
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Physiological-based Group Emotion Recognition
Novel Methods and Real-World Applications

Patrícia Justo Bota

Supervisor: Doctor Ana Luísa Nobre Fred
Co-Supervisors: Doctor Hugo Humberto Plácido da Silva

Doctor Pablo Santiago César Garcia

Thesis approved in public session to obtain the PhD degree in
Biomedical Engineering

Jury final classification: Pass with Distinction and Honour

2024





UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Physiological-based Group Emotion Recognition
Novel Methods and Real-World Applications

Patrícia Justo Bota

Supervisor: Doctor Ana Luísa Nobre Fred
Co-Supervisors: Doctor Hugo Humberto Plácido da Silva

Doctor Pablo Santiago César Garcia

Thesis approved in public session to obtain the PhD degree in

Biomedical Engineering

Jury final classification: Pass with Distinction and Honour

Jury

Chairperson: Doctor João Miguel Raposo Sanches, Instituto Superior Técnico, Universi-

dade de Lisboa

Members of the Committee:

Doctor Anna Maria Maddalena Bianchi, Department of Electronics, Information and Bioengi-

neering, Politecnico di Milano, Itália

Doctor Paulo Luís Serras Lobato Correia, Instituto Superior Técnico, Universidade de Lisboa

Doctor Rita Isabel Mangerico Canaipa, Faculdade de Ciências da Saúde e Enfermagem, Uni-

versidade Católica Portuguesa

Doctor Sandra Pereira Gama, Instituto Superior Técnico, Universidade de Lisboa

Doctor Hugo Humberto Plácido da Silva, Instituto Superior Técnico, Universidade de Lisboa

Doctor Susana Manuela Martinho dos Santos Baía Brás, Departamento de Eletrónica, Tele-

comunicações e Informática, Universidade de Aveiro

Funding Institutions - FCT: Fundação para a Ciência e a Tecnologia and

Instituto de Telecomunicações

2024





Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisors Prof. Ana Fred, Prof.

Hugo Silva and Prof. Pablo Cesar. Namely, for allowing me the opportunity to join their team and

continue to learn about machine learning, emotion and physiological data. I would like to thank their

positive words, excellent insights, guidance throughout this work, and their prompt availability.

Secondly, I would like to thank Chen Wang and Xinha Net FMCI for the bases to quickly start this

project and for their views of the field of emotion recognition, namely the promise of group emotion

recognition, which has been instrumental in shaping the direction and success of this work.

Thirdly, my colleagues and supervisors at Centrum Wiskunde & Informatica (CWI), namely Abdallah

El Ali and Tianyi Zhang for their expertise and mentorship in the field of emotion recognition and physi-

ological data. I would also like to thank the CWI for the opportunity to work in such a great environment.

Next, I would like to acknowledge my colleagues and friends at IST-IT, Mariana Abreu, Ana Sofia

Carmo, Sofia Margarida Monteiro, Rafael Silva, Joana Brito, Vicente Garção, André Gomes, Rui Maciel,

Frederico Santos, Afonso Ferreira and many more for making it easy for me to go to work every day.

Lastly, I would like to thank my family and friends for their support throughout this journey, who

provided me with everything necessary to make this work possible.

Proofreading of this document has been assisted by large language models.

This work was funded by Fundação para a Ciência e a Tecnologia (FCT) under grants 2020.06675.BD

and FCT (PCIF/SSO/0163/2019 SafeFire), FCT/Ministério da Ciência, Tecnologia e Ensino Superior

(MCTES) national funds, co-funded EU (UIDB/50008/2020 NICE-HOME), Xinhua Net FMCI (S-0003-LX-

18), Ministry of Economy and Competitiveness of the Spanish Government co-founded by European Re-

gional Development Fund (ERDF) (TIN2017-85409-P PhysComp), and Instituto de Telecomunicações

(IT), by the Fundo Europeu de Desenvolvimento Regional (FEDER) through the Operational Compet-

itiveness and Internationalization Programme (COMPETE 2020), and by National Funds through the

FCT under the LISBOA-01-0247-FEDER-069918 “CardioLeather” and LISBOA-1-0247-FEDER-113480

“EpilFootSense”.

i





Abstract

Emotions determine human thinking and behaviour. Thus, affective computing is extremely relevant in

several applications, from mental health and the creation of personalized services to entertainment.

This work begins by exploring the state of the art in the area of intra-personal emotion recognition

through physiological signals, making a quantitative analysis of the various existent approaches.

Next, an interpersonal model was explored that incorporates group dynamics using the WGS method-

ology, where the synchrony between the physiological signals of a group was studied. This model pre-

sented superior results to existing methods and identified relevant synchrony measures. However, the

generalization of group analysis was limited by a lack of databases.

To overcome this limitation, a hardware and software infrastructure was developed for the acquisition

of physiological signals in groups — the EmotiphAI platform, which includes wearable devices, a col-

lection centre, and a user interface, enabling the simultaneous collection of data from 10 devices at 60

Hz.

Subsequently, a retrospective annotation system was incorporated that selects relevant physiological

segments, which demonstrated high accuracy and user satisfaction. This functionality paves the way for

the annotation of longer-duration content for the creation of naturalistic datasets.

Using EmotiphAI, the G-REx dataset was created with annotated physiological signals from 190

subjects across 31 movie sessions. Moreover, the respective protocol validated the use of EmotiphAI in

a real-world environment.

Overall, this thesis contributes to the advancement of applications in the area of affective computing

in the real world through the development of: interpersonal algorithms for emotion recognition; tools for

group physiological data acquisition and annotation; and a naturalistic dataset.

Keywords: Emotion Recognition, Physiological Signals, Machine Learning, Group Emotions, Affective

Computing
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Resumo

As emoções determinam o pensamento e o comportamento humano. Assim, a computação afetiva tem

extrema relevância em diversas aplicações, desde a saúde mental e criação de serviços personalizados

até ao entretenimento.

Este trabalho começa por explorar o estado da arte na área de reconhecimento de emoções intra-

pessoais através de sinais fisiológicos, fazendo uma análise quantitativa das abordagens existentes.

De seguida, explorou-se um modelo interpessoal que incorpora a dinâmica de grupo pela metodolo-

gia WGS, onde se estudou a sincronia entre os sinais fisiológicos de um grupo. Este modelo apresentou

resultados superiores aos métodos existentes e identificou medidas de sincronia relevantes. Contudo,

a generalização da análise em grupo estava limitada por falta de bases de dados.

Para colmatar essa limitação, foi desenvolvida uma infraestrutura incluido programas e o equipa-

mento para a aquisição de sinais fisiológicos em grupo — a plataforma EmotiphAI, que inclui dispositivos

vestíveis, um centro de recolha, e uma interface para o utilizador, possibilitando a recolha simultânea

de dados de 10 dispositivos a 60 Hz e 20 dispositivos a 60 Hz.

Posteriormente, foi incorporado um sistema de anotação retrospectiva que seleciona segmentos

fisiológicos relevantes, que demonstrou elevada precisão e satisfação por parte do utilizador. Esta

funcionalidade abre caminho para a anotação de conteúdos de maior duração, mais semelhantes ao

mundo real.

Utilizando o EmotiphAI, foi criado o conjunto de dados G-REx com sinais fisiológicos anotados de

190 sujeitos em 31 sessões de cinema. Adicionalmente, o respectivo protocolo validou a utilização do

EmotiphAI para contextos do mundo real.

No geral, esta tese contribui para o avanço de aplicações na área da computação afectiva no mundo

real através do desenvolvimento: de algoritmos interpessoais para o reconhecimento de emoção; ferra-

mentas para aquisição e anotação de dados fisiológicos em grupo; e um conjunto de dados adquirido

num contexto do mundo real.

Keywords: Reconhecimento de Emoções, Sinais Fisiológicos, Aprendizagem automática, Emoções

de Grupo, Computação Afetiva
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Chapter 1

Introduction

This thesis begins with the motivation for this work and articulates the main objectives identified from the

existing challenges in group emotion recognition through physiological signals. The chapter then details

the contributions of this work, providing an overview of the main publications and outputs. Finally, the

chapter outlines the document structure, providing an overview of the content of the thesis.

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 International Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 International Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Student Guidance and Supervision . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Dissemintation Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Motivation

Emotions are intricately intertwined with our cognition and behaviour, thus influencing a vast array of

our daily interactions and decision-making [1]. This makes emotions a powerful phenomenon which the

study and understanding, is not just an academic pursuit, but a practical one that can have profound

implications for society. Emotion recognition systems have the potential to be used for example to en-

hance mental health care by providing new ways to monitor and manage well-being, tailor educational

software that adapts its speed and content to the learner’s emotional state, or facilitate the creation of

personalized content (e.g. games, music, tv shows) directed to the user preferences. These advance-
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ments can both improve quality of life, paving the way for innovations that could reshape industries and

improve customer experiences.

The scientific field devoted to the exploration of these technologies is nowadays known as affective

computing, defined by Picard [2] as "computing that relates to, arises from, or deliberately influences

emotion or other affective phenomena". Affective computing involves the development of systems that

can learn about human affective states, defined as the subjective experience of feelings, moods and

affective traits [3].

The pursuit of emotion recognition systems can be approached in various ways. The theory on emo-

tion reports that emotions can be described as event-driven multi-componential responses [1, 4]. The

components of the multicomponent theory typically include a change in 1) the subjective experience (typ-

ically assessed by self-reports); 2) behaviour (typically assessed by facial, body, and vocal expressions);

3) central physiology (typically assessed by image and specialised sensor techniques); and 4) peripheral

physiology (typically assessed by the autonomic nervous system sensors). All of these components can

be used to infer emotional states.

The traditional approach is the use of self-reports, where individuals provide subjective assessments

of their emotional state. However, these are often limited by the subject being able to identify their own

emotions, and their willingness to provide accurate information, becoming a burden and exhausting task

to the subject. A second alternative is the use of body behaviour, where visual and auditory cues such

as facial expressions, gestures, and vocal intonations are used to infer emotional states [5]. However,

these methods can sometimes be deceived by the discrepancies between expressed and felt emotions.

A third approach is the analysis of the Central Nervous System (CNS), either through neuroimaging

or sensors such as Electroencephalography (EEG) [5]. These methods are often limited by the need

for expensive equipment and for the subject to be in a laboratory setting. Lastly, physiological signals

can be the most direct and unfiltered view of emotional states. Signals such as EDA and PPG can be

captured unobtrusively via wearable technology, making them suitable for a near-continuous collection

of emotion-related data in the real world for the development of emotion recognition systems.

Humans are social beings, such that in our daily lives, we are often surrounded by friends, family

or strangers. During these interactions, emotional transfers such as emotional contagion or collective

effervescence between the group members modulate the individuals’ behaviour and emotions, creating a

macro-level emotion denoted as collective emotions. Moreover, the literature reports that information on

group dynamics can introduce context information for emotion recognition, with improvement in emotion

classification. However, analysing the literature we observe that most datasets collect data in the lab

data in individual sessions. Often using small video clips as an elicitation method, not providing a full

build-up to emotion nor allowing the development of group dynamics.

Moreover, collecting data in the lab has resulted in the collection of data which has been shown to
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differ from the one collected in the real world, either by showing stereotyped responses or by being of low

intensity [6]. This has led to poor performance of current datasets and emotion recognition algorithms,

which the performance does not generalize to real-life applications.

This gap arises from the absence of tools capable of facilitating the reliable collection of physiologi-

cal data for groups and emotion annotation tools for real-world settings. Therefore, there is a need for

a validated infrastructure that allows the collection of group physiological data, the creation of the re-

spective datasets, and the development of algorithms that can take advantage of this multi-modal data

information.

This thesis aims to address these end-to-end limitations from the development of physiological-based

data acquisition and emotion annotation tools to the collection of naturalistic group data for the creation

of a novel dataset, to the use of group data for the development of emotion classification algorithms,

comparing them to intrasubject methods.

1.2 Objectives

The overarching goal of this thesis is to explore group emotion recognition based on physiological sig-

nals. This includes developing novel methods and the required underlying tools. To achieve this goal,

the following objectives and subsequent Research Questions (RQs) are proposed:

1. Objective (Obj) 1. Development of Affective Computing Algorithms: Creation of emotion

recognition algorithms through physiological signals focused towards group settings. This involves

identifying suitable input physiological signals, the metrics to extract from each sensor, the classi-

fication algorithm, the evaluation metrics, and analyzing how the group data can add information

to the classification, among others.

RQ 1.1: What feature set/machine learning algorithm should be applied for emotion recogni-

tion?

RQ 1.2: What performance can be achieved by predominant datasets in the literature?

RQ 1.3: What is the best method to deal with multi-modal data for emotion classification?

RQ 1.4: What synchronization metrics and data representations are most suitable for mea-

suring physiological synchrony for emotion recognition?

RQ 1.5: Does the emotion classification accuracy improve with the inclusion of group-level

information?

2. Obj 2. Group-based Physiological Data Collection: Develop an infrastructure that allows the

collection of physiological data in real-world scenarios, both in individual and group data settings.
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This involves gathering a hardware base with the physiological sensors, the device form factor, the

software for synchronised data collection across multiple devices, and the interface for real-time

data visualisation.

RQ 2.1: How does the sampling rate affect the data loss and transfer quality in multi-device

scenarios?

RQ 2.2: To what extent does the network infrastructure influence the maximum number of

devices that can collect data without data loss?

3. Obj 3. Emotion Annotation for Naturalistic Settings: Design an emotion annotation method

that allows the efficient annotation of emotion-related data in real-world scenarios, both from in-

dividuals and groups. This involves considering the limitations of naturalistic data collection, the

development of the software for the annotation of physiological data, the synchronization of the

annotations across multiple devices and sessions, and the creation of the end-user interface for

emotion annotation.

RQ 3.1: Are retrospective annotations in long-duration content usable for emotion annota-

tion?

RQ 3.2: How do retrospective annotations compare to conventional approaches in long-

duration content?

RQ 3.3: Which content segmentation method is more suitable for emotion annotation in long-

duration content?

4. Obj 4. Real-world Affective Computing Dataset: Collect a real-world affective computing dataset.

This involves the collection of physiological data in a naturalistic scenario, the annotation of the

physiological data, proposing a structure for the dataset, and the validation of the data.

RQ 4.1: Can large amounts of annotated physiological data be collected reliably in a natural-

istic setting?

RQ 4.2: How does an infrastructure designed for group physiological data acquisition perform

in a real-world setting?

This thesis aims to advance the field of affective computing by addressing critical challenges identified in

the area of group emotion recognition using physiological signals, from the validation of group dynamics

measured through physiological signals, the development of the infrastructure required for group data

collection and emotion annotation of naturalistic data, to the collection of real-world data capable of

creating generalisable emotion recognition algorithms.

By fulfilling these objectives, the aim is to contribute to the theoretical and practical understand-

ing of affective computing, ultimately paving the way for innovative applications that can be integrated
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into the real world across various domains such as healthcare, education, entertainment, and beyond.

Additionally, by exploring the use of group data for emotion recognition, the goal is to provide a more

comprehensive understanding of the role of social context in emotion recognition, potentially leading to

more context-aware and accurate computing solutions.

1.3 Contributions

This thesis has resulted in 11 publications in international journals (9 in Q1 ranking) and 4 publications

in international conferences.

The following listings detail the main works, organized by how they address the main objectives of

this work. When available, journal publications include the quartile according to the SCImago Journal

Ranking (SRJ), while conference publications include the conference rank according to CORE1.

1.3.1 International Journals

1. P. Bota, T. Zhang, A. El Ali, A. Fred, H. P. da Silva, and P. Cesar, “Group synchrony for emo-

tion recognition using physiological signals,” IEEE Trans. on Affective Computing, vol. 14, no. 4,

pp. 2614–2625, 2023

SJR: Q1; IF: 9.6

Obj 1. Development of Affective Computing Algorithms

2. P. Bota, R. Silva, C. Carreiras, A. Fred, and H. P. da Silva, “Biosppy: A python toolbox for physio-

logical signal processing,” SoftwareX, vol. 26, p. 101712, 2024

SJR: Q2; IF: 2.4

Obj 1. Development of Affective Computing Algorithms

3. P. Bota, C. Wang, A. L. N. Fred, and H. Plácido da Silva, “A review, current challenges, and fu-

ture possibilities on emotion recognition using machine learning and physiological signals,” IEEE

Access, vol. 7, no. 1, pp. 140990–141020, 2019

SJR: Q1; IF: 3.9

Obj 1. Development of Affective Computing Algorithms

4. P. Bota, C. Wang, A. Fred, and H. Silva, “Emotion assessment using feature fusion and decision

fusion classification based on physiological data: Are we there yet?,” Sensors, vol. 20, no. 17,

p. 4723, 2020

1https://portal.core.edu.au/conf-ranks/; Accessed on 27/03/2024.
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SJR: Q2; IF: 3.576

Obj 1. Development of Affective Computing Algorithms

5. P. Bota, A. Fred, J. Valente, C. Wang, and H. P. da Silva, “A dissimilarity-based approach to auto-

matic classification of biosignal modalities,” Applied Soft Computing, vol. 115, p. 108203, 2022

SJR: Q1; IF: 8.7

Obj 1. Development of Affective Computing Algorithms

6. P. Bota, E. Flety, H. P. d. Silva, and A. Fred, “EmotiphAI: a biocybernetic engine for real-time

biosignals acquisition in a collective setting,” Neural Computing and Applications, vol. 35, no. 8,

pp. 5721–5736, 2023

SJR: Q1; IF: 4.5

Obj 2. Group-based Physiological Data Collection

7. R. Silva, G. Salvador, P. Bota, A. Fred, and H. Plácido da Silva, “Impact of sampling rate and

interpolation on photoplethysmography and electrodermal activity signals’ waveform morphology

and feature extraction,” Neural Computing and Applications, vol. 35, no. 8, pp. 5661–5677, 2023

SJR: Q1; IF: 4.5

Obj 2. Group-based Physiological Data Collection

8. M. N. Supelnic, A. F. Ferreira, P. Bota, L. Brás-Rosário, and H. Plácido da Silva, “Benchmarking of

sensor configurations and measurement sites for out-of-the-lab photoplethysmography,” Sensors,

vol. 24, no. 1, 2024

SJR: Q1; IF: 3.4

Obj 2. Group-based Physiological Data Collection

9. P. Bota, P. Cesar, A. Fred, and H. Silva, “Exploring retrospective annotation in long-videos for

emotion recognition,” IEEE Trans. on Affective Computing, vol. 15, no. 3, pp. 1–12, 2024

SJR: Q1; IF: 9.6

Obj 3. Emotion Annotation for Naturalistic Settings

10. P. Bota, J. Brito, A. Fred, P. Cesar, and H. Silva, “A real-world dataset of group emotion experiences

based on physiological data,” Scientific Data, vol. 11, no. 1, pp. 1–17, 2024

SJR: Q1; IF: 5.8

Obj 4. Real-world Affective Computing Dataset
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11. L. Aly, L. Godinho, P. Bota, G. Bernardes, and H. P. da Silva, “Acting emotions: A comprehensive

dataset of elicited emotions,” Scientific Data, 2024

SJR: Q1; IF: 5.8

Obj 4. Real-world Affective Computing Dataset

1.3.2 International Conferences

1. P. Bota, C. Wang, A. L. Fred, and H. Silva, “A wearable system for electrodermal activity data

acquisition in collective experience assessment,” in Proc. of the In’l Conf. on Enterprise Information

Systems, pp. 606–613, 2020

CORE: C

Obj 2. Group-based Physiological Data Collection

2. G. F. D. Salvador, P. Bota, V. Vinayagamoorthy, H. Plácido da Silva, and A. Fred, “Smartphone-

based content annotation for ground truth collection in affective computing,” in Proc. of the Int’l

Conf. on Interactive Media Experiences, p. 199–204, ACM, 2021

Obj 3. Emotion Annotation for Naturalistic Settings

3. P. Bota, A. Fred, J. Valente, and H. Silva, “Automatic classification of physiological signals modali-

ties,” in Int’l Meeting of the Portuguese Society of Physiology, 2019

Obj 4. Real-world Affective Computing Dataset

4. L. Aly, P. Bota, L. Godinho, G. Bernardes, and H. Silva, “Acting emotions: physiological correlates

of emotional valence and arousal dynamics in theatre,” in ACM Int’l Conf. on Interactive Media

Experiences, pp. 381–386, 2022

Obj 4. Real-world Affective Computing Dataset

1.3.3 Student Guidance and Supervision

I have co-supervised students completing training programs over 4 MSc, 5 BSc and 6 intern students,

ranging from European Qualifications Framework (EQF) Level 5 (BSc) to EQF Level 6 (MSc), from di-

verse backgrounds from biomedical to electrical engineering and computer science, with works produc-

ing technical and scientific achievements of international relevance, including journals and international

conferences.

Due to the institutional requirements for student supervision, most cases have been performed in

collaboration without being a formal co-advisor, these are identified by the *.
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Master Students

1. S. Morgado, “AI-powered emotion well-being for everyone,” MSc thesis, Instituto Superior Técnico

da Universidade de Lisboa, 2024.

Advisor: Sangra Gama (IST-UL/INESC-ID) and Hugo P. da Silva (IST-UL/IT)

2. *J. Alves, “Facial emotion recognition for mental well-being assessment in the workplace,” MSc

thesis, Instituto Superior Técnico da Universidade de Lisboa, 2022.

Advisor: Hugo P. da Silva (IST-UL/IT) and Ana Fred (IST-UL/IT)

3. *G. Salvador, “Real world group emotional analytics using eletrodermal activity signals,” Master’s

thesis, Instituto Superior Técnico, Universidade de Lisboa, 2021

4. *C. Lima, “Psychophysiological effects of guided imagery based intervention on the academic de-

velopment of children,” MSc thesis, Faculdade de Ciências da Universidade de Lisboa, 2024.

Advisor: Hugo P. da Silva (IST-UL/IT), Nuno Matela (FCUL) and Brigida Ferreira (FCUL)

Bachelor Students

1. T. Talento, “Movie emotional content analysis,” 2023. BSc final project, Instituto Superior Técnico -

Universidade de Lisboa

Co-Advisor: Hugo Silva (IST-UL/IT)

2. I. Salema, “Emotion analysis using facial expression recognition,” 2023. BSc final project, Instituto

Superior Técnico - Universidade de Lisboa

Co-Advisor: Hugo Silva (IST-UL/IT)

3. M. Supelnic, “Benchmarking of sensor configurations and measurement sites for out-of-the-lab

photoplethysmography,” 2024. BSc final project, Instituto Superior Técnico - Universidade de Lis-

boa

Co-Advisor: Afonso Ferreira (INESC), Hugo Silva (IST-UL/IT)

4. F. Silva and Z. Xu, 2024. BSc final project, Instituto Superior Técnico - Universidade de Lisboa

Co-Advisor: Hugo Silva (IST-UL/IT)

5. S. Silvestre, “Learning enhancement using affective computing,” 2024. BSc final project, Instituto

Superior Técnico - Universidade de Lisboa

Co-Advisor: Hugo Silva (IST-UL/IT), Cátia Costa (HLuz), José Moreira (HLuz)
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Interns

1. J. Brito, “A proof-of-concept neurosecurity study based on peripheral physiological signals,” 2022

– 2023. Technical Report, Instituto Telecomunicações

2. A. Gonçalves, “Integration of ScientISST core in EmotiphAI,” 2022. Instituto Telecomunicações

3. P. Correia, “Real-world data collection,” 2021 – 2022. Instituto Telecomunicações

4. C. Bento, “Data collection using the FMCI device,” 2019 - 2020. Instituto Telecomunicações

5. D. Venancio, “Kubernetes for group data collection - EmotiphAI,” 2023. Instituto Telecomunicações

6. F. A. Santos, “Firmware and hardware developer - ScientISST,” 2023 - 2024. Instituto Telecomuni-

cações

1.3.4 Dissemintation Activities

In addition to academic activities, I was involved in outreach activities such as workshops, talks, and

scientific fairs, underscoring my dedication to spreading biomedical engineering, enhancing scientific

understanding, and engaging with the community.

Invited Speaker

1. P. Bota and d. S. H. P., “Emotion assessment in the wild,” in Modern Technologies Enabling Inno-

vative Methods for Maritime Monitoring and Strengthening Resilience in Maritime Critical Infras-

tructures, (Lisbon, Portugal), Jan 2024

2. P. Bota and A. Ferreira, “What do your biosignals say about you,” in INBIO (Introdução aos Bio-

sinais), (Lisbon, Portugal), Jul 2023

3. P. Bota, M. Abreu, and H. P. da Silva, “Introduction to machine learning and applications,” in Ex-

ercise Prescription and Health Promotion, (Instituto Politécnico de Leiria, Leiria, Portugal), Feb

2020

Workshops

1. P. Bota and J. Brito, “EmotiphAI: How to detect emotions in a group of people,” in Maker Faire,

(Lisbon, Portugal), Feb 2023

2. P. Bota, H. P. da Silva, and M. Abreu, “Introduction to biosignal acquisition,” in 1st Int’l Meeting of

the Portuguese Society of Physiology, (Lisbon, Portugal), Oct 2019
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3. P. Bota and M. Abreu, “Signal processing and machine learning,” in summer course of CEiiA (Cen-

tre of Engineering and Product Development), (Instituto Superior Técnico, Lisbon, Portugal), Jul

2020

4. P. Bota and M. Abreu, “Introduction to machine learning and applications,” in Clynx, (online), Jul

2020

5. P. Bota and M. Abreu, “Physiological signal classification,” in Congress of the Brazilian Society of

Physiology, (online), Sep 2020

Scientific Fairs

1. P. Bota, A. S. Carmo, M. Abreu, and S. Monteiro, “EmotiphAI and IT group projects showcase.”

Noite Europeia dos Investigadores, Sep 2023

2. P. Bota and A. M., “EmotiphAI and IT group projects showcase.” Dia Internacional das Raparigas

nas Tecnologias de Informação e Comunicação, Apr 2023

3. P. Bota, J. Brito, R.Silva, and V. Garção, “Biosignals acquisition and visualisation.” FIC.A (Interna-

tional Festival of Science), Oct 2022

4. P. Bota, S. Monteiro, L. Pereira, R. Silva, and R. Maciel, “EmotiphAI and it group projects show-

case.” 22nd anniversary of Campus Taguspark, Nov 2022

5. P. Bota and M. Abreu, “Dissemination of FMCI xinhuanet signal acquisition devices.” Web Summit,

Lisbon, Portugal, Nov 2019.

In collaboration with Xinhuanet FMCI

Showcases

14 Jun 2022 Online theatre as a research instrument

Descrip:: Experiment to find a method of collecting feedback from viewers on an online event. I was

involved in developing the infrastructure for the audience’s physiological data collection.

Team: Taavet Jansen (UTallinn), Aleksander Väljamäe, Joana Brito (IT), Hugo Silva (IST-UL/IT), and

Ana Fred (IST-UL/IT).

2020 Opera Experience

Descrip: Experiment to analyze an audience response to a live Opera show at ESMAE. I was involved

in developing the infrastructure for the audience’s physiological data collection and the design of the

experiment.
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Team: Ana Rosado (ESMAE), António Salgado (ESMAE), Hugo Silva (IST-UL/IT), and Ana Fred

(IST-UL/IT).

14-19 Oct 2019 DataWe

Descrip:: A neurocinematic system for studying collective decision-making shown at the European

Commission Joint Research Centre Ispra Sector, Italy. I was involved in developing the infrastructure for

the audience’s physiological data collection and communicating with the media feedback.

Team: Taavet Jansen (UTallinn), Aleksander Väljamäe (Univ. of Tartu), Anu Almik, Hugo Silva (IST-

UL/IT), and Ana Fred (IST-UL/IT).

1.4 Outline

This thesis is structured into eight chapters, each addressing a different component in an end-to-end

affective computing pipeline as depicted in Figure 1.1.

Figure 1.1: Thesis content overview.

Towards the end goal of group emotion recognition, Chapter 2, conducts a thorough literature review,

exploring the underpinnings of emotion theory (Section 2.1), the methods for measuring emotion (Sec-
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tion 2.2), existing datasets (Section 2.3), and the influence of social interaction on modulating emotion

(Section 2.4).

The thesis is then divided to address the four main objectives presented in Section 1.1, and their

respective RQs.

Chapter 3 addresses Obj 1. on the Development of Affective Computing Algorithms, namely RQ 1.1

to 1.3 by reviewing the state-of-the-art in emotion recognition and analysing the prevailing physiological

sensors, algorithms and datasets. This chapter also evaluates the performance of various classifiers

and feature sets, benchmarking the expected performance against public datasets.

Chapter 4 further addresses Obj 1. on the Development of Affective Computing Algorithms, namely

RQ 1.4 and 1.5 by demonstrating on a public dataset, how group-related information can be leveraged

to enhance emotion recognition systems.

Chapter 5, addresses Obj 2. Group-based Physiological Data Collection, namely RQ 2.1 and 2.2

by introducing the EmotiphAI platform, consisting of the EmotiphAI Wearable, Data Collector and User

Interface designed for pervasive individual and group physiological data acquisition. This chapter also

presents the results of a study on the impact of the data collection sampling rate and network technology

on the quality of the multi-device data collection.

Considering that the development of emotion recognition systems requires not only physiological

data but also emotion annotations, Chapter 6 addresses Obj 3. Emotion Annotation for Naturalistic

Settings, namely RQ 3.1 to 3.3 by presenting the EmotiphAI Annotator. The latter consists of an emotion

annotation tool designed for the annotation of physiological data within naturalistic environments, i.e.

closer to real-life experiences. This chapter also presents the results of a study on the usability and

reliability of the EmotiphAI Annotator.

Building upon the data acquisition and annotation tool developed in the previous chapters, Chapter 7

addresses Obj 4. Real-world Affective Computing Dataset, namely RQ 4.1 and 4.2 by presenting G-

REx, a dataset for group emotion recognition in a naturalistic setting. Consolidating, how the EmotiphAI

platform can be used to collect and annotate large amounts of physiological data in a naturalistic setting.

Finally, Chapter 8 provides a summary of key research findings, explores insights gathered from the

field, and identifies future challenges and possible directions that lay ahead in further developments in

group emotion recognition through physiological signals.
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Chapter 2

Background

Grasping the essence of emotion and its measurement techniques is crucial for understanding and

developing emotion recognition systems. Towards the end-goal of Obj 1., focused on the Development

of Affective Computing Algorithms, this chapter starts by outlining the principal theories of emotion,

then breaks down emotion into its fundamental components, and explains how various emotions can be

quantified, with a special focus on physiological signals. The discussion then details the existing datasets

for emotion analysis through physiological signals available in the literature. The chapter concludes by

examining the interplay between group emotions and individual affect, highlighting how the group setting

and its emotional dynamics can shape and influence emotions at the individual level.

Contents

2.1 Emotion Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Basic Emotion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Appraisal Theories of Emotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Psychological Construction Theory of Emotion . . . . . . . . . . . . . . . . . . . 16

2.1.4 Multicomponent Theory of Emotion . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Measuring Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Subjective Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Central Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Autonomic Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Group Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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2.4.2 Collective Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Emotion Transmission in Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Emotion Theories

Since Ancient Greece [50] up to today, philosophers have wondered and struggled with the concept of

emotions. Fehr and Russell famously said [51]:

Everyone knows what an emotion is until asked to give a definition. Then, it seems, no one

knows.

Over the years, multiple theories have evolved to explain the underlying structure, origin and purpose

of emotions.

2.1.1 Basic Emotion Theory

The classic view on emotion builds upon Darwin’s evolutionary perspective [52]. Darwin posed that emo-

tions evolved as adaptive mechanisms with crucial roles in survival, such as "avoiding predators, finding

food, or caring for offspring" [53]. In this view, emotions regulate the interactions with the environment

(e.g. the feeling of disgust might prevent one from eating something rotten, and the feeling of fear might

make one widen the eyes, increasing the field of vision and preparing the body to "fight-or-flight") [1],

and/or serve as effective means of communication towards other peers or threads [54] (e.g. a blush

might show honesty and a tear sadness).

The basic emotion theories are in line with the classical view, with emotions seen as evolutionary

byproducts, ingrained within our genetic makeup. These theories propose that emotions have arisen

consistently across diverse cultures and have endured through time, being a universal phenomenon.

Given their innate and ubiquitous nature, each emotion category is associated with a distinctive "finger-

print", a pattern of brain activation that is consistent and replicable across different populations [55].

Perhaps an annoying coworker triggers your "anger neurons", so your blood rises, you scowl,

yell, and feel your heart race; you freeze and feel a flash of dread [55].

The fingerprints of emotions are observed for a set of basic (Ekman [56]), primary (Plutchik [57]), dis-

crete (Izard [58]), and affect programs (Tomkins [59]) emotions, which are the building blocks for more

complex emotional states. Across theorists, the number of basic emotions and selection requirements

for this nomenclature varies, however common agreements denote that basic emotions should be uni-

versally expressed, accompanied by a unique subjective experience, and they fulfil adaptive roles that

have been shaped by evolution [60].
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Table 2.1 shows some of the predominant theorists that adopt the basic theory of emotion and their

proposed set of basic emotions. Although the nomenclature and number of basic emotions vary, overall,

six basic emotions are common across the literature, namely: happiness, sadness, anger, disgust, fear,

and surprise.

Table 2.1: List of predominant basic emotions in the literature. Table adapted from [60].

Reference Happiness
(Joy, Enjoyment, Play) Sadness (grief) Anger

(Rage, Hatred) Disgust Fear
(Anxiety)

Surprise/
Wonder Other

Plutchnik [57] ✓ ✓ ✓ ✓ ✓ ✓ Acceptance
Oatley and Johnson-Laird [61] ✓ ✓ ✓ ✓ ✓
Ekman and Cordaro [62] ✓ ✓ ✓ ✓ ✓ ✓ Contempt
Izard [58] ✓ ✓ ✓ ✓ ✓ ✓ Interest
Levenson [63] ✓ ✓ ✓ ✓ ✓ ✓ Interest, Relief, Love
Panksepp and Watt [64] ✓ ✓ ✓ ✓ Seeking, Lust, Care

Tomkins:2006 [59] ✓ ✓ ✓ ✓ ✓
Interest, Contempt,

Distress, Shame
Descartes [65] ✓ ✓ ✓ ✓ Desire, Love

Arnold [66] ✓ ✓ ✓ ✓
Desire, Despair, Hope,

Love, Courage, Dejection

Much of the knowledge of basic emotion theory has been derived from studies on emotional facial

expressions, most notably those conducted by Ekman [62]. Ekman identified a set of microexpressions

associated with a range of categorical emotions: the Facial Action Coding System (FACS) [67]. However,

despite its contributions, basic emotion theory has been met with criticism and scepticism, including the

lack of consistency for distinct neural and peripheral physiological responses across basic emotions

[60, 68], and the existence of contradictory tests on the universality of emotional facial expressions [1].

Nevertheless, the classic view of emotion is still very much present in today’s society and culture,

for example in TV shows like "Lie to Me" which base their plot on the idea that one inner thoughts can

be read by facial and corporal expressions, or in companies like Affectiva which analyse body reactions

to measure metrics such as stress and engagement to improve advertisement/contribute to road safety

[55].

2.1.2 Appraisal Theories of Emotion

Appraisal theorists argue that emotions are not automatic reactions to stimuli, rather they are shaped

by the individual’s subjective interpretation and unconscious evaluation over a set of appraisal compo-

nents. As defined by Lazarus [69], appraisal is the cognitive process involved in emotion elicitation.

The cognition component evaluates: 1) if the stimulus leads to an emotional state; 2) which emotion

should be elicited; and 3) the emotion’s intensity [70]. The appraisal components differ from theorist to

theorist, however, common agreement is established in: "novelty, intrinsic pleasantness (or unpleasant-

ness), predictability, goal-relevance (i.e. their significance for the individual’s goals), coping potential (i.e.

the individual’s ability to cope with the consequences of the event), and normative significance (i.e. the

compatibility with personal or social norms and values)" [1].

Within the appraisal theories, two sub-families can be identified: causal/classical appraisal; and the
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constitutive/constructive appraisal theories [1]. Similarly to basic emotion theory, causal appraisal is an

Essentialism theory, while constitutive is not. Essentialism [71], is the belief that emotion instances that

belong to the same category (e.g. happiness) have a shared pattern that describes them and unique un-

derlying mechanisms that originate them. In the causal theory, appraisal variables have unique internal

mechanisms that can be combined to form a distinctive appraisal pattern defining the emotion category

[71]. On the other hand, in constructive appraisal theories, appraisals are not causal antecedents of

emotions but constituents, i.e. the emotion components are dependent on the cognitive, perceptual and

situational content, creating variability across and within emotion categories [3].

Basic emotions too can be associated with evolutionary appraisal variables: happiness with subgoals

being achieved; anger with frustration in active plans; sadness with failure of a major plan or loss of

active goal; fear with self-preservation goal threatened or goal conflict; and disgust with a gustatory goal

violated [53]. However, the two theories are separated by cognition, social, linguistic and cultural factors

taking part in the definition of the emotional experience in the case of appraisal theories [3]. As emotions

diverge towards subjective cognitive processes, they demonstrate greater cultural and species-specific

variations, departing from the basic emotion theory and common universal patterns [72].

2.1.3 Psychological Construction Theory of Emotion

Upon the difficulties in identifying unique patterns for emotion categories, alternative views to the Essen-

tialism view (where each emotion category has a set of attributes necessary to its identity and function)

[71] have emerged. An example is the theory of constructed emotion, where rather than emotions being

pre-programmed universal reactions to stimuli, they are constructed by the individuals as they take their

interior and exterior sensations. The individual past and the event’s cultural meaning are used to con-

ceptualize the emotion, leading to a unique pattern to that stimulus and individual. An example is given

by Lisa Feldman Barrett [55]:

"When you are angry, you might scowl, frown mildly or severely, shout, laugh, or even stand

in eerie calmness, depending on what works best in the situation. Your heart rate likewise

might increase, decrease, or stay the same, whatever is necessary to support the action you

are performing."

The constructed view maintains the idea of emotion categories, with emotion instances belonging to

emotional categories (e.g. Anger). However, variability is the norm as one emotion category can have

many manifestations and forms according to what better response fits the situation. The context where

the stimulus happens, the individual’s past experiences and culture will cause the variation observed in

the emotion category entities.

Emotion constructivist models are characterized by two components. The first consists of the Core
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Affect: the individual’s neurophysiological state that changes as it receives internal and external sensory

input. The second consists of a categorisation/perception step with the brain constantly interpreting bod-

ily sensations based on past experiences and the individual’s culture to predict how to better respond

to the stimulus. The Core Affect is available to consciousness and is categorised using the valence-

arousal dimensions [73]. The valence-arousal sensation is then categorized by the brain using linguistic

concepts learned through cultural exchanges. Valence is described as a subjective experience of plea-

sure or displeasure, while arousal is a state of activation or deactivation (sense of energy mobilization).

Unlike emotion, valence is considered universal across the literature, with the consensus that since birth

we can differentiate the feelings of pleasure or displeasure/comfort or pain [74]. Russel [75], describes

valence and arousal as "states of the central nervous system, both have peripheral physiological corre-

lates and both are subjectively experienced as mental events". Alternative dimensions such as approach

and withdrawal [76], tension and energy [77], negative activation and positive activation [78], have been

shown to describe similar processes as arousal and valence [79].

The empirical support for the valence-arousal dimensions is large: 1) Valence and arousal have

shown to be primitive and universal [80]; 2) Self-reports across different time frames, languages, facial

expressions and discrete works were able to reproduce the 2D structure of emotion [68]; and 3) A direct

correlation has been observed between the two factors and peripheral physiological responses, e.g. an

increment of skin conductance and HR has been correlated with an increase of arousal [81]. Facial

muscles, including the corrugator muscle associated with negative emotions and the zygomatic muscle

linked to positive emotions, have been found to correlate with changes in emotional valence; specifically,

an increase in negative valence is associated with the corrugator muscle, while an increase in positive

valence correlates with the zygomatic muscle [81]. Similarly, vocal characteristics have been shown to

be indicative of arousal levels [5].

Overall, the theory of constructed emotion offers a nuanced approach to measuring emotion. It in-

corporates emotional self-reports, a multi-modal measuring system covering autonomic measures, facial

expressions, the individual experience and perception, as well as the stimulus context [71]. This multi-

faced view of emotion elevates the task of automatic emotion recognition to higher levels of complexity.

2.1.4 Multicomponent Theory of Emotion

In the work by Paul and Anne Kleinginna [82], the authors analyzed nearly 100 different emotion defi-

nitions and divided them into 11 separate categories. Despite the diversity in the theories of emotion,

common diagnostic features can be identified, formulating the componential theories of emotion [83]. An

illustrative example of the components involved in an emotional experience was given by Chat-GPT1:

"Suppose you’re at a family gathering, and an estranged relative whom you haven’t seen
1https://openai.com/chatgpt; Accessed on 20/02/2024
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for years makes an unexpected and unwelcome appearance. This relative has a history of

making condescending remarks toward you. Within moments of their arrival, they make a

snide comment about your appearance. Let’s dissect the emotional episode of indignation or

resentment that this might trigger:

Cognitive Appraisal: You interpret their comment as another in a long line of unjust and

derogatory remarks aimed at belittling you, deepening the rift between you two.

Physiological Changes: You might feel a rush of heat to your face, a tightening of your throat,

and a quickening of your pulse. Your palms might become sweaty, and your stomach might

churn in response.

Distinctive Expressions: Your facial expression becomes stern, with eyes narrowing and a

frown forming. Your posture stiffens, and your voice takes on an icy, restrained tone as you

respond.

Subjective Experience: Internally, you feel a mix of hurt, anger, and determination. There’s a

strong desire to either confront the relative or to disengage and distance yourself from them

to avoid further conflict.

Mental Processes and Behavioral Dispositions: Your entire focus shifts from enjoying the

gathering to this interaction. Instead of mingling and catching up with other loved ones, your

thoughts revolve around past incidents with this relative and ways to cope with the current

situation. You might consider leaving early, seeking support from another family member, or

directly addressing the insult."

The example illustrates some of the main characteristics of an emotional episode: how emotions

are powerful phenomena, being the driving force behind motivation, modulating your thoughts, cognition

and ultimately, decision-making; how the initial cognitive appraisal of the situation is dependent on one’s

experiences, background, and culture, i.e. upon an equal situation, another individual might experience a

completely different emotion and act differently; and lastly, the example shows some diagnostic features

of emotion that let you conclude you are experiencing an emotion.

A consensual definition in the emotion literature establishes emotion as an event-focused process

from a relevant stimulus event (internal or external) to which it follows a synchronized multi-component

response mobilizing resources towards an action tendency that responds to the stimulus [1, 4]. The

multi-component view of emotion includes cognitive appraisal where the subject evaluates the stimulus;

physiological processes such as e.g. electrodermal and cardiovascular responses that prepare the

individual’s body to better respond to the stimulus; body expressions such as facial, voice and body

changes that act as a communicative tool about the individual’s intentions to respond to the stimulus;

and lastly, the subjective emotional experience/feeling [1, 84]. The selection of the diagnostic features,
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order and magnitude are some of the building blocks that distinguish different theories of emotion.

Since emotions require an intense and synchronized response mobilization across diverse systems,

they must be short-lasting [83]. This definition separates emotion from a baseline emotional state, the

individual mood: a prolonged subjective feeling of low intensity, which does not result from any specific

event and without elevated resource mobilization [83].

2.1.5 Discussion

The main emotion theories described previously can be related by their range of Essentialism [71] (see

Section 2.1.2). Basic emotion and causal appraisal theories (Darker green in Figure 2.1) are built upon

Essentialism. However, while for basic emotion theories emotions derive from neural and physiological

specific circuits, in causal appraisal theories, emotions are formed by specific patterns of appraisal

variables [1]. According to essentialist theories, emotions have unique fingerprints, thus, they can be

measured and identified by facial expressions, body responses, the autonomic nervous system or the

central nervous system [71]. The opposite view is taken by the physiological construction theories

(lighter green in Figure 2.1), to which no unique pattern is observed in emotion categories since emotions

are created in-loco based on the environment and how the individual makes sense of how to better react

to the stimulus. This overview of the literature illustrates the varied perspectives on emotion, highlighting

both the diversity and how emotion theories intersect.

Characteristics from diverse theories of emotion are borrowed throughout the remainder of this work,

specifically in Chapters 3, 6 and 7. A search for distinct "fingerprints" for the development of automatic

emotion recognition systems necessitates alignment with the Essentialist perspective of emotion. The

identification of these fingerprints relies on the multi-component view of emotion, involving measure-

ments of the Autonomic Nervous System (ANS) peripheral signals and the individuals’ self-reports on
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Figure 2.1: Emotion theories are grouped into three main families: Basic Emotion, Appraisal and Psy-
chological construct theories. Figure adapted from [1].
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their subjective experience. Moreover, the latter is described on the valence and arousal dimensions

based on the constructionist theories. Lastly, in line with the theory of constructed emotion, the envi-

ronment is captured by incorporating the group context in Chapter 4, with the goal of obtaining a more

holistic representation of emotion.

2.2 Measuring Emotions

A consensual view of emotion posits that the process begins with sensory inputs, which are monitored

by brain regions such as the amygdala. This is followed by a rapid and unconscious appraisal to deter-

mine whether these inputs pose a threat to the organism’s survival or overall well-being. Subsequently,

the CNS may interrupt ongoing activities and, through the ANS, reallocate physiological resources to

address the perceived threat or challenge [85].

The componential view of emotion suggests that the emotion components (Table 2.2) can be an-

alyzed to capture and measure emotions, enabling the comparison of the various emotion theoretical

approaches.

Table 2.2: Emotion components, their measurement methods and reported dimensions. Table adapted
from [5, 83].

Response System Measure Sensitivity Function

Subjective Experience Self-Report Valence and
Arousal, Basic
Emotions

Monitoring of Internal
State and Environment
Interaction

Peripheral Physiology
(ANS)

ANS Valence and
Arousal

Regulation

Central Physiology
(CNS)

fMRI, PET, EEG Approach and
Avoidance

Evaluation, Preparation
and Direction of Action

Behaviour Vocal characteristics, Fa-
cial behaviour (observer
ratings), Facial behaviour
(EMG), Whole body be-
haviour

Arousal, Valence,
Emotion Specificity

Communication of Re-
action, Behavioural
Intention

2.2.1 Subjective Experience

The analysis of subjective experience namely through user questionnaires is the most predominant

measure in the emotion literature. Moreover, it is the gold standard in medical or psychotherapy practices

as well as the ground truth used to analyse peripheral, central or behavioural responses.

