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Abstract. Sieving using near-neighbor search techniques is a well-known method in lattice-
based cryptanalysis, yielding the current best runtime for the shortest vector problem in both
the classical [BDGL16] and quantum [BCSS23] setting. Recently, sieving has also become an
important tool in code-based cryptanalysis. Specifically, using a sieving subroutine, [GJN23,
DEEK24] presented a variant of the information-set decoding (ISD) framework, which is com-
monly used for attacking cryptographically relevant instances of the decoding problem. The
resulting sieving-based ISD framework yields complexities close to the best-performing classi-
cal algorithms for the decoding problem such as [BJMM12,BM18]. It is therefore natural to
ask how well quantum versions perform. In this work, we introduce the first quantum algo-
rithms for code sieving by designing quantum variants of the aforementioned sieving subrou-
tine. In particular, using quantum-walk techniques, we provide a speed-up over the best known
classical algorithm from [DEEK24] and over a variant using Grover’s algorithm [Gro96]. Our
quantum-walk algorithm exploits the structure of the underlying search problem by adding a
layer of locality-sensitive filtering, inspired by the quantum-walk algorithm for lattice sieving
from [CL21]. We complement our asymptotic analysis of the quantum algorithms with nu-
merical results, and observe that our quantum speed-ups for code sieving behave similarly as
those observed in lattice sieving. In addition, we show that a natural quantum analog of the
sieving-based ISD framework does not provide any speed-up over the first presented quantum
ISD algorithm [Ber10]. Our analysis highlights that the framework should be adapted in order
to outperform the state-of-the-art of quantum ISD algorithms [KT17,Kir18].

Keywords. Quantum cryptanalysis, Quantum walks, Near-neighbor search, Code sieving, Decoding
problem, Information-set decoding

1 Introduction

A fundamental problem in code-based cryptography is the decoding problem: given a linear code
C, find a codeword xc ∈ C of (small) fixed weight w.3 The decoding problem is NP-hard in the
worst case [BMvT78]. More important for cryptographic purposes, it is known that w can be chosen
to guarantee the existence of exactly one solution on average, which gives us the so-called unique
decoding regime. In this regime, the decoding problem is believed to be hard for a random instance of
the problem. In particular, all known algorithms for attacking a random instance of this problem run
in time and memory exponential in the input size. The best generic attacks4 belong to the so-called
information-set decoding (ISD) framework.

The ISD framework was originally introduced in the work of Prange [Pra62], and further improved
using various techniques, including the meet-in-the-middle approach and its generalizations [Ste88,
Dum91,SS81], representation techniques [MMT11,BJMM12], near-neighbor search techniques [MO15,
Car20], and their combinations. Some of these techniques were adapted to the quantum setting
[Ber10,KT17,Kir18]. To find the solution to the decoding problem, current ISD algorithms search for
many partial solutions (by solving an instance of the decoding problem in a smaller dimension), and
then check if any of those yields a solution to the original problem.

3 This problem is called the codeword-finding problem in [DEEK24], and can be seen as a homogeneous
version of the well-known syndrome decoding problem.

4 For certain parameter regimes, the so-called statistical decoding attacks (also known as dual attacks in the
lattice literature) are more efficient. As we are not particularly interested in a specific parameter regime,
we will only consider attacks in the ISD framework.

http://arxiv.org/abs/2408.16458v1
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Recently, a new ISD algorithm was proposed in [GJN23] and further generalized and improved
in [DEEK24]. This approach uses a so-called sieving technique to find the partial solutions, which is
well-known and widely applied in lattice-based cryptanalysis. The idea of a sieving algorithm is to
start with a list of arbitrary elements and iteratively combine elements from the current list to obtain
a new list of elements that satisfy a certain property which makes them (in some precise mathematical
sense) ‘closer’ to being a solution. At the end, the algorithm outputs a list of solutions. In the code
setting, the sieve starts with a list of arbitrary vectors, and in each iteration it combines pairs of
vectors that satisfy an additional code constraint, eventually ending up with vectors in the code.

In each iteration of the sieve, the task of combining list elements to obtain a new list of suitable
pairs can be formulated as an instance of a near-neighbor search problem (NNS). [DEEK24] presented
several methods for solving this NNS problem, the best of which are based on locality-sensitive filtering
(LSF) techniques. Using these methods, [DEEK24] obtained a sieving-based ISD algorithm for the
decoding problem whose asymptotic runtime is close to that of the best known classical algorithms
(such as [BJMM12, BM18]), with an improved time-memory trade-off over the previously known
techniques.

While sieving algorithms are new in code-based cryptanalysis, they are abundant in lattice-based
cryptanalysis, and belong to the state-of-the-art of classical and quantum algorithms for the shortest-
vector problem. Classical algorithms for lattice sieving were first introduced by [AKS01] and later
improved in [NV08,MV10,BDGL16], the latter of which introduced the LSF techniques in the Eu-
clidean metric that were adapted in [DEEK24] for the Hamming metric. The addition of LSF gave
a significant improvement in the runtime of lattice sieving. The first quantum speed-up for lattice
sieving was obtained using a Grover-based algorithm [Laa15], which was further improved using
quantum-walk techniques in [CL21]. This quantum-walk algorithm was further improved in [BCSS23]
using reusable-walk techniques.

The various quantum speed-ups in lattice sieving raise a natural question of how well the corre-
sponding quantum techniques perform when adapted to the setting of codes, which is the focus of
this work. More precisely, in this work we aim to answer the following questions.

1. What is (an upper bound on) the quantum complexity of code sieving?

2. What is the runtime and memory of the quantum ISD algorithm that results from using our
quantum algorithms for code sieving as a subroutine?

1.1 Main Contributions

Quantum algorithms for code sieving. We introduce the first quantum algorithms for code sieving by
combining the classical sieving algorithm from [DEEK24] with the state-of-the-art techniques from
quantum algorithms for lattice sieving [Laa15, CL21, BCSS23]. The sieving algorithm in [DEEK24]
appears as a subroutine of their ISD algorithm, and solves a decoding problem with the goal of finding
many codewords in a given code. This subroutine repeatedly solves a near-neighbor search problem
of the following form: given a list L of N vectors in F

n
2 of (Hamming) weight w, find all pairs in L

whose sum is of weight w. The complexity of the best known algorithms for this NNS problem, and
thereby the overall complexity of the sieving-based algorithm, depends on the cost of a subroutine
that we call FindSolutions which, in short, searches for ‘solutions’ in a structured subset of the list
L. Similar to the lattice setting, our quantum algorithms aim to speed up this subroutine. We thus
obtain quantum algorithms (and speed-ups) for this NNS problem, which might be of independent
interest.

We present several quantum algorithms for FindSolutions and analyze their asymptotic time and
memory complexities. Our first quantum algorithm is a straightforward application of Grover, and
serves as a baseline for comparison. Our other quantum algorithms are a quantum-walk algorithm
and a variant thereof, where we apply the sparsification technique from [CL21]. Both quantum-walk
algorithms make use of locality-sensitive filtering (LSF) to obtain a speed-up over Grover in the
search for ‘solutions’. The use of LSF inside the quantum walk was first suggested by [CL21] in the
context of lattice sieving, and one of our contributions is to show how to apply this layer of LSF in the
context of codes (see Section 4.4). Specifically, we introduce a Hamming-metric variant of the ‘residual
vectors’ used in [CL21], which behave somewhat differently than their Euclidean-metric analogs, but
still allow us to apply LSF.



Quantum Sieving for Code-Based Cryptanalysis and Its Limitations for ISD 3

Besides providing an asymptotic analysis of the time and memory complexities of our quan-
tum algorithms, we evaluate their performance through numerical optimization. Our numerical re-
sults illustrate the obtained quantum speed-up over the classical algorithm from [DEEK24], as well
as a comparison between our different quantum algorithms. In addition, we show that the quan-
tum speed-ups we obtain align with the speed-ups observed in the state-of-the-art of lattice crypt-
analysis (see Table 1). The Python code used for the numerical results of this work is available at
https://github.com/lynnengelberts/quantum-sieving-for-codes-public.

Application to quantum ISD. The sieving framework from [GJN23, DEEK24] was introduced as a
subroutine in an ISD algorithm to solve the decoding problem in the unique decoding regime. Since
the resulting sieving-based ISD algorithm is shown to asymptotically perform nearly as good as
the classical state-of-the-art for this problem, we focus on the question whether quantum analogs
of this algorithm could have similar performance as the quantum state-of-the-art. In particular, we
consider a natural quantum analog of sieving-based ISD that is obtained by allowing for a quantum
sieving subroutine and using amplitude amplification. We show, using a combination of analysis and
numerical optimization, that this quantum analog of sieving-based ISD cannot even improve on the
first quantum algorithm for the decoding problem from [Ber10].

More precisely, we observe that the main limiting factor is a lower-bound constraint on the list
size that is imposed in each iteration of the sieve, and which results in a lower bound on the time
complexity of the resulting quantum ISD algorithm. Our results indicate that the sieving-based ISD
framework should be adapted if it wants to compete with the best-performing quantum algorithms for
the decoding problem. We suggest two natural attempts to adapt the sieving-based ISD framework,
and explain why these do not allow for overcoming the found limitations.

In the end, our results show that code-based cryptosystems are still resilient to these quantum
methods for code sieving inside the standard ISD framework. Given the quantum speed-ups in lattice-
based cryptanalysis and the recent introduction of sieving techniques for codes, it was essential to
evaluate their impact on the security of code-based schemes. Our new quantum algorithms for the NNS
problem in the Hamming metric have the potential to be used in future algorithms for the decoding
problem (for instance within new sieving algorithms that overcome the limitations addressed in this
work, or within algorithms with completely different approaches). Identifying specific applications
remains an open question for future work.

1.2 Outline

The paper is organized as follows. In Section 2, we introduce our notation and the relevant prelimi-
naries. Section 3 describes the framework for code sieving, as well as near-neighbor search methods
using locality-sensitive filtering. It also explains how the complexity of NNS and code sieving de-
pends on the complexity of FindSolutions. In Section 4, we present our quantum algorithms for
FindSolutions and their asymptotic complexity. Section 5 presents numerical results for the asymp-
totic runtime and memory of the introduced quantum algorithms. Finally, in Section 6, we adapt
the classical sieving-based ISD framework from [DEEK24] to the quantum setting, and discuss its
limitations.

1.3 Acknowledgements

The authors are grateful to Ronald de Wolf, Léo Ducas, and Elena Kirshanova for useful comments
on the manuscript. The authors also thank Jean-Pierre Tillich for discussing this project in its early
stage. LE was supported by the Dutch National Growth Fund (NGF), as part of the Quantum Delta
NL program. SE and JL were supported by the ERC Starting Grant 947821 (ARTICULATE).

2 Preliminaries

2.1 Notation

Binary finite fields. We denote by F2 the binary finite field, and by F
n
2 the corresponding vector space

of dimension n. We write + (resp. ∧) for the bitwise ‘XOR’ (resp. ‘AND’) between two vectors in F
n
2 .

https://github.com/lynnengelberts/quantum-sieving-for-codes-public
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Scalars, vectors, matrices. A scalar is denoted by a non-bold, small letter, a vector is denoted by a
bold small letter, and a matrix by a bold capital letter.

Asymptotic notation. We use standard Landau notation. Namely, we write f(n) = O(g(n)) if there
exist constants c, n0 ≥ 0 such that f(n) ≤ c · g(n) for all integers n ≥ n0. We write f(n) = Ω(g(n))
if there exist constants c, n0 ≥ 0 such that f(n) ≥ c · g(n) for all integers n ≥ n0. We write f(n) =
Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)). We define Õ(f(n)) := O (f(n) · polylog(f(n))),
where polylog(f(n)) := log(f(n))O(1), and define Ω̃, Θ̃ in a similar way. We write f(n) = o(g(n)) if
for all constants c > 0, there exists n0 > 0 such that 0 ≤ f(n) < c · g(n) for all integers n ≥ n0.

Other. The non-negative integers are denoted by N. For any n, k ∈ N with k ≤ n, we define the
binomial coefficient by

(

n
k

)

:= n!
k!(n−k)! .

2.2 Hamming Space

We are interested in computational problems over F
n
2 endowed with the Hamming metric for n ∈ N.

In particular, we define the Hamming weight | · | of a vector as

∀x ∈ F
n
2 , |x| := {i ∈ {0, 1, . . . , n− 1} : xi 6= 0}.

(The notation | · | will also be used to define the cardinality of a set.)

Definition 2.1 (Hamming sphere). For any integer 0 ≤ w ≤ n, we define the weight-w (Ham-
ming) sphere as

Sn
w := {x ∈ F

n
2 : |x| = w}.

The surface area of a sphere (i.e., the size of the set Sn
w) is calculated as |Sn

w| =
(

n
w

)

.

