expected utility under a given utility function in
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a multi-objective Markov decision process (MOMDP). We demon-
strate that it is possible to reduce the MOMDP to a single-objective
MDP with a terminal reward. This MDP can then be solved us-
ing standard expert iteration algorithms such as AlphaZero [42] and
Gumbel AlphaZero [15]. While these baselines can be applied with
minimal modifications, they explicitly eliminate the multi-objective
nature of the environment.

Inspired by distributional reinforcement learning [7, 36], we pro-
pose a novel algorithm that learns the distribution over vector re-
turns in the environment. This allows the expert iteration framework
to utilise properties of this distribution during learning and enables
transfer to alternative utility functions post-learning. For instance,
during learning, the expert can use properties such as variance and
conditional value at risk in its planning routine. After training, these
statistics can also be provided to the user to enhance interpretability.
Moreover, having access to a distribution facilitates efficient transfer
to different utility functions.

Contributions. We introduce Distributional Search with Complex
Objectives (DISCO), extending expert iteration to MOMDPs with
known utility functions. DISCO addresses issues with explicit scalar-
isation by learning a distributional critic. We provide a preliminary
evaluation of DISCO against strong baselines in three environments,
finding it competitive while retaining the benefits of the distributional
approach. As an example of leveraging the distributional critic during
learning, we propose a novel expert iteration algorithm that incorpo-
rates the variance of the return in its planning process. Furthermore,
we present transfer to different utility functions as a promising appli-
cation of DISCO and provide a theoretical bound on the utility that
can be gained through continued training.

2 Related work

Algorithms for model-free reinforcement learning (RL) in multi-
objective environments either learn a set of candidate optimal poli-
cies when no utility function is known [47, 35, 28] or strong indi-
vidual policies when a utility function is given [36, 41]. These meth-
ods do not require access to a model of the environment, but the ab-
sence of such a model generally increases sample complexity, espe-
cially in sparse-reward settings. Conversely, multi-objective planning
produces high-quality solution sets but is computationally expensive
[27, 11, 32]. Model-based RL addresses these challenges by taking



advantage of the (learned) transition and reward functions, which are
used to generate synthetic training data or perform planning [2, 1]. In
this context, Renard et al. [34] introduce an expert iteration scheme
for multi-objective protein design with a given utility function but do
not consider a distributional approach or evaluate potential transfer
to different utility functions.

The distributional approach to multi-objective RL (MORL) offers
several benefits, such as allowing zero-shot evaluation and transfer
to new utility functions [17]. Zhang et al. [49] propose a multi-
objective distributional variant of DQN, minimising the Bellman
error of the return distribution by its maximum mean discrepancy.
Reymond et al. [36] derive the appropriate policy gradient theorem
to maximise the expected utility for any non-linear utility function
and present a practical algorithm with a distributional critic. Their
method approximates the multivariate return distribution using a cat-
egorical distribution that scales exponentially with the number of ob-
jectives. In contrast, we train a generative network to approximate the
return distribution, allowing us to scale to many objectives. Another
line of work proposes learning a set of policies whose return distri-
butions are optimal in some well-defined way [21, 38, 10]. Closely
related to our setting, Hayes et al. [22] propose a Monte Carlo tree
search method for non-linear utility functions and introduce a distri-
butional variant. Crucially, their distributional variant learns a poste-
rior distribution over the expected utility rather than the distribution
of vector returns that DISCO learns.

3 Preliminaries
In this section, we provide background on the multi-objective prob-
lem we study, the expert iteration framework, and the method used
to approximate the return distributions.

3.1 Multi-Objective Markov Decision Processes

We study learning in multi-objective Markov decision processes
(MOMDPs), defined as a tuple M = ⟨S,A, p, r, µ, γ⟩ where,

• S is a set of states;
• A is a set of actions;
• p : S ×A× S → [0, 1] is a transition function;
• r : S × A × S → Rd is a vectorial reward function with d ≥ 2

the number of objectives;
• µ is a distribution over initial states;
• γ is a discount factor.

