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Abstract. We consider a many-server queue in which each server can serve multiple cus-
tomers in parallel. Such multitasking phenomena occur in various applications areas (e.g., 
in hospitals and contact centers), although the impact of the number of customers who are 
simultaneously served on system efficiency may vary. We establish diffusion limits of the 
queueing process under the quality-and-efficiency-driven scaling and for different policies 
of assigning customers to servers depending on the number of customers they serve. We 
show that for a broad class of routing policies, including routing to the least busy server, 
the same one-dimensional diffusion process is obtained in the heavy-traffic limit. In case of 
assignment to the most busy server, there is no state-space collapse, and the diffusion limit 
involves a custom regulator mapping. Moreover, we also show that assigning customers to 
the least (most) busy server is optimal when the cumulative service rate per server is con-
cave (convex), motivating the routing policies considered. Finally, we also derive diffusion 
limits in the nonheavy-traffic scaling regime and in the heavy-traffic scaling regime where 
customers can be reassigned during service.

Funding: The research of J. Storm is partly funded by the Netherlands Organization for Scientific 
Research (NWO) Gravitation project Networks [Grant 024.002.003]. 
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1. Introduction
Many service systems have employees who can manage multiple customers concurrently because a single customer 
does not require the constant attention of an employee during the service request. This allows the employee to multi-
task by devoting her or his attention to other service requests in the meantime, potentially increasing the employee’s 
efficiency. An illustrative example from the healthcare industry is where multiple patients are treated by a single 
nurse in intensive care units, clinical wards, or emergency departments (Elkhuizen et al. [15], Hall [21], Kc [31], 
Véricourt and Jennings [54]). Another prominent example is that of modern contact centers, where customer service 
representatives communicate with multiple customers at once via a customer chat channel (Cui and Tezcan [10], 
Legros and Jouini [34], Luo and Zhang [36], Tezcan and Zhang [51]). In addition to these, multiprogramming func-
tionalities in computer systems (Horváth et al. [25], Schroeder et al. [48]), parole officers, and social welfare agencies 
(Campello et al. [8]) are mentioned as motivating practical examples for service systems involved with multitasking.

In this paper, we focus on the analysis of many-server service systems with multitasking. These systems require 
an analysis different from that of classical many-server queueing systems (see, e.g., Gans et al. [17], Halfin and 
Whitt [20]) because of the multitasking property. In particular, the system performance is strongly influenced by 
the efficiency gained or lost because of multitasking employees. This multitasking effect is complex and likely 
depends on the field of application (Delasay et al. [13], Douglas et al. [14]). On the one hand, the service rate per cus-
tomer is expected to decrease in the number of simultaneously handled customers because of the server dividing 
her or his attention. On the other hand, it is known that challenging an employee with more work can have a posi-
tive effect on the service rate per customer, thus increasing the employee’s effectiveness (Wickens et al. [58]). The 
effects of workload on processing efficiency have been statistically investigated in various types of service systems, 
such as in clinical settings (Berry Jaeker and Tucker [3], Kc [31], Kc and Terwiesch [32]), restaurant chains (Tan and 
Netessine [50]), contact centers (Hasija et al. [24]), and job shops (Bertrand and Van Ooijen [4]). In fact, it is fre-
quently hypothesized that multitasking has an inverted U-shaped effect on throughput (Berry Jaeker and Tucker 
[3], Kc [31]).
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For the efficient management of service systems, two major decisions apply, namely the staffing level and the rout-
ing policy. The former concerns the number of servers necessary to meet a certain service-level target; the latter pre-
scribes to which available server a customer is routed depending on the number of customers they serve. These 
decisions are closely related and should thus be considered jointly. In Tezcan and Zhang [51], fluid model solutions 
to these problems are presented. In particular, they find an asymptotically optimal policy for a specific case of the 
multitasking effect. For this policy, the staffing problem is addressed in Cui and Tezcan [10] using diffusion pro-
cesses arising from heavy-traffic scaling limits.

The primary goal of this paper is to use heavy-traffic diffusion limits to analyze the performance of multitasking 
service systems for different variants of the multitasking effect. Compared with Cui and Tezcan [10], our analysis 
covers a broad class of intuitive and popular routing policies and thus, provides both a qualitative and quantitative 
understanding of the interplay between routing decisions, different multitasking effects, and preferred staffing 
levels; the latter can be derived from the scaling used for the diffusion limit. We consider this to be our primary con-
tribution. Here, it should be noted that heavy traffic does not necessarily mean that employees are at the limit of 
workload that they can handle but rather, that the workload offered to an employee is just below a workload 
threshold that is set by, for example, a system manager. In addition to diffusion limits, we obtain explicit expres-
sions for the stationary distribution of the limiting diffusion processes. These can be used to obtain approximations 
for various steady-state performance measures of the system (e.g., involving the waiting time distribution or frac-
tion of abandonments).

For our approach, we use the queue-based model proposed in Cui and Tezcan [10]. In that model, there are n ser-
vers, each being able to serve up to I customers simultaneously. Service times of customers are assumed to be expo-
nential, where the service rate di of a server is a function of the number of customers i being served by that server. 
The multitasking effect is captured by the shape of the function i ⊢→ di. Also, customer abandonment, because of 
customer impatience, is included. We primarily consider the quality-and-efficiency-driven (QED) scaling. In this 
regime, the arrival rate grows large, and the offered workload R is related to the number of servers n by the square- 
root principle n ≈ R+ β

ffiffiffiffi
R
√

, with β�a fixed parameter representing a service grade (see, e.g., Borst et al. [6], Gans et al. 
[17], Halfin and Whitt [20], Whitt [55]). For our analysis, we assume that i ⊢→ di is increasing, thus covering a wide 
range of multitasking effects. This assumption is not too restrictive as the level of multitasking can be controlled by 
service system managers up to the point that multitasking is no longer efficient.

Using this setup, we derive diffusion limits covering a broad class of routing policies. For our first result, we con-
sider a class Π�of routing policies that, loosely speaking, send at least a small portion of the newly arrived customers 
to servers that have more than one free space. For each policy in Π, we obtain the same single-dimensional diffusion 
limit to determine staffing levels and characterize system performance. In particular, this shows that the diffusion 
results under QED scaling (and corresponding staffing levels and performance approximations) in Cui and Tezcan 
[10] are robust against errors or changes in the routing policy. Specifically, all policies in Π�have the same asymp-
totic performance and are all asymptotically optimal by the result in Tezcan and Zhang [51]. As a counterpart, we 
show that a different asymptotic performance is obtained by the policy where a new customer is structurally sent to 
the most busy (available) server; this routing policy is called “most busy first” (MBF). Such a routing scenario can 
occur when a manager wants to maximize the number of free agents and turns out to be optimal when the multi-
tasking effect is convex; we discuss this in more detail.

The class Π�contains policies such as “least busy first” (LBF; also called lightest load first or join the shortest queue), 
“random available spot,” and “random available server” (also called join idle queue). These policies send a new cus-
tomer to, respectively, the server with the smallest number of customers, a free spot selected uniformly at random 
over all free spots, and a random free server. The relevance of this class of policies lies in the trade-off between wait-
ing time and communication overhead. In short, many routing policies require full information of the system’s 
state, and the necessary communication overhead becomes large when the number of servers increases, whereas 
random policies require little to no communication overhead. This trade-off between waiting time and overhead is 
a recent area of study in the so-called supermarket model, where arriving customers have to be routed to one of n 
parallel single-server queues (see, e.g., van der Boor et al. [52]).

For the proofs of our results, we use a novel approach compared with Cui and Tezcan [10]. The proof of the result 
for the policy class Π�uses direct arguments, which can be easily explained on an intuitive level. In particular, we 
prove a state-space collapse result using a stochastic coupling technique. The proof of the MBF diffusion limit is 
considerably more involved and cannot be covered by the aforementioned technique or the approach in Cui and 
Tezcan [10]. Specifically, the result does not include a state-space collapse, and the limiting process is a reflected dif-
fusion process instead. For the proof, we develop a technique based on a new type of regulator mapping associated 
with an extension of so-called generalized Skorokhod problems (see, e.g., Reed and Ward [42], Reed and Ward [43], 
Reed et al. [44]).
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The policies that we consider are motivated by what we consider to be our secondary contribution: prelimit opti-
mality results for two cases of the multitasking effect. To be precise, we show that routing customers to the least 
(most) busy available server is optimal, in terms of customers present and the number of abandonments, when the 
multitasking effect i ⊢→ di is concave (convex). We emphasize that this strengthens the asymptotic optimality 
results for the LBF policy from Tezcan and Zhang [51], and the optimality criteria for the MBF policy have not been 
considered before. The stochastic ordering also applies in the reversed setting, showing that sending customers to 
the least (most) busy server yields the worst performance for a convex (concave) multitasking effect.

Nonheavy-traffic diffusion limits can also be established for systems operating under the LBF and MBF policies. 
The LBF case is covered in Cui and Tezcan [10], and we derive fluid and diffusion limits for the MBF case with sub-
critical workloads, relying on the same methods we use in the heavy-traffic scaling regime. The results for the MBF 
policy are particularly interesting because they show that by routing customers to the busiest server, a fraction of 
all servers will be empty. These servers can be used for other tasks (e.g., addressing other communication channels 
in contact centers or taking care of different patient groups in hospital wards).

Finally, we also cover the instances of service systems where there is the flexibility to transfer customers among 
servers during service. For this case, a routing policy should be interpreted as the allocation of customers among 
servers, which may change at any moment. In Legros and Jouini [34], it is shown that allocating customers to the 
least (most) busy server is optimal for concave (convex) multitasking effects. For these cases, we provide heavy- 
traffic diffusion limits from which favorable staffing levels can be derived. As in Legros and Jouini [34], we use the 
terms shared work case (SWC) and nonshared work case (NWC) to refer to, respectively, systems that allow customer 
transfers between servers and those that do not.

1.1. Organization and Notation
The paper is organized as follows. In Section 2, we start by introducing the model and discussing the asymptotic 
setup under which we derive the diffusion limits. Our primary contributions (i.e., the heavy-traffic diffusion limits 
for both classes Π�and MBF) are presented in Section 3. Subsequently, diffusion limits for the SWC are given in Sec-
tion 4. The LBF and MBF policies are further motivated in Section 5 by presenting optimality properties (i.e., our 
secondary contribution). Application of diffusion limits to approximate the probability of delay is discussed in Sec-
tion 6, providing further intuitive insight into system performance compared with, for example, the Erlang A 
model. In Section 7, we study the diffusion-level behavior of our model in nonheavy-traffic regimes. In Sections 8
and 9, we present the proofs of the policy classes Π�and MBF, respectively; the proofs of the other results can be 
found in the appendix. Numerical illustrations can be found in Section 10. Some straightforward model extensions 
are discussed in Section 11, whereas Section 12 concludes.

In this paper, all random elements are defined on a single probability space (Ω,F , P). All vectors are understood 
as column vectors. We adopt the convention of denoting a stochastic process {X(t), t ≥ 0} by X(·), and by X(t), we 
denote the corresponding random variable at time t ≥ 0. For d ∈N, we denote by Dd[0,∞) the space of càdlàg func-
tions f : R+ →Rd. We endow this space with the Skorohod topology; however, because all convergence results 
have continuous limits, we can also consider the uniform topology on compact time intervals. For a process X(·)
and t ≥ 0, we denote by ‖X(·)‖t the uniform norm of X(·) on [0, t]. Weak convergence of a sequence of processes 
{Xn(·)}n ⊂Dd[0,∞) to a limit X(·) ∈Dd[0,∞) is denoted Xn(·) ⇒ X(·), and we write Xn(·)→

P X(·) when Xn(·) con-
verges to X(·) in probability, with the uniform norm on compact time intervals. The order notation should be inter-
preted in a stochastic sense; that is, for a sequence of stochastic variables {Xn}n≥1 and function g(n), we write 
Xn � o(g(n)) if Xn=g(n) converges to zero in probability, and we write Xn �O(g(n)) if Xn=g(n) has a nontrivial distri-
bution, as n→∞. Finally, for x ∈R, we write x+ �max{x, 0} and x� �max{�x, 0}.

1.2. Literature
We provide an overview of the streams of literature related to our work and describe how our results fit into these 
streams of literature.

Processor sharing queues are closely related to our work, as the way in which customers are served in a multitask-
ing system can be interpreted as a type of (limited) processor sharing (or round robin). A key difference between 
limited processor sharing (LPS) and multitasking systems is that in the former, there is a single service entity for all 
customers, whereas in the latter, there are multiple servers, each managing a subset of the customers present. Also, 
in LPS, the total service rate is constant, whereas for multitasking systems, this depends on the number of custo-
mers in service. Some seminal work on processor sharing systems involves Kleinrock [33] and Yashkov [60]; more 
recent studies on LPS can be found in, for example, Zhang and Zwart [61] and Zhang et al. [62]. We refer to Altman 
et al. [2] for the study of routing customers to parallel processor sharing queues.

Storm, Berkelmans, and Bekker: Diffusion-Based Staffing for Multitasking Service Systems 
2686 Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2684–2722, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

16
.1

91
.1

36
] 

on
 1

2 
D

ec
em

be
r 

20
24

, a
t 0

5:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



The main results in this paper are many-server diffusion approximations in the QED regime, for which there is a rich 
literature. The starting point for such diffusion limits is the celebrated paper by Halfin and Whitt [20]. Subse-
quently, many papers have been devoted to extensions: for example, by including customer abandonments (Dai 
et al. [12], Garnett et al. [18]), by focusing on dimensioning and/or constraint satisfaction (Borst et al. [6], Mandel-
baum and Zeltyn [37]), by considering networks (Mandelbaum et al. [38]), by refinements of the staffing rules (Jans-
sen et al. [27]), and by having time-dependent demand (Jennings et al. [28]). As the amount of literature is 
considerable, we refer to Gans et al. [17] for an early exposition of the QED and other regimes in call centers; see 
van Leeuwaarden et al. [53] for a recent partial review of queues in the QED regime containing many references.

Our methodology to prove convergence in the NWC with the MBF policy is based on the theory of Skorokhod pro-
blems. In simple terms, this theory describes a wide class of reflected processes as the image of a process with uncon-
strained paths under a continuous mapping. Therefore, by the continuous mapping theorem, deriving a diffusion 
limit for a reflected stochastic process reduces to deriving a diffusion limit for the unconstrained process. We point 
to Whitt [56, chapter 14] as a standard reference for this theory. This technique has frequently been used to obtain 
reflected Brownian models, building on Harrison and Williams [23], as approximations to queueing models; see, 
for example, Chen and Mandelbaum [9], Harrison and Williams [22], and Reiman [45] for a few examples. For 
reflected processes that include a position-dependent drift component, so-called generalized Skorokhod problems 
have been developed and employed in Reed and Ward [42], Reed and Ward [43], and Reed et al. [44]. For our case, 
this variant of the Skorokhod problem cannot be directly applied. Instead, we develop a modified version of the 
generalized Skorokhod problem to prove our results.

The literature on multitasking, multiserver systems is relatively small. Studies are primarily motivated by chat con-
tact centers (Cui and Tezcan [10], Legros and Jouini [34], Luo and Zhang [36], Tezcan and Zhang [51]) and consider 
similar types of models. The recent paper (Legros and Jouini [34]) focuses on the routing decisions in both the SWC 
and NWC scenarios. For the SWC, they show that LBF (MBF) maximizes the service rate for concave (convex) mul-
titasking effects. For the NWC, the authors consider the optimality of idling and further adopt a one-step policy 
improvement approach. The papers by Cui and Tezcan [10], Luo and Zhang [36], and Tezcan and Zhang [51] focus 
on asymptotic analysis in the many-server heavy-traffic regime. In Luo and Zhang [36], fluid approximations are 
established, and in Tezcan and Zhang [51], asymptotically optimal routing policies and staffing levels are given 
based on fluid models. In this paper, we strengthen the routing result by providing (nonasymptotically) optimal 
routing policies for convex and concave increasing multitasking effects. We also obtain a lower bound on the sys-
tem performance. Our proofs regarding routing disciplines are based on weak majorizations and follow the lines of 
proof and stochastic couplings as given in Akgun et al. [1] and Sparaggis et al. [49]. In Cui and Tezcan [10], heavy- 
traffic diffusion limits are established for multitasking service systems to address the staffing problem. Their results 
are proven for what we refer to as the NWC with the LBF policy, whereas we consider a broader class of routing 
policies Π�as well as the MBF policy for the NWC. Moreover, we also consider diffusion approximations for the 
SWC. Model extensions to general service and patience times can be found in Long et al. [35].

2. Model Definition and Asymptotic Framework
In this section, we introduce the model, the state description, and the routing policies, and we finish by presenting 
the asymptotic framework. For clarity of exposition, we introduce a basic model. The possible extensions and rami-
fications are discussed in Section 11.

2.1. Model Definition
The main focus of our study is an n-server queueing system, with n ∈N, to which customers arrive according to a 
Poisson process with rate λ > 0. Servers are able to serve up to I ∈N customers simultaneously to reflect the phe-
nomenon of multitasking. A server is said to be at level i ∈ {0, : : : , I} when it is serving i customers. When there are 
i ∈ {0, : : : , I} customers at a server, each customer has a service time that is exponentially distributed with rate 
µi > 0. In addition, we assume that every customer in service abandons the system after an exponentially distrib-
uted time with parameter θs ≥ 0. Consequently, for i ∈ {1, : : : , I}, the time until the next customer is removed from a 
level i server is exponentially distributed with parameter i(µi +θs) :� di. When every server is at level I, an arriving 
customer will enter a queue, which is emptied according to a first come, first served discipline. We assume that all 
servers are at level I when there are at least nI customers in the system (i.e., the system is work conserving). Finally, 
we include customer impatience during waiting by imposing that each customer in the queue abandons the system 
after an exponential time with parameter θ ≥ 0.

Throughout the paper, we assume that di< dj for i< j (i.e., di is increasing in i). This is a natural assumption as a 
system manager can control the level of multitasking up to the point where efficiency is lost (i.e., we expect that iµi 
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will be increasing in i). By definition of di, we, therefore, expect that di is increasing in most practical applications. 
The assumption also plays a technical role in the proofs of our results.

2.2. System State and Policies
The state of the multitasking queueing system can be described by the stochastic process Z � {Z(t), t ≥ 0}, with Z(t) 
defined as

Z(t) :� (Q(t), n0(t), n1(t), : : : , nI�3(t), nI�2(t))⊤, 

where Q(t) is the total number of customers in the system, and for i ∈ {0, 1, : : : , I}, ni(t) is the number of level i 
servers, both at time t ≥ 0. We note that the two components nI�1(t) and nI(t) are not required to describe the 
state of the system because nI(t) � n and nI�1(t) � 0 when Q(t) ≥ In, and for Q(t)< In, we can find nI(t) and nI�1(t)
from

n �
XI

i�0
ni(t)

Q(t) �
XI

i�1
ini(t):

8
>>>><

>>>>:

Hence, for all t ≥ 0, we have

nI�1(t) �max{In�Q(t), 0}�
XI

i�2
inI�i(t), nI(t) � n�

XI�1

i�0
ni(t): (1) 

As such, we can refer to nI(t) and nI�1(t) when speaking about Z(t), even though they are not directly included in 
the state description.

The system dynamics depend on the routing policy. Three classical customer routing policies are the ones in 
which arriving customers are routed to (1) available servers with the least number of customers, (2) available ser-
vers with the most number of customers, and (3) random available servers that are not at level I. We refer to these 
policies as LBF, MBF, and random-server (RS) policies, respectively. We note that LBF and RS are, in fact, special 
cases of a wider class of policies Π�that we introduce in Section 3.1.

Observe that Z(·) is an irreducible Markov process with state space {(Q, n0, : : : , nI�2) ∈Z+ × {0, : : : , n}I�2
: nI�1, 

nI ≥ 0}. It can be shown using a Foster–Lyapunov theorem (e.g., Robert [47, theorem 8.13]) that Z(·) is positive recur-
rent when θ > 0 or when λ=(dIn) < 1 if θ�0. For θ > 0, the intuition is that when a sufficiently large queue builds 
up, then the number of customers in the system is dominated by the occupancy process of an infinite-server queue, 
which is always stable. For θ�0, whenever there is a queue, Q(·) behaves like an M=M=1 queue with arrival rate λ�
and departure rate dIn, which is stable if and only if λ=(dIn) < 1.