The emotional assessment can be performed either by the subjects themselves (self-assessment) or

by an external individual (implicit assessment) through the observation of external body behaviour. Both

present challenges. Starting with self-assessment, the method is dependent on the subject inferring their
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own emotions and transferring them to the possibilities presented in the questionnaires. Self-reports

can be biased as the individual has to approximate their emotion conceptualization (e.g. emotion of

excitement) to the self-report scale (which can only have happy/sad as an option) [71]. Additionally, self-

assessment can be felt by the subject as an intrusive process, evoking a defence mechanism with the

subject providing an unreliable report of their emotions both unconsciously or consciously to preserve

their privacy [86].

On the other hand, in external annotation, independent subjects assess the subject’s affective state

through the analysis of their externally observable behaviour [87]. This means that the annotator is

dependent on the subject’s ability or willingness to externalize their emotions. Such factors can be

correlated with the subject’s personality, environment and/or culture.

A debated topic is how can the subject describe its subjective experience. Research in this area

is supported by the different theories of emotion, presenting questionnaires to the subject of discrete

emotions (following the basic theories [62]), appraisal variables (following the appraisal theories [83]),

or core dimensions (following the core affect from the physiological constructivists/dimensional theories

[75]).

The literature has validated scales for assessing emotional responses, common to numerous stud-

ies and datasets. A predominant scale observed in the literature datasets [87, 88, 89] for emotion

recognition is the SAM scale [90]. SAM is a graphical scale designed to facilitate the cross-cultural

measurement of emotional response by providing the emotional dimensions of valence, arousal and

dominance through manikins (Figure 2.2). The SAM is usually filled out after the emotion elicitation, i.e.

retrospectively.

An alternative to SAM identified in the literature [87, 88] is PANAS [91], consisting of two 10-item

mood scales, one measuring positive affect and the other measuring negative affect. The positive affect

axis reflects enthusiasm, activation and alertness, while the negative axis reflects distress and unpleas-

ant engagement.

Figure 2.2: SAM scale for the arousal (first row) and valence (second row) in a 1 to 5 scale [90].
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Based on these scales, diverse platforms have been tested for emotion annotation which will be

further analyzed in Chapter 6.

2.2.2 Central Nervous System

The brain is involved in generating and modulating emotions. Information regarding which brain regions

are activated upon emotional events can be used to identify the existence of distinctive neural patterns

in emotion categories. The measurement of specific brain region activations is typically performed using

physiological sensors (e.g. EEG) or imaging techniques (e.g. fMRI, or PET).

The EEG measures the electric field created by currents that flow when neurons are activated [9].

To analyze the activated brain regions, the EEG signal is often decomposed in five frequency bands:

Delta (ă 4 Hz), Theta (4 – 7 Hz), Alpha (8 – 13 Hz), Beta (14 – 30 Hz), and Gamma waves (31 – 100

Hz) [92]. Research has indicated that higher frequencies, particularly in the Gamma and Beta ranges,

carry useful information for emotion recognition [92]. For instance, Li and Lu analyzed Gamma waves to

distinguish between happiness and sadness, achieving an accuracy exceeding 90% [93].

The EEG has high temporal resolution, but low spatial resolution. Due to the limitations in spatial

resolution, a common approach is to focus on left versus right-side or anterior versus posterior activation

of the brain. Following this approach, the literature using the EEG has recorded patterns of emotion

asymmetry. For example, initial studies as the one by Davidson et al. [94] linked left-side activation in

the anterior temporal region with positive-valence stimuli, and the right-side activation in the frontal and

anterior temporal region with negative stimuli [5]. Later studies by Davidson and Sutton [95], identified

prefrontal asymmetry to be linked with approach-avoidance dimensions, with the left-side activation

linked to approach and the right-side activation linked to avoidance.

In contrast to the EEG, neuroimaging techniques (e.g., fMRI or PET) have a high spatial resolution

but low temporal resolution. Thus, they can be key in identifying specific brain regions related to differ-

ent emotion categories. The fMRI measures the level of oxygenation in the brain through oxygenated

Hemoglobin (Hb), which is a strong magnetic material. When a part of the brain is more active, it re-

quires more oxygen, so blood flows to that region increasing the volume of oxygenated Hb. The PET

technique, on the other hand, measures the radiation emitted by a radioactive substance, which accu-

mulates in areas with higher activity. Both techniques can detect activated brain regions through blood

flow [96].

The experimental results using imaging techniques support the EEG results of neural asymmetry

related to dimensional theories of emotion. Namely, in the work by Daly et al. [97], the authors reported

prefrontal asymmetry related to approach – withdrawal behaviour while listening to music. However, the

results are not clear as demonstrated by Murphy et al. [96], where the approach dimension was related

to left-sided activity, but negative/withdrawal was found to be symmetrical.
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More contemporary research has taken advantage of imaging techniques for higher spatial resolution

and focused on identifying specific brain regions (Table 2.3). These areas are visually depicted in Fig-

ure 2.3, where the author identified the brain activation areas that most contributed to the classification

of six basic emotions [98].

Table 2.3: Summary of brain regions identified across emotion theories [1, 99, 100, 101, 102, 103].

Theory Emotion Brain Region

Basic

Fear Amygdala
Disgust Insula, Ventral Prefrontal Cortex and Amygdala
Sadness Medial Prefrontal Cortex and Anterior Cingulate Cortex
Anger Orbitofrontal Cortex
Happiness Rostral Anterior Cingulate Cortex, Ventromedial and Prefrontal Cortex

Appraisal

Novelty Hippocampus
Relevance Amygdala
Goal Incongruence Anterior Cingulate Cortex
Agency Temporal Parietal Junction
Norm Compatibility Dorsolateral Prefrontal Cortex

Constructivist Arousal Amygdala
Valence Orbitofrontal Cortex

Figure 2.3: Brain regions correlated to 6 basic emotions in the work by Heini et al. [98]: aPFC – anterior
prefrontal cortex; Amy – amygdala; Ins – insula; LOC – lateral occipital cortex; mPFC – medial prefrontal
cortex; MTG – middle temporal gyrus; PCC – posterior cingulate cortex; post-CG – postcentral gyrus;
pre-CG – precentral gyrus; Prec – precuneus.

Overall, the literature [1, 99, 103] on CNS correlates to emotion, has shown that emotions seem to

be associated with the activation of cortical and sub-cortical areas, with no contribution in a one-to-one

emotion, rather, each region is activated for separate emotions. Moreover, the evidence of one-to-one
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correspondence between emotions and brain region as the basic emotion theory originally defended is

insufficient. In turn, there is a consensus that more complex networks are necessary, such as functional

networks where one (emotion)-to many (neural regions) is identified [103]. For a more comprehensive

understanding of the underpinnings of neural regions related to emotion, the reader is referred to [54,

99, 104].

2.2.3 Behaviour

An additional component of emotion involves the body’s behaviour, either through facial expressions,

whole-body actions, gestures, postures, or changes in vocal expression [5]. Darwin [52] advocated

that these body-related changes were functional tools preparing our organism to better respond to the

emotion-induced stimulus [1], and/or are a form of communication to others [54]. All major theories of

emotion include behaviour clues, either to express or prepare action tendencies [1]. In our daily lives,

we subconsciously perform emotion-induced behaviour changes, and often resort to these changes as

clues to perceive the emotions of others.

The most explored component of emotional body behaviour is facial expressions. The creation of

prototype images of facial expressions depicting basic emotions was first introduced by [105], and later

disseminated by Ekman in its cross-cultural studies of facial expressions [67]. Ekman reported the

existence of over 42 muscles in the face, which can be combined to create over 21 macro-expressions

(with a duration of around 0.5 to 4 seconds). Simultaneously to macro-expressions, the literature reports

the existence of micro-expressions, however, smaller in duration (around 0.03 seconds) [84].

Through the analysis of micro-expressions, Ekman [67] developed the Facial Action Coding System

specifying facial muscle movements, denoted as action units involved in human facial expression that

allow the identification of six basic emotions (anger, fear, disgust, happiness, sadness and surprise).

These emotions were considered universal since they could be recognized across different cultures [5].

An example with seven common action units from the upper part of the face is shown in Figure 2.4,

illustrating how action units act as building blocks to create diverse facial expressions.

An alternative to using the human eye for facial emotion recognition is the use of computer-based

measuring systems, such as the EMG, which enables higher precision in the detection of minute move-

ments.

The EMG is a technique that monitors muscle activity by measuring the electrical signals generated

during muscle contraction and relaxation. When the brain or spinal cord wants to initiate a muscle

movement, it sends out an electrical signal that travels through the nervous system, activating motor

neurons and generating an action potential in the muscle fibres it innervates. The action potential triggers

the release of neurotransmitters, which lead to muscle contraction. When the stimulation of the motor

neuron stops, the muscle relaxes and returns to its resting state.
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Figure 2.4: Example of seven upper face action units and how they can be combined to form diverse
facial expressions. Image extracted from [106].

The corrugator supercilii and zygomatic are the most explored muscles in the emotion literature [1].

The former is located close to the eyebrow and is related to the eyebrow furrow in negative valence

stimuli. While the latter goes from the cheekbone to the corners of the mouth and is correlated with

positive valence stimuli [1]. Similarly to the EEG, the EMG has high temporal resolution but low spatial

resolution. Therefore, when using the EMG, it can become unclear which muscle activity is being col-

lected since the output can be biased by the activity of neighbour muscles. Likewise, there is a limit to

the number of muscles that can be read simultaneously by the EMG, since when several electrodes are

placed close together signal interference by cross talk can be observed. Additionally, the EMG requires

electrodes to be placed on the face, which is very intrusive and can limit free facial expression [1].

On the whole, the literature has shown that facial expressions (read by the eye or EMG) are asso-

ciated with primary emotions [84]. However, it’s crucial to approach facial expressions with caution. As

noted by Mauss and Robinson in [5], facial expressions can be easily feigned and are influenced by

a multitude of factors, including gender, culture, expressiveness, and the presence or absence of an

audience.

In addition to facial expressions, vocal expressions have also been explored for emotion recognition.

For example, higher levels of arousal have been associated with higher fundamental frequencies (e.g.

whispering voice is associated with confidentiality, while a strong voice is with anger) [1]. Using basic

emotion theory, the literature has identified a set of acoustic characteristics related to a set of basic

emotions (Table 2.4 extracted from [72]). For further information, regarding vocal clues for emotion

recognition, the reader is referred to [53, 72, 107].

25



Table 2.4: Voice correlates for basic emotions. A dash indicates that no data is available. Arrows signify
changes compared to the baseline, smaller, lower, slower, less, flatter, or narrower (ă «); neutral (“
«); bigger, higher, faster, more, steeper, or broader (ą «); both smaller and equal reported (ă “ “);
both larger and equal reported (ą « “); both smaller and bigger have been reported (ă ą “). Table
extracted from [72].

Acoustic parameters Happiness/Elation Anger/Rage Sadness Fear/Panic

Speech rate and fluency
Number of syllables per second ą= ă ą ă ą

Voice source—F0 and prosody
F0 mean ą ą ă ą

F0 deviation ą ą ă ą

F0 range ą ą ă ă ą

F0 final fall: range and gradient ą ą ă ă ą

Voice source—vocal effort and type of
phonation
Intensity (dB): mean ą = ą ă“ ´

Intensity (dB): deviation ą ą ă ´

Gradient of intensity rising and falling ą = ą ă ´

Relative spectral energy in higher
bands ą ą ă ă ą

Spectral slop ă ă ą ă ą

Harmonics/noise ratio ą ą ă ă

Voice source -— glottal waveform
Excitation strength (EE) ą ą = ă = ą

Articulation -— speed and precision
Formants—precision of location “ ą ă ă =
Formant bandwidth ´ ă ą ´

One far less explored area to assess emotion is body language. However, studies have shown

that emotions such as shame and pride have been associated with contraction and expansion of body

postures, respectively [5, 84, 108]. Additional postures such as orientation, degree and direction of trunk

lean, head orientation, shoulder orientation, leg orientation, arm openness, and leg openness have been

correlated with positive-negative emotions [72].

Generally, body movements are related to basic emotions when they contain a communicative or

instrumental function [84]. For example, facial expressions are instrumental in navigating intricate social

environments. Similarly, body expressions are associated with emotions like shame, pride, guilt, or em-

barrassment, which become evident in social contexts, acting as communicative tools to convey feelings

to others. On the other hand, basic emotions like anger, fear, disgust, happiness, and sadness -— tied

closely to individual survival —- are mainly represented by distinct facial expressions and generally lack

pronounced body expressions [5, 84].

2.2.4 Autonomic Nervous System

The literature on emotion theory (Section 2.1) shows that the ANS is present in most if not all hypotheses.

Its level of reported emotion specificity, however, varies.

The ANS takes part in numerous tasks [85]: 1) Regulation – maintaining the body’s bodily milieu
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by homeostasis; 2) Activation – allocating the body resources in response to stimuli; 3) Coordination

– maintaining a continuous bidirectional flow between the body and the brain; and 4) Communication

– facilitating non-verbal communication through affective behavioural responses. The ANS multitude of

functions and its large number of components add a level of complexity in separating affective-related

reactions from other ANS functions.

The ANS is composed of two main components: the Sympathetic Nervous System (SNS), and the

Parasympathetic Nervous System (PNS). The SNS is often referred to as the "fight-or-flight" system,

while the PNS is denoted as the "rest-and-digest" system. Although for the majority of its functions, the

SNS is indeed an activator and the PNS a deactivator, that is not observed across all of their functions.

The SNS is responsible for the increase in HR through vasoconstriction, bronchial tube dilation, muscle

contraction, pupil dilation, decrease in stomach movement and secretions, decrease in saliva production,

and, lastly, the release of adrenaline. On the other hand, the PNS is responsible for slowing down the

HR, vasodilation, increase in the digestive system activity, bronchial tube constriction, muscle relaxation,

pupils constriction, increase in stomach movement and secretions, increase in saliva production, and

lastly, the increase in urinary output [9, 85]. These functions illustrate the "fine-tuned" work by the ANS

in its multitude of functions.

As the Section 2.1 on emotion theory showed, there is a heavy debate in the field about whether

emotion and its components have differentiated patterns. This discussion is explored through the ANS

measures by analysing ANS coherence and specificity. Coherence refers to both within the ANS (i.e.

cardiac, vascular, electrodermal response) and with the other components of emotional response (e.g.

facial expressions, or CNS). Specificity refers to the Essentialism view, i.e. whether a pattern is unique

to each emotion category.

Regarding coherence, Mauss et al. [109] analyzed the within-ANS response, by measuring sub-

jective experience (through continuous self-reports), facial behaviour and peripheral response (through

EDA, cardiovascular activation and somatic activity), while the subjects watched a 5-minute film. The

experimental results showed that the within-ANS was high for amusement, with elevated coherence for

self-reports and facial expressions, increasing with the amusement experience intensity. However the

same was not observed for sadness intensity.

For specificity, Levenson [85] delineated structural and functional features of the ANS that could ac-

count for a patterned activation, namely: 1) The existence of different types of receptors in the SNS, each

with different sensitivities and body distributions; and 2) The existence of two branches arousal-related –

with separated structure, regions of activation and receptors, and acts in combination on common areas

(towards a more complex ANS regulation).

Moreover, Levenson [85] defended a few aspects that must be met to correctly evaluate the ANS

specificity, among these are: 1) Verifying that the emotion was elicited (self-report); 2) Attaining a high-
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intensity emotional state (naturalistic scenario); 3) Performing a broad assessment of the ANS (rely on

more than one system); 4) Extracting comprehensive features that characterize the ANS; and 5) Relying

on a correct timing that accounts for the ANS systems relation to emotion. The lack of compliance with

these criteria has led to emotion specificity being a heavily debated topic in the literature, with several

works in supportion [5, 85, 110, 111, 112] and opposition [113, 114, 115, 116].

The primary systems within the ANS associated in the literature with emotion are the cardiovascu-

lar and integumentary. The signals related to such systems offer the benefit of being measured from

discreet body locations, allowing for data collection in naturalistic, out-of-lab settings. Thus, more likely

to capture high-intensity emotional responses. Within these systems prevalent sensors are the EDA,

governed by the eccrine sweat glands, and the PPG, a non-invasive approach to monitor blood volume

changes and HR. The two modalities combined offer a comprehensive insight into the SNS and PNS

dynamics. A more detailed description of these systems is presented next.

Electrodermal Activity

The EDA (often also referred to as Galvanic Skin Response (GSR)) denotes the "changes in the electri-

cal activity of palmar and plantar skin" [117, 118]. Changes in the electrical characteristics of the skin

are read by changes in the skin conductance or its inverse, the resistance. When the sweat glands are

activated by the SNS, there is an increment of sweat, which is mostly water with salts. Since sweat

contains a high quantity of electrolytes, it will increase the conductance of the skin [118]. Although we

often sweat due to intense physical activity, or due to the outside temperature through body-regulation

mechanisms, on the palmar (hand palms) and plantar (foot soles), we observe emotional sweating:

sweat activated by psychological and emotion-related events [119]. This is due to the hands and palms

being body areas with a high concentration of eccrine glands (sweat glands related to thermoregula-

tion and ANS changes), leading to pronounced changes in skin resistance which can be used to detect

emotion-related body changes.

The EDA can be decomposed in the Electrodermal Level (EDL) and Electrodermal Response (EDR)

components (Figure 2.5). The EDL is referred to as the tonic component, while the EDR is referred to

as the phasic component that emerges from the EDL during an emotional response. When the change

in the EDA amplitude is due to a known stimulus, the EDA response is denoted as Event-related EDR

(ER.EDR). While, when the change in the EDR can not be related to any emotional stimulus or artefacts

(e.g. movement or change in breathing), it is denoted as non-specific EDR (NS.EDR) [118].

As depicted in Figure 2.6 a typical EDA signal is characterized by an abrupt rise from the baseline

level (upon emotional stimuli), a peak (when the sweat glands are emptied), and a slow decline to the

baseline level. Typical features extracted from the EDA signal are shown in Table 2.5.

Eccrine sweat glands are enervated by the SNS but not by the PNS. As such, the analysis of the
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Table 2.5: Typical features extracted from the EDA signal and its expected times/amplitudes [117, 119].

Metric Time (s) Amplitude (µS)

Latency Time 1 - 5
Rise Time 0.5 - 5
Recover Time (ER.EDR) 4 - 6
Recover Time (NS.EDR) 10 - 30
ER.EDR minimum amplitude 0.01 - 0.05

skin conductance decomposes the ANS complexity by offering an unbiased view of the SNS (either

emotional or physiological functions) [120].

Moreover, the EDA is the most common measure for the arousal dimension, with EDL and NS.EDR

frequency being predominant extracted tonic metrics [118]. Lang et al. [81] observed the link between

the ANS and dimensional/core theories of emotion experience by obtaining a correlation of 0.81 with

EDR log magnitude. In the context of discrete-emotion representation, the meta-analysis review by

Kreibig [110], surveyed 134 studies to identify autonomic signatures. The results showed that EDL is

the variable most often reported, followed by EDR rate and EDR amplitude. An alternative review by

Mauss and Robinson [5] reported that EDL or short-duration EDA responses are associated with SNS

activity. Table 2.6 shows the modal EDA direction changes reported in the Kreibig comprehensive meta-

analysis review [110]. Overall, the literature shows that an increase in the EDA was identified for most of

the discrete emotions, related to cognitive or affective-induced motor preparation. On the other hand, a

decrease in EDA was observed for non-crying sadness, acute sadness, contentment and relief, related

to passivity and a decrease in motor preparation [110].

Cardiovascular Activity

The heart is influenced by both the SNS and PNS, which can work together or individually to in-

crease or slow down its activity. Common cardiovascular measurement methods include the PPG and

Electrocardiography (ECG) sensors. From these sensors, features relevant to emotion recognition can
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Table 2.6: Reported EDA modal responses across discrete emotions. The response direction identified
at least in three studies is reported, except for the arrows in parentheses, reported in fewer than three
studies. Arrows denote changes in activation levels from the baseline: increase (Ò); decrease (Ó); no
change (-); or diverse responses across studies (ÒÓ). Table adapted from the work [110].
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be extracted, namely HR, blood pressure, total peripheral resistance, cardiac output, pre-ejection period,

or Heart Rate Variability (HRV) [5]. The pre-ejection period has shown to be associated with the SNS,

HRV with the PNS, while HR and blood pressure, with a combination of both [5].

The ECG measures the heart’s electrical activity by detecting potential differences propagated to the

skin’s surface, which result from the contraction and relaxation of the cardiac muscle due to electrical

stimulation. The heart’s contraction and relaxation are the result of three main components: (a) The

action of the sinoatrial node, localised in the right atrium at the superior vena cava, which receives

inputs from the branches of the ANS to beat at a resting rate frequency (100 to 120 beats per minute)

[85]; (b) The action of PNS fibres modulated by the vagal nerve, to slow down the HR to approximately 70

bpm; (c) The SNS fibres modulated by the post-ganglionic fibre to increase the HR during an emotional

episode or non-emotional ANS modulation [85]. The complementary action of the two branches of the

ANS system in the HR is known as sympathovagal balance.

In this thesis, given the focus on naturalistic data collection, the PPG sensor by facilitating data

collection in unobtrusive locations, and the metrics that can be extracted from both ECG and PPG

signals (e.g. HR) will be the focus.

The PPG measures peripheral tissue’s blood volume through the absorbance of the light. The PPG

sensor consists of a light source (light-emitting diode (LED)) and a light detector (photodiode). The

detector can be placed next to the light source to read the back-scattered light (Reflective PPG in Fig-

ure 2.7) or across the finger (Transmissive PPG). The most usual PPG setup in wearable systems is the

reflective mode, which will be the one used in this work, using a green light. Greenlight is preferred over

infrared and red wavelengths due to higher skin penetration and Hb absorptivity [121, 122]. Figure 2.7

displays a prototypical PPG waveform.

When light is directed into the skin, it is absorbed by blood, tissue and others. The more light is

absorbed, the less it reaches the sensor detector through light scattering or reflection. Moreover, the
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Figure 2.7: Prototypical PPG waveform. Image extracted from [13].

tissue absorption changes according to the Hb configuration (oxygenated versus deoxygenated) and the

arterial blood volume which increases during systole and decreases during diastole. During systole, the

arterial blood volume is maximum and the PPG signal reaches its peak (Systolic peak in Figure 2.7).

The opposite is observed during the diastole where the PPG reaches its minimum value (Diastolic Notch

in Figure 2.7). During the diastole, the PPG will reach its baseline component, reading the absorption

from the blood volume in the veins, capillaries, volumes of skin, fat, and bone, among others. Thus, the

PPG is often decomposed into two components: a pulsatile waveform from arterial blood and an offset

component from respiration, venous, capillary blood, and stationary tissues [123].

Table 2.7 shows the modal cardiovascular changes reported by Kreibig [110]. Overall, the HR was

identified to increase in negative (anger, anxiety, contamination-related disgust, embarrassment, fear,

crying-sadness), positive (imagined anticipatory pleasure, happiness, joy) emotions and surprise. On

the other hand, HR decreases for emotions involving passivity (mutilation-related disgust, imminent-

thread fear, non-crying and acute sadness, affection, contentment, visual anticipatory pleasure and

suspense).

Regarding positive emotions, HRV was reported to differentiate positive emotions, increasing for

amusement and joy, while it decreases for happiness. An increase in HRV was observed in contamination-

related disgust, and the positive emotions: amusement and joy. The results from cardiovascular activity

support the hypothesis of PNS enabling both positive and negative-related emotions [110].
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Table 2.7: Cardiovascular modal responses across discrete emotions. Arrows denote changes from the
baseline: increased (Ò); decreased (Ó); no change (-); or both increases and decreases across diferent
studies (ÒÓ). The response direction identified at least in three studies is reported, except for the arrows
in parentheses, reported in fewer than three studies. Figure extracted from [110].
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Other Measures

In addition to the cardiovascular and electrodermal activity, additional data with information for emotion

specificity has been identified in the respiratory system. The respiratory system has a predominant

role in preparing the organism for contexts that require motor changes (e.g. fight-or-flight) [85]. Among

respiration measures, the respiration rate is the most often extracted characteristic, followed by the

respiratory period, respiratory depth, tidal volume, duty cycle, and respiratory variability [110]. Fast deep

breathing has been found to be correlated to non-crying sadness (to suppress active crying), slow deep

breathing to relief, and shallow breathing to anxiety, disgust, certain types of sadness, and anticipatory

pleasure [110]. For a deeper analysis on ANS-related respiration changes in discrete emotions, the

authors refer the reader to the work [110]. A downside to the respiration sensor is that it requires the

positioning of a respiration belt on the chest area, which can be uncomfortable.

Lastly, in our daily lives, we often refer to expressions such as "gut feeling" or "feeling sick to my

stomach" to denote negative feelings. The stomach and intestinal activity are activated by the PNS, thus

could contain meaningful information for emotion ANS specificity. However, the gastrointestinal system

has received limited attention in the literature and will not be the focus of this thesis.

2.2.5 Discussion

In this section, the multi-dimensional components of emotions were analysed. For the scope of this

thesis, the goal of which is to bring emotion recognition to the real world, imaging and physiological

measures techniques related to the CNS have severe limitations. The EEG requires the placement of

a high number of electrodes and conductive gel on the hair. Similarly, imaging techniques can only be

performed in specialized facilities and by technical individuals. Moreover, the data collection machines

present numerous disadvantages as they are large in volume, have an elevated economic cost, require
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the presence of a trained technician, and require the individual to remain motionless, among others.

An alternative method is to analyze bodily expressions. However, studies have found that smiling

when people are happy tends to happen more frequently in the presence of an audience [5, 124]. There

is an open debate on whether facial and body expressions reflect internal states or are rather deliberate

communications [125].

An additional component of emotion is the ANS assessed through physiological measures. Thanks

to the advance of electronics, physiological signals can be measured through miniaturized devices in

unobtrusive locations such as hands or wrists, and are already integrated into numerous smartwatches

or fitness bands. This makes physiological signals like EDA and PPG ideal for collecting large amounts

of data in the real world effortlessly and with minimal disturbance to the user.

On the whole, contradictory conclusions are reported, with diverse autonomic responses even for in-

stances of the same emotion category. However, it is unclear if that is a product by design, i.e. emotions

simply do not follow a discrete pattern, or rather, a result of poor experimental methods, weak emotion

elicitation, or insufficient statistic tools to analyze the complexity of the signals [74].

The literature [115, 6] reports that in-lab responses can result in stereotype emotions, differing from

real-world responses, or be mild in intensity, the reported responses from the state of the art, being

based on in-lab experiments can differ when explored in a naturalistic scenario. As Quigley and Barret

[116] denote, in-lab experiments are likely unrepresentative of the broad scope of emotional states

experienced in the real world, and are most likely of small to moderate intensity, becoming easily masked

by other ANS-mediated bodily changes.

In the future chapters of this work, namely Chapters 3 to 5, building upon these conclusions, phys-

iological data for emotion recognition is explored, namely through EDA and PPG data. By allowing the

unobtrusive data collection, these pave the way for a more naturalistic data collection, that better approx-

imates the emotion elicitation and the obtained data to the real world as will be explored in Chapters 6

and 7.

2.3 Datasets

There are multiple publicly available datasets for emotion recognition based on physiological data. They

allow researchers to develop and compare different algorithms on the same data, without the experi-

mental effort of collecting it. Table 2.8 displays prevalent datasets in the emotion recognition state of the

art.

• Setting: The overview of the literature shows that most datasets for emotion recognition acquire

data in controlled, in-lab scenarios. This setup results in the use of small video clips for emotion

elicitation, except for a few datasets that although contain data collected in laboratory settings, are
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Table 2.8: Literature datasets for emotion recognition using physiological data. Nomenclature: #S (Num-
ber of Subjects); Set. (Setting); L (lab), W (in-the-wild); Application: ER (Emotion Recognition); SR
(Stress Recognition); Annotation space: A (Arousal); V (Valence); D (Dominance); BET (Basic Emo-
tions); RESP (Respiration); SKT (Skin Temperature). Table adapted from [10].

Name #S Stimuli Set. Area Annotation Data

DEAP [89] 32 40 music videos (1min) L ER A, V, D, liking, familiarity ECG, EDA, EEG, EMG, EOG,
RESP, SKT, face video

MAHNOB [126] 27 20 film clips (35-117s) L ER, implicit tagging A, V, D, predictability, BET
ECG, EDA EEG, RESP, SKT,
face and body video, eye gaze
tracker, audio

ASCERTAIN [127] 58 36 movie clips (51-128s) L ER, Implicit personality A, V, liking, engagement,
familiarity, Big Five ECG, EDA, EEG, facial video

Eight-Emotion [128] 1 8 posed emotions L ER
Neutral, anger, hate, grief,
joy, platonic love, romantic
love, reverence

ECG, EDA, EMG, RESP

EMDB [129] 32 52 non-auditory film clips
(40s) L ER w/out auditory content A, V, D EDA, HR

AMIGOS [87] 40 16 250s videos; 4 videos
(14min) alone and in group L

ER, personality traits and
mood on individuals and
groups

Big-Five personality traits,
PANAS, A, V, D, liking,
familiarity and BET

Audio, visual, depth, EEG, GSR
and ECG

DECAF [130] 30 40 music video (1min
DEAP), 36 movie clips L ER A, V, D ECG, EMG, EOG, MEG,

near-infrared face video

WESAD [88] 15
baseline (20mins), video
clips (392s), TSST (5min),
meditation (7mins)

L ER, SR SAM, PANAS, SSSQ and
STAI

ACC, ECG, EDA, EMG, RESP,
SKT; ACC, EDA, PPG, SKT

CASE [131] 30 Video clips (101-197s) L ER A, V ECG, PPG, EMG (3x), EDA,
RESP, SKT

CLAS [132] 62
Math and logic problems,
Stroop test, IAPS,
multimedia clips (30min)

L ER, SR A, V ECG, PPG, EDA, ACC

PAFEW [133] 24 480-6040ms short videos L ER 7 BET EDA, PPG, SKT, pupil

CEAP [134] 32 360VR videos (1min) L ER A, V Acc, EDA, SKT, Blood Volume
Pulse (BVP), HR

ITMDER [135] 18 7 VR videos (43 to 210 s) L ER A, V ECG, EDA, RESP, PPG

BIRAFFE2 [136] 102 Video games (5 min each)
+ 6s IAPS, IADS WL ER A, V ECG, EDA, Acc, Gyr

K-EmoCon [137] 32 Debate (10min) WL ER Retrospective A, V, 18 BET EEG, ECG, PPG, EDA, SKT
COGNIMUSE [138] 7 Movies WL ER Feeltrace A, V None
LIRIS-ACCEDE
[139] 10 30 movies WL ER GTrace A, V EDA, motion, SKT

DAPPER [140] 88 5 days of daily living W ER, SR ESM, DRM HR, EDA, ACC

closer to naturalist scenarios, i.e. by using long-duration content (ą10 minutes) as the elicitation

method, namely AMIGOS [87], COGNIMUSE [138], and Continuous LIRIS-ACCEDE [139]. Alter-

natively, the DAPPER dataset [140] and K-EmoCon [137] collect data in naturalistic scenarios. The

former follows a lifelog paradigm, with physiological data (HR, EDA, and accelerometer) collected

during the volunteers daily living for five days. The data was annotated using the experiment sam-

pling technique and day reconstruction method. The experiment sampling was performed 6 times

a day, asking for the momentary emotional annotation on the volunteers’ smartphone; and the day

reconstruction questionnaire was performed at the end of the day asking the volunteers to recall

and annotate the major emotional and behavioural episodes throughout the day. The K-EmoCon

dataset [137] contains physiological data (PPG, EDA, HR, EEG) collected across naturalistic con-

versations, namely paired debates on social issues. The data was annotated retrospectively by the

participants, their debate partners and themselves by watching their recorded facial expressions

and upper body data.

• Stimuli: As previously noted, most of the in-lab datasets rely on small video clips to elicit emotions

(ă 5 minutes), with a few exceptions. The AMIGOS [87] dataset contains data from 16 short

emotional videos, and 4 long videos (alone and in group settings) with « 14 to 24 minutes, including

EDA, ECG, and EEG data. The long video data was segmented in 20-second windows and

annotated using the individuals’ facial expressions by three external annotators in the continuous
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arousal and valence dimensions using SAM. The COGNIMUSE [138] dataset contains data from

7 Hollywood movies annotated in arousal and valence. Two types of annotations are provided:

experienced self-reports by the volunteers; and, intended emotions annotated by experts. Both

types of annotation are performed using the FEELTRACE platform [141], and no physiological data

is acquired. Continuous LIRIS-ACCEDE [139] contains data from 30 movies (M=884s, STD=766s)

annotated on valence or arousal axes by a modified GTrace platform [142] incorporating SAM and

a joystick. During video visualisation, EDA, finger motion, and skin temperature were recorded.

The K-EmoCon dataset [137] as previously mentioned, contains data on a debate on social issues,

and DAPPER [140] contains data from the daily living of the volunteers.

• Annotation Dimensions: On the whole, the valence and arousal dimensions are the preferred

choices for the subjective reporting of emotional experience. The use of discrete emotions is also

observed [126, 127, 133]

• Data: Across the datasets, information regarding cardiovascular data (either through ECG, PPG

or HR) and EDA is predominant.

The review of the state of the art shows that, overall, the available datasets for emotion recognition

based on physiological data use small video clips (excerpts extracted from longer videos) as the emotion

elicitation method and are acquired in the lab. The use of a few seconds/minute clips detaches the

elicitation from a naturalistic elicitation, where longer-duration content such as the entire movie/TV show

is watched. Media content is usually devised taking into account an emotional timeline that builds to the

elicitation of a certain emotion, which the use of small video clips limits.

Lastly, the literature has focused on the analysis of individual emotional responses. Ignoring group-

level factors that are often present in social contexts in the real world. An exception is the AMIGOS

[87] and K-EmoCon [137] datasets, which contain data from four subjects watching long videos and

from dyad conversations, respectively. Moreover, the authors of AMIGOS [87] analysed the impact

of the group context and identified that social context affects the valence and arousal self-reports of

the participants, attaining for the long-videos overall higher levels of emotion intensity. Leading to the

conclusion that a further line of research should collect data in longer-term content and explore group

data for a more holistic overview of individual and group emotions.

2.4 Group Emotions

This thesis started on the premise that emotions are a powerful phenomenon capable of influencing

our thoughts and behaviours. However, emotions influence not just ourselves but the emotions and

consequent behaviours of others, just as we are influenced by the emotions and behaviours of those
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around us [143]. This interconnectedness underscores the significance of emotions within the broader

constructs of groups and societies. To illustrate this concept:

"Imagine attending a concert for a world-famous band you adore. As the lights dim and the

opening notes play, you can feel the excitement radiating from thousands of fans. When the

band plays an iconic song or a ballad, the whole stadium might sing along, the collective

voices creating a powerful and emotional resonance. When the audience waves their hands

or lighters, or when everyone jumps in unison, individual attendees often feel an overwhelm-

ing sense of unity and shared emotion" – Example of group emotions by Chat-GPT.1.

In moments like these, just as it happens with religious ceremonies, sports gatherings or crowd

manifestations, the group emotions can be palpable. If the majority of the crowd feels a particular

emotion (e.g., euphoria, nostalgia, excitement), it’s easy for individuals to get swept up in the collective

atmosphere.

2.4.1 Groups

The sense of shared emotion serves as a foundation for group cohesion and identity. A group emerges

when individuals identify themselves as a group member and the group becomes a meaningful aspect

of its identification. Menges and Kilduff [144] define a group as "a number of people who are connected

by some shared activity, interest, or quality". Under events that are relevant to the group identity, people

tend to follow the group beliefs, attitudes and even behaviours. This can arise from small face-to-face

meetings (dyads) to large collectives (without face-to-face interaction such as demographic identities)

(Table 2.9).

Table 2.9: Groups compositions across diverse sizes [144].

Groups Examples

Dyads Peer Relationships, Supervisor–sub-
Ordinate Pairings

Small Groups Work Groups, Teams
Mid-size Groups Branches, Departments, Organizations
Large Groups Industries, Demographic Groups

2.4.2 Collective Emotions

Early research on group emotions tended to adopt a somewhat pessimistic perspective. McDougall

[145] described group membership as akin to being "carried away by forces", over which one felt "pow-

erless to control" [125]. Contrasting with this view, Durkheim [146] perceived group emotions in a more
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positive light, suggesting that in large gatherings where participants share a common purpose or emo-

tion, the sense of belonging and connection to the group could foster a "collective effervescence" – an

empowering phenomenon that can reinforce shared ideas, values, and actions [147].

As the understanding of the field evolved, such that emotions were not solely experienced at the

individual level but also manifested as a higher-level process (the group emotions level), the field of

collective emotions recognized its intricate and empowering nature, leading to a surge in interest.

Kelly and Barsade [148] reported that at the individual level, individuals are composed of affective-

related characteristics, namely: moods, emotions, affective dispositions, emotional intelligence and sen-

timents. When an individual joins a group, they bring their unique emotional characteristics with them.

These characteristics interact with the other group members’ emotional characteristics and are influ-

enced by contextual factors (e.g. cultural norms, and history of the group). These factors dynamically

shape what becomes the group’s emotional atmosphere. Menges and Kilduff [144] further articulate

this construct, defining group emotions as "feelings that emerge from, or in, groups". Moreover, the au-

thors divide group emotions into group-shared emotions and group-based emotions. Group-shared are

synchronous, interactive emotions that individuals collectively experience in groups, while group-based

emotions are asynchronous, non-interactive emotions elicited towards the group identity [144].

In a similar view, Goldenberg et al. [149] propose a broader delineation of emotions. They differen-

tiate emotions into individual, group-based, and collective emotions (Figure 2.8), where individual emo-

tions are composed of individual-level emotions and group-based emotions. Individual-level responses

are the multi-component synchronized responses upon relevant stimuli detailed in Section 2.1. Group-

based emotions are individual emotions (occurring at the individual level) where the stimulus is directed

not towards the individual, but to the group identity (e.g. group-based joy when our country excels in

the Olympics). Lastly, collective emotions are the macro-phenomena of many individuals experiencing

emotions together (e.g. joy from being in a crowded stadium supporting your team after a win). Individ-

ual emotions turn into collective emotions by interaction-led emotion dynamics (emotion transfers) which

often result in a shared identity or a common goal.

Individual Emotions Collective Emotions

A person is 
angry after their 
country lost a 
football match

A group of fans 
is angry after 
their country 
lost a football 

match

Group-based

Emotions

Figure 2.8: Illustration on how individual emotions, at both personal and group levels, interact and
transfer between individuals to culminate in collective emotional experiences. Image adapted from [149].
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The distinctions between Menges and Kilduff’s concept of shared emotions [144] and Goldenberg’s

notion of collective emotions [149] are ambiguous. Menges and Kilduff emphasize interactivity, with

emotional transfers from direct interactions among small to medium group members, potentially leading

to emotional convergence or divergence. In contrast, Goldenberg focuses on the shared emotional state

and the macro-level implications within larger groups [149].

2.4.3 Emotion Transmission in Groups

Expanding on the concept of group emotions and how they manifest, Barsade and Gibson [150] char-

acterize the processes that lead to group emotions in two components: a Bottom-Up component (affec-

tive compositional effects), where the group affect emerges from the combined individual-level affective

factors of its group members [151]; and a Top-Down component (affective context), where the group

environment influences the emotions of the individuals within. Kelly and Barsade [148] describe the two

components as combined forces that act towards the creation of the group emotion.

In the Bottom-Up process, emotions at the individual level can propagate among individuals through

two mechanisms:

Explicit (Conscious) Processes

In social contexts, individuals consciously adjust their emotions in response to environmental cues. This

deliberate affective regulation is denoted as intentional affective induction, where individuals either at-

tempt to manipulate or become influenced by the emotions of their peers (e.g. a project team, members

might display exaggerated enthusiasm for an idea, aiming to gain consensus and approval) [148]. The

affective induction can result in both concordant and discordant emotional outcomes, with the latter oc-

curring less frequently. A parallel phenomenon is affective impression management, wherein individuals

feign emotions to align more closely with group norms.

Implicit (Sub-conscious) Processes

In the domain of innate mechanisms, emotional exchanges occur automatically among individuals, en-

compassing phenomena such as [148]:

• Emotion Contagion: Emotions from one individual are spread to those nearby. The literature

reports an innate and unconscious inclination among individuals to mimic and synchronize with

others’ facial expressions, vocalizations, postures, and movements, leading to emotional conver-

gence [148, 152]. Such shifts in bodily behaviour can evoke corresponding emotional states, (e.g.

mimicking a smile can induce feelings of joy [148]). Several factors can impact emotion contagion,
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such as the strength of the relationship, the body’s expressiveness, or the subject overall mood

[148].

• Vicarious Affect: Emotion induction by observing or understanding another person’s emotions,

e.g. empathy, where we feel "another’s feelings by placing oneself psychologically in that person’s

circumstances" [153].

• Behaviour Entrainment (Mimicry): Emotion induction through synchrony, i.e. the subject adjusts

their behaviour to mimic and synchronize with another. Mimicry can lead to emotional conver-

gence, as detailed by Hatfield et al. in [154] "the tendency to automatically mimic and synchronize

facial expressions, vocalizations, postures, and movements with those of another person and,

consequently, to converge emotionally". Behavioural synchrony is likely to lead to positive affect,

denoting satisfaction with the interaction or the liking of the group.

As a result of the aforementioned processes, the group emotion will be created. When the group has

a homogeneous group affect it is said to have a Group Affective Tone [155].

Menges and Kilduff [144] further explain the constructs that lead to the development of Bottom-Up

mechanisms in collective emotions:

• Inclination: Derives from the process wherein individuals with similar affective dispositions natu-

rally tend to similar emotions, achieving a homogeneous emotional state.

• Interaction: Derives from social interactions as the basis for emotion contagion (previously de-

tailed) and sensemaking, related to experiencing the same stimulus and appraising it in an equal

way (parallel emotion elicitation), leading to a similar emotion.

• Institutionalization: Derives from the need of the individual to blend with the institutionalized

norms, rituals and routines, with expected emotional scripts which can lead to emotional conver-

gence (e.g. collective effervescence [146]).

• Identification: Derives from the subject seeing themselves as part of the group and feeling emo-

tions towards the group identity (e.g. group-based emotions [149]).

In addition to Bottom-Up processes, the individual’s affective state, and by extension the emotional

make-up of the group, can be influenced by Top-Down processes, namely the group and local norms,

as well as the group history, to enhance or suppress an individual’s emotions.

On the other hand, in addition to emotion-related processes, non-affective processes [148] such as

the inter-group context (relation with other groups), the comfort of the physical context (e.g. the ambient

temperature), or technological interface (communication in remote which could impact non-verbal clues)

can impact emotional dynamics.
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As a result of the Bottom-Up transfers of emotions and the Top-Down affective context, the individual-

level emotions will be manipulated into a dynamic group emotion. Goldenberg et al. [149] attempt to

characterize the dynamic emotional transference in groups using three dimensions: quality, magnitude

and time course.

When people interact in groups, the group individual’s emotion variance can decrease and converge

– Emotion Contagion. Or, in opposition, emotional dynamics can lead to the polarisation of group mem-

bers towards each other or to the group, and lead to an increase in the group-level variance, with a

change in the type of emotion and an increase in intensity. Similarly, upon changes in the emotion type,

the emotional state of one person can serve as elicitation for the emotional state of another. Secondly,

there can be changes in the magnitude of the emotional responses. In the presence of other peers, emo-

tions tend to show higher emotion intensity, through processes such as emotion contagion/collective ef-

fervescence. Lastly, collective emotions can provoke changes in the timeline of individual-level affective

experiences: At the individual level, emotions are intense but short-lasting events. However, in groups,

people tend to activate each other in a phenomenon denoted as emotional cascades, maintaining the

intensity of emotional responses at a high level by emotion contagion for a longer period [149].

2.4.4 Discussion

The exploration of group emotions showed that in groups, individuals will undertake emotional transfers

from Bottom-Up transfers and the impact of a Top-Down affective context, towards the macro-level phe-

nomenon of Collective Emotions. Moreover, predominant Bottom-Up processes act as channels for the

dissemination and alignment of emotions across group members. These processes, namely emotional

contagion have been reported across various groups and activities from employees and customers [156],

leader-followers [157], friend-to-friend in both online and in person [158], or in smaller groups [144, 159].

Such dynamics suggest that discerning the emotional state of one member can offer invaluable in-

sights into the collective, and in the context of emotional convergence, potentially predict the emotional

states of other participants. Taking the componential view of emotion, these homogeneous emotional

states can be analyzed through physiological synchrony, one of the components of emotional responses.

This group approach contrasts with traditional algorithms for emotion recognition based on physiologi-

cal signals and data collection tools which have largely concentrated on singular analyses of individual

physiological responses, thus paving the way for augmenting and refining emotion recognition technolo-

gies.

This thesis builds upon group emotions, first to explore physiological synchrony as a tool for group

emotion recognition in publicly available datasets in Chapter 4, secondly to develop the required infras-

tructure to capture group physiological data in diverse group settings in Chapter 5, annotate it Chapter 6,

and lastly to create a dataset containing physiological data collected in groups in Chapter 7.
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Chapter 3

Benchmarking Emotion Recognition

In the last chapter, an analysis was conducted on the nature of emotions and the methods by which

emotion can be measured, concluding that physiological signals are the most beneficial for real-life data

collection.

This chapter delves into emotion recognition through physiological signals through Obj 1. on the

Development of Affective Computing Algorithms and explores RQ 1.1 to 1.3 by examining the current

state of the field on the algorithms employed, extracted features, validation techniques, among others.

This is followed by the experimental validation of these methods and the establishment of a baseline

performance across public datasets.

The contents within this chapter were adapted, with permission, from:

• P. Bota, C. Wang, A. L. N. Fred, and H. Plácido da Silva, “A review, current challenges, and fu-

ture possibilities on emotion recognition using machine learning and physiological signals,” IEEE

Access, vol. 7, no. 1, pp. 140990–141020, 2019

• P. Bota, C. Wang, A. Fred, and H. Silva, “Emotion assessment using feature fusion and decision

fusion classification based on physiological data: Are we there yet?,” Sensors, vol. 20, no. 17,

p. 4723, 2020
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3.1 Introduction

In 1995, Rosalind Picard [2] created the field denoted as affective computing, dedicated to the study of

affective phenomena by computational means. The field has since then grown motivated by its potential

applications in healthcare, education, entertainment, and marketing, among others. For example in

healthcare, wellness monitoring holds the promise of identifying the causes of stress, anxiety, depression

or chronic diseases; In education, adaptive learning could be used to adjust the content delivery rate and

several iterations according to the user enthusiasm and frustration level; Or in entertainment, emotion

recognition could be used to adapt narratives to emotional responses, and enhance live performances

through feedback loops between actors, audience, and technical elements. The potential applications

are vast, however, the majority of these applications are still in their infancy as the predominant focus

in the field is on the development of emotion recognition algorithms and their underlying structure (i.e.

creating reliable data collection devices, annotation tools and datasets). To develop these systems,

several critical questions remain, including the choice of classifiers, sensor modalities, feature selection,

window sample sizes, validation metrics, expected accuracy ranges, and others. To address these

issues, an exploratory evaluation was conducted, focusing on:

RQ 1.1: What feature set/machine learning algorithm should be applied for emotion recognition?

