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Recent advances in quantum computers are demonstrating the ability to solve problems at a
scale beyond brute force classical simulation. As such, a widespread interest in quantum algorithms
has developed in many areas, with optimization being one of the most pronounced domains.
Across computer science and physics, there are a number of different approaches for major classes
of optimization problems, such as combinatorial optimization, convex optimization, non-convex
optimization, and stochastic extensions. This work draws on multiple approaches to study quantum
optimization. Provably exact versus heuristic settings are first explained using computational
complexity theory – highlighting where quantum advantage is possible in each context. Then,
the core building blocks for quantum optimization algorithms are outlined to subsequently define
prominent problem classes and identify key open questions that, if answered, will advance the
field. The effects of scaling relevant problems on noisy quantum devices are also outlined in detail,
alongside meaningful benchmarking problems. We underscore the importance of benchmarking by
proposing clear metrics to conduct appropriate comparisons with classical optimization techniques.
Lastly, we highlight two domains – finance and sustainability – as rich sources of optimization
problems that could be used to benchmark, and eventually validate, the potential real-world impact
of quantum optimization.
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I. INTRODUCTION

Quantum computing could revolutionize numerous do-
mains in business and science, with optimization fre-
quently identified as a prime candidate to profit from
such a revolution. Optimization problems arise almost
everywhere, so any improvement over state-of-the-art
classical algorithms with quantum computers could have
a huge impact. Moreover, these improvements could oc-
cur across multiple dimensions, such as solution quality,
solution diversity, time-to-solution, and cost-to-solution.
But just how tangible are the benefits of quantum opti-
mization? Techniques like Grover’s search [1], quantum
annealing, and adiabatic quantum optimization [2, 3]
provided a promising start, but it has become clear that
more tools are needed to realize a quantum advantage in
optimization. In this work, we address the potential of
quantum optimization from various angles, namely: com-
plexity theory, problem classes and algorithmic design,
execution on noisy hardware at scale, and fair bench-
marking, while outlining illustrative examples derived
from real-world applications. Each topic is self-contained
and written for a diverse audience, from optimization re-
searchers to industry professionals. Thus, readers may
move directly to any section of interest.

For additional context, it is often stated that quan-
tum computers can evaluate all possible combinations of
an optimization problem simultaneously. This neglects
that there remains an exponential list of possible solu-
tions and that a quantum computer requires additional
effort to find good ones. For some combinatorial opti-
mization problems in a worst-case setting, the required
effort of known classical approaches scales exponentially
in the problem size [4]. Here, quantum computers may
offer a quadratic speedup, e.g., via Grover’s Search, but
a quadratic speedup over an exponential run time is still
an exponential run time. The situation can, however,
significantly change if we consider a concrete problem
instance instead of the general worst-case scenario. Clas-
sically, many algorithms and heuristics have been devel-
oped that – even for some large problems – can obtain an
(almost) optimal solution in reasonable time. The most
prominent example is the Traveling Salesperson Prob-
lem (TSP), where the goal is to find the shortest cycle
to visit a given set of places. It is often used to illus-
trate the difficulty of combinatorial optimization, but in
practice, very large problem instances can be solved close
to optimality classically [5–10]. In contrast, there exist
problems with less than 100 variables that are difficult to
tackle classically [11, 12]. While quantum optimization
algorithms will not necessarily improve the performance
for all problems, they provide additional tools with new
properties that can have significant impact and improve
performance for some problem instances and thus, im-
prove our overall capabilities in optimization. We probe
these concepts more formally in Secs. II, III and IV,
by laying the foundation for quantum optimization algo-
rithms within a variety of well-studied problem classes.
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II QUANTUM ADVANTAGE & COMPLEXITY THEORY

Another important aspect to consider in quantum com-
puting, is noise. The ultimate strategy to deal with noise
is quantum error correction, which introduces a signifi-
cant overhead in the number of qubits required [13]. Until
fault-tolerant error-corrected quantum computers can be
implemented at scale, other approaches to retrieve mean-
ingful results from noisy devices have been considered. A
particular strategy is quantum error mitigation [14–16],
where one reduces noise by cleverly combining multiple
noisy results. In Sec. V, we investigate the possibility of
using error-mitigated noisy quantum computing to bridge
the gap between classical and fully fault-tolerant quan-
tum computing for optimization problems.

In addition to noise, in practice, one often relies on
optimization heuristics, where the performance of an al-
gorithm on a given problem instance is not known up-
front. This makes comparing quantum and classical al-
gorithms rather tricky. To establish systematic, repro-
ducible, and comparable benchmarks, Sec. VI introduces
fair metrics and outlines relevant optimization problems
for which different algorithms can be applied to. This
is crucial to identify what strategy works best and guide
toward development of new quantum optimization algo-
rithms. Sec. VII then dives into two particular real-world
problems to illustrate the nuance of optimization in prac-
tice. Combined with reasonable benchmarks, these prob-
lems highlight where we stand and what open questions
must be answered before we can impact a certain domain.
Since quantum computing will not necessarily accelerate
all problems, it is crucial to understand exactly where
advantages might be found. This needs to be probed
theoretically, and empirically — which is what we show-
case in this work. Quantum optimization algorithms pro-
vide additional tools that complement existing ones, and
synergies with classical algorithms can certainly lead to
better performance.

II. QUANTUM ADVANTAGE & COMPLEXITY
THEORY

In theoretical computer science, complexity classes
group computational problems together in terms of the
amount of resources required to solve them. Naturally,
the harder the computational problem, the more re-
sources it will require, where the resources of most im-
portance consist of time and memory. For this reason,
complexity theory is often the guiding compass for at-
tempting to find classes of problems that are hard for
a classical computer to solve, but perhaps less resource-
demanding on a quantum computer. This is a very rea-
sonable and rigorous way to formulate a quantum ad-
vantage, but proving that problems require strictly more
resources classically than they would on a quantum com-
puter is often a monumental task. In this section, we
discuss notable strides made in complexity theory, but
also highlight issues that arise when restricting our no-
tion of quantum advantage to strict complexity-theoretic

separations in the context of optimization. The main
takeaway for this section can be summarized as follows:

Understanding complexity theory is extremely useful for
gauging possible quantum advantage in optimization,
but rigorous complexity-theoretic separations are not
necessary, nor sufficient when seeking a practical

quantum advantage.

A noteworthy example to drive home this point is the
task of factoring a number into its prime constituents.
This problem is interesting from a complexity point of
view as it is not believed to be efficiently solvable by a
classical computer — although there is no formal proof
that confirms this. A quantum computer, on the other
hand, can solve this factoring task efficiently, thanks to
Shor’s algorithm [17], and is expected to meaningfully
demonstrate this efficiency once fault-tolerant quantum
hardware is available [18]. Thus, our notion of quan-
tum advantage in practice should cast a wider net than
formal proofs, but within a reasonable range guided by
complexity-theoretic arguments. We explain this further
by delving into the basics of complexity theory, discussing
pertinent results and extending the discussion to more
practical scenarios for optimization. We refer the inter-
ested reader to Refs. [19, 20] for a more comprehensive
overview of quantum and classical complexity theory.

A. Exact Solutions

1. Decision and relational problems

Much of complexity theory deals with so-called deci-
sion problems. As the name suggests, a decision problem
involves determining (i.e. deciding) whether there exists
a particular solution to the problem or not. Without
loss of generality, it is often convenient to formalize this
idea using binary strings [21]. A computational decision
problem on binary strings corresponds to what is called
a language in complexity theory. A language L ⊆ {0, 1}∗
is a set of binary strings of arbitrary length where the
corresponding decision problem is to determine whether
a given input string x ∈ {0, 1}∗ is an element of L or not.
For example, the language could consist of the set of all
prime numbers encoded in binary form and the problem
would involve determining whether x is prime (x ∈ L)
or x is composite (x ̸∈ L). For completeness, an alpha-
bet Σ, can be thought of as the set of characters from
which the language is formed. In this case, Σ = {0, 1}.
It is also fairly common to think of decision problems on
binary strings as binary functions fn : {0, 1}n → {0, 1}
where fn(x) = 1 if and only if x ∈ L, which is referred
to as a “yes” instance. The famous Traveling Salesperson
Problem (TSP) can be formulated in such a way, where
a list of cities, the distances between them, and a total
distance d is described by a bitstring x ∈ {0, 1}n. Then
fn(x) = 1 if and only if there exists a salesperson’s tour
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II QUANTUM ADVANTAGE & COMPLEXITY THEORY

through the cities whose length is ≤ d. This problem be-
comes increasingly difficult as the number of cities grows,
since, even though the input size |x| = n grows polyno-
mially, the number of possible tours grows exponentially;
and the best known classical dynamic programming so-
lution still needs exponential time [22, 23]. In fact, the
notion of resource scaling in terms of the input size is
how hardness of a problem is formulated in complexity
theory.

At this juncture, it is worth noting that decision prob-
lems only care about the existence of a particular solu-
tion, and not the actual solution itself. Clearly, in prac-
tical optimization settings, finding an actual solution to
a problem is often necessary. Continuing with TSP as
an example, merely knowing that there exists a path
to travel to all cities and back is not enough to bene-
fit in practice, and determining the actual path to take is
needed. This leads to the notion of relational problems,
which generalize decision problems in this sense. More
concretely, given a relation R ⊆ {0, 1}∗ × {0, 1}∗ and an
input x, the goal of a relational problem is to output
any y such that (x, y) ∈ R. So one is concerned about
finding a y that satisfies the relation (sometimes called a
“witness” to the original decision problem), not just de-
termining the existence of such a y. For the discussions
that follow, it is useful to keep in mind that the same
problem can be formulated in different ways. The deci-
sion problem already encompasses the time complexity
of the problem. Namely, having a procedure that deter-
mines whether a TSP tour of length ≤ d exists, can be
used to efficiently, modulo the complexity of the decision
procedure, find a tour of minimal length ≤ d by iterat-
ing over the decision problem after removing edges [24].
Looking at the decision version of a problem may be rele-
vant from a complexity point of view, but perhaps not so
much from a practical one. Rather, one may explicitly in-
terpret a relational problem as an optimization problem,
making these closer to problems observed in practice.

2. Deterministic, randomized and quantum computation

Decision problems that are efficiently solvable by a de-
terministic machine are grouped together into the com-
plexity class P, for polynomial time. Efficient implies
the existence of an algorithm which solves the decision
problem with a run time that grows no faster than a poly-
nomial in the size of the input. Crucially, the degree and
constants of the polynomial are important for practical
purposes. For example, an algorithm with a run time
scaling like n3 is far more practical than one that runs in
n100 time, even though both approaches scale polynomi-
ally and are therefore deemed computationally efficient
in complexity theory. The set of optimization problems
whose decision versions are then in P is referred to as
PO [25]. Switching to relational problems leads to the
class FP (for functional), which consists of all relations R
for which a deterministic polynomial-time algorithm out-

puts a solution y, whenever one exists. In this regard, FP
generalizes P, as it is the analog of P for functions with
an n-bit output, and importantly, the set FP contains
PO. While FP focuses on general relational problems
that require finding a specific output, PO is specifically
about optimization problems where the best solution un-
der certain criteria needs to be found.

Similar to P, PSPACE forms the class of decision
problems that can be solved with a polynomial amount of
space, but there is no restriction on the time used by the
algorithm. Allowing for randomized computation brings
us to the class BPP, which stands for bounded-error
probabilistic polynomial time, where a classical proba-
bilistic machine can solve all instances of a decision prob-
lem in polynomial time, with an error probability ≤ 1/3.
Generalizing further to a computational model that uses
quantum mechanics, leads to BQP, the class of decision
problems that quantum computers can solve in polyno-
mial time with an error probability ≤ 1/3 on every in-
stance. Crucially, BQP contains problems that are not
believed to be in BPP or P, like the decision version
of factoring large integers for example, and it is widely
believed that BQP ̸= BPP [26]. Figure 1 illustrates
the relationships between these classes. It is not known
whether all inclusions are strict. However, there is still
no proof that PSPACE ̸= P. In the highly unlikely sit-
uation that PSPACE = P, it follows that BQP = P
and every efficient quantum algorithm can be simulated
efficiently on a classical computer!

Are quantum algorithms strictly more
powerful than randomized algorithms?
The clear expectation is that the answer is
affirmative, but in light of the difficulty of

proving PSPACE ̸= P, no proof to answer this
question conclusively is known. A long line of

research plausibly suggests that P = BPP. The
reason for this is that good pseudo-random
number generators are believed to exist and

these in turn can be used to de-randomize BPP
algorithms. There is also black-box evidence for
this. Bernstein and Vazirani [26] introduced the
problem of Recursive Fourier Sampling (RFS)

which is in BQP but not in BPP relative to an
oracle. Interestingly, Yamakawa and

Zhandry [27] show that, relative to a random
oracle, there exist problems in BQP which are
not in BPP. Arora et al. [28] provide further
results relative to a random oracle for shallow

circuits and variational quantum algorithms, but
it is not clear what practical implications, if any,

these separations relative to random oracles
mean.
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3. Hard versus complete problems

If useful problems for optimization, outside of P, could
be solved efficiently by quantum computers, such a find-
ing would lead to huge breakthroughs in computer sci-
ence, akin to that of Shor’s algorithm. This highlights the
importance of trying to design quantum algorithms for
classically hard optimization problems. To identify such
problems, the class NP for nondeterministic polynomial-
time, becomes relevant. A decision problem is in NP if,
given an input x, we can efficiently check that x is a
“yes” instance of the problem. To do this, we are given a
polynomial-size proof (sometimes called a witness) which
certifies this fact. Intriguingly, there is also a relational
problem extension of NP, namely FNP. As mentioned,
problems in NP are concerned with the existence of a
particular solution, such as a satisfying assignment. On
the other hand, FNP versions of these problems are con-
cerned with finding the actual value of a solution, if one
exists, in keeping with practical requirements for opti-
mization settings. In particular, the set of optimization
problems within NP is termed NPO, and NPO ⊂ FNP.

A problem is called NP-complete if all other problems
in NP can be efficiently reduced to it, i.e., with a poly-
nomial overhead in time. Hence, NP-complete problems
are the most difficult problems in NP. Notable examples
are TSP and Graph Colorability [29]. More broadly, a
problem is called NP-hard if it is at least as hard as the
hardest problems in NP — but not necessarily in NP
itself. Thus, NP-complete problems are merely a subset
of NP-hard problems that belong to NP.

When thinking about problems in NP, it is tempting
to imagine a quantum analog of this class, with complete
problems of its own. There are several possible ways to
do this, cf. [33] for a discussion. We hone in on one in
particular — QMA, for quantum Merlin-Arthur. Intu-
itively, QMA encapsulates decision problems where “yes”
instances can be verified efficiently and with high proba-
bility on a quantum computer, using a quantum state as
a proof. This state should occupy no more than a polyno-
mial number of qubits in the input size, however, finding
such a state may of course, be computationally hard. For
“no” instances all quantum proofs will be rejected (with
high probability). Problems may then similarly be clas-
sified as QMA-hard or QMA-complete (see [34]).

Other classes relevant to quantum computing that are
more exotic than NP and QMA exist, albeit not nec-
essarily in the context of optimization. Due to a re-
cent Gaussian Boson Sampling experiment [35] the class
#P is worth mentioning. #P is a counting class, de-
fined as the set of all functions f such that for an input
x ∈ {0, 1}∗, f(x) counts the number of accepting compu-
tation paths of a nondeterministic polynomial-time ma-
chine on input x. The complexity of problems in #P
relates to challenges like computing partition functions
in statistical mechanics. The class PP may be thought
of as the decision analogue of #P and it is known that
QMA ⊆ PP [36].

Can quantum computers solve NP-hard
problems? It is generally believed that
NP-hard problems are not in BQP. An

intuition for this belief is given by the lower
bound for search in the black-box [30, 31]
setting. This proves that Grover’s search

algorithm [1] is optimal in the black-box setting.
The intuition is that this also carries over to the
Boolean satisfiability problem (SAT), which is
the famous standard NP-complete problem. It
is based on the feeling that a general instance of
SAT does not contain structure that can help
finding a satisfying assignment just as in the

black-box setting. This would imply that
Grover’s algorithm is also optimal for general

instances of SAT. Grover’s algorithm can search
over all 2n possible assignments to an n-variable

formula and obtains at most a quadratic
speedup over classical unstructured search

procedures. Since we do not know of either a
quantum or a classical algorithm that can solve

all SAT instances asymptotically faster than
brute-force-search, it does not seem promising
that quantum computers can efficiently solve
NP-complete problems [21, 31]. This does,

however, advocate for quantum algorithms that
exploit structure within certain problem

instances that arise in practice, rather than
attempting to try to develop fast quantum

algorithms for all instances [32].

4. Polynomial Time Hierarchy

A useful way to extend the complexity classes like P
and NP is to give those classes access to an oracle/set
A. This way one can define for example PA, the class of
languages decided by polynomial time Turing machines
that have oracle access to A. This means that the ma-
chines have access to a subroutine that computes in a
single step whether a query string x ∈ A. For a rigor-
ous treatment of oracle Turing machines see for exam-
ple [37]. One can also define oracle access to a whole
class of problems: PNP and NPNP. The kth level of
the polynomial hierarchy Σp

k is NP with k − 1 stacks of
NP oracles. The third level for example is NPNPNP

.
The polynomial hierarchy PH is then defined as

⋃
k Σ

p
k.

It is known that BPP ⊂ NPNP but remains an open
problem whether BQP is in PH, and interestingly, there
are oracles relative to whom this is not the case [38].
Another relevant computational model is presented by
Chen et al. [39]. The authors define the complexity
class NISQ as the set of decision problems solvable by
a BPP machine with has access to a noisy quantum de-
vice with poly(n) qubits. They then prove relative sep-
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Decision Problems

EXP-TIME

PSPACE

PP

QMANP

BQP

BPPP

NP-intermediate

Figure 1. The inclusions of various complexity classes con-
cerned with decision problems, as discussed in Sec. II. While
these inclusions are not known to be strict, this diagram cap-
tures the gist of prominent, canonical classes in complexity
theory.

arations with respect to a particular oracle O, such that
BPPO ⊊ NISQ ⊊ BQPO, which gives evidence that
the power of NISQ lies strictly between BPP and BQP.

It is unlikely, that quantum computers provide expo-
nential speedups for NP-hard (and thus, NPO-hard)
problems. See [40] for stronger hypotheses along these
lines. But exponential speedups for an interesting sub-
class of NP problems, not complete but also not in P,
called NP-intermediate, cannot be ruled out. For exam-
ple, decision versions of factoring are believed to be of
this type. As depicted in Figure 1, these problems are
outside of P and within NP, but are not NP-complete.
Related classes can similarly be studied for the optimiza-
tion classes PO and NPO, and relational classes FP
and FNP. For instance, the relational version of TSP
is FPNP-complete, whereas the decision version is NP-
complete [8]. MAX-SAT is NPO-complete, whereas the
Vertex-Cover and Bin-Packing problems are not (even
though their decision versions are NP-complete) [41].

5. Worst-case complexity and fixed-parameter tractability

It is important to emphasize the following point:

Complexity theory is traditionally focused on worst-case
problem instances. In practice, one often needs to solve
a “typical” instance which may be much easier than the

hardest, worst-case instance.

This implies that, even when worst-case complexity-
theoretic results rule out quantum advantage for NP-
hard problems, quantum computers may still exhibit ex-
ponential speedups on instances relevant for practical
problems. More concretely, they may give efficient algo-
rithms for instances that take classical computers expo-
nential time. We discuss this in more detail in Sec. II C.

On a similar note, while many problems of practical
interest are NP-hard, if we are interested in measuring
the computational complexity of problem which admits
an algorithm A, as a function of the input length n in
conjunction with some adjustable parameter ϵ, then in-
terestingly, parameterization could render otherwise NP-
hard instances efficiently solvable — although the depen-
dence could be exponential with respect to 1/ϵ. Such a
problem is termed fixed-parameter tractable (FPT) and
the complexity is sometimes referred to as parameterized
complexity [42, 43]. Therefore, FPT amounts to the pa-
rameterized analogue of P. A common example is that of
the Vertex-Cover problem, which is NP-complete when
considering the input size in isolation. However, there
exists an O(n) algorithm when the problem is restricted
to constant-size covers [44]. Bremner et al. [45] intro-
duced quantum parameterized complexity. In particular,
the class FPQT is introduced as the class of parameter-
ized decision problems tractable by a quantum computer,
but intractable otherwise. It is well known that if a pa-
rameterized problem is in FPT, it admits kernelization,
which could be seen as a pre-processing algorithm that
reduces the size of an instance of the problem, often sub-
stantially [46, Theorem 1.4]. For benchmarking purposes
in optimization, cf. Sec. VI, the notion of kernelization
is of crucial importance. Formally, a kernelization (also
known as kernelization algorithm) for a parameterized
problem can be interpreted as follows: assume a lan-
guage L over an alphabet Σ and parameters in N, an
algorithm given (x, k) ∈ Σ∗ ×N outputs a string x′ ∈ Σ∗

and an integer parameter k′ < k, such that (x′, k′) ∈ L
— if the algorithm runs in polynomial time and k can
be expressed as a polynomial of k′, the tuple (x′, k′) is
termed a polynomial kernel. Such polynomial kernels can
be obtained for many combinatorial optimization prob-
lems considered in theoretical computer science [47]. For
FPT problems, it thus makes sense to benchmark on the
kernel.

B. Approximate Solutions

Thankfully, the story does not end at obtaining exact
solutions efficiently, with high probability — if it did, we
would probably have a difficult time motivating classical
computing, let alone quantum, as a useful paradigm in
(combinatorial) optimization. In reality, finding a solu-
tion that is in some sense, close to the optimal is often suf-
ficient. The shift from finding the optimal solution, to an
approximate one, leads to the study of approximability
— in particular, how hard is it to approximate solutions

6
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Optimization Problems

NPO

APX

PTAS

FPTAS

PO

Figure 2. Complexity classes for optimization problems. No-
tice that, similar to #P, the functional problem classes are
outside of the decision problems, and hence, not displayed in
this hierarchy.

to various problems? This leads to interesting complex-
ity classes for optimization, induced by approximability.
Intuitively, it may seem like allowing for approximate so-
lutions could reduce the complexity of a problem, similar
to those in FPT. Unfortunately, it is not that straightfor-
ward when dealing with approximation and it seems that
in many cases, approximating solutions to hard problems
is just as hard as finding the optimal ones. We discuss
this so-called hardness of approximation next, followed
by classes of problems that can exhibit efficient approxi-
mation.

1. Hardness of approximation

In the context of approximate solutions for optimiza-
tion problems, a longstanding result called the PCP-
theorem informally states that, for many problems, com-
puting an approximate solution with arbitrary precision
is as hard as computing the exact solution. To discuss
this a bit more formally, the approximation ratio, which
— as the name suggests — is the ratio between the (ex-
pected) approximate solution and the optimal, quanti-
fies the quality of a solution provided by an approxima-
tion algorithm. For many NP-hard problems, there are
known bounds on the achievable approximation ratios,
and these are referred to as “inapproximability bounds”.
Such bounds can be derived through many techniques,
including information-theoretic arguments (e.g., any al-
gorithm that achieves an approximation factor better
than c must make at least exponential queries to a func-
tion), or reductions to known NP-hard problems (e.g., if
a problem can be approximated better than its inapprox-
imability bound, then it is equivalent to solving another
NP-hard problem). The former holds independent of
whether P is equal to NP, but the latter inapproxima-
bility bounds are said to be conditional on P ̸= NP.

For the MAX-E3-SAT problem, one of the earliest ap-
proximation algorithms showed that a random variable

assignment satisfies each clause with probability 7/8, and
thus, achieves a 7/8-approximation ratio [48]. It was
later shown that there is no classical polynomial-time al-
gorithm that can achieve a ratio of (7/8+ϵ), for any ϵ > 0
unless P=NP [49]. In such cases, where inapproximabil-
ity bounds are achieved by classical algorithms, improv-
ing these ratios with quantum computers is highly un-
likely, as this would imply that quantum computers can
solve NP-hard problems.

Some inapproximability bounds require additional con-
ditions. For example, in their seminal work in 1995,
Goemans and Williamson introduced an approximation
algorithm for the MAXCUT problem and proved that
it achieves an approximation ratio of c ≈ 0.87856 [50].
Later, it was shown by Khot et al. that there cannot
exist a polynomial time algorithm that achieves (c + ϵ)-
approximation [51] under the assumption of the Unique
Games Conjecture [52]. Again, in such cases, improving
these ratios with quantum computers would imply that
quantum computers can solve NP-hard problems or that
the Unique Games Conjecture is false. Similar results ex-
ist for other NP-hard problems, such as graph coloring
problem and set covering [53].

There is also a quantum PCP conjecture proposed
by Aharonov et al. [54–56]. At its core is the k-local
Hamiltonian problem: given a Hamiltonian H with k-
local terms (i.e. operations acting on up to k qubits),
determine the smallest eigenvalue of H. This problem
is QMA-complete [57], akin to SAT’s NP-completeness.
The local Hamiltonian problem comes with a promise de-
noted by γ. The ground state energy of H is either less
than some value a, or greater than a + b, where Γ := b
is the absolute promise and the ratio γ := b/m, where m
is the number of k-local terms, is the relative promise.
The quantum PCP theorem then states that the k-local
Hamiltonian problem is QMA-hard even with a constant
relative promise gap γ > 0, if the interaction graph is
sparse and all k-qubit interactions have bounded norm.
There is some supporting evidence for the quantum PCP
theorem, perhaps most notably the recently proved No
Low-Energy Trivial State (NLTS) theorem [58]. Under
NLTS, there exist families of Hamiltonians for which all
low energy states require circuits of super-constant depth
to prepare. If NLTS were false, this would imply that all
Hamiltonians have low energy states that are efficiently
simulable — effectively rendering the quantum PCP the-
orem invalid since approximating the ground state energy
could be done efficiently using these low energy states.
While the quantum PCP theorem implies NLTS, under
the assumption that QMA is not equal to NP, the other
direction does not hold, since there could be other types
of classically simulable circuits that could prepare low en-
ergy states, other than low depth circuits. This remains
a very open and interesting research area.

Indeed, the hardness of approximation seems to im-
ply – theoretically – that quantum computers will not
be very influential, even if approximate solutions are the
goal. However, this is not necessarily true in general,
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and less so in practice. There is hope for quantum algo-
rithms to outperform classical methods when there is a
gap between known inapproximability bounds and prov-
able approximation factors (e.g., in metric TSP, [59, 60]).
Further, quantum optimization methods might provide
provable and computational speedups, even if they sim-
ply match the approximation factors of classical algo-
rithms.

2. Polynomial-time approximation schemes

If a problem is “approximable”, it is said to belong to
the class APX which contains the set of NPO prob-
lems for which there are polynomial-time approximation
algorithms with approximation ratios bounded above by
some constant c [61]. An interesting subclass of NPO
problems that admit a so-called polynomial-time approx-
imation scheme is PTAS [25] [62, Chapter 8]. For any
problem in PTAS, there is a polynomial-time algorithm
that is guaranteed to find a solution whose value is within
a 1 + ϵ factor of the optimum, where ϵ > 0. For exam-
ple, by restricting to the Euclidean plane, TSP is then
in PTAS [63]. However, as with similar issues in FPT,
there are cases where the exponent of the polynomial
might depend exponentially on 1/ϵ. To account for this,
one may consider the class FPTAS for fully polynomial-
time approximation scheme, which demands the run time
to be polynomial in the input size, as well as in 1/ϵ.
As such, FPTAS ⊆ PTAS, and the hierarchy of these
classes are displayed in Figure 2. When combined with
quantum computing, this area makes for an exciting and
rather unexplored research direction — where quantum
algorithms could serve as new approaches or improve over
existing classical PTAS algorithms.

C. Heuristics in Quantum Optimization

Thus far, the focus has been on worst-case instances.
In practice, heuristic approaches can provide useful so-
lutions to special, relevant and typical problem in-
stances [62, e.g. Chapter 28]. Heuristics have also proven
useful in problems exhibiting structure and average-case
instances — which are oftentimes far more practical in
real-world scenarios [62, 64]. The success of classical
heuristic algorithms indeed motivates the study of quan-
tum heuristic methods, where the aim of the latter is to
design algorithms that leverage quantum computation to
provide reasonable solutions to problems where classical
approaches either cannot, or simply take too long to do
so. Naturally, the word reasonable depends very much on
the context, making heuristic approaches difficult to an-
alyze theoretically. More concretely, heuristic algorithms
are understood as algorithms without provable perfor-
mance guarantees, run time guarantees, or both (as in the
case of so-called metaheuristic algorithms). By this nega-
tive definition, our understanding of heuristic algorithms

is rather limited. Having said that, there are multiple at-
tempts to provide more formal definitions. For instance
Bogdanov et al. [65] define distributional problems, which
are pairs (L,D) of a language L and a family of distribu-
tions D = {Dn}, one for each input size n. Then, a dis-
tributional problem (L,D) is in the class HeurBPP (for
heuristic BPP) if there exists a polynomial-time random-
ized classical algorithm A such that for all n and δ > 0,
Prx∼Dn

[
Pr

[
A(x, 01/δ) = L(x)

]
≥ 2/3

]
≥ 1−δ where the

inner probability is taken over the internal randomization
of A. In other words, algorithms that solve problems
in HeurBPP are allowed to err on a small fraction of
instances drawn from Dn. Analogously, we say that a
distributional problem (L,D) is in HeurBQP if there
exists a polynomial-time quantum algorithm A that sat-
isfies the same property. This “distributional” view of
heuristics has been rather popular in relation to quan-
tum advantage.