Definition 2.2 (Region). For any c ∈ F
n
2 and integer 0 ≤ α ≤ |c|, we define

Regionnα(c) := {x ∈ F
n
2 : |x ∧ c| = α}.

The surface area of a region is |Regionnα(c)| =
∑n

v=α

(|c|
α

)(

n−|c|
v−α

)

.
The intersection of a sphere with a region is called a (spherical) cap.

Definition 2.3 (Spherical cap). For any c ∈ F
n
2 and integers α, v with 0 ≤ α ≤ v ≤ n and α ≤ |c|,

we define

Cn
v,α(c) = Sn

v ∩ Regionnα(c) := {x ∈ Sn
v : |x ∧ c| = α}.

The surface area of a spherical cap is |Cn
v,α(c)| = |Sn

v ∩ Regionnα(c)| =
(|c|
α

)(

n−|c|
v−α

)

.
Furthermore, the intersection of two caps (on the same sphere) is called a (spherical) wedge.

Definition 2.4 (Spherical wedge). For any x,y ∈ F
n
2 and integers α, v with 0 ≤ α ≤ v ≤ n and

α ≤ min(|x|, |y|), we define

Wn
v,α(x,y) := Cn

v,α(x) ∩ Cn
v,α(y) = Sn

v ∩ Regionnα(x) ∩ Regionnα(y)

= {c ∈ Sn
v : |x ∧ c| = |y ∧ c| = α}.

We are particularly interested in the case where x and y are of equal Hamming weight. Then the
surface area of a spherical wedge is given by the following lemma.

Lemma 2.5 (Surface area of a wedge). Let x,y ∈ Sn
w and define w∗ := |x ∧ y|. For all integers

α, v with 0 ≤ α ≤ v ≤ n and α ≤ w, we have that

|Wn
v,α(x,y)| =

min(α,w∗)
∑

e=max(0,2α−v)

(

w∗

e

)(

w − w∗

α− e

)2(
n− 2w + w∗

v − 2α+ e

)

.

Note that e ranges over all possible values of |x ∧ y ∧ c|.
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Proof. (The case w∗ = w
2 was already proven in [DEEK24].) We want to count the number of c ∈ Sn

v

such that |x ∧ c| = |y ∧ c| = α. For each such vector c, it holds that max(0, 2α− v) ≤ |x ∧ y ∧ c| ≤
min(α,w∗), where the inequality 2α − v ≤ |x ∧ y ∧ c| follows from the fact that v = |c| must be at
least |x ∧ c∧ y|+ |x ∧ c∧ y|+ |y ∧ c∧ x| = |x ∧ y ∧ c|+ 2(α− |x ∧ y ∧ c|) = 2α− |x ∧ y ∧ c| (where
we write x for the bitwise negation of x). In particular, we have the partition

Wn
v,α(x,y) =

min(α,w∗)
⊔

e=max(0,2α−v)

Se

where Se := {c ∈ Sn
v : |x∧c| = |y∧c| = α, |x∧y∧c| = e} (note that the sets Se are clearly disjoint).

The claim then follows from the observation that |Se| =
(

w∗

e

)(

w−w∗

α−e

)2(n−(2w−w∗)
v−2α+e

)

. ⊓⊔

Remark 2.6 (Surface area only depends on the center weight). Note that the surface area of a cap
(resp. wedge) only depends on the weight of the center c (resp. on the weight of x,y and on their
overlap).

2.3 Linear Codes and Random Codes

The problems and algorithms in this work consider binary linear codes.

Definition 2.7 (Binary linear code). An [n, k] binary linear code C is defined as a linear subspace
of size 2k of Fn

2 . Elements of C are called codewords.

A code can be represented by a generator matrix : a full-rank matrix G ∈ F
k×n
2 whose rows form

a basis of the subspace C. Conversely, any such matrix defines a code.

We are primarily interested in random binary linear codes (abbr. random codes), namely codes
obtained from sampling a generator matrix uniformly at random from F

k×n
2 . These codes can be

sampled in time polynomial in n.

2.4 Quantum Computation

We say that a quantum algorithm has time complexity T if the circuit describing it uses at most T
elementary quantum gates. When T is polynomial in the number of bits needed to write down the
input, we say the algorithm is efficient.

QRAM model and complexities. Our results hold in the quantum circuit model model where
QRAM operations are assumed efficiently implementable. We consider separately the quantum ran-
dom access to classical memory (QRACM) and quantum random access to quantum memory (QRAQM).
More precisely, a QRACM operation performs the unitary Ox : |i〉 |0〉 7→ |i〉 |xi〉 for some register
x = {x0, . . . , xN−1} that is classically stored and quantumly accessible. A QRAQM operator applies

the unitary: O′
x :
(

⊗N−1
j=0 |xj〉

)

|i〉 |0〉 7→
(

⊗N−1
j=0 |xj〉

)

|i〉 |xi〉. For the memory complexities, we will

specify the sizes of the classical and quantum memories, and more specifically the sizes of the classical
and quantum registers that the respective QRAM operator has access to.

Grover’s algorithm and amplitude amplification. We recall Grover’s algorithm and a general-
ization of it, commonly known as amplitude amplification.

Theorem 2.8 (Grover’s algorithm). For N ∈ N, let f : [N ] → {0, 1} be a function and define
t := |{i ∈ [N ] : f(i) = 1}|. There exists a quantum algorithm, called Grover’s algorithm, that returns
i such that f(i) = 1, if such an i exists, using O(

√

N/max{1, t}) queries to f and Õ(
√

N/max{1, t})
elementary gates with probability at least 2/3. It uses max(log2(xi)) quantum memory and requires
efficient QRAM access to the register x ∈ {0, 1}N with xi = f(i). In particular, if the register is
classically stored, it requires QRACM of size N , and if it is quantumly stored, QRAQM of size N .
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Grover’s algorithm as originally presented in [Gro96] applies to the case of a unique solution; the
extension to multiple solutions was detailed in [BBHT98]. When t is known, then Grover’s algorithm
can be adapted to have success probability 1. When t is unknown, then it is still possible to find
i ∈ [N ] such that f(i) = 1 with an expected number of O(

√

N/t) queries to f (and an expected

number of Õ(
√

N/t) elementary gates) if t > 0. In this work, when we apply Grover’s algorithm we
always know an estimate of the number of solutions t.

Theorem 2.9 (Amplitude amplification [BHMT02]). For N ∈ N, let f : [N ] → {0, 1} be a
function. Suppose there is an efficient quantum circuit Uf that maps |i〉 → (−1)f(i) |i〉. Suppose A is
an algorithm that can be implemented as a reversible quantum circuit and that returns i ∈ [N ] such
that f(i) = 1 in time T with success probability p > 0. Then there exists a quantum algorithm, called
amplitude amplification, that returns i ∈ [N ] such that f(i) = 1 with probability at least max(1−p, p)
in time O(1/

√
p) ·T . If algorithm A uses quantum access to a classical register (resp. quantum), then

running amplitude amplification requires QRACM (resp. QRAQM) operators.

Moreover, for known p, there is a variant of amplitude amplification with success probability 1,
which uses O(1/

√
p) applications of A and Uf [BHMT02, Theorem 4]. When p is unknown, then

there is a variant that finds an i ∈ [N ] such that f(i) = 1 using an expected number of Θ(1/
√
p)

applications of A and Uf as long as p > 0 [BHMT02, Theorem 3].
Finally, note that we can reduce the error probability of Grover’s algorithm and amplitude am-

plification using standard methods: using O(log2(1/ǫ)) repetitions it can be bounded from above by
an arbitrarily small ǫ > 0.

Quantum walk. We will consider the quantum walks as presented in [MNRS11]. A quantum walk
starts with an undirected graph G = (V,E), with V the set of vertices and E ⊆ V × V the set of
edges. The set M ⊆ V contains elements said marked, and the goal of a quantum walk is to return a
marked vertex v ∈ M . For any vertex v ∈ V , we define N(x) := {v′ : (v, v′) ∈ E} the set of neighbors
of v, and |pv〉 =

∑

y∈N(v)
1√

|N(v)|
|v′〉. We now define the following quantities:

– Set-up cost S is the cost of the unitary map |0〉 7→ 1√
|V |

∑

v∈V |v〉 |pv〉.
– Update cost U is the cost of the unitary map |v〉 |0〉 7→ |v〉 |pv〉.
– Checking cost C is the cost of computing the function f : V → {0, 1} where f(v) = 1 ⇔ v ∈ M .

– ǫ = |M|
|V | is the fraction of marked vertices.

– δ is the spectral gap of G, which is defined as δ := 1−|λ|, where λ is the second largest eigenvalue
(in magnitude) of the normalized adjacency matrix of G.

Proposition 2.10. [MNRS11] There exists a quantum-walk algorithm that finds a marked element
v ∈ M in time

O

(

S+
1√
ǫ

(

1√
δ
U+ C

))

.

Johnson graph. For positive integers r < n, the Johnson graph J(n, r) is a standard graph to run
quantum walks, and is for instance used in quantum-walk algorithms for solving collision problems.
Each vertex v consists of r distinct (unordered) points x1, . . . , xr ∈ [n] and some additional data
D(v). Two vertices v = (x1, . . . , xr, D(v)) and v′ = (x′

1, . . . , x
′
r, D(v′)) form an edge in J(n, r) iff

|{x1, . . . , xr}∩{x′
1, . . . , x

′
r}| = r−1. It is well-known that the graph J(n, r) has spectral gap δ = Ω(1r ).

[Amb07] and [BJLM13] presented quantum data structures that use efficient QRAM to perform
efficient insertion and deletion of elements in quantum superposition. We refer the reader to these
papers for more details.

3 Code Sieving using NNS Techniques

Sieving using a near-neighbor search (NNS) subroutine is a well-known method in lattice-based crypt-
analysis (e.g., see [BDGL16]) and recently has become an important tool in code-based cryptanalysis
as well. Our quantum algorithms for code sieving are based on the sieving framework that was intro-
duced in [GJN23] and further improved and generalized in [DEEK24]. In this section, we recall this
sieving framework and its complexity (Theorem 3.8). We begin by stating the computational problem
that is tackled by the sieving framework, namely, the decoding problem.
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Problem 3.1 (Decoding problem, DP(n, k, w,N)). Given an [n, k] binary linear code C and an integer
value w, find N codewords xc ∈ C of weight |xc| := w.

We focus on the expected runtime of algorithms that solve a random instance of Problem 3.1.
That is, we assume that C is a random [n, k] linear code. Given such a code C, the expected number of
codewords in C of weight w is

(

n
w

)

/2n−k. For the decoding problem DP(n, k, w,N) to be well-defined,

we thus require N = O
(

(nw)
2n−k

)

.

Remark 3.2. In the introduction (and later in Section 6), we considered the decoding problem as
Problem 3.1 with N = 1, as the presumed hardness of this variant underlies the security of code-
based cryptographic primitives. The case for arbitrary N naturally appears as a subinstance in the
ISD framework, and in particular it is the problem that is tackled by the sieving subroutine in the
ISD algorithms from [GJN23,DEEK24]. Therefore, in the remainder of this section, we consider this
problem for arbitrary N .

3.1 Framework for Code Sieving

Recently, sieving-based algorithms were presented for this decoding problem [GJN23,DEEK24]. These
algorithms make use of an oracle that solves NNS in F

n
2 endowed with Hamming metric, which is

defined as follows.

Problem 3.3 (Near-neighbor search, NNS(n,w,N)). Let n,w ∈ N with w ≤ n. Given a list L of N
vectors sampled independently and uniformly at random from Sn

w, find a (1 − o(1))-fraction of all
pairs (x,y) ∈ L2 satisfying |x+ y| = w (called solution pairs).

The basic idea of code sieving [GJN23, DEEK24] for solving DP(n, k, w,N) is to start from a
list of arbitrary vectors of Hamming weight w and then iteratively add code constraints to obtain
a required number of codewords of Hamming weight w. These iteratively added code constraints
define a so-called tower of codes : a collection {Fn

2 = C0, . . . , Cn−k = C} of codes with Ci−1 ⊇ Ci and
dimension decrements of 1, starting with the ‘initial’ code F

n
2 and ending with the input code C.

