
Advanced Game Engine Wizardry

for Visual Programming Environments

Elisabeth Kletsko
University of Amsterdam

Amsterdam, The Netherlands
elisabeth.kletsko@student.uva.nl

Riemer van Rozen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

rozen@cwi.nl

Abstract

Visual programming environments empower end-users with
interactive input and feedback mechanisms that support
live and exploratory programming. For creating these envi-
ronments, language engineers require enabling technology.
Language workbenches and meta-programming languages
support rapid construction of interpreter back-ends. Game
engines are specifically created for rich interactive user ex-
periences and have the potential to augment this technology
even further with maintainable front-ends. However, these
technologies presently live in separate technological spaces.
We aim to automate the creation of visual programming

environments by integrating the two. We propose Raven, a
meta-framework for rapidly prototyping visual editors that
exposes key 2D features of Godot in a programmable user
interface. Using Raven’s declarative notation, language en-
gineers can concisely express the structure and styling of
tree-based editors. We demonstrate our approach by: 1) in-
tegrating Raven into the Rascal language workbench, and
2) creating two editors for the live state machine language.

CCS Concepts: • Software and its engineering→ Visual

languages; Domain specific languages; Integrated and

visual development environments.

Keywords: programming environments, game engines, lan-
guage workbenches, domain-specific languages, live pro-
gramming

ACM Reference Format:

Elisabeth Kletsko and Riemer van Rozen. 2024. Advanced Game
Engine Wizardry for Visual Programming Environments. In Pro-
ceedings of the 3rd ACM SIGPLAN International Workshop on Pro-
gramming Abstractions and Interactive Notations, Tools, and Environ-
ments (PAINT ’24), October 22, 2024, Pasadena, CA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3689488.3689992

PAINT ’24, October 22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1212-8/24/10
https://doi.org/10.1145/3689488.3689992

1 Introduction

Visual programming environments have the potential to
make programming more accessible to programmers of all
backgrounds and skill levels. Domain-Specific Languages
(DSLs) empower non-programmers with notations and ab-
stractions aimed at particular problem domains [25]. DSLs
have been shown to help non-programmers raise their pro-
ductivity and improve the code quality, e.g., in robotics [10],
banking [20], and digital forensics [23]. We aim to support
the development of visual programming environments for
DSLs. Specifically, we study how to create interactive input
and feedback mechanisms that bring the code to life.

Languageworkbenches andmeta-programming languages
provide techniques and approaches that support prototyping
DSLs, e.g., compilers and interpreters [5]. However, generic
language technology often has limited support for creating
advanced visual programming environments. As a result, cre-
ating user-friendly and aesthetically pleasing prototypes is
costly and time-consuming. Language engineers need tools
and techniques that accelerate the development of proto-
types that are easy to deploy, maintain, and extend.
Game engines have been specifically designed to create

rich interactive user experiences, e.g., games, apps, and other
visualizations. Using powerful tool sets, developers can eas-
ily maintain and deploy user-friendly, feature-rich visual
applications across platforms. Unfortunately, language work-
benches and game engines are currently separate technolog-
ical spaces. Until now, the combination of this technology
in generic solutions for language engineering has not yet
been explored. As a result, the potential of game engines for
prototyping visual editors for DSLs is still largely unknown.
We aim to bridge the gap between these technologies by

automating the creation of visual programming environ-
ments using game engines. A pilot study on this topic shows
that Godot in particular offers a solid foundation [2, 27].
Godot comes with out-of-the-box support for C, C++, and C#,
and recently JVM-based languages such as Kotlin or Java [3].
We investigate how Godot can be leveraged in generic lan-
guage technology for prototyping of visual editors for DSLs.

We propose Raven, a novel meta-framework that exposes
key 2D functionalities of Godot in a reusable, programmable
user interface. We illustrate its potential in two ways. First,
we integrateRaven into theRascal languageworkbench [13].
Next, we create a programming environment for the Live

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

41

https://orcid.org/0009-0008-9991-115X
https://orcid.org/0000-0002-3834-682X
https://doi.org/10.1145/3689488.3689992
https://doi.org/10.1145/3689488.3689992
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689488.3689992&domain=pdf&date_stamp=2024-10-17

PAINT ’24, October 22, 2024, Pasadena, CA, USA Kletsko and van Rozen

1 machine doors
2 state closed
3 open => opened
4 state opened
5 close => closed

(a) Textual doors program

sm: doors

closed opened

close

open

(b) Visual doors program

Figure 1. LiveSML Example (appears in van Rozen [26])

1 MachCreate(1);

2 MachSetName(1, "doors");

3 StateCreate(2, 1);

4 StateSetName(2, "closed");

5 StateCreate(3, 1);

6 StateSetName(3, "opened");

7 TransCreate(4, 2, 3);

8 TransSetTrigger(4, "open");

9 TransCreate(5, 3, 2);

10 TransSetTrigger(5, "close");

(a) Creating the program

1 MachInstCreate(5, 1);

2 MachInstTrigger(5, "open");

(b) Running the program

MachInstPrint (5);
machine doors

[close]
state closed: 1
state opened: 1 (*)

(c) Inspecting the program

Figure 2. REPL commands for syntax edits and user actions

StateMachine Language, and wemeasure its performance us-
ing a simple programming scenario. Our initial results show
promise. Using Raven, language engineers can concisely
express the structure and styling of fast and aesthetically
pleasing visual editors for DSLs. In future work, we will fur-
ther extend and validate Raven, e.g., with graph editors. This
paper contributes: 1) an initial prototype of Raven, a meta-
framework and rapid prototyping of visual environments
for DSLs; and 2) Raven-Rascal, an extension to Rascal.