Notably, Pirnay et al. [66] prove a separation for a
combinatorial optimization problem under very special
distributions in the sense above, namely those which are
Karp-reduction-images of factoring problems as pointed
out by Szegedy [67]. The former proves that quantum
computers can have a super-polynomial advantage over
a certain class of NPO-problems and that this also holds
in the approximation sense. It does so by making use of
cryptographic tools and by means of notions of computa-
tional learning theory, in particular the Occam learning
framework. The latter points out that similar separations
hold for other NPO approximation problems, by resort-
ing to the PCP theorem. The approach is via faithful
reductions from well-established problems in NP, which
have a large quantum advantage, namely factoring, to
matching instances of NPO problems. Using techniques
from complexity theory, it is possible to construct in-
stances with a large approximation gap, which ensure
that classical algorithms cannot approximate the correct
solutions to these instances, unless factoring is classically
easy. These findings, however, are unlikely to have much
practical value as the proposed quantum solutions will
only work on the contrived instances corresponding to
factoring, and are not general optimization solvers which
could solve other classes of instances efficiently as well.
The results do, at least, contribute to understanding
what kind of quantum advantages one can hope for in
combinatorial optimization.

Independently, one could relate the distributional view
of heuristics to numerous studies of so-called land-
scapes [68]. The term landscape here aims to gener-
alize an intuitive mental picture where one associates
the height of terrain to solution quality and traversing
this terrain corresponds to moving through a space of
solutions (which need not be two dimensional in gen-
eral). For example, Refs. [69–71] study the landscape
associated with variational quantum algorithms for spe-
cific problems, with the aim of explaining when these
heuristic methods converge. An important feature in the
study of landscapes are so-called barren plateaus [72–79],
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especially in conjunction with variational quantum al-
gorithms, which correspond to loss landscapes that are
exponentially flat in the number of system qubits. In
fact, this phenomenon provides a central bottleneck in
the scaling of variational quantum algorithms to practi-
cally relevant problem sizes. There are multiple reasons
for the appearance of barren plateaus. It was conjec-
tured that they are induced by an ansatz that is (close
to) a t-design [72, 75] or exhibits too much entanglement
paired with partial measurements [76]. These findings,
along with other causes of barren plateaus were united
in theorems which either relate the occurrence to a math-
ematical object called the dynamical Lie algebra, which
is induced by the structure of the generators and the form
of the variational circuit [70, 71], or to the average behav-
ior of the respectively induced light-cone [80]. Notably,
these phenomena may be avoided if a good warm-starting
strategy is known–in the sense of a parameterization that
brings the system sufficiently close to the optimum. How-
ever, it is often unclear how such a warm-start should be
chosen.

There have also been a number of works suggesting
that quantum sampling could be a useful subroutine
in a larger classical algorithm. For example, there are
quantum circuits for Metropolis-Hastings algorithms [88]
and quantum enhancement of Markov-chain Monte-Carlo
(MCMC) algorithms [89, 90]. These approaches should
be possible to analyze, and thus, turn into randomized
approximation schemes.

D. Takeaways from Complexity Theory in
Quantum Optimization

Although it is widely believed that quantum computers
will not offer exponential speedups for NP-hard prob-
lems, the story does not end there. As we have seen,
most complexity-theoretic statements deal with worst-
case settings for exact solutions. In practice, typical op-
timization problem instances could differ substantially
from the worst-case, and thus, exponential quantum
speedups in these more realistic settings are still pos-
sible in principle. Importantly, the picture may drasti-
cally change when dealing with average-case hardness.
Average-case settings could exclude particularly bad in-
stances for which most complexity-theoretic statements
hold, and thus, an advantage – certainly one faster than
simply the Grover approach – becomes possible and it
is an interesting open problem whether quantum algo-
rithms can solve optimization problems that are average-
case hard for classical algorithms. For example, there is
evidence from [91] that quantum algorithms can solve
random k-SAT faster than Grover and the state-of-the-
art SAT solvers. Additionally, problems with a so-called
Overlap Gap Property (OGP) [92] have been proven to
be average-case hard for certain families of classical algo-
rithms (and local low-depth quantum algorithms), but it
remains unclear whether these problems can be addressed

by higher-depth and/or more sophisticated quantum al-
gorithms [93–96]. If so, this would be very convincing
evidence for useful superpolynomial quantum advantage,
since such problems naturally arise in combinatorial opti-
mization, statistical physics and high-dimensional statis-
tics. Beyond OGP in the average-case setting, there is
an emerging literature on the “computational-statistical
gaps” of many optimization and learning problems where
we could also hope for a superpolynomial quantum ad-
vantage. Moving into the approximation realm also in-
troduces interesting open questions for quantum com-
puting. For example, can quantum algorithms saturate
inapproximability bounds that have not yet been reached
by classical methods? Moreover, if approximation ratios
cannot be improved, there may still be room to speedup
existing approaches with quantum computing.

Another intriguing aspect of complexity theory, is that
a restriction of some parameters of a problem, or some
structure present, may drastically change the complex-
ity. A perfect example of this is TSP, which – in its
most general decision version form – is NP-hard and
the optimization version is APX-hard. If we restrict
to Euclidean TSP, where all points are in Rd and edge
weights equal their Euclidean distances, then, remark-
ably, there exists an explicit PTAS to solve such TSP
instances [63]. Shifting to heuristic algorithms for TSP,
one can actually solve problems in practice with up to
millions of variables. Lastly, if we were to consider the
shortest path problem instead of TSP, where we just want
the shortest path between two places, we would have a
problem in P. This illustrates the nuance of complex-
ity theory that one should keep in mind when designing
quantum optimization algorithms. Akin to TSP classi-
cally, if provable quantum speedups seem unattainable,
quantum heuristic algorithms may still offer meaningful
results. But developing quantum heuristic methods that
exploit structure in a problem, or enhance classical ap-
proaches, is not straightforward either. This serves as
the basis for the next section, where we lay out various
building blocks to carefully design quantum optimization
algorithms.

III. PARADIGMS IN THE DESIGN OF
QUANTUM OPTIMIZATION ALGORITHMS

There are multiple approaches that lead to exact quan-
tum optimization algorithms, such as Grover (Adaptive)
Search [97–99] and the Quantum Adiabatic Algorithm
(QAA). There are lesser known approaches too, like
Quantum Imaginary Time Evolution (QITE) [100], but
much of the published work focuses on the more well-
known approaches. In this section, we introduce the core
concepts deployed as subroutines in various quantum op-
timization algorithms discussed in Sec. IV.
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Table I. An overview of the classical problem classes relevant to optimization problems. The models of analogue computation
below the horizontal line are not considered in much detail in this section.
Complexity class Example problem Key features Year Ref.
FPTAS Knapsack, Subset-Sum Efficiently approximable [81]
PTAS Euclidean TSP Approximable in poly-time [63]
APX-Complete MAXCUT, MAX-3-SAT, Metric-TSP Discrete decisions 1991 [25, 81]
NPO-Complete TSP, Binary IP Discrete decisions 1988 [82]
#P Two-stage SP [83, Theorem 3.1] Stochastic objective function 2006 [83, 84]
PSPACE Multi-stage SP [83, Theorem 4.1] Stochastic objective function 1985 [83, 85]
Banach-Mazur computability Optimal Transport [86, Theorem 5] Real-valued decisions 2003 [86]
NP over Reals Optimal Transport [86, Theorem 5] Real-valued decisions 1996 [87]

A. Grover Search

The seminal Grover algorithm for searching an un-
structured database achieves a quadratic advantage over
classical search in terms of the number of queries to the
database (i.e. the query complexity). In exact quan-
tum optimization, this advantage translates to an ad-
vantage for function minimization [97] and can achieve
a quadratic speedup over brute force search in many
problems in combinatorial optimization [101], i.e., a run
time of O(

√
2n) instead of O(2n) for n-variable prob-

lems. In the most general case, without any further as-
sumptions on the problem, for example in terms of or-
acle used in the query complexity, this is the best run
time and advantage that we can hope for when using a
quantum computer for discrete optimization [102]. For
a concrete problem class, however, brute force search is
rarely the best available classical algorithm, and thus,
the actual advantage achieved by Grover Search is usu-
ally sub-quadratic [103]. Nevertheless, leveraging Grover
Search as a sub-routine, together with other (quantum or
classical) algorithms, can sometimes help to recover an
overall quadratic speedup over the best available exact
classical algorithm [104].

B. Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm (QAA) [2, 3] is
another exact optimization algorithm, reminiscent of ho-
motopy methods of numerical mathematics [105]. It as-
sumes a problem Hamiltonian H whose ground state cor-
responds to the solution of a corresponding optimization
problem, as well as a so-called mixing Hamiltonian HX .
The mixing Hamiltonian should have an easy-to-prepare
ground state |ψ0⟩ that has a non-zero overlap with the
ground state of H. A common choice is HX =

∑n
i=1 σ

(i)
X ,

where σ(i)
X denotes the Pauli X matrix on qubit i, with

the ground state |+⟩⊗n, i.e., the n-qubit equal superposi-
tion state that has non-zero overlap with every computa-
tional basis state. Starting in |ψ0⟩, QAA slowly drives the
state according to H(t) = λ(t/T )H + (1 − λ(t/T ))HX ,
and d/dt |ψt⟩ = −iH(t) |ψt⟩, for some total annealing
time T > 0 and an annealing schedule λ : [0, 1] → [0, 1]

with λ(0) = 0 and λ(1) = 1. If the annealing is performed
slowly enough, in other words, if T is large enough, with
a suitable annealing schedule, the Adiabatic Theorem
[106–109] guarantees that the state |ψt⟩ always remains
in the ground state of H(t). Thus, |ψT ⟩ represents the
ground state of H, which corresponds to the solution
of the encoded problem. It has been proven that the
annealing time has to scale inversely with the minimal
squared spectral gap ∆ of H(t) over all t ∈ [0, T ], i.e.,
T = O(1/∆2). During annealing, the system undergoes
quantum phase transitions, and in the glassy phase, at
low values of t/T , the energy gap closes exponentially
with increasing system size [110–114]. Consequently, this
implies exponentially long run times if one aims to pre-
cisely follow the adiabatic path. Hence, we are limited
to at most polynomial speedups.

The practical implementation of the quantum anneal-
ing protocol often involves repeated finite-time runs [115]
or, potentially, diabatic annealing [116]. This variant re-
laxes the constraint that the system must always remain
in the instantaneous ground state of H(t). Another vari-
ant is counter-diabatic annealing, where additional terms
are included in the Hamiltonian to suppress the transi-
tion to excited states during the annealing [117, 118]. For
example, the counter-diabatic terms can be built up from
nested commutators [119], while the evolution can be en-
gineered with optimal control [120]. In its practical im-
plementation, QAA often becomes a heuristic algorithm.
On a gate-based quantum computer, the time evolution
to generate |ψt⟩ can be implemented, e.g., through Trot-
terization [121–123]. The typical long annealing times
then translate to long quantum circuits.

C. Quantum Phase Estimation

Quantum Phase Estimation (QPE) is an algorithm to
estimate the eigenphases of unitary operators [124]. It al-
lows the estimation of the eigenvalues of certain matrices
and can be used to find the ground state and correspond-
ing energy of various Hamiltonians [125–127]. Famously,
QPE is also leveraged by Shor’s algorithm. Factoring is
believed to be in NP-intermediate [41] and Shor’s algo-
rithm [128] achieves an exponential speedup over classical
algorithms, as discussed in Sec. II. Like many other prob-
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lems, factoring can be cast into a quadratic unconstrained
binary optimization problem (QUBO) [129–131]. Thus,
this gives us an exponential speedup over a subset of
QUBOs that happen to correspond to instances of fac-
toring. Similar reductions are possible from other classes
of problems to factoring [67, 132]. In practice, however,
we do not expect these instances to appear naturally, and
it is an open question how to harness this relation in the
context of optimization.

In general, QPE requires an initial state having a poly-
nomial overlap with the ground state, i.e. an overlap
greater than 1/poly(n). For a diagonal Hamiltonian, ev-
ery computational basis state is an eigenstate, and so
QPE does not increase the chance of sampling the ground
state. Further, simply sampling from such an initial state
provides a polynomial-time algorithm to find the ground
state already. Thus, the true problem is finding such
an initial state with a polynomial overlap. Nonetheless,
some algorithms encode an optimization problem into a
non-diagonal Hamiltonian, potentially making QPE use-
ful in quantum optimization. The situation is similar for
(Krylov) subspace expansions [133, 134], where an ini-
tial polynomial overlap is assumed to derive convergence
properties towards the ground state of a Hamiltonian.

To make QPE and related techniques relevant for a
large set of applications, it is important to have a quan-
tum toolbox of matrix linear algebra operations [135–
140], in analogy to the classical basic linear algebra sub-
programs (BLAS) [141]. Quantum signal processing [142]
enables the simulation of sparse matrices, i.e., the imple-
mentation of the time evolution operator e−iHt for a ma-
trix H and a time t, with optimal complexity. Phase esti-
mation then allows one to extract eigenvalues and eigen-
vectors of H. Quantum singular value transformation
[143] generalizes this result and allows efficient simula-
tion of matrix algebra such as A + B, AB, and singular
value transformations P (A), with P being a low-degree
polynomial applied to the singular values of A, where A
and B are matrices. The block-encoding framework uni-
fies input models for matrices given efficient descriptions,
sparse access, or quantum memory. These tools find ap-
plications in preparing Gibbs states, matrix problems,
and continuous optimization.

D. Gibbs Sampling

Gibbs sampling corresponds to generating sample se-
quences from the joint probability distribution of multi-
ple variables underlying a Gibbs distribution. Geman
and Geman [144] introduced a Markov Chain Monte
Carlo (MCMC) algorithm to facilitate Gibbs sampling.
Its significance in optimization, particularly in classical
MCMC algorithms, extends to solving problems like con-
straint satisfaction [145].

Sampling from a classical many-body Hamiltonians’ H
Gibbs distributions, and the related problem of approx-
imating the partition function Z(β) = Tr

(
e−βH

)
or the

(Gibbs) free energy of the system, logZ, falls within the
complexity class BPPNP [146, 147]. Here, β is the in-
verse temperature. Gibbs sampling, then, can be done
with the Metropolis-Hastings algorithm [148, 149] which,
despite its exponential scaling with particle number, of-
ten exhibits convergence.

In contrast, quantum Gibbs sampling [150] presents
greater challenges and is believed to be at least QMA-
hard [151, 152]. The quantum Gibbs state σβ is (up to
normalization) defined as

σβ ∝ e−βH =

dimH∑

i=1

e−βEi |ψi⟩ ⟨ψi| , (1)

where H is the Hamiltonian operator, |ψi⟩ are the eigen-
states, as before β is the inverse temperature, and Ei are
the energy eigenvalues.

The problem of thermalizing a quantum state has a
long tradition and was studied earlier in [153]. Quan-
tumly, the difficulty does not only relate to the hardness
of sampling but also to the difficulty to efficiently prepare
Gibbs states. Quantum adaptations of the Metropolis-
Hastings algorithm that involve quantum phase esti-
mation (QPE) are challenging due to the algorithmic
complexity[154, 155]. Furthermore, Gibbs sampling al-
gorithms for Gibbs states of local Hamiltonians at all
temperatures have been devised in [156]. It has also been
seen that high-temperature Gibbs states are unentangled
and efficiently preparable [157].

A variational method for quantum simulators to gen-
erate finite temperature Gibbs states through the prepa-
ration of thermofield double states was introduced in
[158]. A quantum algorithm to prepare the quantum
Gibbs state, as well as the partition function within ϵ-
error, was proposed in [150]. A different VQA approach
for the preparation of Gibbs states suitable for NISQ de-
vices was presented in [159] where the authors presented
an algorithm in their paper by applying a truncated Tay-
lor series to compute the free energy, and then select-
ing this truncated value as the loss function. Another
VQA was proposed in [160] where the variational param-
eters are chosen by minimizing the free energy. Warren et
al. [161] introduced an adaptive VQA approach to pre-
pare Gibbs states by introducing an objective function
that is easier to measure than the free-energy and us-
ing dynamically generated, problem-tailored ansätze. Fi-
nally, a variational method for approximate Gibbs prepa-
ration via imaginary time simulation has been presented
in [162]. The difficulty in these variational approaches ei-
ther lies in the requirement to continuously compute the
von Neumann entropy or to correctly propagate imagi-
nary time dynamics via a variational ansatz. If sampling
from the Gibbs state is sufficient, approaches like “Quan-
tum Minimally Entangled Typical Thermal States” [100]
can be used, which are based on repeated imaginary time
evolution of a weakly entangled initial state. Wild et
al. [163] introduced a set of quantum algorithms that
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provide unbiased samples by creating a state that en-
codes the quantum Gibbs distribution in its entirety and
demonstrate that this method can outperform classical
Markov chain algorithms in various scenarios, including
the Ising model and sampling from weighted independent
sets on two distinct graphs. Additionally, recent advance-
ments in quantum Gibbs sampling, like the Dissipative
Quantum Gibbs Sampling algorithm [147], offer a simpler
and potentially more efficient alternative, as they utilize
local update rules and are more feasible for near-term
quantum hardware.

Quantum Gibbs sampling plays a crucial role in various
optimization algorithms, particularly in convex optimiza-
tion as discussed in Sec. IVB 1. Quantum speedups are
possible because, under certain conditions, Gibbs states
can be prepared more efficiently quantumly than classi-
cally. The block-encoding framework [143] demonstrates
this, where an n×n Gibbs state is constructed with com-
plexity O(

√
n) in the dimension parameter, albeit other

parameters also appear in the running time. This method
and its applications in algorithms like the Matrix Multi-
plicative Weights Update for solving general semidefinite
optimization problems are further elaborated in [164–
167]. Notably, these algorithms leverage Gibbs states
for computing trace inner products.

Furthermore, the complexity analysis of quantum par-
tition functions, as explored in [168], reinforces the im-
portance of efficient Gibbs sampling methods in quantum
computing. Encoding Gibbs distributions is at the heart
of simulated annealing approaches for Gibbs partition
functions [169–172], which can be used to approximately
count certain combinatorial objects such as k-colorings or
matchings of a graph, with genuine quantum speedups in
theory. Gibbs sampling methods find application in spe-
cialized solutions to semidefinite relaxations of problems
like MAXCUT [173, 174], see Sec. IV B 1, and are integral
to quantum algorithms for zero-sum games [175–177]. Fi-
nally, [178] introduced the notion of a Gibbs objective
function which can be useful for quantum optimization
problems. The objective can be evaluated by the means
of Gibbs sampling, although it can be challenging, as dis-
cussed previously. We further mention this approach in
Sec. IV A 1.

E. Approximation Algorithms

Grover Search, (Trotterized) QAA, QITE, (and QPE)
are all expected to require Fault-Tolerant Quantum Com-
puting (FTQC) due to the resulting circuit sizes. How-
ever, they also serve as theoretical motivation for approx-
imation algorithms and heuristics, which may already
lead to quantum advantages in optimization with noisy
quantum computers, as discussed later in this section.

In addition to the exact algorithms discussed in Sec. II,
there exist also approximation algorithms that guaran-
tee a certain approximation ratio. Quantum Computing
could be used to accelerate known classical approxima-

tion algorithms via Quantum subroutines. For instance,
Semidefinite Programming (SDP) relaxations, as used
in the famous Goemans-Williamson algorithm for MAX-
CUT [179, 180] or more general variants for QUBO [181],
may profit from Quantum SDP solvers, cf. Sec. IV B 1.
Eventually, for special cases, these may even achieve an
exponential speedup for solving some SDPs compared
to classical algorithms. However, unless the problem is
given in a compact functional form and assuming we are
not interested in reading out the full solution but only the
optimal objective value, the end-to-end advantage will be
reduced to polynomial due to input/output bottlenecks.
It also raises the question whether classical algorithms
may be able to leverage this special setting to achieve
similar improvements, as has been shown, e.g., in the
context of recommendation systems [182] or solving low-
rank linear systems [183]. Further, there are many prac-
tical problems to achieve such an advantage for solving
SDPs, as will be discussed in more depth in Sec. IV B1,
and very likely this will require FTQC.

F. Variational Methods

Within the near-term intermediate-scale quantum
(NISQ) devices, much work is focused on so-called Vari-
ational Quantum Algorithms (VQAs) [184–188], i.e., a
family of randomized search algorithms that solve cer-
tain optimization problems classically while evaluating
involved expectations quantumly. Specifically, a VQA is
an algorithmic scheme where one provides some prob-
lem data D, a parameterized ansatz |Ψ(ϑ)⟩ and a corre-
sponding cost function C(ϑ) as input. Then, the pa-
rameterized quantum state is measured in some basis
{Ok}k∈N ∈ Herm(Cn) to evaluate the cost function. The
next step involves optimizing over the cost function in
order to obtain updated parameters, which are then fed
back onto the circuit. See Fig. 3 for a schematic.

Although finding the optimal parameters in a VQA is
in general NP-hard [189], it can still result in a powerful
heuristic to find good solutions, even potentially offering
speedups [190]. This situation is similar to the training
of classical artificial neural networks, whose training to
the optimum is also NP-hard [191, 192] (even with only
k = 2 layers, a ReLU neural network cannot be trained
in time bounded by a polynomial in the dimension of the
weights [193]). VQAs differ mainly in the choice of the
ansatz, the cost function, and the optimizer, as discussed,
for example, in Sec. IV A.

Although there are analyses of asymptotic convergence
relating variational methods to the QAA [194], bounds
on iteration complexity of variational methods [195, 196],
and in some cases, bounds the objective function value
at the limit point [197, 198], VQAs are still mostly seen
as heuristics.
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|Ψ(ϑ)⟩|Ψ0⟩ U(ϑ)

argmin
ϑ

C(ϑ)

Ê[{Ok}]updated ϑ∗

Quantum
w.r.t. {Ok}

Classical

Input

{D, U(ϑ), |Ψ0⟩, C(ϑ)}

Output

Figure 3. Variational methods iterate between the evaluation
of empirical estimates of the expectations of a set of observ-
ables {Ok} associated with a parameterized quantum circuit,
and classical computation of updated parameters for the pa-
rameterized quantum circuit.

IV. PROBLEM CLASSES & ALGORITHMS

There are many different classes of optimization prob-
lems that are defined through the types of variables in-
volved, the objective function(s) used, presence of con-
straints, stochasticity, and so on. Furthermore, problems
can be modeled in different ways, which can lead to rep-
resentations of the same problem in different problem
classes. Although these formulations might be formally
equivalent, the chosen formulation can play a crucial role
in how a problem is solved, as different formulations put
more or less emphasis on certain properties of a problem.
In this section, we introduce the most important classes
of optimization problems and discuss existing algorithms
to solve them. We then discuss key open questions in
each domain that could help advance the field of opti-
mization.

A. Discrete Optimization

Discrete optimization is a branch of mathematical op-
timization that focuses on problems where, as the name
suggests, variables take on discrete values. This often
implies a combinatorial explosion of possible solutions
with respect to size of the input parameters. We focus
on discrete optimization problems with and without con-
straints. While problems of one class can be converted
into problems of the other class, approaches to solve them
can differ significantly and leveraging available structure
might be beneficial in many cases. Moreover, the equiv-
alence often only holds if a globally optimal solution is
found. The remainder of this section discusses exact algo-
rithms, approximations, and heuristics for the considered
problem classes within discrete optimization.

1. Unconstrained Discrete Optimization

In the realm of unconstrained discrete optimization,
Quadratic Unconstrained Binary Optimization (QUBO)
serves as a foundational example and is given as follows:

min
x ∈ {0, 1}n

xTQx, (2)

whereQ ∈ Rn×n is the cost matrix and n ∈ N denotes the
number of variables. Other types of unconstrained dis-
crete optimization problems involve, for instance, high-
order polynomial objective functions [199], also referred
to as Polynomial Unconstrained Binary Optimization
(PUBO), or black box objective functions [200] as well
as (bounded) integer variables. While one could also de-
fine linear unconstrained discrete optimization, this class
is of little interest as it can be solved by looking at every
variable independently. Strictly speaking, QUBO also al-
lows one to model linear objective functions when Q is a
diagonal matrix, because binary variables satisfy x2 = x.

Some problems, such as MAXCUT, are naturally for-
mulated as a QUBO, and most unconstrained discrete op-
timization problems can be mapped to QUBOs [201–204],
for example, by replacing integer variables by a suitable
encoding [205, 206] or by converting higher-order polyno-
mial terms to additional binary variables and quadratic
terms [207, 208]. In addition, certain constraints can
be modeled by translating them into penalty terms and
adding them to the objective function [201, 203]. How-
ever, these conversions usually assume that the problems
are solved exactly, i.e., that the global optimum is found.
In the case of approximate solutions, this has to be care-
fully analyzed. For instance, equality constraints might
only be satisfied approximately when being represented
via a penalty term, which, depending on the application,
might be acceptable or not. Furthermore, binary encod-
ings of integers usually do not reflect the intrinsic order
between values, i.e., they lack some important structure
that a solver may leverage to find good solutions.
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Within this section, we focus primarily on QUBO. QU-
BOs are a natural problem class to consider for quan-
tum optimization as they can easily be converted into a
ground state problem, often explored in quantum com-
puting, usually in the context of quantum chemistry or
quantum physics [184]. The relationship between solving
a QUBO and finding the ground state of a Hamiltonian is
fundamental to many quantum optimization algorithms.
The most common translation involves two steps: first,
substituting binary variables x ∈ {0, 1} with spin vari-
ables z = 1 − 2x, where z ∈ {−1,+1}, and secondly, re-
placing these spin variables with Pauli Z matrices. The
result is a diagonal Hamiltonian H ∈ R2n×2n that en-
codes the objective values of Eq. (2) on its diagonal. The
ground state of this Hamiltonian represents the QUBO’s
optimal solution [201].

QUBOs with spin variables z ∈ {−1,+1} natu-
rally arise in physics and are referred to as Ising spin
glasses [209]. Here, the present quadratic terms are usu-
ally given via a lattice or graph, and their weight cor-
responds to an interaction strength between neighboring
sites. By allowing a polynomial resource overhead, many
graph covering and coloring problems can be mapped to
an Ising spin glass on a regular lattice [201]. However,
to save qubit resources, many benchmarks use simpler
Ising Hamiltonians on hardware-efficient lattices without
a specific problem embedding [115].

In general, QUBO problems are NP-hard [209]. In
principle, one could consider, for instance, Grover search
or quantum annealing, as suggested in Sec. III, to solve
QUBOs; however, these algorithms with provable perfor-
mance guarantees are expected to require FTQC. QUBO
problems are also APX-hard, i.e. there cannot exist a
PTAS for QUBO problems unless P=NP [210]. But,
there exist PTASes for certain problems that can be for-
mulated as QUBO problems, like the Euclidean Trav-
eling Salesperson Problem [211]. Little is known about
PTASes on quantum computers; there are many possi-
bilities to try using quantum algorithms to accelerate
known classical PTASes. An example might be to ap-
ply Grover Search or Quantum Dynamic Programming,
cf. Sec. IV D, as sub-routines to achieve (sub-) quadratic
speedups compared to purely classical PTASes. Like
Grover Search, Quantum Dynamic Programming is also
expected to require FTQC. Since exact algorithms and
acceleration of PTASes most likely require FTQC, there
is arguably more hope for a near-term quantum advan-
tage in optimization sourced from quantum approxima-
tion algorithms and heuristics.

Originally proposed for quantum chemistry applica-
tions, the Variational Quantum Eigensolver (VQE) [184]
denotes a class of heuristic VQAs to approximate ground
states of Hamiltonians. This is achieved by choosing a
parametrized quantum state |Ψ(ϑ)⟩ = U(ϑ) |Ψ0⟩, where
U(ϑ) denotes a parametrized quantum circuit and |Ψ0⟩
denotes an initial state, and then using a quantum com-
puter to evaluate ⟨Ψ(ϑ)|H|Ψ(ϑ)⟩ for given parameter
values ϑ, and employing a classical optimizer to mini-

mize the expected value of this quantity. The variational
principle guarantees that the expectation value is lower
bounded by the ground state energy of H, with equality
if and only if the ground state is reached.

The Quantum Approximate Optimization Algorithm
(QAOA) [185] denotes a special case of VQE that can
be applied to find good solutions to QUBOs. QAOA is
motivated by QAA and has been shown to be a com-
putationally universal algorithm [212]. More precisely,
QAOA uses a particular problem-dependent ansatz given
by pairs of unitaries in each layer. These unitaries have
the form

UX(β) = e−iβHX , (3)

UP (γ) = e−iγH , (4)

and they are termed as mixing and problem unitaries, re-
spectively. The unitaries are repeated alternatingly with
new parameters for each layer and applied to the ini-
tial state |+⟩⊗n, as shown in Fig. 4. Here, H denotes
the problem Hamiltonian, and HX denotes the mixing
Hamiltonian, see Sec. III B for more details. Both uni-
taries are alternated and repeated p times, with individ-
ual parameters βj , γj for j = 1, . . . , p.

Figure 4. Structure of QAOA ansatz: every layer consists of a
mixing and a problem unitary with corresponding parameters
γj and βj for layer j = 1, . . . , p.

QAOA is an approximation algorithm with worst-case
performance bounds for certain problems and algorith-
mic settings. For example, there exist worst-case perfor-
mance guarantees for QAOA with p = 1, 2, 3 layers for
the MAXCUT problem on 3-regular graphs. Specifically,
for p = 1 Farhi et al. [185] derived a lower bound on
the approximation ratio given by 0.692, while Wurtz and
Love [213] found that a lower bound given by 0.7559 for
p = 2 and (under certain assumptions) 0.7924 for p = 3.
Furthermore, the performance of QAOA for (large-girth)
d-regular graphs has been analyzed numerically and it
has been shown to outperform many known SDP-based
relaxations from p ≥ 11 [214, 215]. However, for gen-
eral QUBO, QAOA is a heuristic without performance
guarantees.