Throughout the remainder of the paper, we assume that either θ > 0 or λ=(ndI) < 1, in which case Z(·) has a 
unique stationary distribution, which can be determined by solving the balance equations. For Q(·) ≥ In, the special 
structure of the Markov process may be used, whereas a system of equations needs to be solved for all states in case 
of an empty queue. This involves 

�n+ I
n

�
states, which grow as an Ith order polynomial in n. One cannot hope for 

an explicit expression for the stationary distribution. In addition, numerical solutions become unfeasible when n is 
large and would not give any deeper insight into the system behavior. Therefore, we focus on an asymptotic analy-
sis of the multitasking system, involving diffusion limits.

Remark 1. Note that the system may also be considered as a generalization of an Erlang A model because in the 
case that di � id1, for each i ∈ {1, : : : , I}, the system is equivalent to an M=M=In+M queue.

2.3. Heavy-Traffic Asymptotic Framework
After fixing a routing policy, we determine staffing levels by studying the heavy-traffic behavior of Z(·) on a diffu-
sion scale. We consider a scaling of the arrival rate λ ⊢→ λn, depending on the number of servers n, such that the 
load per server ρn :� λn=(dIn) ↑ 1 as n→∞; nonheavy-traffic scaling regimes for the multitasking system are con-
sidered in Section 7. As in Cui and Tezcan [10], we do not consider the overloaded regime, as the asymptotic behav-
ior then coincides with the overloaded Erlang A model; see, for example, Whitt [57] for the Erlang A model in the 
efficiency-driven regime. There are many possible ways to achieve a heavy-traffic scaling, but we focus on the well- 
known QED regime (see, e.g., Cui and Tezcan [10], Gans et al. [17], Halfin and Whitt [20]). This regime balances the 
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system load and can be used to analyze many-server systems where the probability that an arriving customer has 
to wait is nontrivial in the stationary regime (cf. Puhalskii and Reiman [41]).

In their celebrated paper, Halfin and Whitt show (cf. Halfin and Whitt [20, proposition 1]) that, for the classical 
Erlang delay model with a fixed service rate, there is a unique way to scale the arrival rate with the number of ser-
vers such that the probability that an arriving customer has to wait is nontrivial (i.e., is strictly between zero and 
one). In this paper, we adopt a similar scaling, which has also been applied for the Erlang A model; see Garnett et al. 
[18]. More specifically, we consider a sequence of stochastic processes {Zn(·)}n≥1, with Zn(·) � {Zn(t), t ≥ 0} as a mul-
titasking system having n servers and

λn � dI(n�
ffiffiffi
n
√
β) (2) 

being the corresponding arrival rate, with β ∈ R. Observe that when θ�0, we require that β > 0 for the system to be 
stable. To emphasize their dependence on n, we write Qn(·) and nn, i(·), for i ∈ {0, : : : , I� 2}, for the components of 
Zn(·). The diffusion limits we derive for the multitasking system under this scaling regime can be related to the dif-
fusion behavior of the Erlang A model as discussed in Section 6.

Remark 2. In the heavy-traffic scaling that we consider, it may appear that almost every server is close to the 
limit of the workload that it can handle as n→∞, which may be unrealistic depending on the application. We 
emphasize that this is not necessarily the case because the interpretation of I can be modified so that servers 
experience a preset maximum level of workload. For example, define I1 as the maximum level at which multi-
tasking is efficient (i.e., the point up to which iµi is increasing in i) and I2 as the maximum level at which the 
workload per server remains below a prespecified threshold (or alternatively, the quality of service is high 
enough). The following cases of applications can be distinguished. 

i. The case I � I1 � I2 applies to systems where full server utilization is desirable (e.g., multiprogramming com-
puter systems).

ii. The case I � I2 < I1 refers to, for example, nonemergency healthcare and chat service systems, where a strict 
level I cap can be maintained by a system administrator and some modest waiting times are preferable to overload-
ing the servers.

iii. The case I � I1 > I2 is related to systems where waiting should be avoided at any cost: for instance, emergency 
situations, such as emergency departments in hospitals.

Our diffusion analysis of the multitasking model in heavy-traffic regimes is primarily useful in cases (i) and 
(ii). In case (iii), nonheavy-traffic scaling regimes should be considered, which we do in Section 7.

On a fluid scale, all servers will be occupied in heavy traffic so that In will be an invariant state for the number 
of customers in the system (cf. Cui and Tezcan [10, theorem 2]). By centering around In in the first component of 
Zn(·), its value represents either the queue length (when Qn� In ≥ 0) or minus the number of available places 
(when Qn � In < 0). As nI(·) and nI�1(·) are not (directly) in the state description, there is no centering for the 
other components. To derive the diffusion limits, we consider a sequence of the scaled and centered processes 
{Ẑn(·)}n≥1 given by

Ẑn(t) �
(Zn(t)� (In, 0, : : : , 0)⊤)

ffiffiffi
n
√ , t ≥ 0, (3) 

with (In, 0, : : : , 0) ∈RI. We denote the components of Ẑn(·) by Q̂n(·) � n�1=2(Qn(·)� In) and n̂n, i(·) � n�1=2nn, i(·) for 
i ∈ {0, : : : , I� 2}.

For our diffusion limits, we require that the initial conditions converge in a suitable manner along with the 
dynamics of our process. This can be achieved in various ways and is mostly a technical condition. For our pur-
poses, it is sufficient that the initial conditions converge weakly. To be specific, we assume that Ẑn(0) converges 
weakly to a random vector Ẑ(0) in RI, as n→∞, denoted by Ẑn(0) ⇒ Ẑ(0), independently of the processes driving 
the evolution of Zn(·). In addition, for each of our theorems, we assume that Ẑ(0) is a random variable taking on 
values in a space that matches the state space of the limiting diffusion process Ẑ(·) corresponding to the specific 
theorem. When stating our theorems, we abbreviate these assumptions to the statement “suppose Ẑn(0) ⇒ Ẑ(0).”

3. Heavy-Traffic Diffusion Limits
In this section, we present our main results (i.e., the diffusion limits for Z(·) in the QED heavy-traffic scaling 
regime). We consider two fundamentally different cases. On the one hand, in Section 3.1, we provide the diffusion 
approximation under the class of policies as defined in Definition 1 (including the LBF and RS policies), giving 
rise to a one-dimensional limiting process. On the other hand, the diffusion limit in Section 3.2 for the MBF policy 
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is a multidimensional reflected diffusion process with nonhomogeneous drift characterized as the solution of a 
custom version of the Skorokhod problem.

The impact of the routing policies in terms of the probability of delay is deferred to Section 6. Proofs of the diffu-
sion limits are given in Sections 8 and 9.

3.1. Diffusion Limits for the LBF and RS Policies
In the present section, we derive a diffusion approximation for Z(·) under the LBF and RS policies. For both policies, 
Ẑn(·) will have the same diffusion limit, showing that the policies have the same asymptotic performance. In fact, 
the proof for the LBF and RS policies can be easily extended to a wider class of policies, which we, therefore, con-
sider instead.

Definition 1 (Policy Class Π). For some c> 0 and with the convention that 0=0 � 0, define Π�as the set of policies 
so that given Z(t) at t ≥ 0, we have the following assignment probability for an arriving customer at time t:

P(Route to server at level I� 2 or below) ≥ ck(t)
(Q(t)� In)�

, 

where the process k(·) is defined as

k(·) :�
XI�2

i�0
(I� i� 1)ni(·): (4) 

Observe that at time t ≥ 0, k(t) is the number of customers missing at servers at level I�2 or below that would 
put all of these servers at level I�1. It turns out that Ẑn(·), under all policies in Π, converges weakly to a diffu-
sion process Ẑ(·), showing that all policies in Π�have the same asymptotic performance.

It can be easily seen that LBF and RS policies are in Π�because the probabilities of routing a customer to a 
server at level I� 2 or below are 1{k(t)>0} and (k(t) +

PI�2
i�0 ni(t))=(Q(t)� In)�, respectively. There are also other rel-

evant policies in Π: for instance, the policy that sends customers to a random free spot; the relevant routing prob-
ability is equal to 

PI�2
i�0 (I� i)ni(t)=(Q(t)� In)�. As all these policies turn out to have the same asymptotic 

performance, it shows that in practice, one has to purposely avoid sending customers to level I�2 servers or 
below in order to obtain a different asymptotic performance in heavy traffic. In Section 3.2, we discuss the MBF 
policy, which is not in Π�and has different asymptotic performance.

We start our exposition by providing some intuition for the main result. An explicit expression for the station-
ary distribution of the diffusion limit can be found in Section 6, which can be interpreted in terms of an Erlang A 
system.

3.1.1. Intuition. For the current routing policy, it turns out the service system, when in heavy traffic, exclusively has 
level I and level I� 1 servers. To explain the reason behind this, let I� 3, and consider the system under the RS pol-
icy. If Q(t) ≥ In, there can clearly only be level I servers. When Q(t)< In, the process is more complex; the rate at 
which servers at level i become servers at level j, for i ∈ {0, : : : , 3}, j ∈ {max{i� 1, 0}, min{i+ 1, 3}}, is represented 
schematically in Figure 1. Because Zn(·) is ergodic, it has a unique limiting distribution such that the rates in and out 
in Figure 1 should be balanced. For n3(t), this gives

d3n3(t) � λn
n2(t)

n� n3(t)
: (5) 

Because ρn ↑ 1, we have that for n large, the number of servers with a free space n� n3(t) should be o(n), and 
because we are considering a generalization of the M=M=n+M queue under the QED scaling, it is conceivable that 
n� n3(t) �O(

ffiffiffi
n
√
). As we have chosen λn �O(n), (5) implies that n2(t) �O(

ffiffiffi
n
√
) in the stationary regime. Repeating 

this argument, we get n1(t) �O(1) and n0(t) �O
� 1ffiffi

n
√
�
. We deduce that when we scale the system by n�1=2, only n3(·)

Figure 1. Schematic representation process rates when Q(t) < 3n. 
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and n2(·)will have nontrivial limits as n→∞. This argument can be generalized to arbitrary I ∈N and to every pol-
icy in Π, where for n large, the number of level i servers in the stationary regime is O(n(i�I+2)=2), i ∈ {0, : : : , I}.

3.1.2. Diffusion Limit. Based on the argument, the process Ẑn(·), for n large, behaves as if there were only level I 
and level I�1 servers, with jumps of size 1=

ffiffiffi
n
√

. For such a process, it is considerably easier to derive a diffusion 
limit because it behaves similar to a birth-death process. We formalize our result in the following theorem, the proof 
of which is in Section 8, where we also make the intuition rigorous.

Theorem 1. Suppose Ẑn(0) ⇒ Ẑ(0). For any policy in Π, the process Ẑn(·) converges weakly in DI[0,∞), as n→∞, to 
the process

Ẑ(·) � (Q̂(·), 0, : : : , 0)⊤, 

where Q̂(·) is a one-dimensional diffusion process that has infinitesimal mean

m(x) �
�dIβ�θx, x ≥ 0,
�dIβ� (dI � dI�1)x, x < 0,

�

and constant diffusion

σ2(x) � 2dI:

Remark 3. For the result of Theorem 1 to remain valid, the constant c for the policies in Π�may actually depend 
on n; one can take {cn}n to be a sequence so that cn is of the order 1=

ffiffiffi
n
√

. This shows that in many practical situa-
tions, sending only a small amount of customers to servers at level I�2 or below will provide the same asymp-
totic performance as sending all customers to these servers (if possible); one should really push customers 
toward level I�2 servers or below to obtain different asymptotic performance.

3.2. Diffusion Limit for the MBF Policy
We now focus on deriving a weak limit approximation for Z(·) under the MBF policy. In contrast to the results of 
the LBF case, the limiting process Ẑ(·) does not have nontrivial components n̂i(·), i ∈ {0, : : : , I� 2} (i.e., there is no 
state-space collapse). We now first intuitively explain why difficulties arise under the MBF policy and review some 
theory about Skorokhod problems. Afterward, we present the main result of the section.

Let us first provide an intuitive argument on why there is no state-space collapse in this case and what the result-
ing diffusion limit should look like. Because of the MBF policy, arrivals are only assigned to a level j server, for 
j ∈ {0, : : : , I� 2}, when there are no available servers at a level higher than j. This means that when there are avail-
able servers at a level higher than j, the number of level j servers is increasing by one with rate dj+1nj+1(t) and 
decreasing by one with rate djnj(t). In particular, for j � I� 2, nj(t) increases only because of service completions at 
level I�1 servers. Because of the QED scaling, we expect nI�1(t) to be O(

ffiffiffi
n
√
) in steady state. It is conceivable that 

nI�2(t) is O(
ffiffiffi
n
√
) as well in steady state because nI�1(·) is positive for lengths of time that are of a constant order, 

whereas the number of departures at level I�2 servers is proportional to nI�2(t). After scaling by n�1=2, these 
dynamics will appear as a drift that depends on the position of Z(·) through nI�1(·) and nI�2(·). Now, when nI�1(·)

becomes zero, there will be a large drop in the number of level I�2 servers because of arrivals, being O(n), that are 
assigned to level I�2 servers. This phenomenon is like a regulator mapping, preventing nI�1(·) from becoming neg-
ative (i.e., reflecting nI�1(·) in zero), decreasing the number of level I�2 servers in the process. This line of reasoning 
carries over to all level j servers, j ∈ {0, : : : , I� 2}, through which we see that these are all O(

ffiffiffi
n
√
) and are subject to a 

position dependent drift, and the term ni(·) is reflected in zero to prevent it from becoming negative, for 
i ∈ {1, : : : , I� 1}.

As indicated, we can consider Ẑn(·) as a reflected process with a position-dependent drift. In order to derive the 
diffusion approximation, we rely on the theory of (generalized) Skorokhod problems. Let us review some theory 
on Skorokhod problems, starting with the following definition; for additional details on Skorokhod problems, we 
refer to Whitt [56].

Definition 2 (Generalized Skorokhod Problem). Given an element x(·) ∈Dd[0,∞) with x(0) ≥ 0 for some d ∈N, a 
Lipschitz function f : Rd

+ →Rd, and a d×d matrix R, we call a pair (z(·), l(·)) ∈Dd[0,∞) ×Dd[0,∞) a solution to the 
generalized Skorokhod problem for x(·), with respect to R, if the following conditions are satisfied: 

i. z(t) � x(t) +
R t

0 f (z(s)) ds+Rl(t), t ≥ 0;
ii. zi(t) ≥ 0, i ∈ {1, : : : , d}, t ≥ 0; and
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iii. l(·) is such that for i ∈ {1, : : : , d}, 
a. li(0) � 0,
b. li(·) is nondecreasing, and
c. 
R t

0zi(t) dli(t) � 0.
When f ≡ 0, it is well known that when R is a generalized M matrix (see Definition 3), then there exists a unique 

pair (z(·), l(·)) that solves the Skorokhod problem for x(·), with respect to R. In that case, we can associate a mapping 
(φ,ψ) : Dd[0,∞)→Dd[0,∞) ×Dd[0,∞) to the Skorokhod problem by setting (φ(x(·)),ψ(x(·))) � (z(·), l(·)). Moreover, 
it is known that this mapping is Lipschitz continuous. These results were first established in Harrison and Reiman 
[23], which is why a generalized M matrix is also called a Harrison–Reiman matrix.

Now, when f is nontrivial, the corresponding term represents a drift that is a function of the position of the 
reflected process. In that case, when R is a generalized M matrix, there still exists a unique solution to the gener-
alized Skorokhod problem so that a mapping x(·) ⊢→ (z(·), l(·)) can be associated, which is again Lipschitz contin-
uous. The solution can be written as (φ(M(x(·))),ψ(M(x(·)))), where M : Dd[0,∞)→Dd[0,∞) is the function that 
maps x(·) ⊢→ v(·), with v(·) solving

v(t) � x(t) +
Z t

0
f (φ(v(s))) ds, for all t ≥ 0:

This mapping is well defined and is Lipschitz continuous (Reed and Ward [42, lemma 1]). In the sequel, we con-
tinue calling this mapping M so as to emphasize in which part of the proof we will use this technique of includ-
ing a drift.

Skorokhod problems are often employed for deriving diffusion limits for nonnegative processes because a 
weak limit approximation for x(·) also applies to z(·) because of the continuous mapping theorem. We employ 
the same technique but require some modifications as our process Z(·) does not fit the framework in Definition 2.

There are yet two issues specific to the process we consider. The first is that Z(·) only requires I�1 directions 
of reflection, namely in the components ni(·), i ∈ {1, : : : , I� 1}, as was already alluded to in our heuristic argument 
at the beginning of this section. In the proof, we formalize the evolution of Z(·) (see (28)), from which it can be 
readily checked that nI(·) and n0(·) stay nonnegative when ni(·) ≥ 0. Because of this fact, we have more compo-
nents than directions of reflection, which require an (straightforward) adaptation of the theory of (generalized) 
Skorokhod problems.

The second issue is that in the current state-space representation (including n0(·) but not nI�1(·)), the matrix R̃ 
associated with the reflection is not a generalized M matrix. It is, therefore, a priori unclear whether a solution to 
the generalized Skorokhod problem exists (let alone that it is unique), so we cannot use the continuous mapping 
theorem. If we modify the state representation by adding nI�1(·) and dropping n0(·), the associated reflection 
matrix R is a generalized M matrix. With this representation, however, the direction of the Brownian motion 
that will drive the diffusion process as n→∞ depends on the position of the diffusion process, making deriving 
the diffusion approximation a difficult task.

We have illustrated the second issue in Figure 2 for the case I� 2 with the two different state representations 
(n0(t), Q(t)� In) (left panel) and (n1(t), Q(t)� In) (right panel); the shaded areas are the interior parts of the state 

Figure 2. (Color online) Schematic representation of directions of Brownian motion (BM) and reflection (refl.) part for 
(n0(t), Q(t)� In) plane (left panel) and (n1(t), Q(t)� In) plane (right panel). 
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space where the queue is empty. In both panels, the solid arrows correspond to actual transitions. Note that the 
transitions associated with arrivals (with rate λn) in the interior can be interpreted as the composition of a state- 
independent transition (green dashed arrows) and a reflection (blue dashed arrows). The green arrows represent 
jumps corresponding to the Brownian component as n→∞, whereas the blue arrows represent the direction of 
reflection of n1(·). Now, for the state representation in the right panel of Figure 2, there is a natural boundary of 
reflection in the vertical axis, but the direction of the Brownian component depends on the state; in the left panel 
of Figure 2, the direction of the Brownian component is independent of the state, but there is a reflection in the 
diagonal. We tackle this second issue by using a custom version of the Skorokhod problem that combines the 
nice properties from both state-space representations, the details of which we leave until the proof.

Before we state the main theorem of this section, we introduce some additional notation. First, associated with 
the vector (Q(t), n0(t), n1(t), : : : , nI�2(t)), let eQ be the standard basis vector in RI, with its first element equal to one. 
Analogously, for i � 0, : : : , I� 2, we let eni be the standard basis vector in RI, with its (i+ 2)nd element equal to one. 
As such, eQ and eni correspond to a unit jump of the components Q(·) and ni(·), i ∈ {0, : : : , I� 2}, respectively.

Second, we define the function f : RI→RI as

f (Ẑn(t)) ��eQ βdI � dI
XI�1

i�0
n̂i(t) +θ(Q̂n(t))

+

 !

+
XI�2

i�1
(�eQ� eni + eni�1)din̂i(t)

+ (�eQ + eI�2)dI�1n̂I�1(t): (6) 

This function captures the nonhomogeneous drift of Ẑn(·). Note that f is Lipschitz continuous (because it is piece-
wise linear). Finally, let R̃ be the (I� 1) × (I� 1) matrix with �1 on its diagonal, 2 on its first lower diagonal, �1 
on its second lower diagonal, and 0 elsewhere.

We are now ready to introduce the main result of this section.

Theorem 2. Suppose Ẑn(0) ⇒ Ẑ(0). For the MBF policy, Ẑn(·) ⇒ Ẑ(·) as n→∞, where Ẑ(·) � (Q̂(·), n̂0(·), : : : , n̂I�2(·))
⊤

is the unique process with values in R ×RI�1
+ satisfying the stochastic integral equation

Ẑ(t) � Ẑ(0) + eQB(t) +
Z t

0
f (Ẑ(s)) ds+

0 0
0 R̃

� �

L̂(·), (7) 

where B(·) is a scaled Brownian motion with 〈B〉t � 2dIt and the process L̂(·) � (L̂0(·), : : : , L̂I�1(·))
⊤ in DI

+[0,∞) is uniquely 
determined by L̂0(·) ≡ 0, n̂0(·), : : : , n̂I�1(·) ≥ 0, and for i � 1, : : : , I� 1, 

a. L̂i(0) � 0,
b. L̂i(·) is nondecreasing, and
c. 
R∞

0 n̂i(t) dL̂i(t) � 0,
with n̂I�1(t) :� (�Q̂(t))+�

PI
i�2 in̂I�i(t) for all t ≥ 0.