2 Background

We study how to develop DSLs that support live and ex-
ploratory programming [19, 21]. In particular, we aim to de-
velop generic language technology for rapidly prototyping
visual programming environments. We will investigate how
game engines can be leveraged. First, we relate the needs of
programmers to challenges and research opportunities.

2.1 Live State Machine Language

The Live State Machine Language (LiveSML) is a DSL for
simultaneously creating and running state machines [4, 26].
We describe an illustrative scenario that shows how a pro-
grammer can create running state machines step by step.
First, we create a machine called doors, add opened and

closed states, and create open and close transitions between
them. Figure 1 shows a visual and a textual representation of
the resulting SML program. To run the machine, we create
an instance, which starts in the closed state. Next, we trigger
open and observe a transition to the opened state.

Whenmodifying a runningmachine, users can learn cause-
and-effect relationships between changes to the syntax and
running instances. For instance, when we delete the opened
state, we can observe the current state becomes closed.

The changes to the syntax (coding actions) and to the run-
time state (user interactions) can be expressed as a sequence

UI

System

Programming

User Interface

Program

User Interface

Abstract

Syntax

Run-time

State

Changes

REPL

Interpreter

process

update

display display

update

GameEngine

generate

Language

Workbench

generate

2: automate

1: integrate

(a) Live Programming Environment (b) Enabling Technology

Figure 3. Leveraging Game Engines for Visual Programming

of Read-Eval-Print-Loop (REPL) commands [22]. The first
parameter of a command is a Unique Universal Identifier
(UUID) of an object. A REPL interpreter evaluates these com-
mands and updates the corresponding program elements.
Figure 2 shows the commands for creating the doors pro-
gram (2a), running it (2b), and printing its run-time state (2c).
By offering immediate feedback with every change, a vi-

sual programming environment can help its programmers
form mental models. Each iteration offers a learning oppor-
tunity for understanding the impact of coding actions. We
will use LiveSML as an illustrative running example.

2.2 Leveraging Language Workbenches

Creating visual programming environments for DSLs such
as LiveSML is complex. Language workbenches and meta-
programming languages provide a generic infrastructure [5].

We focus on a change-based approach, illustrated by Fig-
ure 3, that leverages this technology. According to the Model
View Controller (MVC) paradigm, this approach separates
the program state and execution logic from the user interface.
First, language engineers use an existing language work-

bench to create a REPL interpreter as the DSL back-end
(Figure 3a). They can add liveness to its design by introduc-
ing cause-and-effect relationships between changes to the
syntax and the run-time state [26]. Next, they create a UI that
connects to this interpreter and serves the REPL visually.

2.2.1 Web-Based UI Frameworks. In recent years, many
web-based solutions have been created that leverage browsers,
e.g., LionWeb, Freon [29] and Rascal’s Salix [24]. Expressing
front-ends using the Document Object Model (DOM), these
solutions incrementally update the UI using HTML5, CSS,
and JavaScript. This update loop combines well with REPL
interpreters that allow interaction through a web-based UI,
e.g., via button presses and textfield inputs. A key benefit
is that HTML5 libraries are widely available, e.g., for dia-
grams, figures, and editors. However, web-based solutions
are no silver bullet for long-term compatibility, deployment
and maintenance. Challenge 1 is integrating game engine
technology into language workbenches as an alternative.

42

Advanced Game Engine Wizardry for Visual Programming Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Raven

App

Receiver

Thread

json

Interpreter

Scene

Graph

Visual

Editor

Raven

Rascal

ToJSON

Algebraic

Data Type

Dispatcher

Receiver

Thread

DSL

Intepreter

Renderer

Model

REPL

Interpreter

REPL

Command

callback

command

UI spec

UI spec

command

LWB Agnostic LWB Specific DSL Specific

(a) User Interface (b) Integration (c) DSL Interpreter

Figure 4. Overview of the Raven framework

2.2.2 Game Engines. Game engines are collections of
software libraries, cross-compilers, and toolkits for creating
interactive 2D and 3D applications [9]. Especially suitable for
game development, these engines have also successfully been
applied in other areas, e.g., health care [15], construction [6],
and geography [12]. Developers can leverage engines to
create responsive, user-friendly, and aesthetically pleasing
applications that are easy to deploy and maintain. However,
unlike web apps, these cannot easily be reprogrammed at
run time. As a result, creating visual programming environ-
ments using game engines is costly and time-consuming.
Challenge 2 is automating this process by exposing 2D fea-
tures of the Godot engine in a web-like manner. Next, we
introduce Raven, a novel approach to tackle these challenges.

3 The Raven Framework

Raven is a meta-framework for prototyping visual program-
ming environments for DSLs. The proposed approach, illus-
trated by Figure 4, consists of three main parts.

The first part, shown in Figure 4a, is the Raven front-end
application (or Raven for short), a programmable user in-
terface based on Godot. Raven is a fully reusable language
workbench-agnostic solution that operates as a generic vi-
sual REPL. Similar to a web browser, Raven requires a host
environment. Its UI immediately updates when it receives
a new UI specification from this host. When users interact,
e.g., by pressing a button, it returns signals via associated
callbacks. We describe the design of Raven in Section 4.
Using Raven comes at a cost. The second part of the ap-

proach, illustrated by Figure 4b, involves integrating Raven
into existingmeta-programming languages or languagework-
benches. As an example, we integrateRaven intoRascal [13]
by mapping its generic JSON format to an Algebraic Data
Type (ADT). We describe and assess this effort in Section 5.