RQ 1.2: What performance can be achieved by predominant datasets in the literature?

RQ 1.3: What is the best method to deal with multi-modal data for emotion classification?

This chapter addresses these pivotal questions through a comprehensive literature review on emo-

tion recognition, specifically using physiological data. The review is then complemented by a bench-

marking analysis of the performance of the main emotion recognition classifiers identified in the litera-

ture on ECG, EDA, respiration, and PPG data. The analysis relies on five publicly available datasets: IT

Multimodal Dataset for Emotion Recognition (ITMDER) [135]; Multimodal Dataset for Wearable Stress
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and Affect Detection (WESAD) [88]; Dataset for Emotion Analysis using Physiological Signals (DEAP)

[89]; Multimodal dataset for Affect Recognition and Implicit Tagging (MAHNOB) [126]; and Eight-Emotion

Sentics Data (EESD) [128], offering insights into the current capabilities and limitations of emotion recog-

nition classification.

3.2 Background

This section surveyed over 50 papers on the field (see Figure 3.1) to provide a comprehensive overview

of the state-of-the-art in emotion recognition. The papers were selected based on their relevance to the

field, the quality of the research, and the availability of the full text.
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Figure 3.1: Histogram of the number of publications surveyed per year of publication.

3.2.1 State of The Art

Since its inception, the field of emotion Recognition has grown tremendously, with 346,00 results in

Google Scholar, and 9,927 in Scopus (searching for "Emotion Recognition"). These numbers illustrate

the growing interest in the field and its diversity, requiring a comprehensive review to understand the

current state of the art.

Comparing the performance of the research papers is a difficult task since they often differ in the

classifiers, the datasets used to train and test the model, sample sizes, the form of validation and the

extracted features and signal modalities used. With this in mind, Table 3.1 provides a summary of the

state-of-the-art research studies in the field of emotion recognition across its main characteristics.
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Table 3.1: Summary of state-of-the-art research studies in the field of emotion recognition and its main characteristics in terms of author, publication year,
stimuli used, localization, participant count (#), subject dependency (SD), emotion labels (Labels), employed modalities, choice of classifier, and validation
techniques—including Leave-One-Out (LOO), Leave-One-Subject-Out (LOSO), and 10-Fold Cross-Validation (CV), and recognition rates (Rec Rate). Table
adapted from [160, 161].

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Petrantonakis P C, et al.

[162]
2010 IAPS L 16 No

Happiness, surprise, anger,

fear, disgust, sadness
EEG KNN, QDA, MD, SVM LNO 85.17%

Samara A, et al.[163] 2016 DEAP L 32 Yes Arousal, valence EEG SVM 10-fold 79.83%; 60.43%

Jianhai Zhang et al.[164] 2016 DEAP L 32 Yes Arousal, valence EEG PNN, SVM 10-fold
PNN: 81.76%; SVM:

82.00%

Ping Gong et al. [165] 2016 Music L Yes
Joy, anger, sadness,

pleasure

ECG, EMG, RSP,

GSR
DT 92%

Gyanendra K.Verma [166] 2014 DEAP L 32 Yes

Terrible, love, hate,

sentimental, lovely, happy,

fun, shock, cheerful,

Depressing, exciting,

melancholy, mellow

EEG, ECG, GSR,

EMG, EOG, RESP,

SKT, face video

SVM, MLP, KNN, MMC 10-fold
EEG: 81%; peripheral

signals: 78%

Vitaliy Kolodyazhniy et al.

[167]
2011 Film clips L 34

Both
Fear, sadness, neutral

ECG, GSR, RSP,

SKT, EMG

KNN, MLP, QDA, LDA,

RBNF

subj-dep: 81.90%;

subj-indep: 78.9%

Dongmin Shin et al. [168] 2017 Videos L 30 Yes
Amusement, fear, sadness,

joy, anger, and disgust
EEG, ECG BN 98.06%

Foteini Agrafioti et al. [169] 2012
IAPS, video

game
L 44 No Valence, arousal ECG LDA LOO

Arousal: bipartition

76.19%; C.36%

valence: 52%-89%

Wanhui Wen et al. [170] 2014 Videos L
101

No
Amusement, grief, anger,

fear, baseline
OXY, GSR, ECG RF LOO 74%, LOO

Continued on next page
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Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Jonghwa Kim et al. [171] 2008 Music F 3
Both

Valence, arousal
ECG, EMG, RSP,

SC
pLDA LOO

Subj-dep: 95%;

subj-ind: 77%

Cong Zong et al.[172] 2009
Music

(AuBT)
1 Yes

Joy, anger, sadness and

pleasure

ECG, EMG, SC,

RSP
SVM 10-fold 76%

Valenza et al. [173] 2012 IAPS L 35 No Valence, arousal ECG, EDR, RSP QDA 40-fold >90%

Wee Ming Wong et al.[174] 2010
Music

(AuBT)
L Yes

Joy, anger, sadness,

pleasure

ECG, EMG, SC,

RSP

PSO of synergetic

neural classifer

(PSO-SNC)

LOO SBS: 86%; SFS: 86%

Leila Mirmohamadsadeghi

et, al. [175]
2016 DEAP L 32 Yes Valence, arousal EMG, RSP SVM LOVO

Valence: 74%, arousal:

74%, liking: 76%

Chi-Keng Wu et al.[176] 2012 Film clips L 33 Yes
Love, sadness, joy, anger,

fear
RSP KNN5 LOO 88%

Xiang Li et al.[177] 2016 DEAP L 32 Yes Valence, arousal EEG LSTM 5-fold
Valence: 72.06%,

arousal: 74.12

Zied Guendil et al. [178] 2015
Music

(AuBT)
L Yes

Joy, anger, sadness,

pleasure

EMG, RESP, ECG,

SC
SVM 95%

Yuan-Pin Lin et al. [179] 2010 Music L 26 No
Joy, anger, sadness,

pleasure
EEG MLP, SVM 10-fold 82.29%

Bo Cheng et al. [180] 2008
Music

(AuBT)
L Yes

Joy, anger, sadnes,

pleasure
EMG BP 75%

Saikat Basu et al. [181] 2015 IAPS L 30 Yes
Valence, arousal (HVHA,

HVLA, LVHA, LVLA)

GSR, HR, RESP,

SKT
LDA, QDA LOO

HVHA: 98%, HVLA:

96%, LVHA: 93%,

LVLA: 97%

Ingxin Liu et al. [182] 2016 DEAP L 32 Yes Valence, arousal EEG KNN, RF 10-fold
Valence: 69.9%,

arousal: 71.2%

Continued on next page
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Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Mahdis Monajati et al.

[183]
2012 Shock test L 13 Yes Negative, neutral GSR, HR, RSP

Fuzzy adaptive

resonance theory
94%

Lan Z et al. [184] 2016 IADS L 5 Yes Positive, negative EEG SVM 5-fold 73.10%

Zheng W L et al. [185] 2018
DEAP +

video
L 47 Yes HAHV HALV LAHV LALV EEG

G extreme Learning

Machine
5-fold

DEAP: 69.67%, SEED:

91.07%

Picard et al. [186] 2001
Clynes

protocol
L 1 Yes

Neutral, anger, hate, grief,

joy, platonic/romantic love,

reverence

EDA, EMG, PPG,

RESP
KNN LOO 81%

Haag et al. [187] 2004 IAPS L 1 Yes

Low/medium/high arousal

and positive/negative

valence

ECG, EDA, EMG,

SKT, PPG, RESP
NN 3-fold AR: <96%, VA: <90%

Lisetti and Nasoz[188] 2004

Movie clips

and difficult

mathemat-

ics

questions

L 14

Sadness, anger, fear,

surprise, frustration,

amusement

ECG, EDA, TEMP kNN; LDA; NN LOO 72%; 75%; 84%

Healey and Picard [189] 2005 Driving FC 24 3 stress levels
ECG, EDA, EMG,

RESP
LDF LOO 97%

Leon et al. [190] 2017 IAPS L 9 No
Neutral/positive/negative

valence
EDA, HR, BP NN LOSO 71%

Zhai and Barreto [191] 2006
Paced

stroop test
L 32 Relaxed and stressed

EDA, PD, PPG,

TEMP
NB; DT; SVM 20-fold 79%; 88%; 90%

Kim and André [171] 2008 Music L 3
Both

HAHV HALV LAHV LALV
ECG, EDA, EMG,

RESP
LDA LOO

subj-dep: 95%,

subj-indep: 70%

Continued on next page
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Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Katsis et al. [192] 2008
Simulated

driving
L 10

High-low stress,

disappointment, euphoria

ECG, EDA, EMG,

RESP
SVM; ANFIS 10-fold 79%;77%

Calvo et al. [193] 2009
Clynes

protocol
L 3

Both

Neutral, anger, hate, grief,

joy, platonic/romantic love,

reverence

ECG, EMG
FT; NB; BN; NN; LR,

SVM
10-fold

one subject: 37%-98%,

all subjects: 23%-71%

Chanel et al. [194] 2009 Recall L 10

Positively/negatively

excited, calm-neutral (in

valence-arousal space)

BP, EEG, EDA,

PPG, RESP
LDA, QDA, SVM LOSO

<50%; <47%; <50%,

binary: <70%

Khalili and Moradi [195] 2009 IAPS L 5

Positively/negatively

excited, calm (in

valence-arousal space)

BP, EEG, EDA,

RESP, TEMP
QDA LOO 66.66%

Healey et al. [196] 2010 Daily-living F 19
Points in valence arousal

space, moods

ACC, EDA, HR,

audio
BN; NB; AB; DT 10-fold

Plarre et al. [197] 2011

Public

speaking,

mental

arithmetic,

cold

pressor

L/F
21/17

Baseline, different types of

stress (social, cognitive,

and physical), perceived

stress

ACC, ECG, EDA,

RESP, TEMP
DT; AB; SVM/HMM 10-fold 82%, 88%, 88%

Hernandez et al. [198] 2011 Calls F 9
Both

Detect stressful calls EDA SVM LOSO 73%

Valenza et al. [199] 2012 IAPS L 35 No
5 classes of arousal and

five valence levels
ECG, EDA, RESP QDA 40-fold >90%

Continued on next page
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Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Koelstra et al. [89] 2012 DEAP L 32 No HAHV HALV LAHV LALV

ECG, EDA, EEG,

EMG, EOG, RESP,

TEMP, facial video

NB LOSO
AR/VA/LI:

57%/63%/59%

Soleymani et al. [126] 2012
MAHNOB-

HCI
L 27 No

Neutral, anxiety,

amusement, sadness, joy,

disgust, anger, surprise,

fear

ECG, EDA, EEG,

RESP, TEMP
SVM LOSO VA: 46%, AR: 46%

Sano and Picard [200] 2013 Daily-living F 18 Yes Stress, neutral
ACC, EDA, phone

usage
SVM, kNN 10-fold <88%

Martinez et al. [201] 2013

Video-

game

(maze-ball)

L 36 No
Relaxation, anxiety,

excitement, fun
EDA, PPG NN 10-fold

learned features:

<75%, hand-crafted:

<69%

Valenza et al. [199] 2014 IAPS L 30 Yes HAHV HALV LAHV LALV ECG SVM LOO
Valence: 79%, arousal:

84%

Adams et al. [202] 2014 Daily-living F 7 Yes
Stress, neutral (aroused,

non-aroused)
EDA, audio GMM 74%

Hovsepian et al. [203] 2015

Socioevalu-

ative,

cognitive,

and

physical

challenges

L/F
26/20

No Stress, neutral ECG, resp SVM/BN LOSO 92%/>40%

Abadi et al. [130] 2015 DECAF L 30
High/Low valence, arousal,

and dominance

ECG, EOG, EMG,

near-infrared face

video, MEG

NB, SVM LOTO VA/AR/DO: 50-60%

Continued on next page
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Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Rubin et al.[204] 2016 Daily-living F 10 Panic attack
PA; GB; DT; RR;

SVM; RF; kNN; LR
ACC, ECG, RESP 10-fold

bin. panic: 73%-97%

bin. pre-panic: 71% -

91%

Jaques et al. [205] 2016 Daily-living F 30 No
Stress, happiness, health

values
SVM; LR; NN;

EDA, TEMP, ACC,

phone usage
5-fold <76%; <86%; <88%

Zenonos et al. [206] 2016 Daily-living F 4 No
Excited, happy, calm, tired,

bored, sad, stressed, angry

ACC, ECG, PPG,

SKT
kNN, DT, RF LOSO 58%; 57%; 62%

Gjoreski et al. [207] 2017 Daily-living L/F
21/

5
No

Lab: no/low/high stress;

field: stress, neutral

ACC, GSR, BVP,

SKT

SVM, RF, AB, kNN, BN,

DT
LOSO <73%/ <90%

Mozos et al. [208] 2017 TSST L 18 Stress, neutral
ACC, GSR, BVP,

audio
AB, SVM, kNN CV 94%; 93%; 87%

Schmidt et al. [88] 2018 WESAD L 15 No Neutral, fun, stress

ACC, ECG, GSR,

EMG, RESP, SKT,

BVP

DT, RF, kNN, LDA, AB LOSO <80%/<93%

Hao Tang et al.[209] 2017 DEAP L 32 Arousal, valence

EEG, ECG, GSR,

EMG, EOG, RESP,

SKT, face video

Bimodal-LSTM 10-fold
Arousal: 83.23%,

valence:83.83%

Wei Liu et al.[210] 2016 DEAP L 32 Positive, neutral, negative EEG BDAE 83.25%

Tripathi et al. [211] 2017 DEAP L 32 Valence, arousal EEG DNN, CNN

CNN: (V)81.406%,

73.36%(A); (DNN)

valence: 75.78%,

arousal: 73.125%

Wenqian Lin et al.[212] 2017 DEAP L 32 Yes Valence, arousal

EEG, ECG, GSR,

EMG, EOG, RESP,

SKT, face video

CNN 10-fold
Arousal: 87.30%,

valence: 85.50%

Continued on next page

49



Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Santamaria-Granados et

al. [213]
2019 AMIGOS L 40 Valence, arousal EEG + ECG DCNN

Arousal: 0.76, valence:

0.75

Subramanian et al. [127] 2018
ASCER-

TAIN
L 58 Arousal, Valence

EEG, ECG, GSR,

facial activity data
SVM, NB LOO

(GSR,NB) Arousal:

0.68, valence: 0.68

Lee et al. [214] 2018 Movie L 50 Yes Negative, neutral emotions ECG, SKT, EDA NN, LDA, QDA LOO NN: 92.5%

Yang et al. [215] 2018 Video game L 58 Arousal, valence
ECG, EDA, RESP,

EMG, ACC
SVM, RBF SVM, DT, RF 10-fold

Arousal: 0.559,

valence: 0.524

Li et al. [216] 2019
DEAP,

stroop test
L

32

+

20
Both

Low, medium and high

stress
BVP, GSR

LR, eSVR, CNN,

ST-SVR
CV

F1-score between

0.943, 0.970 and 0.984

Zhao et al. [212] 2018
ASCER-

TAIN
L 58 No Arousal, valence

GSR, EEG, ECG,

facial landmarks

Vertex-weighted

Multi-modal Multi-task

Hypergraph Learning,

SVM, NB, hypergraph

10-fold
(VM2HL) Valence:

74.34, arousal: 79.46

Anusha et al. [217] 2018

TSST,

Stroop

Color Word

test, Mental

Arithmetic

test

L 34 No Baseline, stress EDA, ECG, SKT LDA, QDA, SVM, 3-NN, LOSO (EDA+SKT) 97.13%

Sirisha Devi et al. [218] 2019 DEAP L 50 Valence, arousal
EEG, HR, GSR,

RESP
LDA 93.8%

Xia et al. [219] 2018 Stress L 22 Stress, control EEG, ECG SVM-sigmoid, SVM-RF 10-fold 79.54%

Continued on next page
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Table 3.1 continued from previous page

Author Year Stim Loc # SD Labels Modalities Classifier Val Rec Rate

Agrafioti et al. [169] 2012 IAPS L 31 Yes

Neutral, gore, fear, disgust,

excitement, erotica, game

elicited mental arousal

ECG LDA LOO
active/pas AR: 78/52%

positive/neg VA: <62%

Han-Wen Guo et al. [220] 2016 Movie clips L 25 Yes Positive, negative ECG SVM 71.40%

Hernan F. Garcia et al.

[221]
2016 DEAP L 32 Yes Valence, arousal

EEG, EMG, EOG,

GSR, RSP, T, BVP
SVM

Valence: 88.33%,

arousal: 90.56%

Liu et al. [222] 2005
Cognitive

tasks.
L 15

Anxiety, boredom,

engagement, frustration,

anger

ECG, EDA, EMG kNN; RT; BN; SVM LOO 75%; 84%; 74%; 85%

Wagner et al. [223] 2005
Music

(AuBT)
L 1 Yes

Joy, anger, pleasure,

sadness

ECG, EDA, EMG,

RESP
kNN; LDF; NN LOO 81%; 80%; 81%

Zhu et al. [224] 2016 Daily-living F 18 No
Angle in valence arousal

space
ACC, phone context RR LOSO

Birjandtalab et al. [225] 2016

Physical,

cognitive,

emotional

stress

L 20
Relaxation, physical,

emotional, cognitive stress

ACC, EDA, TEMP,

HR, SpO2
GMM <85%
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Upon the survey, the following observations can be made:

• Elicitation Material: Figure 3.2a shows a histogram with the number of publications surveyed

per elicitation material. As can be seen, videos and films are the most commonly used elicitation

material.
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(b) Number of participants.

Figure 3.2: Histogram of the number of publications surveyed for this document per elicitation material
and number of participants used in the datasets. Figures extracted from [9].

• Constrained vs. Unconstrained setting: Most studies are performed in a lab setting, and

these, on average, achieve higher accuracy. Lab studies are devised to elicit specific emotions,

pre-validated and easily acquired and replicated in an elevated number of subjects with quality

ground-truth annotation. Additionally, often the subjects are asked to remain still, thus, minimising

movement artefacts.

• Number of Subjects: Figure 3.2b shows a histogram with the number of publications surveyed

per number of subjects. As can be seen, the majority of the surveyed publications reported data

for between 1 to 50 participants.

• Subject-dependent vs. Subject-independent: Subject-dependent algorithms achieve on aver-

age higher results than subject-independent. This can be explained by physiological data and

emotions being biased by the subject’s physiological internal and external factors.

• Emotion Models: Most works focus on the implementation of binary classification techniques,

separating arousal from valence and stress from no-stress activities.

• Signal Modalities: Figure 3.3a shows a histogram with the number of publications surveyed per

signal modality. As can be seen, EDA is the most commonly used signal for emotion recognition,
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followed by ECG, respiration, and EEG. Most research studies reported that the classification

performance increases with the increment of the number of signal modalities.
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Figure 3.3: HHistogram with the number of publications across physiological signals and classifiers.

• Classifiers: Figure 3.3b shows a histogram with the number of publications surveyed per classi-

fier. As can be seen, the Support Vector Machine (SVM) is the most prevalent classifier, followed

by K-Nearest Neighbors (K-NN), Random Forest, and Linear discriminant analysis. The SVM algo-

rithm is the most prevalent algorithm in the literature, showing good results and low computational

complexity. Non-traditional deep learning techniques mostly use EEG data, which can be related

to more data being available.

• Dimensionality Reduction: The application of feature selection and data dimensionality reduction

algorithms is reported across the literature [167, 169, 181]. These methods allow to increase the

classification performance, however, at the expense of increased time and computational cost.

• Validation Techniques: To avoid overfitting many works apply K-fold CV, leave one sample out,

or LOSO techniques. The latter allows to obtain subject-independent evaluations, leading to more

generalised results.

• Evaluation Metrics: Accuracy is the most commonly applied metric to evaluate the model’s per-

formance. More detailed metrics, that consider data imbalance and allow the analysis of each

class label separately such as F1-score, Precision and Recall are also reported in the literature

• Class Labels: Most classification tasks are performed on the arousal and valence dimensions.

The stress dimension is also explored in the literature.

Over the past years, advancements in the fields of emotion psychology, computer science and elec-

tronics have endured the growth of affective computing theory and research. These interdisciplinary
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efforts have provided a deeper understanding of emotions, and the development of ubiquitous, fast and

pervasive wearable technology. This culminated in the development of new datasets and the develop-

ment of more intricate machine-learning algorithms, marking a notable step forward in the field.

3.2.2 Machine Learning

The review of the current literature on affective computing showed that most works resort to machine

learning algorithms to perform emotion classification [9]. Machine learning algorithms can be divided

into supervised and unsupervised. In supervised learning [226], a model (h) learns to mathematically

characterize an annotated training set, with the sample (x) and its label (y), with the aim that given a

new unlabelled sample (xnew), the model can predict its class (ŷ “ hpxnewq). The sample is described

through a feature vector, which mathematically characterizes the sample in a multidimensional space.

Each element in the vector represents a particular feature (or attribute) of the sample.

Moreover, the field is divided into traditional machine learning and deep learning approaches. Deep

learning algorithms perform repeated weighted combinations of the input features followed by a non-

linear transformation. Common deep learning algorithms are feedforward neural networks, Convolutional

Neural Network (CNN), Long Short-Term Memory (LSTM), autoencoders, and transformers, among oth-

ers. Deep learning has been shown to achieve state-of-the-art results in many fields, including emotion

recognition. However, they require large datasets to attain accurate predictions and are more complex

to train.

As the previous survey showed, traditional machine learning algorithms are still widely used in the

field of emotion recognition. The most prevalent algorithms are the SVM, K-NN, Random Forest, and

Linear discriminant analysis. The classification performance is dependent on the physiological signal

used as input to learn the model, its labels, and the dataset data. Across the literature, EDA was the

most prevalent signal for emotion recognition, closely followed by ECG, respiration, and EEG.

Moreover, the literature denoted that higher accuracy can be achieved by the exploration of multi-

modal ANS data [70, 9]. The use of simultaneous physiological data is done through two main methods

[10]: feature fusion [227] and decision fusion [89, 228]. In feature fusion, a feature vector is extracted

from each modality and is concatenated to form one main feature vector. The concatenated feature vec-

tor is then given as input to the machine learning algorithm. In decision fusion, a decision/classification

is performed for each modality. Then, the outputs of each classifier are combined to calculate a final

prediction by a voting system. Common voting systems are majority voting, or weighted majority voting

[10]. Both techniques are observed in the state of the art, but there is no clear indication of which method

will return the most accurate prediction.

The current section focuses on the use of traditional machine learning models for emotion recognition

to benchmark the current state-of-the-art datasets, signal modalities, and classification. Multimodal
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data fusion techniques will also be explored to understand how to better deal with multiple sources of

physiological data.

3.3 Methods

To perform the emotion classification task, a data processing pipeline was defined (Figure 3.4). The

pipeline is divided into five steps: data loading, signal pre-processing; feature extraction and selection;

classification; and evaluation. Each step is detailed in the following subsections.

3.3.1 Data

Five publicly available datasets for emotion recognition have been identified, namely: ITMDER [135];

WESAD [88]; DEAP [89]; MAHNOB [126]; and EESD [128]. The datasets were introduced in Section 2.3

and are further detailed in Table 3.2.

Table 3.2: Public datasets explored for emotion classification. The datasets are described by their:
classes; percentage of the number (#) of samples per class (binary ground-truth class 0 and 1), for
Arousal (A) and Valence (V); Demographic Information (DI) with the number of participants, their age (in
years), and gender (Female (F), Male (M)); Device; Sampling rate.

Dataset Classes # Samples per
Class

DI Device Sampling Rate

ITMDER [135] Low-high
arousal/valence A: 0.54 (0); 0.46 (1)

V: 0.12 (0); 0.88 (1)

18
23 ˘ 3.7

10 (F) – 13 (M)
Chest strap and
armband based
on BITalino [229]

1000

WESAD [88] Neutral, Stress,
Amusement + 4
Questionnaires

A: 0.86 (0); 0.14 (1)
V: 0.07 (0); 0.93 (1)

15
27.5 ˘ 2.4

3 (F) – 12 (M)
RespiBAN [229],
Empatica E41

ECG, RESP: 700;
EDA: 4; PPG: 64

DEAP [89] arousal, valence,
Like/dislike,
Dominance and
Familiarity

A: 0.41 (0); 0.59 (1)
V: 0.43 (0); 0.57 (1)

32
16 (F) – 16 (M)

19 – 37
Biosemi Active II2 128

MAHNOB [126] arousal, valence,
Dominance A: 0.48 (0); 0.52 (1)

V: 0.47 (0); 0.53 (1)

27
26.06 ˘ 4.39
17(F) – 13(M)

Biosemi Active II
system

256

Eight-Emotion
(EESD) [128]

Neutral, Anger,
Hate, Grief,
Platonic love,
Romantic Love,
Joy, and
Reverence

A: 0.5 (0); 0.5 (1)
V: 0.5 (0); 0.5 (1)

1
1 (F) Thought

Technologies
ProComp3

256

1 https://www.empatica.com/research/e4/; Accessed on 31/03/2024
2 https://www.biosemi.com; Accessed on 20/02/2024
3 https://thoughttechnology.com/procomp-infiniti-system-w-biograph-infiniti-software-t7500m/; Accessed on
20/02/2024

The emotion recognition problem was defined as two binary classification tasks, for the valence

and arousal dimensions, with class 0 for a negative emotion and class 1 for a positive emotion. The

class labels were translated from the original representation to the 0, 1 classes taking the neutral as 0.
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Moreover, taking the arousal and valence dimensions. It can be noticed that the datasets are heavily

imbalanced, namely the WESAD valence dimension (7% (class 0); 93% (class 1)).

3.3.2 Signal Pre-Processing

Physiological signals usually contain noise and artefacts that can affect the performance of the emotion

recognition system. With this in mind, a pre-processing step was applied to remove noise and artefacts.

Common pre-processing steps include filtering and normalization. Filtering is used to remove noise from

the signal.The following filters were applied:

• Electrocardiography: Finite Impulse Response (FIR) band-pass filter of 300th order and 3 -– 45

Hz cut-off frequency.

• Electrodermal Activity: Butterworth low-pass pass filter of 4th order and 1 Hz cut-off frequency.

• Respiration: Butterworth band-pass filter of 2nd order and 0.1 -– 0.35 Hz cut-off frequency.

• Photoplesthysmography: Butterworth band-pass filter of 4th order and 1 — 8 Hz cut-off fre-

quency.

After noise removal, to reduce the inter-subject variability, the data was normalized per user by X´µ
σ ;

µ: sample average, σ: sample standard deviation; X: physiological data, to X P [0, 1] per subject, Lastly,

the data was segmented into 40-second sliding windows with 75% overlap.

3.3.3 Feature Extraction and Selection

After the data cleaning step, features are extracted from the signals. These follow characteristic signal

properties, e.g. rise time in EDA or HR in ECG, as well as domain-related features, such as time-domain;

frequency-domain; statistical or non-linear features. Time-domain features are extracted from the signal

in the time domain. Frequency-domain features are extracted from the signal in the frequency domain.

Non-linear features are extracted from the signal in the time domain, but they are not linearly related to

the signal.

In total, 570 EDA-based, 373 PPG-based, 322 ECG-based, and 487 respiration-based features were

extracted from each sensor, respectively. The features are described in

Signal Pre-
processing

Feature Extraction 

& Selection Classification EvaluationLoad Data

1

0.4

0.3

Figure 3.4: Typical emotion recognition data classification processing pipeline.
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3.3.4 Classification

From the total of set of extracted features, two methodologies were implemented: feature fusion and

decision fusion. In feature fusion, the data from the diverse sensors was concatenated to form a single

feature vector. In decision fusion, an independent classification is performed for each modality and the

final prediction is obtained by a weighted majority voting system. The weights were obtained by the

classifier accuracy on the validation set (described below), giving more weight to the more accurate

classifiers.

Traditional supervised classifiers were tested, namely: K-NN; Decision Tree; Random Forest; SVM;

AdaBoost; Gaussian Naive Bayes; and Quadratic Discriminant Analysis. More details about these clas-

sifiers can be found in [230] and references therein.

3.3.5 Evaluation

The hyper-parameters for each classifier were optimized using a 4-fold CV on the validation set (Ta-

ble 3.3).

Table 3.3: Hyper-parameters and respective search space across classifiers. The hyper-parameters
were optimized using a grid search with 4-fold CV on the validation set. Nomenclature: number of
features (# features). Information on the parameters can be found in the scikit-learn library [231].

Classifier Parameter Value

Decision Tree

criterion {"gini", "entropy"}
splitter {"best", "random"}
min_samples_split [2, 20]
min_samples_leaf [1, 20]
max_depth [1, 20]

Nearest Neighbors
n_neighbors [1, 10]
leaf_size [1, 10]
p [1, 10]

Random Forest

max_depth [1, # features]
max_features [1, # features]
min_samples_split [2, # features]
min_samples_leaf [2, # features]
bootstrap [True, False]
criterion {"gini", "entropy"}
n_estimators [5, 20]

The 4-fold CV was selected to optimize the number of iterations and the homogeneity in the number

of classes in the training and validation sets. The final classifier evaluation was performed using LOSO.

The classifier with the best performance was used to test and benchmark the emotion recognition per-

formance using decision and feature fusion. The performance of each method was measured using:

Accuracy — TP`TN
TP`TN`FP`FN ; Precision — TP

TP`TN`FP`FN ; Recall -– TP; F1-score — the harmonic

mean of precision and recall, with default average set to "binary". Nomenclature: TP — True-Positive;

FP -– False-Positive; FP -– False-Positive; FN -– False-Negative.
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3.4 Results

Results were divided to describe first the performance for each single modality and afterwards the multi-

modality approach.

3.4.1 Single Modality Models

Table 3.9 shows the results for each sensor modality individually. The results not covered by the literature

were left as empty cells, i.e. in the cases where a dataset did not have the data for a physiological sensor.

The EDA is divided into data collected on the fingers (EDA F row) and in the hand (EDA H row).

Starting the analysis with the ITMDER dataset, it can be seen that data was available for all the

sensors and, throughout the different modalities, the proposed methodology was able to surpass the

state-of-the-art (SoA column) or obtain very competitive results for both the arousal and valence dimen-

sions. For the arousal dimension, the method trained on ECG data (in bold) outperformed the remaining

physiological signals. Across all sensors, the valence dimension attains the highest prediction scores,

but no modality stands out.

For the WESAD dataset, in the arousal dimension, the F1-score drops to 0.0 compared to the accu-

racy value. This means that the class labels were largely imbalanced with none of the test sets having

one of the labels. Analysing all the modalities, the PPG obtained the best performance for the valence

dimension.

For the remaining datasets, no results were reported with comparable configurations to the ones

performed in the current work, hence no comparison is shown.

• Classifiers: The classifiers selected by the grid search are shown in Table 3.4. Across datasets,

different classifiers were selected by their performance. In general, Random Forest and Adaboost

stand out being selected 12 and 11 times, respectively.

Table 3.4: Single-modality experimental results best performing supervised learning classifier per
dataset, sensor modality and emotion dimension. Evaluation obtained using 4-fold CV. Nomenclature:
K-NN; Decision Tree (DT); Random Forest (RF); SVM; Gaussian Naive Bayes (GNB); and Quadratic
Discriminant Analysis (QDA).

ITMDER WESAD DEAP MAHNOB-HCI EESD
Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

EDA H DT RF RF RF SVM SVM AdaBoost SVM AdaBoost AdaBoost
EDA F AdaBoost QDA
ECG AdaBoost RF QDA RF RF AdaBoost
PPG QDA RF AdaBoost RF RF RF AdaBoost AdaBoost
Resp AdaBoost RF RF RF AdaBoost RF QDA AdaBoost AdaBoost QDA

• Features: The features obtained by the forward feature selection algorithm are shown in Table 3.5

and Table 3.6 for the arousal and valence dimensions, respectively. As it can be seen, similar
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features are selected across the different sensor modalities, exploring correlated aspects of each

modality, possibly explaining why no algorithm stands out in accuracy.

Figure 1 shows the features selected for the supervised learning algorithm (Table 3.4 with its

corresponding results shown in Table 3.9). As can be seen, most of the features are selected once

per dataset (value of 1 in the histogram). The exceptions are the features EDA onsets spectrum

mean and PPG signal average which are selected twice for the arousal dimension. For the valence

dimension, the features EDA onsets spectrum mean value are selected 4 times, respiration signal

means 3 times, PPG signal mean 2 times, and ECG NNI (NN intervals) minimum peaks value

twice.

3.4.2 Multi-Modality Models

The experimental results for the decision fusion and feature fusion algorithms are shown in Table 3.10.

Starting with the ITMDER dataset, both the decision fusion and feature fusion methods outperform

the literature (SoA column). Similarly to the single modality classification, higher accuracy is obtained

for the valence dimension.

For the DEAP dataset, both techniques attain a similar performance and surpass the state of the art

for the arousal dimension and valence F1-score.

For the MAHNOB dataset, the proposed methodology is not able to surpass the results of the litera-

ture, however, competitive results are obtained.

In the EESD dataset, decision fusion obtains a better performance compared to feature fusion. How-

ever, the performance is not coherent for the remaining datasets. For the EESD and WESAD no com-

parable results were identified in the literature in equivalent dimensions.

Regarding the computation time (T row), feature fusion is faster than decision fusion and, overall,

shows lower computational complexity. The results highlight an average execution time of up to two

orders of magnitude lower compared to decision fusion. The computation was performed using Python

3.7.4; in a computer with Memory: 16 GB 2133 MHz LPDDR3 and Processor of 2.9 GHz Intel Core i7

quadruple core. This factor along with the similar prediction accuracy across the two methods (with no

multi-modality method standing out) highlights the feature fusion method which will be further analyzed

next.

Table 3.7 shows the classifiers used in each dataset per dimension for the feature fusion method.

Once again, the results are heavily dependent on the algorithm, with no classifier standing out and

being selected more than the average. Table 3.8 shows the feature selected in each classifier (shown

in Table 3.7 with the results shown in Table 3.10). The experimental results show that, similarly to

supervised learning, most features are fitted for each dataset, with none in common being selected

across the datasets.
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Table 3.5: Features selected for the arousal dimension in the single-modality methods, i.e. supervised learning and decision fusion. Results obtained using
4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD

EDA
H

peaksOnVol_minpeaks
EDRVolRatio_iqr
onsets_temp_dev EDA_onsets_spectrum_mean

onsets_spectrum_mean
half_rec_minAmp

half_rec_rms
amplitude_dist

onsets_spectrum_statistic_hist43
rise_ts_temp_curve_distance

phasic_rate_maxpeaks
onsets_spectrum_meddiff
EDRVolRatio_zero_cross

phasic_rate_abs_dev
onsetspeaksVol_minpeaks

EDA
F onsets_spectrum_statistic_hist81

peaksOnVol_iqr
six_rise_autocorr

ECG
statistic_hist73, statistic_hist115

hr_sadiff
statistic_hist7

statistic_hist137

mean
rpeaks_medadev

hr_meandiff
hr_mindiff

PPG hr_max
hr_meandiff mean mean

spectral_skewness
temp_curve_distance

statistic_hist18
statistic_hist13
statistic_hist15

meddiff

RESP exhale_counter
inhExhRatio_iqr statistic_hist0 mean

hr_total_energy
meandiff

statistic_hist95
inhale_dur_temp_curve_distance

statistic_hist27
hr_meandiff

exhale_meanadiff
max, zeros_mean
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Table 3.6: Features selected for the valence dimension in the single-modality methods, i.e. supervised learning and decision fusion. Results obtained using
4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD

EDA H
onsets_spectrum_mean

rise_ts_temp_curve_distance
rise_ts_medadev

onsets_spectrum_mean onsets_spectrum_mean onsets_spectrum_mean
amplitude_mean

onsets_spectrum_meanadev
half_rise_medadev

onsets_spectrum_statistic_hist9
EDRVolRatio_medadiff

half_rec_minpeaks

EDA F
onset_peaks_Vol_max

half_rise_mean, peaks_max
onsets_spectrum_statistic_hist120

half_rec_meandiff
onsets_spectrum_statistic_hist91

half_rise_var
peaks_Onset_Vol_skewness

ECG nni_minpeaks nni_minpeaks
statistic_hist95

rpeaks_meandiff
max

mindiff

PPG

statistic_hist44
meanadiff

hr_meanadiff
onsets_mean
hr_meandiff

median
minAmp mean

mean
statistic_hist16
statistic_hist5

statistic_hist31
meddiff

Resp
mean

exhale_median
statistic_hist196

mean mean

hr_maxpeaks
statistic_hist55

zeros_skewness
statistic_hist36

iqr
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Table 3.7: Classifier used in the multi-modal feature fusion method for the arousal and valence dimension. Results obtained using 4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD
Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

Classifier SVM RF QDA SVM QDA GNB GNB QDA DT RF

Table 3.8: Features used in the multi-modal feature fusion method for the arousal and valence dimension. Results obtained using 4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD
Arousal

EDA_H_onsets_spectrum_mean
BVP_median

ECG_min
Resp_statistic_hist64

Resp_zeros_sadiff
BVP_statistic_hist29

EDA_phasic_rate_total_energy
EDA_rise_ts_mindiff
Resp_statistic_hist25

Resp_inhExhRatio_maxpeaks
EDA_phasic_rate_iqr

Resp_inhExhRatio_zero_cross
Resp_inhExhRatio_skewness

ECG_rpeaks_meanadiff
ECG_minpeaks
Resp_meandiff

EDA_onsets_spectrum_minAmp
EDA_onsets_spectrum_statistic_hist22

ECG_hr_dist
EDA_onsets_spectrum_statistic_hist62

Resp_exhale_max
EDA_amplitude_kurtosis

Valence

EDA_H_peaksOnVol_minAmp
BVP_mean

EDA_F_EDRVolRatio_total_energy
EDA_H_onsets_spectrum_statistic_hist112

BVP_median
ECG_dist

ECG_zero_cross
ECG_statistic_hist143

Resp_statistic_hist60
EDA_half_rise_dist

BVP_statistic_hist10
BVP_statistic_hist39

EDA_half_rise_temp_curve_distance
BVP_hr_maxAmp

ECG_meanadiff
EDA_rise_ts_meandiff
Resp_inhale_dur_dist

EDA_onsets_spectrum_statistic_hist5

EDA_amplitude_mean
BVP_statistic_hist35

Resp_rms
Resp_zeros_meandiff

EDA_onsets_spectrum_statistic_hist22
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3.5 Discussion

In response to RQ 1.1, (on exploring the literature sensor modalities, supervised learning classifier, and

specific features for emotion recognition) a comprehensive analysis of the literature on emotion recog-

nition using physiological data was performed. The survey identified the most prevalent physiological

signals used in the literature as EDA, ECG, and respiration, explored using traditional machine learning

models such as the SVM, K-NN, and random forest. The use of this data was explored on predominant

datasets in the literature, namely: ITMDER, WESAD, DEAP, MAHNOB, and EESD to perform binary

arousal and valence classification. The experimental results showed that very similar results were ob-

tained across classifiers and sensors, possibly due to the redundant features being selected across

sensor modalities (see Table 3.5). Further work could focus on exploring different feature extraction and

selection methods, or the use of deep learning techniques that can overcome many of the concerns

regarding feature extraction and selection.

In response to RQ 1.2, (on what is the expected performance range for emotion classification), the

results showed that the performance of emotion recognition is highly dependent on the dataset. The

F1-score ranges from a very poor performance score of 0% to an elevated performance of around

97%, depending on the dataset. On the whole, higher prediction scores are obtained for the valence

dimension. This could result from the models being fitted to each dataset, with its specific characteristics,

sensor types, body sites, and data collection protocols. Future work could also explore transfer learning

or the development of a methodology that could be applied across the different dataset setups.

Lastly, regarding RQ 1.3 (on the exploration of the optimal method to deal with multi-modality), the

use of feature fusion was explored against decision fusion. Comparing the results of using a single

modality to multi-modality, the latter can either preserve or surpass the results from using a single

modality, depending on the dataset and dimension, however, the feature fusion was faster and showed

a lower computational complexity. These results are in line with the results found in the literature [89],

3.6 Conclusion

The field of affective computing has experienced enormous growth in the latter years [9], however,

many of its applications are still in their infancy as the current effort in the field is on the development

of emotion recognition algorithms and their underlying structure. This chapter addressed Obj 1. on

the Development of Affective Computing Algorithms, namely RQ 1.1 to 1.3 which focused on critical

aspects to deploy emotion recognition systems, namely the selection of sensor modalities, supervised

learning classifiers, and features for emotion recognition, the expected performance range for emotion

classification, and the optimal method to deal with multi-modality.
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Through this analysis, this part of the thesis benchmarks emotion recognition in terms of low/high

arousal and valence through the most prevalent physiological signals identified in the literature [9]: ECG,

EDA, respiration and PPG. The experimental results obtained using the proposed methodology show

comparable to superior results to those described in the literature. Although very similar results were

obtained across the modality fusion algorithms, feature fusion showed a lower processing time (up to two

orders of magnitude lower) when compared to decision fusion. Moreover, employing multi-modality by

feature fusion either maintained or exceeded the performance of single-modality approaches in emotion

recognition.

On the whole, this chapter extends the state-of-the-art by: 1) Benchmarking the emotion recognition

classification performance for supervised learning classifiers, modality signals and extracted features in

terms of accuracy and F1-score, surpassing the literature for some of the identified datasets; and 2)

Analysing multi-modal approaches, namely feature fusion and decision fusion.

Lastly, the analysis revealed a significant limitation in the current state of the art: the public datasets

discussed were all collected in laboratory settings and exclusively in individual contexts. This approach

overlooks the performance of emotion recognition in real-world scenarios and neglects the influence

of group dynamics on emotion recognition. The subsequent chapter (Chapter 4) will shift the focus

from individual-level to group-level emotion recognition, aiming to assess the performance of emotion

classification within group scenarios.
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Table 3.9: Emotion classification single-modality experimental results in terms of the classifier’s accuracy (1st row) and F1-score (2nd row) in %. Results are
obtained using LOSO. Nomenclature: State-of-the-art results (SoA, [135]); EDA obtained on a device placed on the hand and finger, respectively (EDA H, EDA
F). The best results are shown in bold.

ITMDER WESAD DEAP MAHNOB-HCI EESD
Arousal SoA Valence SoA Arousal Valence Arousal Valence Arousal Valence Arousal Valence

EDA 59.65 ˘ 13.46 57.2 89.26 ˘ 17.3 72.1 85.78 ˘ 16.55 92.86 ˘ 11.96 58.91 ˘ 15.21 56.56 ˘ 9.07 50.61 ˘ 21.84 56.43 ˘ 34.84 59.38 ˘ 16.24 68.75 ˘ 18.75
H 40.74 ˘ 26.0 93.2 ˘ 12.37 0.0 ˘ 0.0 95.86 ˘ 6.99 72.91 ˘ 12.92 71.83 ˘ 7.42 47.53 ˘ 31.47 64.63 ˘ 34.57 56.82 ˘ 20.8 66.71 ˘ 23.1
EDA 56.03 ˘ 11.0 57.2 90.91 ˘ 11.29 72.1
F 45.67 ˘ 20.01 91.24 ˘ 18.75
ECG 68.33 ˘ 5.58 65.6 89.26 ˘ 17.3 70.0 85.75 ˘ 16.61 92.86 ˘ 11.96 49.36 ˘ 37.5 59.15 ˘ 24.5

58.79 ˘ 21.54 93.2 ˘ 12.37 0.0 ˘ 0.0 95.86 ˘ 6.99 53.0 ˘ 39.62 56.58 ˘ 32.61
PPG 58.44 ˘ 12.69 66.0 89.35 ˘ 17.23 69.5 85.78 ˘ 16.55 94.39 ˘ 9.98 58.88 ˘ 15.19 56.56 ˘ 9.07 67.5 ˘ 13.35 66.25 ˘ 16.35

45.91 ˘ 25.24 93.25 ˘ 12.34 0.0 ˘ 0.0 96.68 ˘ 6.01 72.9 ˘ 12.91 71.83 ˘ 7.42 66.98 ˘ 15.95 64.49 ˘ 22.07
RESP 62.37 ˘ 16.83 58.5 89.26 ˘ 17.3 62.9 85.78 ˘ 16.55 92.86 ˘ 11.96 58.83 ˘ 14.78 56.56 ˘ 9.07 50.62 ˘ 21.25 46.57 ˘ 20.67 72.5 ˘ 12.87 67.5 ˘ 10.0

51.79 ˘ 23.16 93.2 ˘ 12.37 0.0 ˘ 0.0 95.86 ˘ 6.99 72.6 ˘ 12.74 71.83 ˘ 7.42 44.28 ˘ 31.66 48.27 ˘ 28.44 70.12 ˘ 15.72 57.92 ˘ 15.12

Table 3.10: Experimental results for the feature fusion and decision fusion methodologies in terms of Accuracy (A) and F1-score (F1), and time (T) in seconds,
per dataset for the arousal dimension. Results obtained using LOSO. The SoA column contains the results found in the literature (ITMDER [135], DEAP [89],
MAHNOB-HCI [126]). The best results are shown in bold.

ITMDER WESAD DEAP MAHNOB-HCI EESD
Arousal SoA Valence SoA Arousal Valence Arousal SoA Valence SoA Arousal SoA Valence SoA Arousal Valence

DF

A 66.7 ˘ 9.0 58.1 89.3 ˘ 17.3 57.12 85.8 ˘ 16.5 92.9 ˘ 12.0 58.9 ˘ 15.2 56.6 ˘ 9.1 54.7 ˘ 13.3 58.1 ˘ 6.1 75.0 ˘ 14.8 75.6 ˘ 17.9
F1 50.9 ˘ 23.5 93.2 ˘ 12.4 0.0 ˘ 0.0 95.9 ˘ 7.0 72.9 ˘ 12.9 71.8 ˘ 7.4 63.8 ˘ 15.8 68.1 ˘ 8.9 73.4 ˘ 16.4 72.4 ˘ 22.5
T 1.5 ˘ 0.0 1.35 ˘ 0.0 2.04 ˘ 0.0 2.0 ˘ 0.0 1.58 ˘ 0.0 1.73 ˘ 0.0 1.1 ˘ 0.0 1.35 ˘ 0.0 0.6 ˘ 0.0 0.7 ˘ 0.0
FF

A 87.6 ˘ 16.7 89.26 ˘ 17.3 87.6 ˘ 16.7 92.9 ˘ 12.0 60.0 ˘ 13.9 57.0 56.9 ˘ 8.2 62.7 55.2 ˘ 15.4
64.2
57

55 ˘ 3.9
56.0 ˘ 10.2

68.7
62.7
57.5

˘ 3.9 60.0 ˘ 18.4 68.7 ˘ 22.2

F1 19.4 ˘ 34.4 93.2 ˘ 12.4 19.4 ˘ 34.4 95.9 ˘ 7.0 67.3 ˘ 23.8 53.3 70.7 ˘ 7.6 60.8 67.5 ˘ 16.6 59.0 ˘ 15.1 56.7 ˘ 22.5 67.7 ˘ 24.7
T 0.02 ˘ 0.0 0.02 ˘ 0.0 0.02 ˘ 0.0 0.07 ˘ 0.01 0.02 ˘ 0.01 0.02 ˘ 0.0 0.01 ˘ 0.0 0.01 ˘ 0.0 0.0 ˘ 0.0 0.01 ˘ 0.0
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Chapter 4

Group Emotion Recognition

As detailed in Section 2.4, group dynamics such as emotion contagion and mimicry can lead to changes

in individual-level emotions and the emergence of macro-level phenomena, the Collective Emotions.