4. Heavy-Traffic Diffusion Limits for the Shared Work Case
In Section 3, we considered policies in which customers are not allowed to be reallocated to another server during 
service; in Legros and Jouini [34], this is referred to as the NWC. We now consider the impact of adding the flexibil-
ity to reallocate customers during service, which we refer to as the SWC. For the SWC, we assume that customers 
may be (optimally) redistributed among the servers at any moment; a routing policy in the SWC should, therefore, 
be interpreted as the allocation of customers among servers. Observe that such a reallocation requires complete 
knowledge of the system state, and thus, random policies do not apply. Hence, for the SWC, we exclusively con-
sider the LBF and MBF policies. Also, note that the state of the system is thus completely captured by Q(t), which 
simplifies the analysis considerably.

We consider heavy-traffic diffusion limits for the LBF and MBF policies in the SWC; a better intuitive understand-
ing of the impact of additional SWC flexibility can be found in Section 6.

4.1. Diffusion Limit for the LBF Policy
Under the LBF allocation in the SWC, the number of customers at each server is balanced as much as possible. Con-
sequently, servers will be at most at two different levels. Similar to the NWC with the LBF policy, in the regime as 
ρn gets close to one, the number of available spaces should be O(

ffiffiffi
n
√
) as a consequence of the QED scaling. This 
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implies that in the limit as n→∞, there are only level I�1 and level I servers. In the next theorem, we state the cor-
responding diffusion limit, which we prove in Appendix A.

Theorem 3. Suppose Ẑn(0) ⇒ Ẑ(0). Then, in the SWC with the LBF policy, the process Ẑn(·) converges weakly in 
DI[0,∞), as n→∞, to the process

Ẑ(·) � (Q̂(·), 0, : : : , 0)⊤, 

where Q̂(·) is a diffusion process with distribution as the process Q̂(·) in Theorem 1.

As may be anticipated because of the intuition that servers are only at two different levels, the limiting process 
Ẑ(·) is identical to the one found in Theorem 1 for the NWC. Hence, for larger systems in heavy traffic, there is no 
need for cooperation between servers. The LBF routing provides the same asymptotic performance in the NWC as 
in the SWC.

4.2. Diffusion Limit for the MBF Policy
Under the MBF allocation in the SWC, as many level I servers as possible are created, and there will be at most one 
nonempty server that is not at level I. Consequently, the process Qn(·) behaves as a birth-death process with birth 
rate λn and death rate dI⌊Q(t)=I⌋ + dg(Q(t)), where g(x) � x� ⌊x=I⌋I, for x ∈R. Moreover, this implies that in the con-
sidered heavy-traffic regime, there will only be level I and level 0 servers. This is formalized in the following theo-
rem, which we prove in Appendix A.

Theorem 4. Suppose Zn(0) ⇒ Ẑ(0). Then, in the SWC with the MBF policy, the process Ẑn(·) converges weakly in DI[0,∞), 
as n→∞, to the process

Ẑ(·) � Q̂(·), (Q̂(·))
�

I , : : : , 0
 !⊤

, 

where Q̂(·) is a one-dimensional diffusion process that has infinitesimal mean

m(x) �
�dIβ�θx, x ≥ 0,

�dIβ�
dI

I
x, x < 0,

8
<

:

and constant diffusion

σ2(x) � 2dI:

5. Optimality of Routing Policies LBF and MBF
The LBF and MBF are two intuitively appealing routing policies for arriving customers. This section provides addi-
tional theoretical support and is a primary source of motivation for studying LBF and MBF. Specifically, we identify 
conditions on the functional shape of iµi, under which the LBF and MBF policies perform optimal (or worst) among 
all work-conserving policies. Thereby, they also provide bounds for the performance of other policies. The optimal-
ity is to be interpreted in the stochastic ordering sense. Hence, the optimality concerns comparisons of routing poli-
cies in the prelimit setting (i.e., for a fixed parameter setting with a finite number of servers). This is especially 
relevant because we have already shown in Section 3.1 that the asymptotic performance of the LBF policy is equal 
to that of all policies in the class Π. Optimal policies for other functional shapes of i ⊢→ µi are not studied in this 
paper. In Section 10, we do present a numerical example of a system in which i ⊢→ µi is neither convex nor concave 
in i.

Let us first introduce some notation. With mi :� iµi, we say that mi is concave in i when

mi�mi�1 ≥mi+1�mi, i � 1, : : : , I� 1:

Similarly, mi is convex in i if

mi �mi�1 ≤ mi+1 �mi, i � 1, : : : , I � 1:

Note that for i � 0, : : : , I, mi can be seen as the value m(i) of a real-valued function m : R+ →R+. From this point of 
view, the notions of concavity and convexity align with, respectively, the notions of real-valued concave and convex 
functions (e.g., the setup considered in Legros and Jouini [34]). Observe that with our definition of di � i(µi +θs), 
concavity (convexity) of mi in i is equivalent to concavity (convexity) of di in i.
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We only consider work-conserving policies (i.e., policies that route customers to servers whenever there is a 
server with fewer than I customers). Let π�be some arbitrary work-conserving policy. We add a superscript π�when 
a process is considered under strategy π. Denote by Lπ(t) the total number of abandonments up to time t under pol-
icy π. The following theorem provides that the queue length and the number of abandonments of any work- 
conserving policy are bounded, in the sense of stochastic ordering, by LBF from below and by MBF from above if 
mi is concave in i. Here, for two random variables X and Y, we write that X is stochastically larger than Y, denoted 
as X≥st Y, if P(X > z) ≥ P(Y > z) for all z. Similarly, the process X(·) is stochastically larger than process Y(·), 
denoted as X(·)≥st Y(·), if (X(t1), : : : , X(tk))≥st (Y(t1), : : : , Y(tk)) for all 0 ≤ t1 ≤⋯≤ tk for every k ≥ 1.

Theorem 5. If mi � iµi is a concave function in i, then

QLBF(·) ≤ st Qπ(·) ≤ st QMBF(·), (8) 

LLBF(·) ≤ st Lπ(·) ≤ st LMBF(·) (9) 

for all work-conserving policies π, provided that the initial states under LBF, π, and MBF are identical.

The proof relies on weak submajorization arguments (see Akgun et al. [1], Sparaggis et al. [49]). To do so, we 
use a different state representation than in the rest of the paper. Specifically, let Nπi (t) be the number of customers 
at server i � 1, : : : , n at time t under policy π, and define Nπ(t) � (Nπ1 (t), : : : , Nπn (t)). In the proof, we then focus on 
the process (Qπ(·), Nπ(·)). This allows us to follow the lines of reasoning as presented in Sparaggis et al. [49], 
which essentially focuses on Nπ(·). Because of the similarities with Sparaggis et al. [49], we present the proof in 
Appendix B.

The next theorem shows that a similar stochastic ordering result in case mi is convex in i, but the LBF and MBF 
bounds are reversed. The proof is based on weak supermajorization and can also be found in Appendix B.

Theorem 6. If mi � iµi is a convex function in i, then

QLBF(·)≥st Qπ(·)≥st QMBF(·), (10) 

LLBF(·)≥st Lπ(·)≥st LMBF(·) (11) 

for all work-conserving policies π, provided that the initial states under LBF, π, and MBF are identical.

Remark 4. For the SWC of Section 4, it already has been shown in Legros and Jouini [34, proposition 1] that LBF 
and MBF are optimal for mi concave and convex in i, respectively. In particular, in case Q(t)< In, the allocation of 
customers that optimizes the overall service rate is given by the optimization problem max

PI
i�0 mini(t) subject to PI

i�0 ini(t) �Q(t).

6. Application of Heavy-Traffic Diffusion Limits
The diffusion limits may be used as approximations for multitasking systems with a finite number of servers. Such 
approximations have become classical for the Erlang C and Erlang A models, where many performance measures 
involving waiting times and abandonments from the queue can be expressed in terms of the probability of delay 
(see Garnett et al. [18]). Therefore, we will focus on the probability of delay, as it is a primary building block for the 
approximation of waiting times and abandonment probabilities. Some other approximate performance measures, 
such as the sojourn time or the number of customers in the system, may be obtained in a similar fashion as shown 
in Cui and Tezcan [10, section 8].

Using the stationary distribution of the diffusion limit, the probability of delay in the Erlang C model is approxi-
mated by (cf. Halfin and Whitt [20])

HW(β) � 1 + βΦ(β)
φ(β)

� ��1
, (12) 

where Φ�and φ�are the cumulative distribution function and probability density function of the standard normal 
distribution. The model with abandonments gives rise to another diffusion limit (Garnett et al. [18]) with the 
approximate probability of delay, also known as the Garnett delay function:

Garnett(β,θrat) � 1+
ffiffiffiffiffiffiffiffi
θrat

p h(β=
ffiffiffiffiffiffiffiffi
θrat
√

)

h(�β)

� ��1

, (13) 
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where θrat � θ=µ and h(x) � φ(x)=(1�Φ(x)) is the hazard rate of the standard normal distribution; see Green et al. 
[19] for an appealing illustration of its application in service systems.

For all policies in Π�(and LBF in the SWC), the diffusion limit is a generalized Ornstein–Uhlenbeck process. The 
stationary distribution of such a process allows for an explicit expression (cf. Browne and Whitt [7, equations 
23–25]), which has been evaluated in Cui and Tezcan [10, theorem 7]. As this stationary distribution forms the basis 
for many approximations, such as the probability of delay as given, it is presented in the following proposition in 
case θ > 0; the case θ�0 follows along the same lines.

Proposition 1. For θ > 0, the diffusion process Q̂(·), given in Theorem 1, has stationary probability measure π�given by

π(x) �

1
CdI

exp β2dI

2θ

� �

exp �
1
2
θ

dI
x+ βdI

θ

� �2
( )

, x ≥ 0,

1
CdI

exp β2

a

� �

exp �
1
2 a x+ β

a

� �2
( )

x < 0,

8
>>>>><

>>>>>:

where 0 < a � 1� dI�1
dI

� �
and C < ∞ is the normalization constant

C � 1
dI

exp β2

2a

� � ffiffiffiffiffiffi
2π
a

r

Φ
β
ffiffiffi
a
√

� �

+ exp β2dI

2θ

� � ffiffiffiffiffiffiffiffiffiffi
2πdI

θ

r

1�Φ β

ffiffiffiffi
dI

θ

r ! !" #

:

Using Proposition 1, we may directly derive an approximation for the probability of delay by calculating 
R∞

0 π(x)dx. 
Specifically, after some basic calculus, we obtain

P(Delay) ≈ 1+
h β=

ffiffiffi
θ
dI

q� �

h(�β=
ffiffiffi
a
√
)

ffiffiffi
θ
dI

q

ffiffiffi
a
√

0

@

1

A

�1

� Garnett β
ffiffiffi
a
√ , θ

adI

� �

:

For θ� 0, the stationary distribution gives rise to the approximation

P(Delay) ≈ HW(β=
ffiffiffi
a
√
): (14) 

These approximations allow for an intuitive interpretation and reveal how the system behaves in the QED regime. 
Let us first focus on the square-root safety staffing principle in the case of absence of abandonments. As argued 
before, there are only level I and level I� 1 servers in the limiting regime. As all servers have (roughly) at least I� 1 
customers, these may be considered permanent customers. The variability is in terms of the number of level I ser-
vers as opposed to level I� 1 servers, with dI � dI�1 ≕ adI being the variable part of the service rate. Now, in line 
with the square-root safety staffing principle, we need at least R � λ=dI servers to handle the total offered load. 
Excess capacity is needed to protect against stochastic variability (see, e.g., Borst et al. [6]). In this case, the variable 
part of the service rate can control the stochastic variability. Thus, the staffing level according to the square-root 
safety staffing principle is

n ≈ R+ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

dI � dI�1

s

� R+ β

ffiffiffiffiffiffi

λ

adI

s

� R+ βffiffiffi
a
√

ffiffiffiffi
R
√

, 

explaining the factor β=
ffiffiffi
a
√

in the Halfin–Whitt delay function in (14). With abandonments, there is a second term in the 
Garnett delay function, being the ratio θrat between the abandonment rate and the service rate. As the service rate now 
corresponds to the difference between service at level I and service at level I�1, we have θrat � θ=(dI � dI�1) � θ=(adI).

The MBF only allows for explicit expressions in the SWC. In that situation, the limiting process Q̂(·) is again a 
piecewise Ornstein–Uhlenbeck process, and therefore, an explicit expression for the stationary measure can be 
found, like in Proposition 1.

Proposition 2. For θ > 0, the diffusion process Q̂(·), given in Theorem 4, has stationary probability measure π�given by

π(x) �

1
CdI

exp β2dI

2θ

� �

exp �
1
2
θ

dI
x+ βdI

θ

� �2
( )

, x ≥ 0,

1
CdI

exp β2I
� �

exp �
1
2

1
I (x+ βI)

2
� �

x < 0,

8
>>>><

>>>>:
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where C < ∞ is the normalization constant

C � 1
dI

exp 1
2β

2I
� �

ffiffiffiffiffiffiffiffi
2πI
√

Φ(β
ffiffi
I
√
)+ exp β2dI

2θ

� � ffiffiffiffiffiffiffiffiffiffi
2πdI

θ

r

1�Φ β

ffiffiffiffi
dI

θ

r ! !" #

:

Again, we may relate the approximate probability of delay to the quality of service parameter β�and the relative 
patience θrat:

P(Delay) � 1+
h β=

ffiffiffiffi
θI
dI

q� �

h(�β
ffiffi
I
√
)

ffiffiffiffiffi

θI
dI

s2

4

3

5

�1

� Garnett β
ffiffi
I
√

, θ
dI=I

� �

:

Similar results may be derived for the case θ� 0, yielding P(Delay) ≈HW(β
ffiffi
I
√
). In the absence of abandonments, 

the dynamics of the limiting diffusion process Q̂(·) are the same as for the Erlang delay model (cf. Halfin and Whitt 
[20, theorem 2]) but with the service rate scaled by a factor 1=I (i.e., the limiting process Q̂(·) can be considered as 
the limiting process of an Erlang delay model with service rate dI=I under the QED scaling). This may be explained 
by the fact that in the prelimit process, there is at most one server that is not at level 0 or I, which will not contribute 
in the limit. Therefore, the limiting process can be considered as if each customer is at a level I server, adding a mar-
ginal rate of dI=I to the “total death rate.” Again, R � λ=dI servers are required to handle the total offered load. As 
dI=I is the marginal service rate per customer, the staffing level according to the square-root safety staffing principle 
is

n ≈ R+ β

ffiffiffiffiffiffiffiffi
λ

dI=I

s

� R+ β
ffiffi
I
√ ffiffiffiffi

R
√

, 

providing the factor β
ffiffi
I
√

in the Halfin–Whitt delay function. For the case θ > 0, the marginal service rate per cus-
tomer of dI=I directly provides θrat �

θ
dI=I, which appears as the second argument in the Garnett delay function.

7. Diffusion Limits in the Subcritical Regime
In this section, we discuss diffusion limits for the multitasking service system where the load is asymptotically 
strictly below one (i.e., nonheavy-traffic scaling regimes). These regimes are motivated by applications in which it 
is desired that servers operate at a fraction of their capacity (cf. Remark 2). We focus on the LBF and MBF policies 
for these subcritical regimes, of which the diffusion behavior for the former was studied in Cui and Tezcan [10], 
and we provide a theorem for the diffusion behavior of the latter. In addition, we show why the LBF diffusion 
behavior is no longer attained by a broad class of policies, such as in Theorem 1.

7.1. Asymptotic Framework
Our exposition starts with the introduction of the subcritical asymptotic scaling framework, for which we use the 
same notation as for the heavy-traffic scaling in Section 2.3. The new interpretation of this notation is limited to the 
current section and Appendix C. For γ ∈ (0, 1) and j ∈ {0, : : : , I� 1}, define λ > 0 by

λ :� γdj + (1� γ)dj+1, 

and for n ≥ 1 and β ∈R, define λn as

λn � λ(n� β
ffiffiffi
n
√
): (15) 

Throughout this section, we consider a sequence of processes {Zn(·)}n, where the nth process corresponds to a mul-
titasking system with n servers and arrival rate λn as in (15). Observe that for every choice of γ, λn=(dIn) converges 
to a number strictly below one as n→∞, which reflects the subcriticality of the system load under this scaling.

Under this subcritical scaling, the centering of the process has to be adjusted from the heavy-traffic case because 
we do not expect every server to be filled to capacity on a fluid scale in the limit as n→∞. In particular, the center-
ing vector depends on the routing policy of assigning customers to servers. We introduce the notation Z for the cen-
tering vector and consider the scaled and centered process Ẑn(·) defined by

Ẑn(·) :�
1
ffiffiffi
n
√ (Zn(·)� nZ), 

where Z � (Q, n0, : : : , nI�2) and its elements Q and n0, : : : , nI�2 are defined differently for the LBF and MBF policies. 
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In the LBF case, we set

Q � γj+ (1� γ)(j+ 1) and ni � γδij + (1� γ)δi, j+1, i � 0, 1, : : : , I� 2, 

where δij :� 1{i�j} is the Kronecker δ. In the case of the MBF policy, we set

Q � I λ
dI

, n0 � 1� λ
dI

, and ni � 0, i � 1, : : : , I� 2: (16) 

Note that Z reflects that the load is balanced across servers in the LBF case, whereas for MBF, a fraction of servers is 
always busy, and a fraction of servers is always free. The components of Ẑn(·) are still denoted by Q̂n(·) and n̂n, i(·)

for i ∈ {0, : : : , I� 2}. Moreover, defining nI�1 :� γδI�1, j + (1� γ)δI�1, j+1 and nI :� (1� γ)δI, j+1 in the LBF case and 
defining nI�1 :� 0 and nI � λ=dI in the MBF case, then it follows from (1) that the following identities hold in both 
the LBF and MBF cases:

n̂I�1(·) :� n�1=2(nI�1(·)� nnI�1) ��Q̂n(·)�
XI�2

i�0
(I� i)n̂i(·),

n̂I(·) :� n�1=2(nI(·)� nnI) ��
XI�1

i�0
n̂i(·): (17) 

To establish the diffusion limits for the LBF and MBF policies, we assume that

n�1Zn(0) → Z a:s: as n→∞:

Moreover, we assume in the LBF case that Ẑn(0) converges weakly in RI to a random vector

Ẑ(0) � (jn̂j(0) + (j+ 1)n̂j+1(0), n̂0(0), : : : , n̂I�2(0))⊤, 

as n→∞, with n̂i(0) � 0 for i ∉ {j, j+ 1}, n̂j+1(0) ��n̂j(0), and both n̂I�1(0) and n̂I(0) specified through (17). In the 
MBF case, we assume that Ẑn(0) converges weakly in RI to a random vector

Ẑ(0) �
XI

j�1
jn̂j(0), n̂0(0), : : : , n̂I�2(0)

0

@

1

A

⊤

as n→∞, with n̂i(0) ≥ 0 for i � 1, : : : , I� 2, n̂I�1(0) ≥ 0 a random variable, and n̂I(0) specified through (17).

7.2. Diffusion Limit for LBF-Related Policies
Under the LBF policy and the assumptions on convergence of the initial conditions, the sequence {Ẑn(·)}n converges 
in distribution to a diffusion process. This result was proven in Cui and Tezcan [10, theorem 3]. We state it here for 
completeness and for our exposition on why there is no (strong) diffusion-level universality from a policy perspec-
tive as in Theorem 1.

Theorem 7. Suppose n�1Zn(0) →
a:s: Z, and suppose that Ẑn(0) converges weakly to Ẑ(0) in RI. Then, for the LBF policy, 

Ẑn(·) ⇒ Ẑ(·), where Ẑ(·) � (Q̂(·), n̂0(·), : : : , n̂I�2(·))
⊤ has initial condition Ẑ(0) and satisfies

n̂i(·) � 0 for i ∉ {j, j+ 1}

n̂j+1(·) ��n̂j(·)

Q̂(·) � jn̂j(·) + (j+ 1)n̂j+1(·) , 

and n̂j(·) is a diffusion process with infinitesimal mean

m(x) � λβ� (dj+1� dj)x, x ∈R 

and constant infinitesimal variance σ2(x) � 2λ.

Theorem 7 tells us that under the LBF policy, a state-space collapse will occur in which only level j and level (j+ 1)
servers are present in the system on both a fluid scale and a diffusion scale. The manner in which the initial conditions 
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converge makes this possible (e.g., it is shown in Cui and Tezcan [10, theorem 2] that Z is the unique fixed point of 
the system on a fluid scale).