The third part of the approach, illustrated by Figure 4c,
is applying Raven and its host language in the creation of
visual programming environments for DSLs. Language en-
gineers create REPL interpreters using Rascal’s advanced
features, e.g., pattern matching, visit statement, and origin
tracking. Using its declarative notation, they can concisely
express a front-end as a so-called renderer. Based on the
syntax and the run-time state (or model), a renderer gener-
ates the structure and styling of tree- or form-based editors.
Each time a renderer runs, Raven immediately shows the
result. Instead of a textual REPL, Raven supports live and ex-
ploratory programming visually. We demonstrate how this
works in a case study on LiveSML in Section 6.

We begin by formulating functional requirements and
technical challenges Raven addresses in Sections 3.1 and 3.2.

3.1 Requirements

Language engineers require a means for rapidly prototyping
visual programming environments. They need a reusable
front-end, reminiscent of a browser, that can easily be repro-
grammed to create visual mechanisms for conveying coding
actions, user interaction, and feedback. In particular, this
front-end should expose the functionality of REPL inter-
preters using the expressive power of game engines. For
programming the UI, language engineers need a minimal set
of 2D elements to express:
R1 Informative output via labels showing a specified text.
R2 Interactive input controls: a) buttons that show a par-

ticular text and describe a callback message for execut-
ing a specified command when pressed; and b) option
buttons that define a list of elements, and describe a
callback for signaling when an element is selected.

R3 Structured views consisting of nested elements (or
containers) with a specific spacing that are arranged:
a) hierarchically in panels; b) horizontally in an HBox-
Container; c) vertically in a VBoxContainer; or d) side
by side in tabs that can be viewed one at a time.

To control and adjust the appearance, engineers need to:
R4 Express the styling of: a) individual elements in terms

of size, color, and spacing; and b) multiple elements at
once to control the overall look and feel.

To support live and exploratory coding, programmers
need immediate feedback. When programming, DSL users
should see the consequences of their actions immediately.
We formulate the following non-functional requirement.

R5 The entire REPL-loop must complete in under 100ms,
which is regarded as instantaneous in HCI research.

Finally, language engineers may be bound by restrictions
or have personal preferences that dictate which host lan-
guage must be used. Therefore, they need a language work-
bench-agnostic solution that is straightforward to integrate
using simple APIs. These APIs enable:

43

PAINT ’24, October 22, 2024, Pasadena, CA, USA Kletsko and van Rozen

1 {"HBoxContainer": {"children": [{
2 "Button": {
3 "text": "Create Machine",
4 "callback": "MachCreate(1)",
5 "styles": [{"FontSize": {"font_size": 24}}]}}]}}

Listing 1. Example scene graph containing a Button

R6 Sending the UI state to render it.
R7 Receiving interactive REPL commands via callbacks.
Of course, these requirements are still preliminary. For

now, we omit functionality for pictures and icons and graph-
based editors, including drag-and-drop functionality.

3.2 Technical Challenges

To realize the requirements of Section 3.1, we identify the
following technical challenges Raven must address.
T1 UI Language. To expose 2D game engine elements

(requirements R1–R4), Raven should offer a declara-
tive notation for concisely expressing: a) the state of
the UI and b) callbacks that connect to DSL back-ends.

T2 Rendering Engine. To render the UI state quickly
(requirement R5), Ravenmust integrate an interpreter
that parses UI specs (T1), renders them, and facilitates
executing the read-eval-print-loop visually.

T3 CommunicationProtocol.To easily integrateRaven
with DSL back-ends (R6), it offers simple APIs that sup-
port asynchronous communication via sockets. For up-
dating the UI, Raven receives UI specs. To propagate
change, it returns the associated callbacks.

Next, we describe how Raven’s design addresses the tech-
nical challenges. In Section 5, we will discuss how to inte-
grate Raven into Rascal.

4 The Raven Application

A Raven application is the visual part of the framework, as
illustrated by Figure 4a. We tackle the technical challenges of
Section 3.2 as follows. Raven offers a language for describing
structured UIs (T1), a rendering engine (T2) that updates the
view, and a communication protocol (T3) for integrating
Raven with its host language. Next, we will describe how
these components work.

4.1 Raven UI Language

Godot-based applications contain a so-called scene graph.
Similar to the browser’s DOM tree, the scene graph consists
of nodes that determine what the UI looks like. Raven of-
fers a JSON notation to program the UI. The JSON schema
expresses the following categories of nodes.
A Label displays a specified text. Container Nodes con-

trol the layout and alignment of child nodes. For instance,
HBoxContainer and VBoxContainer align child nodes hor-
izontally and vertically. ScrollContainer enables scrolling

Figure 5. Exposition of the Godot node Button in Raven

Figure 6. Overview of Minimal Example Creation in Godot
and an attached callback script

them vertically. MarginContainer adjusts the spacing, and
TabContainer shows Tabs side by side.

Input Nodes are interactive nodes that consume user input
and call a corresponding callback function. Button displays a
text and activates its callback when pressed. Listing 1 shows
an example of a scene graph expressed in the JSON for-
mat. When pressed, the button sends its callback message, a
LiveSML REPL command that creates a new state machine.