A crucial task for VQAs is to determine the optimal
parameters, cf. Sec. III F. The problem-dependent ap-
proach QAOA to construct an ansatz implies a relatively
small number of parameters, which is desirable for the
corresponding classical optimization loop. Considerable
research has been published on training strategies for
QAOA as well as on properties of the optimal param-
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eters. There are different strategies to solve this problem
as we will discuss now.

The conventional approach to parameter optimization
in a VQA is to leverage the quantum computer to eval-
uate the loss function and subsequently use a classical
optimizer to improve the parameters. Good parameter
initialization is crucial for this task to succeed and there
is increasing evidence that this requires some physics-
inspired initialization, rather than generic random ini-
tialization [216–218]. Proposed strategies range from
annealing-inspired parameters [217], to machine learning
based approaches [219]. Similarly, one can try to evalu-
ate the loss function for the optimization problem classi-
cally and only sample solutions from the quantum com-
puter. The rationale here is that evaluating (or approx-
imating) the (two-)local observables involved in QAOA
for QUBO using say, tensor networks or Clifford pertur-
bation theory, is computationally easier than sampling
from the complete quantum state [220, 221]. Alterna-
tively, for some classes of QUBOs, QAOA has a property
called concentration of parameters or transfer of parame-
ters [220, 222–224]. For these problems, the optimal pa-
rameters become instance independent. In other words,
one can train the parameters for one instance, and reuse
it for other instances. Depending on the setting, the in-
stances can be of the same size, but also of larger size.
This may even allow for training of a smaller instance
classically and reusing the parameters for larger prob-
lem instances where classical simulation is not possible
anymore. Moreover, this could enable good solutions
to a problem very quickly by just using pre-optimized
parameters. Sometimes, the opposite direction is also
possible, i.e., optimal parameters for finite instances are
derived from studying the limit of infinite size instances
[214, 225]. Parameter optimization for QAOA in general,
and transfer/concentration of parameters in particular,
are crucial to progress towards a successful application
of QAOA for practical settings.

Several variants of QAOA have been proposed over
time. Many of them propose different mixers and ini-
tial states to achieve certain goals. The Quantum Al-
ternating Operator Ansatz, which shares the acronym
QAOA, denotes a family of QAOA variants that encode
constraints into the mixer such that they are preserved
and the algorithm is restricted to feasible states. This
will be discussed in more depth in Sec. IV A2. Other
variants adjust QAOA in order to warm-start it from so-
lutions obtained by classical algorithms. The idea is to
use a classical algorithm to compute an approximate so-
lution, and then use it to warm-start QAOA to further
improve upon the obtained solution [197, 198]. These ap-
proaches inherit some of the performance guarantees of
the classical algorithms used for warm-starting and have
been shown to significantly outperform standard QAOA
on certain instances. With a modification of the ansatz
of QAOA based on the warm-starts, one can still show
the convergence to MAXCUT under the adiabatic limit
(i.e., when the circuit depth p → ∞). However, showing

provable guarantees on warm-started QAOA for finite
circuit depth with these custom mixers remains an open
question. Other variants suggest to reuse qubits, lever-
aging mid-circuit measurements and dynamic circuits, to
increase the number of variables for a limited number of
qubits [226]. It seems also natural to restart the search,
when one arrives in so-called barren plateau [196], where
the (sub)gradient is not informative enough. Mastropi-
etro et al. [196] have shown that the more barren regions
there are and the higher their proportion in the parame-
ter space, the higher the speedup obtained by restarting.

Another alternative approach to QAOA is Recursive
QAOA [227], which uses the quantum computer to pro-
duce a sequence of reduced problems. Here, at each step
QAOA is used to estimate correlations between variables,
and the problem Hamiltonian is reduced by fixing the
strongest one. This process is iterated until the reduced
problem becomes small enough to for (provably exact or
heuristic) classical solvers, which then yields an approxi-
mate solution to the input problem. Recent works [228–
232] have generalized recursive quantum approaches to
problems beyond MAXCUT and to circuit ansätze be-
yond QAOA.

In the same paper that introduces Recursive
QAOA [227], the authors also show that, in the large
problem limit, constant-depth QAOA cannot outperform
the classical Goemans-Williamson approximation for cer-
tain instances of MAXCUT on d-regular graphs, i.e.,
the depth needs to grow with the problem size. How-
ever, these results are not applicable to alternative ap-
proaches, e.g., other QAOA algorithm variants or Recur-
sive QAOA. There are further results about the limita-
tions of QAOA and requirements on circuit depth with
respect to problem size and structure. For instance, Farhi
et al. [233] show that QAOA “needs to see the whole
graph” for a particular QAOA approach to the Maxi-
mum Independent Set (MIS) problem. More precisely,
the authors show that for p < log(n)/ log(d/ ln(2))/2,
where n denotes the number of nodes in the graph and
d its degree, for large enough d, the approximation ra-
tio of QAOA is upper bounded by 0.854. However, for
larger p, no such limitation has been found. Since the
logarithm grows slowly in n, this is not too strong of
a restriction. Similar obstructions to low-depth QAOA
have also been shown to apply to k-local generalizations
of MAXCUT [234].

QAOA also inspired the development of classical al-
gorithms, such as the the Mean Field Approximate Op-
timization Algorithm [235]. Here, the QAOA circuit is
approximated through mean-field approximations, which
is demonstrated to perform well for certain problem in-
stances. This may also be of interest as a classical alter-
native to train or initialize the QAOA parameters before
sampling solutions from a quantum computer.

Since the ansatz for QAOA is derived from the prob-
lem, the structure of the problem directly affects the re-
quired qubit connectivity of the quantum circuit. Given
the often sparse-connectivity of quantum devices, this re-
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quires a transpilation step to map the problem/circuit
to the hardware. The transpilation and execution of
quantum circuits on noisy hardware will be discussed in
depth in Sec. V. However, addressing this issue at the
problem and modeling level might lead to significant im-
provements through hardware-optimized problem formu-
lations. A more detailed review of QAOA can be found
in [236].

Another family of near-term compatible approxima-
tion algorithms for MAXCUT is given by Quantum Ran-
dom Access Optimization (QRAO, also called Quantum
Relaxation Algorithms) [237, 238]. Here, the variable-to-
qubit ratio is chosen to be larger than one and results
in a non-diagonal Hamiltonian. This allows the encod-
ing of larger optimization problems into a given number
of qubits. However, depending on the chosen encoding
and resulting ratio, there might be restrictions on the
allowed quadratic terms in the QUBO, i.e., edges in a
graph. Assuming a feasible graph, and that we can pre-
pare a good enough approximation of the ground state
of the corresponding non-diagonal Hamiltonian, which,
in general, cannot be guaranteed, it has been shown that
QRAO achieves approximation ratios for MAXCUT of
at least 0.555, 0.625, and 0.722, for variable-to-qubit ra-
tios of 3, 2, and 1.5 respectively. Furthermore, [238] in-
troduce another QRAO with ratio 2 that does not im-
pose any constraints on the graph, but might not always
achieve a non-trivial performance guarantee (i.e., > 1/2).
Since providing the sufficiently accurate approximation
of the ground state of the Hamiltonian can in general
not be guaranteed, QRAO is strictly speaking not an
approximation, but a heuristic algorithm. There also ex-
ist other encoding schemes that represent more variables
than qubits and provide some variational heuristics for
optimization algorithms [239]. Note, that in principle,
one could encode up to 2n binary variables into n qubits.
However, that would usually imply that writing down the
problem (with a cost matrix in R2n×2n) would be sim-
ilarly expensive as simulating the involved n-qubit cir-
cuits classically. Thus, only moderate, i.e., polynomial,
encodings make sense unless the problem is given in a
compact function form and access to the full solution is
not needed, only the objective value. That is a similar
situation, as for instance, in semidefinite programming,
cf. Sec. IVB 1.

While neither QAOA nor QRAO achieve the approx-
imation ratios of classical approximations for MAX-
CUT, i.e., 0.878567, they are nonetheless very interesting
heuristics. As discussed in Sec. II, there exist problems
with approximation algorithms where the known lower
bounds do not yet achieve the inapproximability bounds
i.e., where there is room for improvement for classical and
also quantum approximations. This represents a very
interesting direction of research and potential quantum
advantage over known classical approximations.

Another time evolution-based heuristic is quantum
imaginary time evolution (QITE) [100, 240]. Like QAA,
QITE assumes an initial state with a non-zero overlap

with the ground state of H. Then, it applies the evolu-
tion

|ψτ ⟩ =
e−Hτ

Zτ
|ψ0⟩ , (5)

where τ = it and Zτ =
√
⟨ψ0| e−2Hτ |ψ0⟩ denotes a nor-

malization factor related to the partition function. QITE
exponentially suppresses amplitudes of eigenstates with
larger eigenvalues and amplifies the amplitudes of the
ground state. The time T to exceed a fixed overlap
with the ground state, assuming at least an exponen-
tially small initial overlap with the ground state, scales
inversely to the spectral gap ∆ of H and linear in the
problem size, i.e., T = O(n/∆) [241]. Unlike QAA, the
Hamiltonian is not time-dependent, and thus, the gap
does not depend on the time and not necessarily on the
problem size. In addition, a small gap might also imply
that there are multiple very good solutions, which – for
shorter times – would make it an interesting heuristic.
However, QITE is a non-unitary evolution and can be
challenging to implement on a quantum computer [100].
If it were possible, it would allow QMA-hard problems
such as generic ground state search or Gibbs state prepa-
ration to be solved [55]. Thus, only heuristic approxima-
tions of QITE exist to the best of our knowledge. These
include projecting the non-unitary evolution to unitary
operations [100] or embedding it in a unitary of aug-
mented dimension [242]. Another family of algorithms
are VQAs that map the time evolution to an ansatz by
means of variational principles [240, 243] or directly pro-
jecting a Taylor-expansion of the time-evolution operator
onto the ansatz [244, 245]. Variational approaches based
on variational principles are also closely related to alter-
native optimizers, such as Quantum Natural Gradients
[246] as well as stochastic approximations [247]. The ad-
vantage of these heuristics is that they do not require
the ansatz to be derived from the problem, which makes
it easier to implement them on real hardware and al-
lows one to apply them also to unconstrained black box
binary optimization [200]. However, at the same time,
that is a potential disadvantage since it is unclear what
circuit structure might work and there is less theoretical
foundation on why they may lead to a potential quantum
advantage. The design of suitable circuits, possibly in an
adaptive way, is a key open question for these type of
algorithms.

In addition to variational approximations to QITE,
there are also variational approximations to real-time
evolution [243, 248]. Those can be used to approxi-
mate QAA and form another family of heuristics. How-
ever, like for QITE, the design of the ansatz is a cru-
cial open question. In addition, all of these variational
time evolution-based algorithms introduce relatively high
costs in terms of the number of circuits to be evaluated
which may lead to a significant bottleneck to scale them
[249] — the cost is increased even further if bounds on
the preparation accuracy are computed [250].
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While VQAs are often defined as minimizing an ex-
pectation value, in quantum optimization we might not
care about an expectation value but rather about sam-
pling good solutions, which gives us some flexibility in
the choice of cost function. Alternative cost functions can
help to increase the robustness against noise or relax the
requirements on an ansatz. A frequently used example is
the Conditional Value at Risk (CVaR) [251, 252], where
we do not average over the objective values correspond-
ing to all samples obtained from measuring a quantum
state. Instead, we sort them and only take the aver-
age over the best α-fraction of samples, for a pre-defined
α ∈ [0, 1], where α = 1 corresponds to the full expecta-
tion value and α = 0 corresponds to the single best ob-
served sample. It has been shown by Barron et al. [252]
that choosing α based on the present noise when evaluat-
ing the corresponding circuit on a noisy quantum device,
CVaR can provably bound noise-free expectation values.
Another proposal is the Gibbs objective function [178].
The rationale is the same as for the CVaR, it puts more
emphasize on good samples than on bad samples, i.e., it
biases the expectation value.

Within this section, multiple possible quantum opti-
mization algorithms have been discussed. All of them
are limited by the number of available qubits on exist-
ing respectively near-term hardware. However, if an em-
pirical quantum advantage had been demonstrated for a
smaller problem, it might be possible to extend it, e.g.,
using decomposition or multi-level schemes to leverage
the quantum computer also for larger problems [253].

Unconstrained discrete optimization is a rich research
domain that has already led to plenty of results. Nev-
ertheless, there are still many open questions to be an-
swered regarding the potential for quantum advantage
for this problem class. Important questions can be found
at every level, from quantum-specific problem formula-
tions, to better encodings of integer variables, and more
efficient encodings of problems in general [206]. Further-
more, a key step in classical solvers is pre-processing
which can simplify problems tremendously. However,
little is known about the potential of quantum-specific
pre-processing. In addition, classical algorithms, such as
branch-and-bound, often come with a posteriori bounds
on the optimality gap. This is crucial because in many
cases this results in almost optimal solutions and also
helps to determine how much compute resources to in-
vest in finding good solutions to a given problem. In
addition to a priori or a posteriori performance bounds,
it is crucial to understand how they carry over when the
algorithm is executed on noisy quantum hardware and
how problems can be optimally modeled and mapped
to the hardware to minimize the impact of noise. Be-
cause these questions will often be difficult to answer,
systematic benchmarking becomes even more important,
cf. Sec. VI. To conclude, with the availability of quantum
computers with more than one hundred qubits, it is cru-
cial to develop and test quantum optimization heuristics
on these devices for non-trivial problem sizes. This is at a

scale where exact simulation is not possible anymore, and
even if approximate simulation might be possible, it does
not help to learn how to deal with the noise, and thus,
how algorithms are scaling in practice. Developing this
intuition is key to progress towards a practical quantum
advantage in optimization. While discrete unconstrained
optimization already represents a very broad domain of
optimization, many practically relevant problems natu-
rally come with constraints, such as budget, capacity, or
structural constraints. Thus, in the next section, we dis-
cuss different approaches to incorporate constraints into
quantum algorithms for discrete optimization.

2. Constrained Discrete Optimization

Constrained Discrete Optimization is defined by
adding constraints of the type g(x) = 0 or g(x) ≤ 0
to an Unconstrained Discrete Optimization problem. In
the following, for simplicity, we consider QUBO and add
linear inequality and equality constraints, although some
of the algorithms could be applied to more complex types
of constraints as well. The conversions for higher-order
polynomial objective functions to quadratic functions
and from integer to binary variables still apply as dis-
cussed in Sec. IVA 1. Thus, the considered problems are
given by

min
x ∈ {0, 1}n

xTQx

s.t. Ax = b,

Cx ≤ d

(6)

for matrices A ∈ Rme×n, C ∈ Rmi×n, and vectors
b ∈ Rme , d ∈ Rmi , where me, mi denote the number of
equality and inequality constraints, respectively. Note,
that unlike for QUBOs, linear objective functions (i.e., a
diagonal Q) are interesting due to the presence of con-
straints.

Under mild assumptions on A and C, this can always
be converted to QUBO by adding slack variables to con-
vert all inequality constraints to equality constraints and
then converting equality constraints to penalty terms by
squaring the right-hand-side and adding it to the objec-
tive function with a large weight [203]. Some constraints
can also be encoded into penalty terms more efficiently
(see, e.g., [203]). While this is always possible, it may
come at a substantial cost in terms of additional binary
variables and a dramatic increase in non-zero terms in the
cost matrix in Eq. (6); i.e., it often maps an otherwise
sparse matrix Q to a dense one. Further, adding penalty
terms scaled by a large constant can tremendously am-
plify the range of values of an objective function, which
can imply numerical instabilities or requirements to con-
trol certain parameters in the software or hardware stack
up to an infeasible accuracy. These are some of the rea-
sons why explicitly keeping the structure can lead to more
efficient algorithms. In the following, we discuss strate-
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gies to incorporate constraints directly.
Like for unconstrained discrete optimization, we can

leverage Grover Search to achieve a quadratic speedup
over brute force search [101]. This requires not only an
oracle for the objective function, but also one for each
constraint such that we can mark all feasible solutions.
Since brute force search is rarely the most efficient classi-
cal algorithm the achieved quantum advantage is usually
sub-quadratic or sometimes not present at all. However,
Grover Search might still be useful as a subroutine in
other algorithms.

Classically, constrained discrete optimization problems
are often solved using branch-and-bound algorithms. In
[254], a quantum branch and bound algorithm is intro-
duced that accelerates classical branch-and-bound algo-
rithms. It is shown that it solves most instances of the
Sherrington-Kirkpatrick model to optimality with a high
probability in time O(20.226n). The algorithm adapts
Grover Search to be applicable to search branch-and-
bound trees. While this has the potential to accelerate
classical schemes, it has the disadvantage that no a poste-
riori bounds on the optimality gap are generated, which
often allow an early termination of such search schemes.
Further, it requires FTQC, which adds additional over-
head.

There are multiple proposals to incorporate constraints
in VQAs. The most straight-forward approach is to de-
sign an ansatz that – in the noise-free case – is restricted
to the feasible space. For instance, suppose a constraint
that fixes the Hamming weight of feasible bit strings, i.e.,
the number of ones. Then, we can prepare as initial state
a uniform superposition of all these feasible bit strings,
i.e., a Dicke state [255]. Or, we can use a parametric
iSWAP or a Givens rotation gate, like in a particle pre-
serving ansatz in quantum chemistry [256], to construct
an ansatz that only generates feasible bit strings. This is
straight-forward for some type of constraints, but more
difficult in general. Further, it takes the constraints into
account, but not yet the objective function.

The Quantum Alternating Operator
Ansatz (QAOA’) [257, 258] generalizes the Quan-
tum Approximate Optimization Algorithm to much
wider classes of problems and encodings, in particular
to problems with hard constraints. Here, more general
initial states are considered, such as ones from the sub-
space of feasible states for constrained problems. The
QAOA operators of Eq. (3) are generalized to arbitrary
families of phase of parameterized operators, again
applied in p alternating layers. In particular, mixers can
be constructed as ordered products of non-commuting
local operators such that problem hard constraints are
guaranteed to remain satisfied. This has the advantage
to keep the structure of the objective function and
often leads to significantly cheaper implementations
of cost operators than when adding constraints as
penalty terms. Alternatively, one can also directly
replace the mixing Hamiltonian HX in Eq. (3), e.g., for
Hamming weight constraints by XY -model [259, 260] or

Grover-based [190, 261] Hamiltonians. However, all of
this leads to more complex mixers, and implementing
them can become challenging. Hardware-efficient ansatz
variants [229, 262–264] are one alternative approach
toward alleviating this difficulty.

Another approach is to leverage quantum Zeno dynam-
ics to repeatedly project the state back to the feasible
subspace [265]. This requires auxiliary qubits as well as
projective mid-circuit measurements. While this allows
one to include multiple constraints of different types, the
resulting circuits become deeper and are likely to require
FTQC.

Instead of handling constraints explicitly in the quan-
tum circuit, unconstrained black box binary optimization
[200] allows hiding constraints in the black box objective
function. Instead of requiring quadratic penalty terms
for every constraint, a general metric for infeasibility can
be defined, which allows one to add a more balanced
penalty term to the objective without the disadvantages
mentioned earlier in this section. However, as mentioned
in Sec. IV A 1, it is unclear how to construct promising
parameterized circuits.

Alternatively, Iterative or Recursive QAOA variants,
cf. Sec. IV A 1, may be adapted to enforce constraints as
suggested in [230]. Here, as for the unconstrained case,
problems are solved iteratively and usually one variable is
removed at a time. Adjusting the selection rules for how
variables are fixed can allow one to enforce constraints in
certain cases.

Adding constraints as penalty terms to the objective
function, i.e., casting constrained binary optimization to
QUBO, is often the main driver for the density of the
cost matrix, and thus, the challenges to implement the
algorithms on real hardware. If at least some constraints,
e.g., cardinality, packing, or covering constraints, could
be natively incorporated into an algorithm, this could
lead to sparser problems, and thus, could lead to signifi-
cant simplifications for implementations on real quantum
hardware. This is sometimes called QUBO-Plus [266],
i.e., QUBO plus special types of constraints. For classical
solvers, these constraints can even simplify the problem,
since the knowledge about the optimal solution can be
leveraged within the algorithm. This is also the idea be-
hind most of the presented quantum algorithms within
this section. However, often the complexity is just pushed
to a different part of the algorithm, for instance, from the
QAOA cost operator to its mixer.

The approaches for constrained discrete optimization
mentioned in this section essentially leverage three strate-
gies to handle constraints: they use Grover Search (and
variants), they add penalty terms to the objective func-
tion, and they try to restrict or project states to the
feasible space. Since constraints are appearing almost
everywhere in practice, further progress on how to effi-
ciently handle them is crucial on the path towards quan-
tum advantage in optimization.
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B. Continuous Optimization

1. Convex Optimization

Convex optimization problems can often be solved ef-
ficiently, both in theory and in practice, and find nu-
merous applications in business, science and engineering.
Quantum algorithms for convex optimization have been
proposed for several relevant classes of problems.

One of the most general formulations of a convex op-
timization problem is the task of minimizing a convex
function f : Rn → R over all x ∈ Rn that have at most
a certain size, say ∥x∥2 ≤ R for a given bound R, when
one is provided black-box access to evaluate the function
and possibly its derivatives. For example, given access to
an oracle that on input x ∈ Rn outputs (f(x),∇f(x)),
our task is to find an approximate minimizer of f over
the convex set {x ∈ Rn : ∥x∥2 ≤ R}. Gradient descent
is an example of a well known algorithm that works in
this framework. A natural question is whether quan-
tum computers offer a speedup, be it in query complexity
or run time. The answer to this question is not always
positive; see, e.g., [267, 268], which consider black-box
access to the function and its (sub)gradients. In this
setting, classical and quantum algorithms have the same
lower bound (no n-dependence, but a polynomial scal-
ing in the inverse of the desired precision ϵ) for the query
complexity in general. The other regime, where we do al-
low a polynomial n-dependence, but only a polylogarith-
mic dependence on the desired precision, is equally well
studied. Under mild assumptions, one can solve general
convex optimization problems in polynomial time using
e.g., the ellipsoid method [269]. In this very general set-
ting one aims, for example, to solve a problem of the
form min cTx s.t. x ∈ K for some bounded convex set K
to which we have various types of oracle access (mem-
bership, separation, optimization). Here mild quantum
speedups (and no-go results) are known [270, 271].

Often much more can be said when we consider con-
vex optimization problems with a certain structure. The
most notable such classes are arguably linear program-
ming (LP) and semidefinite programming (SDP). Here
the objective is to minimize a linear function subject
to linear inequalities on non-negative vectors (LP) or on
positive semidefinite matrices (SDP). An SDP can be ex-
pressed in the form

max
X ⪰ 0

tr(CX)

s.t. tr(AiX) ≤ bi ∀i ∈ [m]
(7)

where the problem is defined by symmetric matrices
C,A1, . . . , Am, each of size n × n, and a vector b ∈ Rm.
Note that LPs correspond to a special case of SDP in
which each of the input matrices is diagonal. Quantum
algorithms for these problems usually trade off an im-
proved dependence on the dimension n and the number
of inequalities m with a worse dependence on the preci-

sion ϵ to which one solves the problem. We can categorize
quantum algorithms for these problems based on the so-
lution methodology.

First-order methods. The first quantum algorithms
for SDPs were first order methods, based on the Multi-
plicative Weights Update (MWU) framework [272]. In
this framework one uses candidate solutions X that are
proportional to ρ = exp(

∑m
i=1 yiAi)/ tr(exp(

∑m
i=1 yiAi))

for some (sparse) vector y ∈ Rm. That is, the candidate
solutions are proportional to Gibbs states, which nat-
urally correspond to trace-normalized positive semidefi-
nite matrices and can be efficiently prepared on a quan-
tum computer under some conditions. To implement
the MWU framework, one additionally needs to compute
trace inner products tr(Aρ) between such Gibbs states ρ
and a matrix A (which is either one of the Ai’s or C),
and essentially solve a search problem based on these
values. All these steps can be performed on a quantum
computer, with various levels of efficiency; the initial run
time bounds derived in the pioneering papers [164, 165]
were subsequently improved [166, 167, 273], and further
to [167].

The run time of quantum MWU methods depends on
several natural parameters; the dimension n, the num-
ber of constraints m, the desired (additive) error ϵ in
the objective function; and on two instance-specific pa-
rameters, typically denoted by R and r, that are re-
lated to the diameter of the feasible region for the primal
(tr(X) ≤ R) and dual problems (∥y∥1 ≤ r), and bound
the so-called “width” of the oracle. The initial works had
a run time scaling as Õ

(√
mns2 poly

(
Rr
ϵ

))
, where s is

the row sparsity of the input matrices [164, 165] and Õ
ignores logarithmic factors, later works improved this to
Õ
(
(
√
m+

√
n) s2 poly

(
Rr
ϵ

))
. Throughout, the polyno-

mial was of a high degree; the state of the art in a certain
input model is Õ

((√
m+

√
nRr

ϵ

)
s
(
Rr
ϵ

)4), see [167]. In
all these bounds, the parameters r,R, and ε appear to-
gether as one “scale-invariant” parameter γ = Rr/ϵ [165].
Often, this parameter γ scales poorly in terms of n and
m [165], especially when parameters r,R scale linearly
or superlinearly with n. (For example, in the SDP re-
laxation of MAXCUT [179], cf. (9), tr(X) scales lin-
early with n.) Notable exceptions are applications to
shadow tomography, quantum state discrimination, and
E-optimal design (i.e., optimal design in which one max-
imizes the smallest eigenvalue of the information ma-
trix) [166, 167]. As an aside, we mention a second fa-
mous appearance of the MWU framework in the quan-
tum (complexity) literature: it is a key tool in the proof
of the equality QIP = PSPACE [274].

For comparison, the classical complexity of a general-
purpose SDP-solver based on the MWU framework is
Õ
(
mns

(
Rr
ϵ

)4
+ ns

(
Rr
ϵ

)7), see [165], but the input
models of the classical and quantum algorithms are not
necessarily equivalent so these results are difficult to com-
pare. Namely, quantum algorithms often rely on the use
of Quantum Random Access Memory (QRAM), which is
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a RAM addressed by qubits. QRAM accessed by a uni-
tary, swaps the state of the addressed memory cell with
the state of a target qubit. Although concrete propos-
als exist [275, 276], a scalable fault-tolerant implementa-
tion is yet to be found [277–280], making this at best a
long-term prospect. The QRAM model of computation
is common in the quantum optimization literature, and it
is also studied in some of the papers mentioned in other
sections: we mention it here because the frameworks dis-
cussed in this section are particularly reliant on it. Also,
in the classical literature the MWU framework was spe-
cialized (and significantly accelerated) for the SDP re-
laxation of structured combinatorial problems such as a
form of QUBO, balanced separator, and sparsest cut, see
[19, 272].

So far, we have discussed the MWU framework in the
context of SDPs. One can equally well apply this machin-
ery to the simpler class of linear programs, often obtain-
ing much better run times, see, e.g., the works [175–177]
that are based on a zero-sum game approach [281, 282].
In particular, [176] successfully implemented a dynamic
data structure in the quantum setting. It is an interest-
ing open question to extend such a result to SDPs. One
could also study further first-order methods [283, e.g.],
beyond MWU, to SDPs. While these have been pro-
totyped [283], and there may be some speed-up in per-
iteration complexity, their iteration complexity remains
the same as in the classical case.

Second order methods. Interior Point Methods
(IPMs) are popular second order methods for solving
structured convex optimization problems both from a
theoretical and practical perspective. At their core, IPMs
start from a point lying in the interior of a convex fea-
sible set X ⊂ Rn, and use Newton’s method to solve a
sequence of barrier problems of the form

min
x∈Rn

η · ⟨c, x⟩+ f(x), (8)

where ⟨·, ·⟩ is an inner product on Rn, η ≥ 0 and
f : int (X ) 7→ R is a barrier function encoding the con-
straints defining X . That is, f(x) → ∞ as x approaches
the boundary of X , and thus the only “constraint” present
in Eq. (8) is that f is only defined on the interior int (X )
of X . In each iteration, the value of η is increased, and
the set of minimizers {x(η) : η ≥ 0} of Eq. (8) define
the so-called central path, an analytic curve extending
throughout the interior of the feasible region to the set
of optimal solutions that is uniquely determined by the
starting point. By iteratively applying Newton’s method,
IPMs approximately follow the central path to the opti-
mal solution via a sequence of local linearizations (i.e.,
Newton steps). Computing the Newton step requires
one to solve a linear system of equations, and consti-
tutes the dominant operation at each iterate of an IPM.
It is therefore natural to try to use quantum linear sys-
tem solvers [140, 284] in an effort to accelerate the com-
putation of the Newton step [285]. Work on this line
of research was initiated by [286], with several follow-up

works trying to address the shortcomings in the initial
proposal [287–289]. Because the direction computed in
the Newton step is necessary to process the subsequent it-
eration, the quantum linear system algorithm is followed
by the application of a quantum state tomography al-
gorithm. Specifically, two issues have emerged: the use
of state tomography introduces inexactness in the search
direction and a 1/ϵ dependence in the run time, where ϵ
is the precision to which tomography is performed [290];
and the use of the quantum linear systems algorithm in-
troduces a run time dependence on the condition number
of the Newton linear system, which, unfortunately, goes
to ∞ as we approach optimality. The first issue can be
dealt with by developing an IPM framework that allows
for inexact search directions [287], and iterative refine-
ment techniques can alleviate (but not necessarily elimi-
nate) the remaining issues [288, 289]. Overall, assuming
access to QRAM, quantum IPMs achieve favorable de-
pendence on the size of the problem (m and n) for linear
and semidefinite optimization compared to classical algo-
rithms, but the remaining dependence on some numeri-
cal parameters (e.g., a condition number bound for the
Newton systems) makes it unclear if an overall speedup
is achieved.