By deviating from heavy-traffic scaling regimes, we no longer hope to find a rich class Π�of policies, such as in 
Theorem 1, with the same diffusion-level performance as the LBF policy. In the remainder of this section, we pro-
vide the arguments for this claim, where for conciseness, we choose a slightly informal presentation.

For a policy to have the same diffusion-level performance as the LBF policy, the number of servers above level 
(j+ 1) and below level j should be o(

ffiffiffi
n
√
), with probability increasing to one as n→∞. Focusing on the analysis of 

servers above level (j+ 1) for now, consider the process

k◦n(·) :�
XI

i�j+2
nn, i(·)(i� j� 1), 

which increases when a customer is routed to a server at level (j+ 1) or above and decreases when a server at level 
(j+ 2) or above finishes service. Here, we use that there will be no queue for subcritical scaling regimes with proba-
bility 1 in the limit as n→∞. If we suppose that a given policy for the nth system assigns customers to a server at 
level (j+ 1) and above with probability pn ∈ [0, 1], then k◦n(·) increases by one with rate λnpn and decreases with one 
with rate 

PI
i�j+2 dinn, i(t), which has a lower bound:

XI

i�j+2
dinn, i(t) ≥ dj+2

XI

i�j+2
nn, i(t) >

dj+2

I� (j+ 1)k
◦
n(t):

The lower bound establishes that using a similar coupling argument as in the proof of Lemma 1, we can upper bound 
k◦n(·) by the occupation process of an infinite-server queue with arrival rate λnpn and service rate dj+2=(I� (j+ 1)). 
Moreover, the same reasoning as in the aforementioned proof indicates that n�1=2k◦n(·)→

P 0 if 
ffiffiffi
n
√

pn � o(1). We expect 
this bound to be tight because the load (and thus, also the expected occupation) of the associated infinite-server sys-
tem is O(λnpn), which is below O(

ffiffiffi
n
√
) only if 

ffiffiffi
n
√

pn � o(1).
The condition 

ffiffiffi
n
√

pn � o(1) is sufficient in the subcritical scaling regime for a policy to achieve that no servers at 
level (j+ 2) and above are present on a diffusion scale. We also expect that the condition is necessary because the 
lower bound for the departure rate at k◦n(·) is tight with respect to the order of nn, i, i � j+ 2, : : : , I. In the case 
j+ 1 � I� 1, it can be shown rigorously that the condition is necessary; the fact that there is only one level above 
(I� 1) simplifies the analysis compared with j+ 1 ≤ I� 2.

The arguments show that, in general, any class of policies resulting in the desired diffusion-level behavior of The-
orem 7 would be significantly smaller compared with the class Π�in Theorem 1. Specifically, randomized policies, 
such as random server or power of d (with d “small”), will no longer lead to a state-space collapse.

Given that a routing policy satisfies 
ffiffiffi
n
√

pn � o(1), one may wonder if routing the remaining arrivals randomly to 
servers below level (j+ 1) still results in the diffusion-level state-space collapse of Theorem 7. To analyze this case, 
consider a policy satisfying 

ffiffiffi
n
√

pn � o(1) and with qn, the probability of routing an arriving customer to a server at 
level (j� 1) or below. In the desired state-space collapse, we have nj(t) ≈ γn+ ɛ, where ɛ �O(

ffiffiffi
n
√
) with probability 

increasing to one as n grows large. To compensate for the rate djnj at which servers at level (j� 1) increase, qn has to 
be at least djγn. Indeed, to obtain the desired state-space collapse, one expects that qnλ=n should converge to a num-
ber strictly above γ�because otherwise, there will be nontrivial diffusion- or fluid-level behavior at level (j� 1). 
Hence, any class of policies leading to the desired state-space collapse will be highly similar to the LBF policy and 
will not be random at all.

To summarize, the heavy-traffic nature of the scaling in Theorem 1 implies that a wide range of routing policies 
have the same fluid and diffusion-level performance as the LBF policy. When turning away from heavy-traffic 
regimes, it turns out that there is a large difference between the LBF policy and other (conventional) policies in 
terms of their diffusion-level behavior.

7.3. Diffusion Limit for the MBF Policy
In this section, we provide the diffusion limit for the MBF policy under the subcritical scaling regime defined in 
(15). To prove the result, we also derive a fluid limit approximation for Zn(·) under the MBF policy, which we show 
to have a unique fixed point. We first state the diffusion limit result and thereafter, formulate the related fluid limit 
results. The proofs of all results in this section are given in Appendix C.
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Recall that we denote eQ for the first basis vector in RI and eni for the subsequent basis vectors, i � 0, : : : , I� 2. Fur-
thermore, define the function f ◦ : RI→R by

f ◦(Ẑn(t)) � eQ[�βλ� dIn̂I(s)] +
XI�2

i�1
(� eQ� eni + eni+1)din̂i(t) + (�eQ + eI�2)dI�1n̂I�1(t):

Observe that f ◦ is Lipschitz continuous. The main result of this section is the following theorem.

Theorem 8. Suppose that n�1Zn(0) →
a:s: Z, and suppose that Ẑn(0) converges weakly to Ẑ(0) in RI. Then, for the MBF pol-

icy, Ẑn(·) ⇒ Ẑ(·) as n→∞, where Ẑ(·) � (Q̂(·), n̂0(·), : : : , n̂I�2(·))
⊤ is the unique process with values in R ×RI�1

+ satisfy-
ing the stochastic integral equation

Ẑ(t) � Ẑ(0) + eQB(t) +
Z t

0
f ◦(Ẑ(s)) ds+

0 0
0 R̃

� �

L̂(t), 

where B(·) is a scaled Brownian motion with 〈B〉t � 2λt and L̂(·) � (L̂0(·), : : : , L̂I�1(·))
⊤
∈DI

+[0,∞) is uniquely determined by 
L̂0(·) ≡ 0 and the properties n̂0(·), : : : , n̂I�1(·) ≥ 0 and L̂(·) is such that for i � 1, : : : , I� 1, 

a. L̂i(0) � 0,
b. L̂i(·) is nondecreasing, and
c. 
R∞

0 n̂i(t) dL̂i(t) � 0,
with n̂I�1(·) :� (�Q̂(·))+�

PI
i�2 inI�i(·) for all t ≥ 0.

Theorem 8 shows that diffusion-level behavior different from that in Theorem 7 is obtained when customers are 
always routed to the most busy server. As a consequence of the MBF policy, every component of the diffusion pro-
cess is nontrivial, in contrast to the LBF case. Moreover, from (16), we see that there are free servers on a fluid scale 
in this regime; this is further formalized in Proposition 4. This property is preferred in systems that operate in heavy 
traffic; more precisely, the property suggests that the system can achieve the same level of efficiency with fewer ser-
vers. In contrast, in systems in which servers preferable should operate at a fraction of their capacity, this property 
is undesirable, making MBF less attractive as a policy in that case. The subcritical nature of the scaling finally 
implies that the queue will always be empty on a diffusion scale, in contrast to Theorem 2.

To prove Theorem 8, we study the fluid-level behavior of the process Zn(·) under the MBF policy by consider-
ing the sequence {n�1Zn(·)}n. We show in Proposition 3 that this sequence is a.s. tight given that the initial condi-
tions converge almost surely and identify a system of equations that each limit (of a subsubsequence) should 
satisfy. Afterward, we show in Proposition 4 that every fluid limit has the same unique fixed point and that under 
the assumptions on the sequence of initial states, there are exclusively level I and empty servers on a fluid scale as 
n→∞.

Proposition 3. Suppose that the sequence {n�1Zn(0)}n converges almost surely to some random vector Z(0) � (Q(0), 
n0(0), : : : , nI�2(0)). Then, there exists a set Ω′ ⊂Ω with P(Ω′) � 1 such that every subsequence of {n�1Zn(·)}n has a fur-
ther subsequence {n�1

k Znk(·)}k that converges everywhere on Ω′. Moreover, every limit Z(·) of such a convergent subse-
quence with Z(·) � (Q(·), n(·), : : : , n(·)I�2) is Lipschitz continuous and satisfies for all t ≥ 0

Q(t) �Q(0) +λt�
XI

i�1

Z t

0
dini(s) ds�θ

Z t

0
(Q(s)� I)+ ds, (18) 

n0(t) � n0(0) +
Z t

0
d1n1(s) ds� L1(t), (19) 

ni(t) � ni(0) +
Z t

0
di+1ni+1(s) ds�

Z t

0
dini(s) ds

� Li+1(t) + 2Li(t)� Li�1(t) 1{i≥2} i � 1, : : : , I� 2, (20) 

nI�1(t) � (Q(t)� I)+�
XI�2

i�0
(I� i)ni(t), (21) 

XI

i�0
ni(t) � 1, (22) 

Q(t), n0(t), : : : , nI(t) ≥ 0, (23) 
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where L(·) is the Lipschitz-continuous, I-dimensional process satisfying

Li(t) �
Z t

0
λ1
{
PI�1

k�i nk(s)�0, Q(s)< I} ds i � 1, : : : , I� 1, (24) 

L0(·) ≡ 0: (25) 

Proposition 4. The system of Equations (18)–(25) has a unique fixed point Z � (Q , n0, : : : , nI�2)
⊤ given by (16) and with 

nI�1 � 0 and nI � λ=dI as defined in the subsequent discussion. Consequently, if {n�1Zn(0)}n converges almost surely to Z 
as defined in (16), then

n�1Zn(·) → Z a:s:

in DI[0,∞) uniformly on compact time intervals.

8. Proof of Diffusion Limit for Policies in P in the NWC
In this section, we prove Theorem 1. The proof consists of three steps. 

1. We prove in Lemma 1 that for i ∈ {0, : : : , I� 2}, n̂n, i(·) →
P 0, formalizing that, for large n, Ẑn(·) behaves like a 

multitasking system that exclusively has level I�1 and level I servers, making jumps of size 1=
ffiffiffi
n
√

.
2. We show using Lemma 1 that for large n, Qn(·) behaves like a birth-death process Rn(·) with birth rate λn and 

death rate dIn� (dI � dI�1)(Q(t)� In)� +θ(Q(t)� In)+. We prove this by coupling Qn(·) to Rn(·) and show that for 
all T ≥ 0, ‖Rn(·)�Qn(·)‖T→

P 0, as n→∞.
3. Finally, we prove that the process n�1=2(Rn(·)� In) converges weakly to the diffusion process Q̂(·) mentioned 

in Theorem 1. Because nI(·) and nI�1(·) are continuous transformations of Q(·), we obtain weak convergence of 
Ẑn(·).

Before we present the proof, we want to make the following remark.

Remark 5. In the proofs of the diffusion limits for Ẑn(·) (not restricted to this section), we often utilize coupling 
techniques between one-dimensional stochastic processes that exclusively make jumps upward and downward, 
which are all of size 1. Each time we apply such a technique, the coupling concerns two of such processes, say 
X(·) and Y(·), with X(·) having rate at which jumps are made upward (downward) larger than or equal to that of 
Y(·). Now, the key insight is that the rate of Y(·) can be obtained by randomly splitting the rate of X(·), and thus, 
we can couple the jumps of both processes such that X(·) is greater (less) than or equal to Y(·). Or more precisely, 
we have X(t,ω) ≥ Y(t,ω) (X(t,ω) ≤ Y(t,ω)) for all t ≥ 0, for each ω ∈Ω.

Let us now introduce and prove the following proposition.

Lemma 1. Suppose Ẑn(0) ⇒ Ẑ(0). For the process Ẑn(·), in the NWC with any policy in Π, we have as n→∞,

n̂n, i(·)→
P 0, for all i ∈ {0, : : : , I� 2}:

Proof. Let k̂n(·) � n�1=2kn(·), with kn(·) as in (4) associated with the nth process Zn(·). To prove the statement, we 
prove the equivalent statement k̂n(·)→

P 0, when n→∞.
For n fixed, kn(·) is equal to the number of free spaces minus the number of free servers. It is not hard to see 

that kn(·) increases by one with rate 
PI�1

i�0 dinn, i(t) ≤ dI�1(Qn(t)� In)�. The rate down depends on the policy in Π�
and is upper bounded by λn1{kn(t)>0}. We proceed by defining simpler processes, Q′n(·) and k′n(·), to bound Qn(·)

and kn(·).
First, define the process Q′n(·) with state space as Qn(·), and Q′n(0) �Qn(0), where Q′n(·) goes up by one with 

rate λn and goes down by one with rate dIn+θ(Q′n(t)� In)+. We couple the processes Q′n(·) and Qn(·) so that the 
jumps that increase the processes exactly match (i.e., the processes jump up at the same times). Moreover, if 
Q′n(t) �Qn(t), then a jump downward of Qn(·) implies a jump downward of Q′n(·) at the same time. This coupling 
is possible because the rate at which Q′n(·) decreases is larger than the rate at which Qn(·) decreases. Moreover, it 
guarantees that Q′n(t) ≤ Qn(t), for all t ≥ 0.

Now, to define k′n(·), note that the rate at which kn(·) increases is bounded from above by dI�1(Qn(t)� In)�
≤ dI�1(Q′n(t)� In)� ≤ dI�1sup0≤ s≤ t(Q′n(s)� In)�. We know that for every policy in Π, the rate at which kn(·)
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decreases is bounded from below by

cλn
kn(t)

sup0≤ s≤ t(Q′n(s)� In)� , 

for some constant c>0. Now, define the process k′n(·)with state space as kn(·), where k′n(·) increases by one with rate 
dI�1Mn and decreases by one with rate cλnk′n(t)=Mn for a sequence of positive constants {Mn}n defined by 
Mn � n5=8. In addition, we couple the process k′n(·) to kn(·) so that if k′n(t) � kn(t), then kn(·) increases by one at time t 
only if k′n(·) increases by one at time t, and k′n(·) decreases by one at time t only if kn(·) decreases by one at time t, for 
all t ≥ 0. Denote k̂

′

n(·) for n�1=2k′n(·).
Now, let T> 0 be arbitrary. On the event {sup0≤ s≤T(Q′n(s)� In)� ≤ Mn}, the rates for jumps upward and 

downward of kn(·) are, respectively, upper and lower bounded by dI�1Mn and cλnkn(t)=Mn. Hence, on this event 
and because of the coupling between kn(·) and k′n(·), we have that kn(t) ≤ k′n(t), for all t ∈ [0, T]. We proceed by 
proving that for each ɛ > 0,

P sup
0≤ s≤T

k̂
′

n(s) > ɛ

 !

→ 0, n→∞:

Afterward, we prove that

P sup
0≤ s≤T

(Q′n(s)� In)� > Mn

 !

→ 0, n→∞: (26) 

Combining these statements with the arbitrary choice for T gives us that k̂
′

n(·)→
P 0. By the coupling and condition-

ing on the event {sup0≤ s≤T(Q′n(s)� In)� ≤ Mn}, we obtain k̂n(·)→
P 0, completing the proof.

We start with the first statement, where we throughout work with processes on the interval [0, T]. Note that 
k′n(·) behaves as an M/M/∞ queue with offered load ρk′

n � dI�1M2
n=(cλn), which is of the order n1=4. Consider the 

process (k′n(·)� ρk′
n )

2. By using Dynkin’s formula (cf. Kallenberg [29, lemma 19.21]), we obtain the Fn-martingale 
Mn(·), defined by

Mn(t) � (k′n(t)� ρ
k′
n )

2
�

Z t

0

cλn

Mn
k′n(s)(1� 2(k′n(s)� ρ

k′
n )) + dI�1Mn(1+ 2(k′n(s)� ρ

k′
n )) ds, 

where Fn :� {Fn
t }t≥0 is the natural filtration. Also, for a constant Kn depending on n, define the stopping time 

τKn :� inf{t ∈ [0, T] : k′n(t) ≥ Kn + ρk′
n }. Because we are working on [0, T], the stopping time is trivially bounded, and 

as such, the stopped process MτKn

n (·), defined through MτKn

n (t) :�Mn(t ∧ τKn ), is an Fn-martingale.
Now, by the definition of the stopping time, we have the following inequality:

K2
nP sup

0≤ s≤ t
k′n(s) ≥ Kn + ρ

k′
n

 !

� E[K2
n1{sup0≤ s≤ tk′n(s)≥Kn+ρk′

n }
]

≤ E (k′n(T ∧ τKn)� ρk′
n )

2
1{sup0≤ s≤ tk′n(s)≥Kn+ρk′

n }

h i

≤ E[(k′n(T ∧ τKn)� ρk′
n )

2
]:

By using that MτKn

n (·) is a martingale, we find

E[(k′n(T ∧ τKn )� ρk′
n )

2
] � E[(k′n(0 ∧ τKn )� ρk′

n )
2
]

+E

Z T∧τKn

0

cλn

Mn
k′n(s)(1� 2(k′n(s)� ρk′

n )) + dI�1Mn(1+ 2(k′n(s)� ρk′
n )) ds, 

which is upper bounded by

E
�

k′n(0 ∧ τKn)� ρk′
n

�2
� �

+ 2dI�1Mn +
1
8

cλn

Mn

� �

T, 

Storm, Berkelmans, and Bekker: Diffusion-Based Staffing for Multitasking Service Systems 
2702 Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2684–2722, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

16
.1

91
.1

36
] 

on
 1

2 
D

ec
em

be
r 

20
24

, a
t 0

5:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



because the integrand is maximized in k′n(s) � 1=4+ ρk′
n , where it takes the value 2dI�1Mn +

1
8

cλn
Mn

. Summarizing, we 
have

P sup
0≤ s≤ t

k′n(s) ≥ Kn + ρ
k′
n

 !

≤
1

K2
n

E kn(0)� ρk′
n

� �2h i
+ 2dI�1Mn +

1
8

cλn

Mn

� �

T
� �

, 

where we use that k′n(0) � kn(0). Now, observe that when we choose Kn �
ffiffiffi
n
√

, the right-hand side goes to zero when 
n→∞, proving our first claim. Here, we use the assumption that kn(0) ⇒ 0, which can be strengthened to conver-
gence in probability.

Now that we have proven k̂
′

n(·)→
P 0, we show that (sup0≤ s≤ t(Q′n(s)� In)�)2=n is stochastically bounded (i.e., is 

of O(1)), which is sufficient to show our second claim because in that case, we have (26); the proof is complete.
To prove the stochastic boundedness, observe that for each T ≥ 0, the process Sn(·) :� {Sn(t) : t ∈ [0, T]}, for

Sn(t) :� (Q′n(t)� In)� (λn � dIn)t
� �2

+ (λn + dIn)(T� t), 

is a nonnegative F̃n-supermartingale on [0, T], where F̃n :� {F̃
n
t }t≥0 is its natural filtration. This can be seen as fol-

lows. If θ�0, then the process M̃n(·) :� {M̃n(t) : t ≥ 0}, for M̃n(t) :�Q′n(t)� In+ (dIn�λn)t, is an F̃n-martingale. 
Therefore (M̃(·))2 is a F̃n-submartingale, and by the Doob–Meyer decomposition (Karatzas and Shreve [30, theorem 
4.10]), we obtain that

{((Q′n(t)� In)� (λn� dIn)t)2� (λn + dIn)t : t ≥ 0}

is an F̃n-martingale. Now, when θ > 0, the process Q′n(·) has additional jumps downward, only when Q(t)� In > 0, 
in which case (Q′n(t)� In)� (λn� dIn)t � (Q′n(t)� In) + dI

ffiffiffi
n
√
βt > 0, so that every jump downward because of aban-

donments also decreases the square term in S(·). Therefore,

{((Q′n(t)� In)� (λn� dIn)t)2� (λn + dIn)t : t ≥ 0}, 

and this is indeed an F̃n-supermartingale on [0,∞)when θ > 0. We add a term (λn + dIn)T that is constant on [0, T]
so that S(·) is a nonnegative F̃n-supermartingale on [0, T].

Now, by Doob’s supermartingale inequality (Revuz and Yor [46, chapter 1, exercise 1.15]), we obtain for each 
T ≥ 0 and t ∈ [0, T] and for each constant M>0,

P sup
0≤ s≤ t

Sn(s) ≥M

 !

≤
1
M

E[Sn(0)] �
1
M
((Q′n(0)� In)2 + (λn + dIn)T): (27) 

By assumption, n�1=2(Qn(0)� In) converges weakly so that the sequence is tight, and therefore, (27), with M�n, 
implies that (sup0≤ s≤ t(Q′n(s)� In)�)2=n is stochastically bounded, which completes the proof. w

We proceed by defining the sequence of processes {Rn(·)}n, where Rn(·) is a birth-death process on the state space 
of Qn(·), with birth rate λn and death rate νRn (t) � dIn� (dI � dI�1)(Rn(t)� In)� +θ(Rn(t)� In)+, having initial condi-
tion Qn(0). In addition, the processes Q(·) and R(·) are coupled such that the jumps upward happen at identical 
times, and the jumps downward are such that when for some time t ≥ 0, the death rate νQn(t) of Qn(·) is larger than 
νRn(t), we can only have a jump downward of Rn(·)when Qn(·) jumps downward and vice versa when νRn ≥ νQn .

