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Examining the replicability of online 
experiments selected by a decision market
 

Felix Holzmeister    1, Magnus Johannesson    2, Colin F. Camerer3, Yiling Chen4, 
Teck-Hua Ho    5, Suzanne Hoogeveen    6, Juergen Huber    7, Noriko Imai    8, 
Taisuke Imai    8, Lawrence Jin    9, Michael Kirchler    7, Alexander Ly10,11, 
Benjamin Mandl12, Dylan Manfredi13, Gideon Nave    13, Brian A. Nosek14,15, 
Thomas Pfeiffer    16, Alexandra Sarafoglou    10, Rene Schwaiger7, 
Eric-Jan Wagenmakers    10, Viking Waldén17 & Anna Dreber    1,2 

Here we test the feasibility of using decision markets to select studies 
for replication and provide evidence about the replicability of online 
experiments. Social scientists (n = 162) traded on the outcome of close 
replications of 41 systematically selected MTurk social science experiments 
published in PNAS 2015–2018, knowing that the 12 studies with the lowest 
and the 12 with the highest final market prices would be selected for 
replication, along with 2 randomly selected studies. The replication rate, 
based on the statistical significance indicator, was 83% for the top-12 and 
33% for the bottom-12 group. Overall, 54% of the studies were successfully 
replicated, with replication effect size estimates averaging 45% of the 
original effect size estimates. The replication rate varied between 54% and 
62% for alternative replication indicators. The observed replicability of 
MTurk experiments is comparable to that of previous systematic replication 
projects involving laboratory experiments.

Can published research findings be trusted? Unfortunately, the answer 
to this question is not straightforward, and the credibility of scientific 
findings and methods has been questioned repeatedly1–9. A vital tool 
for evaluating and enhancing the reliability of published findings is to 
carry out replications, which can be used to sort out likely true positive 
findings from likely false positives. A replication essentially updates the 
probability of the hypothesis being true after observing the replication 
outcome. A successful replication will move this probability towards 
100%, while a failed replication will move it towards 0% (refs. 10,11).  

In recent years, several systematic large-scale replication projects in 
the social sciences have been published12–17, reporting replication rates 
of around 50% in terms of both the fraction of statistically significant 
replications and the relative effect sizes of replications. Potential fac-
tors to explain these replication rates may be low statistical power1,18,19 
in the original studies, testing original hypotheses with low priors1,10,20 
and questionable research practices1,21,22. Systematic replication stud-
ies led to discussions about improving research practices23,24 and have 
substantially increased the interest in independent replications25.  
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moderating effects of culture differences in replications14,87. Replica-
tion sample sizes were determined to have 90% power to detect 2/3 
of the effect size reported in the original study at the 5% significance 
level in a two-sided test (with the effect size estimates having been 
converted to Cohen’s d to have a common standardized effect size 
measure across the original studies and the replication studies; see 
Methods for details). If sample size calculations led to replication 
sample sizes smaller than in the original study, we targeted the same 
sample size as in the original study. The average sample size in the 
replications (n = 1,018) was 3.5 times as large as the average sample 
size in the original studies (n = 292).

The replication results for the 26 MTurk experiments selected by 
the decision market constitute the second contribution of this project. 
Systematic evidence on the replicability of online experiments in the 
social sciences is lacking, and concerns about the quality of online 
experiments in general—and MTurk studies in particular—have been 
raised88–94. Needless to say, the replication results only pertain to the 
single focal result selected per paper, and the replication outcome 
does not necessarily generalize to other results reported in the original 
articles95,96. For convenience, we refer to the replications as ‘replication 
of [study reference]’ though. Also, our assessment of the most central 
result may differ from that of the original authors.

Preregistering study protocols and analysis plans have been 
proposed as a means to reduce questionable research practices. While 
empirical evidence is still limited, some recent studies suggest that 
these practices enhance the credibility of published findings97–99, 
although potential issues with preregistration have also been 
raised100–102. Before starting the survey data collection (that pre-
ceded the decision market and replications), we preregistered103,104 
an analysis plan (‘replication report’) for each of the 41 potential 
replications at OSF after obtaining feedback from the original authors 
(https://osf.io/sejyp). After the replications had been conducted, the 
replication reports of the 26 studies selected for replication were 
updated with the results of the replications (and potential deviations 
from the protocol) and were posted to the same OSF repository. We 
also preregistered an overall analysis plan at OSF before starting the 
data collection, detailing the study’s design and all planned analyses 
and tests (https://osf.io/xsp6g). Unless explicitly stated, all analyses 
and tests reported in the paper have been preregistered and adhere 
exactly to our preregistered analysis plan. Supplementary Notes 
details any deviations from the planned design and analyses for the 
26 replications.

We preregistered two primary replication indicators and two 
primary hypotheses. The two primary replication indicators are the 
relative effect size of the replications and the statistical significance 
indicator for replication (that is, whether or not the replication results 
in a statistically significant effect with P < 0.05 in the same direction as 
the original effect), which was the replication outcome predicted by 
forecasters in the survey and the decision market.

The statistical significance indicator is a binary criterion of replica-
tion and is based on testing the hypothesis for which the original study 
found support using standard null hypothesis significance testing. The 
indicator crudely classifies replications as failed or successful depend-
ing on whether the replication study yields evidence in support of the 
original hypothesis at a particular significance threshold. (Critics of 
null hypothesis significance testing or privileging a P value of 0.05 
will, justifiably so, object to this crude classification; that is why it is 
only one of the several indicators that we report.) A replication clas-
sified as failed based on this indicator, however, does not imply that 
the estimated replication effect size is significantly different from the 
original estimate (see more on this below). To keep the false negative 
risk at bay and to be informative, the statistical significance indicator 
calls for well-powered replications (as in this study)105,106. However, 
a limitation of this indicator for well-powered replication studies is 
that it may classify a replication as successful even if the observed 

However, as it is time-consuming and costly to conduct replications, 
it has been argued that it is useful to have a principled mechanism to 
decide which replications to prioritize to facilitate efficient and effec-
tive usage of resources25–37. Here we test the feasibility of one potential 
method to select which studies to replicate. Building on previous work 
using prediction markets38–40 to forecast replicability, we adapt the 
forecasting methodology to what is referred to as decision markets41–44.

The decisive distinction between prediction markets and decision 
markets is that prediction markets elicit aggregate-level replicability 
forecasts on a predetermined set of studies, whereas decision market 
forecasts determine which studies are going to be put to a replication 
test. While previous studies provide evidence that prediction market 
forecasts are predictive of replication outcomes10,16,17,45, prediction 
efficiency might not generalize to decision markets, which involve 
more complex procedures and incentives. The performance of deci-
sion markets as a tool for selecting which empirical claims to replicate 
has not been systematically examined. Note that a decision market 
in itself is not sufficient to provide a mechanism to select studies for 
replication, but it has to be combined with an objective function of 
which studies to replicate (an example of an objective function would 
be to replicate the studies with the lowest probability of replication). 
For decision markets to be potentially useful for selecting studies for 
replication, it first has to be established that the predictions of the deci-
sion markets are associated with the replication outcomes. To provide 
such a ‘proof of concept’ of using a decision market as a mechanism 
to determine which studies to replicate, we first identified all social 
science experiments published in the Proceedings of the National 
Academy of Sciences (PNAS) between 2015 and 2018 that fulfilled 
our inclusion criteria for (1) the journal and period; (2) the platform 
on which the experiment was performed (Amazon Mechanical Turk; 
MTurk); (3) the type of design (between-subjects or within-subject 
treatment design); (4) the equipment and materials needed to imple-
ment the experiment (the experiment had to be logistically feasible 
for us to implement); and (5) the results reported in the experiment  
(at least one main or interaction effect with P < 0.05 reported in the 
main text). On the basis of our inclusion criteria, we identified 44 arti-
cles, 3 of which have been excluded owing to a lack of feasibility, leaving 
us with a final sample of 41 articles46–86 (see Methods for details on the 
inclusion criteria). For each of these articles, we identified one critical 
finding with P < 0.05 that we could potentially replicate (see Methods 
for details and Supplementary Table 1 for the hypotheses selected for 
each of the 41 studies).