To make decisions in a MOMDP, we consider memory-based
stochastic policies π : S × Q → ∆(A) where ∆(A) denotes the
set of distributions over actions. For convenience, we consider aug-
mented states where the true state s and memory q are concatenated
into s = ⟨s, q⟩. Executing a policy in a MOMDP leads to a distribu-
tion over vector returns Zπ(s0) ≜

∑∞
t=0 γ

tr(st, at, st+1).
We assume access to a utility function u : Rd → R that maps

vectors to a scalar utility for the agent. The overall objective to max-
imise is the expected scalarised returns, vπu ≜ Es0∼µ [u(Zπ(s0))].
Notably, to ensure vπu can be maximised in any MOMDP, it is both
necessary and sufficient to condition the policy π on the accrued re-
ward1 q defined as qt ≜

∑t−1
k=0 γ

kr(sk, ak, sk+1). Thus, we use q
as the memory. By convention, we assume q0 = 0.

With access to a utility function, reducing the MOMDP to a regu-
lar single-objective MDP is feasible. For non-linear utility functions,

1 A straightforward proof for this statement is provided in Section 4.1, as it
appears to be absent from the existing literature.

this scalarisation cannot be applied to each reward independently
since u(x+y) = u(x)+u(y) is not generally true. In finite-horizon
MOMDPs, a common solution is to accumulate all rewards across
the trajectory and return the scalar utility at the final timestep T , i.e.,

rt+1 =

{
0 if t < T − 1

u
(∑T−1

k=0 γkr(sk, ak, sk+1)
)

if t = T − 1
. (1)

We emphasise that research in the known utility function setting ben-
efits algorithms designed for unknown utility scenarios, which often
rely on sampling utility functions from some distribution and opti-
mising them [39, 10, 2].

3.2 Expert Iteration

This work builds on the expert iteration approach [3], originally
developed for single-objective model-based RL and famously used
by AlphaZero (AZ) [42]. Expert iteration involves a slow ex-
pert, typically a planning algorithm like Monte Carlo tree search
(MCTS) [13], and a fast apprentice represented by a parameterised
policy πθ . For more compact notation, we drop the parameter sub-
script when the context is clear.

The expert generates a dataset of high-quality interactions with the
environment while the apprentice updates its parameters θ to imitate
this behaviour. The expert then uses the updated apprentice to guide
its planning process. This iterative loop improves both the expert and
the apprentice. During training, the expert executes MCTS for every
state s encountered during an episode to choose an action a. MCTS-
based algorithms involve four phases: selection, expansion, simula-
tion, and backpropagation [9]. During the selection phase, MCTS
traverses the search tree by following the most promising action ac-
cording to the PUCT selection strategy,

argmax
a

Q(s, a) + c · π(a|s) ·
√∑

a′ n(s, a′)

1 + n(s, a)
, (2)

where c is a hyperparameter, n(s, a) is the number of visits to action
a from state s so far, and Q(s, a) is the mean value for taking a from
s, averaged over all those visits. The prior probability of choosing a
from s, given by the apprentice policy π, biases MCTS towards ac-
tions that were previously found to be promising. When the selection
phase leaves the tree, a new node is added to it during the expansion
phase representing the first newly visited state s′. In AZ, the clas-
sic simulation phase is replaced by estimating the value of s′ with
the apprentice’s learned state value function v(s′). This value is then
backpropagated to all tree nodes visited in the current MCTS loop,
where n and Q for the chosen actions are updated.

After the MCTS search from root state s is completed, the visit
counts of all legal actions at the root can be extracted. The relative
proportions of these visit counts are stored as a training target π̂(·|s)
for the apprentice’s policy head to imitate

π̂(a|s) ≜ n(s, a)∑
a′ n(s, a′)

. (3)

In settings with only terminal rewards, after the expert has completed
an entire episode, the final reward rT is associated with each root
state st visited at time step t, and a dataset {st, π̂(·|st), rT } is gen-
erated that contains one data point for each expert timestep. The ap-
prentice is trained using a cross-entropy loss to update π towards
the expert’s policy π̂, and a mean-square error loss to update the ap-
prentice’s critic v(st) towards the observed expert returns rT . We



note that MCTS can be extended to stochastic environments by in-
corporating chance nodes which are selected after taking an action
but before transitioning to the next state [12].