Very recently, a quantum speedup for interior point
methods was achieved without introducing a dependence
on a condition number [291]. Under some mild assump-
tions and access to QRAM, this IPM achieves a quan-
tum speedup for linear programs in which the number
of linear inequalities m is much larger than the number
of variables n, i.e. LPs of the form max cTx s.t. Ax ≥ b
where A ∈ Rm×n, b ∈ Rm and c ∈ Rn with m ≫ n.
In particular, the best classical solver achieves a scal-
ing of Õ(mn+ n2.5) [292], whilst the quantum analogue
scales as

√
m ·poly(n, log(1/ϵ)). The key new subroutine

here is a faster quantum algorithm to compute spectral
approximations of matrices of the form BTB, provided
query access to a tall matrix B ∈ Rm×n. A spectral
approximation of such matrices suffices to speedup the
costly Newton step. This subroutine can be seen as a
generalization of a quantum graph sparsifier (by letting
B be the edge-vertex adjacency matrix) [293], which in
turn has been used in optimization algorithms in both
the continuous [294] and discrete settings (e.g. cut ap-
proximations) [293].

Quantum SDP-solvers for approximating
MAXCUT. Given the challenges in evidencing end-
to-end speedup for general SDPs posed by the scale
invariant error parameter Rr/ϵ, the MWU framework
has been specialized to the semidefinite approximation
of MAXCUT:

max
X ⪰ 0

tr(CX)

s.t. Xii = 1, ∀i ∈ [n].
(9)

Brandao et al. [181] demonstrated that, after normaliz-
ing the diagonal constraints by n and relaxing slightly
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the constraints, feasibility reduces the task of solving the
MAXCUT SDP to a possibly simpler task: preparing a
Gibbs state that is (i) approximately indistinguishable
from the maximally mixed state when measured in the
computational basis, and (ii) whose trace inner product
with C is close to an estimate of the optimal objective
value, determined via binary search. This enables the de-
sign of specialized oracles for testing feasibility within the
MWU scheme, and leads to an algorithm that, provided
access to QRAM, outperforms previous algorithms in the
problem dimension and sparsity of C. However, the algo-
rithm exhibits a poor O(ϵ−28) dependence on precision,
prohibiting an overall speedup.

The impractical error scaling was addressed by Au-
gustino et al. [174], where iterative refinement techniques
are used to exponentially improve the dependence on the
inverse precision, for both the quantum and classical al-
gorithms proposed by Brandao et al. [181]. Moreover,
it is shown that when C is stored in QRAM, one can
remove the dependence on the sparsity parameter by us-
ing Gibbs sampling techniques based on Quantum Singu-
lar Value Transformation [143]. This yields a quantum
algorithm that runs in time Õ

(
n1.5

)
, plus the time it

takes to read C, obtaining a polynomial speedup over
the best known classical algorithm. Due to the lack of
a classical lower bound for the problem, however, it is
possible that better (and faster) classical algorithms for
this problem could be developed. Note that the speedup
in Augustino et al. [174] is reliant on QRAM: the au-
thors analyze their algorithm in the standard gate model
and show that the resulting algorithm is outperformed
by classical approaches.

Quantum algorithms for matrix scaling and ma-
trix balancing. Aside from the SDP relaxation of
MAXCUT, another convex optimization problem that
has enjoyed a provable quantum speedup for first- and
second order methods is the matrix scaling problem. One
version of the matrix scaling problem can be stated as
follows: given an entrywise non-negative matrix, find
positive weights for the rows and columns such that the
reweighted matrix becomes doubly stochastic. This prob-
lem has many applications, both in theory (e.g., approx-
imating the permanent [295]) and in practice (used by
default as a preconditioner in LAPACK [296]). Recent
works [294, 297] have shown how to speedup both first-
and second-order methods for a natural convex formula-
tion of the problem, using a variety of techniques (basic
amplitude amplification, but also graph sparsification).
Importantly, these quantum algorithms do not introduce
a dependence on a condition number.

Quantum approaches with no direct classical
equivalent. Some classical continuous optimization al-
gorithms can be phrased in terms of the solution of a cer-
tain dynamical system, i.e., ODEs. These ODEs can then
be cast as the Schrödinger equation, and solved by means
of a quantum algorithm, thereby solving the optimiza-
tion problem. The first work in this line of research is
Quantum Hamiltonian Descent (QHD) [298], which can

be viewed as a quantization of the Bregman-Lagrangian
framework for continuous-time accelerated gradient de-
scent introduced by Wibisono et al. [299]. By properly
designing a family of Hamiltonians that, as time pro-
gresses, lead to the optimal solution of the dynamical
system, quantum Hamiltonian descent can be shown to
converge to the optimal solution even on certain non-
convex problems (although it may not do so efficiently,
as these problems are provably hard). With regard to
output, QHD returns a classical description of the solu-
tion without the need for state tomography. The final
state is a probability distribution concentrated near the
global minimizer of the objective function, and thus a
bitstring corresponding to a solution is obtained upon
sampling from the QHD final state.

Along this line, Augustino et al. [300] describe a fully
quantum algorithm for solving linear optimization prob-
lems by quantum-mechanical simulation of the central
path, which the authors call the Quantum Central Path
Method (QCPM). While IPMs and QIPMs approxi-
mately track the central path using successive lineariza-
tions of the perturbed KKT conditions (i.e., Newton
steps), the QCPM consists of a single simulation that
works directly with the nonlinear complementarity equa-
tions. This is achieved by designing a Hamiltonian which
encodes the central path in its ground state. Like QHD,
no intermediate measurement is required, and a classi-
cal description of the solution is obtained upon sampling
from the final state. This approach is faster than any
classical or quantum IPM in a certain sparsity/condition
number regime, while also avoiding the use of QRAM,
block-encodings, quantum linear system algorithms, and
state tomography.

2. Non-Convex Optimization

In non-convex optimization, one minimizes a function:

min
x ∈ Rn

f(x) (10)

in dimension n ∈ N. Many variants are undecidable [301],
as long as one allows for periodic functions f , or suffi-
ciently non-smooth functions. (As suggested in Tab. I,
some are inapproximable in even in the Banach-Mazur
model [86].) One can hence hope to study k-th order
critical points of non-convex functions, in general. In
smooth non-convex optimization problems, this means
points where necessary conditions of optimality involving
first k partial derivatives are satisfied. In non-smooth
non-convex optimization problems, this often involves
necessary conditions of optimality involving the Clarke
subdifferential [302, 303].

Echoing the situation in convex optimization [267],
there are clear limits as to the speedup in non-convex
optimization [304]. In particular, when first k partial
derivatives are available via an oracle or when one has ac-
cess to stochastic gradients (SG), and no further assump-
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tions are made, classical lower bounds apply to quantum
algorithms too. One hence wishes to find suitable special
cases, such as by considering the numbers of local min-
ima, local behavior of the functions around those, and
behavior of the trajectories connecting nearby local min-
ima (“the barriers”).

Consider the problem of finding an ϵ-stationary point
x ∈ Rn of a non-convex function f , which means that

∥∇f(x)∥ ≤ ϵ. (11)

For x ∈ Rn, consider the set of k-order deriva-
tives ∇(0,··· ,k)f(x) := {f(x),∇f(x), · · · ∇kf(x)} with
universal Lipschitz constants, and consider also the
stochastic gradient g(x, ξ), with ξ a random seed
and satisfying Eξ[g(x, ξ)] = ∇f(x) and Eξ∥g(x, ξ) −
∇f(x)∥ ≤ 1. Assuming quantum access O(k)

f |x⟩ |y⟩ =

|x⟩ |y ⊕∇(0,··· ,k)f(x)⟩, which outputs a binary repre-
sentation of ∇(0,··· ,k)f(x), Zhang and Li [304] prove
the lower bound Ω(ϵ−(k+1)/k). Assuming quantum ac-
cess Og |x⟩ |ξ⟩ |y⟩ = |x⟩ |ξ⟩ |y ⊕ g(x, ξ)⟩, produces a lower
bound of Ω(ϵ−4). Both query lower bounds are the same
as the classical case. On the other hand, Sidford and
Zhang [305] show query upper bounds for finding critical
points with quantum algorithms for stochastic gradient
descent (SGD). With access to a probability-weighted su-
perposition over the bounded-variance stochastic gradi-
ent, the algorithm requires O(

√
nϵ−3) queries, which is

only better than the classical algorithm O(ϵ−4) when the
dimension is < ϵ−2. This can be improved with access to
mean-squared smooth SGs, from O(ϵ−3) to O(

√
nϵ−5/2).

The run time for all of these algorithms both classically
and quantumly will in most cases be polynomial in n.

In high-dimensional situations, the availability of the
quantum linear systems algorithm and of quantum linear-
algebra methods motivates the direct quantum imple-
mentation of gradient descent over O(polylog(n)) qubits
[285, 306] to provide descriptions of stationary points
of non-convex functions. With a non-convex differen-
tiable function f(x) : Rn → R and an initial point
x0 ∈ Rn, consider the gradient descent update x →
x − η∇f(x) with η > 0. For T ∈ N, the task is to
output a quantum state proportional to xT , where the
update is applied T times starting from x0. To mimic
a classical gradient descent step for fixed t ∈ [T ], de-
fine the log(n)-qubit states |xt⟩ := 1

∥xt∥2

∑n
j=1 x

t
j |j⟩ and

|∇t⟩ := 1
∥∇f(xt)∥2

∑n
j=1 ∇f(xt)j |j⟩. Let us be given a cir-

cuit to prepare αt |0⟩1 |xt⟩+ |ϕt⟩, where |ϕt⟩ is some non-
normalized orthogonal state and |αt| ≤ 1, and a circuit
U∇ such that U∇ |xt⟩ = |∇t⟩. Using an auxiliary qubit
and Hadamard gates, the state αt+1 |00⟩12 |xt+1⟩+ |ϕt+1⟩
can be prepared, where

αt+1 := αt ∥xt−η∇f(xt)∥2√
2
√

∥xt∥2
2+∥∇f(xt)∥2

2

(12)

and |ϕt+1⟩ is an orthogonal non-normalized state. Hence,
the |00⟩12 part of the state proportionally encodes the

desired gradient step and we may continue with the
next step. In this setting, Rebentrost et al. [285] con-
sider certain classes of multivariate polynomials, and in-
cludes Newton steps. While the algorithm may admit
a polylog(n) complexity, amplifying the |0̄⟩ state at the
end of the gradient procedure can cost 2T , since at every
step |αt+1| ≤ |αt|/

√
2. An efficient circuit U∇ may be

constructed only for special cases [285, 307], or could be
approximated via pre-training a parameterized quantum
circuit. For affine gradients corresponding to quadratic
optimization problems, Kerenidis and Prakash [306] show
an efficient implementation using phase estimation.

The idea of simulated annealing, finding global min-
ima assisted by thermal fluctuations, applies to continu-
ous non-convex optimization as well. Quantum comput-
ers obtain polynomial speedups in executing the classi-
cal simulated annealing process via quantum walks [308].
Quantum fluctuations provide an additional resource al-
lowing quantum tunneling through barriers between dif-
ferent minima [309]. Recently, Liu et al. [310] investi-
gated quantum tunneling for SGD, where the SGD pro-
cess is approximated by a continuous-time stochastic dif-
ferential equation. Mastropietro et al. [196] investigated
restarting the search, when one arrives in so-called bar-
ren plateau, which allows for speed-up when there are
many or large barren regions. These quantum walks can
provide a speedup over classical SGD when the barriers
between different local minima are high but thin and the
minima are flat.

There are several promising directions and open ques-
tions. What are lower bounds for various settings
of quantum polynomial optimization? Beyond lower
bounds, more in-depth focus on possible run time ad-
vantages of quantum algorithms is required. One di-
rection is about the quantum speedup could one obtain
by utilizing moment/sum-of-squares approaches to poly-
nomial optimization and quantum algorithms for SDPs,
in analogy to mixed-integer programming discussed be-
low. Extending to larger classes of polynomials and be-
yond, what classes of non-convex functions would al-
low for amplitude-encoded embeddings, efficient quan-
tum circuits for gradient computations, and converging
gradient procedures.

C. Mixed-Integer Programming

Combining discrete decision variables and continuous
decision variables, Mixed-Integer Programs (MIP) are
non-convex and at least as hard as either of the dis-
crete optimization (cf. Sec. IV A above) and continuous
optimization (cf. Sec. IV B above) problems they sub-
sume. We differentiate between Mixed Integer Linear
Programs (MILP), usually used synonymously to MIP,
and its generalization Mixed Integer Quadratic Programs
(MIQP). In practice, some instances with unbounded
variables are notoriously hard [311]. Having said that,
in the case of mixed-integer linear programming, espe-

22



IV PROBLEM CLASSES & ALGORITHMS

cially when restricted to binary variables, classical solvers
based on branch-and-bound-and-cut have made an aston-
ishing progress over the past three decades, often solving
instances of up to one million binary variables to proven
optimality, cf. Fig. 6, and sometimes solving structured
problems with tens of millions of binary variables [312]
to proven optimality.

Following Eq. (2), let us consider the following illus-
trative MIQP:

min
x ∈ {0, 1}nb , y ∈ Rnc

xTQx+ yTRy

s.t. Ax = a,

By = b,

Cx ≤ c,

Dy ≤ d

(13)

where nb, nc ∈ N denote the numbers of binary and con-
tinuous variables, respectively, Q ∈ Rnb×nb and R ∈
Rnc×nc are cost matrices, and matrices A ∈ Rme×nb ,
B ∈ Rme×nc , C ∈ Rmi×nb , D ∈ Rmi×nc , and vectors
a ∈ Rme , b ∈ Rme , c ∈ Rmi , d ∈ Rmi , define 2me equal-
ity constraints and 2mi inequality constraints.

There are several potential algorithms to approach
such a problem with a quantum computer, whose short
overview is provided in Tab. II. In more detail:

Branch-and-Bound-and-Cut: the main workhorse
in classical optimization. One possibility for a hybrid
implementation is that discrete decisions are handled
by branching and generation of cuts implemented clas-
sically, while the continuous, possibly convex relaxations
could be solved on the quantum computer. Consider-
ing the progress in quantum algorithms for convex opti-
mization (cf. Sec. IV B 1), this seems plausible, although
distant. Perhaps even more ambitiously, one could de-
termine the branching decisions on the quantum com-
puter as well, which would yield an additional quadratic
speedup [254, 313–315] over the speedup of quantum al-
gorithms for convex optimization, while increasing the
requirements on the numbers of qubits and fault tol-
erance substantially. We note that the earlier papers
[254, 313] consider the speedup in the case of locating all
optima (measured against the classical cost of finding all
optima), whereas Refs. [314, 315] consider the speedup of
obtaining one optimum (out of possibly multiple ones),
measured against the classical cost of finding one opti-
mum. Recent research by Dalzell et al. [316] suggests
that super-quadratic speedups may be possible in some
cases.

Decomposition/Splitting/ADMM: this is a large
class of algorithms that is based on decomposing the
problem. Refs. [317, 318] suggested solving the QUBO
sub-problem using a quantum computer, while solving
the continuous sub-problem classically. This approach
is based on the hope that a practical quantum speedup
for some type of QUBO can be proven. Under some re-
strictive conditions [318], such an iterative approach can

be shown to be globally convergent. A similar approach
has been tested by Chang et al. [319], in the context of
Benders decomposition.

Reformulation to an unconstrained optimiza-
tion problem: Braine et al. [320] experimented with a
decomposition minimizing values of slack variables used
to convert inequality constraints to equality constraints,
and a Lagrangian relaxation of the resulting equality-
constrained continuous-valued problem. Another, ap-
proach that optimizes over the Lagrangian function clas-
sically over the circuit parameters and dual variables has
been introduced by Le and Kekatos [321]. Such La-
grangian methods are well understood [322, 323], but
global-convergence results are limited by very restrictive
conditions, in general, or require some form of backtrack-
ing. One could also solve the problem approximately
by utilizing a test done by Aspman et al. [324] for the
active set remaining fixed subsequently, and only then
utilize the Lagrangian relaxation. This could allow for
easier global convergence proofs without backtracking.
It should also be noted that there are multiple options
for working with both the slack variable, penalties for its
non-negativity [325], as well as multiple options for aug-
menting the Lagrangian with quadratic or higher-order
terms in order to improve numerical performance. These
are to be explored, yet.

Reformulation to high-dimensional LPs: using
techniques that go back to Dantzig and Wolfe [326], one
can reformulate mixed-integer programs as in Eq. (13)
as a very large linear program (LP). While quantum al-
gorithms for LPs have been somewhat overshadowed by
quantum algorithms for SDPs so far (cf. Sec. IV B1), a
continuous development of quantum algorithms for LPs
may render this a viable avenue.

Reformulation to high-dimensional SDPs: using
moment/sum of squares (SOS) techniques [327, 328], one
can reformulate mixed-integer programs as in Eq. (13) to
an SDP in a much higher dimension than n+ d. Indeed,
there are instances where this dimension needs to be ex-
ponential in n+d [329]. If quantum algorithms for SDPs
(cf. Sec. IV B1) made it possible to solve such instances
independent of the dimension, it may offer an interest-
ing avenue for quantum algorithms for mixed-integer pro-
gramming.

Reformulation to a completely positive prob-
lem: a mathematically elegant reformulation of a mixed-
integer programming problem results in a linear program
over the dual of the cone of copositive matrices [330]. Re-
call that copositive matrices are real symmetric matrices
Q ∈ Rn×n, corresponding to quadratic forms xTQx non-
negative on the positive orthant, i.e., for x element-wise
non-negative. For a fixed n, these matrices form a convex
cone [331], but even the test of membership in this cone
is NP-hard [332]. These cones have recently attracted
attention in mathematical optimization [333]. A possi-
ble way to exploit this reformulation in the context of
a hybrid solver is to use a quantum computer to solve
the difficult cut generation problem, whereas the classi-
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cal computer solves a convex problem. This approach has
been tried in [334], using a QUBO solver to generate cuts.
We note that to prove optimality one eventually needs to
show that no cut exists, and this in turn requires an exact
solver for the QUBO subproblem. Solving the cut gen-
eration problem exactly can be difficult even for classical
solvers, see [335] for a discussion of such an approach in
the context of power systems.

Next, we review multiple proposals for quantum al-
gorithms for MIP and propose a list of new directions.
There are still many open questions to be answered, how-
ever, in order to achieve a quantum advantage, which we
express in the remainder of this section.

First, can we provide general statements on provable
quantum advantage for MIP? Is there a general meta-
theorem for combined speedup of solving a convex re-
laxation and branch-and-bound? What would be the
best possible speedup for branch-and-bound? It seems
plausible that it could allow for super-quadratic speedup
for NP-hard problems quite generically, a tantalizing
prospect. Quartic speedup has been shown, so far, only
for learning majorities [336] and the quantum counter-
feit coin problem [337]. Further, how could the La-
grangian approaches benefit from an approximate solu-
tion and the test from Aspman et al. [324] for the active
set remaining fixed subsequently? How does one make
design choices within Lagrangian approaches (penalties
for non-negativity of slack variables, augmenting the
Lagrangian with quadratic or higher-order terms) opti-
mally? And out of the reformulation approaches sketched
out above (Dantzig-Wolfe, Moment/SOS, Co(mpletely)-
positive), which ones would allow for the best speedup in
the continuous optimization (cf. Sec. IV B above)? This
entails bounding the ratio of the inscribed to outscribed
balls of the reformulations within continuous optimiza-
tion.

Given the practical importance of MIP, it is crucial
to advance our understanding of how to approach this
problem class with quantum computers. Most of the pro-
posals in the literature consider a quantum sub-routine
inside a known classical algorithm. However, it is un-
clear what advantage the sub-routine needs to provide
to imply an overall advantage of the optimization algo-
rithm for MIP. This could be a combination of speed,
quality, but also diversity of solutions in order to accel-
erate branching. Further, there might opportunities to
have more quantum-native algorithms. In any case, it is
important to further investigate this problem class and
systematically benchmark the performance of available
proposals.

D. Dynamic Programming

Dynamic Programming (DP) is a very generic mathe-
matical optimization method that breaks down large op-
timization problems into smaller ones and combines re-
sults for the overall problem in a recursive fashion.

A dynamic programming algorithm consists of repeat-
edly optimizing the Bellman equation

V (x) = min
a
T (x, a) + V (xa) (14)

where a are the actions that are available in the state x
and xa = F (x, a) is the state to which we get by apply-
ing a in the state x. The entries V (x) can be arranged
into a dynamic programming table. A dynamic program-
ming algorithm then computes all the entries V (x) in this
table. The order in which the entries are computed is
chosen so that, whenever the algorithm has to compute
V (x), all V (xa) have already been computed and V (x)
can be computed from Eq. (14). For example, in the case
of TSP [22], x are subsets of the set of city and the en-
try V (x) is the length of the shortest path through x.
Thus, the DP algorithm for TSP consists of computing
the shortest paths through every subset of cities.

The complexity of a DP algorithm is O(Sm) where S
is the number of possible states x for which we have to
optimize the Bellman equation and m is the maximum
number of actions in one state. In the case of TSP, this
is Õ(2n). DP can be used to address many NP-complete
problems, some of which are listed in Tab. III. For exam-
ple, the best algorithm with provable running time for
TSP is based on DP [22]. It is also often used as a sub-
routine in approximation algorithms (e.g., some PTAS),
and it can be used to solve Markov Decision Problems
(MDPs), as discussed in more detail in Sec. IVE.

Quantum speedups are known for a substantial num-
ber of classical DP algorithms. The most important ex-
amples are shown in Tab. III. The quantum algorithms
are a combination of classical dynamic programming and
Grover’s search. For example, the quantum algorithm for
TSP by Ambainis et al. [338] first uses DP to compute
the shortest paths through sets of cities that contain up
to 24% of all cities and then uses Grover’s search to find
the shortest combination of those paths that visits all
the cities and returns to the starting point. Similar ideas
can be applied to other problems in which the classical
algorithm uses an exponentially large DP table indexed
by subsets of an n-element set. This includes graph col-
oring [339], minimum Steiner tree [340, 342], tree-width
[341] and other problems. The problems amenable to
this approach are typically vertex ordering problems (in
which the task is to find the optimal ordering of vertices
in a graph, as in TSP) or set partitioning problems (in
which the task is to find the optimal partition of a set,
as in Set Cover or Graph Coloring). Such problems lead
to DP tables in the form of Boolean hypercube (2n en-
tries indexed by x ∈ {0, 1}n) which can often be handled
by computing part of the table and then using Grover’s
search to find the best solution.

One can formulate a generic DP problem with the
DP table in the form of hypercube and show that, in
the generic case, the quantum speedup can be at most
quadratic [338]. It is an open problem whether quan-
tum speedups can be obtained for algorithms with a DP
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Table II. A short history of proposed quantum algorithms for mixed-integer optimization. For approaches without available
guarantees, we write N/A, although this should not be construed as ruling out guarantees.
Algorithm Guarantees Year Ref.
ADMM Asymptotic convergence under restrictive conditions. Speedup of QUBO? 2020 [317, 318]
Benders decomposition N/A 2020 [319]
Branch-and-bound Quadratic speedup + speedup of convex opt. 2020 [254, 314]
Lagrangian methods N/A 2021 [320, 321]
Branch-and-bound Quadratic speedup + speedup of convex opt. 2022 [315]
“Dantzig-Wolfe” Finite convergence, speedup of convex opt. 2023 Here
Moment/SOS Asymptotic convergence, speedup by SDPs 2023 Here
Subadditive duals Asymptotic convergence 2023 Here
Completely-positive N/A 2023 Here

Table III. Most important provable quantum speedups for dynamic programming, where the notation O∗(f(n)) hides a poly-
nomial factor in n [338].
Problem Quantum Algorithm Best Classical Algorithm Year Ref.
Generic Vertex Ordering Problem O(1.817...n) O∗(2n) 2018 [338]
Traveling Salesperson Problem O(1.728...n) O∗(2n) 2018 [338]
Minimum Vertex Cover O(poly(m,n)1.728...n) O(nm2n) 2018 [338]
Graph Coloring O(1.7956...n) O(2n) 2023 [339]
Minimum Steiner tree O(1.812...kpoly(n)) O(2kpoly(n)) 2020 [340]
Treewidth O(1.538...n) O(1.755...n) 2022 [341]

table of a different structure. For example, the DP algo-
rithm for the Edit Distance problem [343] (in which one
is given two strings and has to find the smallest number
of symbol insertions/deletions/replacements to transform
the first string into the the second string) uses a DP ta-
ble that is a two-dimensional array. If the size of the
array is n × n, the classical DP algorithm takes O(n2)
steps. Quantumly, no quantum speedup is known but an
Ω̃(n1.5) quantum lower bound is known for the generic
case [40, 344].

The broad applicability of DP renders it a very in-
teresting approach. However, many open questions re-
main in terms of a potential quantum advantage. What
structures of state space (besides hypercube) allow gen-
eral quantum DP algorithms? Can we add stochastic-
ity to quantum DP algorithms or extend them to MDPs
(cf. Sec. IVE)? What about the explosion of state space?
Can we prove better lower bounds for quantum speedups
of generic DP algorithms? In addition to provable al-
gorithms, can we find good quantum approximations or
heuristics, such as reinforcement learning? Answering
any of these questions will help to further understand
the potential and practical applicability of quantum DP
algorithms and some of them will also be discussed in the
following Sec. IV E.

E. Optimal Control

Optimization with differential equations as constraints
is a subject of optimal control theory. A standard finite
horizon optimal control problem takes the following form:

find a control function u with values in a given set U
solving the following optimization problem

min
u(t) ∈ U

∫ T

0

ℓ(x(t), u(t))dt+ h(x(T ))

s.t. ẋ = f(x, u), x(t) ∈ Rn, t ∈ [0, T )

(15)

for some nice functions ℓ, f, h, e.g., see Ref. [345]. A
globally optimal solution of this problem, the so-called
feedback optimal control policy u⋆(x, t) can be found by
introducing a value function

V (z, t) = min
u(t)∈U

{∫ T

t

ℓ(x(s), u(s))ds+ h(x(T )),

ẋ = f(x, u), x(t) = z

}
. (16)

Generalizing classical dynamic programming ideas one
can demonstrate that V solves the following Hamilton-
Jacobi-Bellman (HJB) equation backwards in time:

∂V

∂t
+min

u∈U

{
ℓ(x, u) + f⊤(x, u)∇xV (x, t)

}
= 0 , (17)

subject to the terminal condition V (x, T ) = h(x), for all
x ∈ Rn. Given the solution of Eq. (17) one computes the
optimal control policy in feedback form as follows:

u∗(t, x) = argmin
u∈U

{
ℓ(x, u) + f⊤(x, u)∇xV (x, t)

}
. (18)

It should be noted that in many practical situations, ∇xV
does not exist in the classical sense. For this reason the
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solution of HJB Eq. (17) is understood in the viscosity
sense: a viscous term represented by ε∆V , ε > 0 is intro-
duced in the right-hand-side of Eq. (17) so that the result-
ing solution Vε becomes differentiable, and then taking
the limit of Vε as ε ↓ 0 one gets the viscosity solution of
Eq. (17). This construction relates Vε to the stochastic
optimal control [345] as the Laplacian ε∆V can be seen
as adding "white noise" to the dynamics of x of variance√
ε.

In addition to optimal feedback control design HJB
has many applications: for example, it allows one to
solve the nonlinear filtering / state estimation problem
by constructing reachability sets of nonlinear dynamical
systems [346]. The most relevant applications of HJB
equations in the context of this paper are in discrete op-
timization: HJB equation for discrete-time dynamics can
be seen as the famous Bellman equation of dynamic pro-
gramming:

V (t, x) = min
u∈U

{ℓ(x, u) + V (t+ 1, x+ f(x, u))} (19)

with final time condition V (T, x) = h(x). Here time t is
discrete, and position x(t) is assumed to take only finitely
many values (a so-called piece-wise constant approxima-
tion), so x(t) can be seen as an index taking values in
the set of integers X [345] and hence V (t, x) can be in-
terpreted as a stack of dynamic programming tableaus
indexed by (t, x) (cf. Sec. IVD).

Yet another important application is in optimiza-
tion for discrete stochastic processes: as was mentioned
above, continuous time viscosity solution V of Eq. (17) is
connected to stochastic optimal control for Markov dif-
fusion processes via regularization. Hence it is not sur-
prising that the discrete-time HJB in Eq. (19) could be
connected to discrete stochastic processes too: namely,
if instead of deterministic transitions x(t + 1) = x(t) +
f(x(t), u(t)), which are singular in terms of probability
distributions, one introduces Markov Decision Process
(MDPs) [347], which jumps from the state x(t) = x to
state x′ = x(t+1) with known probability P (x′|x, u) pro-
vided the action u was applied, then Eq. (19) transforms
into the famous backwards induction for episodic MDPs:

V (t, x) = min
u∈U

{
ℓ(x, u) +

∑

x′∈X
P (x′|x, u)V (t+ 1, x′))

}
,

(20)

with a final time condition V (T, x) = h(x), [347]. MDPs
are central object of the Reinforcement learning (RL),
a family of algorithms in which an agent aims to learn
optimal decisions in unknown environments through the
experience of taking actions and observing the rewards
gained. In some cases, the environment is not influ-
enced by the actions of the RL agent, in which case
P is independent of action u then MDP turns into the
uncontrolled MDP [348, 349], and if the transition ma-
trix P (x′|x) is of rank 1 such an MDP becomes the so-

called contextual multi-armed bandit and in this case
finding V amounts to solving the optimization problem
minu∈U ℓ(x, u) for each x.