These phenomena, akin to individual emotions, can be detected through physiological signals.

The current chapter further contributes to Obj 1. on the Development of Affective Computing Algo-

rithms, namely RQ 1.4 and 1.5, by exploring the performance of emotion recognition in group settings.

This is achieved by analysing various physiological synchrony measures to measure emotional transfers

within groups and proposing a novel approach that integrates the group context into emotion recognition

using physiological signals.

The contents within this chapter were adapted, with permission, from:

• P. Bota, T. Zhang, A. El Ali, A. Fred, H. P. da Silva, and P. Cesar, “Group synchrony for emo-

tion recognition using physiological signals,” IEEE Trans. on Affective Computing, vol. 14, no. 4,

pp. 2614–2625, 2023
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4.1 Introduction

Humans are social beings, spending a large amount of time in collective activities, either at work, for

leisure or at home [232]. In such contexts, our emotions are adapted to the group and its members

[149, 233]. The use of group information towards emotion classification in audiovisual sources is vastly

explored, largely motivated by challenges such as the "Emotion Recognition in the Wild" (EmotiW),

which focused on group emotion analysis using images (EmotiW2018 [234] in 2018), and audio and

video (EmotiW2020 [235] in 2020). Within this challenge, hybrid approaches – combining information

from both the individual-level emotion and environment context – have shown to result in overall higher

accuracy and have become the predominant approach. However, these approaches are mostly tested

for images/video, which focused on overt (visible) behavioural features, and not on physiological signals

[236].

The literature on collective emotions [237] (see Section 2.4) reports that in group scenarios, in-

dividuals have shown spontaneous and unintended similarities in their physiological and behavioural

responses [238] – phenomena denoted as physiological synchrony [239], i.e. the inter-dependency or

temporal interaction between the physiological data of two or more individuals. Physiological synchrony

is closely related to emotional states given that physiological responses are body expressions of emo-

tions (see Section 2.2) [5]. Physiological synchrony has been identified in numerous works through

peripheral data across different types of relations, such as parent-child, couples, therapist-client, or so-

cial interactions [240, 241]. However, the field of emotion recognition using physiological data has mostly

focused on intrapersonal emotion assessment [9, 242], disregarding group-related phenomena such as

emotion contagion and physiological synchrony. There is a gap in the use of physiological signals for

emotion recognition exploring group interactions, which is the problem addressed in this chapter.

This chapter transitions from individual-level emotion recognition to explore a novel methodology

that explores physiological synchrony by performing a weighted average of the groups’ emotion class

labels to predict the label of an unknown subject. The weights are given by the physiological synchrony

between the unknown subject and each member of the group. This approach is explored through the
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following research questions:

RQ 1.4: What synchronization metrics and data representations are most suitable for measuring

physiological synchrony for emotion recognition?

RQ 1.5: Does the emotion classification accuracy improve with the inclusion of group-level infor-

mation?

In summary, this chapter seeks to fill the gap identified in the state of the art regarding group emotion

recognition based on peripheral physiological data (in particular, EDA and HRV). Moreover, it explores

the potential to improve the accuracy of emotion recognition systems by integrating group context infor-

mation through a novel metric that incorporates measures of physiological synchrony.

4.2 Background

This section provides an overview of the state of the art on group emotion recognition, the metrics used

to measure physiological synchrony, and the datasets that incorporate group physiological data.

4.2.1 Group Emotion Classification

The use of the group context has been successfully employed for emotion recognition in the field of

audiovisual content analysis [243], namely through hybrid and top-down approaches [244, 245]. In

these methods, in addition to the subjects’ facial expressions, information from the global scene is also

used, i.e. global features such as skeleton features, and visual attention mechanisms are combined

to perform the emotion classification tasks. Similarly, in the field of emotion recognition from speech,

group information has also been taken into consideration, namely in dyad conversations [243, 246]. In

[243], the authors apply a SVM to predict the listener/speaker emotion by using the facial features and

the emotion prediction of the speaker/listener using a SVM over the listener acoustic features. The

classification improved when including cross-subject features. In [247], the authors analyze whether the

emotional reaction of one individual can be assessed by the emotional response of their partner in a dyad

cooperation task, exploring physiological and speech data. The models were trained to predict emotional

and non-emotional moments using a linear SVM and a random forest classifier. The results showed that

the emotion classification performance increases when combining information from the two subjects. In

[246], the authors incorporate time-lagged cosine similarity features on a latent representation from an

adapted ResNet architecture performing emotion recognition during dyad conversations using video and

audio data. Once again, the experimental results showed that the interpersonal method outperformed

the model based on individual features only.
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The aforementioned works reinforce the success of integrating group information in emotion assess-

ment, however, these works are based on audio-visual or speech features and focus mostly on dyadic

interactions. The study of interpersonal features extracted from physiological data in larger groups was

only found in the work by [242]. The authors assess the individual’s multi-label categorical emotional

state using speech and PPG during group tasks used as input to a transformer encoder block with po-

sitional encoding, followed by a bi-LSTM model [242]. The method takes into consideration the group

atmosphere given by the aggregation of each group-member score in a self-supervised graph attention

network (SuperGAT) relying on cosine similarity, surpassing all the baseline methods in the NTUBA

dataset [248] (a dataset from acoustic and PPG within small-group conversation). The literature lacks

further validation as it was only tested for a few datasets/use cases (e.g. of three-person small group

conversations in [248]). Additionally, the latter work relies on external displays of affection (speech) and

does not explore alternative similarity metrics to cosine similarity.

Overall, the literature review shows that the integration of group information in emotion classification

tasks can improve classification performance, namely when applied to audiovisual data and in dyadic

conversations. Moreover, group emotion recognition based on physiological data is still largely unex-

plored, and there is a lack of information regarding which synchronization metrics and data represen-

tations better describe physiological synchrony, and whether they are replicable across group-related

activities (i.e. conversation versus watching a movie).

In this part of the thesis, these challenges are addressed by: 1) Proposing a novel approach inte-

grating group context for emotion recognition using physiological data; 2) Performing a diverse analysis

of physiological measures and data representations; and 3) Applying our method across two datasets

acquired under different group use cases.

4.2.2 Metrics for Physiological Synchrony

In the literature, a broad range of physiological signals have been used to analyze physiological syn-

chrony including [249]: cardiovascular (e.g. ECG, PPG and HRV-related); respiratory (e.g. respiratory

rate, respiratory volume time); electrodermal activity (e.g. EDR, EDL); and thermal (e.g. skin tempera-

ture). In this chapter, emphasis is given to signals that can be obtained unobtrusively and continuously

from a group, and that have low latency so that they can be applied in real-time and in daily living. There-

fore, from the explored signals in the previous chapter, the EDA and cardiovascular activity, namely PPG

and the derived HRV were selected, as they have been proven to be insightful views into the subject

emotions [9] and allow for continuous and unobtrusive data collection over long periods in daily living.

In contrast to sensors like ECG or respiration, which require multiple point contact (e.g. ECG) or are

placed in intrusive body locations such as the chest (e.g. respiration).

In a survey analysing over 61 works [249], the authors report high ambiguity in using EDA to assess
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physiological synchrony, with many papers identifying synchrony in dyads both using EDL [250], and

EDR [251], while others not (in EDL) [252]. Similar findings are obtained for inter-group analysis, with

the authors in [253] identifying synchronization between strangers, unlike the authors in [254]. Although

the experimental results are conflicting, there is evidence of physiologically related synchrony through

EDA measures [241].

Cardiovascular activity can be assessed through HR [255, 256], inter-beat interval [238, 257], or

HRV-related features [257, 258]. Similarly to the EDA signal, there is still little consensus in the lit-

erature. Physiological synchrony is identified in dyadic conversations through differential equations in

[259], audience members and dancers [260] in R-peaks through regression. The opposite is described

in [261], where no synchrony was identified in groups of 10 individuals at rest and listening to music. For

a more detailed description of the works and findings in the literature about physiological synchrony and

related areas, the reader is referred to [249].

Overall, although the literature on physiological synchrony is unclear due to factors such as the

diversity of signal sources, analysis metrics, protocol setups, or due to the task itself or activity that was

studied, numerous papers confirm the existence of physiological synchrony in EDA and HR [249, 259].

4.2.3 Physiological Datasets for Group Emotion Recognition

The literature [237] reports that group dynamics such as emotion contagion can occur even without

face-to-face interactions or non-verbal clues (e.g. social media). Nummenmaa et al. [262] describe five

types of physiological synchrony in groups: a) Independent units (group sharing physical presence but

in independent tasks); b) Externally driven (e.g. group watching a movie); c) Leader-follower/sequential

interaction (e.g. meeting); d) Dynamic interaction (e.g. conversation); and e) Group interaction (e.g.

group cooperative tasks) [263].

In this chapter, two of these conditions are analysed (dynamic interaction in dyadic conversation, and

externally driven by video watching) by using two publicly available datasets. The datasets were selected

according to the following requirements: 1) Contain group data (ě 2 individuals); 2) Contain unobtrusive

physiological data, namely EDA and cardiovascular data; and 3) Data is continuously annotated in terms

of arousal and valence for long-duration naturalistic scenarios (ě 10 minutes) to elicit group-emotion

related phenomena.

The selected datasets were AMIGOS and K-EmoCon. AMIGOS [87] contains physiological (EDA,

ECG, and EEG) and audio-visual (face and full-body video) data collected both in groups (4 individu-

als) and individual settings. The dataset includes data from 37 subjects watching 4 long videos (ą 14

minutes) and 16 short video clips (ă 4 minutes). The data was continuously annotated P [-1, 1] in va-

lence/arousal by 3 experts at 20-second intervals. Only data collected in groups was used in this work.

K-EmoCon [137] contains physiological (EDA, PPG, EEG), and audiovisual (face, gesture, speech) data
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collected during naturalistic dyadic conversations, namely a debate on social issues. The dataset con-

tains 16 sessions of approximately 10 minutes each. The data was annotated by the debate partner, and

an external annotator in a [1, 5] scale at 5-second intervals, both using a valence/arousal space and 18

categorical emotions (see Chapter 7). Herein, external annotations are used to maintain the coherency

between the two datasets. A summary description of the datasets is shown in Table 4.1. The labels

were divided in binary classification, taking the value of 0 as a threshold to separate the binary classes

(of -1 and 1), -1: ă 0; 1: ą“ 0 for valence and -1: ă“ 0; 1: ą 0 for arousal.

Table 4.1: Characerisation of the AMIGOS and K-EmoCon datasets class labels. Nomenclature: Arousal
(A); Valence (V); and Quantity (#). Group Homogeneity refers to the % of samples in which all members
in the group (except the unknown subject) have equal class labels. A sample size of 20 seconds was
considered for both datasets.

Label AMIGOS K-EmoCon
A V A V

-1 81.12 71.23 80.67 08.08
1 18.88 28.76 19.32 91.92
# samples 43327 3192
Group Homogeneity 70.50 ˘ 7.10 69.19 ˘ 7.40

4.3 Methods

The proposed approach is denoted as WGS, described in Equation (4.1). In a group context of N

subjects, the label of an unknown subject (ŷs) is given by the weighted average of the remaining group

members’ labels:

ŷs “

N´1
ÿ

i“1

W iyi (4.1)

Where W are the weights denoting the synchronization between the unknown individual s and each

of the remaining group-member i. The physiological synchronization is given by:

W i “ Sphi, hsq (4.2)

Where h is the data representation and S is the similarity metric used to obtain the synchronization

between two subjects. When the similarity metric returns a distance d instead of correlation, it is con-

verted by S “ 1
1`d . The ŷs P {´1, 1}, consists of a binary problem. When a negative correlation occurs

(S ď 0), the subject s is given the opposite label of subject i while, for a positive correlation, the label of

the subject i is given. Then, the assigned labels are added and weighted by the synchronization value

between the unknown subject and its group members’ class labels. When the group consists of a dyad,

W is always 1 or ´1, and the unknown subject is given the label of the other member in case of a positive
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correlation, or the opposite label for a negative and zero correlation.

4.3.1 Workflow

An overview of the tested methodologies is shown in Figure 4.1. Two alternative inputs were first tested:

The IA pathway, where the EDA morphology (EDA, EDR and EDL time signals), EDA and HRV hand-

crafted features, and images (EDA spectrogram and recurrence plot) are used as input to a neural

network where a higher representation is learned to compute the subjects’ emotion label in the MA or

MB steps. Or the alternative IB path, where no latent representation is used and the data inputs for the

neural network (namely, EDA morphology – EDL and EDR; and EDA and HRV hand-crafted features)

are used as input for the MA or MB steps to obtain the emotion prediction.

After the input representation is defined (IA or IB), two pathways are proposed, MA and MB, in

which the interpersonal and intrapersonal models are tested, respectively. In the MA approach (inter-

personal model), group synchrony is performed where the subject emotion classification is performed

based on the synchronization between the unknown subject sample and the group members’ samples

(WGS method). The group synchronization method was tested in two pathways: weighted (CA) – where

a weight is given according to the synchronization value; and average pooling (CB) – where a non-

weighted average is performed so that the synchronization metrics are not considered.

If the MB path is selected (intrapersonal model), two methods were tested: classification by classic

machine learning algorithms (ML); or the implementation of a deep learning classifier (DL), using the

feature extraction layer from the IA path with the addition of a sigmoid activation function to get a binary

arousal/valence classification.

Group Synchrony

Intrapersonal Model

Representation 
Space Method

Deep 
Learning

Machine 
Learning

Weighted 

Average 
Pooling

CB

CA

DL

ML

MA

MB

IA

IB

Neural 
Network

Learned 
RepresentationInput

Figure 4.1: Workflow of the tested methodologies. The squares in orange refer to alternative pathways.
The IA and IB paths refer to two alternatives for the input formats: with and without crossing a neural
network. The MA and MB pathways refer to the application of interpersonal and intrapersonal models,
respectively. When applying MA (interpersonal model), both a weighted (CA) and non-weighted (average
pooling, CB) approach were tested. For the intra-personal model, the application of deep learning (DL)
and machine learning (ML) was tested.
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4.3.2 Synchronisation Metrics

To measure physiological synchrony, a set of eight synchronization metrics was considered following two

criteria: The first considers the six physiological constructs of physiological synchrony identified in [249]

– magnitude, sign, direction, lag, timing, and arousal. Magnitude is determined through Pearson, cosine

similarity and Euclidean distance. The sign is determined through Spearman correlation. Direction and

lag is determined through Dynamic Time Warping (DTW). Arousal is determined by using EDA data as

a correlate for SNS activity. The second criterion considered synchrony metrics found in previous works

on the study of physiological synchrony confirming its existence in EDA and HR.

1. Pearson Correlation P [-1, 1]: measures the linear correlation between two signals, from nega-

tively correlated to a perfect correlation. Pearson correlation can be interpreted as synchroniza-

tion magnitude, being one of the most commonly applied metrics in the literature as shown by

[264, 265].

2. Spearman Rank Correlation P [-1, 1]: analyses the rank-correlation between two signals, from

negatively correlated to a perfect correlation, enabling the measurement of the synchrony sign

value, i.e. whether signals have the same or opposite dynamics and is applied in [266, 267].

3. Cosine Similarity P [-1, 1]: measures the normalized inner product between two signals, and has

been used as a magnitude construct of physiological synchrony in [242].

4. Euclidean Distance P [0, `8]: measures the Pythagorean distance between two signals and has

been used as a magnitude construct of synchrony in [268].

5. Recurrence Plot, R6 P [0, `8]: The aforementioned metrics are linear, fitting for stationary data

with constant mean and variance throughout time. However, physiological data is non-stationary

and can show temporal dependency [249]. Recurrence plots allow the characterization of temporal

cyclic trends in signals, by filling in the times in which a phase-space trajectory is repeated. Recur-

rence plots can be found in the literature in [269, 270]. To compare different recurrence plots, six

recurrence quantification analysis metrics were extracted: recurrence rate, determinism, average

diagonal line length, longest diagonal line length, divergence, and entropy diagonal lines1.

6. DTW P [0, `8]: computes the distance between two signals, but instead of calculating the vertical

Euclidean distance between the signals, calculates the Euclidean distance across the smallest

paths, allowing a temporal synchronization between the signals. The DTW takes into consideration

the timing and lag construct of synchronization. The DTW is applied in [271, 272].

1https://github.com/bmfreis/recurrence_python; Accessed on 20/02/2024
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7. Cross-correlation P [0, `8]: takes into consideration a lag parameter of physiological synchrony

to compute the time-shifted correlation between the two signals, using the SciPy correlate function2

with mode equal to full, from which the maximum value was obtained to identify the moment of

maximum synchrony.

8. Coherence (Spectral Correlation) P [-1, 1]: consists of Pearson correlation computed in the

frequency domain. The use of spectral metrics is described in the literature to assess synchrony

magnitude in [273, 274].

By analysing diverse similarity metrics that explore different characteristics of the data, the work

within this chapter further expands the state-of-the-art of emotion recognition using unobtrusive physio-

logical signals.

4.3.3 Data Representation

Given the diversity found in the literature on physiological synchrony, diverse data representation to

compute physiological synchrony for emotion recognition were explored:

1. Signal Morphology: Corresponds to the cleaned and processed signal in the time domain. For

the AMIGOS dataset [87], this work relies on the processed data given by the authors. Regard-

ing the EDA data, the data was further processed by removing existent spikes using the modified

Z-score3, the signal was filtered using a Butterworth low-pass filter of 4th order with a cut-off fre-

quency of 5 Hz, and a smoother filter with a window of 0.25 seconds. Afterwards, the signal

was normalised (y´µ
σ , µ: sample mean; σ: sample standard deviation) for each trial. The ECG

signal was filtered using a FIR bandpass filter or 30rd order P [3, 45] Hz and the R-peaks were

computed using the BioSPPy Hamilton segmenter [275]. For the K-EmoCon dataset, the PPG is

used to extract the heartbeat peaks. The PPG was filtered using a 4th order Butterworth band-

pass filter with 1 – 8Hz cutoff. The heartbeat peaks were extracted using the BioSPPy extractor

[276] footnotehttps://github.com/scientisst/BioSPPy; Accessed on 20/02/2024. According to

[277], the duration of an emotional response ranges from 0.5 to 4 seconds, reproducing changes

in physiological data from 3 to 15 seconds [278]. In both datasets, the data were segmented in

20-second windows with 75% overlap. The EDA data was decomposed into the EDR and EDL

components using the cvxEDA library [279].

2. Image: Spectrograms are used to collect spectral information and recurrence plots and character-

ize non-periodic and non-stationary signals. Both have been applied for emotion recognition with

state-of-the-art results in the works of [280, 281].

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html; Accessed on 20/02/2024
3https://towardsdatascience.com/removing-spikes-from-raman-spectra-\8a9fdda0ac22; Accessed on 20/02/2024
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3. Hand-crafted Features: A total of 26 features were extracted from the EDA data based on the

work by [282], and 76 features from the ECG interbeat intervals. Redundant features (with ą 85%

correlation) were removed, resulting in 21 for the EDA and 31 features for the HRV. The extracted

features are detailed in Table 4.2.

An example with the data representations is shown in Figure 4.2. Figure 4.2 – a, shows the mor-

phological space representation (EDA, EDR and EDL) for one sample (20 seconds) extracted from the

AMIGOS dataset. Figure 4.2 – b and c, display a spectrogram and recurrence plot applied on the signal

from Figure 4.2 – a, using a Viridis colourmap. Signal morphology (Figure 4.2 – a) and hand-crafted

features, were used as the data space input to compute the synchrony between two subjects in the

WGS method (MA path – interpersonal model). These two spaces, along with the image-based space

(Figure 4.2 – b and c) were used as input for a binary arousal/valence classifier, for both a final classifi-

cation in the MB path – intrapersonal model; and to learn a higher level representation in which the WGS

was applied (MA path – interpersonal model). Table 4.3 displays a summary with the synchronization

metrics applied for each data type in the MA path – interpersonal model. The data types were divided

into morphology and feature-based. The morphology space includes the EDA components (EDR and

EDL) through path IA and IB in Figure 4.1, while the feature-based includes EDA and HRV features

used also in both IA and IB paths in Figure 4.1. The image representation is not included since it was

not used to obtain the subjects’ synchronization, only as input for the neural network in the IA path in

Figure 4.1, with which a feature-based latent representation was learned and then used to calculate the

physiological synchronization and the emotion classification label.

Table 4.2: Features extracted from the EDA and RR-interval signals. Features are detailed in Table B 1
and the code for the features is available in the chapter’s repository4.

Data AMIGOS [87] K-EmoCon [137]

EDA len pks, pks amp, rise ts, sum
pks amp, sum rise ts, sum areas,
mean EDA, std EDA, kurtosis EDA,
skew EDA, mean 1sder, mean neg
1sder, GSR respEnerg, sum spec,
EDR area, spect kurt, mobility, com-
plexity, zero Cross, mfcc kurt, mfcc
mean

len pks, pks amp, sum areas, mean
EDA, std EDA, kurtosis EDA, skew
EDA, mean 1sder, mean neg 1sder,
GSR respEnerg, sum spec, EDR
area, spect kurt, mobility, zeroCross,
mfcc kurt, mfcc mean

RR nni counter, hr mean, nni diff mean,
nni diff min, nn50, pnn20, tinn n,
tinn, tri index, fft peak VLF, fft peak
LF, fft peak HF, fft abs VLF, fft rel
VLF, fft rel LF, fft ratio, lomb peak
VLF, lomb peak LF, lomb peak HF,
lomb abs VLF, lomb abs LF, lomb rel
VLF, lomb rel LF, lomb rel HF, lomb
log VLF, ar peak VLF, ar peak LF, ar
peak HF, sd ratio, ellipse area, sam-
pen

nni counter, hr mean, nni diff mean,
nni diff min, nni diff max, nn50, nn20,
tinn n, tinn, tri index, fft peak VLF, fft
peak LF, fft peak HF, fft abs VLF, fft
abs HF, fft rel VLF, fft rel LF, fft ratio,
lomb peak VLF, lomb peak LF, lomb
peak HF, lomb abs VLF, lomb abs
LF, lomb rel VLF, lomb rel LF, lomb
rel HF, lomb log LF, ar peak VLF, ar
peak LF, ar peak HF, ar abs VLF, ar
rel VLF , sd ratio, sampen
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Figure 4.2: Illustration of the data representations: Morphology and Image-based. Data extracted from
the AMIGOS dataset. The image data in (b) and (c) were resampled to a 224ˆ224 size to fit the input
to the deep learning models.

4.3.4 Classification Models

The state of the art of emotion recognition based on physiological data relies, mostly, on the use of

artificial intelligence algorithms incorporating the subject’s data with no group context. In this section,

the traditional approach found in the state-of-the-art is replicated [9], which does not consider group

dynamics in its architecture. This approach is denoted as the intrapersonal methodology, which is used

as a benchmark model. Then, the interpersonal model is explored, which incorporates the group con-

text in the emotion classification task. A specific neural network model taking into consideration the

characteristics of each data representation is applied:

1. Signal Morphology: For one-dimensional data (EDA, EDR, EDL – Morphology representation),

the proposed method builds upon the approach from [283], which attained state-of-the-art results

for the AMIGOS dataset. The architecture denoted as RTCAN-1D receives as input the three

components of the EDA data: EDA, EDR and EDL in three channels. The workflow starts by

performing a shallow feature extraction with a convolution layer and batch normalization. Then, a
4https://github.com/PatriciaBota/physio_group_emotion_phd/tree/main/group_emotion_recognition; Accessed on
20/02/2024

Table 4.3: Synchrony metrics applied for each data space in the interpersonal methodology. The data
representations were divided in morphology space (EDR and EDL signal components used in both IA
and IB paths in Figure 4.1), and feature space (EDA and HRV features in the IB path in Figure 4.1; or
latent representations from the deep learning models in the IA path in Figure 4.1).

Morphology Space Feature Space

Pearson Pearson
Spearman Spearman
Cosine Cosine
DTW Euclidean Distance
Euclidean Distance
Cross-Correlation
Coherence
Recurrence Plot
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combination of the three components is performed by an attention layer – Signal Channel Attention

(SCA): with two convolution layers, followed by a sigmoid activation, which is multiplied by the

attention weight. Temporal similarities are analysed using a non-local attention mechanism relying

on an embedded Gaussian kernel as a similarity metric, and a one-dimensional convolution layer

followed by average pooling with a kernel of 1 to conduct linear embedding – residual nonlocal

temporal attention module. In a third step, an adapted ResNet-18 extracts higher-level features,

replacing the two-dimensional convolutions with one-dimensional and simplifying the residual block

to perform one-dimensional convolution, batch normalization and a Rectified Linear Unit (ReLU)

activation. Lastly, the classification is performed following three fully connected layers, 3 ReLU

functions, and a softmax function. A workflow of the architecture can be found in Figure 4.3.

2. Image: For the two-dimensional representation (Image – EDA Spectrogram and EDA Recurrence

plot), a similar strategy is followed, with a pre-trained ResNet-18 model being applied [284] (Fig-

ure 4.4), with state-of-the-art results for the AMIGOS dataset in [280, 281]. The ResNet-18 is

based on the addition of residual layers with an identity mapping to the input data, i.e. shortcuts

that allow skipping layers. The usage of residual layers has been shown to improve the conver-

gence in deep networks [284].

3. Hand-crafted Features: For the hand-crafted features space (EDA and HRV features), the ResNet-

18 overall architecture is maintained, with the two-dimensional convolutional layers modified to

linear transformation layers.

For all the models, the last layer was changed to set the class number to 1 to perform binary classifi-

cation. The models were evaluated using LOSO, with one subject left for the test set while the remaining

are used in the training set. One subject from the group training set was randomly selected and used

as the validation set. The training, testing and validation configuration is the same for both intra- and

interpersonal evaluation. The models were developed in Python using the PyTorch library [285], and

tuned through the Ray tune library [286] using a grid-search space. Table B 6 shows the values of the

hyperparameters used as search space. The Adam optimizer was used as the optimization algorithm.

In addition to deep learning models, classic machine learning algorithms are explored [231]: random

forest, SVM, and a naive Bayes classifier, representing a non-linear, linear non-probabilistic, and prob-

abilistic model, respectively. The SVM, and random forest hyperparameters were tunned using a 4-fold

CV grid-search.
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Figure 4.3: The one-dimensional residual temporal and channel attention network (RTCAN-1D) pro-
posed in [283]. Image extracted from [283].
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Figure 4.4: ResNet-18 architecture proposed in [284].
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4.4 Results

The results are divided into two sub-sections. The first presents the results for the benchmark intraper-

sonal model (Section 4.4.1) where no group information is embedded into the model architecture. The

obtained models are then used to get an additional higher-level space used as input data representation

for the interpersonal method (Section 4.4.2).

4.4.1 Intrapersonal Model

For the intrapersonal model, the results are divided by group use case:

AMIGOS Dataset: Table 4.4 shows the intrapersonal model results for the arousal and valence

dimensions on the AMIGOS dataset. Due to the heavy data imbalance, two metrics are considered:

The Weighted-F1 Score (W-F1), which can be found in the emotion recognition literature, e.g. [277],

weights the results by their count value to consider data imbalance. While the Macro-F1 Score (M-F1)

performs an unweighted mean of the labels’ predictions against their ground truth. Through the rest of

the chapter, the analysis is focused on the M-F1 report5, while still leaving for observation the W-F1 on

the tables, for a more realistic performance in the real world, where data imbalance is expected. Overall,

it can be seen that the deep learning models attain similar results or outperform the traditional machine

learning models. For the arousal dimension, the best performance is obtained for a fully connected

ResNet network using HRV features (« 59.4%, M-F1). For the valence dimension, the best performance

is obtained when combining EDA and HRV features in a fully connected ResNet (« 66.44%, M-F1). The

use of images (recurrence plot and spectrogram) or raw data (EDA, EDR, and EDL – Morp.) did not

result in improved performance, attaining an F1-score close to random chance in both dimensions.

Likewise, for the SVM on EDA data which attained the lowest performance overall (ă 40%, M-F1). In

addition to the M-F1, the accuracy (which is the most predominant score in the literature) is displayed,

although it does not consider data imbalance, and W-F1 (which shows the expected results for an

imbalanced distribution). In both metrics, the best performing methodology is above « 69%.

K-EmoCon Dataset: Table 4.5 shows that for the K-EmoCon data, the classification performance

is overall lower for the arousal dimension, being below random chance. For the arousal dimension, the

best performance is obtained for the naive Bayes classifier combining EDA and HRV data. For the va-

lence dimension, the best performance is obtained using the HRV features and a neural network model

(« 73.7%, M-F1). The deep learning morphology-based and image-based (recurrence plot, spectro-

gram) methods either outperform traditional machine learning algorithms or attain similarly competitive

results. Overall, the best method shows an accuracy greater than 70% and 90% for the arousal and

valence dimensions, respectively.

5https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html; Accessed on 20/02/2024
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Table 4.4: Intrapersonal approach results for the AMIGOS dataset. Nomenclature: Signal morphology
space (Morp.); Feature vector (FV); Spectrogram (Spect.); Random Forest (RF); Naive Bayes (NB);
Support Vector Machine (SVM); Recurrence Plot (RP); Neural Network (NN).

Data Model Acc (%) W-F1 (%) M-F1 (%) Training Time (s)
Arousal

Morp. NN 66.73 ˘ 07.84 66.68 ˘ 09.67 50.49 ˘ 05.21 11255.11 ˘ 191.50

EDA FV

61.65 ˘ 06.93 64.16 ˘ 07.53 50.93 ˘ 05.84 301.58 ˘ 273.83
SVM 37.26 ˘ 10.85 36.70 ˘ 15.09 34.14 ˘ 09.42 5.43 ˘ 3.69
NB 72.75 ˘ 06.79 68.92 ˘ 10.68 50.21 ˘ 03.82 0.01 ˘ 0.00
RF 64.51 ˘ 10.65 65.26 ˘ 10.16 51.07 ˘ 07.73 3.58 ˘ 3.92

EDA Spect. NN 70.18 ˘ 08.73 68.25 ˘ 10.84 50.66 ˘ 03.09 1203.70 ˘ 340.90
EDA RP 70.95 ˘ 11.32 68.19 ˘ 11.87 49.37 ˘ 04.25 2076.95 ˘ 6608.11

HRV FV

NN 68.51 ˘ 07.31 70.71 ˘ 07.81 59.40 ˘ 08.08 984.82 ˘ 623.01
SVM 49.59 ˘ 11.87 52.45 ˘ 12.82 45.43 ˘ 11.99 6.13 ˘ 1.28
NB 69.18 ˘ 17.15 66.76 ˘ 17.49 51.21 ˘ 11.47 0.01 ˘ 0.00
RF 66.95 ˘ 09.19 69.20 ˘ 10.95 58.79 ˘ 10.78 2.06 ˘ 1.59

EDA + HRV FV NN 61.65 ˘ 6.93 64.16 ˘ 07.53 50.93 ˘ 05.84 301.58 ˘ 273.83
RF 64.16 ˘ 11.06 66.40 ˘ 11.70 56.54 ˘ 11.39 5.16 ˘ 4.35

Valence

Morp. NN 55.33 ˘ 08.56 55.06 ˘ 08.30 49.65 ˘ 06.47 11197.13 ˘ 192.68

EDA FV

55.77 ˘ 04.51 56.30 ˘ 04.78 51.78 ˘ 03.01 283.68 ˘ 227.95
SVM 41.37 ˘ 07.15 37.69 ˘ 09.72 38.59 ˘ 07.51 5.00 ˘ 0.98
NB 61.86 ˘ 06.59 56.95 ˘ 08.65 49.02 ˘ 04.12 0.01 ˘ 0.00
RF 52.46 ˘ 09.84 52.17 ˘ 10.19 49.13 ˘ 08.35 1.96 ˘ 2.69

EDA Spect. NN 54.55 ˘ 05.14 55.13 ˘ 05.67 50.34 ˘ 02.99 1140.24 ˘ 409.72
EDA RP 53.69 ˘ 05.38 54.28 ˘ 05.54 49.97 ˘ 03.77 1168.37 ˘ 436.49

HRV FV

NN 68.05 ˘ 09.89 67.98 ˘ 10.30 64.56 ˘ 10.57 352.97 ˘ 328.95
RF 69.04 ˘ 10.63 68.64 ˘ 12.10 65.63 ˘ 11.91 3.30 ˘ 1.93
NB 61.85 ˘ 11.63 59.89 ˘ 11.42 53.82 ˘ 08.54 0.02 ˘ 0.00
SVM 51.50 ˘ 10.05 51.40 ˘ 10.33 49.54 ˘ 10.07 5.25 ˘ 1.18

EDA + HRV FV NN 69.16 ˘ 09.99 69.36 ˘ 10.41 66.44 ˘ 10.05 430.14 ˘ 319.09
RF 51.50 ˘ 10.05 51.40 ˘ 10.33 49.54 ˘ 10.07 5.18 ˘ 1.15
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Table 4.5: Intrapersonal approach results for the K-EmoCon dataset.

Data Model Acc (%) W-F1 (%) M-F1 (%) Training Time (s)
Arousal

Morp. NN 59.39 ˘ 22.63 61.59 ˘ 22.80 45.04 ˘ 15.44 169.02 ˘ 134.94

EDA FV

69.77 ˘ 14.76 69.10 ˘ 19.07 45.71 ˘ 05.24 56.60 ˘ 83.81
SVM 60.48 ˘ 19.49 63.49 ˘ 18.91 45.71 ˘ 10.00 0.23 ˘ 0.06
NB 74.48 ˘ 17.50 70.97 ˘ 22.12 46.28 ˘ 07.22 0.00 ˘ 0.00
RF 57.65 ˘ 18.99 61.27 ˘ 19.10 44.90 ˘ 10.84 0.13 ˘ 0.11

EDA Spect. NN 69.62 ˘ 14.77 67.88 ˘ 20.69 43.87 ˘ 05.49 608.62 ˘ 770.74
EDA RP 71.54 ˘ 15.63 68.93 ˘ 21.93 47.49 ˘ 13.53 1962.41 ˘ 3416.71

HRV FV

NN 68.81 ˘ 14.14 68.60 ˘ 19.58 46.30 ˘ 06.56 59.19 ˘ 70.02
SVM 56.20 ˘ 14.88 61.02 ˘ 15.58 45.27 ˘ 09.88 0.40 ˘ 0.09
NB 72.76 ˘ 15.10 71.22 ˘ 19.47 47.62 ˘ 07.15 0.00 ˘ 0.00
RF 59.64 ˘ 13.26 63.93 ˘ 15.50 46.37 ˘ 08.26 0.32 ˘ 0.14

EDA + HRV FV NN 67.37 ˘ 14.99 68.13 ˘ 19.91 47.15 ˘ 06.59 54.93 ˘ 57.88
NB 70.68 ˘ 14.05 70.63 ˘ 18.32 47.67 ˘ 05.74 0.00 ˘ 0.00

Valence

Morp. NN 92.86 ˘ 09.38 90.35 ˘ 13.23 73.02 ˘ 27.04 1185.19 ˘ 875.01

EDA FV

90.45 ˘ 10.63 88.95 ˘ 13.02 62.32 ˘ 24.80 394.79 ˘ 370.72
SVM 70.87 ˘ 18.13 76.83 ˘ 16.86 43.42 ˘ 07.47 0.22 ˘ 0.07
NB 84.76 ˘ 10.03 86.83 ˘ 11.77 47.97 ˘ 02.84 0.00 ˘ 0.00
RF 77.66 ˘ 15.90 81.79 ˘ 14.93 50.71 ˘ 16.88 0.16 ˘ 0.13

EDA Spect. NN 93.32 ˘ 09.34 90.60 ˘ 13.35 73.14 ˘ 26.93 479.80 ˘ 97.12
EDA RP 94.19 ˘ 07.10 92.96 ˘ 08.43 71.85 ˘ 26.40 350.58 ˘ 118.23

HRV FV

NN 93.36 ˘ 09.44 90.66 ˘ 13.41 73.70 ˘ 26.52 238.49 ˘ 280.54
SVM 83.14 ˘ 09.59 85.89 ˘ 11.40 48.80 ˘ 05.40 0.25 ˘ 0.08
NB 10.82 ˘ 10.76 10.66 ˘ 08.67 10.06 ˘ 09.79 0.00 ˘ 0.00
RF 87.56 ˘ 10.46 87.94 ˘ 12.13 55.28 ˘ 18.90 0.34 ˘ 0.21

EDA + HRV FV NN 90.89 ˘ 09.22 89.36 ˘ 12.93 55.22 ˘ 18.98 71.32 ˘ 81.30
RF 88.16 ˘ 12.72 88.02 ˘ 13.61 60.59 ˘ 23.18 0.42˘ 0.33
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4.4.2 Interpersonal Model

Table 4.6 summarises the main results for the interpersonal approach, namely WGS and average pool-

ing. Table B 2 and Table B 3 (for AMIGOS), and Table B 4 and Table B 5 (for the K-EmoCon dataset),

provide the detailed results obtained across all data representations and similarity metrics for the arousal

and valence dimensions, respectively.

• Classification Performance: analysing Table 4.6, the experimental results show that for the

arousal dimension, similarly to what was observed with the intrapersonal method, the WGS ap-

plied on the HRV features obtained the best performance (« 72.15%, M-F1) using the Euclidean

distance to measure physiological synchronization. The use of Euclidean distance on EDL data

was also able to maintain the M-F1 average above the 72% mark. For the valence, the best per-

formance was obtained for the EDA features using also the Euclidean distance (« 81.16%, M-F1),

closely followed by HRV features on the learned representation using cosine similarity (« 81.11%,

M-F1).

For the K-EmoCon dataset, in the arousal dimension, the cosine similarity on HRV features achieves

an equal performance to the use of a non-weighted average pooling (« 52.63%, M-F1), with the

accuracy (« 83.07%) surpassing random chance. For the valence dimension, the best F1-score

is obtained for the EDL representation using cross-correlation to measure physiological synchrony

(« 65.09%, M-F1).

• Similarity Metric: Looking at each data representation (Morp. – Morphology (i.e. EDA, EDR,

and EDL) vs FV – feature vector vs LR – learned representation) in Table B 2 and Table B 3 for

AMIGOS and Table B 4 and Table B 5 for K-EmoCon in Appendix, across dimensions, for the signal

morphology spaces (EDR and EDL) the DTW, Euclidean distance, cross-correlation, recurrence

plot, and coherence obtain the best performance. Except for feature representations, the use of

Pearson, Spearman and cosine similarity often deteriorates the results.

For the AMIGOS dataset, across data representations and dimensions, often cosine similarity

shows the lowest Standard Deviation (STD) on the similarity weights (Weight STD), approximating

its results to average pooling. The results for the non-weighted group synchronization (average

pooling) show similar results with the use of synchronization metrics, outperforming the aforemen-

tioned low-quality synchronization metrics (i.e. Pearson, Spearman, cosine similarity). Moreover,

for the K-EmoCon dataset, average pooling outperforms the remaining. Additionally, regarding

data representations, the EDA and HRV features obtain the most consistent results across syn-

chronization metrics. In terms of accuracy, the best-performing method attains average results ą

80% (arousal and valence) for AMIGOS, and ą 70% (arousal) and 90% (valence) for K-EmoCon.
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Table 4.6: Best performing data representation and synchronization metrics for the interpersonal methodology. The results are shown in terms of accuracy (Acc),
computation time per sample (Time), and weights standard deviation (Weight STD). The comparable state-of-the-art (SOA) results are shown as well. The best
results are shown in bold.

Dataset Dimension Data Similarity Metric Acc (%) W-F1 (%) M-F1 (%) Time (s) Weight STD

AMIGOS
Arousal LR HRV FV Euclidean

Distance
83.07 ˘ 04.92 82.87 ˘ 06.05 72.15 ˘ 10.11 0.007 ˘ 0.002 0.12 ˘ 0.05

Average Pooling 82.65 ˘ 05.49 82.26 ˘ 07.05 71.34 ˘ 10.78 0.010 ˘ 0.005 0.00 ˘ 0.00
HRV FV – NN Intrapersonal 68.51 ˘ 07.31 70.71 ˘ 07.81 59.40 ˘ 08.08 03.07 ˘ 01.95

Valence EDA FV Euclidean
Distance

82.80 ˘ 06.52 83.26 ˘ 06.09 81.16 ˘ 07.63 0.004 ˘ 0.006 00.06 ˘ 00.01

Average Pooling 82.70 ˘ 06.46 83.19 ˘ 06.01 81.11 ˘ 07.58 0.008 ˘ 0.001 00.00 ˘ 00.00
EDA + HRV FV –
NN

Intrapersonal 69.16 ˘ 09.99 69.36 ˘ 10.41 66.44 ˘ 10.05 01.34 ˘ 00.99

K-EmoCon
Arousal HRV FV Cosine Similarity 70.87 ˘ 22.50 70.80 ˘ 22.90 52.63 ˘ 21.28 0.000 ˘ 0.000

Average Pooling 70.87 ˘ 22.50 70.80 ˘ 22.90 52.63 ˘ 21.28 0.000 ˘ 0.000
EDA + HRV FV –
NB

Intrapersonal 70.68 ˘ 14.05 70.63 ˘ 18.32 47.67 ˘ 05.74 00.00 ˘ 00.00

SOA 55.22 44.86

Valence EDL Cross-Correlation
(Max)

90.04 ˘ 08.91 90.16 ˘ 10.63 65.09 ˘ 22.55 0.001 ˘ 0.000

Average Pooling 90.04 ˘ 09.88 90.04 ˘ 10.94 64.90 ˘ 22.59 0.000 ˘ 0.000
HRV FV – NN Intrapersonal 93.36 ˘ 09.44 90.66 ˘ 13.41 73.70 ˘ 26.52 01.88 ˘ 02.21

SOA 91.04 87.62
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• Computational Complexity: analysing the computation time, overall, a similar order of magnitude

(ă 0.1 seconds per sample) is obtained across similarity metrics, except for the recurrence plot in

the AMIGOS dataset, which shows high prediction times. The recurrence plot computation time is

due to the time to compute the recurrence plot and obtain the quantitative analysis features.

4.5 Discussion

This chapter focused on group emotion recognition based on unobtrusive physiological data, evaluating

whether physiological synchrony can be identified in diverse group use cases such as dyadic conver-

sations as per the K-EmoCon dataset [137], and group video-watching interaction as per the AMIGOS

dataset [87]. Overall, the methodology relying on physiological synchrony holds across datasets attain-

ing competitive results with the state-of-the-art intrapersonal methodology, except for the K-EmoCon

dataset on the valence dimension. For the arousal dimension on the K-EmoCon dataset, weighted

synchronization on the best-performing metric (« 52.63%, M-F1) attains a similar result to performing

average pooling (« 52.63%, M-F1). Possibly a dyad is not enough to create a group atmosphere with

emotion contagion; also group-watching is more prone to emotion contagion and physiological synchro-

nisation than conversation. Another possibility is that synchronization to just one user is more prone to

noise than an average over multiple users. Comparing a group of four individuals (AMIGOS) to a dyad

(K-EmoCon), the WGS performance decreases in the latter (from « 72.15% arousal, 81.16% valence

to « 52.63% arousal, 65.09% valence, M-F1), however, still maintaining score values above random

chance.

4.5.1 Synchronisation Metrics and Data Representations

Pertaining RQ 1.4, the focus was on analysing which synchronization metrics and data representations

can better measure physiological synchrony for emotion recognition. The experimental results showed

that for the AMIGOS dataset, the use of a learned representation on the HRV features attained the high-

est performance for arousal, and EDA and HRV features for valence. The results for the EDA data on

the valence dimension are opposite to what is canonically expected, since EDA is typically associated

with arousal [9] and the SNS. The results are possibly due to a high arousal-valence annotation corre-

lation (around 66%), or lower variability in the data (Weight STD of 0.06) which could bias for a higher

synchronization. For the K-EmoCon dataset, average pooling obtained a similar performance to WGS

using cosine similarity on HRV features for arousal, while for the valence space, cross-correlation on the

EDL space was the best-performing metric.

Overall, a better performance was observed on the feature space compared to morphology or image-

based learned representations (from recurrence plots or spectrograms). Across datasets and dimen-
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sions, except for feature representation, the use of Pearson, Spearman and cosine similarity often dete-

riorates the method’s performance. On the whole, the results for the non-weighted group synchroniza-

tion (average pooling) show similar results with the use of synchronization metrics, outperforming the

aforementioned lower performance synchronization metrics (i.e. Pearson, Spearman, cosine). For both

datasets, the valence dimension attained a higher classification F1-score when compared to arousal,

being in line with what is expected in the literature [9].

4.5.2 Interpersonal Model vs Intrapersonal Model

In what concerns RQ 1.5, the proposed method extends the state of the art by analysing whether emo-

tion recognition can be performed from a subject group members’ emotion labels. The experimental

results show that the proposed interpersonal methodology outperforms or obtains competitive results

comparatively with the state of the art: The authors in [287] report an accuracy of 55.22% (44.86% F1-

score) for arousal; and 91.04% (87.62% F1-score) for valence. It should be noticed that the authors rely

on additional multi-modal data such as accelerometer, ECG, and skin temperature. For the AMIGOS

dataset, to the best of the authors’ knowledge, the work herein described is the first to use only the group

data (long videos) for a direct comparison of results. The WGS approach surpasses the state of the art

in the K-EmoCon on arousal (« 52.63%, M-F1 K-EmoCon) and provides novel results for AMIGOS.

The proposed methodology was evaluated against the baseline intrapersonal models, demonstrating

that interpersonal models outperform the intrapersonal models for both datasets and dimensions, except

for the valence dimension on the K-EmoCon dataset. On the AMIGOS dataset, the intrapersonal model

on the arousal and valence dimensions evaluated onM-F1 attained « 59.40% and 66.44% versus «

72.15% and 81.16% for the interpersonal model, respectively. On the K-EmoCon dataset the intraper-

sonal model on arousal and valence evaluated on M-F1 attained « 47.67%, 73.70% versus « 52.63%,

65.09% for the interpersonal model.