The expert iteration framework has been improved in various
ways, such as exploring different value targets [45], informed ex-
ploration [43], opponent modelling [23], or domain-specific auxil-
iary tasks for the apprentice [46]. In particular, Gumbel AlphaZero
(GAZ) [15] proposes several changes to AZ, including a different
action selection mechanism and policy update that empirically out-
performs baselines, especially with a low planning budget compared
to the number of actions. In Section 4.2 we demonstrate how to ap-
ply expert iteration, specifically AZ and GAZ, to MOMDPs with a
known utility function.

3.3 Wasserstein Generative Adversarial Networks

Adapting distributional RL techniques to multi-objective problems is
challenging since representing the distribution directly scales poorly
in the number of objectives. Instead, we propose to learn a generative
model for the distribution that can be used to estimate properties such
as its mean or variance through sampling.

Generative adversarial networks (GANs) learn high-dimensional
distributions over complex data by training a generator and critic net-
work [18]. The generator is trained to generate samples that mimic
the real data distribution, while the critic is trained to differentiate
between real and generated samples. The adversarial setup ensures
mutual improvement of the generator and critic. Wasserstein GANs
(WGANs) leverage the Kantorovich-Rubinstein duality to offer a
principled alternative [4]. In WGANs, a parametrised generator Gϕ

competes against a learned critic f belonging to the set of 1-Lipschitz
functions as shown in Equation (4).

min
ϕ

max
∥f∥≤1

E
x∼ Pr

[f(x)]− Ex̃∼Gϕ [f(x̃)] (4)

Under the optimal critic f , the generator Gϕ minimises the Wasser-
stein distance between the real and learned distributions. Instead of
directly constraining f to ∥f∥ ≤ 1, we add a penalty term to the loss
function that encourages the network to stay close to a 1-Lipschitz
function, resulting in smoother optimisation [19].

4 Expert Iteration for Non-Linear Utility
Functions

In this section, we demonstrate how to apply strong baselines such
as AZ and GAZ to our setting. Additionally, we propose Distribu-
tional Search with Complex Objectives (DISCO), a novel approach
that uses Wasserstein GANs as a drop-in replacement for the critic.
This enables the expert to leverage properties of the distribution and
allows for efficient transfer to other utility functions after training.
More details on potential expansions are provided in Section 6.

4.1 Terminal Utility Expert Iteration

As described in Section 3, optimising the expected utility in a
MOMDP can be framed as optimising an equivalent scalar termi-
nal reward MDP. Concretely, we transform the MOMDP to an aug-
mented MDP in which each augmented state st contains the true
state st and the accrued reward qt. The reward function for this
augmented MDP follows Equation (1) and maintains the Markov
property. While this scalarisation trick is commonly used in prac-
tice [44, 22, 36], formal proof for its correctness appears to be miss-
ing from the literature. For completeness, we present Theorem 4.1,

rT = u(qT )

rT

rT

s1

sT−1

sT

s0 q0 = 0

r1 = (1, 3)

q1 = (1, 3)

qT =
∑T−1

t=0 γtrt+1

rT

Figure 1: An illustration of MCTS on the augmented MDP. During
the selection phase, the agent only observes a scalar reward of zero,
while the vector rewards are accumulated in q. Upon reaching the
final timestep, the scalar utility is backpropagated as rT .

which guarantees the correctness of this approach in finite horizon
MOMDPs that are particularly relevant for our episodic setting. We
refer to Delgrange et al. [16] for a formal construction of the product
MDP used in the theorem.