We then invited social science researchers to participate as fore-
casters in both a prediction survey and an incentivized decision market 
on the 41 studies. In the survey, the forecasters independently esti-
mated the probability of replication for the 41 studies. In the decision 
market, they could trade on whether the result of each of the 41 studies 
would replicate. Participants in the decision market received an endow-
ment of 100 tokens corresponding to USD 50, and 162 participants 
made a total of 4,412 trades. Traders in the market were informed about 
the preregistered decision mechanism: the 12 studies with the highest 
and the 12 studies with the lowest market prices were to be selected for 
close replication; in addition, 2 randomly chosen studies (out of the 
remaining 17 studies) are replicated to ensure incentive compatibility, 
with participant payoffs scaled up by the inverse of their probability in 
the decision rule (see Methods for details). For incentive compatibility, 
all the 41 studies included need to have a strictly positive probability of 
being selected for replication, which is ensured by having at least one 
randomly selected study. Otherwise, traders would be incentivized to 
only trade on those studies that will most likely be chosen according 
to the decision rule.

All replication experiments, just like all original studies, were 
conducted on Amazon Mechanical Turk (MTurk), and the same 
sample restrictions and exclusion criteria as the original studies 
were applied, which guards against concerns about the potential 
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effect size is substantially smaller (or larger) than in the original study. 
While the statistical significance indicator dichotomizes replication 
outcomes into successful and failed, replicability may be perceived as 
a continuous matter of degree. This is why we also consider the relative 
effect size—a continuous measure of replicability—as a primary replica-
tion indicator. While the relative effect size constitutes an imprecise 
indicator for an individual replication study, it arguably provides an 
informative measurement of the extent of replicability for a group of 
studies as it quantifies the average degree of apparent inflation in the 
original effect sizes107. As all replication indicators have limitations, 
we preregistered four additional secondary replication indicators. In 
addition, we report the results for two non-preregistered replication 
indicators, which were helpfully suggested during the review process 
of the paper.

In our two primary hypotheses, we conjecture that (1) the decision 
market prices positively correlate with the replication outcomes and 
(2) the standardized effect sizes in the replications are lower than in the 
original studies. All hypotheses are evaluated using two-tailed tests, 
and—following Benjamin et al.108—we interpret results with P < 0.005 as 
‘statistically significant evidence’, whereas results with 0.005 ≤ P < 0.05 
are considered ‘suggestive evidence’. No adjustments were made for 
multiple comparisons.

Results
Replication outcomes and decision market performance
Figure 1 and Supplementary Table 2 show the results for the decision 
markets where the final market price can be interpreted as the pre-
dicted replication probability. The predicted probabilities of replica-
tion range from 20.9% to 92.9% for the 41 studies, with a mean of 57.6% 
(s.d. = 23.6%). The average predicted probability for the 26 studies 
eventually selected for replication is 58.5%. Figure 1 also delineates the 
replication outcomes based on the statistical significance indicator, 
which allows for gauging the relationship between the decision mar-
ket prices and the replication outcomes. In Fig. 2 and Supplementary 
Table 3, we show the replication results for the 26 studies selected 
for replication. Of the 26 claims, 14 (53.8%; 95% confidence interval 
(CI) (33.4%, 73.4%)) replicated successfully according to the statistical 
significance indicator. The point-biserial correlation between decision 
market prices and the binary replication outcome, testing our first 
primary hypothesis, is r = 0.505 (95% CI (0.146, 0.712); t(24) = 2.867, 
P = 0.008; n = 26). Thus, in support of our first primary hypothesis, 
we find suggestive evidence of a positive association between deci-
sion market prices and replication outcomes. As a related second-
ary hypothesis, we test if the replication rate is lower among the 12 
studies with the lowest decision market prices than for the 12 studies 
with the highest decision market prices. The replication rate is 33.3%  
(95% CI (9.9%, 65.1%)) for the studies in the ‘bottom-12’ group and  
83.3% (95% CI (51.6%, 97.9%)) for the studies in the ‘top-12’ group, 
yielding suggestive evidence in support of our secondary hypothesis 
(Fisher’s exact test; χ2(1) = 6.171, P = 0.036; n = 24). Note Fisher’s test con-
ditions on the margin totals; hence, it is only exact for the conditional 
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Fig. 1 | Decision market prices for the 41 included studies. Plotted are the 
decision market prices for the 41 MTurk social science experiments published 
in PNAS between 2015 and 2018. The small grey dots indicate the market prices 
after each market transaction; the larger dots indicate the final market price. 
The studies are ordered based on the final decision market prices, which can be 
interpreted as the market’s probability forecast of successful replication. The 
12 studies with the highest decision market prices and the 12 studies with the 
lowest decision market prices were selected for replication; in addition, 2 of 
the remaining 17 studies were selected for replication at random to ensure that 
the decision market is incentive compatible. The replication outcomes for the 
statistical significance indicator are also illustrated for the 26 replicated studies. 
The point-biserial correlation between the decision market prices and the 
replication outcomes in primary hypothesis 1 is r = 0.505 (95% CI (0.146, 0.712), 
t(24) = 2.867, P = 0.008; n = 26, two-sided test).
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Fig. 2 | Replication results. Plotted are the point estimates and the 95% CIs 
(standardized to Cohen’s d units) of the 26 replications (dR) and original studies. 
Studies within each of the three panels (top-12, random, bottom-12) are sorted 
based on the decision market prices as in Fig. 1. There is a statistically significant 
effect (P < 0.05) in the same direction as the original study for 14 out of  
26 replications (53.8%; 95% CI (33.4%, 73.4%)). For the 12 studies with the highest 
decision market prices, there is a statistically significant effect (P < 0.05) in the 
same direction as the original study for 10 out of 12 replications (83.3%; 95% CI 
(51.6%, 97.9%)). For the 12 studies with the lowest decision market prices, there  
is a statistically significant effect (P < 0.05) in the same direction as the original 
study for 4 out of 12 replications (33.3%; 95% CI (9.9%, 65.1%)). Our secondary 
hypothesis test provides suggestive evidence that the difference in replication 
rates between the top-12 and the bottom-12 group is different from zero  
(Fisher’s exact test; χ2(1) = 6.171, P = 0.036; n = 24, two-sided test). The error 
bars denote the 95% CIs of the original and the replication effect size estimates. 
The numbers of observations used to estimate the 95% CIs are the original and 
replication sample sizes noted on the right as nO and nR.
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distribution and can be overly conservative if the margin totals are 
unknown109,110, as is the case in our analysis. Boschloo’s test111, an exact 
unconditional procedure uniformly more powerful than Fisher’s 
test, also yields suggestive evidence for the difference in proportions 
between the ‘top-12’ and the ‘bottom-12’ group (not preregistered;  
95% CI (0.089, 0.799), P = 0.017; n = 24).

Relative effect sizes
The mean estimated effect size of the 26 replication studies (in Cohen’s 
d units) is 0.253 (s.d. = 0.357) compared with 0.563 (s.d. = 0.426) for 
the original studies, implying a relative estimated average effect 
size, just dividing the two numbers, of 45.0%; the difference in esti-
mated effect sizes is statistically significant, supporting our second 
primary hypothesis of systematically smaller estimated effect sizes 
in the replications (Wilcoxon signed-rank test, z = 4.203, P < 0.001; 
n = 26). The relative effect size can also be estimated for each study 
separately (reported in Supplementary Table 3) and varies between 
−17.0% and 136.2%, with a mean estimate across studies of 41.1% (95% CI  
(24.5%, 57.7%)). For the 14 studies that replicated according to the 
statistical significance indicator, the first and the second relative 
effect size measures as defined above are 69.5% and 72.0% (95% CI 
(54.8%, 89.3%)), indicative of some inflation in original effect sizes 
even for apparent true positives. The two estimated relative effect 
size measures for the 12 studies that failed to replicate according 
to the statistical significance indicator are 3.2% and 5.0% (95% CI  
(−2.6%, 12.5%)), respectively. Figure 3 illustrates the relationship 
between the estimated original and replication effect sizes.