LineEdit and TextEdit, respectively, show single and multi-
line text input, whose callback is the text input. An Option-
Button defines a pull-down menu that returns the selected
option. Finally, every node can be optionally modified with
style information, e.g., color or font size. Listing 1 shows the
Button has a font size of 24.

4.2 Raven Engine

The Raven engine parses the JSON format of UI specifica-
tions and updates the internal scene graph accordingly. Scene
nodes are integrated as follows.

The engine employs an interpreter pattern to traverse the
abstract syntax trees of the JSON format. Each node imple-
ments an accepting visitor function. For instance, Figure 5
illustrates how the Button element is integrated. When the
interpreter visits a JSON node, it instantiates the correspond-
ing Godot Button node, connects the corresponding signal
(OnButtonPressed), and adds it to the scene graph. These
nodes are then decorated with additional properties, such as
style information.
Adding a Godot node to Raven is straightforward. To

add a node, language engineers can create a scene graph
by hand and add a script that handles the callback. When
calling the associated visitor, the interpreter will instantiate
the node. Figure 6 shows an example scene graph.

44

Advanced Game Engine Wizardry for Visual Programming Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

1 ravenButton(

2 "Create Machine",

3 "MachCreate(1)",

4 settings=[])

(a) Raven Node in Rascal

1 {"Button": {
2 "text": "Create Machine",
3 "callback":
4 "MachCreate(1)", ...
5 }}

(b) Raven Node in JSON

Figure 7.Mapping from a Rascal-specific Algebraic Data
Type to the generic Raven JSON format

4.3 Communication Protocol

Raven offers a communication protocol to integrate its func-
tionality with a host environment, e.g., a language work-
bench or DSL interpreter. Raven receives JSON data and
sends callback messages via a TCP socket. The receiver
thread handles messages in a producer-consumer fashion.

When it receives the VIEW_UPDATE message from its host
environment, it passes the contents (of type string) to the
engine for updating the view. The engine interprets the JSON
and updates the UI.

When a user activates interactive nodes in the Raven UI,
the Raven sends a message of type CALLBACK. This message
passes the contents of the callback field back to the host
environment. After evaluating the message, the host can
again update the view.

5 Integrating Raven into Rascal

For applying Raven in a host environment, language engi-
neers have to integrate its functionality. Here, we describe
how to integrate Raven into the Rascal meta-programming
language [13]. Figure 4b gives a general overview of the
required components. Next, we will describe how to create
these components and also assess the implementation effort.

5.1 Describing Editors

Programming UI specifications of visual editors in JSON
directly is cumbersome. Instead, language engineers can
generate these specifications by mapping its notation to
language features of the host language.

Algebraic Data Types (ADT) are Rascal’s composite types
for defining custom types. We use the ADT feature to offer
a more convenient notation for defining Raven scene trees.
Listing 2 shows the definition of this type. For conciseness,
we omit the style data. Each of the exposed 2D features has its
own constructor and parameters. Using the ADT, language
engineers can define the desired structure of an editor view.
For instance, Figure 7a shows the definition of a button with
the text "Create Machine" and a callback REPL command.
Of course, Raven cannot process this ADT directly. In-

stead, we create a generator that transforms the ADT into
JSON. Figure 7b shows the generated JSON equivalent.

1 data RavenNode

2 = ravenNode2D(list[RavenNode] children, bool root)

3 | ravenNode2D(list[RavenNode] children)

4 | ravenLabel(str text, list[Setting] settings=[])

5 | ravenButton(str label, str callback, list[Setting] settings=[])

6 | ravenTextEdit(str content, str callback, ...)

7 | ravenLineEdit(str content, str callback, ...)

8 | ravenOptionButton(list[str] options, str callback, ...)

9 | ravenHBox(list[RavenNode] children, ...)

10 | ravenVBox(list[RavenNode] children, ...)

11 | ravenTab(str nodeID, str name, list[RavenNode] children, ...)

12 | ravenTabContainer(list[RavenNode] children, str callback="",...)

13 | ravenMarginContainer(list[RavenNode] children, ...)

14 | ravenPanelContainer(list[RavenNode] children, ...)

15 | ravenPanel(list[RavenNode] children, ...)

16 | ravenScrollContainer(list[RavenNode] children, ...);

Listing 2. Algebraic Data Type of the Raven Scene Tree

Table 1. Components that integrate Raven into Rascal

Component SLOC: Rascal Java

Algebraic Data Type 22
JSON Generator 301
Dispatcher 9 89
Sending Utils 2 12
Receiver Thread 174

SUM 334 275

5.2 Handling Incoming Callbacks

Visual views consist of nodes that can be annotated with
callback functions in the form of a string. To parse and exe-
cute the callbacks, the Raven-Rascal integration provides a
simple interface for the initialization. A higher-order func-
tion takes in a (dispatcher)-function as an argument with
one parameter, a (callback)-string. The body of this function
should include parsing and dispatching logic that handles
incoming callback strings correctly.

It is up to the language engineer to provide these facilities.
When a message of type CALLBACK arrives, the registered
dispatcher evaluates the callback command from the DSL
back-end. At the end of execution, an updated JSON view is
returned. The Raven-integration sends then the view back to
the Raven application. In the case of Rascal, a Java function
is invoked to send the generated JSON to the server, with
the message type VIEW_UPDATE.

5.3 Starting a Raven-Rascal Application

We add functionality to Rascal that makes it convenient
to apply Raven. To use Raven, a language engineer has to
update a configuration file and provide it with the entry
point of the DSL program (usually a main function) that
contains the registration of the dispatcher. After this, they
can start the application from Rascal by calling the main
function. The responsibility of the main function is to initiate
the communication peer, which then registers the dispatcher
function as the receiver callback.