Theorem 4.1. Let M = ⟨S,A, p, r, µ, γ⟩ be a finite-horizon
MOMDP with a given utility function u. Construct a product MDP
M = M ⊗ Q = ⟨S,A, p, r, µ, γ⟩ where Q is the set of reachable
accrued rewards and r is defined as in Equation (1). Then for all
policies π : S × Q → ∆(A), vπu = vπ where vπ is the value for
executing π inM.

Proof. Let T be the horizon of M. By construction of the product
MDPM, S = S ×Q and therefore any policy π : S ×Q → ∆(A)
can be executed in both M andM. Recall that the distribution over
vector returns from executing some π in M with start state s0 is
defined as Zπ(s0) ≜

∑T
t=0 γ

tr(st, at, st+1). Then,

vπu = Es0∼µ [u(Zπ(s0))] (5)

= Es0∼µ [u(qT )] (6)

= Es0∼µ

[
T∑

t=0

γtr(st, at, st+1)

]
(7)

= vπ (8)

Where Equation (7) holds by the definition of the scalar reward func-
tion r shown in Equation (1).

It follows that conditioning a policy π on accrued rewards is suf-
ficient to learn an optimal policy. Furthermore, by some well-known
examples [36, 44] it is also necessary to guarantee that an optimal
policy can be obtained in any MOMDP. An intuitive way to interpret
this is to consider the accrued reward as additional features of the
state that inform how the current trajectory is performing according
to the agent’s objectives. This subsequently informs how the policy



Algorithm 1 The DISCO algorithm.

1: for i ∈ { 1, . . . ,num_iterations } do
2: for number of rollouts do
3: τ ← Sample a trajectory using π̂ and Equation (9)
4: Di ← {⟨st, π̂(·|st), qT ⟩ |t ∈ { 1, . . . , T }}
5: end for
6: for number of policy epochs do
7: π ← TRAIN_POLICY(Di)
8: end for
9: for number of critic epochs do

10: Gθ ← TRAIN_CRITIC(Di)
11: end for
12: end for

should value future trade-offs. We note that Theorem 4.1 can be ex-
tended to infinite horizon MDPs by considering a different reward
function that does not rely on a terminal reward [10].

By leveraging Theorem 4.1, expert iteration can be directly ap-
plied to the resulting augmented MDP. The expert executes MCTS,
as illustrated in Figure 1, while the apprentice’s critic vθ is trained
on the scalar utility rather than vector returns. This is because the
vectorial value function is the expected vector payoff, and for non-
linear utility functions, applying the utility to this expectation is not
equivalent to computing the expectation over utilities. Thus, directly
applying expert iteration removes the vectorial feedback, which ham-
pers interpretability and does not allow for transfer to different utility
functions.

4.2 Distributional Expert Iteration

To address the limitations of direct scalarisation, we propose a
distributional approach to replace the scalar critic. While traditional
distributional RL techniques for learning Zπ often employ categor-
ical distributions or quantile regression [6, 14], these methods scale
poorly when increasing the number of objectives in MORL [36]. We
instead propose learning a state-dependent generative model Gϕ that
is easy to sample from and such that Gθ(s) = Zπ(s).

The generative model approach maintains the advantages of ex-
pert iteration with minimal modifications. We present DISCO in Al-
gorithm 1 and highlight the changes necessary compared to the stan-
dard expert iteration. Concretely, to perform MCTS, we require a
scalar value function which is straightforward to derive from Gθ as
follows,

vπu(st) = Ez∼Gθ(st) [u(z)] . (9)

For a fair comparison with the terminal utility expert iteration ap-
proach, we provide only terminal vector rewards to DISCO, although
it can also handle intermediate rewards. This capability is a signif-
icant advantage of DISCO, as it is well-known that sparse reward
settings are more challenging than dense reward settings.

When storing the rollouts in the replay buffer, we must now store
the augmented states and their vectorial payoff rather than the scalar
utility since the generator is trained to produce vectorial returns. Fi-
nally, the training method is adjusted to accommodate the distribu-
tional critic. In our experiments, the generative model is implemented
using WGANs, but we note that other techniques, such as variational
autoencoders [25] or diffusion models [24], are possible as well.