Secondary replication indicators
We also preregistered four secondary replication indicators: the 
small-telescopes approach112, the one-sided default Bayes factor113, 
the replication Bayes factor114 and the fixed-effects weighted 
meta-analytic effect size (see Methods for details). When relying on 
the small-telescopes approach, testing if the replication effect size is 
smaller than a ‘small effect’112, 15 studies (57.7%; 95% CI (36.9%, 76.6%)) 
are considered successful replications (Fig. 4 and Supplementary 
Table 4). The one-sided default Bayes factor (BF+0) indicates the 
strength of evidence in favour of the alternative hypothesis as opposed 
to the null hypothesis. BF+0 exceeds 1 for the 14 studies (53.8%; 95% CI 
(33.4%, 73.4%)) that replicated according to the statistical significance 
indicator, with strong evidence (BF+0 > 10) for the tested hypothesis 
for 9 studies (34.6%; 95% CI (17.2%, 55.7%)); BF+0 is below 1 for the 12 
replications (46.2%; 95% CI (26.6%, 66.6%)) that failed to replicate 
according to the statistical significance indicator, with strong evi-
dence (BF+0 < 0.1) for the null hypothesis for 7 studies (26.9%; 95% CI  
(11.6%, 47.8%)) based on the evidence categories proposed by Jeffreys115 
(Fig. 5 and Supplementary Table 4). The one-sided replication Bayes 
factor (BFR0) indicates the strength of additional evidence in favour of 
the alternative hypothesis as opposed to the null hypothesis, given the 
already acquired evidence based on the original data114. Replication 
Bayes factors lead to similar conclusions as the one-sided default Bayes 
factors, with BFR0 > 10 for 10 studies (38.5%; 95% CI (20.2%, 59.4%)) and 
BFR0 < 0.1 for 7 studies (26.9%; 95% CI (11.6%, 47.8%)). One exception 
to this is the study by Cooney et al.56, for which the default Bayes fac-
tor exceeds one (BF+0 = 8.01) but the replication Bayes factor is below 
one (BFR0 = 0.23) owing to the replication effect size being only about 
a third of the original effect size and a larger sample size in the repli-
cation compared with the original study (Fig. 5 and Supplementary 
Table 4). The meta-analytic effect size is statistically significant at the 
5% level for 16 studies (61.5%; 95% CI (40.6%, 79.8%)) and significant 
at the 0.5% level for 14 studies (53.8%; 95% CI (33.4%, 73.4%)) (Fig. 6 
and Supplementary Table 4). The meta-analytic effect sizes should be 
interpreted cautiously as original effect sizes reported as statistically 
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the 26 replication studies (the estimated effect sizes of both the original and 
replication studies are standardized to Cohen’s d units). The 95% CIs for the 
original and replication effect size estimates are illustrated in Fig. 2 and tabulated 
in Supplementary Table 3. The mean estimated effect size of the 26 replication 
studies is 0.253 (s.d. = 0.357) compared with 0.563 (s.d. = 0.426) for the original 
studies, resulting in a relative estimated average effect size of 45.0%, confirming 
our second primary hypothesis (Wilcoxon signed-rank test, z = 4.203, P < 0.001; 
n = 26, two-sided test). The estimated relative effect size of the 13 replications 
that have been successfully replicated according to the statistical significance 
indicator is 69.5%, and the estimated relative effect size of the 13 studies that did 
not replicate is 3.2%. The box plots show the median, the interquartile range, and 
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Fig. 4 | Replication results based on the small-telescopes approach  
(a secondary replication indicator). Plotted are the 90% CIs of replication 
effect sizes in relation to small-effect sizes as defined by the small-telescopes 
approach112 (the effect size that the original study would have had 33% power to 
detect). Studies within the three panels (top-12, random, bottom-12) are sorted 
based on the decision market prices as in Fig. 1. A study is defined as failing to 
replicate if the 90% CI is below the small effect (with ‘ub’ denoting the upper 
bound of the 90% CI). According to the small-telescopes approach, 15 out of 26 
studies (57.7%; 95% CI (36.9%, 76.6%)) replicate. The error bars denote the 90% CIs 
of the estimated replication effect sizes. The numbers of observations used to 
estimate the 90% CIs are the replication sample sizes noted on the right as nR.
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significant are likely to be overestimated on average owing to insuf-
ficient sample sizes and, thereby, statistical power (and potentially 
owing to questionable research practices)18,19. Overall, the primary and 
secondary replication indicators yield the same binary conclusions for 
23 of the 26 replications.

Non-preregistered replication indicators
Following the suggestion of a reviewer, we report the results for two 
additional replication indicators. The first alternative replication 
indicator is a test of whether the replication effect size is statistically 
significantly different from the original effect size. This indicator is 
closely related to the prediction interval approach116 as the results 
can be illustrated as prediction intervals that the replication effect 
sizes are evaluated against: if the replication effect size falls outside 
the 95% prediction interval, the replication and original effect sizes 
differ at the 5% significance level, and the replication is considered a 
failure. The prediction interval approach, thus, yields a binary replica-
tion indicator, which is complemented by a continuous replicability 
measure defined as the P value of the test of a significant difference 
between the replication and original effect sizes. We illustrate the 
prediction interval results in Fig. 7 and report the z-statistics and  

P values in Supplementary Table 5 (the P values are also shown in Fig. 7). 
According to the prediction interval indicator, 15 studies (57.7%, 95% 
CI (36.9%, 76.6%)) replicate. This replication rate is close to the result 
for the statistical significance indicator. However, the classification 
of nine replication outcomes shifts: for four studies, the classification 
changes from successful to failed, and for five studies, the classification 
changes from failed to successful. These changes are due to the fact 
that low-powered original studies are more likely to replicate, whereas 
high-powered original studies are less likely to replicate based on the 
prediction interval indicator (compared with evaluating replicability 
based on the statistical significance indicator). According to the predic-
tion interval indicator, six studies failed to replicate among the top-12 
studies in terms of decision market prices, whereas three studies failed 
to replicate among the bottom-12 studies.

Associations between indicators (not preregistered)
To examine the relationship between the replication indicators, we 
estimated Kendall’s rank correlations τb between all the replication 
indicators used in the study (Supplementary Table 6). All preregistered 
replication indicators are strongly correlated with each other, with τb 
varying between 0.61 and 1.00 (P < 0.005 for all correlations). However, 
they are more weakly to moderately correlated with the prediction 
interval approach and P values from z-tests comparing the replication 
and original effect sizes (with τb varying between 0.12 and 0.56).

Each of the various replication indicators presented in this study 
has its strengths and weaknesses. There is no general consensus about 
which indicator is most appropriate15–17,117–119. Therefore, we chose to 
report the results for a host of indicators and leave it to readers to 
judge the suitability of the different indicators and their degree of 
consensus. The overall replication rate is similar for all the binary rep-
lication indicators and varies between 14 (53.8%) and 16 (61.5%) studies.  
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Fig. 5 | Replication results based on Bayes factors (secondary replication 
indicators). The figure plots the one-sided default Bayes factor (BF+0) and 
the replication Bayes factor (BFR0) for the 26 replications113. BF+0 > 1 favours 
the hypothesis of an effect in the direction of the original paper, whereas 
BF+0 < 1 favours the null hypothesis of no effect. BFR0 quantifies the additional 
evidence provided by the replication results on top of the original evidence. 
BFR0 > 1 indicates additional evidence in favour of the alternative over the null, 
whereas BFR0 < 1 indicates additional evidence for the null instead. The evidence 
categories proposed by Jeffreys115 are also shown (from extreme support for the 
null hypothesis to extreme support for the original hypothesis). Studies within 
the three panels (top-12, random, bottom-12) are sorted based on the decision 
market prices as in Fig. 1. The BF+0 is above 1 for all 14 replication studies that 
successfully replicated according to the statistical significance indicator and 
below 1 for all 12 replication studies that failed to replicate according to the 
statistical significance indicator. The BFR0 is above 1 for 13 of the 14 replication 
studies that replicated according to the statistical significance indicator and 
below 1 for Cooney et al.56 whose estimated relative effect size of 0.36 is the 
lowest among these 14 studies; the BFR0 is below 1 for all of the 12 replication 
studies that failed to replicate according to the statistical significance indicator. 
The numbers of observations used to estimate BF+0 and BFR0 are the original and 
replication sample sizes noted on the right as nO and nR.
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the replication estimated effect sizes (a secondary replication indicator). 
The figure plots the point estimates and 95% and 99.5% CIs of the fixed-effects 
weighted meta-analytic effect sizes, combining the original and the replication 
studies (standardized to Cohen’s d units). Studies within the three panels  
(top-12, random, bottom-12) are sorted based on the decision market prices as in 
Fig. 1. As preregistered, we report the significance of the estimated meta- 
analytic effect sizes for both the 0.05 significance threshold and the 0.005 
significance threshold (based on a two-sided z-test). Sixteen out of 26 (61.5%; 
95% CI (40.6%, 79.8%)) studies replicated according to the statistical significance 
indicator using the 0.05 significance threshold, and 14 out of 26 (53.8%; 95% CI 
(33.4%, 73.4%)) studies replicated using the 0.005 significance threshold.  
The error bars denote the 95% CIs of the estimated meta-analytic effect sizes.  
The number of observations used to estimate the 95% CIs are the sums of the 
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The agreement about which results are classified as successfully repli-
cated is large between the indicators, with the exception of the predic-
tion interval approach. The estimated average relative effect size of 
around 45%, which can be interpreted in terms of a replicability rate, 
yields an estimate in the same ballpark. The somewhat lower estimate 
for the relative effect size is due to the fact that not only the false posi-
tive rate but also the inflation of true positive effect sizes is factored in. 
Another advantage of the relative effect size indicator is that it is not 
affected by replication power. The three other continuous replication 
indicators cannot be aggregated across studies and are thus difficult 
to compare to the other indicators on an aggregated level.