A limitation that is not controlled for in this work is the existence of pseudosynchrony, i.e., the ap-

parent synchronization between signals even when those signals are not sharing information due to

random coincidence. Pseudosynchronisation was identified in the works of [288, 289] where nonverbal

synchrony in psychotherapy is analyzed. Due to the phenomena of pseudosynchrony, physiological sig-

nals may show higher synchronization than would be expected if the signals were disjoint, leading to a

biased (lower accuracy) and less generalization accuracy of WGS than it could be obtained for truly syn-

chronous groups. Thus, pseudosynchrony can explain some of the observed misclassification errors.

For the application of hypothesis tests, the creation of pseudogroups (fake synchrony) makes sense

since it allows one to compare the pseudogroups to the sample under study, and identify if synchrony

exists or not. In this chapter, on the other hand, the goal is to infer if WGS can be applied for emo-

tion recognition classification, or if the phenomena of pseudosynchrony lead to misclassification errors,
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making the model unusable in the case of a large classification error.

4.6 Conclusion

The literature on group emotion recognition [149] reports that under certain conditions, the interaction

between the group members can lead to emotional dynamics that are distinct from those observed in-

dividually, such as emotional contagion and physiological synchrony. This phenomenon can be key for

emotion recognition systems, which tend to focus on the data of the subjects individually [242] (intraper-

sonal methods), missing meaningful context information provided by the group.

This chapter addressed Obj 1. on the Development of Affective Computing Algorithms, namely

RQ 1.4 and 1.5 on the analysis of synchronization metrics and data representations for group emotion

recognition, and the comparison of the proposed interpersonal model (that integrates group information)

with the state of the art intrapersonal model.

This chapter expands the state of the art by proposing and evaluating a novel method based on the

group members’ labels according to their physiological synchrony – the WGS (interpersonal method). To

do so, an analysis of synchrony metrics and data representations is performed to analyze which better

captures the physiological synchrony interaction in a group setting for emotion recognition systems.

Additionally, the method is evaluated under different group sizes (group of 4 versus dyad) and interaction

use cases (video-watching versus conversation).

The experimental results show that the WGS integrating group information (interpersonal) can out-

perform the current state-of-the-art methods based on intrapersonal data (without group context) across

datasets and dimensions, except for the valence dimension on the dyads conversation dataset (K-

EmoCon). Additionally, the proposed method surpasses the previous works (i.e. [287]) for K-EmoCon

on arousal and provides novel comparable results for AMIGOS. Through the analysis of the WGS re-

sults on the two datasets, it was possible to conclude that group physiological synchrony contains useful

context information for emotion recognition in dyadic conversations and group watching.

This chapter contributes to the field of affective computing by: 1) Introducing physiological synchrony

read through physiological signals to emotion recognition; 2) Analysing data representation and phys-

iological synchrony metrics for group emotion recognition; and 3) Improving the accuracy of emotion

recognition on group activity tasks over prior work.

Overall, this chapter illustrated how the group context is informative for emotion classification. The

next chapter (Chapter 5) will advance the objective of group emotion recognition by evaluating existing

platforms for collecting group physiological data, identifying their shortcomings, and proposing a new

infrastructure designed to facilitate the gathering of large amounts of emotion-related data in groups and

naturalistic settings.
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Chapter 5

Data Acquisition

The previous chapter demonstrated that incorporating group emotion into emotion recognition systems

can enhance emotion classification. This chapter aims to further the understanding of group emotion

analysis by focusing on Obj 2. on Group-based Physiological Data Collection, specifically addressing RQ

2.1 and 2.2. It does so through a detailed examination of the current state-of-the-art tools for collecting

group data via unobtrusive physiological sensors. The review identified a gap in the field, leading to

the creation of an innovative physiological data acquisition system designed specifically for emotion

recognition in group and naturalistic settings.

The contents within this chapter were adapted, with permission, from:

• P. Bota, E. Flety, H. P. d. Silva, and A. Fred, “EmotiphAI: a biocybernetic engine for real-time

biosignals acquisition in a collective setting,” Neural Computing and Applications, vol. 35, no. 8,

pp. 5721–5736, 2023
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5.1 Introduction

In recent years, the rapid advancements in microelectronics have facilitated the emergence and prolif-

eration of diverse wearable devices with embedded physiological sensing technologies. These develop-

ments have led to the creation of highly integrated sensors that are widely accepted for their ability to

be seamlessly integrated into low-cost, non-intrusive, and comfortable wearables, becoming pervasive

in users’ daily activities.

Simultaneously, the real-world applications of emotion recognition frequently extend to collective en-

vironments such as cinemas, theatres, group therapy sessions, museums, and artistic performances.

Previous research, as discussed in earlier chapters (Section 2.4), has demonstrated that in group set-

tings—spanning from religious rituals and sports events to anger-related riots—where shared values,

focused attention, and behaviours prevail, emotions can undergo synchronization or shared affective

states (affective convergence). This leads to a heightened sense of unity within the group, allowing it

to act as a cohesive entity. Furthermore, findings from the previous chapter (Chapter 4) have validated

that the integration of group emotions into emotion recognition systems boosts emotion classification,

underscoring the importance of collective emotional experiences in these applications.

Despite this, a review of current technologies for collecting physiological data reveals a notable gap:

there is no available device explicitly tailored for group data acquisition that simultaneously supports a

centralised multi-sensor data acquisition at a high sampling rate, offers an open-source framework that

can easily be adapted to the problem of emotion recognition, and ensures data privacy. This chapter

seeks to introduce and validate a platform for multi-modal individual and collective physiological data

collection that addresses these essential criteria.

To do that, the following research questions were addressed:

RQ 2.1: How does the sampling period affect the data loss and transfer quality in multi-device

scenarios?

RQ 2.2: To what extent does the network infrastructure influence the maximum number of devices

that can collect data without data loss?

Named EmotiphAI, this platform offers a cost-effective and portable solution designed to function on

a single-board computer, making it ideal for deployment in various real-world settings. It features a user-

friendly interface that allows for the real-time monitoring of the physiological data collection. EmotiphAI

distinguishes itself from existing technologies by enabling the simultaneous collection of multimodal data

90



from multiple sources at high sampling rates in group environments, supporting up to 20 devices at 25

Hz and 10 devices at 60 Hz. EmotiphAI’s primary objective is to address the existing shortcomings

in the field by offering a powerful tool capable of capturing the complex dynamics of group emotional

experiences with precision and ease.

5.2 Background

Table 5.1 illustrates the current wearable devices described in the affective computing literature for data

acquisition with embedded PPG and EDA sensors. The detailed analysis of the literature shows that,

although there is an extensive list of available devices, only a few were found to effectively possess

the characteristics to work in a collective setting. Most devices rely on wireless communication such

as Bluetooth or Bluetooth Low Energy (BLE) communication which have a limited number of maximum

connections, restricting its applicability to group data acquisition with multiple devices transmitting data

simultaneously (Table C 1). Bluetooth also has a physical short-range coverage (1 to 100 meters),

depending on the propagation environment, antenna and battery conditions.

An exception from Bluetooth communication is the Xinhua Net FMCI [18] device, which relies on

ZigBee communication. Consequently, this thesis starts with the validation of the FMCI device for col-

lective data acquisition, in the scope of a joint project with Xinhua Net, for which the results can be found

in [18]. However, critical limitations were identified in the device, namely, it has only one physiological

sensor (the EDA), and also a very low sampling rate (1 Hz). It was also identified in [13] that a minimum

sampling rate of 10 Hz was required for the EDA signal, and a minimum sampling rate of 50 Hz was

required for the PPG. Moreover, the FMCI device and its firmware are not open-source, increasing its

cost, and preventing further adaptions to the firmware/hardware that can be required.

A second alternative is the BITalino R-IoT1, with previously reported uses for data acquisition with

3 to 4 R-IoTs simultaneously at a 200 Hz sampling rate. A higher number of devices may be achieved

through the use of several WiFi access points, or decreasing the sampling rate. The R-IoT is a very

small and low-cost device with two analogue input ports to which any two sensor modalities can be

connected.

A third device identified in the literature is the EmotiBit device [290]. The EmotiBit is a wearable

device that measures EDA, PPG, Accelerometer (ACC), Gyroscope (GYR), Magnetometer (MAG), and

skin temperature. The EmotiBit allows both Open Sound Control (OSC) by WiFi and Bluetooth commu-

nication. However, the EmotiBIT was only commercially available after 3 years (2022). Likewise as for

Upmood2, only available in 2021, and limited on its measuring signals, only recording PPG.

Within the existing landscape (Table 5.1), the R-IoT was initially selected as the most promising

1https://github.com/BITalinoWorld/firmware-bitalino-riot?tab=readme-ov-file; Accessed on 01/04/2024
2https://www.upmood.com/group-mood-tracking; Accessed on 20/02/2024

91

https://github.com/BITalinoWorld/firmware-bitalino-riot?tab=readme-ov-file
https://www.upmood.com/group-mood-tracking


system for collective data acquisition with multi-modal data at a high sampling rate. Building upon the R-

IoT device, in this chapter, the EmotiohAI platform for group data collection is developed and validated,

exploring various configurations, such as the number of devices, router points and sampling rates.

5.3 Methods

EmotiphAI is an infrastructure built primarily to facilitate group physiological data collection in the wild,

i.e. out of the lab, although it can also be used for individual data acquisition. It consists of a low-

cost standalone local infrastructure, a wearable device, and an end-user interface for real-time data

visualisation. The EmotiphAI components can be seen in Figure 5.1 and are further described below.

Figure 5.1: EmotiphAI Data Acquisition platform and its components: Collector, Wearable, User In-
terface. Nomenclature: Wearable (A); Firmware (B); Collector (C); Router (D); EmotiphAI Back-end
Software (E); Data Acquisition (F); Data Annotation (G) to be introduced in Chapter 6; and Index Page
(H).

5.3.1 Wearable

The literature survey identified the BITalino R-IoT as the most fit device for group physiological data

collection. The R-IoT1 (Figure 5.1 – A), was developed originallly by IRCAM3 as low latency, high

data rate, and high-resolution device, able to stream gestural information data from multiple performers

simultaneously. Its hardware is based on the CC3200 programmable WiFi MCU. In its hardware, it

includes a 9-axis digital Inertial Measurement Unit (IMU) sensor (LSM9DS1) (3-axis accelerometer,

3https://ismm.ircam.fr/riot/; Accessed on 20/02/2024
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Table 5.1: Devices described in the emotion recognition literature for physiological data acquisition of EDA and HR data. The devices are characterized
concerning their applicability to research, validation status, form factor, body positioning, battery duration, communication standard, measured signals and,
finally, their applicability to a collective acquisition [291]. Nomenclature: Skin temperature (SKT); Respiration (RESP).

Product Validation Site Battery Comm. Sensors (Sampling Rate in Hz) Group

FMCI [18] Comp. to BITalino Wrist Zigbee EDA (1) Yes
R-IoT1 [12] Non Specific OSC EDA, PPG, ACC, GYR, MAG; SR (200) Yes
EmotiBit [290] Non-Specific 3.7V Wifi, Bluetooth EDA (15), PPG (25), SKT (7.5), ACC (25), Gyr, Mag Yes
Upmood2 Wristband +12 h Bluetooth PPG Yes
BITalino [229] Comp. to BioPac Non Specific 12-24h BLE ECG, EDA, EMG, PPG, RESP (1000) No
E45 CE Bracelet +48h Cloud Storage EDA (4), PPG (64), SKT (4), ACC (32) No
MyFeel6 Preliminary study Wristband +24h BLE EDA, SKT, HR, IMU No
Oura [292] Exp. Val. Ring 2-3 days Cloud Storage PPG, ACC, SKT: (250) No
Bitbrain Ring7 Ring 10h Bluetooth PPG, EDA, ACC : (32) No
CART [293] Ring Bluetooth PPG, ACC No
Fitbit Charge [294] Exp. Val. Smartwatch 5 days BLE PPG, ACC No
Spire8 Exp. Val. Clothing Adhesive 1 year Download or API access RESP, PPG, ACC No
Rhythm249 Smartwatch 24h BLE EDA, IMP, ACC, Gyr, Mag No
Heartguide10 FDA clearance Smartwatch 2 days BLE Blood Pressure No

5https://www.empatica.com/research/e4/; Accessed 20/02/2024
6https://www.myfeel.co/hiddenhow-it-workshidden; Accessed on 20/02/2024
7https://www.bitbrain.com/neurotechnology-products/biosignals/ring; Accessed on 20/02/2024
8https://www.spirehealth.com; Accessed on 20/02/2024
9https://www.scosche.com/rhythm24-waterproof-armband-heart-rate-monitor; Accessed on 20/02/2024
10https://omronhealthcare.com/products/heartguide-wearable-blood-pressure-monitor-bp8000m/; Accessed on 20/02/2024
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a 3-axis gyroscope and a 3-axis magnetometer); two 12-bit Analog-to-Digital Converter (ADC) input

channels (1.5VMax); one digital input; and one digital output. Its firmware (Figure 5.1 – B) is compatible

with the Energia IDE4 prototyping platform.

The R-IoT’s data is sent using the OSC protocol. The unit being transmitted is an OSC Packet, that

is sent from an OSC Client (EmotiphAI device) to an OSC Server (EmotiphAI Collector) as a User Data-

gram Protocol (UDP) network protocol datagram. For further information regarding the OSC protocol,

the reader is referred to11.

Table 5.2: R-IoT Default OSC Message Components.

Component Description Range/Units

Accelerometer Axis 3-axis motion detection [-8; +8] g
Gyroscope Axis 3-axis rotational motion [-2; +2] °/s
Magnetometer Axis 3-axis magnetic field detection [-2; +2] gauss
Temperature Ambient temperature measurement °K
1-bit Digital Input (GPIO28) Digital input state 0 / 1
12-bit ADC Inputs (GPIO3 & GPIO4) Analog to digital conversion [0; 4095]
Quaternions Orientation [-1; 1]
Euler Angles Node attitude and heading [-180; 180]°

Additionally, to have a comprehensive understanding of the data being collected for the platform

validation, the default R-IoT OSC message was extended to include Received Signal Strength Indicator

(RSSI); packet number; and a timestamp. The RSSI enables the measurement of the WiFi link strength;

The packet number to detect data loss and out-of-order packets; and the timestamp to determine the

precision in the sampling rate as measured by the node timing. Moreover, the packet number is reset to

0 with a 16-bit resolution, resetting to 0 whenever the WiFi connection is lost.

The R-IoT default configuration, namely its sampling rate, or communication port can be changed

through a web-based GUI. For further information on how to change the R-Iot configuration, the reader

is referred to12. To encapsulate the R-IoT device, a 3D printed box was designed (Figure 5.2 – A).

Table 5.3: Main Characteristics of the Plux EDA
Sensor13.

Characteristic Description

Sampling Rate 100 Hz
Gain 2
Range 0-13 uS (VCC = 3.3 V)
Bandwidth 0-5 Hz
CMRR 100dB
Input Impedance >1GO hm
Consumption ˘0.1 mA

Table 5.4: Main characteristics of the PPG
PulseSensor14.

Characteristic Description

Supply Voltage 3.3 V or 5 V
PCB Diameter 16 mm
Amplification 330
LED Wavelength 609 nm
Output Signal Range 0 3.3 V (VCC = 3.3 V)
Current Range < 4 mA

4https://energia.nu; Accessed on 20/02/2024
11https://github.com/CNMAT/OpenSoundControl.org?tab=readme-ov-file; Accessed on 20/02/2024
12https://github.com/BITalinoWorld/riot-python-serverbit; Accessed on 20/02/2024
13https://support.pluxbiosignals.com/wp-content/uploads/2021/11/eda-sensor-datasheet-revb.pdf; Accessed on

20/02/2024
14https://pulsesensor.com/; Accessed on 20/02/2024
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(a) EmotiphAI Wearable. (b) BITalino R-IoT.

Figure 5.2: EmotiphAI Wearable device with two integrated physiological sensors (the EDA and PPG)
built upon the BITalino R-IoT. Nomenclature: EDA sensor (A); and PPG PulseSensor (B).

5.3.2 Collector

A set-top box (Figure 5.1 – C) is used to receive the data from the devices, store it locally and host

the graphical user interface. The set-top box is a small single-board computer (for these experiments a

Raspberry Pi was used) connected to a router (Figure 5.1 – D) (through an ethernet cable or WiFi) that

creates the local network that allows the devices to send the data through.

An overview of the workflow of the EmotiphAI platform is shown in Figure 5.3.

The collector starts the EmotiphAI process at startup, so the user can access its graphic user inter-

face without further configurations. To do so, the user should connect to the WiFi local network created

by the router, and access the graphical user interface through a web browser by browsing the single-

board computer’s local hostname.

The EmotiphAI back-end code (Figure 5.1 – E) is written in Python 3 and the communication to the

front-end interface is performed using Flask [295].

For the group data collection software, a thread is created for each device connected to the system.

The devices are identified by their ID, which consists of a simplified version of their communication port.

Each thread controls a socket that receives the data from the device with a different port per device.

Each thread is responsible for receiving the data from the device and storing it locally incrementally as

the data arrives. The data is stored in an HDF5 file (Figure 5.4) [296]. Each file contains a group per

device with the name of their ID (e.g. 13, 17) (Figure 5.4 – A). The metadata (Figure 5.4 – B) contains

information on the data stored: The header attribute contains information on the collected sensors, the

sampling rate (in Hz), the video watched during the data collection (optional), and the acquisition starting

time in Unix epoch time.
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Figure 5.3: EmotiphAI platform workflow.

Figure 5.4: Example of EmotiphAI’s Data Acquisition HDF5 file. Nomenclature: Data (A); Metadata (B).
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5.3.3 User Interface

To facilitate and ensure the correct deployment of the wearable system in the real world, a graphical end-

user interface (Figure 5.1 – F, G, H) was developed. The EmotiphAI User Interface contains two main

sections, the section for data collection (Figure 5.1 – F) and a section for data annotation (Figure 5.1 – G),

which will be the focus in Chapter 6. The Data Acquisition interface allows monitoring the physiological

data in real-time (e.g. correct electrode placement), starting and stopping the data acquisition, selecting

the devices to be monitored, and annotating the data with metadata (e.g. annotating external events

such as phone ringing). The visualization interface is web-based, developed using HTML, CSS and

JavaScript.

B
A

C

D E

Figure 5.5: EmotiphAI Data Acquisition user interface. Nomenclature: Video selection (A); Start/Stop
button (B); Device selection (C); User input box (D); User input history (E).

EmotiphAI has been developed as an integrated platform, with a video player to work as emotion

elicitation stimuli. The platform allows the user to select the video they want to play (Figure 5.5 – A).

Videos can be stored locally and will be shown in the dropdown menu to provide an emotion elicitation

while physiological data is being collected. The selection/visualization of the video is optional. The

video and data acquisition begins after the user selects the START button (Figure 5.5 – B). The devices

connected will be shown in Figure 5.5 – C. The user can observe all the devices connected to the system

("Select All"), none ("Unselect All"), or one by one by selection in the menu.

The visualization plot has an adaptive zoom to adapt the signals’ amplitude.

Moreover, a user input box is available (Figure 5.5 – D), which after submission is shown in the input

text history box in Figure 5.5 – E with a timestamp. The data acquisition terminates when the STOP
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button is pressed (Figure 5.5 – B).

To enable compatibility across different devices (Figure 5.1 – F, G, H), the visualization interface is

responsive, automatically adapting the screen size to work both on mobile (i.e. smartphones/tablets)

and on the computer. The interface is compatible with predominant web browsers, namely Apple Safari,

Google Chrome, Brave and Mozilla Firefox. By hosting the user interface in a web browser, the platform

is independent of the operation system (e.g. iOS, Android, MACOS), third-party software, or complex

configurations. The platform allows the user to access the interface from any device, as long as it is

connected to the EmotiphAI router network.

5.3.4 Technical Validation

A set of comprehensive tests was performed to analyse the performance of the EmotiphAI Collector,

namely to identify how many R-IoT devices can transmit data simultaneously and at what sampling

rate without data loss and with a homogeneous transmission rate, that will fit the problem of emotion

recognition. To do so, a set of tests are performed with different configurations, namely the number of

devices, WiFi router and sampling rate.

1. Device Performance Test: To test the system performance with 1, 10, and 20 devices for the

sampling periods 0.040s (25 Hz), 0.016s (« 60 Hz), and 0.005s (200 Hz). A TL-WR940N router

was used as an access point. The goal of the experiment was to evaluate if the devices’ per-

formance decreases with the increment of the number of devices and determine the maximum

sampling rates possible at low data loss for each configuration.

2. Infrastructure Test: To compare the use of the TP-Link Wireless N 450Mbps (TL-WR940N) router

(Figure 5.6a) to the one recommended by default by the R-IoT manufacturer, which is the TP-Link

MR3020 3G/Wi-Fi router (Figure 5.6b). The TL-WR940N has 3 antennas, which allows it to boost

the signal, cover more directions, and a larger area in comparison to the MR3020 (which only has

one antenna). The technical specifications of the routers are shown in Table C 2. Additionally,

the use of two routers was tested, with one working as a bridge router. The goal of the tests was

to determine if there was an increase in the network performance in the group acquisitions by

increasing the number of antennas or routers.

3. Sampling Period Test: To evaluate sampling periods unexplored in the previous tests (40 and 50

Hz). The test was performed using the TL-WR940N router (with 3 antennas).
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(a) TP-Link Wireless N 450Mbps (TL-WR940N). (b) TP-Link MR3020 3G/Wi-Fi.

Figure 5.6: Routers used in the EmotihAI Data Acquisition technical validation tests.

5.4 Results

The EmotiphAI data acquisition platform was tested with different configurations. The evaluated criteria

are shown in Table 5.5. Different criteria were evaluated, such as the expected and obtained sampling

period to observe if the system was able to maintain the expected sampling period, data loss to observe

if the system was able to maintain the data transmission without loss, number of connection resets

to observe if the system was losing WiFi connection, time consistency to observe if the data was being

transmitted uniformly in time, data shifted to observe if the data was being transmitted in order, duplicated

to observe if the data was being duplicated, RSSI to observe the WiFi signal strength, battery to observe

the total data collection time, and lastly, the file size to observe the expected data file size. The results

are presented in Table 5.6.

5.4.1 Device Performance Test

The performance of the EmotiphAI Data Acquisition platform with 1, 10, and 20 devices was initially

analysed. The sampling periods tested were 40 (25 Hz sampling rate), 16 (« 62 Hz) and 5 ms (200 Hz).

Starting with a sampling period of 5 ms, as it was the maximum sampling period reported for the R-IoT

device, then lower sampling rates were tested that considered the minimum sampling period to collect

physiological data, namely EDA and PPG. In the work of Silva et al., it was observed that a sampling

rate of 50 Hz is enough to capture the PPG signal characteristics at 1 KHz, similarly, a sampling rate of

10 Hz is enough to capture the EDA signal characteristics at 1 KHz [13]. The results for the technical

validation tests are shown in Table 5.6 – 1 Dev.; 10 Dev.; and 20 Dev. rows.

1. Data Loss: A simplified view of the data loss across the different tested configurations is shown in

Figure 5.7. The data loss remains low for 1 device across all the tested sampling periods (40, 16

15https://github.com/PatriciaBota/physio_group_emotion_phd/tree/main/data_acquisition; Accessed on 20/02/2024
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Table 5.5: Metrics and a brief description of the information extracted for the EmotiphAI Data Acquisition
technical validation. The code used to obtain the metrics can be found in the chapter’s repository15.

Metric Description

Number of Devices (Num. Dev.) Number of devices collecting data
simultaneously.

Acquisition Time (Acq. Tm (s)) Duration of the acquisition, with all the devices
acquiring data (the time during WiFi
reconnection was lost).

Expected sampling period (Exp. SP (s)) Sampling period as defined in the R-IoT
configuration page.

Obtained sampling period (Obt. SP (s)) Obtained from the time 1st derivative. Previous
to the derivative computation the time was sorted
and only the samples with no packet loss were
used to obtain this metric so that the expected
sampling period was not biased by data loss.

Loss (Loss (%)) Obtained from the 1st derivative of the packet
number (sorted according to the time),
considering as correct samples the number of
ones and overflows.

Number of Connection Reset (Rec.) Number of WiFi re-connections. Counter of the
packet number 1st derivative crosses a defined
threshold (-65400, to account for a change from
16-bit resolution packet number to 0).

Time Consistency (Tm C. (%)) Used to determine if the data being transmitted
was uniform or streamed in bursts in time
(obtained by a normalised unit time histogram of
the time vector).

Data Shifted (Shift. (%)) Percentage of data out of order (obtained by the
number of negative values in the time vector 1st

derivative).
Duplicated (Duplic. %) Number of duplicated data samples. Obtained

by derivative in time equal to 0.
Incorrect sampling period (Inc. SP (%)) Percentage of the sorted time 1st derivative

where its value does not match the predefined
sampling period.

Incorrect sampling period Median (Inc. SP (s)) Median of the sorted time 1st derivative where its
value does not match the predefined sampling
period.

Incorrect sampling period Maximum (Max. Inc
SP (s))

Maximum value of sorted time 1st derivative
when its value does not match the predefined
sampling period.

RSSI (dB) WiFi Received Signal Strength Indicator.
Battery (hours:minutes:seconds) Total data collection time.
Size (MB) Size of the data file in MegaBytes
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Table 5.6: Evaluation of the EmotiphAI Data Acquisition platform results, results are presented for different configurations. The following test criteria were
evaluated: # Dev.; Exp. SP (s); Acq.Tm (s); Obt. SP (s); Loss (%); Rec.; Tm C. (%); Shift. (%); Duplicated (%); Inc. sampling period (%); Inc. sampling period
(s); Max Inc. sampling period (s); RSSI (dB); Battery; Size (MB).

#Dev. Acq. Tm (s) Exp. SP (s) Obt. SP (s) Loss (%) Rec. Tm C. (%) Shif. (%) Duplicated (%) Inc. SP (%) Inc. SP (s) Max Inc. SP (s) RRSI (dB) Battery Size (MB)
1 Dev.

1 34116.738 ˘ 0.0 0.040 ˘ 0.0 0.04 ˘ 0.0 0.447 ˘ 0.0 0.0 ˘ 0.0 98.353 ˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0 0.498 ˘ 0.0 0.08 ˘ 0.0 0.16 ˘ 0.0 -44.5 ˘ 0.0 9:28:36.78 35.6
1 31718.648 ˘ 0.0 0.016 ˘ 0.0 0.016 ˘ 0.0 0.335 ˘ 0.0 0.0 ˘ 0.0 97.712 ˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0 0.33 ˘ 0.0 0.032 ˘ 0.0 0.816 ˘ 0.0 -50.0 ˘ 0.0 8:48:38.66 61.4
1 26234.085 ˘ 0.0 0.005 ˘ 0.0 0.005 ˘ 0.0 1.259 ˘ 0.0 0.0 ˘ 0.0 98.71 ˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0 36.555 ˘ 0.0 0.006 ˘ 0.0 7.795 ˘ 0.0 -52.0 ˘ 0.0 7:17:14.09 ˘ 0:00:00 141.7
10 Dev.

10 28097.938 ˘ 0.015 0.040 ˘ 0.0 0.04 ˘ 0.0 0.409 ˘ 0.135 0.0 ˘ 0.0 90.405 ˘ 9.369 0.0 ˘ 0.0 0.0 ˘ 0.0 0.452 ˘ 0.151 0.08 ˘ 0.0 0.12 ˘ 0.05 -51.75 ˘ 3.3 9:15:24.05 ˘ 0:33:56.11 332.4
10 29264.748 ˘ 0.005 0.016 ˘ 0.0 0.016 ˘ 0.0 0.462 ˘ 0.355 0.0 ˘ 0.0 98.704 ˘ 8.794 0.0 ˘ 0.0 0.0 ˘ 0.0 0.312 ˘ 0.201 0.032 ˘ 0.0 1.152 ˘ 1.03 -54.0 ˘ 4.786 8:51:44.61 ˘ 0:22:27.30 607.4
10 21019.408 ˘ 0.048 0.005 ˘ 0.0 0.005 ˘ 0.0 65.522 ˘ 17.306 0.0 ˘ 0.0 26.741 ˘ 12.962 0.0 ˘ 0.0 0.0 ˘ 0.0 62.795 ˘ 8.366 0.02 ˘ 0.008 4.935 ˘ 7.757 -49.75 ˘ 3.986 6:36:03.29 ˘ 0:25:34.49 414.5
20 Dev.

20 27675.945 ˘ 0.013 0.040 ˘ 0.0 0.04 ˘ 0.0 0.358 ˘ 0.086 0.0 ˘ 0.0 85.23 ˘ 26.624 0.0 ˘ 0.0 0.0 ˘ 0.0 0.38 ˘ 0.096 0.08 ˘ 0.0 0.2 ˘ 0.07 -51.0 ˘ 5.459 8:55:32.27 ˘ 0:31:30.64 655.2
20 21784.863 ˘ 166.521 0.016 ˘ 0.0 0.016 ˘ 0.0 83.827 ˘ 20.847 0.0 ˘ 0.0 22.37 ˘ 20.029 0.0 ˘ 0.0 0.0 ˘ 0.0 72.111 ˘ 21.182 0.096 ˘ 0.046 96.978 ˘ 306.25 -52.5 ˘ 3.675 7:27:08.47 ˘ 0:57:36.42 305.8
Router

1 29940.872 ˘ 0.0 0.005 ˘ 0.0 0.005 ˘ 0.0 0.912 ˘ 0.0 0.0 ˘ 0.0 85.888 ˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0 44.476 ˘ 0.0 0.006 ˘ 0.0 0.066 ˘ 0.0 -52.5 ˘ 0.0 8:19:00.88 ˘ 0:00:00 162.7
10 28785.676 ˘ 0.006 0.016 ˘ 0.0 0.016 ˘ 0.0 0.002 ˘ 0.003 0.0 ˘ 0.0 74.964 ˘ 7.488 0.0 ˘ 0.0 0.0 ˘ 0.0 0.002 ˘ 0.003 0.032 ˘ 0.0 0.048 ˘ 0.034 -53.0 ˘ 3.415 9:03:29.12 ˘ 0:26:20.76 637.2
20 25872.986 ˘ 0.046 0.040 ˘ 0.0 0.04 ˘ 0.0 39.585 ˘ 19.223 0.0 ˘ 0.0 57.636 ˘ 18.293 0.0 ˘ 0.0 0.0 ˘ 0.0 24.71 ˘ 8.583 0.12 ˘ 0.046 1.1 ˘ 185.62 -55.5 ˘ 5.62 7:57:49.60 ˘ 0:29:41.88 368.8
20 60543.227 ˘ 1.46 0.100 ˘ 0.0 0.1 ˘ 0.0 0.1 ˘ 8.695 0.0 ˘ 1.308 97.568 ˘ 10.238 0.0 ˘ 0.0 0.0 ˘ 0.0 40.705 ˘ 6.08 0.108 ˘ 0.001 8.7 ˘ 3.644 -57.5 ˘ 4.928 19:01:58.41 ˘ 1:00:09.92 739.5
Bridge

10 775.975 ˘ 0.063 0.005 ˘ 0.0 0.005 ˘ 0.0 53.974 ˘ 12.24 0.0 ˘ 0.0 42.768 ˘ 7.225 0.0 ˘ 0.001 0.0 ˘ 0.0 30.729 ˘ 22.332 0.022 ˘ 0.011 2.191 ˘ 8.287 -43.5 ˘ 4.443 0:13:30.95 ˘ 0:00:15.87 37.9
10 16048.230 ˘ 0.009 0.010 ˘ 0.0 0.01 ˘ 0.0 0.477 ˘ 0.332 0.0 ˘ 0.0 98.398 ˘ 0.657 0.0 ˘ 0.0 0.0 ˘ 0.0 0.458 ˘ 0.307 0.02 ˘ 0.0 1.186 ˘ 0.632 -48.5 ˘ 6.862 7:55:20.74 ˘ 1:15:28.57 797.3
20 21850.321 ˘ 0.039 0.016 ˘ 0.0 0.016 ˘ 0.0 44.625 ˘ 27.416 0.0 ˘ 30.512 54.858 ˘ 25.665 0.0 ˘ 0.0 0.0 ˘ 0.001 31.324 ˘ 19.419 0.048 ˘ 0.017 2.823 ˘ 35.448 -55.25 ˘ 5.627 6:31:38.39 ˘ 1:34:23.39 617.5
SP

1 34190.408 ˘ 0.0 0.025 ˘ 0.0 0.03 ˘ 0.0 0.514 ˘ 0.0 0.0 ˘ 0.0 92.315 ˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0 99.985 ˘ 0.0 0.03 ˘ 0.0 0.092 ˘ 0.0 -42.0 ˘ 0.0 9:29:50.44 39.4
1 27058.240 ˘ 0.0 0.020 ˘ 0.0 0.03 ˘ 0.0 0.473 ˘ 0.0 0.0 ˘ 0.0 92.483 ˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0 89.829 ˘ 0.0 0.03 ˘ 0.0 0.81 ˘ 0.0 -44.0 ˘ 0.0 7:30:58.27 30.7
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and 5 ms). As the number of devices is increased to 10, the data loss at a 5 ms sampling period

increases to around 65%, while the data loss for the 40 and 16 ms sampling periods remains low.

When the number of devices in simultaneous acquisition increases to 20, only the 40 ms sampling

period maintains a low data loss (below 0.5%). With 20 devices, a 16 ms sampling period shows

on average a loss of 84%.

2. Sampling Period: Throughout the different tests it can be seen that the expected sampling period

(Exp. SP (s) column – Table 5.6) matches the obtained sampling period (Obt. SP (s) column

– Table 5.6). This column demonstrated a correct data sampling by the device. The incorrect

sampling period percentage (Inc. SP (%) – Table 5.6) is below 1% for the higher sampling periods

(40 and 16 ms). For the higher sampling rates, when the data loss increases, the percentage of

samples with incorrect sampling periods increases.

3. Connection Reset: The Rec. column in Table 5.6 shows that no WiFi reconnections were de-

tected.

4. Time Consistency: For 1 device, the obtained values (Tm C. (%) column) show that the devices

show a homogeneous data transmission at different sampling rates. For 10 devices, as expected

by the values of the data loss, the time consistency is above 98% at 16 ms and 40 ms sampling

periods, except for the 5 ms acquisition where it decreases to around 30%. A similar behaviour

is seen at the 20 devices test, where acceptable time consistency is only obtained for a 40 ms

sampling period.

5. Samples Out of Order & Duplicated: No samples out of order were observed (Shif. % column).

Similarly, there are no observed duplicated samples (Duplicated % column).

6. WiFi Signal Quality: The WiFi connection quality (RSSI (dB) column) is inside the recommended

range (-30 to -70 dBm). These values were expected since the devices were placed close to the

router.

7. Battery: Although the battery duration was shown to decrease with the increase of the sampling

rate, all the acquisition setups were able to collect data for periods higher than 6h. The R-IoT does

not include a low battery indicator and the battery decreases with its collecting data, which could

explain outliers in the data (the device stops collecting data and has a lower data collection time

than expected).

8. Storage: An increase in the HDF5 size was observed as the sampling rate increased. This was

expected since a higher sampling rate collects more data than a lower sampling rate.
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Figure 5.7: Obtained loss for the EmotiphAI Data Acquisition platform Device Performance Test for 1, 10
and 20 devices for the sampling period: 40, 16 and 5 ms.

5.4.2 Infrastructure Test

The last test used a three-antenna router (TP-link MR3020). In this test, the use of a smaller router with

only one antenna is tested (TP-link MR3020). The use of 3 antennas has the possibility of boosting the

signal and covering a larger area. Additionally, the use of two routers simultaneously is tested, namely: a

router TL-WR940N (three antennas) and a bridge repeater TP-link MR3020 (one antenna). The results

are shown in Table 5.6 – Router and Bridge rows.

1. Data Loss: The data loss is illustrated in Figure 5.8. The experimental results show that, for the

router with only one antenna, the data loss for one device at a maximum sampling rate (5 ms) is

similar (below 1%) to that of the three-antenna router. Likewise, when the number of devices is

incremented to 10, the maximum sampling rate is preserved. For 10 devices, it was observed that

the use of a repeater router allows to increase the sampling rate to 10 ms (100 Hz) with a low data

loss (below 1%). The same is not observed for 20 devices, where the 40 ms (25 Hz) sampling

period no longer provides stable data collection for the one internal antenna router, as it did for the

three-antenna router. A 20-device acquisition using the TP-link MR3020 is only reliable at 100 ms

(10 Hz). Even with the addition of a bridge router, a 20-device data collection was not possible for

sampling periods superior to 40 ms (25 Hz).

2. Time Consistency: On the whole, even for the cases with low data loss, the data transfer consis-
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Figure 5.8: Obtained loss for the EmotiphAI Data Acquisition platform Infrastructure test.

tency throughout the data is lower for the TP-link MR3020 than for the TL-WR940N router. The

use of the bridge router when the data loss was low was at an acceptable range (above 98%).

3. Samples Out of Order & Duplicated: No samples were detected out of order or duplicated.

4. WiFi Signal Strength: WiFi connection at the recommended range. The WiFI signal strength did

not drop by the use of only one antenna, and neither did it increase significantly by the use of a

bridge router.

5.4.3 Sampling Period Test

An atypical behaviour was detected for sampling rates fs P ]25, 60[ Hz which will be explored in this

sub-section at a sampling period of 20 ms (40 Hz sampling rate) and 25 ms (50 Hz sampling rate). The

device’s behaviour at these sampling rates limited the selection of the sampling rate for a collective data

collection with 20 devices where lower sampling rates are required to obtain low data loss. The results

are shown in Table 5.6 – SP rows.

1. Sampling Period: Even when collecting data from just one device, the obtained sampling period

does not match the expected (i.e. the configured in the R-IoT setup page). When the devices were

configured for a sampling period of 25 ms (40 Hz) the obtained sampling period was 30 ms (« 33

Hz). Similarly, when a sampling period of 20 ms (50 Hz) was defined, the devices transmitted data

at 30 ms.
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2. Data Loss: The data loss was very low (below 1%). This result indicates that the incorrect sam-

pling period is not caused by data loss. Instead, the cause may be within the device firmware

which may be causing the delay during the data transmission.

3. Time Consistency: As expected by the low data loss, the data transmission was constant through-

out the acquisition (ą 92%).

4. WiFi Signal Strength: WiFi connection at the recommended range.

For a more comprehensive analysis of the R-IoT device, the authors refer the reader to [12].

5.5 Discussion

The EmotiphAI Data Acquisition platform was evaluated for the collection of data from multiple devices

simultaneously across a comprehensive set of tests to address RQ 2.1 on the evaluation of data col-

lection at diverse sampling periods and if they are enough for physiological data collection of EDA and

PPG; and RQ 2.2 on the exploration of distinct router configurations.

1. Device Performance Test: Addressing RQ 2.1, the R-IoT device was able to reliably collect data

with low data loss and a uniform time data transmission in both individual and group settings with

1 device up to 200 Hz (5 ms), 10 devices with a sampling period of 60 Hz (40 ms), and 20 devices

up to 25 Hz (40 ms).

2. Infrastructure Test: Addressing RQ 2.2, the experimental results show that the use of a three-

antenna router does increase the data collection performance for a collective setting. With the

use of a one antenna router (TP-link MR3020), 20 devices’ data acquisition at 40 ms is no longer

possible due to very high data loss (above 39%). The use of a router bridge allowed to increase

the sampling rate on a 10-device data collection from 60 Hz (16 ms) to 100 Hz (10 ms).

3. Sampling Period Test: The atypical behaviour at ]25, 60[ Hz sampling rates limited the EmotiphAI

data collection for group settings using 20 devices or more since lower sampling rates (ă 25 Hz)

had to be selected in the previous tests.

Overall, the EmotiphAI platform has shown to be able to perform uniform and reliable data collection

across a long period (up to 7h), with very low data loss for 1 device (200 Hz), 10 devices (100 Hz for 2

routers or 60 Hz using 1 router), and 20 devices (25 Hz).
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5.6 Conclusion

A look at the literature on physiological sensing for emotion recognition reveals that there are limited

technologies available for physiological data collection in group settings. The existing solutions either

share their data with 3rd parties, are not open-source, are limited in their physiological sensors, or have

a low sampling rate when collecting data from multiple devices simultaneously. This gap has been

evidenced by the lack of public datasets for emotion recognition in a group setting.

This chapter addresses Obj 2. on Group-based Physiological Data Collection, namely RQ 2.1 and

2.2 on the evaluation of data collection at diverse sampling periods and exploration of distinct network

infrastructure configurations.

In this part of the thesis, a platform for multi-modal individual and collective physiological data acqui-

sition is developed. The platform was designated as EmotiphAI and consists of a low-cost standalone

local infrastructure run on a single-board computer that reads physiological data through a small, unob-

trusive wearable. Additionally, through an end-user interface, it is possible to monitor the data acquisition

in real-time. In comparison to the existing solutions. Taking these characteristics, EmotiphAI was devel-

oped to be easily transported and deployed in diverse scenarios.

Across a comprehensive set of tests, the experimental results showed that the EmotiphAI platform

was able to collect data from multiple devices simultaneously with 1 device up to 200 Hz (5 ms), 10

devices with a sampling period of 60 Hz (40 ms), and 20 devices up to 25 Hz (40 ms). Using a single-

antenna router (TP-link MR3020), 20 devices’ data acquisition at 40 ms is no longer possible due to

very high data loss (above 39%). The use of a router bridge allowed to increase the sampling rate on a

10-device data collection from 60 Hz (16 ms) to 100 Hz (10 ms). Overall, EmotiphAI expands the state

of the art by allowing the collection and visualisation of multiple data sources at high sampling rates in

a group setting. The platform stores data locally enabling privacy instead of sharing its data with 3rd

parties, and its built-in device is small, easily customisable and open-source.

The EmotiphAI platform could be the building block for widespread biosignals data collected from

wearables for the creation of large databases for affective computing. Moreover, EmotiphAI has already

been used in national and international collaborations, totalling over 400 hours of data collected and

over 250 people screened, with installations at the European Commission Joint Research Centre (JRC)

Resonances III Art-Science Festival16, where a system able to access the audience emotional response

and dynamically modulate the narrative, audio and visual media of a film correspondingly was deployed

(Figure 5.9a); an online theatre performance at the University of Tartu (Figure 5.10a); a live opera at

Escola Superior de Música, Artes e Espectáculo (ESMAE) (Figure 5.9b); and the Diferencial cinema

sessions at Instituto Superior Técnico (IST) (Figure 5.10b), whose data will be used to create a public

dataset further detailed in Chapter 7, among others (see Section 1.3).

16https://www.it.pt/News/NewsPost/3541; Accessed on 20/02/2024
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Since emotion recognition algorithms, are heavily dependent on annotated data, the next chapter

will present a novel methodology for emotion ground-truth collection tailored for group and naturalistic

annotation, so large amounts of data can be collected unobtrusively and quickly.

(a) EmotiphAI deployment at the European Com-
mission JRC Resonances III Art-Science Festival.

(b) EmotiphAI deployment at ESMAE for the live
opera performance.

Figure 5.9: EmotiphAI deployments (part 1).

(a) EmotiphAI deployment at the University of Tartu
for the online theatre performance.

(b) EmotiphAI deployment at Diferencial Cinema
Club.

Figure 5.10: EmotiphAI deployments (part 2).
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Chapter 6

Emotion Annotation

In the previous chapter (Chapter 5), the EmotiphAI Data Acquisition platform was introduced. However,

the creation of emotion recognition applications requires not only physiological data but also its respec-

tive ground truth. The ground truth generally consists of the users’ emotional states self-report and is

widely used to train emotion recognition algorithms and determine their accuracy.

This chapter focuses on Obj 3. Emotion Annotation for Naturalistic Settings, specifically tackling RQ

3.1 to 3.3, by introducing and validating the EmotiphAI Annotator. The EmotiphAI platform facilitates

the retrospective annotation of selected moments in extended-duration content, marking a significant

advancement in the field of emotion annotation for naturalistic settings.

The contents within this chapter are adapted, with permission, from:

• P. Bota, P. Cesar, A. Fred, and H. Silva, “Exploring retrospective annotation in long-videos for

emotion recognition,” IEEE Trans. on Affective Computing, vol. 15, no. 3, pp. 1–12, 2024
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6.1 Introduction

The literature offers a broad spectrum of emotion annotation platforms. Their review reveals a reliance

on desktop-based systems [141, 297] and real-time annotation [298, 131]. Current methods of emotion

annotation, either perform a single post-viewing annotation or perform the concurrent annotation with

content viewing, suffering from significant drawbacks. The former may lead to oversimplification and

loss of temporal dynamics, while the latter can disrupt the viewing experience, becoming tiring over long

sessions, and cumbersome due to the dual tasks of observing and annotating content simultaneously.

This often restricts annotations to short video clips in laboratory settings to avoid overwhelming users

[9]. However, previous work [6] has shown that emotional responses elicited in laboratory environments

can differ from those in naturalistic settings, i.e. closer to real-life experiences. Data collected "in the

wild" not only yields higher accuracy but also allows for the accumulation of extensive datasets over

prolonged periods.

This research aims to meet this gap by shifting the paradigm of data collection and emotion recog-

nition from laboratory settings to real-world environments, bringing the data collection process closer to

natural, everyday experiences. The hypothesis driving this shift suggests that an effective ground-truth

emotion data collection platform should facilitate the annotation of long-duration content typical of daily

life, ensure an unobtrusive emotional experience to maintain high elicitation intensity and streamline the

annotation process to encourage frequent contributions from participants.

This part of the thesis introduces a novel method for the retrospective annotation of long-duration

content: the EmotiphAI Annotator, addressing the following research questions:

RQ 3.1: Are retrospective annotations in long-duration content usable for emotion annotation?

RQ 3.2: How do retrospective annotations compare to conventional approaches in long-duration

content?
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RQ 3.3: Which content segmentation method is more suitable for emotion annotation in long-

duration content?

As an alternative to annotating the entire content, the use of a content segmentation algorithm

is proposed. This algorithm selects brief clips (10 seconds) based on pre-defined criteria for retro-

spective emotion annotation. Three content segmentation approaches are explored: 1) EDA-based –

SNS-derived segmentation taking into consideration that EDA is a marker of SNS activity (in particular

arousal) [119]; 2) Scene-based – time-based using scene boundary detection algorithms described in

the state of the art (PySceneDetect1); and 3) Random selection – used as a null hypothesis. Lastly, the

EmotiphAI Annotator is validated for its usability and reliability across a comprehensive set of metrics.