When going from Ci−1 to Ci, the addition of one constraint results in halving the linear subspace
Ci−1. Thus, in expectation only half of the vectors from the code Ci−1 are in the code Ci. To avoid
an exponential drop, Algorithm 1 therefore instead creates new elements from the elements of the
previous iteration. Specifically, this is done by adding pairwise sums of the elements from the previous
list Li−1 to the new list Li, which is a technique also used in lattice sieving. To improve the algorithm’s
performance, instead of searching through all pairs of elements from Li−1, the algorithm searches
through the list of near neighbors, {(x,y) : x,y ∈ Li−1, |x + y| = w}, namely the elements that are
at small Hamming distance in F

n
2 . Among the near neighbors (x,y), the algorithm then adds x + y

to Li for those x+ y that belong to Ci.
Algorithm 1 presents the overall sieving framework for solving the decoding problem (Problem 3.1)

in more detail. Note that the time complexity of this sieving algorithm (Algorithm 1) is determined
by the cost of one iteration, i.e., by the cost of solving NNS(n,w,N) (Problem 3.3). We therefore
state the time and memory complexity of Algorithm 1 after presenting the state-of-the-art algorithm
from [DEEK24] for NNS(n,w,N) in Section 3.2.

Remark 3.4 (Difference with lattice sieving). Note the difference with lattice sieving, where one starts
with a list of long lattice vectors, and iteratively combines them to obtain shorter lattice vectors.
Another difference is that code sieving was presented in [GJN23,DEEK24] as a subroutine in an ISD
algorithm, whereas lattice sieving is the main algorithm. (We elaborate on the application to ISD in
Section 6.)

Besides the upper bound on the output size N that is imposed by the decoding problem itself, the
construction of the sieving algorithm also puts a lower bound on the size N used in the algorithm.
Specifically, Lemma 3.5 shows that if N is too small, then the expected number of solutions to
NNS(n,w,N) is significantly smaller than N . As a result, the current list size would shrink in each
iteration, and the output list cannot be of size Ω(N).
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Algorithm 1: Code sieving using NNS

Input : [n, k] binary linear code C ⊆ F
n
2 , weight w, output size N , oracle ANNS for NNS(n,w,N)

Output: L ⊆ C ∩ Sn
w of size N

Initialization:

1 Sample a tower of codes {Fn
2 = C0, . . . , Cn−k = C}, with dimension decrements of 1.

2 Sample N vectors independently and uniformly at random from Sn
w and add them to a list L0.

Sieving part:

3 for i = 1 to n− k do

4 Invoke ANNS on Li−1 to obtain L′

i := {(x,y) : x,y ∈ Li−1, |x+ y| = w}.
5 for (x,y) ∈ L′

i do

6 if x+ y ∈ Ci then

7 Add x+ y to Li.

8 Discard some elements if |Li| > N .

9 return Ln−k

Lemma 3.5 ( [DEEK24]). Let L be a set containing N vectors sampled uniformly and indepen-
dently at random from Sn

w. Then the expected number of pairs (x,y) ∈ L2 satisfying |x + y| = w
is

N2

(

w
w/2

)(

n−w
w/2

)

(

n
w

) .

In particular, the expected number of such pairs is at least N if and only if N ≥ (nw)
( w
w/2)(

n−w
w/2 )

.

Proof. (This was also observed in [DEEK24].) For x,y ∈ Sn
w sampled independently and uniformly

at random, the probability that they satisfy |x + y| = w is equal to
(

w
w/2

)(

n−w
w/2

)

/
(

n
w

)

. To see this,

one could use the fact that for any x,y ∈ Sn
w, the condition |x + y| = w is equivalent to the

condition that |x ∧ y| = w/2. It follows that the expected number of pairs satisfying this condition
is N2

(

w
w/2

)(

n−w
w/2

)

/
(

n
w

)

. Therefore, the expected number of such pairs is at least N if and only if

N ≥
(

n
w

)/((

w
w/2

)(

n−w
w/2

))

. ⊓⊔

By Lemma 3.5, if N ≥
(

n
w

)/((

w
w/2

)(

n−w
w/2

))

, then NNS(n,w,N) has at least N solutions in expec-

tation. However, note that, in each iteration i of Algorithm 1, on average only a quarter of the NNS
solutions (x,y) found by ANNS will be added to the new list Li. Indeed, half of them is discarded
as each pair is counted twice: (x,y) and (y,x). Secondly, the algorithm discards those x + y that
do not belong to Ci. Since two subsequent codes Ci−1, Ci differ by one dimension, it follows that in
expectation another half of the NNS solutions are discarded. Therefore, [DEEK24] propose to take
N ≥ 4 ·

(

n
w

)/((

w
w/2

)(

n−w
w/2

))

to maintain a list size of N through all iterations in the sieving part.

It is important to emphasize that the application of Lemma 3.5 in the above discussion is justified
if the distribution of the list elements does not change throughout the iterations. In fact, to guarantee
that the output list contains N vectors (for N within the stated bounds), the sieving algorithm
from [DEEK24] relies on the following heuristic.

In each iteration of Algorithm 1, the elements in the current list ‘behave like’ vectors distributed
independently and uniformly at random over Sn

w in the sense that, even if some correlations
appear in an iteration of the algorithm, it does not significantly affect the runtime of the
algorithm.

See [DEEK24] for a more precise formulation of this heuristic and experimental verification.5

5 A similar heuristic is used in the most efficient lattice-based sieving approaches (in particular, [NV08,MV10]
and their classical and quantum derivatives [BDGL16,Laa15,CL21,BCSS23]).
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3.2 NNS using Locality-Sensitive Filtering (LSF)

The algorithms for the NNS problem in the Hamming metric proposed in [Car20,GJN23,DEEK24]
can all be formulated using the locality-sensitive filtering (LSF) framework in the Hamming metric.
Notably, the best-performing algorithms for NNS in the Euclidean metric [BDGL16] also employ LSF
techniques. We start by recalling this approach.

The underlying idea of locality-sensitive filtering (in F
n
2 ) is the following: vectors x,y satisfying

|x + y| = w, also known as near neighbors, can be found more efficiently if we restrict our search
to local regions of Fn

2 . The algorithm proceeds as follows. It starts with covering the space F
n
2 with

(potentially overlapping) regions, each region corresponding to a certain center c ∈ Cf , for some
subset Cf ⊆ F

n
2 . Each vector x from the input list L is then filtered according to the centers, namely,

it is inserted into a bucket corresponding to a center c if and only if |x ∧ c| = α.6 This is what we
refer to as the bucketing phase. Each bucket thus contains all the elements from L that belong to the
same region. The algorithm then searches for near neighbors within each bucket, which we refer to as
the checking phase. As the checking phase significantly affects the overall cost of the algorithm, our
primary goal will be to improve its runtime by quantizing this part of the algorithm.

We formalize the notion of bucket as follows, and define the set of valid centers for a given vector.

Definition 3.6 (Bucket). For c ∈ F
n
2 , integers 0 ≤ α ≤ w ≤ n with α ≤ |c| and L ⊆ Sn

w, define

Bα(c) := {x ∈ L : |x ∧ c| = α}.

Definition 3.7 (Valid centers). For x ∈ F
n
2 , integers 0 ≤ α ≤ n with α ≤ |x| and Cf ⊆ F

n
2 , define

VCα(x) := {c ∈ Cf : |x ∧ c| = α}.

The resulting NNS algorithm is presented in Algorithm 2. It uses two subroutines: FindValidCenters
and FindSolutions. For a given x ∈ L and bucketing parameter α, the FindValidCenters subrou-
tine returns a set VCα(x) = {c ∈ Cf | |x ∧ c| = α}. For a suitable choice of Cf (using so-called
random product codes), the time complexity of this subroutine has been shown by [DEEK24] to be
|VCα(x)|+ 2o(n), as explained in the next section.

The subroutine FindSolutions returns all pairs (x,y) of vectors in the bucket Bα(c) satisfying
|x+y| = w. Classically, we obtain an algorithm for FindSolutionswith expected runtime E[|Bα(c)|2]
by searching through all pairs in Bα(c). (Although [DEEK24] consider a slightly different approach
for the checking phase, it results in the same asymptotic runtime for NNS.) In Section 4, we focus on
speeding up the search in the buckets by presenting several quantum algorithms for FindSolutions.

Algorithm 2: NNS using locality-sensitive filtering

Input : weight w, input list L ⊆ Sn
w of size N , set of centers Cf , bucketing parameter α

Output: list L′ containing pairs x,y ∈ L with |x+ y| = w

Initialization:

1 for c ∈ Cf do

2 Bα(c) = ∅.

Bucketing Phase:

3 for x ∈ L do

4 for c ∈ FindValidCenters(Cf ,x, α) do

5 Add x to Bα(c).

Checking Phase:

6 L′ = ∅.
7 for c ∈ Cf do

8 Add FindSolutions(Bα(c)) to L′.

9 return L′

6 The analog in the lattice setting is that a unit vector is added to a bucket corresponding to some unit
vector c ∈ R

n if it has (absolute) inner product at least α with c.
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Depending on the size of |Cf |, Algorithm 2 has to be repeated a certain number of times to
find all solutions. The size of |Cf | also affects other factors of the time and memory complexity of
Algorithm 2, and should thus be chosen carefully. The best time and memory complexity [DEEK24,
Cor. 4.2] is obtained by choosing |Cf | such that E[|VCα(x)|] = 2o(n), ensuring that the expected
runtime of FindValidCenters is 2o(n). (An algorithm with similar time and memory complexities
as [DEEK24, Cor. 4.2] was independently obtained by Carrier [Car20, Cor. 8.2.6].)

More generally, given a classical or quantum algorithm for FindSolutions, we obtain the following
time and memory complexities for NNS(n,w,N), and thus for DP(n, k, w,N) by instantiating the
oracle ANNS in Algorithm 1 with the obtained algorithm for NNS(n,w,N).

Theorem 3.8 (Variant of [Car20, Cor. 8.2.6] and [DEEK24, Cor. 4.2, Theorem 3.2]).
Consider n,w,N ∈ N with w = Θ(n) such that NNS(n,w,N) (Problem 3.3) is well-defined. For
positive integers v, α = Θ(n) and arbitrary x,y ∈ Sn

w such that |x + y| = w, let |Cf | = 2o(n) ·
|Sn

v |/|Cn
v,α(x)| and R = 2o(n) · |Cn

v,α(x)|/|Wn
v,α(x,y)|.

Then, given a classical, resp. quantum, algorithm for FindSolutions with expected runtime T ,
there exists a classical, resp. quantum, algorithm that solves NNS(n,w,N) in expected time

R · (2o(n) ·N + |Cf | · T )

using R calls to Algorithm 2. Moreover, the classical memory is of expected size 2o(n) · N , and the
other memory complexities are the same as for the FindSolutions subroutine.

In addition, if 4 ·
(

n
w

)/((

w
w/2

)(

n−w
w/2

))

≤ N ≤
(

n
w

)

/2n−k and k = Θ(n) is such that the binary-sieve

heuristic in [DEEK24] holds for (n, k, w,N), then there exists a classical, resp. quantum, sieving-based
algorithm that solves DP(n, k, w,N) (Problem 3.1) with the same time and memory complexity, up
to polylogarithmic factors.

Note that the first part follows from [Car20, Cor. 8.2.6] and [DEEK24, Cor. 4.2] when allowing
for a quantum subroutine, and that the second part follows from [DEEK24, Theorem 3.2].

3.3 Random Product Codes and an Efficient Algorithm for FindValidCenters

To efficiently perform the FindValidCenters subroutine, [DEEK24] suggest to let Cf be a binary
linear code for which there exists an efficient decoding algorithm. More precisely, they use the notion
of random product codes, originally introduced in [BDGL16] for R

n, and defined as follows for F
n
2 .

Remark 3.9. A similar notion of random product codes and a corresponding decoding algorithm was
also independently presented (in French) in [Car20, Section 9.1] for a related problem.

Definition 3.10 (Random product code (RPC) in F
n
2 ). An (n, v, t)-RPC of size κ is an element

C drawn uniformly at random from the set

Rn,v,t,κ := {C = C(1) × · · · × C(t) : C(i) ⊆ S
n/t
v/t such that ∀i, |C(i)| = κ1/t}.

We write C ∼ Rn,v,t,κ.

The set of centers is then sampled uniformly at random from Rn,v,t,κ to guarantee:

(1) Efficient decodability: in some reasonable parameter regimes, one can compute VCα(x) := {c ∈
C : |x ∧ c| = α} in time asymptotically equal to its size |VCα(x)|.

(2) Random behavior: for t not too large, a sample C behaves like a fully random code in the sense
that the success probability that C ∼ Rn,v,t,κ ‘captures’ a pair (x,y) ∈ L2 is the same (up to
factors subexponential in n) as for a fully random code in Sn

v .7

For more details, we refer to [DEEK24]. As we will refer back to the first property later in this work,
we state the corresponding result here (which implicitly follows from the application of [DEEK24,
Lemma 4.5] in the proof of [DEEK24, Theorem 4.4]).