45

PAINT ’24, October 22, 2024, Pasadena, CA, USA Kletsko and van Rozen

5.4 Implementation Effort

Integrating Raven into Rascal is straightforward. Table 1
displays the number of Source Lines of Code (SLOC) for
each component we have implemented1. The source code of
Raven and Raven-Rascal is available on GitHub2.
Rascal’s advanced meta-programming features enable

concise definitions. The ADT, the dispatcher, and commu-
nication protocol integration together count just 43 SLOC.
The largest component is the JSON generator 301 SLOC.

The asynchronous communication protocol is instead im-
plemented in Java. Conveniently, Rascal functions can in-
voke Java methods annotated with a @java annotation. The
Java code amounts to 275 SLOC. Notably, the receiver thread
has been reused from Raven.

6 Case Study

To explore Raven’s potential, we create and analyze two
visual editors for LiveSML, the DSL introduced in Section 2.1.
Our objectives are to: 1) investigate how Raven can be used
to quickly prototype alternative views; 2) assess the level of
effort required to implement these views; and 3) determine
the viability of Raven applications for visual programming.

6.1 LiveSML Revisited

LiveSML is a prototype REPL interpreter that processes se-
quential commands. To use the REPL, programmers have to
express changes to the syntax and user interactions textually.
However, DSL users may instead require visual views that
offer distinct ways of understanding SML programs.

Tree Editors make the structure of the abstract syntax tree
apparent through indentation. Tabular Editors are a popular
choice when working with numeric values, such as invoices.
Because state transitions can also be displayed in a table,
both of these representations may be suitable.

We investigate how Raven can be used for rapidly proto-
typing visual programming environments that support live
and exploratory programming. Our analysis has two stages.

First, we create tree and tabular editors using Raven and
Rascal. We assess the implementation effort by measuring
volume in source lines of code. Second, we apply the newly
created editors in a realistic live programming scenario. We
reproduce the scenario described in Section 2.1 and measure
the performance. The results show that visual prototypes
can be created with relatively little coding effort, and that the
editors support live programming with immediate feedback.

6.2 Visual Live Programming Environment

We formulate requirements for a visual programming envi-
ronment with coding and debugging facilities that offers:

1. a navigation view for creating programs, running them,
opening new views, and navigating between tabs.

1We measure SLOC using CLOC v2.00 – https://github.com/AlDanial/cloc

2
https://github.com/liza-kl/raven-project

Figure 8. Initial Screen showing Navigation facilities

Figure 9. Tree Editor showing the doors program

Figure 10. Tabular Editor showing the doors program

Figure 11. Run-time View showing a running doors program

2. tree- and tabular editors for altering the program’s state
visually, e.g., for adding, removing, andmodifying state
machines, states, and transitions.

3. a runtime view for running state machines, observing
the run-time state; and triggering state transitions.

We use Raven and Rascal to create a visual programming
environment. For navigating between views, we design a
familiar browser-like view, including an initial screen and
tabs, as shown in Figure 8. The tree and tabular views offer
controls that map directly to REPL commands that work on
the syntax. To create them, we implement renderers that
generate the user interface based on the program state. Fig-
ures 9 and 10 shows how Raven renders an example program.
These editors share an identical left-hand side. This allows
the user to navigate between views smoothly with the “Avail-
able Editors” drop-down. Finally, the runtime view, shown
in Figure 11, enables interaction with running machine pro-
grams. The source code of the LiveSML, including the visual
editors and the REPL interpreter, is available on GitHub3.

3
https://github.com/liza-kl/raven-project/tree/main/raven-rascal-

example/raven-core/src/main/rascal/lang/sml

46

https://github.com/AlDanial/cloc
https://github.com/liza-kl/raven-project
https://github.com/liza-kl/raven-project/tree/main/raven-rascal-example/raven-core/src/main/rascal/lang/sml
https://github.com/liza-kl/raven-project/tree/main/raven-rascal-example/raven-core/src/main/rascal/lang/sml

Advanced Game Engine Wizardry for Visual Programming Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Table 2. Components of LiveSML created in Raven-Rascal

Part Component Description SLOC

General Environment Stores objects (syntax/run-time state) 30

Syntax Model Objects that define the abstract syntax 40
Command REPL commands that update syntax 24
REPL Evaluates REPL commands 158
TreeRenderer Renders the tree view 77
TableRenderer Renders the tabular view 57

Runtime Model Objects that define the run-time state 25
Command commands that update run-time state 16
REPL Evaluates REPL commands 112
Callbacks Binds Raven callbacks 58
RTRenderer Renders the run-time view 55

Control Command UI actions as REPL commands 13
Model Objects that define the UI state 3
REPL Evaluates REPL commands 149
Callbacks Binds Raven callbacks 43

Total 1177

6.3 Live Programming Scenario

We reproduce the live programming scenario of Section 2.1
to validate the design and measure its performance. Table 3
shows the steps and the recorded response times.

We start the visual programming environment (Step 1) and
see the initial screen Figure 8. To create a new machine, we
click on the button “Create NewMachine” (Step 2). The ID of
the machine will appear under "Available Machines". To alter
its definition, we click the “Open New Tab” button (Step 3).
We then click on the tab (Step 4) and select the machine we
want to edit (Step 5). Using the tree editor, shown in Figure 9,
we rename the machine to “door” in the Machine text field
(Step 6). We add states closed and opened (Steps 7–10) and
transitions open and close between them (Steps 11–16). Next,
we open a tabular view using “Available Editors” on the left-
hand side (Step 17). Figure 10 shows the tabular view.