Replicability forecasts and indicators (not preregistered)
In Supplementary Table 7, we also provide Pearson correlations 
between our replicability forecasts (final decision market prices and 
average prediction survey beliefs) and all the replication indicators. 
Both the decision market prices and the survey beliefs are positively 
correlated with all the replication indicators except the prediction 
interval approach (although positive, the correlations to the P value of 
the test of a significant difference between the replication and original 
effect sizes are also close to 0). Note that these correlations should be 
interpreted cautiously as the forecasters predicted the replication 
outcomes for the statistical significance indicator but not the other 
replication indicators.

Survey forecasts versus decision market predictions
We tested three additional preregistered secondary hypotheses based 
on the survey beliefs about replication (see Methods for details and 
Supplementary Table 7 for the survey results). The point-biserial cor-
relation between average survey beliefs and the replication outcomes 
based on the statistical significance criterion is r = 0.476 (95% CI (0.107, 
0.694); t(24) = 2.650, P = 0.014; n = 26). The survey beliefs and the deci-
sion market prices are positively correlated with a Pearson correlation 

of 0.899 (95% CI (0.814, 0.944); t(39) = 12.830, P < 0.001; n = 41) (Fig. 8a). 
The final secondary hypothesis tests if the prediction accuracy, meas-
ured in terms of the absolute prediction error and the Brier score (that 
is, the squared prediction error), is higher for the decision market than 
the survey forecasts (Fig. 8b). The mean absolute prediction error 
and the mean Brier score are 0.353 and 0.188 for the decision market, 
and 0.421 and 0.202 for the survey, respectively, providing sugges-
tive evidence for higher accuracy for the market forecasts based on 
the absolute prediction error (Wilcoxon signed-rank test, z = 2.172, 
P = 0.030; n = 26) but not the Brier score (Wilcoxon signed-rank test, 
z = 1.181, P = 0.238; n = 26). The failure to reject the null hypothesis for 
the Brier score does not imply that the null hypothesis is true. In the 
survey, we also elicited forecasters’ self-rated expertise for each study. 
The average self-rated expertise (of participants eventually active in 
the markets, n = 162) for the 26 replicated studies was 2.31 (s.d. = 1.40; 
n = 4,212) on a scale from 1 (‘no knowledge of the topic’) to 7 (‘very high 
knowledge of the topic’). Supplementary Fig. 1 plots the absolute pre-
diction error and the Brier score of the 26 survey and decision market 
forecasts over the average self-rated expertise per study. We do not 
find evidence for the prediction accuracy and the average self-rated 
expertise being significantly correlated (not preregistered; see Sup-
plementary Fig. 1 for details).

Beliefs about the Covid-19 pandemic and replicability
A potential issue raised by some original authors in giving feedback on 
the replication reports before the data collection was that the replicabil-
ity of some original results might be affected by the Covid-19 pandemic 
(as all the original studies were conducted before the pandemic). We 
evaluate this possibility in a preregistered exploratory analysis, rely-
ing on the forecasters’ beliefs about the impact of the pandemic on 
replicability. As part of the prediction survey, participants were asked 
to judge whether the pandemic would have affected the likelihood of 
successful replication, measured on a scale from −3 (‘the pandemic has 
definitely decreased the probability of replication’) to 3 (‘the pandemic 
has definitely increased the probability of replication’). We test if the 
average response to this question differs from zero using a one-sample 
t-test for each of the 26 replications, and we test if the average response 
across all 26 studies differs from 0. We find a statistically significant 
result for four and a suggestive result for two replications on beliefs 
that Covid-19 has affected the replication probability (Supplementary 
Table 8). For the six studies with suggestive or statistically significant 
evidence, the estimate is negative for two studies and positive for four; 
only in two of the cases does the sign of the expectation match the 
eventual replication outcome. For the average belief about the impact 
of the pandemic on replicability across the 26 studies of 162 forecasters 
(who were active in the decision markets), there is suggestive evidence 
that the mean of 0.039 (s.d. = 0.190) differs from zero (t(161) = 2.598, 
P = 0.010; n = 162). Somewhat surprisingly—and in contrast to the con-
cerns raised by some of the original authors—there is thus a tendency 
for forecasters to believe that the pandemic has increased the average 
likelihood that the studies will replicate. However, the magnitude of 
the effect is small (d = 0.204; 95% CI (0.049, 0.360)).

In addition, we tested, estimating the point-biserial correlation, if 
the average belief (per study) about the pandemic’s impact on replica-
bility correlates with the replication outcomes based on the statistical 
significance indicator; we do not find a statistically significant associa-
tion (r = 0.014, 95% CI (−0.360, 0.382); t(24) = 0.068, P = 0.946; n = 26). 
Yet, we cannot rule out that Covid-19 has entailed effects on replicability 
not foreseen by scholars participating in the survey. Further work is 
needed to gauge whether and to which extent experimental replica-
tions—and predictions of replication success—might be sensitive to 
macro-historical secular change such as economic upheaval, wars, 
pandemics and so on. Forecasters’ beliefs about the pandemic’s impact 
on replicability are also neither statistically significantly correlated 
with the final decision market prices (r = 0.387, 95% CI (−0.008, 0.669); 
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Fig. 7 | Replication results based on prediction intervals (not preregistered). 
Plotted are the 95% prediction intervals116 (PIs) for the standardized original 
effect sizes (Cohen’s d). Studies within the three panels (top-12, random, 
bottom-12) are sorted based on the decision market prices as in Fig. 1. Fifteen 
replications out of 26 (57.7%; CI (36.9%, 76.6%)) are within the 95% prediction 
interval and replicate according to this indicator. The P values reported on the 
right are based on two-sample z-tests for a difference between the replication 
effect size and the original effect size. The grey lines denote the 95% prediction 
intervals, and the small circles denote the mean replication effect sizes. All tests 
are two-sided. The numbers of observations used to estimate the 95% prediction 
intervals are the original and replication sample sizes noted next to the study 
identifier on the y-axis as nO and nR.
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t(24) = 2.055, P = 0.051; n = 26) nor the average survey belief of replica-
tion (r = 0.347, 95% CI (−0.053, 0.644); t(24) = 1.815, P = 0.082; n = 26), 
although the point estimates of the correlations are quite sizeable.

Original P value and replication (not preregistered)
For comparison to previous systematic large-scale replication pro-
jects, we also report the correlation between the original P value and 
the replication outcome for the statistical significance indicator. The 
point-biserial correlation between the original P value and the rep-
lication outcome for the statistical significance indicator is −0.400 
(P = 0.043; 95% CI (0.014, 0.648)) and comparable in magnitude to 
correlations of −0.33 in the Replication Project: Psychology (RPP)15, 
−0.57 in the Experimental Economics Replication Project (EERP)16 and 
−0.40 in the Social Sciences Replication Project (SSRP)17.

Discussion
We found suggestive evidence (P < 0.05) for our first primary hypothe-
sis that final decision market prices correlate with replication outcomes 
(r = 0.505). However, the estimated effect size is somewhat smaller than 
the effect size of r = 0.67, as presumed in our a priori power calcula-
tions (see Methods for details). The estimated correlation is within 
the range of previous prediction markets on systematic replication 
projects with correlations of 0.42 in the RPP10,15, 0.30 in the EERP16 and 
0.84 in the SSRP17, but we expected a stronger correlation because we 
selected studies with the highest and the lowest prices for replication. 
Consistent with the primary hypothesis test, there is also suggestive 
evidence of a difference in the replication rate between the ‘top-12’  
(10 of 12) and ‘bottom-12’ (4 of 12) in our secondary hypothesis test.  
The difference of 50 percentage points is also reflected in the dif-
ference between the forecasted replication rates of 86.6% (‘top-12’) 
versus 29.6% (‘bottom-12’) in the decision market. However, the 
small sample size suggests caution against drawing firm conclusions 
about whether decision markets are appropriate for selecting studies  
for replication.