7 This ‘randomness’ property puts a constraint on t. More precisely, as described in [DEEK24] (and in
[BDGL16] for R

n), we would like t to be small enough to guarantee that we can approximate a cap/wedge

in F
n
2 by the Cartesian product of t caps/wedges in F

n/t
2 . By Lemma 4.6 and Lemma 4.7 in [DEEK24],

these approximations are satisfied up to a subexponential factor in n if t = o(n/ log(n)).
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Theorem 3.11 (Efficient decodability of RPC [DEEK24]). Let n ∈ N and let w, v, α = Θ(n), κ
be positive integers. For t = Θ(

√
n), let C be an (n, v, t)-RPC of size exponential in n. Then there

exists a classical algorithm that, for any x ∈ Sn
w, computes the set VCα(x) := {c ∈ C : |x ∧ c| = α} in

time |VCα(x)| + 2o(n).

4 Quantum Algorithms for NNS and Code Sieving

In this section, we present the first quantum algorithms for code sieving. More precisely, we describe
different quantum algorithms for the FindSolutions procedure in the NNS subroutine (Algorithm 2),
and analyze the time and memory complexities of our algorithms. By plugging our results (i.e.,
Theorem 4.5 and Theorem 4.7) into Theorem 3.8, we obtain the time and memory complexity of the
resulting quantum algorithms for NNS and, hence, code sieving. Our numerical results in Section 5
illustrate the quantum speed-ups obtained for these resulting algorithms.

We recall the context in which FindSolutions is used. That is, consider the successful completion
of the bucketing phase in Algorithm 2 on an input list L ⊆ Sn

w: for some bucketing parameter α, we
have sampled a set Cf ⊆ Sn

v of bucket centers and an associated data structure containing for each
c ∈ Cf the bucket

Bα(c) := {x ∈ L : |x ∧ c| = α} ⊆ Regionα(c) := {x ∈ Sn
w : |x ∧ c| = α}. (1)

Then the goal of FindSolutions is to find all x,y ∈ Bα(c) satisfying |x+ y| = w.
Note that if L ⊆ Sn

w is sampled independently and uniformly at random, then the vectors in
Bα(c) are distributed independently and uniformly over Regionα(c). Hence, formally, our quantum
algorithms for FindSolutions solve the following problem.

Problem 4.1 (Bucket search). Let B, n,w, v, α ∈ N with w, v ≤ n and α ≤ max{v, w}. Let c ∈ Sn
v .

Given a list Bα(c) of B vectors that are sampled independently and uniformly at random from
{x ∈ Sn

w : |x ∧ c| = α}, find a (1 − o(1))-fraction of all pairs (x,y) ∈ Bα(c)
2 satisfying |x + y| = w

(called solution pairs). We say that this problem has parameters (B, n,w, v, α).

Note that this problem is a variant of the near-neighbor search problem (Problem 3.3) defined
in Section 3. An important difference here is that the input list Bα(c) is not uniformly random on
Sn
w but on the set {x ∈ Sn

w : |x ∧ c| = α}. Consequently, the probability (denoted p below) that a
uniformly random pair from the input list forms a solution pair does not only depend on n,w, but
also on the parameters v, α, as further shown in the next section.

Remark 4.2 (Expected number of solutions). Note that the expected number of solutions to Prob-
lem 4.1 with parameters (B, n,w, v, α) is

(

B
2

)

p, where p denotes the probability that a uniformly
random pair x,y in Bα(c) forms a solution pair.

In the remainder of Section 4, we fix parameters (B, n,w, v, α). Before presenting our quantum
algorithms for solving Problem 4.1, we calculate the probability p of forming a solution pair, as it is
used in the analysis of our algorithms.

4.1 Probability p of Forming a Solution Pair

As before, let p denote the probability that a uniformly random pair x,y ∈ Bα(c) satisfies |x+y| = w.
That is,

p := Pr
x,y∈Bα(c)

[|x+ y| = w] = Pr
x,y∈Sn

w

[|x+ y| = w | |x ∧ c| = α and |y ∧ c| = α]. (2)

We can express p in terms of the parameters (n,w, v, α) as follows.

Lemma 4.3 (Probability p). The probability p as defined in Equation (2) is equal to

p(n,w, v, α) =

(

w
w/2

)(

n−w
w/2

)

(

v
α

)(

n−v
w−α

)(

w
α

)(

n−w
v−α

) · |Wn
v,α(x,y)|
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where |Wn
v,α(x,y)| =

∑min(α,w/2)
e=max(0,2α−v)

(

w/2
e

)(

w/2
α−e

)2(n−3w/2
v−2α+e

)

is the surface area of a wedge for arbitrary

x,y ∈ Sn
w with |x+ y| = w.8

Before proceeding with the proof of Lemma 4.3, we state the following lemma.9 Also, it might
help to keep Figure 1 in mind.

w

w/2 w/2

α− e e α− e v − 2α+ e

x =

c =

y =

Fig. 1. An example of the overlaps between x,y ∈ Sn
w and c ∈ Sn

v , where |x+ y| = w, |x ∧ c| = |y ∧ c| = α,
and |x ∧ y ∧ c| = e. All cases of such vectors under these conditions are permutations of this example.

Lemma 4.4. For all c ∈ Sn
v and all x′,y′ ∈ Sn

w satisfying |x′ + y′| = w, we have

Pr
x,y∈RSn

w

[|x ∧ c| = α and |y ∧ c| = α
∣

∣ |x ∧ y| = w/2] =
|Wn

v,α(x
′,y′)|

|Sn
v |

.

Proof. For fixed c ∈ Sn
v and x′,y′ ∈ Sn

w satisfying |x′ + y′| = w, the stated probability is equal to

|{(x,y) ∈ (Sn
w)

2 : |x ∧ c| = α, |y ∧ c| = α, |x ∧ y| = w/2}|
|{(x,y) ∈ (Sn

w)
2 : |x ∧ y| = w/2}| =

∑

e

(

v
α

)(

n−v
w−α

)(

α
e

)(

v−α
α−e

)(

w−α
w/2−e

)(n−(w+v−α)
w/2−α+e

)

(

n
w

)(

w
w/2

)(

n−w
w/2

)

where e ranges over all possible values of |x∧y∧c|. Now, using that
(vα)(

n−v
w−α)

(nw)
=

(wα)(
n−w
v−α)

(nv)
,
(

w
α

)(

α
e

)(

w−α
w/2−e

)

=
(

w
w/2

)(

w/2
e

)(

w−w/2
α−e

)

, and
(

n−w
v−α

)(

v−α
α−e

)((n−w)−(v−α)
w/2−(α−e)

)

=
(

n−w
w/2

)(

w/2
α−e

)( (n−w)−w/2
(v−α)−(α−e)

)

, it can be seen that

this indeed equals
|Wn

v,α(x′,y′)|
(nv)

. ⊓⊔

Proof (Proof of Lemma 4.3). By definition,

p = Pr
x,y∈RSn

w

[|x ∧ y| = w/2 | |x ∧ c| = α and |y ∧ c| = α]

= Pr
x,y∈RSn

w

[|x ∧ c| = α and |y ∧ c| = α | |x ∧ y| = w/2] · Prx,y∈RSn
w
[|x ∧ y| = w/2]

Prx,y∈RSn
w
[|x ∧ c| = |y ∧ c| = α]

=
|Wn

v,α(x
′,y′)|

(

n
v

) · Prx,y∈RSn
w
[|x ∧ y| = w/2]

Prx,y∈RSn
w
[|x ∧ c| = |y ∧ c| = α]

for arbitrary x′,y′ ∈ Sn
w satisfying |x′ +y′| = w. Note that the last equality follows from Lemma 4.4.

Since Prx,y∈RSn
w
[|x ∧ y| = w/2] =

(nw)(
w

w/2)(
n−w
w/2 )

(nw)
2 and Prx,y∈RSn

w
[|x ∧ c| = α and |y ∧ c| = α] =

(vα)
2

(n−v
w−α)

2

(nw)
2 , it follows that

p =
|Wn

v,α(x
′,y′)|

(

n
v

)

(

n
w

)(

w
w/2

)(

n−w
w/2

)

(

v
α

)2(n−v
w−α

)2 .

Notice that
(

n
v

)(

v
α

)(

n−v
w−α

)

=
(

n
w

)(

w
α

)(

n−w
v−α

)

, hence the desired result follows. ⊓⊔
8 Recall (see Remark 2.6) that Wn

v,α(x,y) does not depend on the specific choice of x and y, but only on
|x|, |y|, |x+ y|. Consequently, the probability p is independent of the particular selection of x and y.

9 In the following proofs, we will use the fact that for all a, b, c, d ∈ N (for which the binomial coefficients are
well-defined),

(

a
b

)(

b
d

)(

a−b
c−d

)

=
(

a
c

)(

c
d

)(

a−c
b−d

)

.
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4.2 Quantum Algorithm for FindSolutions Using Grover’s Algorithm

As a warm-up, we give a straightforward quantum algorithm for solving Problem 4.1 (and thus
FindSolutions) using Grover’s algorithm [Gro96]. This will be used as a baseline to compare our
more advanced algorithms with.

Theorem 4.5 (FindSolutions using Grover). Let (B, n,w, v, α) be well-defined parameters for
Problem 4.1 and let p = p(n,w, v, α) be according to Lemma 4.3. Then there exists a quantum algo-
rithm that solves Problem 4.1 with parameters (B, n,w, v, α) in expected time Õ(B2√p) using classical
memory and QRACM of expected size MC = MQRACM = B and quantum memory of expected size
MQ = nO(1).

Proof. The statement follows from repeatedly applying Grover’s algorithm (Theorem 2.8) with the
set of all

(

B
2

)

pairs as the search space. The expected number of solutions is t :=
(

B
2

)

p. Using a coupon-

collector argument, it follows that all solutions can be found in expected time Õ(
√

t
(

B
2

)

) = Õ(B2√p).

The algorithm classically stores the B list vectors. Grover’s algorithm requires quantum access to them
(QRACM) and a number of qubits that is polynomial in n. ⊓⊔

This Grover-based quantum algorithm can be used as the subroutine FindSolutions in Theo-
rem 3.8 to obtain a quantum algorithm for NNS, and thus for code sieving.

4.3 Quantum Algorithm for FindSolutions Using Quantum Walks

We will now replace the role of Grover’s algorithm with quantum-walk techniques. In particular, we
describe a FindSolutions subroutine that searches for solution pairs (x,y such that |x + y| = w)
inside a given list Bα(c) using a quantum walk. To speed up the search for solution pairs, we add a
layer of locality-sensitive filtering (LSF) as part of the data of each vertex. This idea was inspired
by [CL21], and we show that we can indeed transfer most of their ideas from the Euclidean metric
to the Hamming metric. We analyze the complexity of the resulting quantum walk, and consider a
version of the walk where we apply the ‘sparsification’ technique from [CL21], resulting in a different
balance of the complexity parameters.

MNRS-style quantum walk. We use the quantum-walk framework from [MNRS11] (see Section 2.4).
Our quantum walk is defined on the Johnson graph J(B, s), for some parameter s ≤ B that must
be carefully chosen later. The vertices of the graph are identified with the size-s subsets of the input
list Bα(c), and two vertices are adjacent if and only if the corresponding subsets differ in exactly one
element. The goal of the quantum walk is to return a marked vertex, which is a vertex containing a
solution pair. As aforementioned, we add some additional data to each vertex to speed up the search
for marked vertices.

We briefly sketch the inner steps of the walk (for more details see Section 4.6). The set-up step
(of cost S) constructs a uniform superposition over all vertices and their corresponding data. In the
update step (of cost U), the current vertex (i.e., a size-s subset of vectors) is mapped to a uniform
superposition of its neighbors. During the update step, the algorithm also keeps track of whether it
has encountered a solution pair, which will be facilitated by the data associated to the vertices. As
a result, the checking step is immediate (and thus has cost C = Õ(1)). Writing ǫ for the fraction of
marked vertices and δ for the spectral gap of the graph, the quantum walk returns a marked vertex
in time S + 1√

ǫ
( 1√

δ
U + C). Each run of our quantum walk finds one solution to Problem 4.1, so we

repeat it until a (1 − o(1))-fraction of all solution pairs is found.10

Adding a layer of LSF. We will now describe the data added to each vertex of the Johnson graph
J(B, s) to facilitate the detection of marked vertices during the update step. The first part of the
update step can essentially be viewed as a map between two adjacent vertices (which in J(B, s) differ
by exactly one element): given a subset S ⊆ Bα(c), a neighbor S′ of S is obtained by removing
a vector xold from S and adding a vector xnew from Bα(c) \ S. In the second part of the update
step, the algorithm checks whether the newly added vector xnew forms a solution pair with one of

10 The reader might notice we do not apply the reusable quantum-walk techniques from [BCSS23]. The reason
is that our numerical experiments do not show a significant speed-up, see Remark 5.2.
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the non-removed vertices (i.e., those in S \ {xold}). This check can be performed by simply applying
Grover, but we achieve better complexities if we add a layer of locality-sensitive filtering.