We then run the machine by clicking on the button “Run
Instance of this Machine” and selecting the newly opened
tab (Steps 18–19). A runtime view appears as in Figure 11.
The initial state of the machine is closed. To open it, so click
on the button “close”, triggering the transition (Step 20).

We delete the running machine by clicking on the button
“Kill Instance” (Step 21). This also closes the runtime view and
returns us to the initial view. To return to the previous editing
view, we click on the Tab "Editor <machine ID>" (Step 22).
Finally, we close the machine editing tab by clicking the
button "Delete Tab" (Step 23) and end up in the initial view.

6.4 Analysis

Creating a visual programming environment for LiveSML
with Raven is straightforward. Most of the work has been
lifted by the Raven-Rascal integration, which includes the
JSON generator. This allows for a concise definition of view

Table 3. Programming scenario and rendering times in ms

Step BE FE Total

1 Start the programming environment 3185 216 3401
2 Create a new state machine 104 23 127
3 Open a Tree-Editor in a new ab 129 50 179
4 Navigate to the opened tab 64 14 78
5 Select the newly created machine 75 29 104
6 Rename the machine to "door" 70 31 101
7 Add new state 70 22 92
8 Rename the state to “closed” 74 22 96
9 Add new state 76 35 111
10 Rename the state to “opened” 76 32 108
11 Add new transition to state “opened” 100 28 128
12 Rename its trigger event to “open” 92 56 148
13 Set its target state to “opened” 78 28 106
14 Add a new transition event to state“closed” 93 30 123
15 Rename its trigger to “close” 117 64 181
16 Set its target state “closed” 90 35 125
17 Change the view to Table 74 27 101
18 Run a state machine instance 134 38 172
19 View the running state machine 126 58 184
20 Trigger the “open” transition 94 41 135
21 Delete the Machine Instance 108 66 174
22 Navigate back to the Machine Editing Tab 106 44 150
23 Close the Machine Definition View 21 6 27

structures using the Rascal ADT, as Table 2 shows. The sys-
tem consists of three modules that each contain small compo-
nents of Raven front-ends and REPL interpreters back-ends.
The modules syntax, runtime and control respectively mod-
ify the abstract syntax, run-time states, and editor states.

The prototype is fast enough for live programming. Table 3
shows the editor’s response times during the programming
scenario, for the front-end (FE) and back-end (BE). The com-
bined rendering time is close to 100ms. This is the threshold
the Nielsen Norman Group suggests for giving users a feel-
ing of instantaneous response [18]. The main performance
bottleneck resides in the unoptimized interpreter back-end.

7 Discussion

The Raven framework offers generic language technology
for prototyping visual programming environment of DSLs.
Of course, Raven is currently still an academic prototype
that has has not yet been thoroughly validated and evaluated
in practice. We discuss costs, benefits and threads to validity.

7.1 Costs, Benefits and Threats to Validity

Raven exposes a compact yet robust set of Godot nodes.
Language engineers can integrate Raven into their preferred
language workbench or meta-programming language.
Instead of manually creating a front-end using Godot,

language engineers can use these nodes to create and test
different programming front-ends programmatically, directly
from a language-workbench. Raven’s rendering engine de-
sign allows them to bypass the typically required compilation
process for Godot applications. Instead of recompiling the

47

PAINT ’24, October 22, 2024, Pasadena, CA, USA Kletsko and van Rozen

UI every time, the scene trees are constructed at run time. Un-
like plug-in approaches [7], Raven does not rely on existing
communication protocols and debug APIs for its operation.

Using Raven comes at a cost. Extending a language work-
bench requires components to communicate with a Raven
app, and a mechanism to define the scene tree in a Raven-
JSON format. Depending on the language workbench, Raven
makes it possible to quickly and concisely implement dif-
ferent views. Boilerplate parts of the JSON can be extracted
into a generator, and a UI language can be implemented with
custom data types. The rapid prototyping speed opens up
opportunities to test different views and their suitability for
various user groups.

Raven still has important limitations. The design of Raven
does not support easy implementation of end-to-end (E2E)
tests or direct inspection of the user interface (UI), as is
typically possible for web apps. However, developers can
write tests by generating JSON objects and intercept the TCP
communication, e.g., using tools such as Wireshark.
The case study represents only a limited validation. Fur-

thermore, we acknowledge that Raven has only been in-
tegrated into Rascal, and as a result, we cannot yet draw
general conclusions. Further investigation is necessary to
determine to what extent Raven’s concepts and tools can be
integrated into other language workbenches too. Ultimately
Raven provides an extensible approach. By describing its
steps, we have laid the groundwork for future case studies.

7.2 Raven’s Potential for Future Research

We discuss Raven’s potential for future research.

7.2.1 Validation. In this paper, we demonstrated one con-
crete use case of Raven: how to retrofit a textual REPL of
LiveSML with a visual programming environment. In fu-
ture work, we plan to validate Raven further in user-driven
studies that explore how to create UI variations for DSLs.

7.2.2 Integration and Deployment. Currently, each part
of Raven runs on a separate JVM instance. However, we have
selected the Java/Kotlin version of Godot for its potential to
integrate Rascalwith Godotmore tightly. In principle, they
could share one JVM instance, which could streamline the
development, maintenance and deployment. In future work,
we will investigate how to deploy DSLs to mobile devices.