The pooled evidence from previous prediction market studies 
on replication outcomes suggests that markets are somewhat more 
accurate than surveys45, although the difference tends to be small. 
These indications are consistent with our results, yielding suggestive 

evidence of higher accuracy in terms of the absolute prediction error 
but not in terms of the squared prediction error (although, as noted 
above, failing to reject the null hypothesis for the squared prediction 
error does not imply that the null hypothesis is true). The estimated 
correlation between the average survey beliefs and the replication 
outcomes was almost as high for the survey as the prediction market 
(0.476 versus 0.505). The decision market prices and survey beliefs 
are also highly correlated with each other (r = 0.9). Since surveys are 
less resource intensive, simple polls can be an expedient alternative 
to decision markets for selecting which studies to replicate, even if 
they should be somewhat less accurate. Another potential method 
for selecting which studies to replicate would be to rely on the original  
P value for studies reporting statistically significant results45. Although 
the prediction accuracy appears to be somewhat lower for original 
P values than market and survey forecasts45, relying on P values may 
well be considered a practical alternative as it does not involve any 
additional data collection. Another possibility would be to use pre-
dicted replication probabilities from machine learning models to select 
studies for replication. There has been some progress in developing 
such models120–123, but evidence on whether they outperform markets 
or surveys is yet missing. Other potential mechanisms for selecting 
which studies to replicate include relying on general or study-specific 
characteristics (for example, connection to theory, surprise factor, 
sample size, effect size and importance)25–28, relying on cost–benefit 
considerations29,30, using Bayesian strategies31,32, determining the ‘repli-
cation value’33, adopting empirical audit and review34, selecting studies 
randomly35 or using predictions from laypeople36,37.

Using decision markets to select the studies with the highest and 
lowest predicted probabilities for replication is just one of the many 
potential selection rules for this methodology. Our goal was to test 
whether a decision market could distinguish findings that would rep-
licate or not, and we aimed to maximize the statistical power of detect-
ing an association between market prices and replication outcomes. 
For the practical application of decision markets, the choice of the 
selection mechanism will largely depend on the objective function. 
One selection rule would be to choose the studies with the highest 
predicted false positive likelihood, that is, the studies with the smallest 
market prices (in addition to at least one randomly selected study to 
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Fig. 8 | Relationship between decision market prices and mean survey beliefs 
and forecasting accuracy. a, Plotted are the decision market prices and the mean 
survey beliefs about replication for the 41 studies included in the decision market 
and the survey; the colour coding highlights the replication outcomes for the 26 
replicated studies. The decision market prices and the mean survey beliefs  
about replication are highly correlated with a Pearson correlation of r = 0.899 
(95% CI (0.814, 0.944); t(39) = 12.830, P = 1.4 × 10−15; n = 41, two-sided test).  
b, Plotted are the absolute prediction errors and the Brier scores (the squared 
prediction errors) for the decision market and the prediction survey for the  

26 replicated studies. There is suggestive evidence of higher prediction  
accuracy for the decision market in terms of the absolute prediction error  
(0.353 for the decision markets and 0.421 for the survey; Wilcoxon signed-rank 
test, z = 2.172, P = 0.030; n = 26, two-sided test), but not in terms of the Brier score 
(0.188 for the decision markets and 0.202 for the survey; Wilcoxon signed-rank 
test, z = 1.181, P = 0.238; n = 26, two-sided test). The box plots show the median, 
the interquartile range, and the 5th and 95th percentile of the absolute prediction 
errors and Brier scores for the survey and decision market predictions of the  
26 replication studies.
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ensure incentive compatibility). This decision mechanism would align 
with the objective of identifying and correcting false discoveries in the 
literature to facilitate an efficient allocation of resources for follow-up 
investigations. Another selection rule would be to replicate the stud-
ies with market predictions close to 50%, which reflects the highest 
possible uncertainty or disagreement regarding the likelihood of the 
original finding being genuinely true. Providing additional evidence 
on these claims could maximize the information value of replication 
studies, as well-powered replications will move the probability that the 
tested hypothesis is genuinely true towards 0% or 100%.

For our second primary hypothesis, we found strong evidence 
that original effect sizes are inflated on average compared with rep-
lication effect sizes, with a relative estimated average effect size of 
45%. This is comparable to previous systematic replication studies, 
with relative average effect size estimates of 49% in the RPP15, 59% in 
the EERP14 and 54% in the SSRP17. The replication rate of 54% based on 
the statistical significance indicator is also similar to previous repli-
cation studies, with 36% in the RPP15, 61% in the EERP14 and 62% in the 
SSRP17. Caution should be exercised when comparing the replication 
results across these studies: the number of replications in each of the 
projects is small, only one focal result per paper has been selected for 
replication, and the particular journals and time periods considered 
differ. However, the results of all these studies are consistent with a 
replication rate of about 50% for both the binary statistical significance 
indicator and the continuous relative effect size indicator; compatible 
replication results have also been observed in the Many Labs replica-
tion projects12–14.

The ability of the statistical significance indicator to discriminate 
between true positives and false positives depends on replication 
power, and the relative average effect size of the studies that failed to 
replicate should be close to zero if the systematic replication study 
successfully separates false positives from true positives. The relative 
average estimated effect size of the 12 studies that failed to replicate 
according to the statistical significance indicator was 3.2%, which is 
close to zero and consistent with a successful separation between 
true positives and false positives. But also true positive findings can 
be expected to have exaggerated effect sizes in the published litera-
ture owing to a lack of statistical power18,19. In line with this, we found 
an estimated average effect size of 69.5% for the 14 studies that were 
successfully replicated based on the statistical significance indica-
tor. These findings are consistent with similar analyses in the SSRP17 
in which the estimated mean relative effect size among the studies 
that failed to replicate according to the statistical significance indica-
tor was 0.3%, and the estimated mean relative effect size among the 
studies that replicated successfully was 73.1%. This illustrates how 
the combination of statistical significance and relative effect size can 
contribute to revealing possible false positives and true positives with 
exaggerated effect sizes.

Previous systematic replication studies have focused on labora-
tory experiments rather than online experiments. Concerns have 
been raised over data quality in online data collections using ‘crowd 
workers’, as via MTurk88–94, and part of the rationale for zeroing in on 
experiments conducted via MTurk was that we tend to share these 
concerns. However, the results of this study do not suggest that repli-
cability is substantively lower for experiments conducted via MTurk 
compared with experiments conducted in physical laboratories for 
studies published in top journals; more evidence is needed to draw 
strong conclusions. Relatedly, the predicted average replicability rate 
of 57.6% in the decision market—despite widespread concerns about 
data quality on MTurk—is within the range of replication rate forecasts 
in previous prediction markets of 56% in the RPP10, 75% in the EERP16 and 
63% in the SSRP17. We used IP quality checks90,124 to minimize the chances 
of low-quality participant data (see Methods for details), screening 
out participants before the random assignment into treatments. In 
total, across all 26 replications, 29% of the participants who accepted 

a ‘human intelligence task’ (HIT) failed the IP check and were excluded 
(this descriptive result was not preregistered; see Methods for further 
details). The replication results from our study should thus not be 
extrapolated to MTurk experiments not using a comparable screening 
procedure. An important caveat is that although our IP quality checks 
seem to have been effective in filtering out bots, this may not be the 
case for artificial responses generated by large language models such 
as ChatGPT, which could pose a challenge for collecting data online via 
platforms such as MTurk125.

There are several important limitations to our study. A successful 
replication, on its own, does not provide valid evidence for the tested 
hypothesis. It goes without saying that inference in replication stud-
ies is subject to type-I and type-II errors, just as in original studies. 
Moreover, a finding can be replicable while being based on an invalid 
experimental design, leading to biased results. An example of this 
would be an experimental design that systematically results in more 
attrition in one experimental treatment, causing selection bias in 
favour of the tested conjecture88. Likewise, a failed replication, on its 
own, does not provide direct evidence against the tested hypothesis. 
A finding can be unreplicable and based on an invalid experimental 
design, leaving the hypothesis untested. Although the replication 
rate for online experiments in our study appears to be similar to pre-
vious laboratory evidence, it does not necessarily imply that online 
and laboratory experiments provide equally valid evidence of the  
tested hypotheses.