More precisely, we identify the input list Bα(c) ⊆ Sn
w with the list L′ = {πc(x) : x ∈ Bα(c)} ⊆ Sv

α,
where πc(x) := x ∧ c is the v-dimensional vector obtained by projecting x onto the support of c.11

As further detailed in Section 4.4, this allows us to apply the LSF techniques from Section 3.2 and
Section 3.3. In particular, at the start of our algorithm, we sample an RPC C′

f ⊆ Sv
v′ for some

parameter v′. Each vector c′ ∈ C′
f forms the center of a bucket Bβ(c

′) for some bucketing parameter
β. However, these buckets will only be defined per vertex: for a vertex corresponding to subset S, we
fill Bβ(c

′) with the vectors in S that are in a certain sense ‘close’ to c′ with respect to the parameter
β. Specifically, we let

Bβ(c
′) := {x ∈ S : |πc(x) ∧ c′| = β}

The filled buckets (Bβ(c
′))c′∈C′

f
are then added as part of the data of the vertex corresponding to S.

Consequently, instead of checking for solution pairs within a vertex S, the algorithm will only check
for solution pairs within the |C′

f | β-buckets. This may induce some false negatives, but this can be
controlled by choosing β carefully. Just like the parameter α was used to quantify the probability that
two vectors in an α-bucket Bα(c) form a solution to Problem 3.3 (NNS), the parameter β quantifies
the probability that two vectors in a β-bucket Bβ(c

′) form a solution to Problem 4.1 (bucket search).
By choosing the parameters (including β) carefully, it allows us to obtain speed-ups, which is further
demonstrated by our numerical results in Section 5.

To state our main result on our quantum-walk algorithm, we need the following notions. For fixed
t′ ∈ Θ(

√
v) and C, we define q = qC = Pr[∃c′ ∈ C′

f s.t. |πc(x) ∧ c′| = β and |πc(y) ∧ c′| = β], where
the probability is taken over C′

f ∼ Rv,v′,t′,C and uniformly random x,y ∈ Regionα(c) satisfying
|x+y| = w. Informally, for an arbitrary solution pair (x,y), q denotes the probability that they share
a valid β-center. Furthermore, for any C′

f ∼ Rv,v′,t′,C , we define

VCβ(x) := {c′ ∈ C′
f : |πc(x) ∧ c′| = β}

to be the set of valid β-bucket centers c′ for any given x ∈ Regionα(c). We write E[|VCβ(x)|] for the
expected size of VCβ(x), where the expectation is taken over C′

f ∼ Rv,v′,t′,C . Furthermore, we write
E[|Bβ(c

′)|] for the expected size of a bucket Bβ(c
′), where the expectation is taken over x1, . . . ,xs ∈

Regionα(c) sampled independently and uniformly at random. Note that E[|VCβ(x)|] and E[|Bβ(c
′)|]

are the same for all x ∈ Regionα(c) and c′ ∈ Sv
v′ , respectively.

The proof of Theorem 4.7 will be given in Section 4.6.

Remark 4.6. With a slight abuse of notation, we write E[|VCβ(x)|]) as shorthand for max(1,E[|VCβ(x)|])
to simplify the expressions of the time and memory complexity. We do the same for E[|Bβ(c

′)|].

Theorem 4.7 (FindSolutions using quantum walks). Let (B, n,w, v, α) be well-defined param-
eters for Problem 4.1 and let p = p(n,w, v, α) be according to Lemma 4.3. For non-negative integers
s = Õ( 1√

p ), β ≤ α, v′ ≤ v, t′ = Θ(
√
v), and C, define q = qC , E[|VCβ(x)|], and E[|Bβ(c

′)|] as above.

Then there exists a quantum-walk algorithm that solves Problem 4.1 with parameters (B, n,w, v, α)

in expected time Õ
(

B2p · (S+ 1√
ǫ
( 1√

δ
U+ C))

)

, where, omitting factors subexponential in n,

S = s · E[|VCβ(x)|]

U = E[|VCβ(x)|] +
√

E[|VCβ(x)|] · E[|Bβ(c′)|]
C = 1

δ =
1

s

ǫ = s2pq.

This quantum-walk algorithm uses classical memory and QRACM of expected size Õ(B), and
quantum memory and QRAQM of expected size Õ(s · E[|VCβ(x)|]).
11 Note that x ∧ c is actually an n-dimensional vector. With abuse of notation, we sometimes view it as a

v-dimensional vector. The dimension should be clear from the context.
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Note that the expected size of VCβ(x) plays an important role in the complexity of our quantum-
walk algorithm. In Section 4.5, we describe how this expected size (and thus the complexity) crucially
depends on the choice of |C′

f |, and we analyze two different choices. Besides the choice of |C′
f |, the

precise complexity of Theorem 4.7 also depends on the optimal choice of the parameters s, v′, and β.
Similar to the Grover-based algorithm, we can use the above quantum-walk algorithm as the

subroutine FindSolutions in Theorem 3.8 to obtain a quantum algorithm for NNS and code sieving.

4.4 Adding a Layer of Filtering

In this section, we present the technical details to justify adding a layer of LSF to the data of our
quantum walk. Recall that our input list Bα(c) is a subset of {x ∈ Sn

w : |x∧c| = α}. In order to apply
the LSF techniques from [DEEK24] (described in Section 3.3), we will relate the problem of finding
solution pairs in Bα(c) to a problem where we search for solution pairs in a list L′ of vectors sampled
independently and uniformly over a suitable (smaller-dimensional) Hamming sphere.

This is motivated by the following observations. Note that any x ∈ Bα(c) can be written as
x = x∧c+x∧c for the center c. Suppose, for a moment, that c is of weight α (i.e., v = α). Then, for
any x,y ∈ Bα(c) we have that x∧c = c and y∧c = c, and thus x+y = x∧c+y∧c. In other words,
for x,y ∈ Bα(c), we have that |x+y| = w if and only if |x∧c+y∧c| = w. Therefore, we could restrict
to searching for solutions among the vectors x ∧ c instead. However, if v > α, then this equivalence
breaks down: whether x+ y is of weight w does no longer only depend on |x∧ c+ y ∧ c|, but also on
|x∧y∧ c| (that is, the latter need no longer be 0). Specifically, for a fixed pair x,y ∈ Bα(c), we have
that |x + y| = w if and only if |x ∧ c + y ∧ c| = w − 2α + 2e, where e := |x ∧ y ∧ c|. Although the
value of e may differ for different pairs (x,y), Theorem 6.4 shows that for most solution pairs (x,y)
it is the same. The proof will be given at the end of this section.

Theorem 4.8. Let Bα(c) be an instance of Problem 4.1 with parameters (B, n,w, v, α). There exists
an integer e∗ such that the expected number of pairs (x,y) ∈ Bα(c)

2 satisfying |x + y| = w is
asymptotically equal to the expected number of pairs (x,y) ∈ Bα(c)

2 satisfying |x + y| = w and
|x ∧ y ∧ c| = e∗.

In other words, Problem 4.1 is asymptotically equivalent to the following problem:

Find (almost) all x,y in Bα(c) satisfying |x+ y| = w and |x ∧ y ∧ c| = e∗.

We will therefore restrict to solving this latter problem instead.
Let L′ := {πc(x) : x ∈ Bα(c)}, where we view each πc(x) := x ∧ c as a vector in Sv

α (i.e.,
we ignore all coefficients (x ∧ c)i where ci = 0). Note that the vectors in L′ are independently
and uniformly distributed over Sv

α. In particular, the problem of finding all x′,y′ ∈ L′ satisfying
|x′ ∧ y′| = e∗ is a variant of an NNS problem (where the target weight e∗ does not necessarily equal
the weight α of the vectors in the input list L′), so we can apply the LSF techniques from [DEEK24].
Furthermore, the set of those pairs (x′,y′) (or actually the corresponding (x,y)) forms a superset of
the set {(x,y) ∈ Bα(c)

2 : |x+ y| = w}. Therefore, to asymptotically solve Problem 4.1, it suffices to
find all x′,y′ ∈ L′ satisfying |x′ ∧ y′| = e∗, and keep those for which it also holds that |x+ y| = w.

In order to asymptotically find all solution pairs in the bucket Bα(c), we will thus focus on finding
all pairs (x′,y′) ∈ L′ × L′ satisfying |x′ ∧ y′| = e∗ and |x + y| = w. We will call such a pair (x′,y′)
an L′-solution.

Remark 4.9 (‘Residual vectors for codes’). For the reader familiar with the techniques from [CL21]: we
consider the vectors in L′ as a code analog of the ‘residual vectors’ in [CL21]. The lattice equivalent of
FindSolutions asks to find all pairs (v,w) in a given bucket that satisfy 〈x,y〉 = θ for some given θ,
where the bucket is defined for some center c ∈ R

n (of unit norm) and bucketing parameter α ∈ (0, 1),
and consists of unit (lattice) vectors v ∈ R

n satisfying 〈v, c〉 ≥ α. (Here, 〈·, ·〉 denotes the Euclidean
inner product.) Note that if v is in the bucket of c, then it can be written as v = αc+

√
1− α2v′ for

some unit vector v′ that is orthogonal to c. In particular, the problem of finding all (v,w) satisfying
〈v,w〉 = θ is equivalent to the problem of finding all (v′,w′) satisfying 〈v′,w′〉 = θ′ for some θ′

depending on θ. These (left-over) vectors v′ are called residual vectors in [CL21], and are the analogs
of the vectors x′ that we defined for codes. However, note that in the setting of codes, we don’t have
an exact equivalence between the condition |x + y| = w and a condition |x′ + y′| = w′ for some w′

depending on w′ (unless v = α). Nevertheless, Theorem 4.8 shows that we can still turn it into an
‘asymptotic’ equivalence.
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It remains to prove Theorem 4.8.

Proof (Proof of Theorem 4.8). Recall that p denotes the probability that two independent and uni-
formly random x,y ∈ Bα(c) satisfy |x+ y| = w. From the definition of p, we observe that

p = Pr
x,y∈RBα(c)

[|x+ y| = w] =

min(α,w/2)
∑

e=max(0,2α−v)

p(e)

where p(e) := Prx,y∈RBα(c)[|x + y| = w and |x ∧ y ∧ c| = e]. In particular, p = Θ̃(p(e∗)), where
e∗ := argmaxep(e).

12 (Note that an explicit formula for p(e) is given in Lemma 4.3.) This implies
that

E[|{(x,y) ∈ Bα(c)
2 : |x+ y| = w}|] and E[|{(x,y) ∈ Bα(c)

2 : |x+ y| = w and |x ∧ y ∧ c| = e∗}|]
are asymptotically equal, as we wanted to show. ⊓⊔

4.5 On the Choice of |C′

f |

We will now explain how the choice of the size of the RPC C′
f ⊆ Sv

v′ (together with the choice of β)
affects the time complexity of our quantum-walk algorithm (Theorem 4.7) and present two choices of
|C′

f | that we focus on. We start by showing how the two components E[|VCβ(x)|] and q in the time
complexity depend on |C′

f |. Since we identify the input list Bα(c) ⊆ Sn
w with the list L′ ⊆ Sv

α, we will
from now on write VCβ(x

′) for x′ ∈ L′, instead of VCβ(x) for x ∈ Bα(c).
For all x′ ∈ Sv

α, the probability that a uniformly random c′ ∈ Sv
v′ satisfies |x′ ∧ c′| = β is

pβ := Pr
c′∈Sv

v′

[|x′ ∧ c′| = β] =
|Cv

v′,β(x
′)|

|Sv
v′ |

.

Note that this also equals the probability that (for fixed c′ ∈ Sv
v′) a uniformly random x′ ∈ Sv

α

satisfies |x′ ∧ c′| = β. Therefore, E[|VCβ(x
′)|] = |C′

f | · pβ (up to factors subexponential in n, see
[DEEK24, Lemma 4.6]) and E[|Bβ(c

′)|] = s · pβ, where we recall that s denotes the vertex size of the
Johnson graph.13

Next, we will show how the probability q depends on the size of C′
f , where we recall that q denotes

the probability that a given solution pair can be found in a same β-bucket. First, note that we can
express q as follows.

Lemma 4.10. We have q = Pr[∃c′ ∈ C′
f s.t. x′,y′ ∈ Bβ(c

′)] for all x′,y′ ∈ L′ satisfying |x′∧y′| = e∗.

Proof. Notice that the following two probabilities are the same:

– For fixed x′,y′ ∈ S satisfying |x′ ∧ y′| = e∗, the probability that a uniformly random c′ ∈ Sv
v′

satisfies |x′ ∧ c′| = β and |y′ ∧ c′| = β.
– For fixed x′,y′ ∈ S satisfying |x′ ∧ y′| = e∗ and |x + y| = w, the probability that a uniformly

random c′ ∈ Sv
v′ satisfies |x′ ∧ c′| = β and |y′ ∧ c′| = β.