In the usual notation, we write R̂n(·) � n�1=2(Rn(·)� In). By using Lemma 1, we now have the following 
proposition.

Proposition 5. Assume the conditions of Lemma 1. Then, for all t ≥ 0 and all ɛ > 0,

P ‖Ẑn(·)� R̂n(·)‖t > ɛ
� �

→ 0, as n→∞, 

where the process R̂n(·) is embedded into DI[0,∞) by adding zero components.

Proof. Because of the way that Qn(·) and Rn(·) are coupled, it is immediate that for each t ≥ 0, the difference 
|Qn(t)�Rn(t) | can only increase when νQn(t) > νRn(t) and Q(t) ≤ R(t) or νQn(t) < νRn(t) and Q(t) ≥ R(t).

Define the function f : R→R by x ⊢→ dIn� (x� In)�(dI � dI�1) +θ(x� In)+, then νRn (t) � f (Rn(t)), and νQn(t) �
f (Qn(t)) + ɛn(t), where for each n, ɛn(·) :�

P
0≤ i≤ I�2(di + (I� i� 1)dI � (I� i)dI�1)ni(·). Note that f is increasing and 

| f (Qn(t))� f (Rn(t)) | ≥ |Qn(t)�Rn(t) |min(θ, dI � dI�1) :� ℓ |Qn(t)�Rn(t) | , for all t ≥ 0. Furthermore, we have |ɛn(t) |
≤ |kn(t) |U for constant U :�max0≤ i≤ I�2

|di+(I�i�1)dI�(I�i)dI�1 |
I�i�1 and all t ≥ 0.

Because we know that kn(·)=
ffiffiffi
n
√
→
P 0, as n→∞, we also immediately have ɛn(·)=

ffiffiffi
n
√
→
P 0. This implies that the 

difference of Qn(·) and Rn(·) can only increase when it is small. More precisely, for all t ≥ 0, the difference 
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|Qn(t)�Rn(t) | cannot increase when |Qn(t)�Rn(t) | ≥ sup0≤ s≤ t kn(s)U=ℓ�because that would mean for Qn(t) >
Rn(t), that

νQn (t)� νRn(t) ≥ f (Qn(t))� f (Rn(t))� |ɛn(t) | ≥ ℓ |Qn(t)�Rn(t) | � sup
0≤ s≤ t

kn(s)U ≥ 0, 

and for Rn(t) >Qn(t), that

νRn(t)� νQn(t) ≥ f (Rn(t))� f (Qn(t))� |ɛn(t) | ≥ ℓ |Qn(t)�Rn(t) | � sup
0≤ s≤ t

kn(s)U ≥ 0, 

which is not possible because of the coupling as we concluded before.
We conclude that sup0≤ t≤ t |Qn(t)�Rn(t) | < 1+ sup0≤ s≤ t kn(s)U=ℓ, and so, |Qn(·)�Rn(·) | →

P 0. w

Proposition 6. The process R̂n(·) converges weakly, as n→∞, to the one-dimensional diffusion process Q̂(·) of Theorem 1.

Proof. The proof is a direct adaptation of the proof of Pang et al. [40, theorem 1.2] without a finite buffer for the 
system. We sketch the main steps.

First, we can write down an integral representation for R̂n(t),

R̂n(t) � R̂n(0) + n�1=2An(λnt)

� n�1=2Dn

Z t

0
dIn� (dI � dI�1)(Rn(s)� In)� +θ(Rn(s)� In)+ ds

� �

� R̂n(0) + n�1=2MAn (t)� n�1=2MDn (t)� βdIt

+

Z t

0
(dI � dI�1)(R̂n(s))� �θ(R̂n(s))+ ds, 

where An(·) and Dn(·) are independent unit-rate Poisson processes and MAn (t) and MDn(·) are the martingales 
obtained by subtracting the compensator of An(·) and Dn(·), respectively (cf. Pang et al. [40, theorem 3.4] for the pre-
cise construction and relevant filtrations).

Because the functions x ⊢→ (dI � dI�1)(x)� and x ⊢→ θ(x)+ are Lipschitz continuous, the integral representation 
used for R̂n(·) is a continuous mapping from DI[0,∞) to DI[0,∞). In particular, R̂n(·) is the image of n�1=2[MAn (·)�

MDn(·)] under this continuous map (cf. Pang et al. [40, theorem 4.1]). Therefore, by proving that n�1=2[MAn(·)�

MDn(·)] converges weakly to a scaled Brownian motion B(·) with 〈B〉t � 2dIt, the proof is complete because of an 
application of the continuous mapping theorem. This will be the focus of the remainder of the proof.

To obtain weak convergence of Mn(·) :� n�1=2[MAn(·)�MDn(·)] to B(·), we use the martingale functional central 
limit theorem (FCLT) (Jacod and Shiryaev [26, theorem VIII.3.22]). We check the conditions. For each n, the mar-
tingale Mn(·) is locally square integrable, and clearly, ∆Mn(t) � [Mn(t)� lims↑t Mn(s)] → 0 for all t>0 and all sam-
ple paths of Mn(·). The quadratic variation of Mn(·) is upper bounded by

1
n

Z t

0
λn + dIn+ (dI � dI�1)(Rn(s)� In)� +θ(Rn(s)� In)+ ds:

If we prove that (Rn(·)� In)=n→P 0 as n→∞, we are done because by application of continuous mapping, we 
then obtain that (Rn(·)� In)+=n→P 0 and (Rn(·)� In)�=n→P 0, as explained in Pang et al. [40, lemmas 4.2–4.4]. In 
turn, this allows us to conclude that 〈M〉t→ 2dIt in probability for all t ≥ 0 as n→∞, completing the require-
ments for the martingale FCLT.

To show (Rn(·)� In)=n→P 0, it is sufficient if n�1[MAn (·)�MDn(·)]→
P 0, as n→∞, as explained in Pang et al. [40, 

section 4.3]. At this point, we can transform the proof of Pang et al. [40, lemma 4.5] to our setting, which essen-
tially states that the required limit is achieved by the strong law of large numbers (SLLN) for Poisson processes. 
To be precise, for MAn(·), a direct consequence of the SLLN is that

‖n�1MAn(·)‖t→
a:s: 0, for all t ≥ 0:

For MDn(·), the necessary limit is a bit harder to prove. For each n, consider the process Un(·) :� {Un(
R t

0θ(Rn(s)�
In)+ ds) : t ≥ 0}, where {Un(t) : t ≥ 0} is a unit-rate Poisson process. Denote MUn (·) :� {MUn(t) : t ≥ 0}, with MUn (t)
:� Un(

R ·
0θ(Rn(s)� In)+ ds)�

R ·
0θ(Rn(s)� In)+ ds, for the martingale associated with Un(·). For Rn(t), we have the 
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rough upper bound Rn(t) ≤ Rn(0) +An(λnt), and therefore, we have

1
n

Z t

0
Rn(s)� In ds ≤ t Rn(0) +An(λnt)

n

� �

:

By the strong law of large numbers for A(·), we have that for each T1 > 0, there exists T2 > 0 such that

P
1
n

Z T1

0
θ(Rn(s)� In)+ ds > T2

� �

→ 0:

We now have for all ɛ > 0,

P
�
‖MUn(·)‖T1 > ɛ

�
� P ‖MUn (·)‖T1 > ɛ,

1
n

Z T1

0
θ(Rn� In)+ ds ≤ T2

� �

+P ‖MUn(·)‖T1 > ɛ,
1
n

Z T1

0
θ(Rn� In)+ ds > T2

� �

≤ P sup
0≤ s≤T2

|Un(ns)� ns |
n

> ɛ

 !

+P
1
n

Z T1

0
θ(Rn� In)+ ds > T2

� �

→ 0:

In a similar way, because dIn� (dI � dI�1)(Rn(t)� In)� ≤ dIn, one has Rn(t) ≥ Rn(0)�N1(dInt)�N2(
R t

0θ(Rn(s)�
In)+ ds) for unit-rate Poisson processes N1(·) and N2(·) so that

Z t

0
(Rn(s)� In)� ds ≥ t

Rn(0)� In�N1(dInt)�N2(
R t

0θ(Rn(s)� In)+ds)
n

 !

:

Hence, using the approach and results, one finds that for each T1 > 0, there is a T3 > 0 such that

P
1
n

Z t

0
dIn+θ(Rn(s)� In)+ ds > T3

� �

→ 0:

By splitting the probability P(MDn (·)T1 > ɛ) on the events 
� 1

n
R t

0dI � (dI � dI�1)(Rn(s)� In)� +θ(Rn(s)� In)+ ds >
T2 +T3

�
and its complement, we find that

MDn(·)→
P 0, as n→∞, 

which concludes the proof. w

9. Proof of Diffusion Limit for the MBF Policy in the NWC
In this section, we prove Theorem 2. As discussed in Section 3.2, Z(·) can be written as a process in which some 
components are reflected. In the proof, we make this precise by establishing that Ẑn(·) �Φ(M(X̂n(·))); here, Φ�is a 
regulator mapping that is associated with a Skorokhod problem (which has to be tailored to our specific case), M 
is the mapping that incorporates the position-dependent drift of Ẑn(·), and X̂n(·) is a scaled and centered version 
of a linear combination of counting processes driving the arrivals and departures in the system; see (33) for its 
definition. We show that the mapping Φ ◦M is Lipschitz continuous and derive a weak limit approximation for 
X̂n(·); application of the continuous mapping theorem gives a weak limit for Ẑ(·). The bulk of the proof is dedi-
cated to the construction of the mapping Φ ◦M.

For readability, we split the proof into the following four steps. 
1. We employ a martingale representation for Ẑn(·) to derive the diffusion limit. For this, we first explicitly 

express the evolution of the process Z(·) as a linear combination of counting processes. The martingale represen-
tation is then obtained by compensating the counting processes (i.e., applying the Doob–Meyer decomposition).
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2. We construct the Lipschitz mapping Φ, which takes the role of a custom-made regulator mapping, without 
incorporating the drift of Z(·).

3. We show that we can write Ẑn(·) � Φ(M(X̂n(·))) for the Lipschitz mapping M that includes the drift of Ẑn(·) in 
the (generalized) Skorokhod problem, as explained in Section 3.2.

4. Finally, we prove that X̂n(·) ⇒ B(·), with B(·) a Brownian motion having 〈B(·)〉t � 2dIt. By continuous map-
ping, we have weak convergence of Ẑn(·).

9.1. Step 1: Martingale Representation for Z(·)
We start by constructing Z(·) in terms of independent unit-rate Poisson processes, to which we apply a multipara-
meter random time change. This way of constructing queueing processes is convenient for obtaining scaling limits. 
We refer to Pang et al. [40, sections 2 and 3] for a careful treatment of such a construction for the M/M/∞ system 
and to Pang et al. [40, section 7] for the M/M/n+M queue, for which the details regarding the multiparameter ran-
dom time change are based on Ethier and Kurtz [16, chapter 6, section 2].

For our multidimensional process, we multiply each counting process with a linear combination of eQ and eni 

(with eQ and eni introduced in Section 3.2) to obtain jumps occurring in the right coordinates. Recall that we 
adopted the notation of Pang et al. [40] by writing N(

R t
0ν(s) ds) for a counting process N(·) with intensity ν(·) at 

time t ≥ 0, where the integral in the argument is the time scaling that was applied to the unit-rate Poisson pro-
cess {N(t) : t ≥ 0}.

Let the number of servers n be fixed for now, and recall that F(·) :� In�Q(·) is the number of free spaces in the 
system (a negative value indicating that there are no free spaces). Using the time-changed Poisson process represen-
tation, we have that Z(·) satisfies

Z(t) � Z(0) + eQ A(λt)�D
Z t

0
dInI(s) ds

� �

�D◦
Z t

0
θ(Q(s)� In)+ ds

� �� �

+
XI�2

i�1
(�eQ� eni + eni�1)Di

Z t

0
dini(s) ds

� �

+ (�eQ + eI�2)DI�1

Z t

0
dI�1nI�1(s) ds

� �

+
XI�3

i�1
(�eni+1 + 2eni � eni�1)Li

Z t

0
λ1
{
PI�1

k�i ni(s)�0, F(s)>0}

� �

+ (2enI�2 � enI�3)LI�2

Z t

0
λ1{nI�1(s)+nI�2(s)�0, F(s)>0}

� �

+ (�enI�2)LI�1

Z t

0
λ1{nI�1(s)�0, F(s)>0}

� �

, t ≥ 0, (28) 

where nI�1(t) and nI(t) are given as in Section 2.2, and A(·), D(·), D◦(·), Di(·), and Li(·) for i ∈ {1, : : : , I� 1} are inde-
pendent unit-rate Poisson processes. The process A(·) counts the cumulative number of arriving customers. 
Changes in the number of servers at the different levels depend on their state at time t. For F(t) ≤ 0, an arriving cus-
tomer joins the queue, whereas an arrival is assigned to a level I�1 server when F(t)>0 and nI�1(t) > 0; in that case, 
the components ni(t), for i � 0, : : : , I� 2, do not change. Observe that an arrival can only be assigned to a level j ∈
{1, : : : , I� 1} server when ni(t) � 0, for all i> j. For each j, the process Lj(·) corresponds to such a transition. To be pre-
cise, Lj(·) multiplied by the corresponding unit vectors acts as a regulator to prevent nj(·) from becoming negative 
by sending an arrival to a level j�1 server when ni(t) � 0 for all i ≥ j. The processes Di(·) and D(·) count the cumula-
tive number of service completions of level i ∈ {1, : : : , I� 1} and level I servers, respectively. Note that a service com-
pletion at a level i server provides an extra level i�1 server and leads to one customer less in the system. The 
process D◦(·) counts the total number of abandonments from the queue.

From now on, we consider the sequence {Ẑn(·)}n, as defined in Section 2.3. Note that (28) holds, with λ�replaced 
by λn, and both sides of the equation are scaled by n�1=2. Moreover, for the nth system, we add a subscript n in the 
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notation of the counting processes, and we denote L̂n, i(·) � Ln, i(·)=
ffiffiffi
n
√

, for i ∈ {1, : : : , I� 1}. We have

Ẑn(t) � Ẑn(0) + n�1=2

 

eQ An(λnt)�Dn

Z t

0
dInn, I(s) ds

� �

�D◦n
Z t

0
θ(Qn(s)� In)+ ds

� �� �

+
XI�2

i�1
(�eQ� eni + eni�1)Dn, i

Z t

0
dinn, i(s) ds

� �

+ (�eQ + eI�2)Dn, I�1

Z t

0
dI�1nn, I�1(s) ds

� �!

+
XI�3

i�1
(�eni+1 + 2eni � eni�1)L̂n, i

Z t

0
λn1

{
PI�1

k�i nn, i(s)�0, F(s)>0}

� �

+ (2enI�2 � enI�3)L̂n, I�2

Z t

0
λn1{nn, I�1(s)+nn, I�2(s)�0, F(s)>0}

� �

+ (�enI�2)L̂n, I�1

Z t

0
λn1{nn, I�1(s)�0, F(s)>0}

� �

: (29) 

We proceed by rewriting (29) into a martingale representation for Ẑn(·), similar to Pang et al. [40, sections 3 and 4]. 
To introduce martingales, we compensate all counting processes by the integral of their intensity; we refer to Pang 
et al. [40, section 7.1] for a detailed exposition of this technique relying on the multiparameter optional sampling 
theorem. For a counting process N(·), with intensity ν(·), denote by MN(·) the associated martingale obtained by 
subtracting its compensator (i.e., MN(t) :�N(t)�

R t
0ν(s) ds, t ≥ 0).

For later use, we also write Dn(·) � D̃n(·)� D̃c
n(·), the difference of a counting process D̃n(·)with intensity dIn, and 

a process D̃c
n(·)with intensity dI(n� nn, I(·)). Applying the martingale representation yields

Ẑn(t) � Ẑn(0) + n�1=2eQ[MAn(t)�MD̃n
(t)] + n�1=2eQ[MD̃c

n
(t)�MD◦n(t)]

+ n�1=2
XI�2

i�1
(�eQ� eni + eni�1)MDn, i(t) + n�1=2(�eQ + eI�2)MDn, I�1(t)

+

Z t

0
f (Ẑn(s)) ds+

0 0

0 R̃

 !
0

L̂n(t)

 !

, (30) 

where f is the function representing the drift as defined in (6), L̂n(·) is the (column) vector-valued process 
(L̂n, i(·), : : : , L̂n, I�1(·))

⊤, and R̃ is the (I� 1) × (I� 1)matrix as defined just above Theorem 2. As in Pang et al. [40], the 
martingales in this process are associated to the filtration Fn :� {F n, t}t≥0, with

Fn, t :� σ(Zn(0), An(λns), D̃n(dIns), D̃c
n

Z s

0
dI(n� nn, i(u)) du

� �

,

D◦n
Z s

0
θ(Qn(u)� In)+ du

� �

, Dn, i

Z s

0
dinn, i(u) du

� �

: i ∈ {1, : : : , I� 1}, s ≤ t), t ≥ 0, 

augmented by including all P-null sets of F .

9.2. Step 2: Construction of Custom Regulator Mapping F
To define our custom regulator map Φ, we require some auxiliary definitions and results. We start by defining T :

RI→RI as the function given by

(x1, : : : , xI) ⊢→ x1, x3, : : : , xI, max(�x1, 0)�
XI

i�2
ixI�i+2

 !

:

The goal of applying T is to switch from a state representation including n0(·) to one including nI�1(·) because 
T(Z(t)� (In, 0, : : : , 0)) � (Q(t)� In, n1(t), : : : , nI�1(t)). We use this map to prove that the reflection mapping we con-
struct is well defined and continuous. The following straightforward lemma is for later use.

Lemma 2. T is a bijection that is Lipschitz continuous.

Proof. It is elementary to show that T is both injective and surjective. The Lipschitz property is a consequence of 
T being a piecewise linear function on RI.
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The domain for T as defined is too large, and we have to verify that T is still a Lipschitz bijection when the domain 
is restricted to the state space of Z(·). Define S1 :� {(F, n0, : : : , nI�2) ∈RI : n0, : : : , nI�2 ≥ 0, (F)+�

PI
i�2 inI�i ≥ 0} and 

S2 :� {(F, n1, : : : , nI�1) ∈RI : n1, : : : , nI�1 ≥ 0, (F)+�
PI�1

i�1 inI�i ≥ 0}. It is now readily verified that T |S1 , the restriction 
of T to S1, is again a Lipschitz bijection onto S2.

Next, we introduce the reflection matrix R associated with the process (Q(·)� In, n1(·), : : : , nI�1(·)). Let R be a 
matrix in R(I�1)×(I�1), with every diagonal element equal to 2 and every upper and lower diagonal element equal 
to �1 (i.e., Rij � 21{i�j} �1{i�j+1}�1{i�j�1}, with i, j ∈ {1, : : : , I� 1}). For a matrix A, let |A | denote the matrix whose 
entries are the absolute values of A, and let diag(A) denote the diagonal matrix whose diagonal entries are taken 
from A. w

Definition 3. A d× d matrix R is said to be a generalized M matrix if 
i. each diagonal entry of R is positive and
ii. the spectral radius of |H | is less than one,
where H is the d× d matrix that satisfies

R � (Id�H)diag(R), 

with Id the d× d identity matrix.
It is now easily verified that the matrix R defined is a generalized M-matrix; the first property of Definition 3

evidently holds, and the associated matrix |H | is substochastic; thus, it has a largest eigenvalue smaller than one.
As mentioned in Section 3.2, the diffusion limit is related to a Skorokhod problem. For our process, we need a 

slight modification of the usual Skorokhod setting. Denote Dd+1
+ [0,∞) for the elements x(·) ∈Dd+1[0,∞) satisfying 

x(0) � 0. We adopt the notation that an element x(·) ∈Dd+1
+ [0,∞) is denoted (x1(·), x2, d+1(·)), where x2, d+1(·) ∈

Dd
+[0,∞) denote the last d components of x(·). We refer to our version of the Skorokhod problem as the coupled 

Skorokhod problem because the number of reflection directions is fewer than the dimension of the process, whereas 
the processes, in general, cannot be decoupled.