Another limitation is that we only replicate a single focal result per 
paper, and the replication outcome does not necessarily generalize to 
other results reported in the original articles. Furthermore, we only 
gathered data from one online population using the same experimental 
design as in the original study. It cannot be ruled out that the difference 
in timing between the replication studies and the original studies has 
affected the replication results as a consequence of changes in the com-
position of the MTurk subject pool or the tested phenomenon having 
changed over time. Large-scale, multi-site replication studies that col-
lect data across various populations and settings, similar to the Many 
Labs replication projects12–14, qualify as a promising method to shed 
light on the heterogeneity of replication effect sizes across populations 
and designs126–128 in future replication work, potentially increasing 
the strength of evidence for whether the hypothesis supported in the 
original study is likely true or not. Collaborative networks such as the 
Psychological Science Accelerator129 facilitate multi-site replication 
studies and can be a door opener to large and diverse samples.

Another caveat in interpreting our results is the lack of agreement 
about how to define and measure replicability. We chose to report the 
results for a broad set of replication indicators proposed in the litera-
ture and leave it to readers to gauge the strengths and weaknesses of 
the various measures. Decision markets come with the limitation of 
being a relatively resource-intensive tool, rendering simple polls an 
appealing alternative.

In our proof-of-concept investigation of using decision markets 
to assess replicability, decision markets show potential as a tool for 
selecting studies for replications, but further work is needed to draw 
strong conclusions. The observed replication rate of social science 
experiments based on data collections via MTurk published in PNAS is 
comparable to previous systematic replication projects of experimen-
tal studies in the social sciences, primarily based on lab experiments. 
However, the sample size of 26 replication studies is small, implying 
substantial uncertainty about both the estimated replication rate 
and the estimated association between the decision market prices 
and the replication rate. Our study is also limited to one scientific 
journal and may not be representative of social science results based 
on MTurk samples published in other journals, or studies using other 
online platforms for the data collection. Thus, prudence should be 
exercised in generalizing our findings and comparing replication 
results across studies.
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Methods
We preregistered an analysis plan for the project at OSF on 7 October 
2021 before starting the survey data collection (that preceded the deci-
sion market and replications), which detailed the design of the study 
and the exact analyses for all planned analyses and tests (https://osf.io/
xsp6g). Unless explicitly mentioned in the main text, we adhere exactly 
to our pre-analysis plan (PAP). The information in this section follows 
the PAP (with some of the information from the PAP reported in Sup-
plementary Notes). Note that previous systematic replication projects 
such as the RPP15, the EERP16 and the SSRP17 did not file preregistrations 
of the overall study protocol and planned analyses.

Before starting the survey data collection, we also preregistered an 
analysis plan (‘replication report’) for each of the 41 potential replica-
tions included in the decision market at OSF after obtaining feedback 
from the original authors (https://osf.io/sejyp). After the replications 
had been conducted, the 26 replication reports of the replications 
selected for replication by the decision market were updated with the 
results of the replications and posted in the same OSF repository. Any 
deviations from the preregistered analysis plans for the 26 replications 
are detailed in the 26 ‘post-replication reports’ and listed in Supple-
mentary Notes. We provided all original authors the opportunity to 
comment on the replication results (without a particular due date) and 
make the comments publicly available as we receive them alongside 
the post-replication reports on OSF (https://osf.io/sejyp).

Below, we provide further details on the inclusion criteria, the 
decision market set-up and the survey, the replications and the replica-
tion rate indicators included in the study. The preregistered analyses 
and tests were divided into descriptive results of the replication rate 
among the 26 replicated studies and hypothesis tests. The prereg-
istered descriptive results were furthermore divided into primary 
replication indicators and secondary replication indicators, and the 
preregistered hypothesis tests were divided into (1) primary hypoth-
eses, (2) secondary hypotheses and (3) exploratory analyses. See Sup-
plementary Notes for more details about the preregistered hypothesis 
tests and exploratory analyses. We sought ethical approval from the 
Swedish Ethical Review Authority who had no ethical objections to 
the decision market part of the project and judged the replication 
part of the project to not be covered by the Swedish ethical review law  
(Dnr 2019-06501).

Inclusion criteria for studies
We reviewed all PNAS articles from 2015 to 2018 and searched for the 
terms Amazon Mechanical Turk, MTurk and Turk. When we began plan-
ning our study at the start of 2019, we started reviewing the most recent 
articles published in PNAS. We then continued to look back in time, year 
by year, until we reached a sufficiently large number of studies to run 
a decision market. However, data collection was delayed after some 
original authors expressed concerns that the Covid-19 pandemic could 
affect the replication outcomes. We included all social sciences articles 
that fulfilled our inclusion criteria for (1) the journal and time period, 
(2) the platform on which the experiment was performed (MTurk), 
(3) the type of design (between-subjects or within-subject treatment 
design), (4) the equipment and materials needed to implement the 
experiment (the experiment had to be logistically feasible for us to 
implement) and (5) the results reported in the experiment (that there 
is at least one statistically significant P < 0.05 main or interaction effect 
in the main text). On the basis of the inclusion criteria, we identified 
44 articles. After contacting the original authors, we ended up with 
41 articles (the three excluded articles130–132 involved either software 
or platforms that no longer existed or methods we were unfamiliar 
with). In these 41 articles, we identified at least one critical finding 
that we could replicate. In cases where several studies in the same 
article fit the inclusion criteria, we randomly picked one of the stud-
ies; this was the case for 17 of the 26 replicated studies (Ames and 
Fiske46, Atir and Ferguson47, Baldwin and Lammers48, Boswell et al.50, 

Cooney et al.56, Genschow et al.59, Gheorghiu et al.60, Halevy and Halali62,  
Hofstetter et al.65, John et al.69, Jordan et al.70, Klein and O’Brien73, 
Kouchaki and Gino74, McCall et al.76, Rai et al.81, Stern et al.84 and  
Williams et al.86). In cases where the (randomly picked) study con-
tained several conditions, we randomly picked which to compare to 
the control condition. After that, we looked for the central result with 
P < 0.05 for that particular study. If there were several statistically 
significant results, one was selected at random. The replication results 
thus only pertain to the single central result selected per paper, and the 
replication outcome does not necessarily generalize to other results 
reported in the original articles. For convenience, we refer to the rep-
lications as ‘replication of [study reference]’ though.

For Cheon and Hong54, the result chosen for replication is reported 
as part of a 2 × 2 ANOVA in the original article; since the paper does 
not report the main effect, the original authors kindly provided us 
with the corresponding estimates. For Gheorghiu et al.60, the result 
to be replicated is only reported with its P value in the paper; a precise 
estimate of the test statistic has been obtained from a re-analysis of 
the original data, which the original authors kindly provided. For the 
study by Kraus et al.75, we could not reproduce the result reported in the 
original article using the original data. The original authors acknowl-
edged that there had been a reporting error in the original article. For 
the replication, we use the analysis described in the paper; the effect 
size and the test statistic reported in the original paper were replaced 
by the re-estimated result. For the study by Williams et al.86, the focal 
hypothesis test in the replication is based on a composite score of five 
suites of behaviour (which are tested separately in the original article) 
to have a single test. The original authors also report tests on compos-
ite measures in the Supplementary Information of their article, and 
they approved the choice to investigate the replicability of the focal 
hypothesis using a composite score. These changes are transparently 
reported in the replication reports for each study (see https://osf.io/
sejyp for details).

Decision market and prediction survey
We invited researchers to voluntarily participate in the decision mar-
ket through public mailing lists (ESA and JDM lists) and social media 
(for example, Twitter/X); we also emailed colleagues asking them to 
distribute the call to participants within their professional networks. 
Participants were required to hold a PhD degree or to be a PhD student 
currently. In the decision market, participants bet on whether or not 
the specific result chosen for each study would replicate based on 
the statistical significance indicator (P < 0.05 in the replication and 
an effect in the same direction as in the original study) as a criterion 
for replication (thus a binary outcome, as discussed below). Before 
the decision market, participants filled out a survey where we asked 
them to assign a probability of successful replication to each of the 
41 results. The survey is available at https://osf.io/a24zq. Complet-
ing the survey was a prerequisite for participating in the markets.  
We started the recruitment of participants for the decision market on 
4 October (2021), and we started sending out the prediction survey on 
8 October to those who had signed up for the study (participants who 
signed up after 8 October received the survey invitation a few days 
after their registration). The deadline for registering as a participant 
was 29 October, and the deadline for completing the survey was 5 
November. Overall, 289 participants signed up to participate and 
were forwarded the link to the survey; 193 participants started the 
survey, and 162 completed it by the due date. The forecasters were 
from the following fields of research: psychology (37.7%), economics 
(34.6%), management (7.4%), political science (4.9%), sociology (1.9%) 
and other fields (13.6%). No additional demographic information 
was collected.