Indeed, by a counting argument, one can show that both probabilities are equal to
|Wv

v′,β
(x′,y′)|

|Sv
v′
| . ⊓⊔

Fix an arbitrary pair (x′,y′) ∈ L′2 satisfying |x′ ∧ y′| = e∗, and define

W := Pr
c′∈RC′

f

[|x′ ∧ c′| = β and |y′ ∧ c′| = β] =
|Wv

v′,β(x
′,y′)|

|Sv
v′ |

.

Then we can write q as q = 1− (1−W )|C
′

f |, so q = Θ(|C′
f |W ) if |C′

f |W ≤ 1, and q = Θ(1) otherwise.
(Here, we are implicitly viewing C′

f as a random code; a formal justification for RPCs follows from
[DEEK24, Lemma 4.8].)

We will now consider two variants of the previous quantum-walk algorithm, where we vary the
choice of |C′

f |, i.e., the number of β-buckets, and see how that affects the two factors of the time
complexity of our quantum-walk algorithm:

S = s ·E[|VCβ(x
′)|] and

1√
ǫ

(

1√
δ
U + C

)

=
1√
spq

(

E[|VCβ(x
′)|] +

√

E[|VCβ(x′)|] · E[|Bβ(c′)|]
)

.

(Recall that the expected values should be replaced by 1 if they are smaller than 1, see Remark 4.6.)

12 The value of e∗ can be computed numerically. For instance, see [Car20,DEEK24].
13 In the remainder of Section 4, we often omit writing Õ(·) or factors of the form 2o(n) for ease of reading.
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Variant 1: Choosing |C′

f | such that q is maximized. A first approach is to choose |C′
f | such

that each L′-solution x′,y′ have at least one bucket in common, i.e., there are no false-negatives. In
particular, for similar reasons as in the proof of [DEEK24, Theorem 4.4] (but then considered for our

second layer of LSF) taking |C′
f | = Ω( 1

W ) ensures q = Θ(1) and E[|VCβ(x
′)|] = |Cv

v′,β
(x′)|

|Wv
v′,β

(x′,y′)| =
pβ

W

(which is ≥ 1).
Then the two contributors to the quantum-walk cost are as follows:

S = s · pβ
W

and
1√
ǫ

(

1√
δ
U+ C

)

=

√

pβ
spW

·
(
√

pβ
W

+max(1,
√
spβ)

)

. (3)

Variant 2: Sparsification. A way to obtain a better time complexity is to apply a technique that
we refer to as sparsification, which was already used in [Laa15,CL21]. Reducing the size |C′

f | (taking

a sparser code C′
f ), reduces both q and E[|VCβ(x

′)|], resulting in an increase in the cost 1/
√
ǫ, but

a decrease in both the set-up S and update U costs. Altogether, this results in a different balance
between the terms S and 1√

ǫ
( 1√

δ
U+ C) in the runtime of the quantum walk subroutine.

Following the same reasoning as in [CL21], we take |C′
f | =

|Sv
v′
|

|Cv
v′,β

(x′)| =
1
pβ

. Note that now q = Ω(Wpβ
)

and E[|VCβ(x
′)|] = 1 (recall that we omit writing 2o(n)), indeed resulting in a different balance between

the contributors of the quantum-walk cost:

S = s and
1√
ǫ

(

1√
δ
U+ C

)

=

√

pβ
spW

(1 + max(1,
√
spβ)). (4)

More precisely, comparing Equation (4) to Equation (3), shows that sparsification has reduced the

set-up cost S by a factor of
pβ

W and part of the cost 1√
ǫ

(

1√
δ
U+ C

)

by a factor of
√

pβ

W .

We will present further in Section 5 our numerical results of these formulas (optimized to minimize
the time complexity), which illustrate that the second choice – i.e., sparsification – indeed provides a
speed-up over the first.

4.6 Proof of the Complexity of FindSolutions Using Quantum Walks

We will now prove Theorem 4.7. Recall (see Remark 4.6) that we write E[|VCβ(x)|]) and E[|Bβ(c
′)|]

as shorthand for max(1,E[|VCβ(x)|]) and max(1,E[|Bβ(c
′)|]), respectively.

Time complexity analysis

Proof (Proof of Theorem 4.7: Part 1/2, time complexity). Let Bα(c) be an instance of Problem 4.1
with parameters (B, n,w, v, α), and let p = p(n,w, v, α) be according to Lemma 4.3.

We start by describing the details of the quantum walk according to the MNRS framework
[MNRS11]. We identify Bα(c) with the list L′ ⊆ Sv

α defined in Section 4.4, and recall that each
vector x ∈ Bα(c) has an associated x′ ∈ L′ (more precisely, L′ = {x ∧ c : x ∈ Bα(c)} where x ∧ c

is viewed as a vector in Sv
α). By the arguments from Section 4.4 (and for the e∗ defined there), it

suffices to instead search for L′-solutions, i.e., pairs (x′,y′) ∈ L′ × L′ satisfying |x′ ∧ y′| = e∗ and
|x + y| = w. We will find those L′-solutions by applying a quantum walk using an extra layer of
LSF. More precisely, our walk will be over subsets S of L′, and we aim to reach a vertex S that
contains an L′-solution. This search for a vertex containing an L′-solution will be facilitated by the
use of bucketing methods; however, this time we do both the bucketing and checking phase within
the quantum walk.

Graph. Consider a quantum walk on the Johnson graph J(|L′|, s) = (V,E) for some suitable param-
eter s < |L′| = B satisfying s = Õ( 1√

p ).
14 In other words, the set of vertices is V = {S ⊆ L′ : |S| = s}

and two vertices S1, S2 are adjacent (i.e., (S1, S2) ∈ E) if and only if |S1 ∩ S2| = s− 1.

14 This constraint on s ensures that the number of L′-solutions per vertex is Õ(1) on average. It is used in
our analysis of the set-up and update costs, as well as in our derivation of ǫ.
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Data. To each vertex S ∈ V we add some additional data structure data(S) that allows us to
efficiently check in the update step whether a newly added element forms an L′-solution with one
of the existing elements in a vertex (instead of having to search for a ‘colliding element’ among all
s − 1 other vertex elements). More precisely, the idea (originating from [CL21]) is as follows. We
will invoke the RPC framework from [DEEK24] (Section 3.3) again and sample a random product
code C′

f ∼ Rv,v′,t′,C (i.e., C′
f ⊆ Sv

v′) for t′ = Θ(
√
v) with v′ to be determined. Let β be another

parameter to be determined later. Instead of searching for any L′-solution in S, the idea is to only
search for solutions that both have overlap β with a bucket center from C′

f .15 Therefore, we will add
the following data data(S) to each vertex S ∈ V :

– The buckets Bβ(c
′) := {x′ ∈ S : |x′ ∧c′| = β} for each c′ ∈ C′

f . These will be ‘stored’ using a data
structure that allows for efficient inserting and removing of elements. (See [Amb07,BJLM13] for
details.)

– To each bucket Bβ(c
′), we will add a list containing the L′-solutions in the bucket, if there are

any.
– We keep track of a bit indicating whether S is marked according to the following definition.

Marked vertices. Define the set M ⊆ V of marked vertices as

M = {S ∈ V : ∃ c′ ∈ C′
f , ∃x′,y′ ∈ Bβ(c

′) s.t. (x′,y′) is an L′-solution}.

Note that this is a subset of the set of vertices containing an L′-solution. In particular, an L′-solution
will only be detected if it (the pair) can be found in a C′

f -bucket.
We will now describe the parameters determining the expected time complexity of the quantum

walk; the memory complexity will be discussed after. We will repeatedly make use of the fact that,
for any x′ ∈ L′, the set VCβ(x

′) := {c′ ∈ C′
f : |x′ ∧ c′| = β} of its valid buckets can be computed

in time |VCβ(x
′)|+ 2o(n) by Theorem 3.11. Furthermore, for ease of presentation, we will often omit

writing down Õ(·) and factors of the form 2o(n).

S, set-up cost. Constructing a uniform superposition over all S ∈ V costs Õ(s). In addition, we need
to compute the data for each vertex S. We will construct the quantum data structure storing the
buckets Bβ(c

′) by computing, for each x′ ∈ S, the set VCβ(x
′) of valid buckets, and then insert x′ to

the right locations in the quantum data structure. Since insertion can be done efficiently, for instance
using one of the quantum data structures in [Amb07,BJLM13], this takes Õ(s · E[|VCβ(x

′)|]) time in
expectation. It remains to construct the second and third part of the data. Note that the condition
on s implies that the expected number of L′-solutions per vertex is

(

s
2

)

p = Õ(1). Therefore, applying

Grover over all pairs in S allows for finding these (in expectation)
(

s
2

)

p = Õ(1) pairs in time Õ(s).
For any found pair (x′,y′), it then suffices to go over the valid β-buckets of x′ to add (x′,y′) to any
bucket that also contains y′.16 If at least one pair is added, we add 1 as third component of the data,
and 0 otherwise. Thus, altogether the construction of this second and third part of the data cost
at most Õ(s + E[|VCβ(x

′)|]) time. We conclude that S = max(s, s · E[|VCβ(x
′)|], s + E[|VCβ(x

′)|]) =
s · E[|VCβ(x

′)|].

C, checking cost. Since we only need to check the last component of the data, we have C = 1.

U, update cost. The dominating cost will be that of updating the data when going from a vertex S to
a neighbor S′. Updating the first part of the data, i.e., the buckets, can be done in time E[|VCβ(x

′)|],
since it suffices to compute the sets of valid buckets for the old and new element, to remove the old
element from its valid buckets, and to add the new element to its valid buckets. Updating the second
part of the data (and the third part, if needed) can be done in time

√

E[|VCβ(x′)|] · E[|Bβ(c′)|]: apply
Grover to the union of all valid buckets of the old, respectively new, element to see if they are part of
an L′-solution; if so, remove, respectively add, this L′-solution. (Here, we again make use of the fact
that the condition on s implies that the number of solutions per vertex is s · p ≤ s · √p = Õ(1).) It

follows that U = E[|VCβ(x
′)|] +

√

E[|VCβ(x′)|] · E[|Bβ(c′)|].
15 This could mean that there are some false negatives: it might happen that S contains an L′-solution, but

that it isn’t captured in one of the buckets. However, by choosing the parameters |C′f | and β carefully we
can control how likely this is to happen. (For more details, see the explanation in our derivation of ǫ.)

16 This step could possibly be sped up, but there is no reason to as it does not dominate the set-up cost.
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δ, spectral gap. As mentioned in Section 2, the spectral gap of the Johnson graph satisfies δ = Ω(1s ).

For the derivation of ǫ, we use the following lemma.

Lemma 4.11. Let C′
f ∼ Rv,v′,t′,C and let S be subset of L′ of size s sampled independently and

uniformly at random. Write E1 for the event that there exists c′ ∈ C′
f with x′,y′ ∈ Bβ(c

′) := {x′ ∈
S | |x′ ∧ c′| = β} satisfying |x′ ∧ y′| = e∗ and |x + y| = w (i.e., the β-bucket of c′ contains an
L′-solution). Then

Pr[E1] ≥ min(q,Ω(qs2p))

where q := Pr[∃c′ ∈ C′
f s.t. x′,y′ ∈ Bβ(c

′)] for an arbitrary x′,y′ ∈ L′ satisfying |x′ ∧ y′| = e∗.

Proof (Proof of Lemma 4.11). Define E0 to be the event that there exist x′,y′ ∈ S satisfying |x′∧y′| =
e∗ and |x+y| = w. Note that Pr[E0] = min(1, Θ(s2p(e∗))) = min(1, Θ(s2p)). Therefore, we have that

Pr[E1] =
Pr[E1 | E0] Pr[E0]

Pr[E0 | E1]
≥ Pr[E1 | E0] Pr[E0] = Pr[E1 | E0] min(1, Θ(s2p)).

So it remains to show that Pr[E1 | E0] ≥ Ω(q). So suppose that E0 holds. Then there exists a pair
x′,y′ ∈ S satisfying |x′ ∧ y′| = e∗ and |x+ y| = w. It then follows that the probability that E1 holds
(conditional on E0) is at least the probability that there exists c′ ∈ C′

f such that this particular pair
x′,y′ is in the bucket of c′. In other words,

Pr[E1 | E0] ≥ Pr[∃c′ ∈ C′
f s.t. x′,y′ ∈ Bβ(c

′)]

for any x′,y′ ∈ S satisfying |x′ ∧ y′| = e∗ and |x + y| = w. By Lemma 4.10, we have that Pr[∃c′ ∈
C′
f s.t. x′,y′ ∈ Bβ(c

′)] = q from which it follows that Pr[E1 | E0] = Ω(q), finishing the proof. ⊓⊔

ǫ, probability of a vertex being marked. Note that ǫ = Pr[E1] for E1 as defined in the statement of
Lemma 4.11. It follows from the lemma that ǫ = min(q,Ω(q

(

s
2

)

p)), where q := Pr[∃c′ ∈ C′
f s.t. x′,y′ ∈

Bβ(c
′)] for any x′,y′ satisfying |x′ ∧ y′| = e∗. Our condition on s implies that

(

s
2

)

p = Õ(1), and thus

ǫ = Ω̃(qs2p).