The key problem associated with HJB equation, con-
tinuous or discrete, is the curse of dimensionality. Solv-
ing HJB in Eq. (17) by conventional methods of numer-
ical analysis quickly becomes intractable even in rather
modest dimensions, e.g., if x(t) ∈ Rn for n ≥ 10. In other
words, direct approach to solving HJB equation has slim
chances of succeeding. In what follows we discuss po-
tential quantum optimization approaches to find global
solutions to the three aforementioned problems:

1. Contextual multi-armed bandit problems.

2. Markov decision processes (MDPs).

3. Optimization problems constrained by differential
equations.

Finding ways of solving the above problems will in turn
suggest ways of solving the corresponding HJB equa-
tions, continuous or discrete. In fact, solving the dis-
crete HJB in Eq. (19) sheds some light back on the so-
lution of the continuous one and vice-versa, suggesting
that algorithms developed in the discrete setting can help
construct solutions of continuous optimization problems.
Potential algorithms include:

1. Value iteration and policy iteration boil down to
optimization problems, wherein the convex opti-
mization of Sec. IV B1 could be applicable, perhaps
combined with the quadratic speedup of approaches
of Sec. IVD.

2. Reinforcement learning is a broad family of ap-
proaches, rather than a single algorithm, which
approximate value or policy iteration, for instance
using Least-Squares Temporal-Difference (LSTD).
Again, the convex optimization of Sec. IV B1 could
be applicable, perhaps together with the tabular
method of Sec. IV D providing additional speedup.

3. Quantum reinforcement learning (heuristics). In
the unitary oracle setting, from the perspective of
exact methods, that is, algorithms that are guaran-
teed to identify optimal policies in arbitrary envi-
ronment, tight quantum upper and lower bounds
have been identified. In Refs. [350, 351], lower
bounds on the more special task of Multi-armed
bandit problems were found, along with essentially
matching quantum upper bounds, for a number of
RL-related tasks, including finding the optimal q-
function. These works achieve a quadratic speedup
over best possible classical methods, assuming ap-
propriate oracle access to the task environment.

We can break the above into two main classes of ap-
proaches, differing in whether the learning agent has a
standard classical access to the environment, or if the in-
teraction itself is quantum. In the latter line, numerous
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types of quantum oracular access to the task environment
have been explored, e.g., where coherent access to a uni-
tary encoding the transition function is possible [352], or
where the environment closely mimics classical RL set-
tings, and allows only actions as inputs and has memory
[353].

We note that the algorithms listed above have signifi-
cant limitations, including the fact that they require fault
tolerance, and that quadratic speedups may not translate
to wall-clock speedups in early fault tolerant quantum
computers. The main conceptual limitation is the re-
quirement to a coherent access to the task environment,
which could only be possible in very restricted or con-
structed cases, and the fact they deal with exact solu-
tions, and in real-world problems, the search spaces are
simply too large, such as the state space of all 1 megapixel
images. The up-side of the above results is that the
speedups concern the number of interactions with the
environment, and are not contingent on any assumptions
in complexity theory.

In practice, one often foregoes optimal policies for op-
tima within a parameterized policy family, as is found
by policy iteration, and policy gradient algorithms. Al-
though the method cannot find an optimal policy in gen-
eral, one can still be interested in finding optima with
respect to the function approximation family available.
In Jerbi et al. [354] it was shown that quadratic speedups
in policy optimization were possible as long as the poli-
cies satisfy certain regularity conditions, which are, e.g.,
satisfied for policies defined by parameterized quantum
circuits. The lower bounds for this problem have been
established for a more general setting by Cornelissen et
al. [355] and they show that these quadratic improve-
ments cannot be improved further. However, if the envi-
ronments are not arbitrary, but special, more significant
improvements are possible, including provable exponen-
tial speedups [356]. The contrived nature of these envi-
ronments makes these results unlikely to have implica-
tions in practice.

However, the second research line investigates quan-
tum enhancements in reinforcement learning when the
access to the task environment is restricted to be clas-
sical. Here too speedups are provably possible, at least
in special cases, but now subject to standard complex-
ity assumptions. For example in Refs. [357, 358] it was
proven that there exist task environments with a super-
polynomial advantage for quantum reinforcement learn-
ing algorithms (with respect to finding optimal policies
and optimal q-functions), unless the discrete logarithm
problem has an efficient classical solution. Again, in re-
ality, we are most often not interested in finding prov-
ably optimal policies, but rather more effective heuristic
solutions which perform well empirically, as is done in
the famous examples of AlphaGo [359] and AlphaStar
[360]. In this domain, there has been substantial effort
in defining various types of parameterized-circuit based
QRL algorithms [357, 361, 362].

Closely related to MDPs are optimal stopping prob-

lems. These problems are concerned with timing an ac-
tion for maximizing a reward and are often solved with
dynamic programming. Optimal stopping appears, for
example, in sequential parameter estimation [363], se-
quential hypothesis testing [364], and, most famously, in
financial derivative pricing [365]. The pricing of Ameri-
can options involves stochastic modeling of asset prices
and performing a combination of Monte-Carlo estima-
tion, least-squares regression, and dynamic programming
for the optimal stopping time [365]. Given quantum ac-
cess to a sampler for the stochastic process, a quantum
algorithm with a polynomial speedup using Quantum
Amplitude Estimation (QAE) [169, 366] was shown by
Doriguello et al. [367]. Key questions are whether we can
extend such stopping time algorithms to other problem
classes and to problems with more decisions, and whether
we can make the algorithms more near-term quantum
friendly.

In the following, we outline open questions and promis-
ing directions to further advance our understanding on
how quantum computers may provide advantages for
optimal control and related problems. In the era of
noisy quantum computers, convex optimization algo-
rithms may be hard to use directly. Nevertheless, one
may considering sketching the value iteration [368] or
(LSTD) [369], wherein both the random projections and
the convex optimization could be implemented quan-
tumly. What MDPs could have a bound on the radius
of the ball outscribed to the (primal, dual) feasible set?
Such MDPs could benefit from speedup of quantum al-
gorithms based on MWU, cf. Sec. IV B 1. Approximat-
ing the value function, discrete or continuous, using the
concept of inductive bias recently introduced in the con-
text of function approximation by means of quantum ker-
nels [370]. Basic idea is to embed a prior knowledge of
certain properties of the value function into the design of
the approximator: for example, a rather efficient deep
learning approximation of value function implemented
in AlphaGo, or an assumed linear approximation of the
value function implemented in LinUCB [371]. In this di-
rection one would benefit from maintaining connections
between discrete and continuous HJB equations for the
optimization problem at hand in order to extract induc-
tive bias, e.g. piece-vise smoothness structure of continu-
ous value function might help in designing a kernel-based
function approximation.

F. Robust Optimization

Robust optimization addresses the issue of data inaccu-
racy in optimization and allows one to model uncertainty
in the constraints. The convex variant was introduced by
Ben-Tal and Nemirovski [372] and lead to many follow-
up works, for example Refs. [373–375]. The main feature
is a set of parameterized constraints and the requirement
that these constraints hold for every choice of parame-
ters chosen from some uncertainty set. The problem is
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formally defined as

min
x ∈ D

f0(x)

s.t. fi(x, ui) ≤ 0, ∀ui ∈ U , i ∈ [m],
(21)

where f0, f1, . . . , fm are convex functions in the parame-
ter x and f1, . . . , fm are concave in the noise parameter
u. Moreover, D ⊆ Rn and the uncertainty set U ⊆ Rd

are both convex. Despite many advances, robust opti-
mization for large-scale problems comes with a signifi-
cant computational overhead. Ben-Tal et al. [376] devel-
oped meta-algorithms to approximately solve the robust
version of a given optimization problem using an oracle
for the solving of the original optimization problem. A
quantum version was developed by Lim et al. [377], us-
ing quantum access to the functions, extending the origi-
nal algorithm to include a stochastic gradient, and using
quantum sampling subroutines with polynomial advan-
tage.

G. Multi-Objective Optimization

The previous classes were all considering a single ob-
jective function, possibly with constraints. However, in
practice, decision makers often have to find trade-offs be-
tween different objectives. This is addressed by Multi-
Objective Optimization (MOO) [378]. MOO is defined
as

min
x ∈ X

(f1(x), . . . , fm(x)), (22)

where X denotes the feasible set and fi : X → R,
i = 1, . . . ,m, denote the multiple objective functions, for
instance. In this setting, we first need to define what we
consider an optimal solution. This is done using the con-
cept of Pareto optimality. A solution x is called Pareto
optimal for a problem with multiple objective functions,
if there exists one objective function fi, that cannot be
decreased any further without increasing at least one
other objective function fj . The set of all Pareto op-
timal solutions is called the Pareto frontier or efficient
frontier.

It is well known that the cardinality of the Pareto set
can be substantial [379], and thus, one would like to
obtain a PTAS. For certain bi-objective problems, such
as the shortest paths problem, Diakonikolas and Yan-
nakakis [380] have shown that computing a set of so-
lutions that approximates the Pareto curve within ϵ is
NP-hard, if the set is to be smaller than twice the opti-
mum number of solutions, while it is possible to obtain
the 2-approximation in polynomial time.

Depending on the application, there are different goals
in MOO. Either, the goal is to determine or approximate
the complete Pareto front to be able to analyze possible
trade-offs. Alternatively, a single Pareto-optimal solution
is sought. For instance, objectives might be prioritized

or have fixed weights, which allows one to convert MOO
into a (series of) single objective optimization problems.
If the full Pareto frontier is required, the number of objec-
tive functions plays a crucial role. For a small number of
objective functions, there exist efficient strategies, assum-
ing the underlying single objective optimization problems
can be solved reasonably well. This is usually achieved
by constructing a new objective function as a weighted
sum of the individual objective functions and adjusting
the weights based on the previous solutions. Alterna-
tively, a single objective can be optimized while the val-
ues of the other objectives are controlled via additional
constraints. While the former might sometimes be easier
to implement, it only finds the convex hull of the effi-
cient frontier. In contrast, the latter can find also Pareto
efficient solutions that do not lie on the convex hull. Nei-
ther of these strategies is efficient for growing numbers of
objective functions. If the number of objective functions
increases, MOO problems quickly become very hard.

In contrast to single-objective optimization, there is
no approximation ratio that can be used to conveniently
quantify the performance of a given solution candidate.
However, there are multiple other metrics that allow one
to compare different approximations to the efficient fron-
tier. The most commonly used ones are the Hyper Vol-
ume (HV) and the Generational Distance (GD) [381].
The HV measures the volume spanned by the found so-
lutions, which is measured as the total volume covered
by all boxes defined by a reference point upper bounding
(or lower bounding in case of maximization) all objective
functions, and the solution candidates. The GD, in con-
trast, measures the distance between a set of candidates
and the optimal Pareto front or a reference solution.

There is only very little literature considering quantum
optimization algorithms for MOO. Most of the proposals
apply classical strategies and use quantum optimization
sub-routines for the resulting single objective optimiza-
tion problems [382] or sample from quantum states to
approximate the efficient frontier [383]. Thus, quantum-
native algorithms for MOO present a very interesting do-
main for future research.

Within this section, we introduced the most important
classes of optimization problems, reviewed existing quan-
tum algorithms to approach them and key open questions
to be answered to further advance our understanding. In
the following, we discuss how to execute them on noisy
quantum devices.

V. EXECUTION ON NOISY DIGITAL
HARDWARE AT SCALE

We now discuss best practices to execute quantum
optimization on noisy quantum hardware. There are
many different platforms to consider for optimization
tasks [384–390], here, we focus on superconducting
qubits [391]. More precisely, we focus on universal
gate-based quantum computing platforms accessible via
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the cloud, where quantum algorithms researchers can
directly test their algorithms. While there are addi-
tional algorithmic challenges to scale to large problems,
cf. Sec. IV, the goal of this section is to discuss how to
achieve best possible results from available quantum de-
vices.

Superconducting qubits come in many forms, such as
frequency-tunable qubits [392] and fixed-frequency qubits
with static [393] or tunable coupling elements [394, 395].
Over the past years, superconducting qubits have greatly
improved. The number of qubits has increased with sys-
tem sizes featuring up to 433 qubits. Coherence times
have breached the 100 µs barrier with recent devices ex-
hibiting median T1 and T2 times approaching 300 µs and
150 µs, respectively. It should be noted that these fig-
ures are based on IBM Quantum Eagle devices with 127
qubits [396]. Importantly, the qubits are arranged in pla-
nar lattices where each qubit is only connected to its im-
mediate neighbors.

We review each stage of the execution pipeline with
scalability and best practices in mind. In Sec. VA, we
describe how a quantum algorithm is translated down
the quantum stack and executed on hardware. We dis-
cuss the impact of modeling, quantum algorithm choice
and qubit encoding in Sec. V A 1. Next, Sec. V A2 dis-
cusses transpilation and Sec. VA 3 reviews error mitiga-
tion methods in the context of optimization. Sec. V A4
touches on the pulse-level and the opportunities it
presents. In Sec. VB we discuss hardware benchmarks
and then briefly discuss an execution example in Sec. V C
before summarizing in Sec. V D.

A. Quantum Stack

Hardware constraints and noise limit the scalability
and performance of quantum optimization algorithms.
An analysis of the quantum stack, the stages shown in
Fig. 5 through which an algorithm evolves from its ab-
stract design to its tangible execution on a quantum pro-
cessor, offers insight into where scalability and perfor-
mance bottlenecks arise.

At the top of the stack is an abstract expression of
the quantum algorithm. It is usually free from any hard-
ware constraints and expressed as mathematical opera-
tions and logical constructs that embody the problem-
solving approach. The transpilation process then maps
the abstract operations to the machine-executable in-
structions of the chosen target hardware resulting in a
hardware-native circuit. Here, circuit instructions may
be inserted or modified as part of an error mitigation
scheme. The pulse-level compiler converts the circuit in-
structions to finely-tuned electromagnetic pulses. These
pulses manipulate the quantum states to enact the cho-
sen algorithm. Therefore, as the algorithm is lowered
through the layers of the quantum stack its representa-
tion changes. Each level offers optimization opportuni-
ties to extract the most out of the noisy hardware.

Figure 5. High-level summary of the quantum stack. (a) A
quantum algorithm, including an encoding of decision vari-
ables in qubits and any hardware-guided problem simplifica-
tions, results in a high-level quantum circuit. (b) The instruc-
tions in this circuit are then transpiled to hardware native
instructions. (c) Error mitigation methods, such as PEC, are
often encoded as circuit instructions. (d) At the pulse-level,
circuit instructions are represented by the physical pulses that
are played on the qubits. (e) Finally, the circuit is compiled
into machine-executable waveforms, (f) that are run on the
quantum processor.

1. Modeling, quantum algorithms, and encoding

At the top of the stack, an algorithm is described by a
high-level circuit which may not be explicit in the num-
ber of qubits used and only provides an abstract rep-
resentation of the quantum gates to run. For exam-
ple, Fig. 5(a) shows a high-level representation of the
QAOA. To arrive at such a circuit one must first ap-
propriately model the optimization problem to solve and
correspondingly choose the quantum algorithm. For in-
stance, linear equality constraints can be included in a
QUBO by adding them as quadratic penalty terms which
then requires appropriately sizing the corresponding mul-
tiplicative factor, see Sec. IV A 2. This modeling step also
presents opportunities to consider the impact of choices
on the lower levels of the quantum stack. For example,
due to hardware noise a problem model that results in
more qubits with less connectivity could lower the im-
pact of noise compared to a model with fewer densely-
connected variables. Alternatively, Dupont et al. [229]
project a fully-connected QUBO onto the sparse connec-
tivity of a quantum computer. Looking forward, addi-
tional research on quantum tailored modeling of opti-
mization problems is needed to find the right balance
between model approximations and noise susceptibility.

Since the hardware is noisy, algorithms that efficiently
use the quantum resources are required. For exam-
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ple, a warm-start reduces the number of QAOA lay-
ers [197, 198]. In addition, the QAOA mixer can be
changed to include constraints of the optimization prob-
lem [258, 397], e.g., for equality constraints [259, 260]. Al-
tering the mixer improves the approximation ratio com-
pared to penalty term constraints (soft constraints) for
constrained optimization problems [398]. Furthermore,
counter diabatic terms may also improve the approxi-
mation ratio [399]. While these mixers may keep the
structure of the objective function and lead to cheaper
implementations of the cost operators, they may increase
mixer circuit depth thereby limiting their near-term util-
ity [398, 400]. Crucially, from a hardware perspective, the
best practice is to choose the methods that limit low-level
circuit depth and preserve solution quality. For exam-
ple, adaptive bias-fields [401] and warm-starts [197] only
require additional single-qubit rotations in the QAOA
mixer which are implemented on hardware with a negli-
gible overhead. Furthermore, it may be useful to research
methods that modify the original optimization problem
to facilitate its mapping to the hardware. For example,
in QAOA one may investigate techniques that modify the
problem Hamiltonian H to produce an H ′ approximat-
ing H which is however easier to implement on hardware,
i.e., e−iγH′

has a lower circuit depth than e−iγH .

While both scale and quality are improving over time,
quality is typically the limiting factor rather than scale
for optimization [402–404]. Nevertheless, for many prac-
tically relevant optimization problems the scale of cur-
rent Quantum Processing Units (QPUs) is likely insuf-
ficient to reach a classically hard regime. It may there-
fore be necessary to consider denser encoding schemes
that encode multiple decision variables in a qubit. The
Holevo bound states that n qubits are required to faith-
fully transmit n bits of information [405]. However, en-
coding schemes such as Quantum Random Access Codes
(QRAC) can encode m bits of information in n qubits
where m > n. The cost is that each bit of information
can only be retrieved using Projective Operator Valued
Measures (POVMs) with some probability p > 1/2 [406–
409]. There are many QRACs that, rather than encoding
the two states of a single bit into the |0⟩ and |1⟩ states
of a qubit, encode more information by utilizing more of
the possible states on the Bloch sphere. For example,
the (2, 1, 0.85) QRAC encodes n = 2 bits into a single
qubit (m = 1) with the 4 possible states of 2 bits en-
coded in states that form the corners of a square on the
Bloch sphere. Here, each bit is recovered with proba-
bility p ≥ 0.85. For all QRACs, there is a trade-off
between the ratio of classical to quantum bits and the
retrieval probability. The more bits encoded into a given
number of qubits, the lower the probability p of being
able to retrieve a given bit and the more complicated the
code becomes. As discussed in Sec. IVA 1, this allows
the hardware to tackle problems with more decision vari-
ables than it has qubits [180, 237, 238, 410]. However,
denser encodings tend to have a lower approximation ra-
tio and introduce additional overhead to readout solution

candidates.
Research for quantum optimization algorithms running

on noisy hardware must carefully consider the hardware
constraints. Crucially, many of these methods are heuris-
tic and can thus only be properly researched at scale on
actual quantum hardware.

2. Transpilation

A transpiler transforms a quantum circuit into an-
other quantum circuit, typically built from instructions
native to the target quantum hardware. Such low-level
circuits can be expressed in domain specific languages
which include OpenQASM [411], Quil [412], or Black-
bird for continuous-variable quantum computers [413].
Since each quantum hardware bears unique character-
istics, tailoring the transpiler to individual architec-
tures is fundamental to maximize operational efficacy.
Furthermore, the design and optimization of hardware-
executable quantum circuits must include all constraints
of the target hardware such as the native gate-set and
the qubit connectivity. On noisy hardware the transpiler
must also account for properties such as gate error-rates,
cross-talk, and qubit properties, e.g., T1 and T2 times.
The transpiler has a large impact on the gate count and,
thus, the performance of the algorithm when run on the
hardware. In general, the transpiler is responsible for (i)
selecting the qubits, (ii) decomposing the high-level cir-
cuit into hardware native instructions and (iii) routing
the qubits to overcome any limited qubit connectivity.

Step (i) depends on the properties of the hardware and
the problem being solved. For example, if we do not
need all the qubits on the processor then we may se-
lect the best ones according to a metric [414], such as
gate fidelity [403], cross-talk [415], or layer fidelity [416].
This metric should be based on the properties of the ex-
pected circuit. E.g., if the expected circuit is predomi-
nantly composed of two-qubit gates then selecting qubits
based on their gate fidelity is reasonable [403]. However,
if the algorithm requires many mid-circuit measurements
then measurement quality should also impact qubit selec-
tion [417]. Furthermore, in approximate optimization a
decision variable is often encoded in a qubit. The choice
of which decision variable is mapped to which qubit sig-
nificantly impacts circuit depth [418].

In step (ii), the possibly high-level gate descriptions
are synthesized into hardware native instructions [419–
421]. To decompose arbitrary unitaries, a quantum com-
puter must support a universal set of basis gates [422],
which impacts the optimal synthesis technique. These
compilation methods are either deterministic or approx-
imate. For example, any exponential of Pauli operators
can be implemented using a local 2-qubit gates on the
involved qubits with a Pauli-Z rotation and single-qubit
Cliffords [423], as exemplified in Fig. 5(b). However, due
to hardware noise it might be beneficial to reduce the
circuit depth by allowing for an approximate compila-
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tion [424, 425].
Finally, the routing step (iii) must overcome any lim-

ited qubit connectivity of the target QPU. Here, general-
purpose heuristic algorithms exist to route arbitrary cir-
cuits [426–428]. However, certain algorithms may have a
predetermined structure. For example, QAOA results in
circuits with blocks of commuting two-qubit gates. Ex-
ploiting this structure results in shallower quantum cir-
cuits [402, 418, 429–431]. More precisely, if the topol-
ogy of the problem graph does not perfectly match the
coupling map of the QPU, SWAP gates are necessary
to enable two qubit gates between unconnected qubits.
The denser the graph, the more SWAP gates are neces-
sary which results in a deeper circuit [402]. Neverthe-
less, limited qubit connectivity remains an issue and the
problems that scale best on noisy superconducting de-
vices are therefore likely to be those that are not overly
dense [386, 403]. A key challenge is thus to identify prob-
lem instances that are not dense but are classically hard.

Modern hardware also exposes new circuit instructions
such as dynamic circuits [432]. In a dynamic circuit some
of the qubits are measured and the outcome of these
measurements changes the following circuit instructions
within the coherence time of the qubits. For instance,
this offers additional possibilities to address limited qubit
connectivity [433]. As an example, the SWAP based im-
plementation of the QAOA problem graph may be re-
placed on grid-like QPU coupling maps by constant depth
circuits with a quadratic auxiliary qubit overhead [434].
Additional research is needed to see how to leverage dy-
namic circuits to reduce the circuit depth and width.

Crucially, not all types of hardware face the same chal-
lenges. For example, trapped ion devices typically have
all-to-all connectivity which permits denser graphs to be
studied without increasing circuit depth [398]. However,
at the time of writing trapped ions have not reached the
same scale as superconducting devices meaning problems
sizes are limited.

3. Error suppression and mitigation

After transpilation, the quantum circuit may be modi-
fied to include additional instruction for error suppression
and mitigation, as shown in Fig. 5(c). Error suppression
methods reduce the noise in quantum circuits without
having to gather more shots. Most prominently, Dynam-
ical Decoupling (DD) suppresses non-Markovian errors
by adding pulses in idle times of a quantum circuit [435–
437]. This can improve circuit execution quality without
introducing additional overhead. In some cases, such as
QAOA transpiled with SWAP networks [403], the result-
ing quantum circuits may be dense which leaves little
space for DD pulse sequences. By contrast, DD has a
large impact when the circuit has many idle times, e.g.,
in hardware native circuits on a heavy-hex lattice [438].

Error mitigation techniques use pre- and post-
processing of quantum circuits and measured results to

reduce the impact of hardware noise. While fully elimi-
nating the error comes at an exponential classical over-
head, these methods extend the reach of current devices
even at a limited classical cost [14, 439, 440]. This is in
contrast with error correction, which aims to correct er-
rors by encoding logical qubits in vast arrays of physical
qubits [441]. Typically, most error mitigation methods,
such as Probabilistic Error Cancellation (PEC) [15] and
Zero-Noise Extrapolation (ZNE) [16, 439, 442], produce
noise-mitigated expectation values.

PEC learns the noise channel Λ of layers of Pauli-
twirled gates [15]. The inverse of the noise channel Λ−1

is usually not physical, but can be implemented by quasi-
probability decomposition. PEC thus produces an unbi-
ased estimate of a noiseless observable O. The cost is an
increase by a factor of γ2 in the measured variance. Here,
γ ≥ 1 depends on the strength of the terms in the learned
noise model and is a measure of the fidelity the quantum
circuit can be executed with. The noise strength γ is also
closely related to the Layer Fidelity (LF) and the Error
Per Layered Gate (EPLG), two related measures of noise
in large-scale quantum devices [416]. If γ̄ is the average
γ per qubit then a circuit with n qubits and d layers will
have an error mitigation cost that scales as γ̄2nd.

In ZNE multiple logically equivalent copies of a quan-
tum circuit are executed at different noise levels to com-
pute an expectation value. From the noisy expecta-
tion values one extrapolates to the zero-noise limit to
obtain a (usually biased) error mitigated expectation
value. The first proposals implemented ZNE by stretch-
ing pulses [439], requiring a large calibration overhead,
or by folding gates, resulting in large stretch factors.
Methods such as partial-gate folding [443] or stretching
of cross-resonance pulses [444] alleviates some of these
issues. Crucially, ZNE does not require more circuits as
the size of the problem is increased. However, the cir-
cuit depth limits the range of stretch factors which may
render the extrapolation unusable. PEC is unfeasible in
large scale-experiments since they have a very large γ.
For instance, the γ2 of 60 layers of CNOTs on 127 qubits
was 10128 in Kim et al. [16]. This prompted the develop-
ment of PEA [16], a probabilistic ZNE, in which the noise
is learned like in PEC but then amplified (instead of can-
celed) to then extrapolate to the zero-noise limit. This
may also reduce the bias in the extrapolation. Impor-
tantly, circuits designed with regular networks of SWAP
gates alternate a small number (e.g., two) of identical
layers of CNOT gates [402]. This minimizes the noise-
learning overhead of PEC and PEA.

Error mitigation methods that act on expectation val-
ues help train variational parameters [403, 439]. Cru-
cially, to find good solutions, quantum (approximate)
optimization requires sampling from the optimized cir-
cuit. Indeed, the task is to find a good sample x that,
e.g., minimizes a cost-function f(x). Therefore, devel-
oping new error mitigation methods to produce error-
mitigated samples is crucial for the success of quantum
optimization.
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4. Pulse-level and compiler

Ultimately quantum instructions are implemented by
physical pulses, scheduled in time, to manipulate the
quantum states [445], as exemplified in Fig. 5(d). The
pulse-level makes the differences between quantum ar-
chitectures more apparent. For instance, tunable cou-
plers [395] can natively implement exchange-type opera-
tions which, on cross-resonance hardware [393], are syn-
thesized from RZX rotations. Exchange-type gates may
help reduce schedule duration for applications like QAOA
that need SWAP networks with phases to overcome lim-
ited device connectivity.

Pulse control enables many different types of optimiza-
tions to reduce schedule durations. This may be as sim-
ple as a pulse-efficient transpilation in which variational
parameters are encoded in durations of cross-resonance
pulses [446]. The resulting reduction in schedule dura-
tion improves the sampling performance of QAOA [403].
Furthermore, the extra energy levels of the transmon can
help to engineer gates that would otherwise require many
CNOTs [447, 448]. Finally, advanced methods of quan-
tum optimal control can help synthesize gates [449, 450],
measurements [449, 451], and adiabaticity [120] which
may be useful in the context of approximate quantum
optimization. However, such methods are not always
compatible with quantum error mitigation as discussed
by Egger et al. [452].

The pulse-level is also responsible for quantum pro-
gram compilation which entails loading the pulse-
schedule into waveform memory. Care must be taken
at this step and inefficiencies can be costly to the total
run time.

B. Hardware Benchmarks

In general, the performance of quantum hardware is
measured by scale, quality, and speed [453]. Scale is sim-
ply the number of qubits. Quality is tracked by low-level
performance metrics, e.g., qubit coherence and gate fi-
delity, and holistic benchmarks such as Layer Fidelity
and Error per Layered Gate [416], Quantum Volume
(QV) [454] and the γ and γ̄ of PEC [15]. A QPU with a
2n QV can reliably execute a n qubit circuit with n layers
of random SU(4) gates [454]. The QV accounts for gate
error rates, error suppression and mitigation, and qubit
connectivity.

Neither QV, Layer Fidelity nor EPLG, however, ac-
count for the speed of the computation. Speed is crucial
for optimization tasks if the quantum hardware is sup-
posed to deliver a solution with a certain quality faster
than classical hardware. Furthermore, speed enables the
hardware to achieve more accurate estimations of observ-
ables within a certain time or to pay the cost of error
mitigation which often requires more shots. Therefore,
Circuit Layer Operations Per Second (CLOPS) comple-
ment quality metrics. The CLOPS metric is inspired

from the floating point operations per second metric used
to benchmark classical computers. In essence, CLOPS
quantifies the throughput of a device by measuring the
number of gate layers that can be executed within a cer-
tain time. This measure includes the classical overhead of
updating parameters in the circuit and is therefore a cru-
cial indicator for the run time of variational workloads.