6.2 Background

The accurate annotation of emotional states from collected data underpins the development and valida-

tion of emotion recognition models. The emotion annotation process, however, presents unique chal-

lenges, including the subjective nature of emotions, the variability in individual emotional responses, and

the need for precise, reliable tools to capture these nuances. The annotation platform characteristics

can significantly influence the quality of the collected data, the efficiency of the annotation process, and,

ultimately, the performance of emotion recognition models trained from the annotated data. Over the

years, several emotion annotation platforms have been developed, each with its own set of characteris-

tics designed to address specific aspects of the annotation process.

6.2.1 Data Annotation

Table 6.1 summarizes the predominant annotation platforms in the state of the art, analyzed by their

main characteristics.

1. Device: The state-of-the-art platforms are divided into mobile and desktop-based. Mobile appli-

cations allow out-of-the-lab use and have a smaller form factor [19]. Nonetheless, desktop appli-

cations are more predominant in the literature, although they often rely on additional peripherals

such as joysticks [131] or wheel mouses [302].

2. Model: Most platforms rely on the arousal and valence dimensions, either through Russel’s Cir-

cumplex model [297, 298], or Lang & Bradley’s SAM manikins [89, 90, 305]. One exception is

Ranktrace [302], in which volunteers rate their tension using a wheel mouse while watching a

video. When performing real-time annotation, one dilemma is the use of one or two dimensions. In

[300, 302], only one dimension (e.g. to represent either arousal/valence or others), while in most
1https://github.com/Breakthrough/PySceneDetect; Accessed: 20/02/2024
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Table 6.1: State of the art emotion annotation platforms. Nomenclature: Real-Time (RT); Continuous
(Cont.); Valence (V); Arousal (A).

Platform Device Model Rank RT Cont.

FeelTrace [141]

Desktop

V, A ✓ ✓
Gtrace [142] 1d ✓ ✓
DARMA [299] 2d ✓ ✓
PAGAN [300] 1d ✓ ✓ ✓
AffectRank [297] V, A ✓ ✓
AffectButton [301] Image
RankTrace [302] 1d ✓ ✓ ✓
NOVA [303] V,A, Tags ✓ ✓

RCEA [298]
Mobile

V, A ✓ ✓
EmoWheel [304] Tags ✓
EmoteU [19] V, A ✓ ✓ ✓

EmotiphAI Annotator Web V, A

works [141, 297, 298] the 2D Circumplex model is used. While one dimension might be insuffi-

cient to obtain a comprehensive description of emotion, the use of two dimensions increases the

annotation mental workload and is distracting, limiting engagement in the elicitation content.

3. Rank: While traditional platforms annotate a magnitude value, rank-based platforms [297, 300,

302] annotate the emotion relative change. In AffectRank [297], the annotation scale is left un-

bounded, with the annotations returning higher inter-rater agreement when compared to bounded

annotation.

4. Real-time vs Post-hoc | Continuous vs Discrete: The emotion annotation can be performed

in real-time while the subject experiences the emotion, or in post hoc, after the experience retro-

spectively. Continuous annotation is inherently performed in real-time, allowing the capture of the

emotion’s temporal dynamics. Discrete methods such as SAM or questionnaires applying basic

emotion theory are usually annotated in post hoc [89, 90, 305]. Both real-time and post-hoc an-

notation show similar mental workload values in [298, 19], while lower values for real-time were

reported in [306]. Continuous emotion models are the most common [141, 298, 300].

The review of the state of the art (Table 6.1) shows that the majority of the emotion annotation platforms

perform continuous real-time annotation or a single post-hoc discrete annotation of the entire elicitation

process. Both are useful to annotate small video clips (ă 10 minutes). However, these platforms are

not fit to annotate real-life emotional experiences, usually of longer duration, e.g. TV show episodes («

25 to 45 minutes), films (« 2 hours), or theatre performances (ą 1 hour). In longer-duration elicitation

methods, real-time annotation becomes distracting and exhausting, and the use of a single post hoc

discrete annotation may not capture detailed information about emotional events, highlighting the need

for an annotation method more tailored for naturalistic content.
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6.2.2 Processes Involved in Emotional Self-Report

Self-reports can be acquired anywhere, quickly, and regarding any event (e.g., about how the subject

felt in the past, how they will feel in the future, or even in hypothetical situations). There is a long tradition

of offering retrospective annotations over days, weeks, months [307], after 90 days [308] or even after 1

year [309], without losing their validity and reliability. What changes between different types of annotation

are the inherent processes involved in the subject’s anchors for the self-report. When the current emotion

is not accessible, subjects resort to their memory or their identity-related beliefs and values. Robinson

and Clode [307] describe that real-time annotations tend to rely on their direct feelings (experiential

knowledge), while for retrospective annotations, episodic memory is used. Although past emotional

events cannot be re-experienced, they can be reconstructed by anchoring on relevant thoughts or events.

In the work by Ohman [310], the volunteers requested to have access to context over the annotation

event; similarly as demonstrated by Siegert et al. [311], contextual information improved the inter-rater

agreement.

The episodic memory and the ability of the subject to recall past emotions, like any memory, fade with

time. The subject will then use situation-specific and identity-related beliefs; the two become relevant

when asking for hypothetical, prospective and trait-related emotions. In [312], the authors denoted

that daily tiredness and big-five personality traits [313] influence retrospective annotations over a 1-day

and 2-week period. Individuals with high neuroticism tend to remember more negative emotions than

those reported in momentary ratings, akin to extroverts for positive emotions [308]. Bias is present in

all types of emotional self-reports. Age has been shown to influence both momentary and retrospective

annotation [314], with older adults being optimistic and rating emotions more positively [309, 315]. Social

status can also hinder a true report [5, 316], as well as psychological issues such as alexithymia (the

inability to describe one’s emotional states) [5, 317].

6.3 Methods

In this part of the thesis, a retrospective annotation tool is introduced for emotion assessment in longer

videos – the EmotiphAI Annotator. The platform allows the annotation of longer-duration content by using

an algorithm that simplifies the annotation process through the selection of small segments (e.g. 10 sec-

onds) for the user to annotate retrospectively, instead of annotating the entire content (see Figure 6.1).

In contrast to the existent platforms, by performing the annotation retrospectively, the EmotiphAI Anno-

tator allows the subject to be fully engaged in the content, not increasing the mental workload during

visualization by annotating. The EmotiphAI Annotator is integrated into the EmothiphAI infrastructure

(see Chapter 5) as a web-based application that can be used both on mobile and desktop (working

across all operating systems) and requires no additional material (e.g. computer mouse or joystick).
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Movie 
Start
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Figure 6.1: Content segmentation for retrospective emotion annotation. Moments for annotation are
shown in red.

6.3.1 Annotation Interface

Figure 6.2 shows the EmotiphAI Annotator end-user interface for emotion assessment. The users are

anonymously identified by their device ID at the top of the page (Figure 6.2 – A) in a dropdown menu.

Below, a series of 10-second segments are given for the user to annotate (Figure 6.2 – B). The 10

seconds were selected considering the average duration of an emotional event of arousal 0.5 to 4 sec-

onds and the physiological latency between the stimulus and the reaction (of 1 to 5 seconds) [318, 277].

When the page is loaded, the first segment is automatically selected. In the video player (Figure 6.2 –

C), the user can replay and review the video segment. The underlying hypothesis is that, through visu-

alization of the content media, the user can recall their emotional status during the initial visualization

of the clip and retrospectively report their emotional state. For the annotation questionnaire, a validated

emotion scale is used, the SAM [90] arousal and valence (Figure 6.2 – D), aided by graphics of manikins

to express emotional states. Several factors may introduce uncertainty in the annotation, namely, the

annotator may not fully understand the concept of valence or arousal, the annotator may not be engaged

in the study and respond randomly, and the segment may contain several emotions, among others. For

this reason, uncertainty was introduced (Figure 6.2 – E), for the user to detail their level of confidence

in the annotation. Lastly, an optional user input box (Figure 6.2 – F) is given for the user to provide

additional comments, e.g. indicating an external interference. Once all the information is reported, the

next segment will automatically load.
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Figure 6.2: EmotiphAI Annotator end-user interface. Nomenclature: File Selection (A); Segment Selec-
tion (B); Video Player (C); Arousal/Valence Self-report (D); Uncertainty (E); Text Comment (F).

6.3.2 Content Segmentation Method

The platform contains integrated algorithms (see Figure 6.3) that segment moments of the film for emo-

tion assessment:

Random Scene EDA

Figure 6.3: EmotiphAI Annotator content segmentation methods for retrospective annotation: Random,
Scene-based and EDA-based.

Random

Used for control, it randomly selects 10-second clips from the entire video. Both the number of segments

for annotation and their instant are randomly selected using a discrete uniform distribution taking into

consideration the length of the video. The number of segments is obtained by a random selection

([
?
l{2.5,

?
l{1.5], being l the length of the movie). The random selection method was introduced to

compare the obtained results from the aforementioned techniques to random chance. That is, to see if
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there is a preferred method to extract meaningful clips for annotation in a long-duration film or, on the

other hand, if the entire film is equally meaningful for emotional ground-truth collection.

Scene

Selects for annotation the last 10 seconds of every movie scene, corresponding to a time-sequential

annotation. The scenes were identified using existing state-of-the-art methods for scene boundary de-

tection based on image features, namely the PySceneDetect content-aware scene detector, which cuts

scenes where the difference between frames exceeds a defined threshold (set to 60 similarly to [319]),

empirically found to detect both abrupt transitions and fades to black. The decision to annotate only the

last 10 seconds of every scene was taken in order to capture the emotional dynamics of that particular

scene, assuming that the emotional intensity or resolution is most pronounced towards the end, offering

the most representative snapshot for annotation.

Electrodermal Activity

The EDA-based approach was developed to identify high-intensity SNS-related events. The method

selects for annotation, the moments of the video where the subjects’ EDA data presented an emotional

onset. The data was pre-processed by the application of a low pass 1 Hz cut-off frequency and average

window (20 seconds) to remove high-frequency noise and only detect relevant changes in the EDA data.

Then, EDA onsets were considered as a minimum on the EDA data followed by an increase of the data

higher than a threshold of 0.01% of the EDA maximum [117]. The annotation segment starting time was

marked to be 4 seconds before the EDA onset to take into consideration the latency of emotional stimuli

(between 1 to 5 seconds [318]). Moreover, the segments were ordered by their event amplitude, following

the literature that reports that “Our most vivid memories tend to be emotional” [320]. Higher emotional

events are easier to recall and, thus are shown first, ensuring that the annotation of the highest-intensity

EDA events is made (in a real-world scenario subjects may not complete the rating of all the segments).

The EDA fluctuations can occur due to various reasons, including temperature changes, movement,

or external distractions. By focusing on higher EDA event values, the aim is to reduce the chances

of annotating segments that might be influenced by external factors. Since manual annotation is a

resource-intensive process, focusing on segments with high EDA enables the optimization of annotation

efforts.

6.3.3 Data Storage

The user’s annotations are stored in an HDF5 file. Figure 6.4 illustrates an example file generated

by the EmotiphAI Annotator. The data is stored in a hierarchical structure. For each user (e.g. user
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with device ID 5) a dataset is created, storing both the physiological data (i.e. Figure 6.4 – A) and the

user’s annotations for the segmentation algorithms (Figure 6.4 – B). For each segmentation algorithm

and emotion dimension (arousal, valence and uncertainty), the data is gathered in a group. On the

bottom (Figure 6.4 – C), the information regarding the metadata for each group is shown, with the

number of annotations and a description of the data stored in each column (header attribute). For each

annotation, the following information is stored: annotation time (in seconds); annotated segment start

time (in seconds); annotated segment end time (in seconds); and self-report value (ranking).

A
B
B
B

B
B
B

C

Figure 6.4: EmotiphAI Annotator HDF5 storage file, with the user’s physiological data, annotations and
video information. Nomenclature: Physiological data (A); Annotations (B); and Metadata (C).

6.3.4 Experimental Study Design

To analyze the EmotiphAI Annotator usability and annotation reliability, an experimental study was con-

ducted. The study was submitted to and approved by the IST – University of Lisbon Ethics Committee

(Ref. n.˝ 11/2021 Date: 20/04/2021).

• Procedure: To ensure the correct deployment of the protocol, an assistant was present during the

sessions and guided the subjects across the steps in Figure 6.5. Steps 6 and 7 were repeated

three times by every user, one time for each segmentation method.

• Video Stimuli: Three videos were extracted from the Continuous LIRIS-ACCEDE dataset [139]

(see Chapter 7). The videos were selected based on: 1) Length of the movie – Videos were

limited to medium-length videos (i.e. M = 10.72 minutes, STD = 1.09 minutes) to reduce the time

and complexity of the protocol; and 2) Valence-Arousal Space – Movies eliciting the four quadrant
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Figure 6.5: Experimental protocol deployed to collect the data for the EmotiphAI Annotator technical
validation.

areas of the valence-arousal space. The database contains EDA data from 13 subjects watching

the videos, and a continuous emotion annotation from 10 volunteers using the GTrace annotation

tool (1-dimensional [-1, 1] range) [142].

• Participants: A total of 19 participants were recruited to watch three videos. The volunteers’

gender and age distribution is shown in Table 6.2. The volunteers varied across videos according

to their availability. No participant reported any concerning health condition that would impact the

study.

• Physiological Data: The physiological data was collected using the EmotiphAI Wearable de-

scribed in Chapter 5, using pre-gelled self-adhesive Ag/AgCl electrodes connected on the non-

dominant hand hypothenar and thenar eminences. Data acquisition was performed at a 60 Hz

sampling rate with 12-bit resolution.

Table 6.2 shows the number of subjects, ages and genders per video after subjects with "erroneous"

acquisitions were removed. "Erroneous" acquisitions were considered to be those where the data re-

mained at 0 for extended periods, or when there was a problem in the annotation process and the

volunteers did not annotate across the three segmentation algorithms.

Table 6.2: Demographic information from EmotiphAI Annotator validation tests: Number of individuals
per movie, age and gender distribution (Female (F); and Male (M)).

Movie Total Indv. (#) Age (Years) Gender (% F; M)

After the Rain 18 21.4 ˘ 1.9 37; 63
Elephant’s Dream 12 21.5 ˘ 1.6 32; 68
Tears of Steel 15 21.9 ˘ 1.5 21; 79

6.4 Results

The EmotiphAI Annotator’s usability and reliability were evaluated across a set of comprehensive tests.

Each self-report annotation was extended to a size of 60 seconds. To enhance the comparison of

segmentation methods, each video’s data was segmented by the physiological data sampling period,
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treating the sample points as timestamps. This approach facilitated the temporal alignment and com-

parison of the outputs from various annotation methods at specific points in time (see Figure 6.6). Only

timestamps with annotated segments are used in the comparison analysis, as only these have values

to be compared for each method. It is posited that no segment is incorrectly selected, as in the optimal

case the entire movie would be annotated. However, as was previously discussed, annotating the entire

movie is impractical due to the high burden of broad annotation of long-term content.

Video Time
User 1 Segment Timestamp

User 2 Segment

SAM 
Magnitude

Figure 6.6: Example of the temporal alignment of the EmotiphAI Annotator methods’ data by timestamps.

A set of four validity analysis tests were performed to analyze if the EmotiphAI’s retrospective anno-

tations are accurate and reliable. The code for the analysis is available at the chapter repository2.

6.4.1 Usability Test

Statistics

Table 6.4 presents a summary of the annotations obtained with the content segmentation methods. The

results show that, although the number of segments for annotation was lower for the Random algorithm

(Num. Ann. column), the volunteers took on average a lower time annotating the segments identified

using the EDA method (Ann Time (s) column). The Total Ann. column shows that the Scene algorithm

identified the largest number of clips for annotation, while the Random algorithm identified the lowest

number. The columns Ann. Avg Ts., Max Ann. Ts., and Min. Ann. Ts. provide the average, maximum

and minimum number of coinciding annotations performed by the subjects in a given timestamp. A

coinciding annotation is observed if there is an annotation in a timestamp for more than one user. The
2https://github.com/PatriciaBota/physio_group_emotion_phd/tree/main/emotion_annotation; Accessed: 20/02/2024
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Scene detection algorithm had the largest number of coinciding annotations on average (Ann. Avg Ts.),

followed by the EDA. Although the EDA detects a lower number of segments for annotation than the

Scene method, the maximum number of coinciding annotations in a timestamp is equal. This indicates

that the EDA selected at least one common region for annotation across all the subjects, i.e. one

section of the movie had a high impact on all the subjects, which was detected in the EDA data. The

minimum number of annotations (Min. Ann. Ts.) shows that there were regions in which only one

annotation (by one subject) was selected using the EDA and Random segmentation. These numbers are

expected as the scene detection will select the same segments for every user, the random segmentation

should select uncorrelated random segments and the EDA should lead to segments that can be similar

(corresponding to high arousal). The different number of annotations across subjects is observed when

the subjects forget or skip a clip for annotation.

Usability

Usability and user experience assessment was performed using the System Usability Scale (SUS) [321],

and the mental workload was evaluated using the NASA Task-Load Index (NASA-TLX) [322]. A prefer-

ence question was also introduced. The results are shown in Table 6.3, where the SUS results show a

preference for the EDA method with a B` grade score [323].

Mental Workload

For the NASA-TLX, similar values are reported across the three algorithms (« 45%), with the lowest

reported for the Scene algorithm. The obtained values report that the EmotiphAI Annotator is on the

top 40% of the platforms tested by the NASA-TLX questionnaire, corresponding to an average-to-low

mental workload. Lastly, the preference question shows that the subjects tended to select as their

favourite method the algorithm with a lower number of segments for annotation, i.e. Random method,

followed by the EDA and Scene methods.

Table 6.3: EmotiphAI Annotator Usability Questionnaire results.

Method SUS (%) NASA-TLX (%) Preference (%)

Scene 73.50 ˘ 1.89 44.74 ˘ 0.58 17.67 ˘ 7.64
Random 74.75 ˘ 3.87 45.21 ˘ 1.30 51.00 ˘ 3.46
EDA 76.40 ˘ 2.11 45.56 ˘ 1.48 31.33 ˘ 5.51

6.4.2 Inter-Subject Agreement

A common approach in the state of the art to validate self-reports is to calculate the subject’s inter-rater

agreement, e.g. STD and evaluation error are obtained in [324], correlation, Krippendoff’s α ordinal,
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Table 6.4: EmotiphAI Annotator evaluation statistics. Nomenclature: Average annotation time between clips (Ann. Time (s)); Number of Annotations per subject
(Num. Ann.); Total number of annotations (Total Ann.); Average (Ann. Avg Ts.); Maximum (Max Ann. Ts.); and Minimum number of annotations per timestamp
(Min. Ann. Ts.).

Dimension Method Ann. Time (s) Num. Ann. (#) Total Ann. (#) Ann. Avg Ts.
(#)

Max Ann. Ts.
(#)

Min. Ann. Ts.
(#)

Arousal
Scene 25.98 ˘ 0.37 15.41 ˘ 0.98 468.00 ˘ 144.87 14.65 ˘ 2.75 15.00 ˘ 2.45 14.00 ˘ 2.45
Random 27.55 ˘ 1.02 10.19 ˘ 0.59 322.33 ˘ 132.32 09.93 ˘ 1.43 13.33 ˘ 1.70 01.00 ˘ 0.00
EDA 25.14 ˘ 0.06 12.84 ˘ 0.25 400.67 ˘ 148.87 12.44 ˘ 2.12 15.00 ˘ 2.45 01.00 ˘ 0.00

Valence
Scene 25.63 ˘ 0.62 15.43 ˘ 1.00 468.33 ˘ 144.49 14.65 ˘ 2.79 15.00 ˘ 2.45 14.00 ˘ 2.45
Random 27.40 ˘ 0.98 10.17 ˘ 0.58 321.67 ˘ 131.94 09.89 ˘ 1.48 13.33 ˘ 1.70 01.00 ˘ 0.00
EDA 24.90 ˘ 0.11 12.82 ˘ 0.24 400.00 ˘ 148.48 12.43 ˘ 2.14 15.00 ˘ 2.45 01.00 ˘ 0.00
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cohen’s k, difference to mean, mean absolute difference in [325], Krippendorff’s α in [297, 300], and

Fleiss’ Kappa in [306]. In this work, the metrics applied in [324] are used, where, similarly to this work,

naturalistic data was collected and the annotations were performed using the SAM scale. In [324], the

authors obtain the inter-subject agreement by analyzing the annotation’s STD in a given timestamp,

and the evaluation error given by the difference between the average STD in a timestamp and the

optimal STD bound [324]. The difference was defined as zero when the STD was below the optimal

bound. The optimal and maximum thresholds were obtained using Equation (6.1) & Equation (6.2)

[324], respectively, where K is the number of annotators.
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Table 6.5: EmotiphAI Annotator inter-subjects agreement results, given by the evaluation error (Eval.
Error) and STD in a given timestamp. The optimal (d Opt.) and maximum upper bound (d Max.) rate the
results performance. Annotations P {1, 5}. Nomenclature: Dimension (D); Arousal (A); Valence (V).

D Method Eval. Error STD d Opt. d Max.

A
Movie 0.18 ˘ 0.12 0.69 ˘ 0.13 0.51 ˘ 0.0 2.05 ˘ 0.01
Random 0.19 ˘ 0.18 0.71 ˘ 0.18 0.52 ˘ 0.0 2.08 ˘ 0.02
EDA 0.22 ˘ 0.17 0.74 ˘ 0.18 0.52 ˘ 0.0 2.07 ˘ 0.01

V
Movie 0.05 ˘ 0.05 0.55 ˘ 0.07 0.51 ˘ 0.0 2.05 ˘ 0.01
Random 0.05 ˘ 0.07 0.54 ˘ 0.09 0.52 ˘ 0.0 2.08 ˘ 0.02
EDA 0.04 ˘ 0.06 0.55 ˘ 0.08 0.52 ˘ 0.0 2.07 ˘ 0.01

The experimental results for the EmotiphAI Annotator are shown in Table 6.5. Similar results are

obtained for the three segmentation algorithms, with a lower evaluation error obtained for the valence

dimension. For both dimensions, the STD is above the optimal upper bound and below the maximum

bound. The evaluation error values are lower than half the distances between two discrete SAM num-

bers, being very low for the valence dimension, and the STD is between one range value.

6.4.3 Self-Reports Coherence

The self-report coherence was analyzed by observing if the three algorithms lead to similar annotations

for each movie. The self-reports coherence is obtained by comparing the user’s average annotations

for each timestamp across the three algorithms using the metrics from [324] detailed in Section 6.4.2

(Table 6.6). The experimental results show an evaluation error of 0, which is obtained due to the STD

being below the optimum bound, returning an evaluation error of 0. This leads to the conclusion that for
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the three segmentation algorithms, the average annotations are similar across timestamps. The valence

dimension shows lower variability; an example of the subjects’ average annotations for the ’Elephant’s

Dream’ movie is shown in Figure 6.7. The figure confirms that there is negligible inter-segmentation

method variability, with an overall value below a magnitude of 1.

Table 6.6: Similarity between the subjects’ average self-reports for the segmentation methods. Annota-
tions P {1, 5}.

Dimension Eval. Error STD d Opt. d Max.

Arousal 0.0 ˘ 0.0 0.17 ˘ 0.07 0.58 ˘ 0.0 2.31 ˘ 0.0
Valence 0.0 ˘ 0.0 0.14 ˘ 0.02 0.58 ˘ 0.0 2.31 ˘ 0.0
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Figure 6.7: EmotiphAI Annotator average annotations for the three segmentation methods.

6.4.4 Comparison to Reference Annotations

The annotations obtained using the EmotiphAI Annotator were compared to the annotations reported in

LIRIS-ACCEDE [139], using the metrics by [324] detailed in Section 6.4.2.

Table 6.7: Comparison between the EmotiphAI Annotator and the LIRIS-ACCEDE annotations. Annota-
tions P {1, 5}.

D Method Eval. Error STD d Opt. d Max.

A
Scene 0.06 ˘ 0.08 0.65 ˘ 0.19 0.71 ˘ 0.0 2.83 ˘ 0.0
Random 0.04 ˘ 0.05 0.64 ˘ 0.17 0.71 ˘ 0.0 2.83 ˘ 0.0
EDA 0.03 ˘ 0.04 0.56 ˘ 0.18 0.71 ˘ 0.0 2.83 ˘ 0.0

V
Scene 0.02 ˘ 0.03 0.49 ˘ 0.20 0.71 ˘ 0.0 2.83 ˘ 0.0
Random 0.00 ˘ 0.00 0.62 ˘ 0.06 0.71 ˘ 0.0 2.83 ˘ 0.0
EDA 0.05 ˘ 0.07 0.56 ˘ 0.21 0.71 ˘ 0.0 2.83 ˘ 0.0

The LIRIS-ACCEDE baseline was used since it was the only publicly available corpus with physiolog-

ical data and annotated longer videos in the valence and arousal dimensions identified by the authors.

The experimental results in Table 6.7 show that, for each timestamp, the evaluation error is similar across
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dimensions and the different segmentation algorithms, with no segmentation method outperforming the

remaining. A similar result for the different segmentation algorithms is expected, since the self-reports

coherence results in Section 6.4.3 showed that the average annotations across the algorithms are sim-

ilar. The obtained STD is below the optimal value and the evaluation error is minimal. An example is

shown in Figure 6.8, with the comparison of the state-of-the-art ground truth (red) with the obtained anno-

tations using the EmotiphAI algorithms (EDA in green, Random in orange and Scene-based annotations

in blue). Although a drift is observed between EmotiphAI Annotator and LIRIS-ACCEDE annotations,

on average, the STD value between the two is low (below a magnitude of 0.7 in a [1, 5] scale), and,

overall, the annotations time series from both datasets tend to follow the same trend pattern throughout

the movie.
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Figure 6.8: Example comparing the LIRIS-ACCEDE ground-truth to the EmotiphAI Annotator.

6.4.5 Comparison to Electrodermal Activity

Considering the EDA as a marker for SNS activity (arousal) [9], an analysis is performed as to whether

there is a correlation between the EmotiphAI Annotator arousal self-reports and the collected EDA data.

To process the EDA data, the algorithm described in [326] was used, where, similarly to this work,

the subjects’ EDA given by the MAP was compared to the LIRIS-ACCEDE ground-truth used as a

benchmark. The MAP was validated in [327] to contain information regarding the arousal variations of

a global audience during a movie. It involves the removal of outlier subjects, a low-pass filter, taking

the first derivative, truncation of positive values, and downsampling through a moving average filter. For

further information regarding the MAP, the reader is referred to [326, 327].
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The experimental results presented in Table 6.8 show that the segmentation correlation results

are dependent on the movie. Nevertheless, comparing the three algorithms and throughout the three

movies, the EDA method is the only method maintaining a lower-average to above-average correlation

between the MAP and the arousal annotations. Poorer results are obtained for the video "Elephant’s

Dream", which may be explained by the low self-reports variability (M = 3.33, STD = 0.10). The data

from the "After the Rain" and "Tears of Steel" movies is shown in Figure 6.9, where it can be seen that

an increase in the annotation value is followed by an increase in the EDA MAP, and vice-versa.

In Table 6.9 the EmotiphAI Annotator’s best results are evaluated comparatively to the results ob-

tained by the state-of-the-art [326]. Overall, EmotiphAI Annotator obtains a higher correlation between

the arousal self-reports and the MAP, outperforming the state-of-the-art annotations for two of the

movies ("Tears of Steel" and "After the Rain").

Table 6.8: EmotiphAI Annotator methods’ arousal annotations correlation to the MAP given by the Pear-
son (Pearson C) and Spearman correlation (Spearman C) in a [0, 1] scale.

Movie Dimension Pearson C Spearman C

Tears of Steel
Scene 0.77 0.73
Random 0.58 0.65
EDA 0.58 0.55

After the Rain
Scene 0.62 0.31
Random 0.32 0.18
EDA 0.80 0.65

Elephant’s Dream
Scene -0.10 -0.18
Random -0.21 -0.20
EDA 0.26 0.25
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(a) "After The Rain".
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Figure 6.9: Examples comparing the collected MAP and the average arousal self-reports from the
EmotiphAI Annotator.
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Table 6.9: Comparison between the state of the art [326] and EmotiphAI Annotator best results on the
MAP and arousal annotations correlation for the Pearson (Pearc. C) and Spearman (Spear. C). ToS
(Tears Of Steel); AtR (After the Rain), ED (Elephant’s Dream); LA (LIRIS-ACCEDE); EAI (EmotiphAI).

Movie Database T (%) Pearc. Spear Method

ToS LA 66 0.55 0.64
EAI 60 0.77 0.73 Scene

AtR LA 86 0.24 0.27
EAI 50 0.80 0.65 EDA

ED LA 66 0.55 0.64
EAI 90 0.26 0.25 EDA

6.5 Discussion

The discussion of the results is divided into the evaluation of the EmotiphAI Annotator usability (RQ 3.1),

accuracy tests (RQ 3.2), and the comparison between the content segmentation methods (RQ 3.3).

6.5.1 Usability Test

Addressing RQ 3.1, the results show that, although retrospective emotion annotation is a task that

requires memory work and increases the subject mental workload, it is not overwhelming and too tiring

for the volunteers as shown by the NASA-TLX of 40%. This value is in line with the state of the art,

namely with EmoteU [19] (37.5% to 44.52%), and RCEA [298] (52.5% and 82.5%) and above [306],

where live (31.6%) and textual (35.7%) annotation is performed. Amongst the two hypotheses under

test (EDA and Scene-based segmentation), the EDA segmentation was the preferred method. Although

the EDA method selected a higher number of clips for annotation than the Random method, it showed

the lowest annotation time of all the methods. The SUS B+ score confirms the usability of the EmotiphAI

Annotator for retrospective annotation, with the EDA method outperforming the Scene-based in terms

of annotation time, SUS and preference score. The results demonstrate the usability of the EmotiphAI

retrospective annotation tool for the annotation of long-duration content.

6.5.2 Validity Test

The RQ 3.2, regarding the EmotiphAI Annotator comparison to conventional approaches, was analyzed

through a set of four tests:

Inter-subject Agreement

The evaluation error was lowest for the valence dimension indicating higher consensus. Overall, the

evaluation error is lower than the reported in the state of the art (namely in [324]), although it should

be noticed that different datasets and problems are addressed. The state of the art [328] reports that
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in a naturalistic general content, slight disagreements in ratings can be expected, since many factors

contribute to different ratings of the same stimuli, namely the subject’s experience in emotion annotation,

mood, personality, engagement and liking of the film, among others. The state-of-the-art reports low to

average inter-rater agreement [139, 300, 328], increasing with the use of expert annotators [329], context

[311], use of multi-modal information [311], rank annotation [297], data down-sampling [328], and outlier

removal [130, 330]. After testing two alternative approaches, the authors in [306] report that for live

annotation and textual annotation: "The agreement of annotators remains very small, showing again the

difficulty and inherent subjectivity of sentiment annotation". The findings within this chapter are in line

with what is described in [328]: "Experiments on several types of material provide information about their

characteristics, particularly the ratings on which people tend to agree. Disagreement is not necessarily

a problem in the technique. It may correctly show that people’s impressions of emotion diverge more

than commonly thought".

Self-report Coherence

The segmentation algorithms lead to similar annotations when averaged across the subjects’ reports for

a given timestamp (see Table 6.6). For each timestamp, low variability is observed, below a 0.2 ampli-

tude on a [1, 5] scale. The high coherence can be explained since the same subjects annotate similar

timestamps across algorithms, resulting in the annotation of roughly the entire content, with each times-

tamp being annotated by at least one subject, and in several cases by all (as seen in Table 6.4). The high

annotation’s coherence across the segmentation algorithms confirms the reliability of the retrospective

annotation.

Comparison to the Reference Annotations

The STD between the EmotiphAI Annotator annotations and the state of the art (LIRIS-ACCEDE) (see

Table 6.7) showed a maximum difference of around 0.65 in a [1, 5] scale. However, the value is still below

the "critical" threshold (« 0.71) given by [324]. No meaningful difference was detected in the valence

and arousal dimensions or across the different segmentation algorithms. The state of the art ground-

truth was obtained in real-time and using continuous annotation [-1, 1], while the EmotiphAI Annotator

uses a SAM discrete scale {1, 5} annotated retrospectively after the movie, which can introduce both

latency and scale differences in the two annotations, and become a source of error in the observed STD

between the two annotations. Nevertheless, overall, the experimental results are in line with the state

of the art: "Annotators agree on the trends but disagree on the values" [324]; "True emotion, however,

does not necessarily fall into only one of the discrete emotion space sampling point" [330].
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Comparison to Electrodermal Activity

The EDA method outperformed the remaining, with the arousal self-reports showing lower-average to

good correlation (0.26 to 0.8 correlation in [0, 1] scale) to the EDA data given by the MAP [326] in

Table 6.8. The results reinforce the EDA as a marker of SNS activity given by the arousal dimension. The

EmotiphAI Annotator Scene and EDA segmentation methods obtain competitive results comparatively

with the state of the art, outperforming their results for two of the videos ("Tears of Steel" and "After

the Rain"). For the "Elephant’s Dream" video, the lower correlation score may result from the fact that

the arousal average self-report values show minimum variability with no major emotional event (self-

report values around the neutral state 3 for the entire content). The low variability annotations can mean

that there was no emotion elicitation or low engagement in the video. The literature [326] reports that

correlations to EDA are expected when an emotional event is detected by an increase or decrease of the

emotion annotations from the neutral state (of magnitude 3 in EmotiphAI Annotator SAM scale). Overall,

the EDA segmentation method can be of interest for affective computing applications, since it selects

moments for emotion annotation correlated with changes in SNS activity.

6.5.3 Content Segmentation Method

Addressing RQ 3.3, amongst the segmentation methods, the EDA-based showed advantages, namely:

1) Lower annotation effort for the user as expressed by the lower annotation time comparatively to the

remaining methods); 2) The obtained self-reports have displayed a higher correlation with the phys-

iological dynamics, and the EDA data, serving as an indicator of SNS activity, is prone to selecting

SNS-related events for emotion annotation; 3) Scene-based segmentation is limited on the use of a

movie for emotion elicitation (unlike EDA-based); and 4) Allows to sort the events by intensity, which the

literature has shown that are easier to recall [320], hence being important to show first to ensure that at

least these are annotated (if the subjects do not comply with completing the rating of all the segments in

a real-world annotation scenario).

It should be noticed that the EDA segmentation requires additional effort (and hardware) to record

EDA data, which is not necessary for the other two methods. However, when collecting physiological

data for the development of emotion recognition algorithms, such aspects can be mitigated. Overall, the

annotation segmentation method should be chosen according to which better fits the research design

and goals of the study.
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6.6 Conclusion

Expanding upon the EmotiphAI Data Acquisition platform presented in the preceding chapter (Chap-

ter 5), and the need for emotion recognition systems to have access to ground-truth annotations, this

chapter focused on the annotation of emotional states. Moreover, it was identified a gap in annotation

tools tailored for long-term naturalistic content, towards the annotation of naturalistic settings. In re-

sponse, this chapter delves into Obj 3. Emotion Annotation for Naturalistic Settings, addressing RQ 3.1

to 3.3, which focuses on developing and evaluating the EmotiphAI Annotator, a novel tool for emotion

annotation of long-duration content, in terms of its usability, accuracy, and comparative effectiveness

against existing state-of-the-art solutions.

By focusing on long-duration content, rather than the short clips commonly used in current research,

this method more closely mimics genuine emotional experiences. The EmotiphAI Annotator incorpo-

rates advanced content segmentation algorithms, which identify specific moments within the content for

annotation. Moreover, the EmotiphAI Annotator employs a unique stepped retrospective approach, aim-

ing to merge the benefits of real-time and retrospective annotation methods. This approach significantly

reduces the overall number of annotations required, allowing for the annotation of longer videos by a

broader range of individuals.

The platform was analyzed considering its usability and annotation accuracy. The experimental

results showed that the EmotiphAI Annotator provides a good user experience with low mental workload

and the retrospective annotations can be used as a reliable ground-truth estimate for emotion recognition

systems. Among the segmentation methods, the EDA demonstrated low annotation effort and showed

correlation to EDA data, ensuring that SNS-related events are selected for emotion annotation. As such,

the EmotiphAI Annotator can enable quick, reliable and low mental workload emotion reports across

longer elicitation content.

This platform could be the basis for widespread emotion annotation across diverse distributed real-

world scenarios, leading to the creation of large databases for emotion recognition.

The gap in the literature for the sensor devices, group data collection, and annotation platforms of

long-duration content, has resulted in the lack of public datasets with these characteristics. In the next

chapter, a novel dataset for emotion recognition will be introduced, utilizing group physiological data and

annotated long-duration videos collected in a naturalistic scenario.
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Chapter 7

Group Emotion Dataset

Leveraging the platforms for data acquisition and annotation introduced in Chapters 5 and 6, this chapter

tackles Obj 4. Real-world Affective Computing Dataset, specifically addressing RQ 4.1 and 4.2. To meet

this objective, the G-REx dataset is presented, a dataset designed for the recognition of annotated group

emotions using physiological signals in a natural setting.

The contents within this chapter were adapted, with permission, from:

• P. Bota, J. Brito, A. Fred, P. Cesar, and H. Silva, “A real-world dataset of group emotion experiences

based on physiological data,” Scientific Data, vol. 11, no. 1, pp. 1–17, 2024
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7.1 Introduction

In recent years, the field of affective computing has gained prominence, namely in text sentiment anal-

ysis and image/video-based emotion recognition through body posture and facial expression. For this

data, large data corpus are available (e.g. AffectNet [331] with 0.4 million annotated facial expressions;

EmotiW challenge [332] with 1088 annotated videos), which is crucial for the development of accurate

artificial intelligent algorithms.

This growth has also been observed in emotion recognition based on physiological data, namely in

unobtrusive physiological sensors (e.g. EDA or PPG) which aim to capture data in real-life settings. In

the physiological-based affective computing literature, as detailed in Section 2.3 there is a large num-

ber of publicly available datasets (e.g. [131, 137, 140, 333, 334, 335, 336] in Section 2.3). However,

the majority of these datasets are designed for data collected in the lab and rely on the use of short

clips/images validated to elicit basic emotions, e.g. CASE [131], Emognition [333], or POPANE [334].

As denoted in Chapter 6, the use of short video clips does not replicate a naturalistic emotion elicita-

tion setup, where normally there is a build-up of emotion. Moreover, although in-lab experiments allow

higher control over the collected data, the literature has questioned whether they can be replicated and

generalized to real-life scenarios [6, 140].

The state-of-the-art has been moving from in-lab controlled and small-video excerpts setups to al-

ternative data collection closer to naturalistic scenarios, such as the BIRAFFE2 [136] (Chapter 7), in

which physiological data was collected (ECG, EDA) during video games, the PPB-Emo dataset [335]

(Chapter 7) with physiological data collected (EEG) during driving, or K-EmoCon [137], with (EDA, PPG,

ECG, skin temperature, EEG) data collected during a social debate. A limited number of robust datasets

with data collected in real-life scenarios can be found, such as the DAPPER [140].

This part of the thesis aims to address this gap by introducing a labelled naturalistic dataset specifi-

cally designed for group emotion recognition through physiological data – the G-REx dataset, guided by

the exploration of the following research question:

RQ 4.1: Can large amounts of annotated physiological data be reliably collected in a naturalistic

setting using the EmotiphAI platform?

RQ 4.2: How does an infrastructure designed for group physiological data acquisition perform in a

real-world setting?

In line with the naturalistic data collection, the experiment relies on real movies for emotion elicita-

tion, using physiological sensors integrated into an unobtrusive and wireless bracelet device (EmotiphAI

Wearable Chapter 5), and collecting data in a group setting (analogous to a cinema theatre). Then,

the data is annotated retrospectively by the volunteers, which allows an undisturbed visualisation of the

movie and the annotation of only selected movie scenes. This paradigm allows for a naturalistic emotion
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elicitation over a long period (each movie has around 2 hours). The dataset contains data from over

190 subjects, covering 31 movie sessions and more than 380 hours of physiological data. The proposed

experimental setup for annotated affective data collection can be replicated across diverse naturalistic

experimental settings, from a cinema session to a classroom or a hospital.

7.2 Background

The terms "in-the-wild"/"real-world" or "naturalistic" data have been denoted to describe data collection

when the experimenters do not control the emotion elicitation nor constraint the data acquisition [6].

These can be further divided into "ambulatory" settings where the data is collected in daily living with

the subjects moving freely, or "static" when the data collection is limited to a specific location (such as

workplace, car or cinema) [6]. The authors in [337], compared stress responses induced in the lab to

stress induced at the volunteer’s home. The experimental results showed that the volunteer in-lab HR

during the stressor was lower than in the real-world setting. Similarly, in [338] the authors observed

that physiological data collected in the lab differed from data collected replicating real-world data, where

the person is free to move. This resulted in the model created in the lab deteriorating its emotion

classification performance when tested with real-world-like data.

Another example of the limitations of in-lab data collection setups is the [339] MOSAIC program,

which had the goal of evaluating affect detection systems in real-world scenarios. The data was collected

following a lifelog setup, during everyday routines, such as working and work-related travelling. Emotion-

related ground truth was collected for positive and negative affect, stress and anxiety. These were

measured at the start of the study and once per day using the experiment sampling technique. Neither of

the teams met the program goal metrics for affect detection, attaining accuracy near zero across teams.

Based on the results, the authors in [339] suggest the need for a different data collection paradigm that

is closer to a real-world scenario.

7.3 Methods

The G-REx dataset was designed to bridge the gap between the real world and controlled experiments.

This is done by opting for collecting data in long-duration content in a cinema, retrospectively annotated

in small segments by their emotional relevance. Moreover, annotated EDA and PPG data is collected

unobtrusively as detailed in Chapters 5 and 6.
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7.3.1 Dataset Design

The G-REx dataset was designed for large data collection in naturalistic group scenarios. As a proof-of-

concept, data was collected in a room on a university campus replicating a movie theatre (Figure 7.1).

Instead of relying on selected movie clips as observed in the literature [305, 333, 334], longer duration

content is used, in particular, a movie.

The dataset was collected to expand the annotated public datasets for physiological-based affective

computing collected in naturalistic scenarios and propose an experimental setup that can be easily

replicated across any naturalistic setting with little effort to the user.

Data Annotation

Datasets on emotion recognition usually contain emotion-annotated segments. As previously described

in Chapter 6, the common practice described in the literature for short clips is to perform real-time

continuous annotation of arousal and valence (e.g. [131, 305, 333, 134]). However, to perform the

annotation in naturalistic scenarios or as in the case of a long film, the annotation becomes tiring and

distracts the user from the elicitation process.

To address this issue, the platform proposed in Chapter 6 is used. In this approach, the annotation is

performed by the subjects themselves and is as quick and not intrusive as possible. Instead of annotating

the entire two-hour movie, which would be too time-consuming and tiresome for the volunteer, the subject

annotated only selected segments of a few seconds (20 seconds) where events (onset events with

high amplitude) were detected on the subjects EDA data (segment of [onset - 5 seconds, onset + 15

seconds]). A time interval of 20 seconds was selected to replicate the annotation duration in AMIGOS

[87], and taking the 5 seconds previous to the onset from the literature reporting the latency period of

emotional stimuli between 1 to 5 seconds [318].

(a) G-REx data collection cinema room. (b) Placement of the EmotiphAI Wearable.

Figure 7.1: Photos taken during the G-REx data collection movie sessions.
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Participants Recruitment

The data collection was performed between October 2022 and June 2023, making a total of 31 sessions.

The volunteers were recruited from participants in the Diferencial1 cinema sessions. The Diferencial

is a student club from the IST of the University of Lisbon. The cinema sessions were advertised on

Diferencial’s social media platforms, namely Twitter and Instagram, being free and open for anyone to

participate, regardless of whether they are students at the university. In the post description, there

was a notification that physiological data collection was being performed on volunteers. At the cinema

sessions, a lab researcher of the team approached the audience, described the experiment and asked

if they would like to participate. At the end, a chocolate bar was given as a reward for the participation.

Ethics Statement

The study was submitted to and approved by the IST - University of Lisbon Ethics Committee (Ref. n.˝

11/2021 (CE-IST) Date: 20/04/2021). The participants were given a consent form upon arriving at the

cinema room before the data collection. The informed consent form contained information regarding the

context, goal, procedure, data registration, data privacy, and risks of participation in the experiment. In

this form, the participants manually filled in their participation agreement, age, gender, if they participated

in the study with any friends and their familiarity with the movie. Additionally, the participants were asked

to fill out a physiological data purpose form with an agreement for the usage, visualization and analysis

of the data, sharing the data in academic publications, at conferences, in media, and with external

partners. Participants were notified that their participation was voluntary, had to be done in an informed

and free manner, and that their data could be destroyed and their participation withdrawn by request at

any time without consequences.

Data Collection Setup

The data collection took place on an amphitheatre at IST. The cinema sessions were performed once

per week starting at 8 to 8.30 PM during the school academic year. To collect and annotate the data,

an adapted version of the EmotiphAI platform described in (see Chapter 5) was used. Moreover, the

platform was adapted to the ScientISST device. The EmotiphAI [12] platform was set up in a corner of

the room, with the router at the centre. The hardware and software used in the experiment are detailed

next.

1https://diferencial.tecnico.ulisboa.pt; Accessed on 20/02/2024
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Hardware

• EmotiphAI Collector (Microsoft Surface Pro, 7 1.10GHz x 8 CPU): was used to host the EmotiphAI

platform for both physiological data collection [12] and emotion self-reporting (Figure 7.2 – A). A

local network was created using a TL-WR940N router (Figure 7.2 – B), allowing the EmotiphAI

Wearable to communicate with the EmotiphAI Collector.

Figure 7.2: EmotiphAI platform setup used in the Diferencial cinema sessions. Nomenclature:
EmotiphAI Collector (A); TL-WR940N router (B); EmotiphAI Wearable based on the ScientISST de-
vice (C).

• EmotiphAI Wearable (Figure 7.2 – C): contained two physiological sensors that were connected

to the subject’s skin using Pre-gelled Ag/AgCl electrodes (to improve the skin conductivity and

electrode’s adherence to the skin) on the non-dominant hand with the respective sensors. The

EDA sensor electrodes were placed on the thenar and hypothenar areas, and the PPG was placed

surrounding the index finger distal phalange. The details of each sensor are described in Table 7.1.

For this data collection, the R-IoT device described in Chapter 5 was no longer available, and

for that reason, it was replaced by ScientISST CORE (Figure 7.2 – C), a device designed to

collect physiological data2. The ScientISST device provided a few advantages against the R-IoT

2https://scientisst.com; Accessed on 20/02/2024
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device, namely, it allows both Transmission Control Protocol (TCP) (to control for data loss) and

Bluetooth communication and is an open-source device. Moreover, the ScientISST device allows

the integration of over 6 input channels at a high sampling rate (reported sampling rate ą 10000

Hz for one device).