Conclusion on expected runtime. Since the number of solution pairs in a bucket Bα(c) is in expectation
t = O(|Bα(c)|2p), the expected runtime of the quantum walk, repeated t times, is as given in the
theorem statement. ⊓⊔
Remark 4.12. The proof can be adapted to relax the condition s = Õ(1/

√
p) to s = Õ(1/

√
pq) if we

replace ǫ = s2pq by ǫ = min(q, s2pq). However, when we make these changes in our implementation
of the algorithm, a numerical optimization of the parameters does not result in better complexities.
Therefore, we only present the proof for s = Õ(1/

√
p) here.

It remains to prove the claims on the memory complexity.

Memory complexity analysis

Proof (Proof of Theorem 4.7: Part 2/2, memory complexity).

Classical memory. We need to store the bucket Bα(c) (or, equivalently, the list L′), so the algorithm
uses classical space Õ(|Bα(c)|).

QRACM. The quantum walk needs quantum access to the bucket Bα(c), stored classically and of
size MQRACM = Õ(|Bα(c)|).

Quantum memory and QRAQM. The quantum walk stores a superposition of vertices. Each vertex
contains s elements and some additional data, including the buckets of the second layer. (The other
components of the data will not dominate the QRAQM cost, so we can safely ignore those.) Within
each vertex, a vector x′ is inserted in |VCβ(x

′)| buckets. All together, we need to store this on a
quantum register of size MQ = s+ s · E[|VCβ(x

′)|]. This is the required number of qubits to run the
quantum walk. Since we use the data structures from [Amb07] (or [BJLM13]) to efficiently delete and
insert vectors in the quantum superposition, we require this whole quantum register to allow efficient
QRAQM, hence we need MQRAQM = MQ. ⊓⊔
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5 Numerical Results

In this section, we summarize our numerical results on the asymptotic runtime and memory of four
different algorithms for the near-neighbor search (NNS) problem defined in Section 3 (Problem 3.3),
and consequently for code sieving. As our work is inspired by its lattice-based analog, we complete
the analysis by also including the complexities of the lattice-based equivalents of the four algorithms.
The algorithms we compare are the following:

– Classical: The sieving algorithm originally introduced in [DEEK24]. It is based on the RPC
approach described in Section 3.3, which is the best known approach in the classical case. Its
lattice-based analog is presented in [BDGL16].

– Grover: The first quantum algorithm introduced in our paper (Section 4.2). It is a natural
modification from the classical RPC algorithm to the quantum model, obtained using Grover’s
algorithm. A lattice-based analog was introduced in [Laa15].

– QW + LSF: A more general quantum approach based on quantum walks in combination with
the additional layer of locality-sensitive filtering, as explained in Section 4.3. Its lattice-based
analog was introduced in [CL21, Sec. 4].

– QW + LSF + Sparsification: A variant of our quantum-walk algorithm obtained using spar-
sification, as explained in Section 4.5. The lattice-based analog is given in [CL21, Sec. 5].

Figure 2 shows the asymptotic runtime of the four algorithms in the code-based setting. The
figures are obtained by calculating the asymptotic runtime in 100 equidistant values of ω := w/n
ranging in [0, 0.5), where n,w are parameters of Problem 3.3 and w is chosen such that there is
a unique solution to the problem on average (i.e., we analyze the problem in the unique-decoding
regime).
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Fig. 2. Comparison of the asymptotic runtime of the four algorithms solving NNS(n,w,N) for w = ω · n,
where ω ∈ [0, 0.5).
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Table 1 shows the calculated asymptotic runtime and memory for the hardest instances of NNS
in the code-based and lattice-based settings, where by the hardest instances we mean those values
of ω for which the runtime curve in Figure 2 reaches its peak. The asymptotic memory is then
calculated for the same value of ω. As we distinguish four different types of memory, we denote them
by MC ,MQ,MQRACM ,MQRAQM and refer to them as classical memory, quantum memory, QRACM,
and QRAQM, respectively.

Algorithms t MC MQ MQRACM MQRAQM

Codes

Classical [DEEK24] 0.132 0.093 - - -
Grover 0.120 0.094 0 0.026 -
QW + LSF 0.118 0.094 0.024 0.031 0.024
QW + LSF + Spars. 0.117 0.094 0.023 0.036 0.023

Lattices

Classical [BDGL16] 0.292 0.208 - - -
Grover [Laa15] 0.265 0.208 0 0.058 -
QW + LSF [CL21] 0.261 0.208 0.053 0.069 0.053
QW + LSF + Spars. [CL21] 0.257 0.208 0.050 0.077 0.050

Table 1. The exponents of the asymptotic runtime (i.e., t s.t. runtime is 2tn+o(n)) and corresponding memory
exponents for the hardest instances of NNS for codes (i.e., for those ω that yield the highest runtime for each
considered algorithm), and the asymptotic runtime and memory of their lattice analogs.

Remark 5.1. We emphasize that Table 1 does not provide the asymptotic complexity of information-
set decoding algorithms, in contrast to what was presented in [DEEK24]. In particular, the number
0.132 in the table refers to the runtime of the classical sieving algorithm from [DEEK24] (here referred
to as Classical), and is not explicitly stated in their paper.

All numerical results were obtained using Python code, available in the aforementioned repository.

Remark 5.2. We also implemented a variant of QW + LSF + Sparsification where we add the
reusable quantum-walk techniques from [BCSS23] (in a similar way as they apply their techniques
to [CL21]). Similar to their result on lattice sieving, we only obtain a minor improvement, namely an
exponent of t = 0.1169 instead of 0.1171. (In lattice sieving, [BCSS23] obtain an exponent of t = 0.2563
instead of 0.2570.) Our implementation is available in our repository. We leave the elaboration of the
analytical details of this approach as potential future work.

Some observations. Our numerical results show that our quantum algorithms provide a speed-up
in comparison with the classical runtime [DEEK24]. While this is non-surprising, it is not necessarily
guaranteed. Despite the structural differences between codes and lattices (particularly, their metric),
we observe that similar techniques yield comparable improvements in the asymptotic runtime for siev-
ing in both contexts. Grover’s algorithm applied to the classical version delivers the most substantial
quantum speed-up. Nevertheless, our quantum-walk algorithms outperform the version using Grover,
with a slight improvement obtained using the sparsification technique. It appears that fundamentally
different quantum techniques are needed to obtain more significant improvements.

While our work only focused on improving the asymptotic time complexities of sieving algorithms,
it is also important to quantify the memory costs required by these algorithms, and minimize them.
In particular, note that the improved runtime obtained when moving from classical to Grover, and
subsequently to the quantum-walk algorithms, comes at the cost of an increased memory complexity.
In particular, the use of Grover requires quantum memory and QRACM access. The use of quantum
walks additionally requires QRAQM, which is an even stronger assumption on the memory model.
Note that this trade-off between improved runtime and stronger memory requirements is consistent
with the observations from other quantum algorithms in code-based (and lattice-based) cryptanalysis.



22 Lynn Engelberts, Simona Etinski, and Johanna Loyer

6 On the Application to Quantum Information-Set Decoding

Information-set decoding (ISD) algorithms are known as the most efficient generic attacks against
the decoding problem for a wide range of parameters.17. Each of these can be seen as improvements
of the algorithm originally introduced by Prange [Pra62]. We view ISD algorithms as a framework,
as formulated in [FS09]. Specifically, following [GJN23] and [DEEK24] we see the sieving algorithm
as a subroutine of an ISD algorithm within the framework. We refer to the resulting algorithm as
SievingISD. In this section, we analyze a quantum analog of SievingISD.

Remark 6.1. In this section, the parameters n,w have a different meaning than in previous sections.

6.1 ISD and SievingISD

The central computational problem underlying the security of code-based primitives is the aforemen-
tioned decoding problem (Problem 3.1) with N = 1. For completeness, we restate the N = 1 variant
here. We are primarily interested in the complexity of the cryptographically relevant instances of this
problem. Namely, we analyze the problem for C being a random [n, k] code, and w chosen such that
there is only one solution to the problem on average. We refer to these instances as a unique decoding
instance with parameters (n, k, w).

Problem 6.2 (Decoding problem, DP(n, k, w)). Given an [n, k] binary linear code C and an integer
value w, find a codeword xC ∈ C of weight |xC | := w.

Algorithm 3 presents the ISD framework, using the same formulation as in [DEEK24]. As part of
the input, the algorithm is given an oracle A that, given a [n′, k] binary linear code C′ and an integer
w′, returns N independent and uniformly random weight-w′ codewords in C′. We use the notation
πx(·) for code puncturing, which is defined as follows.

Definition 6.3 (Code puncturing, πx(·)). For a linear [n, k] code C and a binary vector x ∈ F
n
2

with |x| = n′ we define by πx : c 7→ c∧ x the puncturing function relative to the support of x, and we
define πx(C) to be the corresponding punctured code, which is a [n′, k] binary linear code.

Algorithm 3: Information-set decoding (ISD)

Input : [n, k] linear code C, weight w, and an oracle A as described above (for fixed n′ > k, w′, N)
Output: c ∈ C such that |c| = w

1 while False do

2 Choose x ∈ Sn
n′ uniformly at random and repeat if dim(πx(C)) 6= k.

3 L ← A(πx(C), w
′).

4 if ∃ y ∈ L : |π−1
x

(y)| = w then

5 return π−1
x

(y)

We remark that for a uniformly random x ∈ F
n
2 with |x| = n′, it happens with constant probability

that dim(πx(C)) = k [Coo00].

We refer to SievingISD as any ISD algorithm in the form of Algorithm 3 that uses a sieving
algorithm (Algorithm 1) as input oracle A. Recall that by Lemma 3.5 and the subsequent discussion

that this requires N = Ω

(

(n
′

w′)
( w′

w′/2)(
n′

−w′

w′/2 )

)

.

17 For a more specific range of parameters, there exist more efficient attacks such as statistical decoding
[CDMT22].
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6.2 Quantum ISD and Quantum SievingISD

We will now discuss quantum analogs of the ISD framework and SievingISD. Quantum ISD algorithms
(e.g., [KT17,Kir18]) are based on the idea that one can apply amplitude amplification (AA) [BHMT02]
to speed up the search for the solution of the decoding problem over multiple iterations of the ISD.
Furthermore, the subroutine A is allowed to be quantum. It results in the following quantum analog
of [DEEK24, Theorem 3.1]. Here, and in the remainder of Section 6, we only focus on the runtime of
the (quantum) ISD algorithms, not its space usage.

Theorem 6.4 (Quantum ISD). Let C be a a unique decoding instance with parameters (n, k, w).
Let n′ > k and let w′ ≤ n′. Suppose A is a algorithm that returns N independent and uniformly

random weight-w′ codewords in a given [n′, k] binary linear code, where N ≤
(

n′

w′

)

/2n
′−k.

If the expected runtime of A is TA, then there is a quantum algorithm that returns a weight-w codeword
in C, if one exists, in expected time

Õ

(

TA√
p1p2

)

where p1 :=
(n

′

w′)(n−n′

w−w′)
(nw)

and p2 := N ·2n′
−k

(n
′

w′)
.

Proof. (This result is not new, but we sketch the proof for completeness.) The correctness follows from
the proof of Theorem 3.1 in [DEEK24]. Moreover, since the success probability of the ISD algorithm
(Algorithm 3) is given by p1p2, amplitude amplification (Theorem 2.9) allows the algorithm to succeed
after 1√

p1p2

iterations. One iteration is dominated by the time it takes for algorithm A, which is TA.
⊓⊔

Remark 6.5. We recall from Section 3 that the upper bound on N is to ensure that there exist N
codewords on average (for a random code C) as output of Algorithm 1. Note that it ensures p2 ≤ 1.

If N = Ω
(

(

n′

w′

)

/
(

(

w′

w′/2

)(

n′−w′

w′/2

)

))

, we can use a (classical or quantum) sieving algorithm as

the subroutine A, resulting in a natural quantum analog of SievingISD. We refer to it as quantum
SievingISD. It turns out that quantum SievingISD does not allow for runtime close to the best known
quantum ISD algorithms, as we will now show.