QV, EPLG, and CLOPS are by design only proxies for
the utility of a quantum device. For example, EPLG and
CLOPS on ibm_sherbrooke are 1.7% and 2700, respec-
tively. These metrics are general enough to draw compar-
isons between different hardware architectures and track
improvements of a platform. However, these general met-
rics could fail to predict which quantum device will obtain
the best performance, be it in solution quality, execution
speed, or any other criterion, for a specific application.
Therefore, the best possible measure of a quantum com-
puter’s usefulness for optimization is how well it performs
on tasks similar to the problem of interest, according to
the performance criterion of choice. For example, the
ability to create spin-entangled states, i.e., squeezing, re-
lates directly to a QAOA solving a fully connected MAX-
CUT problem [455]. We foresee that more application
tailored benchmarks are needed, especially since many
algorithms are heuristic in nature.

C. Execution Example

We now exemplify some of the considerations discussed
in the previous sections by examining the work by Sack
and Egger [403]. Here, the authors executed depth-two
QAOA on hardware with Random-Three-Regular (R3R)
graphs with up to forty nodes on superconducting qubit
processors with 127 qubits. First, since only a third of
the physical qubits are needed, the QAOA is run on the
best qubits as measured by the two-qubit gate fidelity;
the most used and error-prone circuit instruction. Sec-
ond, the R3R connectivity is engineered with a network
of predetermined SWAP gates [386, 402]. This results
in dense and shallow quantum circuits that transpile
quickly [402]. Third, Sack and Egger [403] also choose
a decision-variable-to-physical-qubit mapping that mini-
mizes the number of SWAP gates following the approach
of Matsuo et al. [418]. These best practices for QAOA
are found open source on GitHub [456].

Finally, a machine-learning-based error mitigation of
expectation values allowed the optimization of the QAOA
variational parameters resulting in γ⋆ and β⋆. A noise-
less simulation of the expected mean of the samples
drawn with γ⋆ and β⋆ showed a large gap with respect
to samples drawn from the hardware. This highlights
the need for an error mitigation of samples for quantum
approximate optimization.
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D. Summary

Sec. V provides an overview of the crucial parts of the
software stack affecting the execution of quantum algo-
rithms at scale on noisy hardware. When considering
this stack, it becomes evident that users possess varying
degrees of control over the scalability of quantum algo-
rithms on noisy hardware. At the higher levels, such as
problem recasting, encoding, and high-level circuit de-
sign, users enjoy a favorable degree of control (also de-
pending on the problem being considered), allowing them
to shape the algorithm’s scalability to an extent. Best
practices for noisy hardware are to choose algorithms and
their variants that lower the circuit depth without com-
promising on algorithmic speed and quality.

Moving lower into the quantum stack, transpilation
and pulse-level control also offer the opportunity for
optimization. SWAP networks, SAT mappings, pulse-
efficient transpilation, and problem-tailored gate-sets all
help reduce circuit depth and duration. These lower-
level aspects demand a profound understanding of quan-
tum mechanics and hardware intricacies. In some cases,
these layers may even conceal these complexities behind
a primitive such as a sampler or an estimator. It is nev-
ertheless crucial to have transparency on the methods
employed. This also enables the design of hardware-
optimized algorithms and problem formulations, which
may further improve the performance of executing quan-
tum optimization algorithms on noisy hardware.

VI. BENCHMARKS

Benchmarking can provide insights into realistic algo-
rithmic performance when purely analytical methods fail,
and it can provide new perspectives that motivate deeper
analytical studies. In particular, theoretical complexity
analysis typically pertains to general problem classes and
considers mostly asymptotic scaling behavior or worst
case scenarios. In fact, theoretical worst case bounds, as
they are discussed in Sec. II, often fail to describe the dif-
ficulties of solving real-world applications that focus on
a specific problem instance of practical use, nor do they
faithfully describe how well practically relevant problems
can be solved for fixed size and data. In this case, we
need to rely on meaningful and systematic benchmarking
of optimization algorithms with well-defined assumptions
considering implementation, data, and metrics — a chal-
lenging task. Clear benchmarks that study the utility
and robustness of optimization algorithms can also serve
to provide trustworthy and verifiable performance indi-
cators for a broader audiences, including policy makers
and industry leaders. For a general introduction to com-
putational benchmarking, we refer the interested reader
to Refs. [457–462].

The aim of this section is to describe best practices
for benchmarking and provide a set of interesting bench-
marking problems that provide a thorough, robust, fair,

and reproducible setting for comprehensive comparisons
of different classical and quantum approaches. The re-
mainder of this section is structured as follows. First,
an overview of related work is given in Sec. VI A. Next,
Sec. VI B discusses various reasons for running a bench-
mark. Notably, the goal behind running a benchmark
is crucial for the definition of the setting. Benchmark
design choices such as the metrics to be evaluated are
presented in Sec. VI C. Then, we elaborate on a variety
of optimization problems which are difficult for state-of-
the-art solvers and may provide interesting benchmark-
ing problems for quantum methods in Sec. VI D. Fi-
nally, Sec. VI E discusses existing quantum optimization
demonstrations that may build up to a set of benchmarks.

A. Related Work

Important collections of existing (classical) optimiza-
tion benchmarks are publicly hosted benchmarking chal-
lenges. They have proven as valuable tools for fair and
insightful comparisons between different classical solvers
and/or platforms. These challenges aim at understand-
ing and improving the practical performance of algo-
rithms for various optimization problems, particularly
those that are theoretically hard. They aid in evaluat-
ing realistic algorithm performance conditioned on the
resources available at the time of the competition. Some
of the most relevant, regularly held optimization chal-
lenges tackling problems with classical digital computers
are the Discrete Mathematics and Theoretical Computer
Science (DIMACS) implementation challenges [463] and
the Satisfiability (SAT) competition [464]. While the
problems targeted in the former vary from competition to
competition, the latter always focuses on SAT problems
which represent a well-defined class of problems that, be-
yond their theoretical intrigue, find practical applications
across various fields [465, 466]. Another important re-
source for optimization benchmarks is the Mixed Integer
Programming Library (MIPLIB) [467]. This library pro-
vides regularly updated pure and mixed integer programs
that are chosen under the consideration of solvability and
numerical stability. Currently, it holds 240 benchmarking
instances that are solvable with existing methods and an
even larger collection of unsolved, and numerically diffi-
cult instances. The performance of many solvers regard-
ing several classes of optimization problems is regularly
compared in [468].

Optimization competitions and libraries of this form
that are compatible with (near-term) quantum comput-
ers do not exist as of now. It remains an open task to set
them up and, thereby, enable streamlined benchmarking
of quantum optimization methods. In fact, most exist-
ing related work focuses on application-centric quantum
hardware benchmarking frameworks that employ opti-
mization problems as exemplary application. A bench-
marking framework presented by Lubinski et al. [469]
suggests the comparison of the output quality to circuit
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width and depth for implementations of Shor’s factoring
algorithm, Grover search, Hamiltonian simulation, etc.,
executed in numerical simulations or gate-based quantum
hardware. Another framework introduced by Tomesh et
al. [470] measures the qubit connectivity, circuit depth,
number of 2-qubit gates, ratio of gates which can be exe-
cuted in parallel, number of times qubits are acted upon,
and number of mid-circuit measurements for algorithms
including QAOA, VQE, and Hamiltonian simulation al-
gorithms executed on quantum hardware platforms from
different providers. Furthermore, Martiel et al. [471]
present a metric that measures the maximum problem
size for which a problem instance can be solved given a
pre-defined accuracy level. Notably, the suggested metric
does not incorporate time as an explicit factor. Instead,
the metric is conditioned on algorithms to be run in poly-
nomial time. This directly excludes the use of error miti-
gation and can easily fail to provide a fair and meaningful
comparison between different platforms. Further bench-
marks that investigate different properties of quantum
annealing methods for optimization problems – some in-
cluding comparisons to classical and quantum algorithms
– can be found in Refs. [472–479]. A comparison of Ising
machines that checks success probabilities for finding the
ground state and the corresponding time-to-solution is
presented by Mohseni et al. [480].

One particularly interesting work is introduced by
Finžgar et al. [481]. They compare various QUBO solvers
with respect to the solution quality and time-to-solution
and as such represents a good baseline for an optimiza-
tion benchmark. Although the presented publications
do not offer holistic optimization benchmarking frame-
works, they provide interesting insights that can help to
define reproducible, representative, and fair benchmark
libraries, which facilitate identifying advantages and dis-
advantages of various (quantum) solvers.

B. Goals

Reasons for running a benchmark can be diverse. In
the following section, we focus on benchmarking goals
related to understanding the potential of quantum com-
puters for solving optimization problems in terms of a
fair comparison.

One of the main goals of benchmarking in the present
context is the comparison of classical and quantum algo-
rithms — aiming at demonstrating quantum advantage.
If classical platforms are compared amongst themselves,
one often relies on benchmarking problems such as SPEC
[461] and LINPACK [462], which are established in the
community. However, these problems are not well suited
to compare classical and quantum platforms. Instead,
the community will have to agree on a set of problem-
centric benchmarks that could enable the direct compar-
ison of run times, solution qualities, etc., of classical and
quantum solvers. Suggestions for suitable benchmarking
problems are given in Sec. VID.

Benchmarking may also be executed to track the
progress in hardware developments (cf. Sec. VIA) as well
as algorithmic improvements. This is particularly impor-
tant for monitoring the impact of the fast development in
quantum hardware, supporting software, and algorithmic
research. For an example of tracking progress of classical
hardware and algorithms, we refer the interested reader
to Koch et al. [459], which discusses the advancements in
mathematical programming solvers over 20 years.

Furthermore, benchmarking can give us insights into
an algorithm’s scaling behavior: Is there a problem scale
at which algorithms fail to provide good solutions — pos-
sibly due to hardware limitations? How do the resources
needed to find solutions to a problem of a certain quality
scale with the system size? An example of MIPLIB prob-
lem instances is illustrated in Fig. 6. In this case, many
– but not all – larger instances require longer solver run
times.
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Figure 6. The figure illustrates the time it takes the Gurobi
solver [482] to find the optimal solution for MIPLIB 2017 [467]
instances of the form minx cTx subject to Ax ≤ b, x being
partly integer. The size of the circles depicts the number of
non-zero coefficients in the constraint matrix A and the in-
stances are ordered (on the x-axis) according to the square
root of the number of variables times the number of con-
straints.

C. Design

To ensure reproducibility as well as replicability of a
benchmark, it is important to clearly define the specifics
in terms of model selection, pre-processing, computa-
tional platform, target metrics, and selected algorithm
(provably exact, heuristic, etc.) including suitable hy-
perparameters. A discussion of relevant algorithmic
paradigms and quantum algorithms for optimization
problem classes can be found in Sec. III and Sec. IV,
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respectively. The remaining levels of design choices are
discussed in the following section. Starting from the de-
cision whether the benchmark is defined with respect to a
particular model, and, if so, which one. Secondly, it usu-
ally is beneficial to apply pre-processing to reduce the
problem to its challenging core. A possibly applied pre-
processing procedure may already consider the compu-
tational platform that is employed afterwards to execute
the optimization algorithm. Finally, the algorithm exe-
cution and resulting outcomes can be captured in a com-
parable fashion by choosing appropriate benchmarking
metrics.

1. Model-(In)Dependence

At the core of a practically motivated optimization
task is the solution of a concrete decision problem such
as the selection of an optimal (or at least a good) tour
for TSP. In order to treat this problem in a rigorous
way a mathematical model must be developed. How-
ever, the model choice is usually not unique and may
lead to differently behaving algorithms. In particular,
certain models may be significantly better or worse suited
for a particular optimization algorithm or may even con-
tain characteristics that cannot be handled by a particu-
lar algorithm, such as non-linearities or constraints. For
benchmarks, it is therefore crucial to decide on the level
a problem is defined: either model-independent, i.e., on
the level of the original optimization problem, which al-
lows different mathematical modeling methods, or model-
dependent, i.e., on the level of a concrete mathematical
model.

Model-independent benchmarks that place few limi-
tations upon admissible solution strategies offer an in-
teresting method to identify quantum advantage for op-
timization. More specifically, quantum advantage may
stem from novel formulations of problems that could
not be captured on a model-dependent level. Further-
more, quantum hardware is quickly evolving. To enable
comparability and compatibility for different generations
of hardware, model-independent benchmarks are better
suited, since they may allow one to leverage new features
that might not have been available in earlier generations,
such as dynamic quantum circuits [433]. We expect these
benchmarks to eventually show how quantum optimiza-
tion algorithms are approaching, meeting, and exceeding
the capabilities of classical techniques for solving partic-
ular problem instances.

Nevertheless, model-dependent benchmarks are also a
useful tool. In particular, they can help to study the rel-
ative performance of different algorithms and platforms
for fixed model formulations. At this point, it should be
noted that model-specific solvers are often significantly
faster for the target problem than general solvers. For
specific metrics to compare different types of solvers,
we refer the interested reader to Berthold and Csizma-
dia [483]. Some model-dependent benchmarking test in-

stances that are openly available, established, and un-
solved are given in MIPLIB [467], the Quadratic Pro-
gramming Library (QPLIB) [484], and the Satisfiability
(SAT) Problem Library [485]. As an example, we can
consider (random) SAT instances which exhibit phase
transitions. It may now be of particular interest to in-
vestigate whether a quantum algorithm is better suited
to handle the difficulty of a phase transition. In fact,
it has been studied by Yu et al. [486] whether an adap-
tive bias version of QAOA might help to avoid transi-
tion phenomena. While the presented study focuses on
small problem instances, where classical algorithms can
provide solutions, the findings hint at the potential for
advantages in the realm of large problem densities and,
hence, motivate further investigation.

2. Pre-processing

The term pre-processing or pre-solving refers to a set
of methods that are applied to a problem instance or
data before the actual optimization algorithm is exe-
cuted. Standard pre-processing approaches require clas-
sical computational effort. Therefore, the pre-processing
should also be taken into account in a benchmark’s per-
formance evaluation.

The goal of pre-processing is to modify the problem in
such a way that it allows the optimization algorithm to
work more efficiently. How to implement pre-processing
in practice depends on the mathematical formulation
of the optimization problem, on the data, as well as
on the considered optimization algorithm and computa-
tional platform. In fact, it is not uncommon for many
problems such as Euclidean TSP or Steiner tree problems
in graphs that pre-processing is able to remove 95% of the
variables and, hence, reduce the problem size as well as
resource requirements significantly [487, 488]. How this
can be achieved often depends on the context and char-
acteristics of the problem and data. A central aspect of
pre-processing is the reduction of the search space, for ex-
ample by decreasing the number of decision variables, or
reducing the number of alternative optimal solutions, or
by decomposing the problem into smaller subproblems.

Considering the example of QUBO, various reduction
techniques to eliminate optimization variables have been
suggested in the literature. A recent review has been
provided by Rehfeldt et al. [488]. For example, a set of
analytic reduction rules is presented by Glover et al. [489]
that allows one to conditionally fix certain optimization
variables, while guaranteeing that at least one optimal
solution will remain in the search space. In addition
to the number of optimization variables, their degree of
correlation, which is determined by the sparsity of the
QUBO matrix, is also of interest. In the case that certain
groups of decision variables are not correlated, QUBOs
can be decomposed trivially into smaller sub-QUBOs to
be solved independently.
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Figure 7. Sketch of the optimization platform ecosystem. We
focus on digital classical computing as well as digital and ana-
log quantum computing.

3. Platforms

Different platforms offer different strengths and suffer
from different bottlenecks. Hence, some devices could
be better suited for certain optimization problems than
others. It may not be directly evident which hardware
is best suited for a given optimization problem. Fur-
thermore, depending on the platform, the optimization
models and applicable algorithms do vary, resulting in
better or worse performance for a given problem.

Tailoring the choice of platform to the characteristics of
the problem at hand – if possible – can lead to better out-
comes. This approach aligns with the idea of platform-
aware optimization, ensuring that the selected platform
is optimally matched to the unique requirements of the
problem being addressed. To understand the advantages
and disadvantages of different platforms for different op-
timization problems, performing cross-platform bench-
marking is crucial. At the same time, such benchmarks
pose a particular challenge, as they must allow a fair
comparison between systems that can function very dif-
ferently. In the following, we are going to elaborate on
various hardware types that are relevant for optimization
problems, i.e, classical vs. quantum, and analog vs. dig-
ital. A sketch of the platform ecosystem is shown in
Fig. 7.

Classical digital systems are the workhorse of today’s
computer technology. The basic units of information are
the binary values 0 and 1. The information in classical
digital computations is processed by compositions of log-
ical operations such as AND and NOT gates which can

be expressed in a circuit model. Digital classical com-
putational models often rely on a combination of Cen-
tral Processing Units (CPUs), which excel at sequential
and general data processing tasks, and Graphics Process-
ing Units (GPUs), which specialize in parallel processing
tasks. There are several other types of processors and
specialized hardware accelerators designed for specific
tasks and applications, for example Tensor Processing
Units (TPUs) for deep learning or Field-Programmable
Gate Arrays (FPGAs) for signal processing and embed-
ded systems, just to name two. The combination of CPU,
GPU and special-purpose processors forms the founda-
tion for classical high-performance computation in a wide
range of applications. Due to their widespread use, clas-
sical digital hardware devices span a wide spectrum of
computing platforms, including desktop computers, com-
puting clusters, cloud services, mobile phones, and many
more. All of these platforms can be used to solve opti-
mization problems.

In additional, special purpose systems for optimiza-
tion are developed. More specifically, these systems sim-
ulate quantum phenomena such as quantum annealing,
see Sec. III B, hence, aiming to gradually decrease an en-
ergy function. Well-known examples for this type of tech-
nology are the Fujitsu Digital Annealer [490, 491] that is
based on a hardware-accelerated Markov Chain Monte
Carlo approach, the Hitachi CMOS Annealing Machine
[492] which corresponds to an in-memory computing ar-
chitecture that represents an Ising model with local inter-
actions, and the Toshiba Simulated Bifurcation Machine
[493, 494]. It should be noted that the latter does not ap-
proximate an annealing process but instead implements
a highly parallelizable approximation of Ising dynamics
with classical hardware (GPU, FPGA). This allows one
to compute heuristic solutions to problems with up to
millions of variables in a time frame of seconds.

In digital quantum computing [391] the basic units of
information are qubits instead of bits. The information
processing consists of consecutive quantum gate opera-
tions such as CNOT gates and single-qubit rotation gates
which, together, form a quantum circuit, similar to a clas-
sical logical circuit. Important bottlenecks of existing
digital quantum computers are limited coherence times,
which result in limited circuit depths, limited qubit num-
bers, and limited qubit connectivity. There are a variety
of ways to quantify the performance of a digital quan-
tum computer. For near-term hardware where noise is
a dominant factor, one might be tempted to consider
metrics such as the coherence times of qubits or the fi-
delity with which various quantum operations can be per-
formed. Such metrics are valuable, however, they can fail
to give an accurate description of a device’s potential for
useful computation. This has motivated proposals for
more holistic error metrics, as discussed in Sec. VB.

Quantum analog hardware is realized by quantum an-
nealing [2, 3, 472, 495, 496] and quantum analog simula-
tion [497–505]. In quantum annealing, the energy func-
tion or Hamiltonian of a system is gradually (but not nec-
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essarily perfectly adiabatically) deformed from an initial
ground state to a final state that can be measured to find
the solution to an optimization problem. These systems
are designed for QUBOs. Important bottlenecks of these
platforms include the coherence time, restrictions on the
driver Hamiltonian, and challenges in embedding practi-
cal problems into the device connectivity. The coherence
time of current publicly available annealing machines is
shorter than the annealing time [506]. This means that
these platforms do not achieve closed system dynamics
but exhibit strong coupling with the environment. Fur-
ther hardware improvements are therefore required [507].
The primary computational resource is believed to be in-
coherent quantum tunneling events [508, 509]. Therefore,
recent efforts are directed towards engineering quantum
drivers that cannot be simulated classically [507, 510].
Quantum analog simulation describes a setup consisting
of physical systems with sufficiently controllable parame-
ters such that one can manipulate and probe the dynam-
ics underlying a family of Hamiltonians. More specifi-
cally, analog quantum simulators enable the emulation of
continuous quantum dynamics of a target system with a
simulator that is easily accessible in the lab. This setting
has proven itself valuable to simulate physical dynamics
including quench problems, and ground state problems
[497] but has not been studied in much detail as a plat-
form for optimization applications, yet.

4. Metrics

Due to the technological differences between classical
and quantum systems, the selection of a set of metrics
that enable a fair comparison is crucial. The four main
metric categories that suffice said criteria are resource
cost, run time, quality, and problem complexity.

The resource cost includes any quantum or classical
computational resources employed to solve a given op-
timization problem including any potential pre- and/or
post-processing steps and resources that are being used
in parallel. The respective costs may be quantified in
various ways. Firstly, a fair metric would be the amount
of energy that is used to solve a problem. However, in
most cases, the user will not have access to this infor-
mation, particularly, when specialized computational re-
sources such as CPUs, GPUs, or quantum computers are
accessed via the cloud. Similarly, the monetary cost of
running an algorithm – including the pricing of special-
ized computational resources – could provide an interest-
ing metric but will be tough to evaluate on a fair basis
as these depend on hardware providers and service con-
tracts. Classical computing resources are typically mea-
sured with respect to factors such as the used memory,
required memory bandwidth, and central processing unit
(CPU) specifications, including clock speed and the num-
ber of cores. Quantum computational resources can be
measured in terms of the number of circuits that are run,
the number of executed gates per circuit, the number of

qubits and shots per circuit execution, and the quality of
the qubits. Of course, the resource count should also con-
sider resources that are required for problem-dependent
calibrations and error mitigation or – if applicable – cor-
rection. The number of qubits in a circuit strongly de-
pends on the mapping of problem variables to qubits.
Hence, algorithmic improvements in mapping schemes
can lead to a reduction in qubit requirements.

The run time provides an objectively fair metric to
compare different computational platforms. It is, hence,
of utmost importance to clearly define what determines a
faster algorithm. The effective run time of an algorithm
consists of time used for pre-processing, transpilation,
embedding, compilation, execution, and post-processing.
Now, it is not a priori clear, which of these time fac-
tors should go into a time benchmarking metric: (i) only
the time from start to end of the solver (ii) including
the generation of the model for the specific solver, (iii)
including pre-processing from the raw data. Arguably,
a fair comparison considers the total time. Neverthe-
less, it can also be interesting to analyze the composition
of the total time as this can help to identify the most
costly steps and potential bottlenecks. Given the cur-
rent status of software for quantum computing transpila-
tion, embedding, and compilation times will in fact play
a non-negligible factor. Hence, understanding the rela-
tion of time-to-solution and QPU time gives us insights
into the (progress in) efficiency of these steps. However,
these are also areas of active research and development
and we expect them to be significantly reduced in the
near future. Another factor to take into account when
measuring the time-to-solution is the potential use of par-
allelization, which effectively corresponds to a trade-off
between computational resources, i.e., cost, and run time
[511].

It should also be noted that the nature of a run
time benchmark strongly depends on the benchmarking
goal, e.g., aiming to reach a feasible, proven optimal, or
ϵ−close to optimal solution. If the goal is finding a proven
optimal solution, then it has to be taken into account
that certifying optimality typically requires a significant
amount of time compared to merely finding the optimal
solution. In the case of feasibility problems, we must con-
sider what to do if one method finds a solution and one
does not. A good approach is to have feasibility prob-
lems as a separate class and count how many problems
can be solved within a certain time limit per instance —
even if sometimes none is found. Setting the right time
limit is crucial. Short times < 1s are often difficult to
measure together with the setup time. Common choices
for classical heuristics are therefore < 1s, 10s, 60s, 600s,
3,600s, and 10,000s.

Different forms of optimization methods, for exam-
ple deterministic vs. heuristic, also impact the specifics
of a run time benchmark. Considering, e.g., non-
deterministic methods that produce various solutions,
one has to fix whether the run time is calculated as the
total time, the average time to find a solution, the mini-
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mum time to find a solution, etc. One proposal to address
this, is to explore the whole boundary of time-to-target
and optimality-gap-at-time values [457, 512]. Another
metric that aims at giving a holistic point of view by
considering a combined measure for solution quality and
total heuristic run time is suggested by Berthold [513].

Quality metrics strongly rely on the nature of a prob-
lem. Firstly, one requires a solution to be compatible
with the problem constraints, i.e., to be feasible, which
can be easily checked. Ultimately, one wants to find the
optimal solution or at least a solution that is ϵ−close
to the optimal solution. It should be noted that the
evaluation of optimality may be resource-intensive or in-
tractable. Given a feasible solution, the evaluation of the
optimality gap may be identified via bounds given from
continuous relaxations [514] or dual representations [515].
Another quality metric for optimization algorithms is so-
lution diversity. Given multiple solutions with equal cost
values, one would expect a fair sampling from these solu-
tions. Interestingly, this property is not necessarily given
in quantum annealing algorithms [516–518], and also not
easy to realize on current gate-based devices [519, 520].
Similarly, one can measure the success rate of a heuris-
tic algorithm to find solutions that are feasible or suffice
a certain optimality distance in a fixed number of algo-
rithm execution runs.

The practical difficulty of a problem is often related to
the problem size, density or number of variable connec-
tions, and the nature of the constraints. The difficulty
may be changed by modifying one or more parameters
that characterize the system as a whole. These changes
can even lead to computational phase transitions, which
are marked by abrupt and significant shifts in the time
to find a solution of certain quality, or even the feasibility
of finding a solution. Understanding the range of prob-
lems and characteristics where phase transition behavior
is observed presents a challenging task.

In order to provide a holistic quantum optimization
benchmark, metrics that describe algorithm and solu-
tion properties according to these four classes should be
measured. Depending on the problem, model, algorithm,
and execution platform the respective metrics should be
wisely chosen and faithfully reported on.

D. Problems

Next, we present a set of model-independent problems
that show promise for establishing standardized quantum
optimization benchmarks. The problems should be cho-
sen sufficiently hard for state-of-the-art classical solvers
to leave a margin for quantum methods but within an
intermediate size range where current and/or near-term
quantum technologies can be effectively deployed. Ideal
problem instances are those for which existing methods
are unable to provide provably optimal or feasible solu-
tions. Furthermore, it is crucial that the problem can
be formulated as a quantum-compatible model, i.e., with

sufficiently few variables/qubits, limited connection den-
sity, relatively small coefficients, etc. In other words, we
are looking for a sweet spot for current quantum sys-
tems that enables the investigation of quantum advan-
tage compared to adequately chosen digital algorithms.

It can also be valuable for tracking the progress in algo-
rithmic and hardware development to identify a family
of problems that are similar in their nature but differ
in their difficulty. Notably, complexity theory typically
makes statements about the hardest instances in a prob-
lem class and, therefore, seldom provides descriptive ar-
guments about the hardness of individual instances —
which very much depends on the size, structure, and
precise coefficients of the instances. Furthermore, the
particularly chosen instances may correspond to crafted,
random, or real-world problems:

Crafted instances are most likely the best way to
find problem instances that are hard to solve for classical
methods. However, there is a risk, that there is (or can be
developed) also a classical method that takes advantage
of the special problem structure, or that the instances
are of no practical value.

Random instances are different since they lack struc-
ture. This can make them, depending on the problem,
particularly easy or very difficult to solve. It certainly
sets them apart, but how meaningful these instances are
can be debated.

Real-world instances correspond in many practi-
cally relevant cases to MIPs that can be solved up to
sufficient accuracy with existing solvers. Instances that
are relevant and difficult to solve with existing methods
are hard to find in a setting that fits the dimensionality
and density limitations of current quantum hardware. In
fact, these problems are generally hard to find because
open problems of industrial relevance are rarely published
or may be ill-defined. This highlights a common selection
bias: We rarely model practically relevant problems in a
way we know we cannot solve.

In the following, we list a set of binary problems
that are promising candidates for quantum optimization
benchmarking problems. These problems are random or
crafted instances and relate only to few practical appli-
cations. Nevertheless, they offer a good test bed for al-
gorithm development and progress tracking. Classical
methods that can be used to tackle these problems in-
clude Branch-and-Cut based Integer (linear, non-linear,
semi-definite) programming (ILP) [521], Pseudo-Boolean
(PBO) optimization [522], SAT-Solving (SAT) [464, 523],
Constraint Programming (CP) [524], and several other
general techniques [525, 526] as well as a multitude of
specific heuristic approaches.

Maximum Independent Set (MIS). Given a
weighted graph G = (V,E, c), we are looking to find

min
x ∈ {0, 1}|V |

∑

v∈V

cvxv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E.

(23)
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MIS can be formulated as a QUBO for a suitably large
penalty factor P :

min
x ∈ {0, 1}|V |

∑

v∈V

cvx
2
v − P

∑

(u,v)∈E

xuxv. (24)

This is a classic NPO-hard problem even in case cv = 1
and there are known instances that are hard to solve
to proven optimality with existing methods starting at
problem sizes of several hundred variables [527]. The
allure of this problem class for quantum optimization
benchmarking is that it is well suited for translation into
relatively sparse QUBOs.

A subclass are MIS with unit disc graphs G (UD-MIS)
which are defined by vertices V on a two-dimensional
plane with edges E connecting all pairs of vertices within
a unit distance of each other [528, 529]. These problems
can be naturally mapped onto the structure of Rydberg
quantum computers [530, 531] via the Rydberg block-
ade [387]. The optimization itself can then be carried
out either in an analogue or digital fashion. It is also
worth mentioning here that any QUBO can be mapped
constructively to a UD-MIS with weighted vertices (UD-
MWIS) [532].