Definition 4 (Coupled Skorokhod Problem). Let x(·) ∈Dd+1
+ [0,∞), and let R be a d×d real matrix. A pair 

(z(·), l(·)) ∈Dd+1
+ [0,∞) ×Dd+1

+ [0,∞) is a solution of the Skorokhod problem for x(·) (with respect to R) if the follow-
ing conditions hold: 

i. z1(t)
z2, d+1(t)

� �

�
x1(t)

x2, d+1(t)

� �

+
0 0
0 R

� �
0

l2, d+1(t)

� �

, t ≥ 0;

ii. z2, d+1(t) ≥ 0, t ≥ 0; and
iii. l(·) is such that for i � 2, : : : , d+ 1, 

a. li(0) � 0,
b. li(·) is nondecreasing, and
c. 
R∞

0 zi(t) dli(t) � 0.
We call (z(·), l(·)) a coupled R regulation for x(·). The following result is a straightforward adaptation of Harrison 

and Reiman [23, theorem 1].

Proposition 7. Assume that the d× d real matrix R is a generalized M matrix. Then, for each x(·) ∈Dd+1
+ [0,∞), a coupled 

R regulation for x(·) exists and is unique.

In these settings, we could have taken Dd+1[0,∞) as well when x(0) is in the state space associated with z(·) (cf. Harri-
son and Reiman [23, theorem 1]); we, therefore, replace Dd+1

+ [0,∞) by Dd+1[0,∞) in the remainder of this section. 
Because of Proposition 7, we can define a mapping associated with R, (φ,ψ) : Dd+1[0,∞)→Dd+1[0,∞) ×Dd+1[0,∞), 
by x(·) ⊢→ (z(·), l(·)). The following proposition is an adaptation of Whitt [56, theorem 14.2.5], the proof of which goes 
along the same lines and is, therefore, omitted.

Proposition 8. Assume R is a generalized M matrix. There exists a constant K>0, which depends on R, such that for 
x, x′ ∈Dd+1

+ and for each t ≥ 0,

‖φ(x)�φ(x′)‖t ∨ ‖ψ(x)�ψ(x′)‖t ≤ K‖x� x′‖t, 

where for a, b ∈R, a ∨ b �max{a, b}.

Now, we have the required theory to introduce the mapping Φ. For the generalized M-matrix R, define the func-
tion (Φ,Ψ) : DI[0,∞)→DI[0,∞) ×DI[0,∞) by

x(·) ⊢→ (T�1 ◦φ ◦T(x(·)), T�1 ◦ψ ◦T(x(·))), (31) 
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which is a well-defined function because T is a bijection by Lemma 2 and (φ,ψ) are functions by Proposition 7. 
Moreover, (Φ,Ψ) is Lipschitz because owing to Proposition 8 and again, Lemma 2, it is a composition of Lipschitz 
mappings. Finally, because T |S1 is a Lipschitz bijection onto S2, we have that Φ(x) ∈ S1 when φ ◦T(x) ∈ S2.

9.3. Step 3: Establish That Ẑ n(·)5 F(M(X̂ n(·)))
This step is devoted to write Ẑn(·)� Ẑn(0) as the image of a continuous mapping, acting on a martingale X̂n(·), the 
latter being the martingale part of Ẑn(·) as defined in (33). In the next step, we show that X̂n(·) converges weakly to 
a scaled Brownian motion, as n→∞, deriving a weak limit for Ẑn(·). As mentioned, we require the theory of regu-
lator mappings to write Ẑn(·)� Ẑn(0) as the image of a continuous map acting on X̂n. The functional form associ-
ated with regulator mappings is also apparent in (30), where the pair (Ẑn(·), L̂n(·)) can be seen as a coupled R̃ 
regulation, with R̃ as defined in Section 3.2, of the process

n�1=2

"

eQ[MAn(t)�MD̃n
(t)] + eQ[MD̃c

n
(t)�MD◦n(t)] +

XI�2

i�1
(�eQ� eni + eni�1)MDn, i(t)

+ (�eQ + eI�2)MDn, I�1(t) +
Z t

0
f

ffiffiffi
n
√

Ẑn(s)
� �

ds

#

: (32) 

As indicated in Section 3.2, two issues arise. The first is that Ẑn(·) appears in (32), which is not the case in the process 
(x1(·), x2, d+1(·)) in Definition 4. This can be solved by considering a generalized version of the coupled Skorokhod 
problem (cf. Reed and Ward [42], Reed and Ward [43], Reed et al. [44]). The second issue is that R̃ is not a general-
ized M matrix. For this, we apply the function T and employ the fact that the matrix R, associated with the process 
(Q(·)� In, n1(·), : : : , nI�1(·)), is a generalized M matrix. We combine both elements to construct a “custom reflection 
mapping.”

For ease of notation, define the processes Ŷn(·) and X̂n(·) by

Ŷn(t) :� Ẑn(t)�
0 0

0 R̃

 !
0

L̂n(t)

 !

, t ≥ 0

X̂n(t) :� n�1=2[eQ[MAn(t)�MD̃n
(t)] + eQ[MD̃c

n
(t)�MD◦n(t)]

+
XI�2

i�1
(�eQ� eni + eni�1)MDn, i(t) + (�eQ + eI�2)MDn, I�1(t)], t ≥ 0: (33) 

It is now straightforward to verify that Ẑn(·) �Φ(Ŷn(·)); for the mapping Φ, we defined in (31) because for t ≥ 0,

Ẑn(t) � Ŷn(t) +
0 0

0 R̃

0

@

1

A
0

L̂n(t)

0

@

1

A � Ŷn(t) +T�1
0 0

0 R

0

@

1

A
0

L̂n(t)

0

@

1

A

� T�1 T(Ŷn(t)) +
0 0

0 R

0

@

1

A
0

L̂n(t)

0

@

1

A

0

@

1

A � T�1φT(Ŷn(t)) �Φ(Ŷn(t)), 

where the third equality holds as, for x, y ∈RI, T�1(x+ y) � T�1x+T�1y, when y1 � 0. The properties (ii) and (iii) in 
Definition 4 then imply that 

ii′. n̂n, 0(t), : : : , n̂n, I�1(t) ≥ 0, for t ≥ 0; and
iii′. L̂n(·) is such that for i � 1, : : : , I� 1, 

a. L̂n, i(0) � 0,
b. L̂n, i(·) is nondecreasing, and
c. 
R∞

0 n̂n, i(t) dL̂n, i(t) � 0.
Property (ii′) is true because property (ii) in Definition 4 implies that n̂n, 1(t), : : : , n̂n, I�1(t) ≥ 0 for t ≥ 0. The result-

ing process is in S2; hence, applying T�1 gives that n̂0(t) ≥ 0. Property (iii′) is a direct consequence of property (iii) 
in Definition 4, which is preserved under T : S1→ S2.
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We now write Ŷn(·) as the image under a continuous mapping acting on X̂n(·). For this, set Ŷn(·) �M(Ẑn(0)
+ X̂n(·)), with M : DI[0,∞)→DI[0,∞), the mapping that sets M(x(·)) � v(·), for v(·) solving the integral equation

v(t) � x(t) +
Z t

0
f (Φ(v(s))) ds, for all t ≥ 0: (34) 

The mapping M can be shown to be well defined and Lipschitz continuous, which is proven in Reed and Ward [42, 
lemma 1]. For completeness, we state the result, but we omit the proof.

Proposition 9. Let h : RI→RI be a Lipschitz continuous function. For any x(·) ∈DI[0,∞), there is a unique v(·) ∈
DI[0,∞) satisfying

v(t) � x(t) +
Z t

0
h(v(s)) ds, for all t ≥ 0: (35) 

The function associated with h, Mh, that maps x(·) to v(·) is Lipschitz continuous w.r.t. the uniform norm on compact time 
intervals.

Because f ◦Φ�is Lipschitz continuous w.r.t. the uniform norm on compact intervals, we set M ≡Mf◦Φ. Combining 
the fact that Φ�is a Lipschitz function with Proposition 9 yields our “custom regulator mapping,” which we summa-
rize in the following proposition.

Proposition 10. For every x(·) ∈Dd+1[0,∞), with x(0) ∈R ×RI�1
+ , there exists a unique pair (z(·), l(·)) ∈Dd+1[0,∞) ×

Dd+1[0,∞) such that

(z(·), l(·)) � (Φ ◦M(x(·)),Ψ ◦M(x(·))), 

with (Φ ◦M,Ψ ◦M) : DI[0,∞)→DI[0,∞) ×DI[0,∞) a Lipschitz continuous mapping. In addition, when φ ◦T ◦M(x(·))
∈ S2, then zi(·) ≥ 0 for i ≥ 2, and l(·) satisfies 

a. l(0) � 0,
b. li(·) is nondecreasing for i � 1, : : : , I, and
c. 
R∞

0 zi(t) dli(t) � 0 for i � 2, : : : , I.

9.4. Step 4: Weak Limit for X̂ n(·)
With the definition of Φ�and M, we may now complete the proof of Theorem 2 by deriving a weak limit for X̂n(·). 
We show that X̂n(·) ⇒ B(·) in DI[0,∞) with the uniform norm on compact time intervals. This completes the proof 
because the remainder is an application of the mapping theorem (Billingsley [5, theorem 2.7]) to Ẑn(0) + X̂n(·). First, 
write X̂n(·) � Ξ̂n(·) + Γ̂n(·), where

Ξ̂n(t) �
1
ffiffiffi
n
√ eQ[MAn (t)�MD̃n

(t)]

Γ̂n(t) �
1
ffiffiffi
n
√ (eQ[MD̃c

n
(t)�MD◦n (t)] +

XI�2

i�1
(�eQ� eni + eni�1)MDn, i(t)

+ (�eQ + eI�2)MDn, I�1(t)), 

with the martingales, Ξ̂n(·) and Γ̂n(·), depending on n through the definition of X̂n(·). We will show that Ξ̂n(·) ⇒

B(·) and Γ̂n(·)→
P 0.

First, we show the latter statement. Note that Γ̂n(·) is a locally square integrable martingale, having predictable 
quadratic variation matrix 〈Γ̂n〉t, whose diagonal entries 〈Γ̂(i, i)

n 〉t, i ∈ {1, : : : , I}, have the (rough) upper bound

〈Γ̂(i, i)
n 〉t ≤

1
n

Z t

0
dI(n� nn, I(s)) +θ(Qn(s)� In)+ +

XI�2

i�1
3(dinn, i(s)) + 2dI�1nn, I�1(s)

 !

ds, 

and where the (off-diagonal) predictable quadratic covariations can be bounded by

| 〈Γ̂(i, j)
n 〉t |

2 ≤ 〈Γ̂(i, i)
n 〉t〈Γ̂

(j, j)
n 〉t, i, j ∈ {1, : : : , I} t ≥ 0, 

by application of the Cauchy–Schwarz inequality. Therefore, if 〈Γ̂(i, i)
n 〉t→ 0 in probability for all t ≥ 0 and each 

i ∈ {1, : : : , I}, then 〈Γ̂(i, j)
n 〉t→ 0 in probability for each t ≥ 0 and all i, j ∈ {1, : : : , I} as well.
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Because i ⊢→ di is increasing and because (n� nn, I(s)) �
PI�1

i�0 nn, i(s) ≤ (Fn(s))+, we get a further upper bound for 
the diagonal elements of 〈Γ̂n〉t,

〈Γ̂(i, i)
n 〉t ≤

6
n
(dI +θ)

Z t

0
(Fn(s))+ + (Fn(s))� ds, 

where we use that θ(Qn(s)� In)+ � θ(Fn(s))�.
Now, recognize that the process Fn(·) increases by one with birth rate 

PI
i�1 dinn, i(t) +θ(Fn(t))� ≤ dIn+θ(Fn(t))�

and decreases by one with rate λnt at time t ≥ 0. With the upper bound for the birth rate, we recognize an Erlang A 
system. Using the proof of Proposition 6, inspired by Pang et al. [40], we obtain that (Fn(·))

+
=n→P 0 and 

(Fn(·))
�
=n→P 0 such that 〈Γ̂n〉t→ 0 in probability for all t ≥ 0. By application of the martingale FCLT (Jacod and Shir-

yaev [26, theorem VIII.3.22]), we get Γ̂n(·) ⇒ 0, and by Slutsky, we get Γ̂n(·)→
P 0, which shows our claim.

We continue by proving the claim for Ξ̂n(·), for which we again use the martingale FCLT. For all n, the process 
Ξ̂n(·) is a locally square integrable martingale. We check the conditions of Jacod and Shiryaev [26, theorem 
VIII.3.22]. First, ∆Ξ̂n(t) � Ξ̂n(t)� Ξ̂n(t�) ≤ 1=

ffiffiffi
n
√
→ 0 for all ω ∈Ω. Second, we have for all t ≥ 0,

〈Ξ̂(1, 1)
n 〉t �

1
n

Z t

0
λn + dIn ds→a:s: 2dIt, 

with all the other components of 〈Ξ̂n〉t being zero. The conditions for the martingale FCLT are, therefore, satisfied, 
and we conclude that Ξ̂n(·) ⇒ eQB(·), as n→∞. This completes step 4 and finalizes the proof of Theorem 2.

10. Numerical Illustration
In this section, we investigate the performance of the multitasking system as a function of the number of servers. As 
indicated in Section 6, we focus on the probability of delay, as this is a primary building block in many approxima-
tions. Our aim is (i) to verify the impact of the number of servers on the probability of delay and give a rough idea 
at what number of servers n our diffusion approximations become accurate and (ii) to get some insight into the 
impact of the routing policy.

For our numerical experiments, we take I� 4 and the following three shapes of the multitasking effect: d(cc)
i �

1:25
ffiffi
i
√

(concave), d(cv)
i � 0:25i2 (convex) for i � 0, 1, : : : , I, and d(mx) � (0, 0:5, 1:5, 2:25, 2:75) (mixed). The arrival rate is 

given by (2), where we take β � 0:5. As the number of servers, we take n ∈ {2, 4, 6, 8, 10,15, 20,40,60, 80,100}, and for 
the abandonment rate from the queue, we take θ � 0:2. For each parameter combination, we use a warm-up period 
of 5,000 arrivals, and the simulation is run for 1,000 batches of 50,000 arrivals (i.e., 50 million arrivals in total per 
parameter combination) such that confidence intervals for the simulated probability of delay are reasonably small. 
As the width of the confidence intervals was somewhat larger, we used batches of 100,000 arrivals in case of MBF 
and n ≥ 40.

The approximation of the probability of waiting can be found in Section 6, and for the LBF policy, it can be 
expressed in terms of the Garnett delay function (see (13)). Let P̂(Delay) denote the simulated probability of delay. 
For LBF, we define the absolute and relative errors between the simulation results and heavy-traffic limit as fol-
lows:

∆diff � Garnett β
ffiffiffi
a
√ , θ

adI

� �

� P̂(Delay), ∆rel � 100% × ∆diff

P̂(Delay)

with a � 1� dI�1=dI. For MBF, the diffusion process only has a tractable stationary distribution in the SWC and not 
in the NWC. To determine the errors, we replace the heavy-traffic limit with the simulation results for n�200 based 
on 100 million arrivals.

The probability of waiting for a concave multitasking effect d(cc) as a function of the number of servers is pre-
sented in the left panel of Figure 3 for the LBF (solid line) and MBF (dashed line) policies; the corresponding heavy- 
traffic limits (simulation for n�200 in case of MBF) are indicated by dotted lines. In line with the optimality results 
of Theorem 5, LBF outperforms MBF for every n. Using the heavy-traffic limit, the approximate probability of wait-
ing for LBF is roughly 0.0929. We see that probabilities of delay converge to their heavy-traffic limits. The small dif-
ferences for larger n are because of randomness in the simulation, with the half-width of the confidence interval 
being about 0.0015 for 100 million arrivals. The speed of convergence appears to be quite high for LBF. The absolute 
(∆diff) and relative (∆rel) errors between the simulated values and their limiting behavior can be found in Table 1. 
For LBF, already for n�6, the probability of waiting is reasonably close to its heavy-traffic limit. The speed of 
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convergence for MBF is somewhat slower in this case, which is partly because of the choice of d(cc). However, 
although the relative errors remain significant until n�20, the actual differences are modest, with deviations in the 
probability of delay of less than 0.01 from n�10 on.

Although MBF is the worst policy in terms of waiting times for concave multitasking effects, the MBF routing 
policy has the advantage over LBF of creating free servers. This is depicted in the right panel of Figure 3, where the 
long-run expected number of level 0 servers is plotted as a function of n. Clearly, for LBF, the number of level 0 ser-
vers tends to zero very fast, in line with the state-space collapse. For MBF, the expected number of free servers 
grows roughly as a square root of n, matching the diffusion behavior. Hence, when using an MBF policy, servers 
may, for example, be available to perform other tasks.

In Figure 4, the probabilities of waiting are visualized for convex d(cv) (left panel) and mixed d(mx) (right panel) 
multitasking effects. For d(cv), MBF is optimal for every n according to Theorem 6, as can also be seen in the left 
panel of Figure 4. For d(mx), there is no result for optimality, but LBF gives lower waiting times than MBF in this 
case. This can be explained by the smaller value of d(mx)

4 � d(mx)
3 � 0:5 compared with d(mx)

4 =4 � 11=16 (see Section 6). 
The probability of waiting converges again to its heavy-traffic limit, as the differences fall inside the confidence 
bounds of the simulation. For the speed of convergence, we see roughly similar behavior as for the case of concave 
d(cc). The speed of convergence for MBF is considerably faster for both d(cv) and d(mx) than for d(cc); see also Table 1. 
However, the convergence seems slightly slower for LBF in the case of d(mx). We note that the heavy-traffic limits 
for LBF based on the Garnett delay function are now 0.3069 and 0.1384 for d(cv) and d(mx), respectively. Moreover, 

Figure 3. (Color online) Probability of waiting (left panel) and expected number of free servers (right panel) as a function of n 
for concave d(cc) multitasking effect (LBF is shown as solid lines, and MBF is shown as dashed lines; heavy-traffic (HT) limits are 
shown as dotted lines). 

Table 1. Deviations in the probability of waiting between smaller systems and its limiting 
behavior.

n and error

Concave d(cc) Convex d(cv) Mixed d(mx)

LBF MBF LBF MBF LBF MBF

2
∆diff �0.01 0.0264 0.029 0.0093 �0.0176 0.0172
∆rel (%) �9.71 21.56 10.43 3.53 �11.29 10.52

6
∆diff �0.0023 0.0126 0.0098 0.0026 �0.0104 0.0081
∆rel (%) �2.43 9.22 3.29 0.94 �6.98 4.66

10
∆diff �0.0004 0.0091 0.006 0.0012 �0.0068 0.0075
∆rel (%) �0.41 6.55 1.99 0.42 �4.66 4.34

20
∆diff 0.0008 0.0061 0.0031 0.0015 �0.0025 0.0046
∆rel (%) 0.92 4.29 1.03 0.56 �1.8 2.62

100
∆diff 0.0017 0.0023 0.0014 �0.0007 0.0018 0.0027
∆rel (%) 1.83 1.61 0.46 �0.24 1.28 1.49
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the expected number of free servers follows a similar pattern as in the right panel of Figure 3 (and are, therefore, 
omitted).

To investigate the sensitivity of the delay probability to the grade of service parameter β, we varied 
β ∈ {0:1, 0:5, 0:7, 1}. We now only focus on the case n�10, as the results indicate that we then start to approach the 
heavy-traffic limit, but the approximation is clearly not yet excellent, yielding some modest errors. The probabilities 
of waiting are visualized in Figure 5 for LBF (black solid lines), MBF (blue dashed lines), and the corresponding lim-
its (dotted lines) for d(cc) (left panel), d(cv) (center panel), and d(mx) (right panel). Clearly, the choice of β�has a consid-
erable impact on the probability of waiting. Overall, we see that the simulations coincide reasonably well with the 
approximations, already for n�10. For β�1, the probabilities of waiting and the absolute errors are small (below 
0.01 for d(cc) and d(mx)); only d(cv) gives rise to somewhat larger errors and probabilities. However, the relative errors 
blow up because of these small probabilities. Albeit β � 0:1 may also sometimes provide somewhat larger errors (at 
most �4.34% for d(mx)), the relative performance of the approximation typically degrades as β�grows beyond 0.5, as 
expected.