7.2.3 Extensions. At the moment, Raven exposes a mini-
mal set of Godot elements. However,Godot has manymore
interesting features that are not yet included. For instance,
using its GraphNode/GraphEdit framework, language engi-
neers could also create diagrammatic (or graph-based) edi-
tors. In future, work we plan to add these features. Raven’s
extensible design applies Strategy and Visitor patterns. As a
result, Godot nodes can be added with minimal effort.

7.2.4 Rendering speed. The case study shows Raven’s
performance is already adequate. However, Raven updates

its entire UI every time it receives an update, which slows
down the response time unnecessarily. This behavior is com-
parable to window.reload() in the browser. The rendering
speed can be further optimized by sending and evaluating
differences instead, keeping existing visual elements intact.

7.2.5 Live Programming. Live programming is an area
with open challenges that revolve around change [4, 21], e.g.,
run-time state migration, distributed editing and versioning.
The Raven framework represents a step towards generic
change-based solutions for tackling these challenges. We
plan to further investigate how the create the necessary REPL
interpreters in a principled manner, e.g., using Cascade [26].

8 Related Work

Game engines have been applied in many professional ar-
eas for creating interactive visual applications, e.g., in health
care [15], construction [6], and geography [12]. We approach
game engine technology from a language engineering per-
spective, which is still relatively uncommon [27]. Instead
of creating visual programming environments “by hand”,
Raven supports rapid prototyping by generating them. To
the best of our knowledge, Raven is the first approach that
leverages a game engine in a language-parametric manner.
We relate our work to language workbenches [5], and

tools and techniques that help create visual programming
environments for DSLs. Tung et al. provide an overview of
recent developments in this sphere [11].

Eclipse-based technology provides mature ways to define
visual editors, predominantly graphical ones, e.g., Sirius [28],
Eugenia [14], Modigen [8], and CINCO [17]. The UI spec-
ifications of these editors are tightly bound to the Ecore
model, limiting the tools to the Eclipse ecosystem. In con-
trast, Raven is intended as a light-weight reusable solution
not bound to one ecosysem. Any host environment adhering
to its JSON schema can integrate the Raven framework.
Web-based technology provides a flexible way for creat-

ing portable visual editors that can choose from a plethora
of libraries and styling options. In comparison, Raven is a
much more focused approach. By offering a minimal set of
elements, Raven provides a means for describing the struc-
ture of visual editors. Unlike web apps, game-based applica-
tions are not limited to the browser. Engines offer a reusable,
portable and maintainable alternative. Raven offers flexi-
bility by exposing sufficient Godot styling properties and
having multi-platform features inherent to Godot’s design.
Freon [29] is a web-based language workbench that al-

lows language engineers to define their language and au-
tomatically generate a projectional editor. Kogi generates
block-based editors, based on Google Blockly, directly from
context-free grammars [16]. The Sandblocks system uses
Squeak/Smalltalk as its foundation to derive structured edi-
tors from Tree-sitter grammars [1].

48

Advanced Game Engine Wizardry for Visual Programming Environments PAINT ’24, October 22, 2024, Pasadena, CA, USA

Rascal includes Salix, a web-based solution for the visu-
alization, including DSLs [24]. Inspired by Elm, Salix helps
to define and render a UI in the browser. To define the UI,
Salix offers an internal DSL and a datatype. This convenience
notation enables expressing UI elements as “statements” sep-
arated by semicolons. Raven builds on the experience of
Salix. Raven still relies solely on a datatype, and does not yet
support this convenience feature. However, by leveraging
Godot, Raven adds speed, portability, touch interfaces, etc.

9 Conclusion

Visual environments have the potential to make program-
ming more accessible. However, creating visual program-
ming environments costs time and effort. Language engi-
neers need enabling technology that supports rapid proto-
typing. We propose accelerating the development process by
integrating game engine technology into generic language
technology. We have introduced Raven, a meta-framework
for creating visual programming environments. To illustrate
the approach, we have integrated Raven into Rascal, and
created visual editors for LiveSML. Although Raven is still
an academic prototype, the initial results are promising. Us-
ing Raven, language engineers can concisely express the
structure and styling of fast and aesthetically pleasing visual
editors for DSLs. In future work, we plan to further extend
and validate Raven, e.g., with graph-based editors. Raven
opens possibilities for future studies on visual programming.

Acknowledgments

We thank the reviewers for their insightful comments that
helped improve this paper. We thank Tijs van der Storm for
his feedback and advise on the design of Raven.

References

[1] Tom Beckmann, Stefan Ramson, Patrick Rein, and Robert Hirschfeld.
2020. Visual Design for a Tree-Oriented Projectional Editor. In Art,
Science, and Engineering of Programming. ACM.

[2] The Godot Community. 2024. Godot documentation. https://docs.

godotengine.org/

[3] The Godot Community. 2024. Godot Kotlin. https://godot-kotl.in

[4] Jonathan Edwards, Tomas Petricek, and Tijs van der Storm. 2023. Live
& Local Schema Change: Challenge Problems. CoRR abs/2309.11406
(2023). arXiv:2309.11406

[5] Sebastian Erdweg, Tijs van der Storm, et al. 2015. Evaluating and
Comparing Language Workbenches: Existing Results and Benchmarks
for the Future. Comput. Lang. Syst. Struct. 44 (2015).

[6] Ali Ezzeddine and Borja García de Soto. 2021. Connecting Teams
in Modular Construction Projects Using Game Engine Technology.
Automation in Construction 132 (2021).