Optimization problems that may be modeled as a MIS
are, for example, Sudoku and the multidimensional n-
Queens problem. Interestingly, 3D n-Queens problem in-
stances on a 143 board with 2,744 binary variables, and
most larger board sizes, have no known proven optimal
solution. As there is by definition only one problem in-
stance per board size, we can nicely track how far we get.
Furthermore, it should be noted that the maximum clique
problem can be solved as a MIS on the complementary
graph.

(Multi-dimensional) Knapsack / Market Share.
Given a set I = {1, . . . , n} of items, weights wi, i ∈ I, and
a capacity C, the basic knapsack constraint regarding a
set of binary variables xi, is

∑
i∈I wixi ≤ C. Knapsack

problems typically have an objective function, where a
profit pi is assigned to each item, i.e.,

max
x ∈ {0, 1}n

∑

i∈I

pixi

s.t.
∑

i∈I

wixi ≤ C.
(25)

A quadratic objective
∑

i,j∈I2 pijxixj corresponds to the
binary quadratic knapsack problem [533]. In a multi-
dimensional knapsack problem, we have J dimensions
such that

min
x ∈ {0, 1}n, s ∈ RJ

∑

j∈J

|sj |

s.t.
∑

i∈I

wijxi + sj = Cj , ∀j ∈ J.
(26)

If designed with carefully selected weights, we get so-
called market share problems [534] that are explic-

itly designed to be difficult to be tackled by classical
branch-and-bound based methods. These problem in-
stances are dense multi-dimensional knapsack problems
[62, e.g. Chapter 31]. Still, there exist instances with
less than n = 100 variables and m = 8 constraints which
cannot be solved to proven optimality. However, for this
problem class the difficulty depends strongly on the par-
ticular coefficients, the ratio ci/wi, and C. Problems
with comparatively small C can be solved quickly by
DPs and if the wi are small compared to C, heuristics
will give good results. For carefully chosen coefficients,
however, these problems can be difficult to solve with
classical methods to proven optimality. We argue that
this problem class provides a good quantum optimization
benchmarking candidate because there is clear evidence
that it is challenging for classical digital systems to find
(approximate) solutions already — even for small system
sizes in the multidimensional case.

Low Autocorrelation Binary Sequences
(LABS). This is a difficult binary non-linear optimiza-
tion problem [12]. Given a sequence S = (s1, . . . , sk) of
length k with binary si ∈ {−1,+1 }, the autocorrelations
of the sequence correspond to

Aj (S) =

k−j∑

i=1

sisi+j (27)

for j ∈ {0, . . . , k − 1}. Furthermore, the sequence energy
is defined as

E (S) =

k−1∑

j=1

A2
j (S) . (28)

The goal of the optimization problem is to find a sequence
S that minimizes the energy function given above. There
is only one particular instance per size N . Hence, the
frontier of what is possible is always well defined. So
far problems up to size N = 66 and N = 127 (skew-
symmetric) can be solved to optimality. Given the spin-
like binary variables, one might be able to find a model
formulation that could provide a natural fit for a quan-
tum platform. However, the quartic objective function
also imposes some challenges to do so [104].

Quadratic Assignment Problem (QAP). The
QAP [535] has remained one of the great challenges in
combinatorial optimization. For I = {1, . . . , n}

min
x ∈ {0, 1}n×n

∑

i,j,k,l∈I

aijbklxikxjl

s.t.
∑

j∈I

xij = 1, ∀i ∈ I,

∑

i∈I

xij = 1, ∀j ∈ I,

(29)

where aij and bkl describe the problem instance. It is still
considered a computationally nontrivial task to solve to
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optimality even for modestly sized problems, i.e., n ≈ 30.
If modeled as a binary problem, the number of variables
is squared. Modeling this problem as a QUBO results
in a dense formulation. Nevertheless, the long and un-
successful search for improvements in classical methods
indicates that there might be room for quantum advan-
tage.

Sports Timetabling Problems. There are regu-
lar competitions held to find the best methodology for
tackling timetable scheduling [536]. A mathematical for-
mulation that describes problems of this form has been
presented, for example by de Werra [537]. These prob-
lems describe scheduling problems of sports leagues or
tournaments and are generated in a way that ensures
at least one feasible solution exists per instance. These
problems have a strong combinatorial structure meaning
that in different feasible solutions many variables need to
have different values.

Interestingly, for several medium sized instances no
known (and investigated) method was able to find even
a single feasible solution [536, 538]. There are different
kinds of requirements, i.e., problems can be generated
with increasing difficulty. From pure binary problems, to
problems that rely on the counting of integer variables
or binary representations thereof. What is particularly
interesting about these problems is that one can generate
instances at variable size and difficulty to track progress
while it is known that sufficiently large problems are dif-
ficult for state-of-the-art methods.

Spin glasses. The study of optimization problems
with respect to physics Hamiltonians, such as spin glass
models [472, 539], is of great importance and has inspired
the development of classical solvers, including simulated
annealing [540] and simulated quantum annealing [541].
Spin glasses defined over different graphs have already
been used to compare the performance of classical op-
timization with quantum annealing methods [472, 539].
This is enabled by their natural representation as quan-
tum Hamiltonian. More specifically, the mapping of a
spin glass problem onto a QUBO is trivial and leads
to relatively sparse models. Although classical solvers
perform well on spin glasses defined on regular lattices
compared to quantum annealing, the possibility of dig-
ital quantum optimizers having better performance still
exists — possibly on non-regular lattice structures [542].
Moreover, spin glass problems have properties that make
them provably average-case hard for various families of
classical algorithms [95]. It remains open as to whether
quantum algorithms can do better in these average-case
settings, and thus, superpolynomial speedups for spin
glass problems are still possible. Considering all of the
above, we argue that they offer an interesting candidate
for quantum benchmarks, especially in a cross-platform
setting.

E. Demonstrations

Experimental realizations of large scale quantum op-
timization algorithms have to address several challenges.
Not only is it difficult to cope with hardware induced lim-
itations – see Sec. V for further details – but it is already
a non-trivial task to choose an appropriate benchmarking
problem – see Sec. VI D. In fact, most existing hardware
demonstrations of quantum algorithms for optimization
are considering QUBO-type problems with a grid struc-
ture. Several papers argue in the following way: First, it
is stated that a problem is difficult according to complex-
ity theory, e.g., it is NPO-hard. Then, a feasible – but
not provably optimal – solution is found by applying a
quantum algorithm. However, finding a feasible but not
necessarily optimal solution is not necessarily difficult for
state-of-the-art classical methods [473, 488, 543]. Thus,
there is an inconsistency in the argument, since classical
algorithms are ruled out with a reference to complexity
theory while allowing to use quantum heuristics. These
results are valuable capability demonstrations, i.e., they
can be seen as hardware benchmarks rather than per-
formance benchmarks. Nevertheless, there is a potential
for better performing quantum heuristics, and to show
this, we require careful and fair systematic benchmark-
ing. In this section, we present an overview of selected
state-of-the-art experimental quantum optimization re-
sults run on gate-based quantum computers with more
than 16 qubits that represent excellent starting points for
comprehensive quantum optimization benchmarks.

Tab. IV summarizes existing quantum optimization
hardware implementations run with (variants of) QAOA
or VQE and problems corresponding either to (weighted)
MAXCUT, Sherrington-Kirkpatrick, or other instances
of QUBO/PUBO that use more than 15 qubits. The
most commonly employed graph structures are random
3-regular (R3R) graphs or graphs that are particularly
fitted to hardware layouts such as heavy-hexagon or near-
est neighbor grid layout [386, 396]. Besides the target
problem and employed algorithm, the table also lists
the problem size in terms of number variables (which
equals the number of qubits in the considered cases),
the density (which quantifies the number connections be-
tween variables), the best and mean approximation ratio,
the depth of the ansatz in terms of the number QAOA
operator repetitions (except for results from Amaro et
al. [545], which corresponds to the repetitions of a “Re-
alAmplitudes” ansatz with pairwise entanglement [548]),
and the year of publication. All presented instances with
fewer than 50 qubits employ a standard QAOA or VQE
schemes, i.e., they are optimizing the variational param-
eters using the quantum computer. Since the references
report on shot numbers respectively number of parame-
ter update iterations in various ways (or not at all), the
respective numbers are difficult to compare and have,
therefore, not been added to the table. However, for
future benchmarks, providing such numbers in a com-
parable format would be important. The results of Ma-

40



VI BENCHMARKS

Table IV. An overview of state-of-the-art experimental realizations of optimization algorithms on gate-based quantum computers
with more than 15 variables. In cases where data was not made available in the corresponding publication or the accompanying
data repository, we denote this in the respective field with N/A. AR denotes the approximation ratio, given based on the mean
and the best sample value of the experiment, n.n. grid stands for nearest neighbor grid. Furthermore, JSP, FVQE, QAMPA,
GQAOA, and NDAR abbreviate job shop scheduling problem, filtering variational quantum eigensolver, quantum alternate
mixer-phaser ansatz, greedy QAOA, and noise-directed adaptive remapping, respectively.

AR
Problem Algorithm Qubits Density mean best Depth Year Ref.
Sherrington–Kirkpatrick QAOA 17 100% 0.61 N/A 1 ≤ p ≤ 3 2021 [386]
MAXCUT (R3R) QAOA 20 16% 0.64 1 p = 2 2023 [403]
MAXCUT (R3R) QAOA 20 16% 0.94 1 p ≤ 10 2023 [544]
MAXCUT (R3R) QAOA 22 14% 0.67 N/A 1 ≤ p ≤ 3 2021 [386]
MAXCUT (n.n. grid) QAOA 23 13% 0.72 N/A 1 ≤ p ≤ 5 2021 [386]
QUBO (JSP) FVQE 23 N/A 0.88 N/A 1 ≤ p ≤ 2 2022 [545]
MAXCUT (heavy-hex.) QAOA 27 8% N/A 1 p = 2 2022 [402]
MAXCUT (R3R) QAOA 30 10% 0.59 0.83 p = 2 2023 [403]
MAXCUT (R3R) QAOA 32 10% 0.88 1 p ≤ 10 2023 [544]
MAXCUT (R3R) QAOA 32 10% N/A 1 p = 2 2023 [226]
MAXCUT (R3R) QAOA 40 8% 0.58 0.78 p = 2 2023 [403]
Sherrington-Kirkpatrick QAMPA 50 100% 0.55 0.83 p = 2 2023 [264]
Sherrington-Kirkpatrick QAOA 50 100% 0.54 0.84 p = 2 2023 [264]
Sherrington-Kirkpatrick GQAOA 72 100% N/A 0.92 p = 1 2023 [229]
Sherrington-Kirkpatrick NDAR-QAOA 82 100% 0.87 0.97 p = 1 2024 [546]
QUBO (heavy-hex.) QAOA 127 2% 0.67 0.85 1 ≤ p ≤ 2 2023 [438]
PUBO (heavy-hex.) QAOA 127 2% 0.65 0.84 1 ≤ p ≤ 2 2023 [438]
PUBO (heavy-hex.) QAOA 127 2% 0.73 0.89 1 ≤ p ≤ 5 2023 [547]
QUBO (heavy-hex.) QAOA 414 0.6% 0.57 0.69 p = 1 2023 [547]
PUBO (heavy-hex.) QAOA 414 0.6% 0.56 0.68 p = 1 2023 [547]

ciejewski et al. [264] with 50 qubits consider both QAOA,
and QAMPA [263], a hardware-efficient ansatz derived
from QAOA and using the same number of entangling
gates. The 72 qubit experiment by Dupont et al. [229]
on the other hand, employs a greedy procedure. In each
iteration cycle, several variables are set to values that
are evaluated with a classical procedure, hence, produc-
ing a smaller optimization problem to be solved on the
quantum computer. Further, the demonstrations with
more than 100 qubits/variables [438, 547] employ either
a gridsearch over ∼7000 parameter configurations or con-
centration of parameters [222–224], also cf. Sec. IV A1,
where QAOA on large instances can be run on quan-
tum hardware using parameters found for classically
trained smaller (e.g., 16-qubit) instances [547]. Finally,
the recently proposed Noise-Directed Adaptive Remap-
ping meta-heuristic improves algorithm performance on
noisy hardware by adaptively gauge transforming the
cost Hamiltonian, with its effectiveness demonstrated for
QAOA with 82 qubits [546].

The table illustrates that most experiments with
higher qubit numbers have lower problem densities. In-
creasing the density for a larger number of qubits would
require additional SWAP gates, cf. Sec. V, hence, re-
sulting in increased hardware noise. This phenomenon
manifests itself also in the resulting approximation ratios.
Considering the approximation ratios, it should be noted
that for common graph problems such as MAXCUT the

objective values usually lie between 0 and a maximum
value Cmax, while for general problems such as Ising mod-
els usually the objective values are inside an arbitrary
interval [Cmin, Cmax]. Therefore, a fair comparison of ap-
proximation ratios necessitates that the data of each ref-
erence is expressed consistently. Thus, we first convert a
problem into a minimization problem, and then, we nor-
malize by the range |Cmax−Cmin|, i.e., we define the ap-
proximation ratio as (Cmax−⟨C⟩)/(Cmax−Cmin), where
⟨C⟩ denotes the achieved objective value. In fact, some
published values do not correspond to range-normalized
data, such as the ones from Harrigan et al. [386]. There-
fore, the values listed in the table are computed from the
corresponding data repositories. Moreover, several refer-
ences give the approximation ratio based on the best sam-
ple (which may improve with a higher number of shots)
and others on the mean sample value ⟨C⟩. Hence, these
values are listed separately in Tab. IV.

In addition, we would like to highlight a work by Fuller
et al. [237] and Moses et al. [226], where strategies have
been investigated to address problems with more vari-
ables than qubits. In the former, MAXCUT problems on
a planar graph with up to 40 variables are solved with
QRAO using up to 15 qubits, cf. also Sec. IV A1. In fact,
the approach achieves an approximation ratio of 0.905 for
the 40 variable problem executed on quantum hardware.
In the latter, a variant of QAOA with mid-circuit mea-
surements and qubit re-use has been tested which could
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be scaled to 130 variables on 32 qubits, achieving an ap-
proximation ratio around 0.8. In general, the intrinsic
differences between the method employed in this work
and standard QAOA / VQE approaches make it diffi-
cult to compare these results with the ones presented in
the rest of this section. Nevertheless, we believe that in-
creasing the variable-to-qubit-ratio beyond one is a very
interesting direction to scale towards relevant problems.

To conclude, these demonstrations build a foundation
for future quantum optimization benchmarks. They also
highlight the difficulty as well as importance to agree on
common metrics to achieve comparable and fair bench-
marks. This section is a first attempt for a coordinated
effort to achieve this goal.

VII. ILLUSTRATIVE APPLICATIONS

Identifying optimization problems that are promising
candidates for a practically relevant quantum advantage
is challenging. This is due to the many open questions
about future performance of quantum optimization algo-
rithms, as well as the heuristic nature of many of them.
Further, benchmarking problem instances known to be
hard for today’s solvers are often (hand-)crafted. Thus,
even if a quantum advantage could be shown for one,
it would not necessarily generalize to other problem in-
stances. While these benchmarks are still crucial to iden-
tify promising problem structures and track algorithmic
progress, we also need to look into real-world problem
instances. Further, there might be a selection bias, as
already discussed in Sec. VI D. We are often focusing on
models where we have an idea about how to solve them.
New formulations of a problem, for which no solver may
exist yet, are often unconsciously discarded.

Thus, within this section, we discuss two exemplary in-
dustries, i.e., finance and sustainable energy — two fields
that have many outstanding (optimization) challenges.
For general discussions on the potential applicability of
quantum algorithms for finance and sustainability we re-
fer the interested reader to the following resources [549–
554]. Here, we discuss families of optimization problems
arising in the two industries with increasing model com-
plexity. Importantly, the goal of the following discus-
sion is not to claim that the selected use cases are the
most likely candidates for near-term quantum advantage.
Instead, they should serve as a playground of (possibly
simplified) real-world problems that can help to set the
course for research and link to problem classes discussed
in Sec. IV. Further, the discussion highlights that being
practically relevant requires taking into account many
details and complications that most published results in
the related quantum optimization literature are lacking.
Thus, defining a family of problems with increasing com-
plexity helps to determine progress on the quest towards
quantum advantage in optimization.

A. Financial Asset Allocation

Optimization problems in finance span a wide range of
applications, from the quantification and management of
risks, to asset allocation, option pricing, macroeconomic
modeling, algorithmic trading, lending and more [555].
The goal of this section is to present a variety of chal-
lenging optimization problems from the financial realm
that may provide interesting use cases for quantum algo-
rithmic development, as the technology advances.

Firstly, we give a short overview of the field and a dis-
cussion of advancements in quantitative financial theory
pertaining to optimization. We provide a few example
problems and a discussion of their practical limitations in
Sec. VII A 1. Then, we present the current state of quan-
tum optimization and early investigations of use cases
in finance in Sec. VIIA 2. Next, we provide a deep-dive
into a particularly hard problem with many unresolved
questions and evident practical relevance: the asset al-
location problem and different formulations thereof, with
increasing levels of complexity in Sec. VIIA 3. Finally,
in Sec. VIIA 4, we conclude and outline further research
directions that could act as an exploration ground for
quantum optimization applications in finance.

1. Overview

The global financial system is the backbone of eco-
nomics, embedding into every part of society through
either direct digital channels, such as monetary trans-
actions and contracts, or in the form of indirect physical
carriers, such as transferable goods and services. It repre-
sents the world’s largest human-made regulated stochas-
tic network, hosting trillions of interactions between mar-
ket makers, traders, consumers, regulatory control and
monitoring entities. The system is powered by a variety
of distributed computing technologies and operates on
the shoulders of over 120 years of financial theory, heuris-
tic analysis, and a broad range of mathematical tools and
probabilistic models informing decision making — within
regulatory and business constraints. This enables one to
manage risk, counter financial crime, derive investment
and business decisions, and service consumer needs with
personalized experiences [556].

Despite a century of progress, many models in regu-
lated financial institutions suffer from different degrees
of approximations and model trade-offs due to irregular
and/or scarce information and the need to balance model
complexity, computational feasibility, and regulatory, as
well as business constraints. This is generally driven by
challenges originating from fundamental unknowns un-
derlying the interaction dynamics between market par-
ticipants [557, 558], data quality anomalies in observables
and the overall fast-paced change of the world. The latter
may gradually become a notable challenge for many mod-
eling trade-offs relied on today, and thus, could influence
the financial system’s systemic resilience [559–561]. For
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example, more complex probabilistic drivers are emerging
from new consumer-banking interactions [562], climate
change and energy transmission risk guidelines [563], to
the economic impact of changing geopolitical dynam-
ics [564]. This demands the development and analysis
of new modeling techniques and optimization algorithms
to better inform decision making under uncertainty. In
many finance problems, even small improvements can
have a significant impact. Although, it is still unclear
if and how a potential quantum advantage could be real-
ized for financial optimization problems – even as the un-
derlying technology advances – a thorough understand-
ing of the broad spectrum of classical models and their
limitations in the financial industry could help guide the
development of quantum optimization approaches for use
cases that deal with uncertainty in objective functions,
decision variables or constraints.

While not aiming for rigor or completeness, the fol-
lowing provides a bigger picture and short recap of ad-
vances and challenges in financial optimization problem
domains for their respective input dependencies. This
links to the roots of quantitative financial theory and the
understanding that we cannot explain with confidence
why the prices of financial assets move, but only attempt
to model how they move. As a result, the modeling
of price dynamics and volatility has become a core fo-
cal point in finance with many models aiming to cap-
ture its essence: from Brownian motion [557] to per-
fect delta-hedging — assuming no price jumps and fi-
nancial crashes [565]; capturing volatility clustering phe-
nomena [566] with GARCH [567] and Heston [568] mod-
els — assuming volatility fluctuations decay over one
timescale; Multifractal Random Walks [569] and Rough
(Heston) Volatility models [570–572] capturing most styl-
ized facts [573] from empirical observations of financial
time series, such as heavy-tailed probability distribu-
tions [574]. This list summarizes just a few milestones
over a century of financial modeling, effectively demon-
strating that capturing market dynamics with such com-
plex input patterns is difficult.

There are also many optimization problems in finance
that do not need to account for input uncertainties to
prove valuable for business, such as linear programming
problems (see Sec. IVB), quadratic programming prob-
lems (see Sec. IV A), and (mixed) integer programming
problems (see Sec. IVC). However, for most instances
corresponding to these classes, there are established, well-
performing classical solvers, such as interior-point and
simplex methods for linear and quadratic programs, or
branch-and-bound and combinations with cutting-plane
methods for integer programs. Nevertheless, these prob-
lems form an excellent ground to benchmark and develop
quantum optimization algorithms and potentially detect
value in specific financial applications.

Financial optimization problems of substantial com-
plexity that face limitations when being approached with
state-of-the-art solvers may, hence, be interesting sub-
jects for the exploration of quantum algorithms and are

summarized here with a few examples:

• Dynamic programming problems (see Sec. IV D) for
pricing and hedging of derivatives on binomial lat-
tices, or structuring of collateralized mortgage obli-
gations with maximized profits from issuance;

• Stochastic programming problems (see Sec. IV E)
for minimizing bond portfolio credit risk using
a Conditional Value-at-Risk measure, or asset-
liability management maximizing wealth, or retir-
ing outstanding debt at minimal cost, or creating
a synthetic option strategy to reach desired payoff
at the end of a planning horizon;

• Robust programming problems (see Sec. IV F) for
optimizing portfolios while taking estimation risk
of input parameters into account, or determining
lower and upper bounds on the price of a security;

• Multi-objective programming problems (see
Sec. IV G) for dynamic margin-volume bal-
ancing to price mortgages combining optimal
revenue, balance sheet and business objectives,
or optimizing an investment portfolio of stocks
combining return, risk diversification, incentivizing
decarbonization and Environmental, Social, and
Corporate Governance (ESG) [575] objectives.

2. Related Work

The majority of existing quantum optimization re-
search in finance focuses on investigating quantum vari-
ants of linear and quadratic optimization problems and
simplified (mixed) integer programs. Most publications
employ a QUBO formulation, combined with a ground
state solver such as QAOA or VQE (see Sec. IV A) that is
executed on numerical simulators, gate-based hardware,
or annealers, typically for systems with less than 50 vari-
ables. In the following, we present a selection of the
corresponding papers.

Brandhofer et al. [576] study portfolio optimization us-
ing QAOA for quadratic binary optimization constrained
by the number of assets. That is, the presence or absence
of a particular stock in a portfolio has a value of 1 or
0 respectively, and the sum of the assets is the value of
the investment, which is a (simplified) budget constraint.
Risk is minimized by having the smallest combined co-
variance between all pairs of stock values as represented
by a covariance matrix; this minimum ensures portfolio
diversification.

In a numerical study, Hodson et al. [577] compare a
Quantum Alternating Operator Ansatz to QAOA for
models that incorporate trading and investment con-
straints. Baker and Radha [400] evaluated the solution
quality as functions of qubit number and circuit depth.
Mugel et al. [578] compare methods for dynamic port-
folio optimization on quantum processors using 8 years
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of data for 52 assets with quantum annealing, VQE, and
a quantum-inspired optimizer based on Tensor Networks
using pre-processing to reduce the problem dimension.
Venturelli et al. [579] compare the performance of reverse
quantum annealing for portfolio optimization problems
formulated as QUBOs with classically executed genetic
algorithms. Constrained QAOA solutions to portfolio op-
timization are also presented in Herman et al. [265], who
use Zeno dynamics with rapid sampling to restrict the
solutions to a constrained subspace. Giron et al. [580]
use QAOA to study the problem of collateral optimiza-
tion — the optimal allocation of financial assets to sat-
isfy obligations at minimum cost. In a broader context, a
quantum optimized portfolio allocation could feed into a
risk model evaluated on a quantum computer [581–583].

Other finance optimization applications that have been
proposed for quantum algorithms include transaction
settlements, where the goal is to find the maximum
number of cash transactions between multiple parties
given their liquidity [320], and Anti Money Laundering,
which matches network motifs on snapshots of transac-
tion graphs [584].

3. Deep Dive: Optimal Asset Allocation

Among the hardest problems in the financial industry
is the market adaptive search for an optimal portfolio
composition with an investment allocation in financial
assets that maximizes the return of investment within a
given risk appetite and time frame, while complying to
possibly other objectives and constraints. Reasons for
its complexity relate to the stochastic nature of the fi-
nancial system and various statistical and computational
challenges as discussed in Sec. VII A 1. It is also a prob-
lem where marginal improvements in practical solutions
can have substantial impact. In this context, the term
solution should be discussed. It is difficult to find a prov-
able or universal solution, instead one accepts an outcome
with different forms of trade-offs to encompass particular
use case requirements, market environments, asset class
restrictions or investment scenarios. While over the past
70 years, both academic researchers and industry practi-
tioners have created a large repertoire of targeted heuris-
tic approaches and rigorous mathematical tools, it re-
mains one of the most hunted challenges in finance [585].
This partially explains why the quantum computing com-
munity is exploring this use case in various quantum op-
timization for finance publications [576, 577, 586, 587].
However, we stress that it remains unclear how to sys-
tematically advance towards the complexity and value
frontier at which a real-world practical impact can be
realized.

In this section, we introduce the concept of value-
guided levels with examples representing incremental in-
crease in use case complexity by respective problem for-
mulations — for reasons of simplification in the mean-
variance framework, as illustrated in Fig. 8. The aim is
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Figure 8. An illustration of the optimal asset allocation at
time t0 (model definition), considering perfect predictors of
asset valuation at the end of investment horizon t1 given
prior statistics ω1, ω2, . . . (level 1), then taking uncertainties
of these predictors into account but still with a limited view
until t1 (level 2), before anticipating a multi-period allocation
strategy and respective uncertainties beyond t1 (level 3).

to systematically explore different challenges of this use
case and possibly inspire the exploration and research of
quantum optimization algorithms in this domain.

Model Definition. From the ground up, it needs to
be well understood within which environment we are at-
tempting to construct an asset allocation problem. For
instance, we obviously cannot comprehend all the mar-
kets with interactions between millions of traders with
each a different investment style, behavior, risk limits or
trading frequency. But rather than accepting the entire
universe of possibly feasible portfolios S, a preliminary
steering of the downstream complexity for all other lev-
els can help build up and realistically frame the use case.
The field of investing is found with very different business
domains, expectations and requirements that yield var-
ious degrees of complexity to start with. For example,
a wealth manager for retail, affluent or high-net-worth
individuals may have different requirements for compos-
ing or rebalancing investment portfolios than say, a large
asset manager. While this seems rather obvious, it is key
to formulate the model purpose, and thus, its expected
performance. In particular, an informed pre-selection of
diversified asset classes, industry exposures, risk profiles
or expected dynamics for a given investment time hori-
zon helps build a more robust starting point, t0, for the
optimization problem.

Level 1. At this stage we begin with the simplest
problem formulation based on Harry Markowitz’s intro-
duction of modern portfolio theory in 1952 [588], by for-
malizing portfolio diversification and optimal return-risk
trade-offs with a mean-variance framework. It assumes
a risk-averse myopic investor in a frictionless, one-period
financial market with exact knowledge of parameters cap-
turing asset price dynamics. The aim is to find an op-
timal portfolio x = (x1, ..., xN ) ∈ R

N from permissi-
ble portfolios S with fractions xi of a fixed budget to
be fully invested into N pre-selected, non-redundant as-
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sets at time t0, based on estimates of expected returns
µ ∈ RN and their positive semi-definite covariance ma-
trix Σ ∈ RN×N at the end of one investment period t1.
This can be formulated in three equivalent variants as
quadratic programming problems with linear constraints
and without uncertainty in the parameters:

min
x ∈ RN

1

2
x⊤Σx

s.t. µ⊤x ≥ rmin,

1
⊤x = 1,

x ∈ S,

(30)

where the convex quadratic objective minimizes the port-
folio risk xTΣx with an expected minimal portfolio re-
turn rmin. Instead, one can also maximize the expected
return µTx while bounding the risk xTΣx ≤ γ2 as a
quadratic constraint, which can be transformed into conic
form [589]. Another alternative is to maximize a con-
cave quadratic utility function µTx−λ/2 xTΣx with the
risk-aversion factor λ for steering the return-risk trade-
off and variable focus on tail risk. However, all of these
formulations are relatively trivial to solve, especially in
the continuous setting, where a closed-form solution may
be derived using Lagrangian multipliers [590] considering
equality constraints [591] and with Karush-Kuhn-Tucker
conditions considering also inequality constraints [592].
Notably, realistic market conditions are not captured by
this model formulation. Nevertheless, this simple model
offers excellent benchmarking opportunities to evaluate
advances in quantum technology. In fact, the model com-
plexity can also be increased in a controlled manner by
adding additional constraints that might match a pre-
defined investment strategy and, as the term x ∈ S is
meant to reflect, to further constrain the universe of port-
folio configurations and test with an increasing number
of additional linear constraints that match a pre-defined
investment strategy. In practice, for a sufficiently large
number of constraints one often has to rely on numerical
approaches. As discussed in Sec. VIIA 2, so far, most
quantum approaches to this use case employ QUBO for-
mulations with binary or integer encodings, which result
in an NPO-hard combinatorial problem and constraints
that are converted into penalty terms [593] of the ob-
jective function. Since these penalty terms only facili-
tate approximate encoding of the constraints, additional
substantial post-processing would be required to achieve
reliable results.