In the survey, we asked participants to assess, for each replication 
study, (1) the likelihood that the hypothesis will successfully replicate 
(on a scale from 0% to 100%); (2) their stated expertise for the study/
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the hypothesis (on a scale from 1 to 7); and (3) whether they believe that 
the pandemic has affected the likelihood of replication. The question 
about the pandemic was measured on a scale from −3 (‘the pandemic 
has definitely decreased the probability of replication’) to 3 (‘the pan-
demic has definitely increased the probability of replication’); the 0 
midpoint implies that they do not think that the pandemic has affected 
the probability of replication. The survey was not incentivized.

The decision market opened on 8 November (2021) and closed 
after 2 weeks on 22 November (and before the decision market opened, 
participants had at least 1 week to complete the prediction survey). 
In the decision market, participants could trade (bet) on whether 
they expected the 41 studies to replicate. While participants had the 
opportunity to bet on the replication outcome of the 41 studies, we 
did not carry out replications for all 41 studies, but the final decision 
market prices determined which studies to replicate. We replicated 
the 12 studies that had the highest and the 12 studies that had the 
lowest market prices when the market closed. In addition, 2 out of the 
remaining 17 studies were randomly selected for replication to ensure 
a non-zero probability for each study to be replicated (that is, we repli-
cated 12 + 12 + 2 = 26 studies in total). Since payoffs are only determined 
based on forecasts of studies that were eventually replicated, payoffs 
were scaled up by the inverse of their probability of being selected for 
replication in the decision rule (see below for details). This incentive 
scheme encourages trading based on traders’ true beliefs, even though 
some studies will not be replicated. Consequently, participants have 
the incentive to buy shares of a particular study whenever they believe 
that the likelihood of replication is higher than the current market 
price; likewise, participants have an incentive to (short) sell shares 
whenever they believe that the likelihood of replication is lower than 
the current market price. Thus, as long as the market price differs from 
the predicted likelihood of replication for a participant, the participant 
has an incentive to buy or (short) sell shares of a particular study and 
realizing a trade according to a trader’s belief will move the market 
price in the direction of the trader’s belief. The decision rule for which 
studies to replicate was based on final market prices and was common 
knowledge to the market participants; the instructions (provided to 
participants who completed the prediction survey by the due date) 
are available at https://osf.io/a24zq/.

We chose 12 studies with the lowest predicted probability and 
12 studies with the highest predicted probability based on a power 
calculation using the pooled data from our previous prediction mar-
ket studies45. The power calculations were conducted by randomly 
sampling 41 studies from the dataset described in Gordon et al.45 in a 
simulation with 10,000 iterations and then selecting the forecasts and 
outcomes from the 12 studies with the lowest predicted probability, 
the 12 studies with the highest predicted probability and 2 random 
studies. We failed to set a random seed for the simulation when the 
study was conducted, implying that the preregistered power estimates 
could not be numerically reproduced when we wrote up the study 
results. For full transparency, we report the power estimates included 
in the PAP in parentheses below. The median point-biserial correlation 
coefficient across the 10,000 runs is 0.671 (reported as 0.66 in the 
PAP), and we have 91.0% power (reported as >90% in the PAP) to detect 
a statistically significant correlation (n = 26) between the decision 
market prices and the replication outcomes at the 0.5% level and 99.4% 
power (reported as >95% in the PAP) to detect a statistically significant 
correlation at the 5% level, which is our first primary hypothesis test. 
As a secondary hypothesis test, we test if the fraction of studies that 
successfully replicate differs between the 12 studies with the highest 
and the 12 studies with the lowest predicted replication probabilities 
using Fisher’s exact test. Applying the same sampling approach as 
for primary hypothesis 1, the median difference in replication rates 
between the 12 studies with the highest and the 12 studies with the 
lowest market prices is 0.663; the secondary test (n = 24) has 66.5% 
power at the 0.5% level (reported as 66% in the PAP) and 94.9% power 

at the 5% level (reported as 95% in the PAP). The code for the power 
simulations is available at https://osf.io/47drs.

Implementation of the decision market. We used a web-based trading 
platform, similar to the ones used in Camerer et al.16,17 and identical to 
the one used in Botvinik-Nezer et al.6. The trading platform involves 
two main views: (1) the market overview and (2) the trading page. The 
market overview listed the 41 assets (that is, one corresponding to each 
study) in tabular format, including information on the current price for 
buying a share and the number of shares held (separated for long and 
short positions). Via the trading page, which was shown after clicking 
on any of the assets, participants could make investment decisions 
(that is, buy or sell shares) and view price developments in graphical 
format for the particular asset.

Trading and incentivization. Decision market participants received 
an endowment of 100 tokens corresponding to USD 50. Once the mar-
kets opened, market participants could use the tokens to trade shares 
of the assets available in the market. An automated market maker, 
implementing a logarithmic market scoring rule133, determined the 
assets’ prices. At the beginning of the markets, all assets were valued 
at 0.50 tokens per share. The market maker calculated the share price 
for each infinitesimal transaction and updated the price based on 
the scoring rule. With this mechanism, participants had incentives to 
invest according to their beliefs43,44. With the logarithmic scoring rule, 
the price p for an infinitesimal trade is determined as p = es/b ÷ (es/b + 1), 
where s denotes the net sales (shares held − shares borrowed) that the 
market maker has done so far in a market; the liquidity parameter b 
determines how strongly the market price is affected by trade and 
was set to b = 100, implying that by investing ten tokens, traders could 
move the price of a single asset from 0.50 to about 0.55. We opted for 
the same value of b as the one used in the prediction markets in the 
SSRP17, which appears intuitively sensible in terms of striking a good 
balance between price sensitivity and liquidity. Notwithstanding, it is 
worth noting that it is unclear whether or not our results are sensitive 
to the choice of this parameter. Decision market participants were paid 
only for studies chosen for replication (based on their final holdings). 
Participants received one token per correct share for the replications 
with the 12 lowest and 12 highest final market prices. For the two ran-
domly selected replications, participants received 17 ÷ 2 = 8.5 tokens 
for each share; for replications that were not chosen for replication, 
participants received no compensation for their holdings. We followed 
this procedure to keep information revelation in the decision market 
incentive compatible, with the increased payouts for the randomly 
selected studies compensating for the ‘voided’ shares in studies not 
chosen for replication. Participants were paid after all 26 replications 
had been completed.

Participation. A total of 193 participants completed the prediction 
survey (a prerequisite to participate in market trading) after provid-
ing consent to participate and were subsequently invited to trade on 
the decision market. Of these 193 participants, 162 (83.9%) traded in 
the market at least once. During the 2-week trading period, a total of 
4,412 transactions were recorded. On average, each trader prompted 
27.2 transactions (s.d. = 30.7; min = 1, max = 185). The average number 
of traders per hypothesis was 65.1 (s.d. = 15.3; min = 35, max = 98); the 
average number of transactions recorded per hypothesis was 107.6 
(s.d. = 35.2; min = 56, max = 213). See Supplementary Table 2 for descrip-
tive statistics on the trading activity for each market.

Replications
We carry out close replications107 as closely as possible following 
the experimental design, sample restrictions, exclusion criteria 
and analysis as used in the original studies and carried out in the 
same population (Amazon Mechanical Turk) as the original studies.  
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The replications started in January 2022 and were completed in  
October 2023. The replications were planned and preregistered by  
five replication teams: a team at CalTech, LMU and Wharton; a team  
at the Stockholm School of Economics; a team at the National Univer-
sity of Singapore; a team at the University of Amsterdam; and a team 
at the University of Innsbruck.

Participants in replication studies. All replications were carried out 
at Amazon Mechanical Turk as in the original studies. We ensured that 
participants could only participate once using the same account in a 
specific study. If the original study had not specified an HIT approval 
rate, we recruited participants with an HIT approval rate of at least 95%; 
if the original study had specified a higher approval rate, we applied 
the same requirement as used in the original study.