Table 7.1: Overview of EmotiphAI Wearable characteristics. Nomenclature: Sampling rate (SR); Reso-
lution (Res.); Communication (Comm.).

Characteristic Sensor Range Bandwidth / Specs Additional Info

SR: 100 Hz EDA 0 – 25 µS 0 – 2.8 Hz Input Voltage
Range: 1.8 – 5.5 V

PPG 0.3 – Vdd Input Voltage Range: 3 – 5.5 V

Res.: 12 bits Comm.: WiFi (TCP), Range: 100 meters
Size: 22.51 x 40.90 x 53.50 mm Weight: 64g Battery: Li-On; 7.4

V 800 mA

Software

• EmotiphAI Collector: The physiological data collection was controlled by the EmotiphAI Data

Acquisition platform [12] (Chapter 5) adapted for the ScientISST device. The data was stored

locally on the device and then moved to a private cloud. For further detail on the acquisition

platform, the reader is referred to Chapter 5 [12].

• EmotiphAI Annotator: The annotation platform runs on the collected data in post-processing.

After the movie is over, the annotation platform iterates across the users and, for each, their most

significant moments as given by high amplitude EDA events (onset to peak amplitude) are selected

for the volunteers to annotate retrospectively. For further detail on the annotation platform and

segment selection methodology, the reader is referred to Chapter 6 [15].

Experimental Protocol

Figure 7.3 shows the experimental procedure for physiological and emotional data collection at each

cinema session. A research team of two to three members was on the site to help follow each step of

the protocol.

1. Consent Form: As each participant arrived for the cinema session, they were approached by one

member of the research team, given a description of the experiment, and asked if they would like

to participate. If they agreed, an informed consent form was given for the volunteers to read and

fill out.
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Figure 7.3: Experimental protocol for the collection of the G-REx dataset.

2. Sensor Placement: Upon agreeing to the data collection, the EmotiphAI Wearable was placed on

the non-dominant hand with two physiological sensors (EDA and PPG). The volunteers were then

ready to start watching the movie and start the data collection.

3. Data Collection: The movie and physiological data collection were manually synchronized by

starting both at the same time. The volunteers watched the movie in a naturalistic scenario, being

able to sit in any location in the amphitheatre, surrounded by their friends or strangers.

4. Data Annotation: At the end of the session, the volunteers were approached by our team to

request the annotation of emotional segments in terms of arousal, valence and uncertainty in the

annotation. A description of the emotion annotation is displayed in Table 7.2.

Table 7.2: Description of G-REx self-reported emotion annotation scales.

Category Description Range

Arousal Denotes general energy deactivation/activation [340] [1, 5] P N
Valence Denotes displeasure/pleasure [340] [1, 5] P N
Uncertainty Denotes the level of uncertainty/certain in the emotion annotation Yes/No

5. Follow Up: The literature on emotion recognition has shown that the personality type might influ-

ence the emotional reaction (e.g. neuroticism is correlated to high negative-emotional response)

[341, 342]. With this in mind, on the day after the data collection, a follow-up email was sent to the

volunteers. The follow-up email had the goal of thanking the participants for their contribution, and

sharing an optional questionnaire with the big-five factor model for personality assessment using

the 50-item English version of the International Personality Item Pool (IPIP-J) [343].

Overall, each session lasted approximately 2 hours and 30 minutes, which included around 10 minutes

for emotional self-reporting, and an additional 10 minutes for sensor placement and the completion of

the consent form.

Affective Stimuli

The cinema movies were selected by the Diferencial team. Most of the movies were part of thematic

cycles, each dedicated to specific themes. The collected data covered the following cycles: "Horror",
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"Ghibli", "Mind*uck", "Musical", "Asian culture", and "Is Anybody out there?". Additionally, two collab-

orations were performed with IST student groups ("AmbientalIST", "NucleAr" and "AEIST") and one

collaboration with a production company ("JumpCut"). In two sessions, a short film was displayed before

the movie data collection.

7.3.2 Data Contents

The G-REx dataset was organized to contain both the raw and transformed data. As well as all the code

for the data transformation. To guarantee the reproducibility and transparency of the research, the code

utilized for the data transformation is also included within the dataset, with the resultant plots and table

content derived during the research process.

The G-REx dataset is available on Zenodo3. The data will be made available after completing the

End User License Agreement (EULA) available4. For the structure of the dataset, a similar approach to

the one in [134] was followed, and an overview is shown in Figure 7.4. The dataset contains six main

folders, outlined as follows:

• 1_Stimuli:

– Raw/video_info.json/csv – Contains detailed information on the movies used in the dataset.

– Transformed/stimu_trans_data_<DATA_TYPE>.pickle – Contains the information of the movie

details for the annotated segments and session data. <DATA_TYPE> P {session, segments}.

• 2_Questionnaire:

– Raw/quest_raw_data.json/csv/xlsx – Contains the questionnaire data for all the participants

in the dataset.

– Transformed/quest_trans_data_<DATA_TYPE>.pickle – Contains the user ID and device in-

formation of the emotion-annotated segments and session data. <DATA_TYPE> P {session,

segments}.

• 3_Physio:

– Raw/S<X>_physio_raw_data_M<Y>.hdf5; where <X> is the session ID P [0, ..., 28], and <Y>

is the movie ID P [0, ..., 30] – Contains the raw HDF5 data collected by the EmotiphAI platform

for each session X and movie Y .

– Transformed/physio_trans_data_<DATA_TYPE>.pickle – Contains the transformed raw and

filtered EDA, PPG, HR and time information data for the annotated segments and session

data. <DATA_TYPE> P {session, segments}.
3https://zenodo.org/record/8136135
4https://forms.gle/RmMosk31zvvQRaUH7; Accessed on 20/02/2024
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Figure 7.4: G-REx data structure.
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• 4_Annotation:

– ann_trans_data_segments.pickle – Contains the arousal, valence and uncertainty values for

the annotated segments.

• 5_Scripts:

– read_quest_data.py – Returns the video and user questionnaire information.

– read_physio_data.py – Reads the collected raw physiological signals, emotion annotations,

video data and the self-report questionnaires to store the transformed data in separate dictio-

naries, with matrices data for the session and annotated data segments.

– data_analysis.py – Script used to obtain the plots and tables displayed in the technical vali-

dation section.

– quality_<SIGNAL>.py – Obtain the data quality and lower quality signals. <SIGNAL> P {EDA,

PPG}.

• 6_Results:

– <SIGNAL>/<DATA_TYPE>/Plots/D<H>_M<Y>_idx<Z>_<DATA_TYPE>_<SIGNAL>.png – Plot

of the raw and filtered data. The <H> variable is the device ID; <Y> is the movie name; and

<Z> is the sample index; <SIGNAL> P {EDA, PPG}; <DATA_TYPE> P {session, segments}.

– <SIGNAL>/<DATA_TYPE>/Quality/<SIGNAL>_quality_bad_<DATA_TYPE>.csv – Table with

the physiological signals technical validation results. <SIGNAL> P {EDA, PPG}; <DATA_

TYPE> P {session, segments}.

Each pickle file consists of a dictionary. The detailed information regarding the keywords of each

pickle file can be seen in Figure 7.5.
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Figure 7.5: G-REx dataset pickle data structure with respective keys.
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7.3.3 Dataset Summary

The G-REx dataset consists of data collected from 31 sessions, making a total of 191 users and more

than 380 hours of data collected. This includes data from the physiological signals EDA and PPG, and

emotional annotations of selected movie moments, making a total of 1400+ annotated segments. In

two of the sessions, two different movies were seen, while in the remainder only one movie was seen

resulting in a total of 31 sessions but 29 movies. A summary of the total data collected can be seen in

Table 7.3.

Table 7.3: Summary of the G-REx dataset data.

Total After Processing
Session Segments Session Segments

# of Participants 191 191 92 149
# of Movies 31 31 27 27
# Sessions 29 (« 384.5 hours) 29 (« 8.2 hours) 25 (« 175.9 hours) 25 (« 5.7 hours)
# Samples 241 1481 112 1031
Age Range 18 – 69
Physiological Signals EDA, PPG
Emotion Annotations Arousal, Valence

Preprocessing

The raw data was collected using the EmotiphAI Collector and stored on a HDF5 file [344] (Chapter 5).

To facilitate the usage of the data, the latter is stored in a compact format of the session and segments

data, as well as questionnaire, stimuli and emotion annotations on separate but synchronized dictionar-

ies stored on pickle files.

The raw data in xlsx or HDF5 format was transformed into dictionaries containing the relevant data

in matrices stored in a pickle format.

For the physiological data pre-processing, the BioSPPy library [8] was used for filtering the EDA and

PPG signals, peak extraction and EDA decomposition into the EDR and EDL components. The analysis

of statistical tests was conducted using the SciPy library [345]. The processing was done in Python

3.7.4, and the required code is available in the 5_Scripts folder so it can be easily replicated.

7.3.4 Technical Validation

To characterize the collected data, physiological data was categorised into sets of higher and lower

quality. Furthermore, description metrics are utilized to compare the two sets. The distribution of emotion

annotations and movie genres is then observed, highlighting the diversity and comprehensiveness of

the dataset. Finally, statistical evaluations were conducted, comparing the distributional properties of
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arousal, valence, and genre groups, benchmarked against mean EDA, HR, and subjectively reported

arousal and valence measures.

Physiological Signals

The EDA signal is read through the connection of gel electrodes to the skin, making the signals easily

subjected to artefacts such as loss of contact of the electrodes with the skin either due to a long-duration

use or sweat, which disconnects the gel and adhesive. Similarly, the PPG signal can be affected by

the tightness of the bracelet, which can cause saturation at the maximum value, or be loose and lose

connection to the finger. In addition, the PPG allows the extraction of the HR, which has expected range-

values denoted in the literature between 40 and 200 beats per minute (bpm) [346]. Values outside this

range are noise and can be removed.

To remove noisy data and obtain a view of its description, quality metrics identified in the literature

[12, 346, 347, 348, 349, 350, 351] were applied for the EDA and PPG signals. Using the quality metrics,

the data was divided into quality and lower-quality sets. As observed in the literature, some works apply

cut-offs to remove low-quality data using a cut-off threshold [348], while others [352] use the metrics to

obtain an overview of the data distribution of the two to observe how the quality segments and lower

quality segments distributions compare to each other.

Additionally, the technical validation of physiological signals encompasses two distinct data collection

formats: session data and 20-second annotated segments. Following Nasseri et al. [348], a threshold of

four seconds was adopted to identify lower-quality data within the 20-second segments. However, given

that session data spans approximately two hours, a four-second criterion was considered negligible.

Consequently, a more conservative threshold of 7% was applied to assess the session data quality,

ensuring relevance and accuracy in a longer-duration analysis.

Statistical Analysis

Taking arousal, valence and movie genre scores as groups with possibly different EDA and HR physio-

logical measures, a statistical test for a normal distribution of the different groups was computed using

the Shapiro test6, to test the null hypothesis that the data was drawn from a normal distribution. When

any of the obtained p-values were below the thresholds for significance level (i.e. p ă 0.05) the null

hypothesis was rejected, and it was concluded the data is not normally distributed. Taken that the data

is not normally distributed, the Kruskal-Wallis H-test7 was obtained to assess the null hypothesis that

the population median of all of the groups is equal. On the other hand, when the p-value is above 0.05,

5https://github.com/PatriciaBota/physio_group_emotion_phd/tree/main/group_emotion_dataset; Accessed on
20/02/2024

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html; Accessed on 20/02/2024
7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html; Accessed on 20/02/2024
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Table 7.4: Data quality metrics deployed for analysing the EDA and PPG signal quality in the G-REx
dataset. The code used to obtain the quality metrics is available in the 5_Scripts folder, or the chapter’s
repository5.

Signal Metric Description
Cut-Off

EDA & PPG Full scale Amplitude at the bit resolution of 12 bits
(212 “ 4095-1) for more than 4 seconds
and 7% in the session data [347]. Ap-
plied to the filtered data.

EDA & PPG Zero Amplitude below 0.05 µS for EDA and
0.01 a.u. for the PPG for more than 4
seconds in the segment data and 7%
in the session data. Applied to the raw
data.

EDA & PPG Loss Counting packet number and time dis-
continuities [12]. Data was considered
as lower quality if it had a data loss
above 7%.

PPG Abnormal heart rate (HR) HR below 40 bpm or above 200 bpm
detected for more than 4 seconds in
the segments or 7% in the session data
was considered as low-quality data
[346].

Data Distribution

EDA & PPG Signal-to-noise Ratio (SNR) For the EDA, SNR was obtained by the
logarithmic ratio between the cleaned
signal (low-pass 4rd order Butterworth
filter of 5 Hz and 0.75 seconds-window
smoother moving average) [8] and
noise (3rd order Butterworth band-pass
filter of 2-10 Hz) [350]. For the PPG, the
noise was obtained by a 4th order high-
pass Butterworth filter with 15 cut-off
frequency [353] and the cleaned signal
by a 4th order band-pass Butterworth
filter with 1 – 8 cut-off frequency [8].

EDA & PPG Max, Mean, Min Statistical features (maximum, mean
and minimum) extracted from the fil-
tered data [347].

PPG Spectral Entropy Entropy of power spectrum between
0.1 to 3 Hz, ranging between 0 for a pe-
riodic signal and 1 for a constant spec-
trum [348, 349, 351].

145



not showing enough evidence to reject the null hypothesis that the data was drawn from a normal dis-

tribution, the Analysis of Variance (ANOVA) test8 was performed. All the tests were computed using the

annotated segments data.

7.4 Results

The technical validation of the G-REx dataset is presented in this section. The results are divided into

two main sections: the physiological signals, data characterisation, and a brief statistical analysis of the

physiological signals and emotion annotations.

7.4.1 Physiological Signals

The physiological signals are analysed in terms of the data quality metrics and their distributional prop-

erties.

Electrodermal Activity

The experimental results for the data quality analysis on the sessions and emotion segments can be

seen in Table 7.5 for the EDA data.

1. SNR: The experimental findings reveal that the SNR for the EDA signal stands at approximately

120 dB, indicating that the signal’s intensity surpasses the noise level by around 120 dB in both

the session and annotated segment data. The SNR is lower for the lower-quality data, registering

about 100 dB for the session data and further declining to roughly 40 dB for the segment data,

both exhibiting a greater standard deviation in the lower-quality data. This contrasts with the SNR

range of approximately 50 to 60 dB reported by Behnke et al. [334] and the average SNR span of

26.66 dB to 37.74 dB across all signals documented by the authors of Emognition [333], aligning

with or even falling below the values reported for the higher-quality data. Similarly, research by

Gautam et al. [350] identified an SNR range from 50 to 80 dB, while Castro-García et al. [352]

reported an SNR of 61.6 dB for EDA data. However, it should be noted that the SNR values can

vary depending on the specific methodology employed to calculate the SNR metric.

2. Full scale: Across all the data no saturation was detected. Saturation is commonly observed when

the range of the sensor values is below the reading, for example by a hard press on the sensor. The

results show a correct positioning of the sensor, with data in line with the physiologically expected.

3. Zero: The zero percentage allows the detection of records where no data was collected. The

percentage of zero-valued signals is low, attaining a value below 1% for the quality data in both
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html; Accessed on 20/02/2024
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the sessions and annotated segments data. On the other hand, a high percentage of zero data

(%) is observed on the samples identified as lower-quality data (above 50%). This shows that

the zero-data metric is the most contributing factor for the classification of lower-quality data. The

sensor’s zero reading may result from several factors: the electrodes losing contact with the skin,

physiological conditions like hyperhidrosis leading to electrode disconnection due to excessive

sweating during extended periods (e.g., during a 2-hour movie), or issues associated with the

device’s form factor, such as a being loose or a broken cable. Additionally, it should be taken into

consideration that due to the naturalistic setting of the data collection, some of the devices lost

WiFi connection (e.g., volunteers leaving the room), and there were cases where the device was

not on any participant or had no battery, leading to no data being recorded.

The literature [354] expects a prevalence of hyperhidrosis at 4.8%, following a study in the United

States of America (USA) population in 2016. However, this value might be biased towards a se-

vere case, with 70% reporting severe excessive sweating. In this study, an unexpectedly high per-

centage of hyperhidrosis incidents may stem from the device’s reliance on gel electrodes for skin

connectivity, with the duration of a two-hour movie session potentially exceeding the electrodes’

capacity to maintain contact. Alternatively, these occurrences could be attributed to specific sensor

or device characteristics, such as the low resolution or gain of the ADC.

4. Loss: Across the dataset, a data loss of 0% was observed, a value significantly lower than those

reported in the literature. For instance, Bottcher et al. [349] documented an average data loss

of around 50% for data streaming. In alignment with our findings, Castro-García et al. [352] also

reported a loss of 0%.

5. Max, Mean, Min: The lower quality data in both the sessions and annotated segments show a

lower average value (around 0 µS). Similarly, the maximum and minimum values are higher in the

quality data when compared to the lower-quality data.

Photoplethysmography

A similar analysis was performed for the PPG data. The quality metrics can be seen in Table 7.4, and

the obtained results in Table 7.6.

1. SNR: The difference in the SNR in the noisier and quality data sets are predominant, with the

quality data showing a SNR above 70 dB and the lower quality data SNR below 10 dB.

2. Full scale: Once again no saturation is identified, similarly to [347], where a very low full-scale

percentage was observed.
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3. Zero: A higher number of zeros in the lower-quality data in both the sessions and the annotated

segments was observed, while the quality data has a lower percentage of zeros (below 2%). This

can be explained by, in some of the sessions, devices were turned on but were not being used by

any volunteer, thus recording a value of 0 throughout the entire session.

4. Abnormal HR: Abnormal values for the HR (defined to be below 40 and above 200 bpm [346]) are

not observed in the quality data, while for the lower-quality data, abnormal values are observed for

almost the entire set (around 90%).

5. Spectral Entropy: Higher entropy is observed for the quality data. The authors in [348], denote

that a lower entropy is expected for the quality data, highlighting a pointier spectrum in its amplitude

waveform. While a flat spectrum (i.e. uniform distribution) is characterized by higher entropy and

noisier data. This was not observed in the data. The higher entropy observed can be a result of

the increased complexity in the quality data, which shows higher standard deviation and diverse

morphology compared to a flat line (lower quality data). Our results are in line with Bottcher et al.

[349], which reports a threshold of around ą 0.8 to denote a lower-quality signal.

6. Max, Min, Mean: The data shows lower amplitude values for the lower data quality set, attaining

a minimum value of zero.

7.4.2 Data Characterisation

After the pre-processing step of the noisy sample removal, a total of 1031 annotated segments and

112 sample sessions were obtained. A histogram with the total number of annotated samples can be

seen in Figure 7.6a. The figure shows that, overall, the users annotated around 5 to 10 samples per

session. The number was tailored to 7 following the volunteer’s feedback on their preferences. With a few

exceptions of users who participated in more than one session. For example, one subject who was part

of the cinema club participated in most of the sessions, which is seen by the large peak in the histogram

near ID 25. The IDs in "blank" correspond to users who were removed on the data pre-processing step

or did not annotate any segments.

Each movie was assigned to its predominant genre following the IMDB characterization9. In Fig-

ure 7.6b, the assigned movie genre of each annotated sample is shown. As observed, data from eight

main movie genres were collected due to the movie cycles.

Figure 7.7a shows the volunteer’s personality scores across the big five dimensions. The extraversion

dimension shows a broader range of values covering most of the scale, followed by neuroticism. These

dimensions have been correlated to the expression of emotions, namely to the frequency and intensity

9https://imdb.com; Accessed on 20/02/2024
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Table 7.5: EDA data quality metrics analysed in the G-REx dataset.

Data Size SNR (db) Full scale (%) Zero (%) Loss (%) Max (µS) Mean (µS) Min (µS)

Quality Segments 1265 122.71 ˘ 23.26 0.0 ˘ 0.0 0.3 ˘ 1.84 0.0 ˘ 0.0 7.85 ˘ 5.22 6.42 ˘ 4.25 5.48 ˘ 3.89
Lower Quality
Segments

216 37.79 ˘ 35.3 0.0 ˘ 0.0 83.46 ˘ 22.4 0.0 ˘ 0.0 2.94 ˘ 5.3 0.7 ˘ 1.71 0.0 ˘ 0.01

Quality Session 136 127.12 ˘ 15.09 0.0 ˘ 0.0 0.75 ˘ 1.7 0.0 ˘ 0.0 15.54 ˘ 6.59 7.06 ˘ 4.3 2.03 ˘ 3.41
Lower Quality
Session

105 100.56 ˘ 39.71 0.0 ˘ 0.0 52.06 ˘ 32.3 0.0 ˘ 0.0 9.97 ˘ 7.51 1.75 ˘ 1.96 0.0 ˘ 0.0

Table 7.6: PPG data quality metrics analysed in the G-REx dataset.

Data Size SNR (dB) Full scale (%) Zero (%) Loss (%) Abnormal HR
(%)

Spectral
Entropy

Max (a.u.) Mean (a.u) Min (a.u.)

Quality
Segments

1213 76.07 ˘ 14.24 0.01 ˘ 0.17 1.62 ˘ 3.16 0.0 ˘ 0.0 0.0 ˘ 0.0 0.68 ˘ 0.09 1903.95 ˘

1137.23
24.09 ˘ 55.37 -1244.47 ˘

745.14
Lower Quality
Segments

268 3.6 ˘ 14.39 0.03 ˘ 0.32 95.57 ˘ 17.61 0.0 ˘ 0.0 93.66 ˘ 24.37 0.05 ˘ 0.18 196.01 ˘

809.31
1.65 ˘ 15.63 -150.52 ˘

607.29
Quality
Session

199 72.47 ˘ 9.92 0.01 ˘ 0.08 1.21 ˘ 1.55 0.0 ˘ 0.0 0.0 ˘ 0.0 0.72 ˘ 0.07 3518.95 ˘

1122.89
14.93 ˘ 27.25 -2539.92 ˘

774.41
Lower Quality
Session

42 7.92 ˘ 20.47 0.01 ˘ 0.05 89.37 ˘ 28.96 0.0 ˘ 0.0 85.71 ˘ 34.99 0.10 ˘ 0.25 605.43 ˘

1543.48
1.72 ˘ 6.01 -432.49 ˘

1104.39
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Figure 7.6: Histogram with the number of annotations per user and samples collected per movie genre.

of positive and negative emotions [341, 355]. The remaining dimensions are skewed to the upper range

of the scale.

Lastly, Figure 7.7b shows the age range of the volunteers. As can be seen, data was acquired across

all age distributions, with 18 to 29 years old being predominant. This range is expected since the data

collection took place on a university campus.

Ex
tra

ve
rsi

on

Neu
rot

icis
m

Ope
nn

ess

Con
sci

en
tio

usn
ess

Agre
ea

ble
ne

ss
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rs

on
al

ity
 S

co
re

(a) Personality

18-29 30-39 50-59 60-69
Age Range

0

50

100

150

200

250

No
. o

f U
se

rs

(b) Age

Figure 7.7: Distribution of personalities and age range.

Emotion Annotation

After the movie, the EmotiphAI Annotator [15] was used to annotate selected movie scenes using the

SAM scale [356] on the arousal and valence dimensions. The results of the annotations can be seen in
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Figure 7.8, where both dimensions cover the entire annotation space. Statistical characterisation of the

annotations distribution is shown in Table 7.7.

As can be seen, both dimensions are centred around the value of 3, with a standard deviation of

around 1. Both dimensions show negative (left-modal) skewness and kurtosis. The valence shows

a near-zero skewness corresponding to a symmetrical distribution, while arousal is slightly negatively

skewed. Regarding the kurtosis score, both dimensions show an elevated negative kurtosis score. A

high negative value describes a flatter distribution compared to a normal distribution, denoting a more

homogenous distribution of the data across the annotated scale with the probability of values near the

mean lower than in a normal distribution. Moreover, the distribution has lighter tails, suggesting fewer

extreme values. Gatti et al. [305], also analyze the annotations of kurtosis and skewness, obtaining

an overall negative skewness and a positive kurtosis distribution for valence and arousal. However, it

should be taken into consideration that these metrics are heavily impacted by the number of collected

samples and the elicitation content.

Table 7.7: Statistical metrics extracted from the G-REx annotations.

Mean STD Skewness Kurtosis

Arousal 3.13 1.15 -0.29 -0.68
Valence 3.30 1.06 -0.08 -0.57
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Figure 7.8: Histogram of the self-reported G-REx annotations.

7.4.3 Statistical Analysis

The experimental results for the statistical test on the normal distribution and group annotation differ-

ences (arousal, valence and movie genre distribution for physiological measures) are shown in Table 7.8.

Analyzing the Shapiro test, across most groups, a p-value was obtained below the 0.05 threshold, de-

noting that the groups do not follow a normal distribution. These results are in line with the normality
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test performed in [305], where a Kolmogorov-Smirnov normality test p-value below the threshold was

obtained across participants.

For the group differences (Kruskal-Wallis/ANOVA), it was observed that, overall, the null hypothesis

of equal medians across groups could not be rejected (p-value ą 0.05). The normalized mean EDA and

HR were found to have very similar medians across the different groups, namely arousal and valence

scores from 1 to 5. These results are expected since emotion classification is a complex task and a

more diverse set of features, combined with artificial intelligence algorithms are required to separate

the different classes and perform emotion recognition. An exception is the normalized mean HR and

EDA, and the arousal and valence self-reports for the different movie genres where a p-value below

the threshold was obtained. Denoting that at least one group’s population median is different from the

others. To better understand the statistical results from Table 7.8, the data distributions of the groups

across the studied measurements are illustrated in Figures 7.9 to 7.12.

Table 7.8: Statistical test p-values determining whether there are statistically significant differences
among the different groups. The tested groups are arousal and valence dimensions P {1, 2, 3, 4, 5};
Movie genre: Drama, Animation, Musical, Comedy, Horror, Mystery, Action, Documentary. The most
significant results are shown in bold (p-value ă 0.05). A Kruskal-Wallis test is performed when the nor-
mality test (Shapiro) obtains at least for one group a p-value ă 0.05, and the ANOVA if all the p-values
ą 0.05. Tests were computed using the annotated segment data.

Shapiro Kruskal-Wallis
Group Measurement ANOVA

Arousal Mean EDA (0.00, 0.00, 0.00, 0.00, 0.87) 0.17
Mean HR (0.00, 0.00, 0.00, 0.00, 0.00) 0.22

Valence Mean EDA (0.00, 0.00, 0.00, 0.00, 0.00) 0.15
Mean HR (0.01, 0.00, 0.00, 0.00, 0.00) 0.55

Genre

Mean EDA (0.23, 0.51, 0.01, 0.80, 0.00, 0.00, 0.02, 0.0) 0.00
Mean HR (0.22, 0.19, 0.08, 0.00, 0.00, 0.00, 0.07, 0.00) 0.00
Arousal (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 0.00
Valence (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 0.00

7.5 Discussion

A detailed description of the videos used in the video_info.csv file was made available, so they can be

identified by the users.

Physiological Data Evaluation

Addressing RQ 4.1 (on whether data can be collected reliably in a naturalistic setting using the EmotiphAI

platform), it can be seen that the EDA data is in line with what is reported in the literature. Namely,

Braithwaite et al. [357] reports expected EDA values between 2 to 20 µS, increasing for periods of high

arousal. In [358], the authors report EDA data between 10 and around 28 µS (M (Mean): 15.55; STD:
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Figure 7.9: The data distribution for the mean standardized EDA—achieved by subtracting the session
mean and dividing by the session standard deviation for each subject—and normalized HR—obtained
by dividing by the session mean for each subject—was analyzed across arousal self-report scores. This
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Figure 7.10: Data distribution for the standardized mean EDA and normalized HR across the valence
self-reported scores.
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Figure 7.11: Data distribution for standardized mean EDA data per subject and normalized mean HR
per subject across the movie genres.
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Figure 7.12: Data distribution for the arousal and valence self-reports across the movie genres.
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1.67). These values are in line with the values obtained for the quality data, taking that deviations can

result from the type of electrodes or their body placement.

Overall, the annotated segments from the EDA sensor exhibit a smaller proportion of lower-quality

segments in comparison to the session data. This is primarily because data exhibiting zero-values for

more than 7% of the session duration were excluded from the session set, based on a minimal threshold

criterion established to identify low-quality data. Throughout a two-hour data collection session, it is

expected for subjects to experience periods of relaxation or boredom, leading to episodic drops in EDA

to zero.

For the segment data, the threshold was set as four seconds in 20 seconds of data. These values

were selected following the literature [348]. The authors in [348, 349] report around 64% to 75% of

quality EDA data. In the current work, a value of around 85% was obtained for the segments and around

55% for the session data. While for EDA data in the sessions set, large amounts of data were discarded

due to the zero-metric, the same was not observed for the PPG data. This led to a lower number of

sessions and annotated segments being identified as lower quality for the PPG data. For the PPG data,

the authors in [349] report around 50% of quality data using an Empatica5 device, while the proposed

dataset obtained around 80% for the segments and session PPG data.

The different parts of the data collection protocol and their required software/hardware are suscep-

tible to specific constraining factors, which it is detailed below. The dataset limitations are related to

collecting a dataset in a naturalistic scenario.

Data Collection Setup

Taking into consideration that the data collection was performed in a naturalistic setting, the volunteers

were free to cover themselves and the devices with their clothes such as jackets and even leave their

seats. Moreover, the movie was played by the cinema club on a separate projector. So it was necessary

to start the movie and the data collection with a manual cue that directed the simultaneous start. This

may present issues in the precision of timing that should be noted. However, these are not a major

concern given the timescales of the physiological responses measured. Nonetheless, future work should

focus on using an automatic method for synchronization.

Emotion Annotation

Emotion annotation was performed retrospectively based on the subject emotional events expressed by

their EDA. Taking into consideration the naturalistic setting of the data collection, some of the detected

events may not be related to emotional events but to random movements. Additionally, when performing

the emotion annotation the volunteers were given a video preview of the selected moments for annota-
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tion. However, as the volunteers were freely viewing the video, their emotion elicitation could have been

not from the movie but from conversations with their peers. To gather insight on these issues, in the

emotion annotation platform, an open text box is provided where the participants can introduce long tex-

tual external comments for each video segment, and the information on which participants participated

in the experiment sat side by side is annotated.

Participants Health and Room Conditions

This part of the thesis aimed at devising a data collection methodology that can be replicated at a large

scale in the real world. As such, in the proof-of-concept, the volunteers participated in a cinema session

where the goal was to collect as little data as possible. This approach ensured minimal interruption to the

normal cinema experience and encouraged a large number of volunteers to participate regularly in the

data collection. Consequently, no records were obtained about any psychiatric or neurological conditions

of the participants, nor was there any information gathered on whether participants had consumed

any pharmacological medication during or prior to the study. Similarly, no data was acquired on the

humidity, temperature of the room, or food intake during or prior to the movie. Such factors can potentially

influence physiological responses and, thereby, emotional status and future works should contemplate

incorporating this information if the protocol setup allows reducing this limitation while maintaining the

efficiency of the data collection process.

7.6 Conclusion

This chapter consolidates the advancements introduced in the preceding chapters, showcasing the de-

ployment of the EmotiphAI Data Acquisition platform (Chapter 5) and the EmotiphAI Annotator (Chap-

ter 6). Building upon these platforms, Obj 4. Real-world Affective Computing Dataset, namely RQ 4.1

and 4.2 are addressed by the creation of a dataset of physiological data within a naturalistic group setting

named the G-REx dataset.

The dataset contains data collected from over 190 subjects across 31 movie sessions, culminating

in more than 380 hours of physiological data. To analyse the data, the data was divided into sessions

and annotated segments, validated through quality signal metrics. The results showed that the data was

collected reliably, with a low percentage of zero data and no data loss. The physiological data was in

line with the expected physiological values, and the annotations were distributed across the entire scale.

The G-REx dataset paves the way for varied and complex emotion recognition analyses using phys-

iological data, much closer to the nuances of real-world situations than previously available. The G-REx

dataset demonstrates the feasibility of collecting large amounts of data in naturalistic settings, which is

crucial for applying advanced deep learning techniques that require large datasets to train. The G-REx
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affective data has the potential to be used across diverse domains, from the entertainment industry,

to assess the emotional impact of movies, video games, and other media as long as it is recorded,

offering insights into the audience’s emotional responses, to the development of personalized content

recommendation systems that better resonate with the viewers’, enhancing engagement and immersion.

Furthermore, the group context of the data collection can aid the emotion recognition performance, by

introducing a holistic view of the subject emotional state, as well as the emotional state of the group as

a whole. Lastly, the group’s physiological synchrony can be explored to identify meaningful events or

moments within the content, such as in movies or live performances.

On the whole, the G-REx dataset not only moves forward the field of affective computing but also

contributes to a broader understanding of human emotional responses in collective environments, offer-

ing invaluable insights for a wide range of applications where emotional engagement and interaction are

key.
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Chapter 8

Conclusions and Future Work

This chapter presents the conclusions of this thesis along with the explored RQs, outlines potential future

work and applications of the developed technologies, and discusses the main take-home and challenges

that lay ahead for further research in the field of affective computing.

Contents
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8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.1 Revisiting the Research Questions

The primary goal of this thesis was to explore group emotion recognition based on physiological data.

This was performed over four main objectives, addressed over 8 chapters, across 12 RQs.

In Chapter 3, this thesis embarked on Obj 1. Development of Affective Computing Algorithms, by

exploring the state of the art in affective computing. this exploration was performed around the following

RQs:

RQ 1.1: What feature set/machine learning algorithm should be applied for emotion recognition?

The RQ 1.1 was tackled by first performing a systematic review of the state of the art in affective

computing, where the most predominant datasets, algorithms, sensor modalities, and evaluation metrics,
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among others, were identified. The results indicated that the publicly available datasets are the ITMDER,

WESAD, DEAP, MAHNOB, and the Eight-Emotion EESD. The most explored algorithms are the SVM,

K-NN, and random forest, and predominant sensors are the EDA, ECG, and respiration. Upon this

survey, the following RQ sought to uncover:

RQ 1.2: What performance can be achieved by predominant datasets in the literature?

Addressing both RQ 1.2, a large set of features (570 EDA, 373 PPG, 322 ECG, and 487 respiration)

were extracted from the physiological data. These were further reduced through a feature selection

step (sequential forward feature selection) to perform arousal and valence binary classification. The

experimental results showed that most features are data-dependent, being selected, on the whole, once

per dataset. This impacted the performance of the classifiers on the different datasets, with similar

results obtained across classifiers and sensors.

Additionally, across all modalities, the valence dimension attained the highest prediction scores.

For the WESAD dataset, the arousal dimension’s F1-score dropped to 0.0 compared to the accuracy

value, indicating that the class labels were largely imbalanced. For the ITMDER dataset, the proposed

methodology was able to surpass the state of the art or obtain very competitive results for both the

arousal and valence dimensions. The good results in the ITMDER and WESAD valence dimensions,

with the F1-score surpassing the accuracy score, indicated that the class labels are imbalanced and are

biased in the results. For the EESD, DEAP, MAHNOB and WESAD, the current work provided the first

results for the selected sensors using the datasets in the literature.

The sensor modalities were then combined to explore a multi-modality classification:

RQ 1.3: What is the best method to deal with multi-modal data for emotion classification?

In addressing RQ 1.3, the findings highlighted the effectiveness of multi-modality over single-modality

configurations, with performance being contingent on the specific dataset and emotion dimension being

considered. This observation aligned with existing literature, suggesting a consensus on the benefits

of multi-modal approaches [89]. Specifically, for the ITMDER and DEAP datasets, both decision fusion

and feature fusion techniques demonstrated superior performance compared to state-of-the-art results,

with valence dimension classifications showing particularly good outcomes. For the MAHNOB dataset,

the current work was not able to surpass the results of the literature, however, competitive results were

obtained. No direct comparisons could be drawn for the EESD and WESAD datasets due to a lack of

similar studies. However, the comparison between single and multi-modality approaches underscored

the potential of the latter to enhance or maintain classification results across various datasets and di-

mensions. The use of feature fusion not only matched or exceeded the performance of decision fusion

but also offered significant advantages in computational efficiency, with average execution times notably

lower, suggesting a more practical approach to be applied in real-world applications.
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Chapter 4 further explored the Obj 1. Development of Affective Computing Algorithms, by con-

sidering the impact of group environment in emotion recognition. This work delved into the concept

of group emotion recognition, by analysing how to measure physiological synchrony, analysing diverse

similarity metrics and data representations to measure physiological synchrony for emotion recognition.

This was performed through the following RQ:

RQ 1.4: What synchronization metrics and data representations are most suitable for measuring

physiological synchrony for emotion recognition?

The RQ 1.4 was addressed by exploring the WGS methodology. This approach determines the sub-

ject’s emotional label by considering the emotional states of group members and weighing them based

on their physiological synchrony with the unknown subject. To perform this analysis the AMIGOS and

K-EmoCon datasets were selected as they were the identified public datasets with group physiological

data available in the literature. From the sensor modalities explored in RQ 1.1 to 1.3, the HRV and EDA

features were selected for further analyses. The HRV can be extracted from both PPG or ECG (AMI-

GOS collected ECG data, K-EmoCon PPG’s data), and along with EDA can be extracted in single-point

configurations, in non-obtrusive places like the hand or wrist. Thus, facilitating data continuous data

collection in naturalistic scenarios, as it is the goal of this thesis. Moreover, to meet the data imbal-

ance identified in the previous RQs, the M-F1 score was used as the primary metric for evaluating the

classification performance, which equally weights the precision and recall of each class.

The experimental results on the AMIGOS dataset with data from groups of four subjects visualizing a

movie excerpt (from 14 to 23 minutes long), showed that learned representations based on HRV features

emerged as most effective for arousal, while a combination of EDA and HRV features was superior for

valence. Notably, the strong performance of EDA for valence contradicts conventional expectations of its

association with arousal, suggesting a potential influence of high arousal-valence annotation correlation

or lower variability in data on these findings. For the K-EmoCon dataset, which contained data from a

dyadic debate (around 10 minutes), average pooling returned a comparable performance to WGS using

cosine similarity on HRV features for arousal, whereas cross-correlation in the EDL space was most

effective for valence.

The study concluded that feature space representations generally outperformed morphological or

image-based representations, with Pearson, Spearman, and cosine similarity metrics often reducing

performance. Non-weighted approaches to group synchronization like average pooling showed compa-

rable to superior results, the latter for the case of the poor-performance synchronization metrics. Con-

sistently, valence dimensions achieved higher classification scores than arousal, aligning with literature

expectations.

Based on the learned representations from RQ 1.4, the WGS approach (integrating group context)

was compared to the traditional intrasubject methodology (with no group information).
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RQ 1.5: Does the emotion classification accuracy improve with the inclusion of group-level infor-

mation?

Addressing RQ 1.5, the WGS methodology demonstrates an enhanced performance or competes

closely with existing benchmarks. Specifically, it outperforms reported accuracies in the literature, such

as Gupta et al. [287] findings, by relying solely on group emotion labels without additional multi-modal

data. This is particularly notable in the AMIGOS dataset, where, to the writer’s knowledge, it is the first

study to exclusively use group data for emotion recognition, marking a significant advancement over

traditional intrapersonal models that overlook group dynamics.

The interpersonal model consistently surpassed intrapersonal models across both datasets and

most dimensions, except for the valence dimension in the K-EmoCon dataset, where data of dyadic

conversation is used. For instance, in the AMIGOS dataset, interpersonal models achieved approxi-

mately 72.15% and 81.16% for arousal and valence, respectively, compared to the intrapersonal models’

59.40% and 66.44%. Similarly, in the K-EmoCon dataset, the interpersonal approach yielded improve-

ments in arousal (52.63% vs. 47.67%) but observed a slight decrease in valence performance (65.09%

vs. 73.70%) compared to intrapersonal models. This highlights the potential of leveraging group-level

data for enhancing emotion recognition accuracy, suggesting a promising direction for future research in

affective computing.

Taking that these methods require data to be created, a survey of the literature was performed to

identify existent datasets and devices for group physiological data collection. The survey identified a

gap, with very few datasets focusing on group physiological data (only AMIGOS with groups of four,

K-EmoCon with dyadic groups were identified), this was a reflection of the lack of devices for group

physiological data collection of EDA and HR-related data.

This led to Obj 2. Group-based Physiological Data Collection, explored in chapter 5. To meet the

gap identified in the literature, the EmotiphAI platform was created. EmotiphAI is a small and mobile,

low-cost infrastructure for group physiological data collection and real-time visualisation, integrating the

EmotiphAI Wearable, EmotiphAI Collector, and EmotiphAI User Interface. Moreover, the EmotiphAI was

developed to be easily deployed in naturalistic settings. The EmotiphAI platform was evaluated through

the following RQs:

RQ 2.1: How does the sampling period affect the data loss and transfer quality in multi-device

scenarios?

Addressing RQ 2.1, data was collected for 1, 10, and 20 devices at different sampling rates, namely

200 Hz, 60 Hz, and 25 Hz, to assess the impact of the sampling period on data collection. The results

indicated that the sampling period significantly affects the data loss and transfer quality in multi-device

scenarios. Moreover, the EmotiphAI platform was able to reliably collect data with low data loss and
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uniform data transmission in both individual and group settings with 1 device up to 200 Hz (5 ms). When

the number of devices was increased to 10 and the sampling rate was maintained at 200 Hz, the data

loss increased to around 65%. Requiring that for 10 devices, the sampling rate should be decreased to

60 Hz to maintain a low data loss (below 1.5%). When the number of devices was increased to 20, only

the 25 Hz sampling rate maintained a low data loss (below 0.5%).

These results surpassed the state of the art, namely the device FMCI by Xinhuanet which only

allowed the collection of data from 1 sensor (EDA) at 1 Hz up to 20 devices, and BITalino (6 analogue

sensors to which any sensor can be connected), with around 4 devices at 100 Hz.

Next, it was explored whether the network infrastructure through which data is transmitted affects the

performance of the EmotiphAI platform (RQ 2.2):

RQ 2.2: To what extent does the network infrastructure influence the maximum number of devices

that can collect data without significant data loss?

The experiments revealed that a single-antenna router performs comparably to a three-antenna

router when handling one device at a 200 Hz sampling rate, with both maintaining data loss below

1%. Likewise for 10 devices, where the 1-antenna router can maintain a high-quality transmission at

60 Hz. However, this level of performance does not extend to scenarios with 20 devices, where the

single-antenna router is only reliable for a sampling rate of 10 Hz. On the other hand, the introduction

of a repeater router for 10 devices, allows a boost in the sampling rate from 60 Hz to 100 Hz, while

keeping data loss below 1%. This was not observed for 20 devices, where even with a bridge router,

data collection remained unstable for sampling rates faster than 25 Hz.

Having developed and validated the infrastructure for group physiological data collection and the

requirement that emotion recognition algorithms require annotated data, this thesis moved to Obj 3.

Emotion Annotation for Naturalistic Settings:. In Chapter 6 the EmotiphAI Annotator was developed

to address this objective. The EmotiphAI annotator is a web-based tool focused on annotating content in

naturalistic settings. Current state-of-the-art annotation tools usually perform single post-hoc annotation

or live annotation of excerpt clips. Both of these methods have limitations, as they either lose the

dynamic context of the emotion or are too distracting and exhausting for the subject, not being fit for a

longer-term naturalistic stimulus, like a movie. The EmotiphAI Annotator was developed to address this

gap, by allowing the retrospective annotation of selected moments of the content, thus, simplifying the

annotation process and reducing the annotation effort. Three different content segmentation methods

were explored to assess which moments are more suitable for emotion annotation, namely: random

segmentation, Scene-based (temporal segmentation), and EDA-based (physiological segmentation).

The EmotiphAI Annotator was evaluated through the following RQs:

RQ 3.1: Are retrospective annotations in long-duration content usable for emotion annotation?
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To address RQ 3.1, the EmotiphAI usability was evaluated through the subject mental workload using

the NASA-TLX questionnaire. The results indicated that while retrospective emotion annotation is a task

that requires memory work and increases the subject mental workload, it is not overwhelming and too

tiring for the volunteers, as shown by the NASA-TLX of around 45%. This value is in line with the state

of the art, namely with EmoteU [19] (37.5% to 44.52%), and RCEA [298] (52.5% and 82.5%) and above

[306], where live (31.6%) and textual (35.7%) annotation is performed. Moreover, the usability of the

tool was assessed through the SUS questionnaire, which resulted in a B+ score, indicating that the tool

is effective, efficient and satisfactory for its users.

Next, the reliability of the EmotiphAI Annotator’s annotations was assessed:

RQ 3.2: How do retrospective annotations compare to conventional approaches in long-duration

content?

The reliability of the EmotiphAI platform was analysed through a set of four metrics: inter-subject

agreement, self-report coherence, comparison to the reference annotations, and comparison to EDA.

Staring by the inter-subject agreement, following the work by Grimm and Kroschell [324], this metric

was measured by the annotation’s STD in a given timestamp, and the evaluation error given by the

difference between the average standard deviation in a timestamp and the optimal standard deviation

bound. The results indicated that the evaluation error for both dimensions is low (less than half the

distances between two discrete SAM numbers), and notably low for the valence dimension, indicating

that it can be more reliable than the arousal dimension. Moreover, the evaluation error was lower than

existing state-of-the-art benchmarks [324], with the caveat that comparisons are somewhat limited due

to differences in datasets and problem contexts.

The self-report coherence among the annotations for different content segmentation methods was

also measured through the STD in a given timestamp and the evaluation error by comparing the average

of the user’s annotations for the three algorithms, in each data timestamp. The results indicated that the

segmentation algorithms result in similar annotations with low variability observed. This coherence is

attributed to subjects annotating similar content across algorithms, ensuring comprehensive coverage

of the material.

The comparison to the reference annotations was performed by comparing the annotations of the

subjects to the reference annotations given by the LIRIS-ACCEDE benchmark, where the data was

collected for the same elicitation content, once again through the STD in a given timestamp, and the

evaluation error. The results showed that the annotations from the EmotiphAI Annotator show a maxi-

mum standard deviation of 0.65 on a 1 to 5 scale when compared to the LIRIS-ACCEDE benchmark,

which is below the critical threshold of discrepancy. No significant differences were found in valence and

arousal or between segmentation algorithms, despite methodological differences that could introduce

variance. These results are in line, following the observed in the coherence evaluation.
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Finally, the comparison to the EDA was performed by comparing the annotations to the MAP, as

a metric of SNS activity which is related to emotional arousal. The EmotiphAI Annotator’s Scene and

EDA segmentation methods deliver competitive results, particularly for videos that elicit strong emotional

responses. Comparing the MAP to the self-reports, the EmotiphAI Annotator obtains a higher correlation

with values among lower-average to good correlation (0.26 to 0.8 correlation in [0, 1] scale), surpassing

the correlation values for the annotations collected in the work by Ting et al. [326] for two of the movies

("Tears of Steel" and "After the Rain").