5 Experiments
In this section, we demonstrate that integrating a distributional critic
into the expert iteration framework maintains performance compared

to the reduction proposed in Section 4.1. We evaluate DISCO against
AlphaZero and Gumbel AlphaZero using the reduction to single-
objective terminal utility expert iteration described in Section 4. All
experiments are repeated over 5 seeds. We refer to the scalar vari-
ants of AlphaZero and Gumbel AlphaZero as SAZ and SGAZ and
to their DISCO variant as DAZ and DGAZ. In Figure 2 we show the
normalised expected utility at each iteration. We normalise utility by
taking the maximum and minimum values attained in any run and
scaling all results within this range.
Utility functions. We consider two types of parameterised utility
functions. First, we use linear utility functions as shown in Equa-
tion (10). Such utility functions are common in both multi-objective
and single-objective settings, where in the latter case the reward is
scalarised a priori.

u(v;w) = v ·w (10)

Secondly, we consider Leontief utility functions, shown in Equa-
tion (11), that are often considered in consumer theory and game the-
ory [8]. Intuitively, Leontief utility functions represent preferences of
a user over complementary objectives where the total utility is evalu-
ated by a weighted minimum. We slightly modify the standard setup
to include an additional offset term b that in practice allows us to
ensure all objectives have a positive payoff.

u(v; b,w) = min
i∈{ 1,...,d }

vi + bi
wi

(11)

Deep Sea Treasure (DST). DST is a well-known benchmark in
MORL due to its simplicity and known Pareto front, making it suit-
able for analysis. In this environment, a submarine searches for trea-
sure while expending fuel. For the linear utility function, we set
w = (0.99, 0.01), ensuring that reaching the furthest treasure is the
optimal policy. For the Leontief utility function, we set w = (2, 8)
and b = (0, 50), making the middle treasure in the concave region
of the Pareto front the optimal policy. We show a rendering of DST
with the relevant optimal policies in Figure 3.

In Figure 2a, we show the results for all agents with a linear utility
function and find that Gumbel AlphaZero consistently outperforms
AlphaZero. Notably, there is little difference in performance between
the distributional critic and the scalar critic, suggesting that DISCO
is indeed a drop-in replacement for expert iteration algorithms while
also offering the potential for novel algorithmic developments. In
Figure 2d, all agents quickly and consistently learn the optimal pol-
icy. Interestingly, while it is commonly understood in MORL that
optimising non-linear utility functions is generally harder than opti-
mising linear ones, this is not reflected in the DST results, warranting
further investigation. Additionally, since the optimal policy for the
linear utility functions requires a longer planning horizon than for
the Leontief utility function, this may also explain the differences in
convergence rate between Figure 2a and Figure 2d.
DST with uniform action distortion. Since DST is a deterministic
environment, learning a distribution over returns might seem unnec-
essary. To introduce stochasticity, we add uniform action distortion to
DST. At each timestep, with some probability ς = 0.25, the agent’s
selected action is ignored and replaced with a uniformly drawn ran-
dom action. We use the same parameterised utility functions as in the
deterministic DST experiments.

In Figures 2b and 2e, the results show patterns similar to those in
the deterministic DST experiments. However, there is more variation
across seeds, indicated by the larger 95-percentile intervals, which
can be explained by the added stochasticity. Additionally, AlphaZero
agents with linear utility functions perform better in the stochastic
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Figure 2: Normalised expected utility in the three environments with its 95-percentile interval. (Top) Agents use the linear utility function in
Equation (10) (Bottom) Agents use the Leontief utility function in Equation (11).

Figure 3: The deep sea treasure environment. The optimal policy for
the linear utility function moves to the treasure at 124 which takes
19 steps. For the Leontief utility function, the optimal policy moves
to the treasure at 16, taking 9 steps.

environment. We hypothesise that this improvement is primarily due
to hyperparameter selection.