To ward off concerns about impaired data quality owing to 
low-attention participants and bots88–94, we implemented several 
‘quality filters’. Particularly, before redirecting participants to each 
study, we forwarded the IP addresses to https://www.ipqualityscore.
com/ for a quality check to minimize the chances of low-quality par-
ticipant data (we initially planned to use this filter ex post, but during 
the data collection of the first two replication studies of Klein and 
O’Brien73 and Halevy and Halali62, we decided to set it up so that the IP 
address quality check happened before participants got redirected to 
the study). Participants for whom one or more of the following was true 
could not proceed with participating in the study: fraud score ≥ 85; 
TOR = true; VPN = true; bot = true; abuse velocity = high. This means 
that, for example, participants were not allowed to use a virtual pri-
vate network (VPN) or Tor connections or participate if they had IP 
addresses that had recently engaged in automated bot activity (the 
VPN exclusions were made ex ante, that is, before participants were 
redirected to the study, for 4 studies and ex post for 22 studies). After 
that, in all replications, participants were first shown a Captcha and 
then provided informed consent. After this, we included an attention 
check that participants had to pass to proceed to the study (with the 
exception of Reeck et al.82; see Supplementary Section 4 for details). 
The attention check was implemented in addition to any other poten-
tial attention check(s) used in the original study. All these exclusions 
based on the ‘quality filters’ were preregistered, but the PAP did not 
specify if participants would be excluded before or after participat-
ing in the study.

The individual replication studies sometimes also used additional 
exclusion criteria that are detailed in the preregistered replication 
report for each replication (we tried to use the same exclusion criteria 
for the replications as used in the original studies as much as possible). 
The replication sample sizes defined below are the sample sizes after 
any exclusions of participants.

Replication sample sizes. The replications were carried out with 
high statistical power. Replication sample sizes were based on hav-
ing 90% power to detect 2/3 of the effect size reported in the original 
study (with the effect size converted to Cohen’s d to have a common 
standardized effect size measure across the original studies and the 
replication studies). See Supplementary Notes for more details about 
the power calculations and replication sample sizes. The criteria for 
replication were an effect in the same direction as the original study 
and a P value < 0.05 (in a two-sided test). In cases where this power 
estimation led to a sample size smaller than the original one, we used 
the same sample size as in the original study. The average replication 
sample (n ̅= 1,018) size was 3.5 times as large as the average sample size 
of the original studies (n̅ = 292). We continued the data collection for 
each replication until we reached at least the preregistered sample 
size after exclusions for that replication, and this led to slightly larger 
replication sample sizes than preregistered in all replications except 
one (as it is not possible with exclusion criteria to get an exact sample 
size as the number of exclusions is not known ex ante).

Conversion of effect sizes to Cohen’s d. We converted the effect sizes 
of all the original studies and all the replication studies to Cohen’s d to 
have a standardized effect size (the effect size in the original study was 
always assigned a positive sign; the effect size in the replication study 
was assigned a positive sign if the effect was in the same direction as in 
the original study and a negative sign if the effect was in the opposite 
direction of the original study). See Supplementary Notes for details 
about the conversion of effect sizes to Cohen’s d.

Replication reports. For each of the 41 studies, we prepared a 
pre-replication plan/report stating the hypothesis we had chosen from 
each paper and how we planned to proceed with the replication study. 
These reports were shared with the original authors for feedback, and at 
least one original author from each paper replied. These pre-replication 
reports were posted at OSF (https://osf.io/sejyp) at the same time as 
the PAP and before the start of the prediction survey (that preceded 
the decision markets and the replication data collections). For those 
studies that were selected for replication, we have updated the repli-
cation reports with the replication results after the replications were 
completed. After sharing them with the original authors for feedback, 
we have posted the updated replication reports at OSF as well (https://
osf.io/sejyp). In addition, we reached out to the original authors for 
their comments on the replication reports and results. We promised to 
make their comments available along with the replication reports, and 
any comments received can be found at https://osf.io/sejyp.

Incentivization in the replication experiments. We standardized pay-
ments across all replications such that studies had a certain show-up 
fee depending on the expected length of the study. In particular, we 
paid an hourly fee of USD 8.00 for all studies, and we calculated the 
show-up fee for each study based on the expected length of the study. 
For all studies, we implemented a minimum payoff of USD 1.00. For 
studies with incentive payments, we used the same incentive payment 
as in the original study, paid in addition to the show-up fee. If we faced 
problems in recruiting participants, we increased the show-up fee, 
which happened for two studies61,65.

Replication indicators
Statistical significance criterion (primary indicator). The first pri-
mary replication indicator was the statistical significance criterion—
that is, whether the replication resulted in an effect size in the same 
direction as the original study and a two-sided P value less than 0.05. 
Unless otherwise stated above, we used the same statistical test as in 
the original study. We report the replication rate (that is, the fraction of 
the 26 studies that replicated according to this criterion) and the 95% 
Clopper–Pearson CI of this fraction in ‘Results’. We also report the 95% 
CI of the replication effect size for each of the 26 replication studies in 
Fig. 2 and Supplementary Table 3.

Relative effect sizes (primary indicator). As a second primary replica-
tion indicator, we used relative effect sizes. Relative effect sizes were 
estimated in two different ways. We report the mean effect size of all 
26 replications and compare it to the mean effect size of the 26 original 
studies (see also primary hypothesis test 2 below). We furthermore 
estimate the relative effect size of each replication (the replication 
effect size divided by the original effect size) and estimate the mean of 
this variable for the 26 replication studies and the 95% CI of this mean 
(based on a one-sample t-test). We report both of these measures of 
the relative effect size separately for the replications that replicate 
and those that do not. These results are reported in ‘Results’, Fig. 3 and 
Supplementary Table 3.

Small-telescopes approach (secondary indicator). We also used 
the small-telescopes approach112. For this indicator, we estimated 
whether the replication effect size was significantly smaller (using a 
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one-sided test at the 5% level) than a ‘small effect’, defined as the effect 
size the original study would have had 33% power to detect. For studies 
using t-tests (or F-tests converted to a t-test statistic), we based ‘the 
small effect size’ on the effect size that a t-test had 33% power to detect  
(at the 5% level in a two-sided test); for studies using z-test statistics 
(or chi-square tests converted to a z-test statistic), we based ‘the small 
effect size’ on the effect size that a z-test had 33% power to detect 
(at the 5% level in a two-sided test). To test whether the replication 
effect size was significantly smaller than ‘the small effect size’ in a 
one-sided test at the 5% level, we estimated a 90% CI of the replica-
tion effect size. We tested if the 90% CI overlapped the small effect 
size with CIs constructed as described in Supplementary Notes. If the 
effect size in the replication was significantly smaller than this ‘small 
effect size’, the result was considered a failed replication; otherwise, 
it was considered successful. We report the fraction of studies that 
replicate according to this criterion and the 95% Clopper–Pearson 
CI of this fraction. The small-telescopes results are reported in Fig. 4  
and Supplementary Table 4.

Bayes factors (secondary indicators). We also compute the one-sided 
default Bayes factors on the replication data, allowing us to obtain 
the strength of evidence in favour of the hypothesis that stipulates 
an effect in the direction of the original experiment (where a default 
prior in terms of a truncated Cauchy distribution with scale 0.707 
was assigned to the size of the effect) versus the null hypothesis that 
stipulates the effect to be absent113. In addition, we also computed 
(one-sided) replication Bayes factors, which quantifies the additional 
evidence for the hypothesis given the evidence already provided by 
the original study114. (We are counting the one-sided default and rep-
lication as Bayes factors as two separate indicators, which they are.) 
These results are reported in Fig. 5 and Supplementary Table 4. We 
use the evidence categories proposed by Jeffreys115 to interpret the 
Bayes factors. A detailed report on the estimation of the Bayes factors 
is available at https://osf.io/47drs/.

Meta-analytic effect sizes (secondary indicator). We estimated the 
meta-analytic estimate of the effect size by combining the original 
result and the replication result in a fixed-effect meta-analysis. We 
report the fraction of the 26 studies that replicated according to the 
0.05 and the 0.005 significance threshold and the 95% Clopper–Pear-
son CI of these fractions. We also use the stricter 0.005 significance 
threshold as a replication indicator for the meta-analytic effect sizes 
because this is similar to observing two studies (an original study and a 
replication study) that are significant at the 0.05 level. We report these 
results in Results, Fig. 6 and Supplementary Table 4.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data reported in this paper are tabulated in Supplementary 
Tables 1–8. The replication reports (both the pre-replication and the post- 
replication versions), the pre-analysis plan, the data from the survey 
and the decision market, and the data for each of the 26 replications 
are available at the project’s OSF repository (https://osf.io/sk82q).

Code availability
The analysis scripts, generating all results, figures and tables reported 
in the main text and the Supplementary Information, are available at 
the project’s OSF repository (https://osf.io/sk82q).
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