Level 2. A severe limitation of Level 1 is the ig-
norance of uncertainty in the inputs and instability of
the optimization [594]. Thus, it is of limited practical
value to derive actual investment decisions. In fact, the
optimization is highly sensitive to small changes in the
estimated expected returns µ and covariance matrix Σ,
leading to large differences in the resulting optimal port-
folio x. At this stage, the problem formulation is ex-
tended to take the stochastic nature of underlying ob-

servables into account. The root challenge comes from
the portfolio-specific operating regime of the observation
ratio q = N/T given the prior number of empirical (sam-
ple) realizations T for the N considered assets at t0. In
the large limit with q → 0, the sample estimators µ and
Σ would converge to the true realized (population) µtrue
and Σtrue, respectively. But in reality most asset alloca-
tion problems suffer from a lack of data (except maybe in
high-frequency trading) with q > 0. For example, a real-
istic scenario for stocks could be N = 600 with T = 2500
of about 10 years of daily returns and, thus, q = 0.24. In
case of a few thousand stocks, the issue of stock lifetime
and structural evolution of markets over time becomes
relevant, shifting the problem into the large dimensional
limit regime with q ∼ 1 and fast diverging estimators
with q > 1. If one would aim to increase the T statis-
tics with intra-day observations, one may not capture the
dynamics for lower frequency trading strategies anymore
and possibly introduce biases in the resulting optimal x.
This makes the problem very complex, even for a small
number of assets, and usually forces the industry to sim-
plify S at the level of model definition. In the following,
we are going to present several approaches to address
this challenge, ordered by increasing levels of complex-
ity: first we de-bias and reduce the estimation error of
µ and Σ prior to the optimization, then adding regular-
izing techniques to the optimization itself, before comb-
ing both. Among various methods, the Black-Litterman
model [595] could be leveraged to create an expected re-
turn prediction by combining actual market returns with
independent expert beliefs about their future, taking into
account, for instance, recent news, economic forecasts,
analyst ratings, or financial statements [596, 597]. Alter-
natively, a robust optimization problem can be formu-
lated to achieve a stabilizing effect on µ during the opti-
mization itself. For this purpose, we define the ellipsoidal
uncertainty set Uµ = {µ | (µ− µ0)

⊤Q−1
µ (µ− µ0) ≤ κ2},

where Qµ is the covariance matrix of estimation errors in
µ, and κ is the uncertainty aversion defining the width of
the uncertainty. This induces a new optimization prob-
lem by replacing µ with:

µ̃(x) := argmin
µ∈Uµ

µ⊤
0 x− κ

√
x⊤Qx. (31)

Even if the resulting improved estimate of µ, denoted
by µ̃, still substantially deviates from µtrue, finding the
minimal out-of-sample risk portfolio for it may still be
valuable in practice. The sample covariance matrix Σ for
q ∈ (0, 1] can suffer from small eigenvalues near zero,
leading to a potential underestimation of the realized
(out-of-sample) risk exposure at t1. To address this issue,
Random Matrix Theory [598–600] provides efficient tools
to de-bias the eigenvalues of Σ such that the resulting Σ̃
is closer to Σtrue [601–605]. A factor modeling method to
represent the portfolio returns with a small number M of
common factors [606] can additionally help to circumvent
the curse of dimensionality if M ≪ N,T . Furthermore,
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one may want to further regularize Σ by adding L1- or
L2-norm constraints to the optimization. Arguably one
of the most important ones is the consideration of a trans-
action cost function C(x | x0) that estimates the cost for
rebalancing the portfolio x0 at t0 towards the optimal
portfolio x at t1, taking for instance broker fees and im-
plementation shortfall into account. This results in the
following problem formulation:

max
x ∈ RN

µ̃⊤x− C(x | x0)−
λ

2
x⊤Σ̃x

s.t. 1
⊤x+ C(x | x0) = 1,

x ∈ S,

(32)

where C determines the complexity of the problem and
depends on how realistic transaction costs should be rep-
resented. For example, a piecewise linear non-convex
function capturing transaction volume and fixed costs for
buying and selling an asset can be formulated, or a more
realistic variant with stronger penalization on turnover
considers costs proportional to the L1-norm of rebalanc-
ing with C(x | x0) = β∥x− x0∥1, where β > 0 denotes a
cost parameter. While formulations of this problem that
are based on C employ strong regularization on Σ, de-
pending on the respective q regime set out in the model
definition, the resulting x may still be biased and sensi-
tive to estimation errors. This can be further addressed
with two methods. The first one uses a non-parametric
bootstrap resampling approach [607] and the second one
uses a nested clustering approach [608] that partitions
Σ̃ by forming clusters of highly-correlated assets. The
latter approach can help to prevent error propagation of
intra-cluster noise across clusters. Due to a reduction of
dimensionality and better control of noise isolation with
smaller sample sizes, the exploration of near-term varia-
tional quantum algorithms with realistic stock portfolio
sizes may become possible in this setting.

Level 3. Until this point we have restricted our-
selves to a static one-period market environment. At
this level, we introduce the next complexity layer by
considering market dynamics and temporal dependency.
For example, similar to volatility, correlations fluctuate,
evolve with time and jump or even flip signs [609, 610].
However, our understanding of correlation dynamics is
nowhere near our understanding of volatility, which cre-
ates an interesting domain to explore with quantum com-
puting. Similarly, this is the case for multi-period op-
timization, which could help capture inter-temporal ef-
fects, such as accounting for time-varying constraints,
return forecasts, cost-favorable positions for trading in
following periods, or foreseeable events impacting risk,
trading volume or liquidity. Although there is a lot of
research interest, given the computational hardness of
the multi-period domain, most practitioners, as well as
classical enterprise solver suites, cannot effectively tackle
these use cases [585]. Essentially, the h-period optimiza-

tion problem can be generally formulated as follows:

max
xt+1, . . . , xt+h

E [X (xt+1, . . . , xt+h) | Ft]

s.t. x ∈ Θ,
(33)

where X is the inter-temporal utility function given the
filtration F associated to the probability space at the
tth period with a set Θ of constraints. If we can as-
sume that X is separable in time, then the objective
function can be written as minx{a(x) + b(x)} with a
static (forward-looking) part a(x) =

∑
τ aτ (xτ ) and a

dynamic (coupling) part b(x) =
∑

τ bτ (xτ−1, xτ ) with
τ = t + 1, . . . , t + h, and their respective separation of
constraints becomes x ∈ Θ(a) ∩ Θ(b). Here, aτ rep-
resents a one-period optimization program such as the
mean-variance terms discussed in Levels 1 and 2, while
bτ serves as an intra-period regularization penalty such
as the C(xτ |xτ−1) transaction cost functions discussed in
Level 2. Problem formulations of this form and other
multi-objective settings are gaining substantial interest
in the financial industry, and will play a key role in the
coming years. Thus, it is interesting to investigate new
approaches for this use case with quantum technology
and inspire the development of new quantum algorithms.

This concludes our short deep-dive illustration with
increasing levels of complexity and selected examples
within the mean-variance framework. But notably, this
can be extended as our exploration of quantum solutions
evolve. In particular, the development of new quan-
tum optimization solutions should transition from cur-
rent Level 1 investigations to Level 2 and 3 challenges,
and with that drive research towards handling optimiza-
tion problems under uncertainty in order to aim for valu-
able contributions to the financial industry.

4. Outlook

The financial industry offers a broad spectrum of hard
optimization problems and demands the exploration of
new solution approaches to tackle many of today’s trade-
offs. This short condensed review provides a satellite
view of open optimization challenges relevant to the fi-
nancial industry. A selection of use cases are discussed
along with their classical challenges and how optimiza-
tion problems can be constructed with increasing com-
plexity levels. The main challenge remains to effec-
tively combine both the modeling and optimization of
problems to achieve practically relevant results for in-
dustry use cases. However, there are many more di-
rections to investigate, such as handling skewed, non-
Gaussian heavy tailed probability distributions, Bayesian
approaches and industry sector or subgroup specific pri-
ors, or non-Markovian decision processes. All of these
aim to inspire and guide the exploration of research,
development and benchmarking of potential industry-
specific quantum optimization applications.
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B. Sustainable Energy Transition

Sustainability describes the goal of a responsible use of
resources to guarantee a long-term existence of humanity
on earth in a healthy environment. While sustainability
has multiple dimensions, a common focus is put on envi-
ronmental problems, such as countering climate change.
For this paper, we focus on a subsection of sustainability,
that of sustainable transition of the energy sector. It is
a particularly relevant area as it is rich with optimiza-
tion problems with societal benefit. We discuss multiple
problems in this domain that can serve as illustrative test
cases with different challenges to benchmark optimiza-
tion algorithms. The use cases described here serve as
an interesting playground to generate examples derived
from real-world data to study corresponding quantum
optimization algorithms. While they might not necessar-
ily be candidates for a practical quantum advantage in
near future, they can help to improve our understanding
about problem characteristics where quantum optimiza-
tion may have some potential over classical algorithms
and where not.

1. Power Grid Overview

For decades, society has relied on carbon-intense and
centralized energy sources [611]. Few powerful genera-
tion sites were responsible for meeting energy demands,
and adjusting energy generation was relatively simple
with fossil fuels. However, the energy sector is changing
rapidly. Technological advancements and climate-change
awareness have led to an increase in renewable energy
sources. Power grid digitization [612, 613] has resulted in
greater connectivity and interactions between customers,
producers, utilities, and grid operators. This has revolu-
tionized how we manage and optimize energy resources
by enabling real-time monitoring, data-driven decision-
making, and enhanced control over energy consumption
and distribution.

However, the transition to renewable energy sources
and the digitization of the power grid are not without
challenges. Renewable energy sources such as solar and
wind are intermittent and probabilistic in nature, and,
they require the coordination of a large number of as-
sets; for example, to match energy supply with demand.
Energy storage solutions are essential for managing the
variability associated with renewable energy production,
but they present their own set of challenges, including
cost and scalability. Additionally, power grid digitiza-
tion introduces multiple challenges including cybersecu-
rity and data privacy. Adapting grid systems to this new
paradigm will necessitate substantial investment and in-
novative solutions, potentially surpassing the capabilities
of classical computer systems.

In this section, we discuss three types of optimization
problems in power grids. We start with a brief overview
of the area in Sec. VIIB 1 and related quantum opti-

mization work, in Sec. VIIB 2. In Sec. VII B 3, we in-
troduce electric mobility (e-Mobility) and present three
families of e-Mobility use cases and how they connect to
the problem classes and algorithms in Sec. IV. Finally,
Sec. VIIB 4 concludes and outlines potential research di-
rections.

2. Related Work

Research in quantum optimization for power grids is
currently in its early stages, with a predominant focus
on the unit commitment problem (UCP) [312, 614]. Ko-
retsky et al. [615] consider the UCP for power networks
by combining quantum and classical methods: QAOA
handles the binary on-off variables for each unit and a
classical optimizer handles the continuous variables for
how much power each unit should provide. Takahashi
et al. [616] writes the UCP as a QUBO problem for net-
work switches equal to 0 or 1 if open or closed, subject to
connection, voltage, and maximum current constraints.
They model the constraints as penalties in the objective
function and solve the problem with annealing. Simi-
larly, Halffmann et al. [617] and Braun et al. [618] for-
mulate the UCP as a QUBO with penalty terms. Mahroo
and Kargarian [619] decompose the UCP into a sequence
of quadratic continuous and binary (unconstrained) sub-
problems, similarly to ADMM [317, 318], cf. Sec. IVC.
Other non-UCP quantum optimization works in power
grid include [620, 621], which formulate a power flow
problem as a QUBO with constraints encoded as penal-
ties in the objective, and [622], which addresses an energy
supply scheduling problem with storage, where the opti-
mization is formulated as a constrained quadratic pro-
gram and solved with annealing.

All of the works mentioned above have in common
that they focus on small, illustrative problems and that
they explore simple mathematical models (mostly QU-
BOs) that do not capture the complexity of real-world
use cases. Although these works may not have a direct
practical impact yet, they could help to pave the way
for advancing the corresponding theory, problem formu-
lations, algorithms, and to understand practical require-
ments on optimization solutions to have practical impact.

3. Leveraging the Flexibility of e-Mobility

As outlined in Sec. VIIB 1, the world is progressively
adopting carbon-neutral energy generation methods [623,
624]. While renewable sources like wind and solar power
play a vital role, they often produce energy when demand
is low. To address this disparity, it is crucial to invest
in energy storage solutions, such as batteries, and the
optimized coordination thereof.

Electric vehicles (EVs) are an energy storage solution
of increasing importance. In 2022, the number of EVs
on the road exceeded 26 million [625, pp. 14], and the
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global fleet of EVs is expected to grow to about 240 mil-
lion in 2030 — 10% of the road vehicle fleet [625, pp.
109]. To put this opportunity in perspective, EV batter-
ies can typically store 20 to 100 kWh and can have an
output power of 10 kWh when connected to a Type 2
charger. Thus, 400 EVs, in principle, can deliver 4 MWh
of energy to the grid, which is approximately the same
output power of an energy storage substation [626].

To leverage e-Mobility’s potential to stabilize the en-
ergy network and balance supply and demand, it is cru-
cial to address three challenges: The first challenge is
to increase the EVs’ penetration, for example, by facil-
itating access to charging infrastructure [627]. This is
particularly important in densely populated areas where
overnight charging may only be available for some EVs.
The second challenge is to effectively control how EVs
store energy [628]. Unlike conventional energy storage
systems, EVs consume energy from the grid, and their
batteries must be sufficiently charged by strict deadlines.
The final challenge is to integrate EVs into the power grid
infrastructure [628], enabling energy retailers to store en-
ergy in EVs that they can then inject back into the grid,
i.e., an EV acts as a “virtual power plant.”

Next, we discuss three optimization-related e-Mobility
use cases, each addressing one of the challenges men-
tioned earlier. We start with a “core” mathematical prob-
lem and then extend this to a family of problems with
increasing practical relevance, linking it to the problem
classes discussed in Sec. IV.

Use case 1: Scheduling EVs in a parking site.
This use case consists of allocating EVs to parking spaces
in a parking site [629, 630]. In short, consider a parking
site that has two types of parking spaces: regular park-
ing spaces and parking spaces where EVs can be plugged
in. EVs arrive at the parking site indicating the kWh
they want to replenish at each time, e.g., in each hour.
With that information, the parking site administrator de-
cides where to allocate the EVs to maximize the charging
volumes and thereby profit. To simplify the problem for-
mulation even further, let us assume that the EVs arrival
and departure times are known in advance. Figure 9
shows the problem schematically, where the y-axis in the
figure represents the EVs. The goal is to select EVs such
that the number of EVs at a given time does not exceed
the number of chargers and the input power of the site.

We can formalize the problem as follows. Let N be
the number of EVs and K the total number of intervals
(e.g., 24 intervals, where each interval corresponds to an
hour). Next, let un ∈ {0, 1}K be a vector that indicates
the (known) presence of EV n ∈ {1, . . . , N} at time k ∈
{0, . . . ,K−1}, and vn ∈ RK be the value that the parking
site will obtain by admitting EV n (e.g., dollars). Thus,
the inner product vTnun denotes the total value for the
parking site if admitting EV n. Also, let dn ∈ RK , where
the k-th entry indicates the energy requested by EV n at
time k. The parking site has a maximum input power of
E kWh and has a maximum capacity of M EVs. Then,

E
V

s

time8 am 10 pm

10 kWh
5 kWh

0 kWh
1 kWh

Figure 9. Illustrating a possible instance for the problem of
scheduling the charging of EVs in a parking site (use case 1).

the optimization problem is the following:

max
x ∈ {0, 1}N

N∑

n=1

xn(v
T
nun)

s.t.

N∑

n=1

xnun,k ≤M, ∀k,

N∑

n=1

xndn,kun,k ≤ E, ∀k,

(34)

where xn denotes the decision variable of whether to ac-
cept EV n to a parking space where it can be plugged in
or not. That is, Eq. (34) is a binary optimization with
2K knapsack constraints; K knapsacks for the parking
spaces, and K knapsacks for the energy available in the
parking site.

Some instances of the multi-dimensional knapsack
problems can be challenging to solve, even when the prob-
lem instances are relatively small, cf. Sec. VI D. Thus,
studying problems of the form in Eq. (34) can be of inter-
est for near-term quantum optimization algorithms with
a potential practical application. Of course, we need
to benchmark specific practically relevant problem in-
stances to assess whether they are difficult classically. If
the instances prove difficult, we can proceed to explore
whether there is an opportunity for a practically rele-
vant quantum advantage. Since reality and real world
scenarios are often more delicate, there will likely be
additional constraints and cost function adjustments to
Eq. (34) thereby increasing its general difficulty for clas-
sical solvers. Some interesting problem extensions for
Eq. (34) towards practically relevant applications are the
following:

1. The power available in a parking site may vary over
time; for example, when the parking site shares its
connection to the grid with another infrastructure
or a local renewable energy source is considered,
such as a solar power plant.

2. The decision of admitting/rejecting EVs is carried
out via a pricing policy that affects the willingness
of the drivers to use the parking site.
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3. Increase the EV charging flexibility. EVs can have
a desired state of charge at one or multiple points
in time (e.g., at least 60 kWh by 6 am).

4. The EV arrivals and departure times may not be
known in advance, as described at the beginning of
the section. Additionally, the forecast of renewable
energies includes uncertainties if considered in (1).

The original problem in Eq. (34) can be modeled as
a QUBO. The original objective function is linear, i.e.,
the corresponding cost matrix will be a diagonal matrix,
cf. Sec. IVA 1, and the constraints can, for instance, be
encoded as penalties into the objective, cf. Sec. IV A 1,
which, however, will immediately imply a dense cost
matrix. The extensions (1)-(4) affect the difficulty of
Eq. (34) in different ways: (1) imposes additional con-
straints that may result in an increasing problems size,
which may result in more qubits or having to encode
more binary variables per qubit. (2) will imply adding
continuous variables and results in a MIP. (3) adds flex-
ibility to how EVs charge and discharge, which may fur-
ther increase the number of decision variables. Finally,
(4) introduces uncertainty to the optimization problem,
potentially necessitating a shift in the formulation from
offline optimization to online or stochastic optimization
such as MDP, cf. Sec. IVE.

Use case 2: Charging and discharging EVs. Con-
sider the scenario where a fleet of EVs are plugged in
from 6pm to 6am the next day, e.g., delivery vehicles.
The fleet owner allows the energy supplier to use the
EVs as energy storage subject to the constraint that the
EVs are fully charged at departure time (i.e., by 6am the
next day). The goal of the energy supplier is to pro-
vide electricity to the end customers at minimum cost.
In particular, the energy supplier would like to store en-
ergy in the EVs when this is cheap, and use the energy
in the EVs to power the grid when energy production is
low or expensive to buy from the energy markets. The
problem is challenging because the energy demand and
energy prices may vary over time.

We can formulate the problem above as a deterministic
discrete-time control problem, cf. Sec. IVE. In short, we
divide time in slots k ∈ {0, . . . ,K− 1} of equal duration,
where K defines the total considered time horizon. The
duration of a slot can be, for example, 1 hour, and the
horizon 12 hours. Next, let N be the number of EVs
and xk ∈ RN

≥0 represent the state of charge of the EVs
at time k. In each time slot k, the controller selects an
action from the action set A(xk) ⊂ RN containing the
possible input/output powers of each EV, e.g., ±10 kWh.
The action set at time k depends on the state xk since,
for example, it is not possible to discharge an EV if its
battery is empty. The choice of action ak ∈ A(xk) affects
the EVs’ state of charge in the next time slot k + 1. In
particular, xk+1 = F (xk, ak) where F is a function that
deterministically maps a state xk given an action ak to
the next state xk+1. Next, let Tk(xk, ak) be the cost
obtained by selecting action ak in state xk at time k.

The resulting optimization problem is given as following:

min
ak ∈ A(xk)

K−1∑

k=0

Tk(xk, ak)

s.t. xK = x′,

xk+1 = F (xk, ak),

(35)

where x0 ∈ RN
≥0 denotes the EVs’ initial state of charge

and x′ the state that all EVs are fully charged. Thus, the
goal is to select actions ak ∈ A(xk) to minimize the sum
of the costs given that xk+1 = F (xk, ak) and the final
state, xK , is equal to x′. We have modeled the problem
as a discrete optimal control problem, cf. Sec. IVE, but
other formulations are possible as well. For instance, we
can formulate it as a MIP with K +1 constraints for the
dynamics, plus the constraints for enforcing feasibility of
actions. However, unlike the previous use case, Eq. (35)
is a less promising problem candidate for demonstrating
industrial quantum advantage in the short term. The
problem formulation can be mapped to a UCP (via DP)
[614], which commercial solvers can solve efficiently with
hundreds of units [631, Sec. 6]. Nonetheless, we can add
features to Eq. (35) to make it more difficult to solve
classically, and at the same time, closer to real-world sce-
narios:

1. Energy constraints that affect how an EV or group
of EVs can charge or discharge at a given time.

2. EVs arriving and departing at different (stochastic)
times instead of being parked overnight.

3. Stochastic cost function that captures, for example,
the uncertainty in the electricity demand.

We can approach the problem in Eq. (35), for instance,
with DP. As mentioned in Sec. IV D, DP requires search-
ing over all possible states and actions, which is often
exponential in size. One approach to speedup DP is us-
ing Grover’s search algorithm as a subroutine. Similar to
[338] for the TSP, the quantum algorithm could first use
DP to compute multiple paths from state x0 to xK = s′

and then use Grover’s search to find a combination of
those paths that yields lower cost. Nonetheless, such an
approach is unlikely to yield practical speedups in the
short term since Grover’s search requires FTQC and a
quadratic speedup might not be sufficient for the con-
sidered problems and scales. An alternative is to model
the problem as a MIP, and try algorithms discussed in
Sec. IV C.

The extensions (1)-(3) add different complications to
Eq. (35): (1-2) add constraints to enforce certain target
states at given times or feasible actions, e.g., minimum
constant charge or discharge times, which affects both,
DP and MIP formulations as shown for uni-directional
charging by Federer et al. [632]. In case of stochastic ar-
rival/departure times, (2) will require more complex ap-
proaches, e.g. MDP, to handle the uncertainty. Similar
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to the stochastic case in (2), (3) will require approaches
like MDP to compute a policy that minimizes the costs
under uncertainty. MDPs quickly become very difficult
to solve due to the curse of dimensionality, cf. Sec. IV E.
Thus, this might be an interesting domain for first small
test cases to analyze the potential of corresponding quan-
tum approaches. Since the result of MDP is a policy, the
optimization and inference are split, which may allow one
to relax requirements on the time-to-solution.

Use case 3: Energy retailing with storage. Con-
sider an energy retailer that delivers energy to end cus-
tomers. The energy supplier buys energy from energy
producers in advance, e.g., on the day-ahead energy trad-
ing market, in one-hour time intervals, where the elec-
tricity price depends on several factors such as energy
demand, renewable energy generation, etc. Additionally,
the energy supplier has access to an energy storage sys-
tem, e.g., a fleet of EVs that act as a virtual power plant,
that can accumulate energy when this is cheap, to later
use it when energy demand is high. The energy sup-
plier’s goal is to deliver energy to its customers at the
lowest possible cost. Thus, it is incentivized to lever-
age the flexibility provided by its energy storage assets.
The problem is challenging because the electricity de-
mand and the energy available in storage are not exactly
known in advance. Furthermore, if the energy demand
is not met, the energy supplier has to buy energy from
other retailers that often sell energy at a higher price.

We can formulate the problem mathematically as fol-
lows. Let ek ∈ R≥0 be the decision variable indicat-
ing the MWh the energy supplier buys in each hour
k ∈ {0, 1, . . . ,K − 1} in advance, usually with K = 24,
and plow

k ∈ R the price of the cheap energy (which some-
times might even be negative!). Similarly, let Dk, Bk,
P high
k be random variables that capture, respectively, the

electricity demand at time k in MWh, the energy avail-
able in storage at time k in MWh, and the price of the
expensive energy at time k. The optimization problem is
the following:

min
ek ≥ 0

K−1∑

k=0

(
plow
k ek +E

[
P high
k [Dk − ek −Bk]

+
])

(36)
where [·]+ := max{0, ·} and the expectation is with re-
spect to Dk, Bk, and P high

k . That is, we have a stochastic
unconstrained optimization where the objective function
at time k consists of two terms: the cost of buying cheap
energy, and the expected cost of buying expensive energy.
Note that [Dk − ek − Bk]

+ captures the energy demand
that cannot be met with the energy bought (i.e., ek) and
the energy in storage (i.e., Bk).

The optimization in Eq. (36) is convex since the ob-
jective function is piece-wise linear and convex. Thus, if
Dk, Bk, and P high

k are random variables independent of
the decision variables, we can efficiently solve the prob-
lem with conventional convex optimization tools, in fact,
by solving K separate problems — one for every term in

the sum in Eq. (36). Hence, Eq. (36), in its current form,
is not a promising problem candidate for demonstrating
quantum advantage. Yet, we can make it more challeng-
ing and closer to real-world problems with the following
three extensions:

1. The energy available in storage at time k depends
on the previous decisions taken; for example, on
how EVs charge and discharge, as in the previous
use case 2.

2. Convex or concave cost functions, i.e., the cost to
buy energy might depend on the quantity ordered.

3. The energy supply has to meet the energy demand.

The extensions add different layers of complexity. In
particular, (1) couples the random variables with the de-
cision variables and “links” theK time steps, i.e., terms in
the objective function Eq. (36). This is similar to the sys-
tem dynamics function in optimal control, cf. Sec. IV E.
This extension is important since assuming that the en-
ergy in storage (i.e., Bk) is independent of the decision
variables does not allow us to capture, for example, that
the energy retailer buys energy in advance to keep in
storage for later use, i.e., the decisions in the past affect
the events in the future. We can recast Eq. (36) as an
optimal control problem where the system dynamics are
given by the algorithm in the second use case, i.e., the en-
ergy available by how EVs charge and discharge. That is,
we are coupling this use case with the previous one, and,
indirectly, inheriting the quantum challenges already dis-
cussed. In other words, we are adding the complications
of use case 2 on top of use case 3. (2) adds a constraint
of the form g(Dk − ek − Bk) ≤ 0, where g is a func-
tion such as CVaR that measures risk. The problem falls
within the realm of robust optimization, see Sec. IV F,
or chance constraints [633]. In case of (3), depending on
the exact properties of cost functions, the problem may
remain convex or not. In case of a non-convex problem,
this can quickly become very challenging to be solved.

4. Outlook

Quantum computing has the potential to significantly
advance optimization problems related to the sustainable
energy transition. However, identifying the most promis-
ing applications is an ongoing challenge. Here, we have
introduced illustrative examples of optimization prob-
lems that may serve as test cases derived from real-world
data. Under certain assumptions on the problem data,
some instances may prove to be classically challenging
even with few variables. We have shown how the prob-
lem classes introduced in Sec. IV relate to these families
of use cases with increasing complexity and of increas-
ing relevance to real-world applications. The discussion
underlines the need for additional research on quantum
optimization algorithms to approach the complications

50



VIII CONCLUSION & OUTLOOK

required for practical impact. It further shows that it is
crucial to benchmark the problem instances to identify
which ones are truly difficult classically and where there
is room for a potential quantum advantage.

VIII. CONCLUSION & OUTLOOK

In this paper, we provided a comprehensive overview
of the potential, challenges, and emerging research areas
in quantum optimization. We observed that, while com-
plexity theory is useful to guide towards provable perfor-
mance guarantees, it may not always be useful for finding
practical quantum advantage. This underscores the need
to develop and analyze quantum optimization heuristics
to better understand their effectiveness. We highlighted
key problem classes in optimization, reviewed existing
algorithms and suggested new research directions. Fur-
ther, we discussed the challenges of executing and scal-
ing these algorithms on noisy hardware and the impor-
tance of benchmarking for identifying quantum advan-
tages. Lastly, we explored two illustrative application
domains, emphasizing the need to expand our focus be-
yond problem classes like QUBO to truly impact these
fields.

As quantum hardware evolves with more qubits, re-
duced errors, and faster circuit execution, a new era is
emerging where progress in quantum algorithm research
comes from both theoretical analysis and empirical meth-
ods. While there remains a strong need to discover
new algorithms with provable performance guarantees,
we must also prioritize the development of quantum al-
gorithms with no such guarantees, and benchmark their
performance on real quantum computers. The improving
abilities to test ideas in practice unlocks unprecedented
opportunities for the advancement of quantum optimiza-
tion. Even if it does not immediately imply a practical
quantum advantage, the intuition gained from running
experiments on real hardware empowers one to quickly
validate proposals.

In addition to technical advances in quantum optimiza-
tion, there is also the question of responsible research
and use of this new technology. There are a variety of
causes, arising from different applications. Thus, further
research should be done with the awareness that opti-
mization use cases occur in a multitude of contexts —
from those with positive societal impact, to those with
nefarious intent. We hope that open scientific discussions
encourage advancement in quantum optimization and ad-
vocate responsible use of the insights presented in this
work. While we showcase where benefits for optimiza-
tion algorithms may lie, it is important not to overstate
or misinterpret the results of this paper and its potential
applications. Such considerations motivate the need to
establish clear benchmarks, cf. Sec. VI, which enable a re-
liable interpretation of the scientific insights by a broader
audience. Moreover, where use case applications of quan-
tum optimization algorithms are chosen and funded, we

encourage the prioritization of those with positive social
impact, for example, sustainable energy transition as dis-
cussed in Sec. VII B.

In conclusion, quantum optimization holds vast poten-
tial for various applications, but significant challenges re-
main in demonstrating a practical quantum advantage.
Once a tangible quantum advantage is demonstrated, we
expect that quantum optimization would rapidly influ-
ence many domains given the widespread relevance of
optimization. This paper has provided a blueprint to
define and measure progress in quantum optimization,
which unquestionably has exciting prospects.
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