MO-SameGame. Following the tradition of analysing learning and
planning algorithms in games, we evaluate in a multi-objective ver-
sion of the puzzle game SameGame [5]. The game consists of a
15× 15 board with coloured tiles. Groups of at least two tiles can be
removed by selecting a tile, causing the remaining tiles to fall down.
In the multi-objective variant, each colour represents a distinct objec-
tive, and we evaluate with three colours. For the linear utility func-
tion, we select the weights w = (1, 1, 1), ensuring all colours are
valued equally. For the Leontief utility function, we use the same
weights and set b = (0, 0, 0), encouraging the agent to learn a policy

that results in an equal payoff across colours.
In Figures 2c and 2f, we present the results for this environment.

For the linear utility function, we observe a pattern similar to DST,
where the scalar and distributional variants achieve comparable re-
sults. However, for the Leontief utility function, the scalar Gumbel
AlphaZero algorithm learns a significantly better policy than its dis-
tributional counterpart. We plan to investigate the cause of this dis-
crepancy in future work.

6 Expanding the Usage of the Distributional Critic

DISCO’s applications extend beyond replacing the critic in expert
iteration algorithms as presented in Section 4.2. In this section, we
propose a modification to the expert during training but also lever-
age the distribution for transfer after training. We plan to empirically
validate the proposed expansions in future work.

6.1 Distribution-Aware Expert

By sampling from the generative model, we can bias the expert’s
search algorithm by using additional statistics such as its variance
[50] or conditional value at risk (CVaR) [48]. We propose a DISCO
variant that enables the expert to optimise a mean-variance objective,
as shown in Equation (12). For future work, we plan to design an ad-
ditional expert that optimises the CVaR instead of the mean-variance
objective.

MVu(Z
π(s)) = E [u(Zπ(s))]− β

√
Var [u(Zπ(s))] (12)

For higher β, the decision-maker is risk-averse and encourages the
expert to search for policies that provide consistent payoffs. Note
that for β = 0, we recover the scalar value function for the utility
function u.

To incorporate the mean-variance trade-off into the expert’s plan-
ning method, we modify the PUCT action selection method from



Equation (2) by adding a variance term:

argmax
a

Q(s, a)−βVar(s, a)+ c ·π(a|s) ·
√∑

a′ n(s, a′)

1 + n(s, a)
(13)

This modification, however, requires updating the variance estimate
during the backpropagation phase. Using the closed-form formula
for the variance of a mixture distribution, we present the appropriate
update in Theorem 6.1.

Theorem 6.1. Let Vlast and Varlast respectively be the mean and
variance of the utility distribution in the last node before backprop-
agation and denote values before and after updating respectively as
old and new. The variance induced by the empirical visit distribution
is obtained as follows,

Varnew(s, a) =
n(s, a)

n(s, a) + 1

(
Varold(s, a) +Q2

old(s, a)
)

+
1

n(s, a) + 1

(
Varlast + V 2

last

)
−Q2

new(s, a).

(14)

Proof. Consider n random variables X1, · · · , Xn with density func-
tions p1, · · · , pn and a random variable X whose density function is
a convex combination of p1, · · · , pn with weights w1, · · · , wn. Then
the variance of X is given by the closed-form formula,

Var [X] =

n∑
i=1

wi

(
Var [Xi] + E [Xi]

2)− E [X]2 . (15)

In MCTS, Q(s, a) is the expectation of the utility distribution
u
(
Zπ̂(s)

)
obtained by following the MCTS policy π̂ from the cur-

rent node s. Recall that Q(s, a) is learned by building a mixture dis-
tribution where the current Q-value is weighted by N(s,a)

N(s,a)+1
and the

child by 1
N(s,a)+1

. Similarly, we obtain the variance of u
(
Zπ̂(s)

)
by substituting the relevant quantities in Equation (15).

We emphasise that the distribution-aware expert introduced here
considers the scalar utility distribution directly rather than the
vectorial return distribution. Extending this approach to vector
distribution-aware experts is an interesting direction for future work.
One potential method is to leverage a distance or divergence metric
between the learned return distribution and a user-provided reference
distribution, incentivising the expert to stay close to this reference
distribution.