[7] Leonard Geier, Clemens Tiedt, Tom Beckmann, Marcel Taeumel, and
Robert Hirschfeld. 2022. Toward a VR-Native Live Programming
Environment. In International Workshop on Programming Abstractions
and Interactive Notations, Tools, and Environments, PAINT 2022. ACM.

[8] Markus Gerhart and Marko Boger. 2016. Modigen: Model-Driven
Generation of Graphical Editors in Eclipse. AIRCC’s International
Journal of Computer Science and Information Technology (Oct. 2016).

[9] Jason Gregory. 2018. Game Engine Architecture. AK Peters/CRC Press.

[10] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and
Christian Smith. 2022. A Survey of Behavior Trees in Robotics and AI.
Robotics Auton. Syst. 154 (2022).

[11] Aníbal Iung, João Carbonell, Luciano Marchezan, Elder Rodrigues,
Maicon Bernardino, Fabio Paulo Basso, and Bruno Medeiros. 2020.
Systematic Mapping Study on Domain-Specific Language Develop-
ment Tools. Empirical Software Engineering 25, 5 (Sept. 2020).

[12] Julian Keil, Dennis Edler, Thomas Schmitt, and Frank Dickmann. 2021.
Creating Immersive Virtual Environments Based on Open Geospatial
Data and Game Engines. KN-Journal of Cartography and Geographic
Information 71, 1 (2021).

[13] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A
Domain Specific Language for Source Code Analysis andManipulation.
In SCAM. IEEE Computer Society.

[14] Dimitrios S. Kolovos, Antonio García-Domínguez, Louis M. Rose, and
Richard F. Paige. 2017. Eugenia: Towards Disciplined and Automated
Development of GMF-based Graphical Model Editors. Software &
Systems Modeling 16, 1 (Feb. 2017).

[15] Stefan Marks, JohnWindsor, and BurkhardWünsche. 2008. Evaluation
of Game Engines for Simulated Clinical Training. Canterbury U.

[16] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert
Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape
for Block-based Editors. In Software Language Engineering. ACM.

[17] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard
Steffen. 2018. CINCO: A Simplicity-Driven Approach to Full Gen-
eration of Domain-Specific Graphical Modeling Tools. International
Journal on Software Tools for Technology Transfer 20, 3 (June 2018).

[18] Jakob Nielsen. 1993. Response Times: The 3 Important Limits. https:

//www.nngroup.com/articles/response-times-3-important-limits/

[19] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias
Pape. 2019. Exploratory and Live, Programming and Coding - A
Literature Study Comparing Perspectives on Liveness. Art Sci. Eng.
Program. 3, 1 (2019), 1.

[20] Jouke Stoel, Tijs van der Storm, Jurgen J. Vinju, and Joost Bosman. 2016.
Solving the Bank with Rebel: On The Design of the Rebel Specification
Language and its Application Inside a Bank. In Industry Track on
Software Language Engineering, ITSLE@SPLASH 2016. ACM.

[21] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live
Programming. In Proceedings of the 1st International Workshop on Live
Programming, LIVE 2013. IEEE Computer Society.

[22] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean,
Tijs van der Storm, Benoit Combemale, and Olivier Barais. 2020. A
Principled Approach to REPL Interpreters. In Proceedings of the 2020
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2020). ACM.

[23] Jeroen van den Bos and Tijs van der Storm. 2011. Bringing Domain-
Specific Languages to Digital Forensics. In International Conference on
Software Engineering, ICSE 2011. ACM.

[24] Tijs van der Storm. 2023. usethesource/salix-core: v0.1.0-RC2. https:

//doi.org/10.5281/zenodo.8094140

[25] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN Notices 35, 6
(2000).

[26] Riemer van Rozen. 2023. Cascade: AMeta-Language for Change, Cause
and Effect. In Software Language Engineering, SLE 2023. ACM.

[27] Riemer van Rozen. 2023. Game Engine Wizardry for Programming
Mischief. In Workshop on Programming Abstractions and Interactive
Notations, Tools, and Environments, PAINT 2023. ACM.

[28] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. 2014. Sir-
ius: A Rapid Development of DSM Graphical Editor. In IEEE 18th
International Conference on Intelligent Engineering Systems INES 2014.

[29] Jos Warmer and Anneke Kleppe. 2022. Freon: An Open Web Native
Language Workbench. In Software Language Engineering, SLE 2022.
ACM.

49

https://docs.godotengine.org/
https://docs.godotengine.org/
https://godot-kotl.in
https://arxiv.org/abs/2309.11406
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.5281/zenodo.8094140
https://doi.org/10.5281/zenodo.8094140

	Abstract
	1 Introduction
	2 Background
	2.1 Live State Machine Language
	2.2 Leveraging Language Workbenches

	3 The Raven Framework
	3.1 Requirements
	3.2 Technical Challenges

	4 The Raven Application
	4.1 Raven UI Language
	4.2 Raven Engine
	4.3 Communication Protocol

	5 Integrating Raven into Rascal
	5.1 Describing Editors
	5.2 Handling Incoming Callbacks
	5.3 Starting a Raven-Rascal Application
	5.4 Implementation Effort

	6 Case Study
	6.1 LiveSML Revisited
	6.2 Visual Live Programming Environment
	6.3 Live Programming Scenario
	6.4 Analysis

	7 Discussion
	7.1 Costs, Benefits and Threats to Validity
	7.2 Raven's Potential for Future Research

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