6.3 Limitations of Quantum SievingISD

We numerically illustrate that, contrary to the classical setting, quantum SievingISD cannot do better
than what we will refer to as quantum Prange, the classical Prange algorithm quantized with AA due
to [Ber10]. Quantum Prange was the first quantum ISD algorithm, and therefore a natural starting
point for comparison.18 We recall its time complexity.

Lemma 6.6 (Quantum Prange, [Ber10]). Consider a unique decoding instance of DP with pa-
rameters n, k, w. Then there is a quantum algorithm that solves it in time

Õ

(
√

(

n
w

)

(

n−k
w

)

)

.

Let us first formalize our claim. Recall that any (classical or quantum) SievingISD algorithm
requires N to satisfy

N = Ω

(

(

n′

w′

)

(w′

w′

2

)(n′−w′

w′

2

)

)

and N = O

(

(

n′

w′

)

2n′−k

)

. (5)

While the ISD framework itself imposes the upper bound (see Remark 6.5), the lower bound is imposed
due to using a sieving subroutine (recall Lemma 3.5). The lower bound turns out to be a bottleneck in
being able to improve over quantum Prange, as the following claim (and its justification) illustrates.
Since our justification of the claim is partly numerical, we do not refer to it as a ‘theorem’.

18 We remark that the more recent quantum ISD algorithms in [KT17,Kir18] have even better time complex-
ities than quantum Prange.
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Claim. Consider a unique decoding instance of DP with parameters n, k, w. For all n′, w′, N ∈ N

satisfying Equation (5), there is no (classical or quantum) algorithm for the oracle A in Algorithm 3
such that the resulting quantum ISD algorithm has a better runtime than quantum Prange [Ber10].

Justification of the claim. A trivial lower bound on the runtime of any classical or quantum
algorithm for the oracle A in Algorithm 3 (with corresponding parameters n′, w′, N) is given by
N , since the framework requires it to output N solutions. Thus, given any such algorithm A and
parameters n′, w′, N satisfying Equation (5), the runtime T of the resulting quantum ISD algorithm
must satisfy

T ≥ N√
p1p2

=

√

√

√

√

N
(

n
w

)

2n′−k
(

n−n′

w−w′

)

where p1 :=
(n

′

w′)(n−n′

w−w′)
(nw)

and p2 := N2n
′
−k

(n
′

w′)
as in Theorem 6.4. For fixed n′, w′, this lower bound on T is

minimal when N is as small as possible, i.e., when N = Θ(Nn′,w′) for Nn′,w′ :=
(

n′

w′

)

/
(

(w′

w′

2

)(n′−w′

w′

2

)

)

.

(In the remainder of the argument, we will leave out constant factors and assume for simplicity that
N = Nn′,w′ .) It follows that T is lower bounded by

min
(n′,w′,N) satisfying (5)

√

√

√

√

N
(

n
w

)

2n′−k
(

n−n′

w−w′

) = min
(n′,w′) s.t. (w′

w′

2

)(
n′

−w′

w′

2

)≥2n′
−k

√

√

√

√

(

n′

w′

)(

n
w

)

(w′

w′

2

)(n′−w′

w′

2

)

2n′−k
(

n−n′

w−w′

)
. (6)

We want to show that this is never better than the runtime of quantum Prange, i.e.,

√

(nw)
(n−k

w )
.

Numerically, we minimized Equation (6). We obtain that, for all n′, w′ satisfying
(w′

w′

2

)(n′−w′

w′

2

)

≥
2n

′−k, it asymptotically holds that

min
(n′,w′) s.t. (w′

w′

2

)(
n′

−w′

w′

2

)≥2n′
−k

√

√

√

√

(

n′

w′

)(

n
w

)

(w′

w′

2

)(n′−w′

w′

2

)

2n′−k
(

n−n′

w−w′

)
≥
√

(

n
w

)

(

n−k
w

) .

Our code is publicly available in the aforementioned GitHub repository. (Note here that the constraint
(w′

w′

2

)(n′−w′

w′

2

)

≥ 2n
′−k is induced by Equation (5).) ⊓⊔

In fact, the optimal values obtained through numerical optimization essentially correspond to the
values characterizing quantum Prange: n′ = k and w′ = 0.

Remark 6.7 (Comparison with the classical setting). The same argument does not apply to classi-
cal SievingISD (non-surprisingly, since [DEEK24] have shown that it indeed outperforms classical
Prange). There, a trivial lower bound on the runtime of the oracle A (for any parameters n′, k, w′, N)
would again be N , giving a (possibly non-tight) lower bound on the time complexity of classical
SievingISD of N/(p1p2). Unlike in the quantum setting, the dependency (and, in particular, the lower

bound) on N disappeared as it is canceled out by p2, namely N/(p1p2) =
(

n
w

)

/
(

(

n−n′

w−w′

)

2n
′−k
)

since

p2 is linear in N .

6.4 On Overcoming the Limitations of Quantum SievingISD

The previous section illustrates limitations of the presented quantum SievingISD framework and
implies that the framework should be adapted to outperform quantum Prange [Ber10]. Specifically,
the main bottleneck appears to be the lower bound on the output size N of the sieving subroutine
imposed by Lemma 3.5 (where we emphasize that in this section we use n′, w′ to specify the dimension
and weight). Recall that the factors TA and p2 in the expected runtime Õ(TA/

√
p1p2) of a quantum

ISD algorithm both depend on N . Here, we present two natural approaches for potentially overcoming
these limitations and explain why neither of them works.
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Approach 1: From Pairs to Tuples. In this paper, we were considering finding pairs (x1,x2)
of vectors in our input list L such that |x1 + x2| = w′ (called solution pairs). To guarantee the
existence of N = |L| solution pairs, Lemma 3.5 implied that we need the lower bound on N . Inspired
by lattice-based cryptanalysis, an idea to obtain a smaller lower bound on N is to focus instead on
finding t-tuples (for some t > 2).19 That is, the sieving algorithm is instructed to (repeatedly) find
N tuples (x1, . . . ,xt) ∈ Lt satisfying |x1 + . . . + xt| = w′ for a given list L of size N . We refer to
such tuples as t-solutions. Note that, for t = 2, we recover the original setting in which the algorithm
searches for solution pairs.

Specifically, for t ≥ 2, we say that a t-sieving algorithm is an algorithm constructed similarly to
the 2-sieving algorithm in Algorithm 1, but instead searching for t-solutions: in each iteration i of
the sieving part, it aims to find N t-solutions given a list L of N independent and uniformly random
vectors from Sn′

w′ . Writing p(t) for the probability that a t-tuple of independent and uniformly random

vectors in Sn′

w′ forms a t-solution, the expected number of t-solutions in L is then given by N tp(t).
To ensure that, on average, there exist at least N t-solutions, the list size N thus needs to satisfy
N tp(t) ≥ N , possibly resulting in a reduced lower bound on the output size N .

We refer to quantum t-sieving ISD as the resulting quantum ISD algorithm where we instan-
tiate the oracle A with a t-sieving algorithm, where we recall that A aims to find N solutions to
DP(n′, k, w′). We keep the meaning of p1 and p2 from Theorem 6.4, and write p2 = Nq2 to highlight
that p2 depends on the output size N . (Note that p1 and q2 do not depend on N or t.) The expected
runtime of quantum t-sieving ISD is then Õ

(

TA/
√
p1q2N

)

, where TA is the expected runtime of A.
However, even if the use of t-tuples for t > 2 might potentially reduce the lower bound on the

output size N , we obtain the following lower bound on the runtime of quantum t-sieving ISD. We
remark that the assumption holds, for instance, if the runtime of any t-sieving algorithm is lower
bounded by the optimal runtime of 2-sieving (since 1/p(2) is a lower bound on the output size of a
2-sieving algorithm).

Proposition 6.8 (A lower bound on quantum t-sieving ISD). Assume that the runtime of
any t-sieving algorithm is at least 1/p(2). Consider a quantum ISD algorithm with the aforementioned

t-sieving algorithm as oracle A. The expected runtime of this algorithm is Ω(1/
√

p1q2p(2)).

By Section 6.3, the latter is (asymptotically) never better than the runtime of quantum Prange.
Hence, we can conclude that, under the stated assumption, quantum t-sieving ISD does no better
than quantum Prange for all t ≥ 2.

Proof. We analyze the cases N ≤ 1/p(2) and N ≥ 1/p(2) separately, where N (as usual) denotes
the output size of A. First, suppose that N ≤ 1/p(2). By the assumption, the runtime TA of any
t-sieving algorithm is at least 1/p(2), so the runtime of the resulting quantum ISD algorithm is lower

bounded by TA/
√
p1q2N ≥ 1/

(

p(2)
√
p1q2N

)

≥ 1/
√

p1q2p(2). On the other hand, if N ≥ 1/p(2), then

TA/
√
p1q2N ≥

√
N/

√
p1q2 ≥ 1/

√

p1q2p(2) since TA ≥ N . (Note that we omit writing Õ(·) throughout
the proof.) ⊓⊔

Approach 2: Varying List Sizes. The lower bound on the output size N of the sieving subroutine
comes from maintaining the same list size N throughout each iteration in the sieving algorithm. A
natural question to ask is whether it would be possible to vary the list size in order to overcome this
intrinsic limitation of quantum SievingISD.

We propose the following approach for varying list sizes. Suppose that for given parameters n′, w′

there exists a (classical/quantum) algorithm for the subroutine A in the quantum ISD algorithm that
iteratively applies a sieving step of the following form, where the values Ni are arbitrary. It starts by
sampling a list L0 of N0 independent and uniformly random vectors from Sn′

w′ . For iteration i = 1 up to
i = n′−k, the algorithm finds Ni pairs (x1,x2) ∈ L2

i−1 satisfying |x1+x2| = w′, yielding a new list Li

of size Ni. Note that the expected number of solution pairs is N2
i−1p, where p :=

(

w′

w′/2

)(

n′−w′

w′/2

)

/
(

n′

w′

)

is

the probability that a uniformly random pair is a solution pair (previously denoted by p(2)). Therefore,
we will only consider Ni satisfying Ni ≤ N2

i−1p.

19 The intuition comes from tuple-sieving algorithms (e.g., [KMPM19]) which consider t > 2 to reduce the
lower bound on N .
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Remark 6.9. If Ni = N0 for all i, then we get the same lower bound on the list size as we considered
so far, namely 1/p, resulting in the original setting. We now instead consider the situation where the
Ni’s might differ.

We now sketch the proof that there is no choice of N0, . . . , Nn′−k satisfying Ni ≤ N2
i−1p for which

this algorithm yields runtime better than that of quantum Prange (Lemma 6.6).
We start by observing that the overall runtime of this quantum ISD algorithm is essentially

T := Tmax/
√

p1q2Nn′−k, where Tmax is the maximum among the runtimes of the iterations, and p1
and p2 = q2Nn′−k are the probabilities from Theorem 6.4. (Note that the output size Nn′−k was
previously denoted by N .) Since Tmax ≥ Nmax := maxi≥0 Ni, we have T ≥ Nmax/

√

p1q2Nn′−k.
Recall from Section 6.3 that, for all allowed (n′, w′), 1/

√
p1q2p is asymptotically lower bounded by

the runtime of quantum Prange. Therefore, it suffices to show that there is no choice of N0, . . . , Nn′−k

such that Nmax/
√

Nn′−k < 1/
√
p.

Suppose for contradiction there is a choice of N0, . . . , Nn′−k satisfying Ni ≤ N2
i−1p for all i ≥ 1

and Nmax/
√

Nn′−k < 1/
√
p. We analyze the two cases Nn′−k ≥ 1

p and Nn′−k < 1
p separately. We

start with the case Nn′−k ≥ 1/p. Then Nmax/
√

Nn′−k ≥
√

Nn′−k ≥ 1/
√
p.

It remains to consider the case Nn′−k < 1/p. If N0 ≥ 1/p, then N0 > Nn′−k, so Nmax/
√

Nn′−k ≥
N0/

√

Nn′−k >
√
N0 ≥ 1/

√
p. Finally, consider the case that N0 < 1/p. Note that Ni ≤ N2

i−1p for

all i ≥ 1 implies that Ni ≤ N2i

0 p2
i−1 for all i ≥ 0. In particular, the size of the output list satisfies

Nn′−k ≤ N2n
′
−k

0 p2
n′

−k−1. Therefore, we obtain that

Nmax
√

Nn′−k

≥ N0
√

Nn′−k

≥
√

N2
0

N2n′
−k

0 p2n
′
−k−1

=
1√
p

1
√

N2n′
−k−2

0 p2n
′
−k−2

>
1√
p

since N0p < 1. That is, in all possible cases we showed that Nmax/
√

Nn′−k ≥ 1/
√
p, so we reached

a contradiction. We conclude that there is no suitable choice for the Ni that enables to outperform
quantum Prange.
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