Finally, we consider the impact of dI � dI�1 and dI�1� dI�2; as indicated in Cui and Tezcan [10], the approxima-
tion may be poor when the former is small and the latter is large. In particular, we consider two extreme scenarios 
d(SL) � (0, 0:5, 1:5, 3:4, 3:5) and d(LS) � (0, 0:5, 1:5, 1:6, 3:5). We take β � 0:5, θ � 0:2, and n ∈ {10,20, 40}. The simulated 
probabilities of waiting and the corresponding errors for LBF and MBF can be found Tables 2 and 3 for d(SL) and 
d(LS), respectively. As expected, the error for d(SL) is large for LBF, as for the large value of dI�1� dI�2 compared with 
dI � dI�1, the variance becomes large and the convergence becomes slow as noted (Cui and Tezcan [10]). Observe 
that this problem does not occur for MBF, as the variable part in the service rate (cf. Section 6) is not primarily deter-
mined by dI � dI�1. Moreover, the heavy-traffic approximations work well in case dI � dI�1 is large and dI�1� dI�2 is 
small; see Table 3.

11. Extensions and Ramifications
In this section, we discuss two extensions that are rather straightforward to incorporate into the basic model intro-
duced in Section 2.1.

Figure 5. (Color online) Probability of waiting for different values of β�for concave (left panel), convex (center panel), and mixed 
(right panel) multitasking effects. HT, heavy traffic. 

Figure 4. (Color online) Probability of waiting for convex d(cv) (left panel) and mixed d(mx) (right panel) multitasking effects 
(LBF is shown as solid lines, and MBF is shown as dashed lines; heavy-traffic (HT) limits are shown as dotted lines). 
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11.1. More General Arrival Processes
For the sake of readability, we assumed that arrivals occur according to a Poisson process, but our results remain 
valid with more general arrival processes. First, the optimality results remain valid, as we did not need to make any 
assumption regarding the arrival process. Second, the diffusion limits can also be extended using the line of reason-
ing as explained in Pang et al. [40, section 7.3]. Let An(·) be the arrival process in model n, and let Ân(t) � n�1=2(An(t)
�λnt), for t ≥ 0, be the associated scaled arrival process. Assume that Ân(·) ⇒ Â(·) in D[0,∞), with Â(·) a Brownian 
motion with drift 0 and variance dIc2

a in the heavy-traffic scaling regime. This holds, for instance, if arrivals occur 
according to a renewal process where the squared coefficient of variation of the interarrival times is c2

a . Under these 
assumptions, all diffusion limits remain valid where the diffusion coefficient σ2(x) should be replaced by σ2(x) �
dI(1+ c2

a) in Theorems 1–4 and by σ2(x) � λ(1+ c2
a) in Theorems 7 and 8.

11.2. Finite Buffer
Another model extension is to consider the case when there is a maximum to the number of customers that can be 
in the queue. In this case, Q(t)� In ≤ κ

ffiffiffi
n
√

, for some κ > 0. Clearly, the optimality results carry over. For Theorems 
1–4, the results remain valid but with the limiting diffusion being reflected from above at level κ. From a technical 
point, this can be handled by composing the continuous functions that are already utilized with the continuous 
function associated with the regulator mapping to the reflection in κ�(cf. Pang et al. [40, theorem 7.3]). As there is no 
queue at the diffusion level in the subcritical regime, Theorems 7 and 8 remain valid.

12. Conclusions
In this paper, we studied the interplay of routing decisions, multitasking effects, and preferred staffing levels for a 
queueing system in which each server can serve multiple customers at once. For a broad class of routing policies 
and multitasking effects, heavy-traffic diffusion limits are derived for the queue-length process, from which appro-
priate staffing levels can be determined. Our first main result showed that for a wide class of policies, the limiting 
diffusion process is identical to that of the least-busy-first routing policy, in which each server is effectively fully or 
almost fully occupied. The one-dimensional limiting process can also be interpreted in terms of the standard Erlang 
A model. Our second main result shows that routing to the most busy (nonfull) server first is a policy that achieves 
a different diffusion limit. In the case that customers cannot be reallocated, the diffusion limit corresponds to a non-
standard multidimensional reflected diffusion process with nonhomogeneous drift. For the proof, we constructed 
an extended version of the regulator mappings associated with generalized Skorokhod problems. We also showed 
that the two extreme policies of routing to the least busy and most busy server achieve best and worst performance 
in the case that the total service rate of a server is a concave or convex function of the number of customers in service 
at that server. The diffusion limits for systems that are not in heavy traffic are somewhat different. The class of poli-
cies providing similar behavior as the least-busy-first policy is then considerably smaller; when routing to the most- 
busy server, there will be empty servers at the fluid scale.

Table 3. Deviations in the probability of waiting for dI � dI�1 large and dI�1 � dI�2 small 
(i.e., d(LS)).

n

LBF MBF

P̂(Delay) ∆diff ∆rel (%) P̂(Delay) ∆diff ∆rel (%)

10 0.3367 0.0096 2.85 0.2708 0.0024 0.87
20 0.3426 0.0037 1.07 0.2724 0.0008 0.29
40 0.3460 0.0003 0.08 0.2734 �0.0002 �0.08

Table 2. Deviations in the probability of waiting for dI � dI�1 small and dI�1 � dI�2 large 
(i.e., d(SL)).

n

LBF MBF

P̂(Delay) ∆diff ∆rel (%) P̂(Delay) ∆diff ∆rel (%)

10 0.0886 �0.0872 �98.37 0.1671 �0.0002 �0.10
20 0.0576 �0.0562 �97.49 0.1679 �0.0010 �0.57
40 0.0328 �0.0314 �95.59 0.1686 �0.0016 �0.97
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There are several model refinements possible and directions for future research. First, our primary focus was 
on diffusion limits in heavy traffic. Randomized policies, such as random-server or power-of-d policies, will have 
different fluid and diffusion limits than routing to the least busy server in nonheavy-traffic scaling regimes. 
Depending on the application area, it might be of interest to derive diffusion limits for such randomized policies 
in the subcritical scaling regime. Another direction of interest is to have a more refined model for the service pro-
cess. In the current setting, service occurs in a processor sharing fashion, but in practice, service may occur 
according to an on-off process; see, for example, Véricourt and Jennings [54] and Yankovic and Green [59] for a 
healthcare example where patients alternate between needing help or not. In fact, Campello et al. [8] study a rich 
class of models for case managers that incorporate such elements. A topic for further research is to derive diffu-
sion limits for such two-layered systems. Finally, we were able to derive optimal routing of customers for con-
cave and convex service rates. As indicated in Kc [31], the service rate may resemble an inverse U-shaped 
function. Determining the optimal assignment policy is of interest, along with its diffusion limit. It seems plausi-
ble that either routing to the most-busy server is optimal (in case the inverse U ends at its top) or the heavy-traffic 
limit will be the same as least busy first.

Appendix A. Proofs SWC
In this section, we present the proofs of Theorems 3 and 4, which are the heavy-traffic diffusion limits in the SWC, for both the 
MBF and LBF policies. Recall that in the SWC, the state of Zn(·) is completely characterized by the state of Qn(·).

Proof of Theorem 3. As LBF balances the number of customers among servers, there will only be level ⌈Q(t)=n⌉ and level 
⌈Q(t)=n⌉� 1 servers, for Q(t)< In. It may be easily verified that, for Q(t)< In,

n(⌈Q(t)=n⌉�1)(t) � n
&

Q(t)
n

’

�Q(t), n⌈Q(t)=n⌉(t) � n� n(⌈Q(t)=n⌉�1)(t), (A.1) 

with the convention that n�1(t) � 0. When Qn(t) ≥ (I� 1)n, there are exclusively level I and level I�1 servers, the latter type only 
when Qn(t) < In, and therefore, the rate at which Qn(·) jumps down is given by dIn+ dI�1(n� nI) +θ(Qn(t)� In)+.

Let us now consider a sequence of processes {R◦n(·)}n, where R◦n(·) has the same rates and state space as the process Rn(·) that 
we defined above Proposition 5 and R◦n(0) �Qn(0). In addition, we couple Qn(·) and R◦n(·) in such a way that when 
Qn(t) � R◦n(t) > (I� 1)n, then both processes jump at the same time, which is possible because in this case, the infinitesimal rates 
of both processes are equal. We observe now that Qn(t) � R◦n(t), when inf0≤s≤t R◦n(s) > (I� 1)n, for all t ≥ 0.

Now, consider again R̂◦n(·), with R̂◦n(t) :� n�1=2(R◦n(t)� In). Because of Proposition 6, R̂◦n(·) ⇒ Q̂(·), with Q̂(·) the diffusion pro-
cess given in Theorem 1. By continuity of the infimum, we have that inf0≤s≤t R̂◦n(s) converges weakly on a process level as well, 
and therefore, for all t ≥ 0,

P inf
0≤s≤t

R̂◦n(s) <�
ffiffiffi
n
√

� �

→ 0, as n→∞:

This implies that as n→∞, the uniform distance between R̂◦n(·) and Q̂n(·) goes to zero in probability: that is, for each ɛ > 0 and 
all T ≥ 0,

P ‖Q̂n(·)� R̂◦n(·)‖T > ɛ
� �

→ 0, as n→∞:

We conclude, by Slutsky’s lemma, that Q̂n(·) ⇒ Q̂(·) as well. By continuous mapping and the expressions in (A.1), we obtain 
weak convergence of Ẑn(·) to Ẑ(·). w

Proof of Theorem 4. Under MBF, there are as many level I servers as possible in addition to at most one nonempty server that 
is not at level I. Writing the state of the nth system as a function of the number of free spaces Q(t)� In, we obtain, for Q(t)< In 
and i ∈ {1, : : : , I� 1},

nI(t) � n�
&
(Q(t)� In)�

I

’

, ni(t) � 1{g̃(Q(t)�In)�i}, n0(t) �
$
(Q(t)� In)�

I

%

, 

where i ∈ {1, : : : , I� 1} and g̃(x) :� ⌈x�I ⌉I� x�. This gives us that

Ẑn(t) � n�1=2 Q(t)� In,
$
(Q(t)� In)�

I

%

, 1{g̃(Q(t)�In)�1}, : : : , 1{g̃(Q(t)�In)�I�2}

 !

:

By adding and subtracting n�1=2 (Q(t)�In)�
I in the second component, we obtain

Ẑn(t) � n�1=2 Q(t)� In, (Q(t)� In)�

I
, 0, : : : , 0

� �

+ Ĥn(t), (A.2) 
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where

Ĥn(t) � n�1=2 0,
$
(Q(t)� In)�

I

%

�
(Q(t)� In)�

I , 1{g̃(Q(t)�In)�1}, : : : , 1{g̃(Q(t)�In)�I�2}

 !

:

Because the components of Ĥn(·) are bounded by n�1=2, we have Ĥn(·)→
P 0, as n→∞. In addition, x ⊢→ x�

I is a continuous func-
tion. By the mapping theorem and using (A.2), it is sufficient if we show that n�1=2(Q(·)� In) converges weakly to Q̂(·). This last 
statement is easily proven using the approach in the proof of Proposition 6. w

Appendix B. Proof of Stochastic Ordering Results
The proofs in this appendix rely on weak submajorization and weak supermajorization arguments. First, we give the definitions 
of ⋏w, ⋏

w , and ⋏. Let x, y be two integer-valued n-dimensional vectors; denote by x[i] the ith largest element in x; and let x(i) be 
the ith smallest element in x. Weak submajorization is defined as

x ⋏w y if
Xk

i�1
x[i] ≤

Xk

i�1
y[i], k � 1, : : : , n:

Informally speaking, x ⋏w y means that x is more balanced and smaller than y. Similarly, weak supermajorization is defined as

x ⋏

w y if
Xk

i�1
x(i) ≥

Xk

i�1
y(i), k � 1, : : : , n:

Furthermore, x is said to be majorized by y, denoted as x ⋏ y if, next to 
Pk

i�1 x[i] ≤
Pk

i�1 y[i] for all k � 1, : : : , n� 1, it also holds that 
Pn

i�1 x[i] �
Pn

i�1 y[i]. Preservations properties of weak submajorization, weak supermajorization, and majorizations can be found 
in Akgun et al. [1], Marshall et al. [39, theorem 5.A.1], and Sparaggis et al. [49].

For some routing strategy π, let Nπ
[i](t) denote the ith busiest server, and let Nπ

(i)(t) be the ith least busy server, i ∈ {1, : : : , n}. The 
results in Theorems 5 and 6 concern the comparison of routing policies, whereas all other parameters (such as the number of ser-
vers) remain fixed.

Proof of Theorem 5. The proof is by conditioning on the event times and using forward induction. We first consider policies 
LBF and π�and only focus on the first stochastic inequality relations in (8) and (9). To this end, we couple the processes, and we 
will show that

NLBF(t) ⋏w Nπ(t), (B.1) 
QLBF(t) ≤ Qπ(t), (B.2) 
LLBF(t) ≤ Lπ(t), (B.3) 

for all t ≥ 0 over all sample paths.
We condition on tk, where tk are the ordered epochs of arrival times, service completions, and abandonments. The arrival pro-

cesses are coupled such that arrival epochs in the two systems coincide. The service completions are coupled using the construc-
tion in Sparaggis et al. [49], and the coupling can be described as follows. For some policy γ, let µγ(t) �

Pn
i�1 mNγi (t)

be the total 
service rate at time t. After an event has occurred, say at time t, we schedule a next potential service completion event according 
to an exponential distribution with rate max{µLBF(t),µπ(t)}. This potential service completion occurs at the lth busiest server 
under policy γ � LBF,π�if

Xl�1

i�1
mNγ

[i](t)
< φ(t) ≤

Xl

i�1
mNγ

[i](t)
, 

where φ(t) is drawn uniformly from the interval (0, max{µLBF(t),µπ(t)}]. Finally, we couple each abandonment under policy LBF 
with an abandonment under policy π. Specifically, for abandonments from the queue, the patience of the ith customers waiting 
in the queue (if present) is coupled. For abandonments from the server, we follow a similar construction as in Akgun et al. [1, sec-
tion 3], where customers are labeled at each server from the busiest server to the least busy server. That is, under policy γ, custo-
mers 1, 2, : : : , Nγ

[1](t) are the customers at the busiest server; then, customers Nγ
[1](t) + 1, : : : , Nγ

[1](t) +Nγ
[2](t) are the customers at 

the second busiest server and so on. A potential abandonment of a label p customer under LBF corresponds to a potential aban-
donment of a label p customer under π.

Starting the induction is trivial, as (B.1), (B.2), and (B.3) evidently hold for t� 0 because of identical initial conditions. Assume 
now that the inequality relations hold through t� tk. Because the system state does not change for tk ≤ t < tk+1, it remains to be 
shown that the inequalities hold for t � tk+1. We treat the arrival, service completion, abandonment from queue, and abandon-
ment from server events separately. 

Case 1 (Arrival). Clearly, the induction hypothesis implies that QLBF(tk+1) ≤Qπ(tk+1) and LLBF(tk+1) ≤ Lπ(tk+1). If Nπ[n](t) � I, 
then all servers are occupied at time t under policy π, clearly providing (B.1). Else, policy LBF sends the arrival to the nth largest 
queue, yielding (B.1) by invoking Akgun et al. [1, lemma 1] or Sparaggis et al. [49, lemma 2].
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Case 2 (Service completion). First note that (B.3) obviously still holds. There are three cases. When a service completion 
occurs only under policy LBF, then the inequality relations clearly hold. Now, suppose that only a service completion occurs 
under policy π. Observe that this can only happen when NLBF

[n] < I. When Qπ(t) ≥ In, then (B.1) and (B.2) hold trivially. For 
Qπ(t) < In, suppose that the service completion occurs at the vth busiest server under policy π. Then, for all l ≥ v,

Xl

i�1
mNπ

[i](tk) ≥
Xv

i�1
mNπ

[i](tk) ≥ φ(tk) >
Xn

i�1
mNLBF

[i] (tk)
≥
Xl

i�1
mNLBF

[i] (tk)
: (B.4) 

For a concave function mi, we next verify (as in Sparaggis et al. [49]) that

Xl

i�1
mNπ

[i](t) >
Xl

i�1
mNLBF

[i] (t)
→
Xl

i�1
Nπ[i](t) >

Xl

i�1
NLBF
[i] (t): (B.5) 

To show (B.5), suppose instead that 
Pl

i�1 Nπ
[i](t) �

Pl
i�1 NLBF

[i] (t), providing (NLBF
[1] (t), : : : , NLBF

[l] (t)) ⋏ (Nπ[1](t), : : : , Nπ
[l](t)). By the sec-

ond part of Marshall et al. [39, theorem 5.A.1], it then holds that 
Pl

i�1 mNLBF
[i] (t)
≥
Pl

i�1 mNπ
[i](t). This contradicts (B.4) and thus, 

yields (B.5). As 
Pl

i�1 Nπ
[i](t) >

Pl
i�1 NLBF

[i] (t) for all l � v, : : : , n, application of Akgun et al. [1, lemma 1] or Sparaggis et al. [49, 
lemma 2] implies (B.1) at tk+1. Because all customers are being served in this scenario, (B.2) also follows directly.

Now, suppose that a service completion occurs under both policies. The inequality relations are trivial in case Qπ(t) ≥ In. Oth-
erwise, suppose that the service completion is at the uth busiest server under LBF and at the vth busiest server under π. If v ≥ u, 
then the equality relations are because of Akgun et al. [1, lemma 1] or Sparaggis et al. [49, lemma 2]. Else, let v<u. This means 
that, for l � v, : : : , u� 1,

Xl

i�1
mNπ

[i](tk) ≥ φ(tk) >
Xl

i�1
mNLBF

[i] (tk)
:

This implies that because of (B.5), 
Pl

i�1 Nπ
[i](t) >

Pl
i�1 NLBF

[i] (t), for l � v, : : : , u� 1. Akgun et al. [1, corollary 1] yields (B.1) at tk+1. 
Again, (B.2) follows directly as all customers are being served.

Case 3 (Abandonment from queue). Because QLBF(t) ≤Qπ(t) and the coupling of abandonments, it holds that no aban-
donment occurs (e.g., when Qπ ≤ In), abandonments occur under both policies, or an abandonment occurs only under policy 
π. For the first two cases, the equality relations are trivially satisfied. In the third case, if a customer abandons only under 
policy π, then QLBF(t) <Qπ(t), and it follows directly that QLBF(tk+1) �QLBF(t) ≤Qπ(t)� 1 �Qπ(tk+1). Equations (B.1) and (B.3) 
are evident.

Case 4 (Abandonment from server). Because NLBF
[n] (t) ≤Nπ

[n](t) and the coupling of abandonments from service, it holds 
that no abandonment occurs, abandonments occur under both policies, or an abandonment occurs only under policy π�
such that (B.3) is satisfied. The first case is trivial. For the second case, suppose that the abandonment is at the uth busiest 
server under LBF and at the vth busiest server under π. The case u�v follows again from Akgun et al. [1, lemma 1] or Spar-
aggis et al. [49, lemma 2]. If v<u, then because of the labeling, it holds that 

Pl
i�1 NLBF

[i] (t) <
Pl

i�1 Nπ
[i](t), for all v ≤ l < u. 