Taking the reliability of the annotations, the content segmentation methods were compared to un-

derstand which is more suitable for emotion annotation in long-duration content, through the following

RQ:

RQ 3.3: Which content segmentation method is more suitable for emotion annotation in long-

duration content?

Among the analysed segmentation methods, i.e. Random, Scene and EDA-based, the latter stood

out by requiring less annotation time, demonstrating a higher correlation with physiological responses,

and possibly in identifying emotionally significant events for annotation. Although it necessitates addi-

tional effort and hardware to record EDA data, this investment is justified when the objective is to develop

emotion recognition algorithms and physiological data is being collected. The choice of segmentation

method ultimately hinges on the specific requirements and objectives of the research.

Building upon the developed EmotiphAI platform, namely the Data Acquisition and the EmotiphAI

Annotator, the thesis moved to Obj 4. Real-world Affective Computing Dataset in Chapter 7, where

the G-REx dataset was created. The G-REx dataset is a novel dataset that contains physiological data

collected from groups in naturalistic settings, annotated retrospectively. The dataset was evaluated

through the following RQ:

RQ 4.1: Can large amounts of annotated physiological data be collected reliably in a naturalistic

setting using the EmotiphAI platform?

RQ 4.2: How does an infrastructure designed for group physiological data acquisition perform in a

real-world setting?

Addressing RQs 4.1 and 4.2, the G-REx dataset was collected in a naturalistic setting, with the

subjects watching movies in a University cinema session. The dataset comprises data from 190 subjects

across 31 movie sessions, totalling over 380 hours of physiological recordings. The data was annotated

using the EmotiphAI Annotator on the user’s own devices, retrospectively. The collected data quality

was assessed through diverse metrics from data loss to signal quality (e.g. full-scale and zero-values,

SNR, and abnormal values), with the quality data obtained values in line with the state of the art ([346,

347, 348, 349, 350, 351]).
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This proof of concept showcased the EmotiphAI platform’s capability for collecting annotated physi-

ological data in naturalistic experimental setups. Thus, paving the way for advancing the field of group

emotion recognition through physiological data that closely replicates real-world experiences for the de-

velopment of more accurate and impactful affective computing systems.

8.2 Discussion

This thesis addresses the field of emotion recognition, from the theoretical foundations and infrastruc-

tural developments, to the creation of annotation and classification methodologies for group emotion

through physiological data. This comprehensive approach underscored the multifaceted nature of the

emotion recognition field and provided an in-depth understanding of the current challenges and oppor-

tunities.

8.2.1 Input Data

The nuanced nature of emotions demands a multifaceted approach to data collection. Emotion theories,

such as psychological constructionism [55, 75], posit that emotional responses are not only physiolog-

ical but are intricately linked to behaviour and the environmental context. This thesis underscores the

importance of capturing a comprehensive view of emotions by integrating group data as environment

information. This approach aligns with the understanding that emotions are adaptive responses to sit-

uational cues, suggesting that a richer dataset that incorporates further information on body behaviour

and its environment could lead to a more meaningful view of emotion and improve emotion classification

performance.

8.2.2 Emotion Annotation

The task of annotating physiological data with emotional states presents notable challenges. The

arousal-valence model, while foundational, is often difficult for participants to understand due to the

abstract nature of these dimensions. This confusion is compounded by individuals’ biases towards

their self-perception, the decay of emotional intensity over time, and the disruptive nature of real-time

annotation. Furthermore, the distinction between emotions and moods is critical; emotions are brief,

event-specific experiences that depolate a physiological response, whereas moods are longer-lasting

and not tied to specific events and/or physiological reactions. In long-term data collection, there is a ten-

dency to annotate moods rather than emotions, leading to a mismatch between the physiological signals

captured and the annotations provided. This discrepancy suggests that models may inadvertently learn

to recognize baseline states or moods rather than the intended emotional responses. With this in mind,

166



the emotion classification model should take into consideration incorrect annotations, either by detecting

and ignoring them, or by employing strategies to mitigate their impact.

8.2.3 Emotion Classification

Physiological signals have intrinsic characteristics that introduce challenges in emotion recognition. The

signals are inherently noisy and little movements can introduce artefacts. Moreover, the signals are

highly variable across individuals for physiological reasons. Thirdly, there is a diverse set of sensor

modalities, and even for an individual modality, the same sensor can be read in different body loca-

tions or be developed with different technical characteristics, modifying its data. One further challenge

in emotion recognition is the inherent variability in how emotions are experienced and expressed by

different individuals, where the same emotion can be expressed differently either by cultural, or environ-

mental factors, resulting in subject-dependent physiological responses and meanings for self-reported

annotations.

The heterogeneity in physiological data complicates the creation of uniform datasets, hindering their

transfer and comparability across varied experimental setups. This issue is exacerbated by the scarcity

of data in emotion recognition, primarily due to the high costs and time requirements for gathering

large amounts of data in laboratory settings, where most physiological data are collected. Overall,

these constraints limit the training of advanced models and the development of robust and generalizable

emotion recognition algorithms, such as transformers, which require large, comprehensive datasets to

be trained effectively.

Lastly, a persistent issue in machine learning is the imbalance of class labels. Such imbalance

hinders effective model learning, especially with limited data, skewing results towards more frequently

represented classes.

8.2.4 Moving Forward

Reflecting on these insights, it is evident that the field of affective computing stands at a crossroads,

with significant opportunities for advancement as well as substantial challenges to overcome. Future re-

search must prioritize how to deal with individual variability in self-reporting and physiological responses,

and the development of robust, multi-modal data collection methods that encompass the full spectrum

of emotional experience. Equally, innovative annotation methodologies that accurately capture the sub-

jective and fleeting nature of emotions, correct them and distinguish them from longer-lasting moods,

are essential.

Addressing data scarcity and imbalance requires a concerted effort to create larger, more diverse

datasets. Such datasets should aim for standardisation across sensor modalities and data collection
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protocols to facilitate comparative studies and the application of advanced machine learning models.

Moreover, exploring synthetic data generation and augmentation techniques could offer pathways to

mitigate data limitations.

The journey through this thesis highlights the complexity of emotions, and its multidisciplinary na-

ture, requiring developments in physiological data acquisition, annotation and analysis to capture the

intricacies of emotion recognition through computational means. As the field progresses, more gener-

alisable and naturalistic datasets, a holistic, nuanced understanding of emotions, paired with advanced

computational and annotation techniques, will be paramount in unlocking the full potential of affective

computing.

8.2.5 Affective Computing Applications

Affective computing has the promise of revolutionising human-computer interaction, significantly improv-

ing lives across healthcare, entertainment, education, and beyond.

1. Arts & Entertainment: Affective computing can facilitate interactive narratives by capturing the au-

dience’s emotional responses to adjust content in real-time, without explicit user inputs. Similarly,

live performances can create unique experiences through real-time emotional feedback between

performers and audiences, enhancing the collective engagement and impact of the art.

2. Neuro-marketing: Affective computing can refine marketing strategies by uncovering subcon-

scious consumer preferences and enabling more targeted advertising and content creation. Emo-

tional analysis offers valuable insights for tailoring advertisements, music, and games to individual

responses, paving the way for personalized content recommendations across platforms.

3. Healthcare: With mental health issues affecting a significant portion of the global population,

affective computing wearable devices can aim for early detection, diagnosis, and monitoring of

conditions such as anxiety and depression related to chronic negative emotions. Personal affective

monitors could identify stress triggers or beneficial practices, supporting mental well-being in daily

life, high-stress professions, or therapeutic settings.

4. e-Learning: The shift towards online learning platforms, accelerated by the COVID-19 pandemic,

underscores the potential of the digital medium in education. By adjusting teaching methods to

match students’ attention, motivation, and comprehension levels, affective computing can enhance

the effectiveness of digital learning experiences.

Overall, the applications of affective computing are vast, promising to improve millions of lives glob-

ally from enhancing the depth of artistic experiences to supporting mental health and personalising

entertainment and education.
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8.3 Future Work

Emotion recognition is a field that has been growing in the last few years, with the development of new

algorithms and the collection of new datasets. With this in mind, in Chapter 3 the literature algorithms

and features were evaluated on publicly available datasets to understand the current status of the field.

The experimental results evidenced that the performance of the algorithms is highly dependent on the

dataset and its characteristics. Upon these results, future work could focus on transfer learning between

datasets, the development of a methodology that could be applied across the different dataset setups,

or improving the explainability of the models, to understand the features that are being used to classify

the emotions.

Next, in Chapter 4, the addition of group context was explored in comparison to intrasubject data

for emotion recognition classification. In this context, future work may tackle limitations of the proposed

method, namely the requirement of annotated labels at test time, or the exploration of alternative anno-

tations instead of the external annotations by experts, which may not be related to the true underlying

emotional experiences. Lastly, this work relies on either dyads or groups of 4, although groups can vary

widely in size. This limitation arises from the available datasets but should be considered.

To meet this limitation, in Chapter 5, the EmotiphAI platform was developed to collect physiological

data from groups. Future work could focus on the development of a more robust and comfortable form

factor for the wearable device, towards a device with no cables and evaluate the usability of the wearable

and acquisition platform.

To annotate the physiological data, Chapter 6 introduced and validated the EmotiphAI Annotator, a

web-based tool that allows the annotation of emotions in long-duration content, retrospectively. Future

work may tackle the limitations of the proposed method, namely the study of the relation between the

EDA events and their emotional meaningfulness, and the exploration of diverse scene moments for

annotation.

In the final chapter, Chapter 7, the G-REx, a novel dataset that features physiological data col-

lected from groups in naturalistic settings was created. Future directions could include augmenting this

dataset with environmental and behavioural metrics such as humidity, room temperature, and activity

data; investigating alternative annotation methods, such as image-based annotations for capturing fa-

cial expressions or actions like talking and eating; and applying advanced deep learning techniques

that account for the temporal dynamics and multimodal nature of emotional data, like LSTMs or one-

dimensional-CNN, or the weight of different moments of the data like Transformers, towards a complete

view of emotions and the improvement of its classification.
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Appendix A Benchmarking Emotion Recognition

Table A .1: Features label and description across sensor modality: PPG, ECG, EDA, and respiration;
and domains: Non-linear, Spectral, Temporal and Statistical.

Domain Name Description

PPG ons Signal onsets.

hr Heart rate.

ECG rpeaks R-peak location indices.

nni NN intervals in ms or s.

hr Instantaneous Heart rate in bpm.

pnn20 Percentage of successive NN intervals that differ by more than 20 ms.

pnn50 Percentage of successive NN intervals that differ by more than 50 ms.

sdnn_index Mean of the standard deviations of all the NN intervals for each 5 min segment.

sdann Standard deviation of the average NN intervals for each 5 min segment.

fft_peak_VLF Peak frequencies of the very low frequency bands [0.00Hz - 0.04Hz] in Hz.

fft_peak_LF Peak frequencies of the low frequency bands [0.04Hz - 0.15Hz] in Hz.

fft_peak_HF Peak frequencies of the high frequency bands [0.15Hz - 0.40Hz] in Hz.

fft_abs_VLF Absolute power of the very low-frequency bands [0.00Hz - 0.04Hz].

fft_abs_LF Absolute power of the low-frequency bands [0.04Hz - 0.15Hz].

fft_abs_HF Absolute power of the high-frequency bands [0.15Hz - 0.40Hz].

fft_rel_VLF Relative power of the very low-frequency bands [0.00Hz - 0.04Hz].

fft_rel_LF Relative power of the low-frequency bands [0.04Hz - 0.15Hz].

fft_rel_HF Relative power of the high-frequency bands [0.15Hz - 0.40Hz].

fft_log_VLF Log power of the very low-frequency bands [0.00Hz - 0.04Hz].

Continued on next page
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Table A .1 continued from previous page

Domain Name Description

fft_log_LF Log power of the low-frequency bands [0.04Hz - 0.15Hz].

fft_log_HF Log power of the high-frequency bands [0.15Hz - 0.40Hz].

fft_total Total power over all frequency bands.

fft_ratio Ratio of LF to HF.

EDA onsets Signal EDR events onsets.

pks Signal EDR events peaks.

amps Signal EDR events amplitudes.

phasic_rate Signal EDR events rate in 60s.

rise_ts Rise times, i.e. onset-peak time difference.

half_rise Half Rise times, i.e. the time between onset and 50% amplitude.

half_rec Half Recovery times, i.e. the time between peak and 63% amplitude.

six_rise 63% rise times, i.e. time between onset and 63% amplitude.

six_rec 63% recovery times, i.e. time between peak and 63% amplitude.

onPkVol EDR onset-peaks volume.

pkOnVol EDR peaks-onsets volume.

EDRVolRatio Ratio between On-Pk and Pk-On volumes.

Respiration zeros Signal zero crossing indexes.

hr Respiration rate.

inhale Inhalation volume.

exhale Exhalation volume.

inhExhRatio Ratio between Inhalation and Exhalation.

inhale_dur Inhalation time duration.

exhale_dur Exhalation time duration.

Non-Linear sd1 Standard deviation of the major axis in the Poincaré Plot.

sd2 Standard deviation of the minor axis in the Poincaré Plot.

sd12 Ratio between SD2 and SD1 (SD2/SD1).

poincarea Area of the Poincaré Plot fitted ellipse.

sample_entropy Sample entropy of the NNI series.

dfa_alpha1 Alpha value of the short-term Detrended Fluctuation Analysis.

dfa_alpha2 Alpha value of the long-term Detrended Fluctuation Analysis.

tinn_n N value of the TINN computation.

tinn_m M value of the TINN computation.

tinn Baseline width of the NNI histogram based on the triangular Interpolation.

triangular_index Ratio of the total number of NN intervals to the height of the histogram.

Spectral spectral_maxpeaks Number of peaks in the spectrum signal.

spect_var Amount of the variation of the spectrum across time.

curve_distance Euclidean distance between the spectrum cumulative sum and evenly spaced signal length.

spectral_roll_off Frequency so 95% of the signal energy is below that value.

spectral_roll_on Frequency so 5% of the signal energy is below that value.

Continued on next page
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Table A .1 continued from previous page

Domain Name Description

spectral_dec Amount of decreasing in the spectral amplitude.

spectral_slope Amount of decreasing in the spectral amplitude.

spectral_centroid Centroid of the signal spectrum.

spectral_spread Variance of the signal spectrum i.e. how it spreads around its mean value.

spectral_kurtosis Kurtosis of the signal spectrum i.e. describes the flatness of the spectrum distribution.

spectral_skewness Skewness of the signal spectrum i.e. describes the asymmetry of the spectrum distribution.

max_frequency Maximum frequency of the signal spectrum maximum amplitude.

fundamental_

frequency

Fundamental frequency of the signal.

max_power_spectrum Spectrum maximum value.

mean_power_

spectrum

Spectrum mean value.

spectral_hist Histogram of the signal spectrum.

Statistic mean Mean of the signal.

median Median of the signal.

var Signal variance.

std Signal standard deviation.

abs_dev Absolute signal deviation.

kurtosis Signal kurtosis.

skewness Signal skewness.

iqr Interquartile Range.

meanadev Mean absolute deviation.

medadev Median absolute deviation.

rms Root Mean Square.

statistic_hist Histogram.

Temporal maxAmp Signal maximum amplitude.

minAmp Signal minimum amplitude.

max Signal max value.

min Signal min value.

dist Length of the signal.

autocorr Signal autocorrelation.

zero_cross Number of times the sinal crosses the zero axis.

meanadiff Mean absolute differences.

mindiff Mininum differences.

maxdiff Maximum differences.

sadiff Sum of absolute differences.

meandiff Mean of differences.

meddiff Median of differences.

temp_centroid Temporal centroid.

total_energy Total energy.

Continued on next page
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Table A .1 continued from previous page

Domain Name Description

minpeaks Number of minimum peaks.

maxpeaks Number of maximum peaks.

temp_dev Temporal deviation.

counter Length of the signal.

temp_curve_distance Euclidean distance of the signal’s cumulative sum to the respective linear regression.

temp_curve_distance_

vol

Volume of the signal’s cumulative sum to the respective linear regression.
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Figure 1: Summary of the features selected in the feature selection step, combining all the datasets.
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Appendix B Group Emotion Recognition

Table B 1: Features extracted from EDA and RR-interval signals.

Domain Name Description

EDA len_pks Peak count

pks_amp Mean peak amplitude

rise_ts Mean rise time

sum_pks_amp Sum of peak amplitudes

sum_rise_ts Sum of rise times

sum_areas Sum of areas under the curve

sum_area5s Area under curve within a time response window of 5 sec after each stimulus onset

mean_EDA Mean Electrodermal Activity

std_EDA Standard deviation of EDA

kurtosis_EDA Kurtosis of EDA

skew_EDA Skewness of EDA

mean_1sder Mean first derivative of EDA

mean_neg_1sder Mean negative first derivative of EDA

GSR_respEnerg Galvanic Skin Response response energy

sum_spec Sum of spectral power in the [0-0.5] Hz band

spectPower_var Variance of spectral power

EDR_area Signal magnitude area of Electrodermal Response

spect_kurt Spectrum kurtosis

mobility Mobility of EDA

complexity Complexity of EDA

zeroCross Number of zero crossings

mfcc_kurt Mel-Frequency Cepstral Coefficients kurtosis

mfcc_skew MFCC skewness

mfcc_mean Mean MFCC

mfcc_std Standard deviation of MFCC

mfcc_median Median MFCC

HRV nni_counter Number of normal-to-normal intervals (NNIs)

hr_mean Mean heart rate

hr_min Minimum heart rate

hr_max Maximum heart rate

hr_std Standard deviation of heart rate

nni_diff_mean Mean of the differences between adjacent NNIs

nni_diff_min Minimum of the differences between adjacent NNIs

nni_diff_max Maximum of the differences between adjacent NNIs

sdnn Standard deviation of NNIs

sdnn_index Mean of the standard deviations of all NNIs for all 5-minute segments of the entire recording

sdann Standard deviation of the average NNIs for all 5-minute segments of the entire recording

rmssd Root mean square of successive differences between NNIs

Continued on next page
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Table B 1 continued from previous page

Domain Name Description

sdsd Standard deviation of successive differences between NNIs

nn50 Number of pairs of successive NNIs that differ by more than 50 ms

pnn50 Proportion of nn50 divided by total number of NNIs

nn20 Number of pairs of successive NNIs that differ by more than 20 ms

pnn20 Proportion of nn20 divided by total number of NNIs

tinn_n Baseline width of the triangular interpolation of the highest peak of the NN interval histogram

(minimum value)

tinn_m Baseline width of the triangular interpolation of the highest peak of the NN interval histogram

(maximum value)

tinn Baseline width of the triangular interpolation of the highest peak of the NN interval histogram

tri_index Triangular index

fft_peak_VLF Peak of the very low frequency band in FFT

fft_peak_LF Peak of the low frequency band in FFT

fft_peak_HF Peak of the high frequency band in FFT

fft_abs_VLF Absolute power of the very low frequency band in FFT spectral analysis

fft_abs_LF Absolute power of the low frequency band in FFT spectral analysis

fft_abs_HF Absolute power of the high frequency band in FFT spectral analysis

fft_rel_VLF Relative power of the very low frequency band in FFT spectral analysis

fft_rel_LF Relative power of the low frequency band in FFT spectral analysis

fft_rel_HF Relative power of the high frequency band in FFT spectral analysis

fft_log_VLF Logarithmic power of the very low frequency band in FFT spectral analysis

fft_log_LF Logarithmic power of the low frequency band in FFT spectral analysis

fft_log_HF Logarithmic power of the high frequency band in FFT spectral analysis

fft_norm_LF Normalized power of the low frequency band in FFT spectral analysis

fft_norm_HF Normalized power of the high frequency band in FFT spectral analysis

fft_ratio Ratio of the low to high frequency power in FFT spectral analysis

fft_total Total power across all frequency bands in FFT spectral analysis

lomb_peak_VLF Peak power of the very low frequency band in Lomb-Scargle spectral analysis

lomb_peak_LF Peak power of the low frequency band in Lomb-Scargle spectral analysis

lomb_peak_HF Peak power of the high frequency band in Lomb-Scargle spectral analysis

lomb_abs_VLF Absolute power of the very low frequency band in Lomb-Scargle spectral analysis

lomb_abs_LF Absolute power of the low frequency band in Lomb-Scargle spectral analysis

lomb_abs_HF Absolute power of the high frequency band in Lomb-Scargle spectral analysis

lomb_rel_VLF Relative power of the very low frequency band in Lomb-Scargle spectral analysis

lomb_rel_LF Relative power of the low frequency band in Lomb-Scargle spectral analysis

lomb_rel_HF Relative power of the high frequency band in Lomb-Scargle spectral analysis

lomb_log_VLF Logarithmic power of the very low frequency band in Lomb-Scargle spectral analysis

lomb_log_LF Logarithmic power of the low frequency band in Lomb-Scargle spectral analysis

lomb_log_HF Logarithmic power of the high frequency band in Lomb-Scargle spectral analysis

lomb_norm_LF Normalized power of the low frequency band in Lomb-Scargle spectral analysis

lomb_norm_HF Normalized power of the high frequency band in Lomb-Scargle spectral analysis

Continued on next page
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Table B 1 continued from previous page

Domain Name Description

lomb_ratio Ratio of the low to high frequency power in Lomb-Scargle spectral analysis

lomb_total Total power of the Lomb-Scargle periodogram

ar_peak_VLF Peak of the very low frequency band in AR spectrum

ar_peak_LF Peak of the low frequency band in AR spectrum

ar_peak_HF Peak of the high frequency band in AR spectrum

ar_abs_VLF Absolute power of the very low frequency band in autoregressive (AR) spectral analysis

ar_abs_LF Absolute power of the low frequency band in autoregressive (AR) spectral analysis

ar_abs_HF Absolute power of the high frequency band in autoregressive (AR) spectral analysis

ar_rel_VLF Relative power of the very low frequency band in autoregressive (AR) spectral analysis

ar_rel_LF Relative power of the low frequency band in autoregressive (AR) spectral analysis

ar_rel_HF Relative power of the high frequency band in autoregressive (AR) spectral analysis

ar_log_VLF Logarithmic power of the very low frequency band in autoregressive (AR) spectral analysis

ar_log_LF Logarithmic power of the low frequency band in autoregressive (AR) spectral analysis

ar_log_HF Logarithmic power of the high frequency band in autoregressive (AR) spectral analysis

ar_norm_LF Normalized power of the low frequency band in autoregressive (AR) spectral analysis

ar_norm_HF Normalized power of the high frequency band in autoregressive (AR) spectral analysis

ar_ratio Ratio of low frequency band power to high frequency band power in autoregressive (AR)

spectral analysis

ar_total Total power of all frequency bands in autoregressive (AR) spectral analysis

sd1 Poincaré plot standard deviation perpendicular to the line of identity

sd2 Poincaré plot standard deviation along the line of identity

sd_ratio Ratio of sd1 to sd2

ellipse_area Area of the ellipse fitted to the Poincaré plot

sampen Sample entropy

dfa_alpha1 Short-term scaling exponent of detrended fluctuation analysis

dfa_alpha2 Long-term scaling exponent of detrended fluctuation analysis
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Table B 2: Results for the WGS on the AMIGOS dataset for the Arousal dimension. The results are
shown in terms of accuracy (Acc), M-F1, computation time per sample (Time), and weights standard
deviation (weight STD). The best result is shown in bold. ED – Euclidean Distance

Data Similarity Metric Acc (%) W-F1-score (%) M-F1-score (%) Time (s) Weight STD

EDR

Pearson 54.28 ˘ 04.55 58.81 ˘ 05.67 48.81 ˘ 06.05 0.008 ˘ 0.001 0.15 ˘ 0.00
Spearman 54.34 ˘ 04.20 58.88 ˘ 05.46 48.77 ˘ 05.93 0.011 ˘ 0.002 0.15 ˘ 0.00
Cosine 59.02 ˘ 03.75 63.09 ˘ 03.73 52.34 ˘ 06.77 0.009 ˘ 0.001 0.13 ˘ 0.01
DTW 82.14 ˘ 05.46 82.00 ˘ 06.77 71.11 ˘ 10.81 0.011 ˘ 0.002 0.16 ˘ 0.02
Euclidean Distance 82.39 ˘ 05.48 82.21 ˘ 06.78 71.39 ˘ 10.80 0.009 ˘ 0.001 0.13 ˘ 0.02
Cross-Correlation (Max) 82.02 ˘ 05.48 81.73 ˘ 06.92 70.62 ˘ 10.64 0.009 ˘ 0.001 0.20 ˘ 0.02
Recurrence Plot (ED) 82.52 ˘ 05.36 82.37 ˘ 06.47 71.61 ˘ 10.16 0.217 ˘ 0.020 0.15 ˘ 0.01
Coherence (Sum) 82.17 ˘ 05.02 82.02 ˘ 06.24 71.16 ˘ 09.80 0.010 ˘ 0.001 0.19 ˘ 0.01

EDL

Pearson 57.49 ˘ 03.13 61.75 ˘ 03.77 51.24 ˘ 06.22 0.009 ˘ 0.001 0.11 ˘ 0.01
Spearman 57.33 ˘ 03.22 61.59 ˘ 03.84 51.09 ˘ 06.19 0.012 ˘ 0.003 0.11 ˘ 0.01
Cosine 55.18 ˘ 07.51 59.47 ˘ 08.21 49.52 ˘ 08.09 0.011 ˘ 0.005 0.09 ˘ 0.02
DTW 82.49 ˘ 05.52 82.41 ˘ 06.57 71.73 ˘ 10.45 0.014 ˘ 0.004 0.18 ˘ 0.01
Euclidean Distance 82.67 ˘ 05.56 82.58 ˘ 06.61 72.02 ˘ 10.43 0.009 ˘ 0.002 0.16 ˘ 0.02
Cross-Correlation (Max) 79.87 ˘ 06.60 80.18 ˘ 07.26 69.28 ˘ 09.42 0.012 ˘ 0.005 0.28 ˘ 0.03
Recurrence Plot (ED) 82.56 ˘ 05.33 82.29 ˘ 06.65 71.57 ˘ 09.80 0.209 ˘ 0.006 0.16 ˘ 0.00
Coherence (Sum) 82.02 ˘ 05.31 81.83 ˘ 06.73 70.98 ˘ 10.13 0.012 ˘ 0.001 0.20 ˘ 0.00

EDA – FV

Pearson 82.57 ˘ 05.67 82.20 ˘ 07.15 71.33 ˘ 10.80 0.003 ˘ 0.003 0.05 ˘ 0.01
Spearman 82.43 ˘ 05.69 82.09 ˘ 07.17 71.15 ˘ 10.81 0.003 ˘ 0.000 0.07 ˘ 0.01
Cosine 82.64 ˘ 05.62 82.22 ˘ 07.18 71.29 ˘ 10.87 0.002 ˘ 0.000 0.02 ˘ 0.00
Euclidean Distance 82.60 ˘ 05.58 82.23 ˘ 07.07 71.29 ˘ 10.88 0.004 ˘ 0.001 0.06 ˘ 0.01

HRV – FV

Pearson 82.60 ˘ 05.58 82.23 ˘ 07.07 71.29 ˘ 10.88 0.002 ˘ 0.000 0.06 ˘ 0.01
Spearman 82.65 ˘ 05.29 82.36 ˘ 06.78 71.47 ˘ 10.68 0.003 ˘ 0.000 0.09 ˘ 0.02
Cosine 82.75 ˘ 05.45 82.38 ˘ 06.94 71.51 ˘ 10.75 0.003 ˘ 0.001 0.00 ˘ 0.00
Euclidean Distance 82.74 ˘ 05.30 82.38 ˘ 06.79 71.46 ˘ 10.67 0.004 ˘ 0.002 0.05 ˘ 0.01

LR HRV – FV
Pearson 76.86 ˘ 10.43 77.72 ˘ 10.36 67.07 ˘ 10.61 0.010 ˘ 0.002 0.11 ˘ 0.04
Spearman 78.32 ˘ 10.44 78.85 ˘ 10.31 68.28 ˘ 10.85 0.010 ˘ 0.002 0.08 ˘ 0.07
Cosine 83.01 ˘ 05.18 82.76 ˘ 06.39 71.99 ˘ 10.42 0.009 ˘ 0.002 0.09 ˘ 0.03
Euclidean Distance 83.07 ˘ 04.92 82.87 ˘ 06.05 72.15 ˘ 10.11 0.007 ˘ 0.002 0.12 ˘ 0.05

Average Pooling 82.65 ˘ 05.49 82.26 ˘ 07.05 71.34 ˘ 10.78 0.010 ˘ 0.005 0.00 ˘ 0.00
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Table B 3: Results for the WGS for the AMIGOS dataset, Valence dimension.

Data Similarity Metric Acc (%) W-F1-score (%) M-F1-score (%) Time (s) Weights STD

EDR

Pearson 53.83 ˘ 03.52 55.35 ˘ 03.52 52.26 ˘ 03.96 0.009 ˘ 0.002 0.15 ˘ 0.00
Spearman 54.08 ˘ 03.59 55.60 ˘ 03.60 52.47 ˘ 04.09 0.010 ˘ 0.002 0.15 ˘ 0.00
Cosine 57.21 ˘ 04.02 58.64 ˘ 03.57 55.32 ˘ 04.84 0.009 ˘ 0.002 0.13 ˘ 0.01
DTW 82.24 ˘ 06.35 82.69 ˘ 05.90 80.50 ˘ 07.45 0.010 ˘ 0.001 0.16 ˘ 0.02
Euclidean Distance 82.61 ˘ 06.25 83.06 ˘ 05.79 80.90 ˘ 07.44 0.010 ˘ 0.002 0.13 ˘ 0.02
Cross-Correlation (Max) 82.25 ˘ 06.10 82.67 ˘ 05.68 80.45 ˘ 07.17 0.011 ˘ 0.000 0.20 ˘ 0.02
Recurrence Plot (ED) 82.30 ˘ 06.00 82.75 ˘ 05.58 80.58 ˘ 07.09 0.219 ˘ 0.046 0.15 ˘ 0.01
Coherence (Sum) 82.29 ˘ 05.99 82.72 ˘ 05.55 80.53 ˘ 07.08 0.012 ˘ 0.001 0.19 ˘ 0.01

EDL

Pearson 57.51 ˘ 03.15 58.90 ˘ 03.08 55.67 ˘ 03.78 0.009 ˘ 0.001 0.11 ˘ 0.01
Spearman 57.44 ˘ 03.05 58.83 ˘ 03.03 55.56 ˘ 03.65 0.011 ˘ 0.001 0.11 ˘ 0.01
Cosine 54.62 ˘ 07.15 56.04 ˘ 06.94 52.96 ˘ 07.24 0.008 ˘ 0.001 0.09 ˘ 0.02
DTW 82.04 ˘ 06.25 82.48 ˘ 05.83 80.28 ˘ 07.31 0.010 ˘ 0.001 0.18 ˘ 0.01
Euclidean Distance 82.24 ˘ 06.39 82.68 ˘ 05.97 80.51 ˘ 07.45 0.008 ˘ 0.000 0.16 ˘ 0.02
Cross-Correlation (Max) 79.16 ˘ 05.82 79.59 ˘ 05.62 77.14 ˘ 06.43 0.009 ˘ 0.001 0.28 ˘ 0.03
Recurrence Plot (ED) 82.61 ˘ 06.14 83.05 ˘ 05.71 80.88 ˘ 07.31 0.226 ˘ 0.044 0.16 ˘ 0.00
Coherence (Sum) 81.97 ˘ 05.95 82.38 ˘ 05.60 80.15 ˘ 07.00 0.011 ˘ 0.003 0.20 ˘ 0.00

EDA – FV

Pearson 82.48 ˘ 06.46 82.96 ˘ 06.03 80.81 ˘ 07.65 0.004 ˘ 0.003 0.05 ˘ 0.01
Spearman 82.46 ˘ 06.40 82.93 ˘ 05.96 80.77 ˘ 07.60 0.004 ˘ 0.001 0.07 ˘ 0.01
Cosine 82.72 ˘ 06.55 83.19 ˘ 06.11 81.10 ˘ 07.68 0.003 ˘ 0.001 0.02 ˘ 0.00
Euclidean Distance 82.80 ˘ 06.52 83.26 ˘ 06.09 81.16 ˘ 07.63 0.004 ˘ 0.006 0.06 ˘ 0.01

HRV – FV

Pearson 82.24 ˘ 06.34 82.73 ˘ 05.90 80.61 ˘ 07.42 0.003 ˘ 0.001 0.09 ˘ 0.01
Spearman 82.29 ˘ 06.39 82.78 ˘ 05.96 80.67 ˘ 07.48 0.005 ˘ 0.001 0.09 ˘ 0.02
Cosine 82.64 ˘ 06.53 83.12 ˘ 06.08 81.03 ˘ 07.65 0.003 ˘ 0.001 0.02 ˘ 0.00
Euclidean Distance 82.67 ˘ 06.48 83.15 ˘ 06.03 81.07 ˘ 07.57 0.004 ˘ 0.002 0.05 ˘ 0.01

LR HRV – FV
Pearson 77.06 ˘ 09.93 77.67 ˘ 09.55 75.01 ˘ 11.01 0.005 ˘ 0.001 0.10 ˘ 0.04
Spearman 77.26 ˘ 09.93 77.88 ˘ 09.55 75.23 ˘ 11.09 0.007 ˘ 0.001 0.05 ˘ 0.07
Cosine 82.75 ˘ 06.23 83.22 ˘ 05.78 81.11 ˘ 07.37 0.005 ˘ 0.001 0.08 ˘ 0.03
Euclidean Distance 82.48 ˘ 06.36 82.95 ˘ 05.92 80.82 ˘ 07.44 0.007 ˘ 0.000 0.11 ˘ 0.04

Average Pooling 82.70 ˘ 06.46 83.19 ˘ 06.01 81.11 ˘ 07.58 0.008 ˘ 0.001 0.00 ˘ 0.00

Table B 4: Results for the WGS for the KEmoCon dataset, Arousal dimension.

Data Similarity Metric Acc (%) W-F1-score (%) M-F1-score (%) Time (s)

EDR

Pearson 54.19 ˘ 09.31 60.14 ˘ 11.68 43.73 ˘ 8.97 0.000 ˘ 0.000
Spearman 54.62 ˘ 10.36 60.39 ˘ 12.67 43.85 ˘ 09.70 0.001 ˘ 0.000
Cosine 62.51 ˘ 13.63 66.41 ˘ 16.84 46.64 ˘ 09.72 0.000 ˘ 0.000
Cross-Correlation (Max) 70.39 ˘ 21.21 70.63 ˘ 21.91 47.34 ˘ 12.61 0.001 ˘ 0.000

EDL

Pearson 58.46 ˘ 09.07 63.81 ˘ 11.72 46.41 ˘ 10.18 0.001 ˘ 0.000
Spearman 58.38 ˘ 08.91 63.72 ˘ 11.80 46.19 ˘ 09.72 0.002 ˘ 0.000
Cosine 67.40 ˘ 12.20 69.64 ˘ 14.46 49.23 ˘ 10.85 0.000 ˘ 0.000
Cross-Correlation (Max) 70.24 ˘ 12.32 71.58 ˘ 15.05 50.37 ˘ 09.57 0.001 ˘ 0.000

EDA – FV

Pearson 70.87 ˘ 22.50 70.80 ˘ 22.90 52.63 ˘ 21.28 0.000 ˘ 0.000
Spearman 70.74 ˘ 22.52 70.69 ˘ 22.96 52.52 ˘ 21.31 0.000 ˘ 0.000
Cosine 70.87 ˘ 22.50 70.80 ˘ 22.90 52.63 ˘ 21.28 0.000 ˘ 0.000

HRV – FV

Pearson 70.37 ˘ 21.89 70.62 ˘ 22.52 47.55 ˘ 13.40 0.000 ˘ 0.000
Spearman 70.55 ˘ 22.44 70.58 ˘ 22.92 52.43 ˘ 21.28 0.000 ˘ 0.000
Cosine 70.87 ˘ 22.50 70.80 ˘ 22.90 52.63 ˘ 21.28 0.000 ˘ 0.000

LR HRV – FV
Pearson 61.45 ˘ 17.33 65.17 ˘ 19.34 47.86 ˘ 12.17 0.008 ˘ 0.012
Spearman 61.33 ˘ 17.16 65.01 ˘ 19.21 47.51 ˘ 11.95 0.011 ˘ 0.015
Cosine 67.08 ˘ 25.04 67.36 ˘ 25.39 48.88 ˘ 20.47 0.009 ˘ 0.012

Average Pooling 70.87 ˘ 22.50 70.80 ˘ 22.90 52.63 ˘ 21.28 0.000 ˘ 0.000
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Table B 5: Results for the WGS for the K-EmoCon dataset, Valence dimension.

Data Similarity Metric Acc (%) W-F1-score (%) M-F1-score (%) Time (s)

EDR

Pearson 87.04 ˘ 12.20 88.12 ˘ 12.45 61.20 ˘ 21.34 0.001 ˘ 0.000
Spearman 87.00 ˘ 12.05 88.19 ˘ 12.24 61.42 ˘ 21.34 0.001 ˘ 0.000
Cosine 86.83 ˘ 10.66 88.05 ˘ 11.72 58.73 ˘ 19.36 0.000 ˘ 0.000
Cross-Correlation (Max) 89.82 ˘ 09.74 89.91 ˘ 10.92 59.53 ˘ 19.38 0.001 ˘ 0.000

EDL

Pearson 87.51 ˘ 10.20 88.29 ˘ 11.23 57.68 ˘ 19.62 0.000 ˘ 0.001
Spearman 87.60 ˘ 10.12 88.35 ˘ 11.19 57.79 ˘ 19.64 0.001 ˘ 0.000
Cosine 89.39 ˘ 09.35 89.72 ˘ 11.13 62.03 ˘ 21.03 0.000 ˘ 0.000
Cross-Correlation (Max) 90.04 ˘ 08.91 90.16 ˘ 10.63 65.09 ˘ 22.55 0.001 ˘ 0.000

EDA – FV

Pearson 90.04 ˘ 09.88 90.04 ˘ 10.94 64.90 ˘ 22.59 0.000 ˘ 0.000
Spearman 90.04 ˘ 09.75 90.09 ˘ 10.84 65.01 ˘ 22.65 0.000 ˘ 0.000
Cosine 90.04 ˘ 09.88 90.04 ˘ 10.94 64.90 ˘ 22.59 0.0001 ˘ 0.000

HRV – FV

Pearson 90.05 ˘ 09.65 90.05 ˘ 10.89 64.91 ˘ 22.55 0.000 ˘ 0.000
Spearman 90.00 ˘ 09.79 90.03 ˘ 10.89 64.92 ˘ 22.59 0.001 ˘ 0.000
Cosine 90.04 ˘ 09.88 90.04 ˘ 10.94 64.90 ˘ 22.59 0.000 ˘ 0.000

LR HRV – FV
Pearson 88.35 ˘ 10.36 88.93 ˘ 11.68 62.41 ˘ 22.07 0.002 ˘ 0.002
Spearman 88.35 ˘ 10.21 88.96 ˘ 11.56 62.54 ˘ 22.12 0.004 ˘ 0.002
Cosine 88.92 ˘ 10.32 89.19 ˘ 11.55 61.74 ˘ 22.38 0.004 ˘ 0.010

Average Pooling 90.04 ˘ 09.88 90.04 ˘ 10.94 64.90 ˘ 22.59 0.000 ˘ 0.000
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Table B 6: Hyperparamters space values used in the WGS and intrapersonal approach. Nomenclature: Dimension space (Dim) in arousal (A), and valence (V);
Grace period (Grace Per.); Learning rate( Learn. Rate); Weight decay (Weight Dec.). The parameters are shown per dataset for AMIGOS (AM) and K-EmoCon
(K).

Dim. Feature Image Morphology
EDA HRV Spect. RP EDA-EDR-EDL

Batch size A 16 (K, AM), 128 (K, AM) 16 (K, AM), 128 (K, AM) 16 (K), 128 (K, AM) 16 (K), 128 (K, AM) 16 (K), 128 (K), 256 (AM)
V 16 (K), 256 (K, A)

Epoch A 800 (K, AM) 800 (K, AM) 300 (K), 800 (AM) 800 (AM), 1000 (K) 800 (K), 1000 (AM)V 600 (K), 800 (AM) 600 (K), 800 (AM) 60 (K), 800 (AM) 60 (K), 800 (AM)

Gamma A 0.5 (AM), 1.5 (K) 0.5 (AM), 1.5 (K) 0.5 (K) 1.5 (K) 1.5 (K)V 1.5 (K)

Grace Per. A 0 (AM), 10 (K), 50 (K) 10 (K), 50 (K), 60 (AM) 0 (K), 10 (AM), 20 (K) 0 (K, AM), 50 (K) 10 (K), 100 (K), 900 (AM)
V 0 (AM), 10 (K), 100 (K) 0 (A), 10 (K), 100 (K) 0 (K), 10 (AM), 50 (K) 0 (K), 10 (A), 40 (K) 10 (K), 200 (K), 900 (AM)

Learn. Rate A 1e-3 (K, AM), 1e-5 (K, A) 1e-3 (K, AM), 1e-5 (K, AM) 1e-3 (K), 1e-5 (K), 1e-6
(AM)

1e-5 (K, AM), 1e-3 (K) 1e-5 (K, AM), 1e-3 (K)

V 1e-6 (K, AM), 1e-3 (K) 1e-6 (K, A), 1e-3 (K)

Patience A 6 (AM), 10 (K) 6 (AM), 10 (K) 5 (AM), 10 (K) 5 (AM), 10 (K) 10 (K), 50 (AM)V

Weight Dec. A 0.01 (K, AM)
V 0.01 (K, AM)
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Appendix C Data Acquisition

Table C 1: Technical specifications for the Zigbee, Bluetooth and WiFi protocols123.

Zigbee Bluetooth (BLE) WiFi

Network type LAN PAN WPAN, WLAN,
WWAN, WMAN

Topology Self-Forming,
Self-Healing MESH

Mesh and Star Mesh, Star, Hybrid,
P2P, Bus, Ring

Network Protocol Zigbee PRO 2015 802.11n
Radio Technology IEEE 802.15.4-2011 IEEE 802.15.1 IEEE 802.11

Frequency Band /
Channels

2.4 GHz (ISM band)
16-channels (2 MHz wide)

2.402 GHz to 2.48
GHz 2.4 GHz and the 5

GHz bands
Data Rate 250 Kbits/sec 270 Kbits/sec 450Mbps
Communication Range
(Average)

75-100m indoor 77m indoors 100m indoors

Theoretical # of nodes Up to 65,000 32 767
Modulation DSSS FHSS OFDM, MIMO
Transmit power 10 mW 10 mW 100mW

Table C 2: Technical specifications of the TP-Link Wireless N 450Mbps (TL-WR940N)4 and TP-Link
MR3020 3G/Wi-Fi5.

TL-MR3020 TL-WR940N

Standards IEEE 802.11n, IEEE 802.11g, IEEE 802.11b IEEE 802.11n/b/g 2.4 GHz
Protocols IPv4, IPv6 IPv4, IPv6
Frequencies 2.4 GHz 2.4 GHz
Antenna 1 internal antenna 3 antennas
Data Rate 300Mbps 450 Mbps (802.11n)
Transmit Power ă 20dBm ă 20dBm

1https://intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.
html; Accessed: 20/02/2024

2https://standards.ieee.org/standard/802_15_4-2011.html; Accessed: 20/02/2024
3https://ieee802.org/15/pub/TG1.html; Accessed: 20/02/2024
4static.tp-link.com/2018/201810/20181022/TL-WR940N(EU)6.0-datasheet.pdf; Accessed on 20/02/2024
5static.tp-link.com/2017/201712/20171207/TL-MR3020(EU)_3.20.pdf; Accessed on 20/02/2024
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dataset - psychophysiology of positive and negative emotions.” 10.17605/OSF.IO/94BPX (2023).

[335] W. Li, R. Tan, Y. Xing, G. Li, S. Li, G. Zeng, P. Wang, B. Zhang, X. Su, D. Pi, G. Guo, and D. Cao, “A multimodal psy-

chological, physiological and behavioural dataset for human emotions in driving tasks,” vol. 9, no. 1, p. 481. figshare

10.6084/m9.figshare.c.5744171.v1 (2022).

[336] M. Zhang, L. Yu, K. Zhang, B. Du, B. Zhan, S. Chen, X. Jiang, S. Guo, J. Zhao, Y. Wang, B. Wang, S. Liu, and

W. Luo, “Kinematic dataset of actors expressing emotions,” Scientific Data, vol. 7, no. 1, p. 292, 2020. PhysioNet

https://doi.org/10.13026/kg8b-1t49 (2020).

[337] F. H. Wilhelm and P. Grossman, “Emotions beyond the laboratory: theoretical fundaments, study design, and analytic

strategies for advanced ambulatory assessment,” Biological Psychology, vol. 84, no. 3, pp. 552–569, 2010.

[338] Y. Xu, I. Hübener, A.-K. Seipp, S. Ohly, and K. David, “From the lab to the real-world: An investigation on the influence

of human movement on emotion recognition using physiological signals,” in Proc. of the IEEE Int’l Conf. on Pervasive

Computing and Communications Workshops, pp. 345–350, 2017.

[339] S. K. D’Mello and B. M. Booth, “Affect detection from wearables in the ’real’ wild: Fact, fantasy, or somewhere in between?,”

IEEE Intelligent Systems, vol. 38, no. 1, pp. 76–84, 2023.

[340] J. Russell, “Affective space is bipolar,” Journal of Personality and Social Psychology, vol. 37, no. 3, p. 345, 1979.

[341] T. Canli, H. Sivers, S. Whitfield, I. Gotlib, and J. Gabrieli, “Amygdala response to happy faces as a function of extraversion,”

Science, vol. 296, no. 5576, pp. 2191–2191, 2002.

[342] S. B. Eysenck, H. J. Eysenck, and P. Barrett, “A revised version of the psychoticism scale,” Personality and Individual

Differences, vol. 6, no. 1, pp. 21–29, 1985.

[343] J. Johnson, “Measuring thirty facets of the five factor model with a 120-item public domain inventory: Development of the

IPIP-NEO-120,” Journal of Research in Personality, vol. 51, pp. 78–89, 2014.

[344] C. Carreiras, H. Silva, A. Lourenço, and A. Fred, “StorageBit-a metadata-aware, extensible, semantic and hierarchical

database for biosignals,” in Proc. of the Int’l Conf. on Health Informatics, vol. 2, pp. 65–74, SciTePress, 2013.

[345] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,

J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
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