6.2 Utility Transfer After Training

Learning the distribution over vector returns, as shown in Section 4,
offers additional benefits for post-training deployment. Specifically,
it enables zero-shot policy evaluation under alternative utility func-
tions and continued learning for improved transfer. Consider a sce-
nario where a user-provided utility function guides expert iteration to
produce a policy and critic network. If the user subsequently alters
their priorities, we can adapt to the new utility function by leverag-
ing the existing networks. This capability demonstrates the flexibility
and efficiency of our distributional approach in responding to chang-
ing user preferences.

To perform online adaptations, we propose two simple approaches.
The first performs additional expert iterations using Algorithm 1 with
the new utility function. As this method is computationally expen-
sive, we also propose single-step lookahead transfer where Q(s, a)

Algorithm 2 Single-step lookahead transfer.

1: while episode is not finished do
2: Q(s, ·)← 0
3: for a ∈ A do
4: q ← 0
5: for sample budget N do do
6: s′ ← s′ ∼ p(· | s, a)
7: q ← q + Ez∼Gθ(s

′) [û(z)]
8: end for
9: Q(s, a)← q

N

10: end for
11: end while
12: a∗ ← argmaxa∈A Q(s, a)

is estimated for the new utility function and the action maximising its
Q-value is selected. As ongoing work, we are evaluating additional
transfer methods.

To conclude this section, we provide a bound on how much util-
ity improvement one can expect by applying transfer learning when
starting from an optimal solution of a different utility function.

Theorem 6.2. Let f, g : B → R where B ⊂ Rd is a convex set
and suppose πf is an optimal policy for f with Zπf as its return
distribution. Then for an optimal policy πg for g,

Es0∼µ [g(Zπg (s0))] ≤ Es0∼µ [f(Zπf (s0))] + ∥f − g∥∞ , (16)

where ∥f − g∥∞ ≜ max{f(v)− g(v) | v ∈ B}

Proof. For notational clarity, let us denote Es0∼µ [g(Zπg (s0))] =
E [g(Zπg )]. Then,

|E [g(Zπg )]− E [f(Zπg )]| ≤ sup
Zπ
|E [g(Zπ)]− E [f(Zπ)]| (17)

which in turn implies,

E [g(Zπg )] ≤ E [f(Zπg )] + sup
Zπ
|E [g(Zπ)]− E [f(Zπ)]| (18)

≤ E [f(Zπf )] + sup
Zπ
|E [g(Zπ)]− E [f(Zπ)]| . (19)

Let us denote v = argmaxv∈B(f(v)− g(v)). Then,

sup
Zπ
|E [g(Zπ)]− E [f(Zπ)]| = sup

Zπ
|E [g(Zπ)− f(Zπ)]| (20)

≤ sup
Zπ

E [|g(Zπ)− f(Zπ)|] (21)

≤ sup
Zπ

E [|g(v)− f(v)|] (22)

= ∥f − g∥∞ . (23)

(24)

Where Equation (21) holds by Jensen’s inequality.

Theorem 6.2 provides insight into the potential utility gain by con-
tinuing training after already having obtained an optimal policy for
another utility function. Concretely, if the two functions give similar
utilities across their domain B, there are only small improvements
left. We note that Theorem 6.2 may be valuable beyond the trans-
fer setting. For instance, when optimising a complex function, it can
be advantageous to start with a simpler function and then derive a
suitable optimality bound.



7 Conclusion
We propose DISCO, a model-based reinforcement learning algo-
rithm for multi-objective Markov decision processes (MOMDPs),
which combines expert iteration with a distributional critic trained
using Wasserstein GANs. Our results demonstrate that integrating
this critic with baselines such as AlphaZero and Gumbel AlphaZero
is competitive with their scalar utility variants. Additionally, the
distributional critic enables novel applications such as distribution-
aware experts, providing additional statistics on the distribution to
the end-user for greater interpretability and efficient transfer to dif-
ferent utility functions after training. For future work, we plan to de-
velop alternative distribution-aware experts and investigate transfer
methods in greater detail.
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by the FWO, grant number 1286223N. Willem Röpke is supported
by FWO, grant number 1197622N.