Hence, for v ≤ l < u,

Xl

i�1
NLBF
[i] (tk+1) �

Xl

i�1
NLBF
[i] (t) ≤

Xl

i�1
Nπ[i](t)� 1 �

Xl

i�1
Nπ[i](tk+1):

Equations (B.1) and (B.2) are then evident. The third case follows from similar arguments, where the labeling yields that 
NLBF
[n] (t) <Nπ

[n](t).
Removal of conditioning on arrival times, service completions, and abandonments completes the proof of the first stochastic 

inequality relations in (8) and (9).
Now, consider policies π�and MBF and the second stochastic inequality relations in (8) and (9). Using coupling and for-

ward induction on event times again, we show that Nπ(t) ⋏w NMBF(t), Qπ(t) ≤QMBF(t), and Lπ(t) ≤ LMBF(t) for all t ≥ 0 over all 
sample paths. The events of service completions and abandonments are handled exactly as described for policies LBF and 
π. If the next event is an arrival and QMBF(tk) ≥ In, then the inequality relations are also clearly satisfied. Now, suppose that 
the next event is an arrival at the uth busiest server under policy π�and at the vth busiest server under policy MBF. If u ≥ v, 
then the inequalities are because of Akgun et al. [1, lemma 1] or Sparaggis et al. [49, lemma 2]. Else, let u<v. Under MBF, we 
label the queues such that NMBF

[v�1](t) � I. Let u′ ≤ u be such that Nπ
[u′](t) �Nπ

[u′+1](t) �⋯�Nπ
[u](t) and either u′ � 1 or Nπ

[u′�1](t)
>Nπ

[u′](t). Observe that because of the labeling and the MBF policy, 
Pl

i�1 Nπ
[i](t) <

Pl
i�1 NMBF

[i] (t) for l � u′, : : : , v� 1. Hence, for 
l � u′, : : : , v� 1, we have

Xl

i�1
Nπ[i](tk+1) �

Xl

i�1
Nπ[i](t) + 1 ≤

Xl

i�1
NMBF
[i] (t) �

Xl

i�1
NMBF
[i] (tk+1):
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For l � 1, : : : , u′ � 1 and l � v, : : : , n, we have

Xl

i�1
Nπ[i](tk+1) �

Xl

i�1
Nπ[i](t) +1{l≥v} ≤

Xl

i�1
NMBF
[i] (t) +1{l≥v} �

Xl

i�1
NMBF
[i] (tk+1):

This yields Nπ(tk+1) ⋏w NMBF(tk+1). Removal of the conditioning on event times completes the proof. w

Proof of Theorem 6. We use the same sample path approach as in Theorem 5 and follow the lines of Sparaggis et al. [49] again 
(also showing large similarity with the proof of Theorem 5). We consider the relation between π�and MBF; similar arguments 
can be used for the relation between π�and LBF. By coupling the processes, we will show that

Nπ(t) ⋏

w NMBF(t), (B.6) 
Qπ(t) ≥ QMBF(t), (B.7) 
Lπ(t) ≥ LMBF(t) (B.8) 

for all t ≥ 0 over all sample paths. Again, the relations will be established at time tk+1, assuming that they hold at time tk, where tk 
is the kth event time on the considered sample path. Arrivals and abandonments from the queue are coupled as in the proof of 
Theorem 5. The construction of service completion events is slightly modified and follows Sparaggis et al. [49]. In particular, 
after an event at time t, the next potential service completion is scheduled after an exponential time with rate max{µπ(t), 
µMBF(t)}. This potential service completion occurs at the lth least busy server under policy γ � π, MBF, if 

Pl�1
i�1 mNγ

(i)(t)
< ψ(t) ≤

Pl
i�1 mNγ

(i)(t)
, where ψ(t) is drawn uniformly from the interval (0, max{µπ(t),µMBF(t)}]. For abandonments from the server, we 

label customers at each server from the least busy server to the busiest server. We treat the arrival, service completion, and aban-
donment (from the queue or the server) events separately. 

Case 1 (Arrival). When Nπ
(1)(t) � I, all servers are fully occupied at time t under policy π, and the inequality relations are 

clearly satisfied. Otherwise, suppose that the next event is an arrival at the uth least busy server under policy π�and at the vth 
least busy server under policy MBF. If u ≤ v, then the inequalities follow from Akgun et al. [1, lemma 2] or Sparaggis et al. [49, 
lemma 1] (using that x(i) � x[n+1�i]). So, suppose that u>v, and label the servers such that for MBF, it holds that NMBF

(v+1)(t) � I. Let 
u′ ≥ u be such that Nπ

(u)(t) �Nπ
(u+1)(t) �⋯�Nπ

(u′)(t) and Nπ
(u′+1)(t) >Nπ

(u′)(t) or u′ � n. Because of the MBF policy, it follows that 
Pn

i�l Nπ
(i)(t) <

Pn
i�l NMBF

(i) (t), for l � v+ 1, : : : , u′. As 
Pn

i�1 Nπ
(i)(t) ≥

Pn
i�i NMBF

(i) (t), we have 
Pl

i�1 Nπ
(i)(t) >

Pl
i�1 NMBF

(i) (t) for l � v, : : : , 
u′ � 1. Hence, as in the proof of Theorem 5, we obtain, for l � v, : : : , u′ � 1,

Xl

i�1
Nπ(i)(tk+1) �

Xl

i�1
Nπ(i)(t) ≥

Xl

i�1
NMBF
(i) (t) + 1 �

Xl

i�1
NMBF
(i) (tk+1):

For l � 1, : : : , v� 1 and l � u′, : : : , n, we have

Xl

i�1
Nπ(i)(tk+1) �

Xl

i�1
Nπ(i)(t) +1{l≥u′} ≥

Xl

i�1
NMBF
(i) (t) +1{l≥u′} �

Xl

i�1
NMBF
(i) (tk+1):

This yields Nπ(tk+1) ⋏

w NMBF(tk+1). The other two inequalities are straightforward.
Case 2 (Service completion). There are three cases again. First, when there is only a service completion under policy MBF, 

then the relations clearly hold. Second, suppose there is only a service completion under policy π�at the vth least busy server. 
Observe that having a service completion only under π�means NMBF

(1) (t) < I so that the case Qπ ≥ In is trivial again. From the cou-
pling we have, for l ≥ v,

Xl

i�1
mNπ

(i)(tk) ≥
Xv

i�1
mNπ

(i)(tk) ≥ ψ(tk) >
Xn

i�1
mNMBF

(i) (tk)
≥
Xl

i�1
mNMBF

(i) (tk)
:

Similar to (B.5), this implies 
Pl

i�1 Nπ
(i)(t) >

Pl
i�1 NMBF

(i) (t) for all l ≥ v, where we now use the convexity of d and the first part of 
Marshall et al. [39, theorem 5.A.1]. Application of Akgun et al. [1, lemma 2] or Sparaggis et al. [49, lemma 1] provides the 
inequality relations for this case. Third, the case where a service completion occurs under both π�and MBF follows similar argu-
ments and the corresponding case in Theorem 5.

Cases 3 and 4 (Abandonment). This is similar to the arguments for cases 3 and 4 in Theorem 5.
Removal of conditioning on event times finishes the proof. w

Appendix C. Proofs of the Subcritical Regime
In this section, we prove the results in Section 7.3. The results strongly rely on variants of the integral representation and continu-
ous mapping result in Proposition 10; we use a variant for the fluid limit result and a different variant for the diffusion limit 
result. To start this section, we summarize the result for the fluid limit case.
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Let f : RI→RI be the function defined by

f (n�1Zn(t)) :� eQ λ�
dInI(s)

n
�θ

Qn(s)
n
� I

� �+� �

+
XI�2

i�1
(� eQ � eni + eni+1 )di

ni(t)
n
+ (�eQ + eI�2)dI�1

nI�1(t)
n

:

Furthermore, for n ∈N, define Xn(·) by

Xn(t) :� eQ[MAn (t)�MDn (t)�MD◦n (t)] +
XI�2

i�1
(�eQ � eni + eni�1 )MDn, i (t)

+ (�eQ + eI�2)MDn, I�1 (t), (C.1) 

with MAn (·), MDn (·), MD◦n (·), and MDn, i (·) the martingales obtained by compensating the counting processes An(·), Dn(·), D◦n(·), 
and Dn, i(·), i � 1, : : : , I� 1 defined during step 1 in Section 9. Observe that X(·) �

ffiffiffi
n
√

X̂n(·), with the latter process defined in (33), 
the difference being that we do not decompose Dn(·) in Xn(·). Now, it follows from the construction leading to Proposition 10
that for every n, n�1Zn(·) satisfies the integral equation

n�1Zn(t) � n�1Zn(0) + n�1Xn(t) +
Z t

0
f (n�1Zn(s)) ds+

0 0
0 R̃

� �

n�1Ln(t)� eQ
λβ

ffiffiffi
n
√

t
n , 

where n�1Ln(·) � n�1(Ln, 0(·), : : : , Ln, I�1(·))
⊤ is the unique process defined through

Ln, i(t) �
Z t

0
1
{
PI�1

k�i nn,k(s)�0, Qn(s)<In} dAn(s) i � 1, : : : , I� 1, 

and Ln, 0(·) ≡ 0. Furthermore, for every n, the pair (n�1Zn(·)� n�1Zn(0), n�1Ln(·)) is the image of n�1Xn(·)� n�1(λβ
ffiffiffi
n
√
·) under a 

Lipschitz continuous map from DI[0,∞) to DI[0,∞) ×DI[0,∞). With these results, we are set to prove Proposition 3.

Proof of Proposition 3. For the proof, we first establish the convergence result along a subsequence {nk}k on a set Ω′ of proba-
bility 1. Afterward, we show that any limit corresponding to such a subsequence satisfies (18)–(25) and is Lipschitz.

Note that (by assumption) n�1Zn(0) → Z(0) almost surely and that the function t ⊢→ λβ
ffiffiffi
n
√

t=n converges to zero uniformly on 
compacts for every ω. Therefore, to establish the convergence result, it is sufficient to show that n�1Xn(·) converges almost surely 
along a subsequence because convergence of n�1Zn(·) along the same subsequence follows by continuous mapping.

Now, we show that n�1Xn(·) converges to zero in probability using the martingale FCLT. Observe that n�1Xn(·) is a locally 
square integrable martingale for each n and that its jumps vanish with probability 1 as n→∞. Moreover, the quadratic variation 
of n�1Xn(·) converges to zero uniform on compact sets almost surely because its components are increasing and converge to 
zero pointwise for every t ≥ 0. To be precise, it suffices to show that the diagonal terms of the quadratic variation process go to 
zero (cf. step 4 of Section 9), and for each such component 〈n�1X(i, i)

n 〉t with i � 1, : : : , I, we have

〈n�1X(i, i)
n 〉t ≤

1
n2

Z t

0
λn� dInI(s) ds+ 1

n2

Z t

0
θ(Qn(s)� In)+ ds+ 1

n2 · dI

Z t

0

XI�1

i�1
nn, i(s) ds

≤ o(1) + 1
n2

Z t

0
θ(Qn(0) +An(s)) ds+ 1

n · dI

Z t

0

n
n ds→a:s: 0, as n→∞, 

where we used that An(s)=n→ λs almost surely for every s ≥ 0, {Qn(0)=n}n is a convergent sequence, and we apply dominated 
convergence. This shows that the sequence {n�1Xn(·)}n satisfies the conditions for the martingale FCLT; hence, n�1Xn(·) ⇒ 0 as 
n→∞, which implies that n�1Xn(·)→

P 0 as n→∞. Consequently, any subsequence of {(n′k)
�1Xn′k (·)}k also converges to zero in 

probability, and hence, it has a further subsequence {n�1
k Xnk (·)}k that converges to zero almost surely, which proves the conver-

gence claim.
We proceed by showing that any limit (Z(·), L(·)) satisfies (18)–(25). First, observe that any such limit satisfies

Z(t) � Z(0) + 0+
Z t

0
f (Z(s)) ds+

0 0
0 R̃

� �

L(t)

because we used the continuous mapping theorem, where L(·) � (L0(·), : : : , LI�1(·))
⊤, with L0(·) ≡ 0 because of uniform conver-

gence. Therefore, (18)–(20) immediately follow. Furthermore, (21) and (22) follow because nn, I�1(·) and nn, I(·) are continuous in 
(Zn(·), Zn(0), Ln(·)). Also, Qn(·), nn, i(·) ≥ 0 for all n and i, which establishes (23) because of uniform convergence. In a similar way, 
(25) follows from the conditions on Ln(·) for every n. Finally, observe that L(·) in (24) satisfies conditions (a)–(c) from the mapping 
Φ ◦M used in Proposition 10. Because of (18)–(23), such a process is unique, and therefore, any limit L(·) should satisfy (24).

To finish the proof, we show that any solution (Z(·), L(·)) to (18)–(25) has Lipschitz continuous paths. First, L(·) is Lipschitz 
because its components are integrals over uniformly bounded functions. Then, by (22), ni(s) ≤ 1 for all i. Hence, the functions 
t ⊢→

R t
0dini(s) ds are also Lipschitz, and thus, ni(·) is Lipschitz for every i ∈ {0, : : : , I� 2} because they are a linear combination of 
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Lipschitz functions. Now, observe that the remaining functions nI�1(·) and nI(·) are Lipschitz if Q(·) is Lipschitz. The latter is 
true because for any initial condition Q(0), Q(·) is locally Lipschitz. The term 

R t
0(Q(s)� I)+ ds has a theoretically unbounded inte-

grand. However, because Q(·) is differentiable almost everywhere on [0,ɛ) for some ɛ > 0, we know that when Q(0) > I, its deriv-
ative is strictly negative. Consequently, the term (Q(s)� I)+ is uniformly bounded given Q(0) and Q(·) is Lipschitz.

We proceed by proving Proposition 4, for which we use the following lemma (Dai and Weiss [11, lemma 2.2]). Denote ḟ (t) for 
the derivative of a function f on R+ that is differentiable at t ∈R+.

Lemma C.1. If f : R+ →R+ is Lipschitz continuous, then at every point t ∈R+ where ḟ (t) exists, f(t)�0 implies ḟ (t) � 0.

Proof of Proposition 4. The proof is divided in two parts. In the first part, we prove that every solution to (18)–(25) has a 
unique fixed point Z, and in the second part, we prove that under the additional assumption n�1Zn(0)→

a:s:Z, the sequence 
{n�1Zn(·)}n converges to this fixed point almost surely.

To begin the first part, recall that because Z(·) and L(·) are Lipschitz, they are differentiable almost everywhere. For the 
remainder of this first part of the proof, we consider only points t ∈ [0,∞), where both are differentiable. By plugging Z into 
(18)–(25), it can be checked that it is indeed a fixed point. Therefore, we focus on showing that it is unique by showing that every 
other value of Z(·) has nonzero derivative.

First, observe that if Q(t) > I, in which case nI(t) � 1 by (21)–(23) and by (18), we have
˙Q (t) ��dI +λ�θ(Q(t)� I)+ < 0, 

every fixed point should satisfy Q(t) ≤ I for all t.
We now claim that nk+1(t) > 0 implies ni(t) > 0 for every i ∈ {1, : : : , k}. To establish this claim, suppose the converse, namely 

that n1(t)+⋯ +nk(t) � 0, nk+1(t) > 0 for some k+ 1 ≤ I� 1. Then, using Lemma C.1 and (20),

0 � nk(t) � dk+1nk+1(t)� dknk(t)� ˙Lk+1 (t) + ˙Lk(t)� ˙Lk�1(t) � dk+1nk+1(t)� dknk(t), 

where we use that (24) with nk+1(t) > 0 implies that ˙Li(t) � 0 for i ≤ k+ 1. However, dk+1nk+1(t)� dknk(t) � dk+1nk+1(t) > 0, which 
is a contradiction.

We use this intermediate result to show that any fixed point satisfies n0(t) � nI(t) � 1. To this end, consider the function 
f (t) �

PI
i�1 ni(t). Using (19) and (22), we have

ḟ (t) ��ṅ0 (t) ��d1n1(t) + ˙L1(t):

Now, by our claim, 
PI�1

i�1 ni(t) > 0 implies that n1(t) > 0, which implies ḟ (t) < 0. Consequently, any invariant state should satisfy 
PI�1

i�1 ni(t) � 0, or equivalently, n0(t) + nI(t) � 1.
Finally, if Q(t) ≤ I and n0(t) + nI(t) � 1, using again (18), we find that

˙Q (t) � λ� dInI(t):

Hence, ˙Q(t) < 0 if nI(t) > λ=dI and ˙Q(t) > 0 if nI(t) < λ=dI. Concluding, any invariant state should satisfy n0(t) + nI(t) � 1 and 
nI(t) � λ=dI, which is the vector Z.

Now, we focus on the second part of the proof. Note that because Z is a fixed point, any solution (Z(·), L(·))⊤ to (18)–(25) with 
initial value (Z , 0)⊤ should satisfy Z(t) � Z for all t ≥ 0. By assumption, {n�1Zn(0)}n converges almost surely to Z, and by Propo-
sition 3, every subsequence of {n�1Zn(·)}n has a further subsequence converging to a solution of (18)–(25), which should then be 
the constant process Z. Consequently, by the almost sure convergence variant of Billingsley [5, theorem 2.6], the sequence 
{n�1Zn(·)}n converges almost surely to Z, uniformly on compact time intervals.

We finish this section with the proof of Theorem 8, for which we rely again heavily on a variant of the continuous mapping 
construction in and leading up to Proposition 10. For sake of brevity, the details of this result for the subcritical diffusion scaling 
in the MBF case are summarized at the beginning of the proof. w

Proof of Theorem 8. The proof follows the same lines as that of Theorem 2. From the construction in Section 9, it can be shown 
that for every n,

Ẑn(t) � Ẑn(0) + X̂n(t)� n�1=2D◦n(t) +
Z t

0
f ◦(Ẑn(s)) ds +

0 0
0 R̃

� �

L̂n(t), 

with the pair (Ẑn(·), L̂n(·)) being the image of X̂n(·) under a continuous mapping and X̂n(·) the martingale given by

X̂n(t) �
1
ffiffiffi
n
√ eQ[MAn (t)�MDn (t)] +

XI�2

i�1
(�eQ � eni + eni�1 )MDn, i (t) + (�eQ + eI�2)MDn, I�1 (t)

" #

(C.2) 

for the definitions given at the beginning of this section and in Section 7. Therefore, to prove the result, it is sufficient to show 
that X̂n(·) ⇒ B(·) and that n�1=2D◦n(·)→

P 0 as n→∞. We begin with the latter.
Observe that nn, I(t) ≥ λn=dI when Qn(t) ≥ n(I� 1) + ⌈λn=dI⌉. Therefore, Qn(t) has a death rate of at least λn in that case. Con-

sider the birth-death process Q′n(·) with initial condition Qn(0), birth rate λn, and death rate equal to that of Qn(·) when Q′n(t) ≤
n(I� 1) +λ=dIn and equal to λn otherwise. Moreover, Qn(·) and Q′n(·) are coupled such that all jumps upward are at identical 
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times for both processes and jumps downward are at identical times when Q′n(t) ≤ n(I� 1) +λ=dIn. With this construction, 
Q′n(t) ≥Qn(t) for all t ≥ 0. Moreover, given that Q′n(·) ≥ n(I� 1) +λ=dI, we have that Q′n(·) is a birth-death process with birth rate 
λn, which is strictly smaller than its death rate λn. Hence, a similar argument as the one we used in Lemma 1 for the Sn(·) shows 
that (Qn(·)� In)+→P 0 as n→∞. Consequently, n�1=2D◦n(·)→

P 0 as n→∞.
To show that X̂n(·) ⇒ B(·), we apply the martingale FCLT to the sequence {n�1=2Xn(·)}n. For each n, X̂n(·) is square integrable, 

and its jumps vanish with probability 1 as n→∞. Thus, if we can establish the correct limit for 〈X̂n〉t, we obtain weak conver-
gence of the sequence {n�1=2Xn(·)}n to the Brownian term in Theorem 8, and the proof is complete. w

In the remainder, we show that 〈X̂n〉t→ 2λteQe⊤Q in probability for all t ≥ 0 as n→∞ (i.e., except for the quadratic variation of 
Q̂n(·), all quadratic (co-)variation processes will vanish in probability as n→∞). Denoting the matrix 〈X̂n〉t by 〈X̂(i, j)

n 〉t, for 
i, j � 1, : : : , I, we use again that, by Cauchy–Schwarz, we have

| 〈X̂(i, j)
n 〉t |

2 ≤ 〈X̂(i, i)
n 〉t〈X̂

(j, j)
n 〉t, t ≥ 0:

Consequently, if we can show 〈X̂(j, j)
n 〉t→ 0 in probability for every t ≥ 0 and j ≥ 2, together with 〈X̂(1, 1)

n 〉t→ 2λt in probability for 
every t ≥ 0, then we are done.

Consider 〈X̂(1, 1)
n 〉t first. Focusing on the terms with factor eQ in (C.2), we have the lower bound

〈X̂(1, 1)
n 〉t ≥

1
n

Z t

0
λn + dInI(s) ds �

Z t

0
λ+ dIn�1nI(s)�λβn�1=2 ds:

From Proposition 4, we have that n�1nI(s) → λ=dI almost surely for every s ≥ 0 as n→∞. Hence, λn + dInI(s) → 2λ�for every s ≥ 0 
as n→∞, and by dominated convergence, we have 1n

R t
0λn + dInI(s) ds→ 2λt almost surely as n→∞.

An upper bound is given by

〈X̂(1, 1)
n 〉t ≤

1
n

Z t

0
λn + dInI(s) ds + 3dI

XI�1

i�1

Z t

0
n�1ni(s) ds:

Using again Proposition 4, we have that n�1ni(s) converges to zero almost surely for each i ∈ {1, : : : , I� 1}. Dominated conver-
gence then gives the same limit for the upper bound as for the lower bound (with convergence in probability). Combining the 
upper and lower bounds gives us the desired conclusion that 〈X̂(1, 1)

n 〉t converges in probability to 2λt.
The argument also shows the desired claim for 〈X̂(j, j)

n 〉t with j ≥ 2 because we have the upper bound

〈X̂(j, j)
n 〉t ≤ 3dI

XI�1

i�1

Z t

0
n�1ni(s) ds, j � 2, : : : , I, 

and we have shown the right-hand side to converge to zero in probability as n→∞.
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