References
[1] L. N. Alegre, A. L. C. Bazzan, A. Nowé, and B. C. da Silva. Multi-step

generalized policy improvement by leveraging approximate models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[2] L. N. Alegre, D. M. Roijers, A. Nowé, A. L. C. Bazzan, and B. C. da
Silva. Sample-efficient multi-objective learning via generalized policy
improvement prioritization. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

[3] T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep
learning and tree search. In NIPS, 2017.

[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN, 2017.
[5] H. Baier and M. H. M. Winands. Nested monte-carlo tree search for

online planning in large mdps. In L. D. Raedt, C. Bessiere, D. Dubois,
P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas, editors, ECAI
2012 - 20th European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System
Demonstrations Track, Montpellier, France, August 27-31 , 2012, vol-
ume 242 of Frontiers in Artificial Intelligence and Applications, pages
109–114. IOS Press, 2012. doi: 10.3233/978-1-61499-098-7-109.
URL https://doi.org/10.3233/978-1-61499-098-7-109.

[6] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspec-
tive on reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 449–
458, Sydney, NSW, Australia, 2017. JMLR.org.

[7] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional Rein-
forcement Learning. MIT Press, 2023.

[8] S. Brânzei, Y. Chen, X. Deng, A. Filos-Ratsikas, S. K. S. Frederiksen,
and J. Zhang. The fisher market game: Equilibrium and welfare. In
C. E. Brodley and P. Stone, editors, Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec
City, Québec, Canada, pages 587–593. AAAI Press, 2014. doi: 10.
1609/AAAI.V28I1.8807.

[9] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.

A survey of Monte Carlo Tree Search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[10] X.-Q. Cai, P. Zhang, L. Zhao, J. Bian, M. Sugiyama, and A. J. Llorens.
Distributional pareto-optimal multi-objective reinforcement learning. In
Thirty-Seventh Conference on Neural Information Processing Systems,
2023.

[11] W. Chen and L. Liu. Pareto monte carlo tree search for multi-objective
informative planning. In A. Bicchi, H. Kress-Gazit, and S. Hutchin-
son, editors, Robotics: Science and Systems XV, University of Freiburg,
Freiburg Im Breisgau, Germany, June 22-26, 2019, 2019. doi: 10.
15607/RSS.2019.XV.072.

[12] A. Couëtoux. Monte Carlo Tree Search for Continuous and Stochastic
Sequential Decision Making Problems. (Monte Carlo Tree Search Pour
Les Problèmes de Décision Séquentielle En Milieu Continus et Stochas-
tiques). PhD thesis, University of Paris-Sud, Orsay, France, 2013.

[13] R. Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In H. J. van den Herik, P. Ciancarini, and H. H. L. M.
Donkers, editors, Computers and Games, 5th International Conference,
CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, volume 4630
of Lecture Notes in Computer Science, pages 72–83. Springer, 2006.
doi: 10.1007/978-3-540-75538-8\_7.

[14] W. Dabney, M. Rowland, M. Bellemare, and R. Munos. Distributional
Reinforcement Learning With Quantile Regression. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018. doi: 10.
1609/aaai.v32i1.11791.

[15] I. Danihelka, A. Guez, J. Schrittwieser, and D. Silver. Policy improve-
ment by planning with Gumbel. In International Conference on Learn-
ing Representations, 2022.

[16] F. Delgrange, J.-P. Katoen, T. Quatmann, and M. Randour. Simple
strategies in multi-objective MDPs. In A. Biere and D. Parker, edi-
tors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 346–364, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-45190-5.

[17] D. Freirich, T. Shimkin, R. Meir, and A. Tamar. Distributional mul-
tivariate policy evaluation and exploration with the bellman GAN. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 1983–1992. PMLR, 2019.

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680, 2014.

[19] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved training of wasserstein GANs. In I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5767–5777,
2017.
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