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We propose a new neural network based large eddy simulation framework for the incompressible 
Navier-Stokes equations based on the paradigm “discretize first, filter and close next”. This leads 
to full model-data consistency and allows for employing neural closure models in the same 
environment as where they have been trained. Since the LES discretization error is included in 
the learning process, the closure models can learn to account for the discretization.

Furthermore, we employ a divergence-consistent discrete filter defined through face-averaging 
and provide novel theoretical and numerical filter analysis. This filter preserves the discrete 
divergence-free constraint by construction, unlike general discrete filters such as volume-

averaging filters. We show that using a divergence-consistent LES formulation coupled with a 
convolutional neural closure model produces stable and accurate results for both a-priori and 
a-posteriori training, while a general (divergence-inconsistent) LES model requires a-posteriori 
training or other stability-enforcing measures.

1. Introduction

The incompressible Navier-Stokes equations form a model for the movement of fluids. They can be solved numerically on a grid 
using discretization techniques such as finite differences [29], finite volumes, or pseudo-spectral methods [53,58]. The important 
dimensionless parameter in the incompressible Navier-Stokes equations is the Reynolds number Re = 𝑈𝐿

𝜈
, where 𝐿 is a characteristic 

length scale, 𝑈 is a characteristic velocity, and 𝜈 the kinematic viscosity. For high Reynolds numbers, the flow becomes turbulent. 
Resolving all the scales of motion of turbulent flows requires highly refined computational grids. This is computationally expen-

sive [57,60,59,76].

Large eddy simulation (LES) aims to resolve only the large scale features of the flow, as opposed to direct numerical simulation 
(DNS), where all the scales are resolved [57,8]. The large scales of the flow, here denoted 𝑢̄, are extracted from the full solution 𝑢
using a spatial filter. The equations for the large scales are then obtained by filtering the Navier-Stokes equations. The large scale 
equations (filtered DNS equations) are not closed, as they still contain terms depending on the small scales. It is common to group 
the contributions of the unresolved scales into a single commutator error term, that we denote 𝑐(𝑢). Large eddy simulation requires 
modeling this term as a function of the large scales only. The common approach is to introduce a closure model 𝑚(𝑢̄, 𝜃) ≈ 𝑐(𝑢) to 
remove the small scale dependency [57,60,8], where 𝜃 are problem-specific model parameters. The closure model accounts for the 
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Fig. 1. Proposed route (in green) to a discrete LES model, based on “discretize first, then filter” instead of “filter first, then discretize” (in red). The term  (𝑢) contains 
the convective and diffusive terms. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

effect of the sub-filter scales on the resolved scales. Traditional closure models account for the energy lost to the sub-filter eddies. A 
simple approach to account for this energy transfer is to add an additional diffusive term to the LES equations. These closure models 
are known as eddy viscosity models. This includes the well known standard Smagorinsky model [69,39,40].

The filter can be either be known explicitly or implicitly. In the latter case, the (coarse) discretization itself is acting as a filter. Note 
that the distinction explicit versus implicit is not always clear, as an explicitly defined filter can still be linked to the discretization. 
Sometimes the filter is only considered to be explicit when the filter width is fully independent from the LES discretization size [6]. 
The type of filtering employed results in a distinction between explicit and implicit LES. Explicit LES [46,21,22] refers to a technique 
where the filter is explicitly used inside the convection term of the LES equations (as opposed to applying the filter in the exact filtered 
DNS evolution equations, where the filter is applied by definition). The LES solution (that we denote by 𝑣̄) already represents a filtered 
quantity, namely the filtered DNS solution 𝑢̄. Applying the filter again inside the LES equations can thus be seen as computing a quantity 
that is filtered twice. The main advantage is stability [7] and to prevent the growth of high-wavenumber components [46,21]. Note 
that this technique requires explicit access to the underlying filter. Implicit LES is used to describe the procedure where the DNS 
equations are used in their original form, and the closure model is added as a correction (regardless of whether the filter is known 
explicitly or not). Here, the filter itself is not required to evaluate the LES equations, but knowledge of certain filter properties such 
as the filter width is used to choose the closure model. In the standard Smagorinsky model for example, the filter width is used as a 
model parameter. If the exact filter is not known, this parameter is typically chosen to be proportional to the grid spacing.

Recently, machine learning has been used to learn closure models, focusing mostly on implicit LES [4–6,20,30,38,37,43,50,68,66,

67]. The idea is to represent the closure model 𝑚(𝑢̄, 𝜃) by an artificial neural network (ANN). ANNs are in principle a good candidate 
as they are universal function approximators [3,14]. However, using ANNs as closure models typically suffers from stability issues, 
which have been attributed to a so-called model-data inconsistency: the environment in which the neural network is trained is not 
the same in which it is being used [6]. Several approaches like backscatter clipping, a-posteriori training and projection onto an 
eddy-viscosity basis have been used to enforce stability [55,35,43,4] – for an overview, see [63]. Our view is that one of the problems 
that lies at the root of the model-data inconsistency is a discrepancy between the LES equations (obtained by first filtering the continuous 
Navier-Stokes equations, then discretizing) and the training data (obtained by discretizing the Navier-Stokes equations, and then applying a 
discrete filter).

Our key insight is that the LES equations can also be obtained by “discretizing first” instead of “filtering first”: following the green 
instead of the red route in Fig. 1. In other words, by discretizing the PDE first, and then applying a discrete filter, the model-data 
inconsistency issue can be avoided and one can generate exact training data for the discrete LES equations. Training data obtained by 
filtering discrete DNS solutions is fully consistent with the environment where the discrete closure model is used. The resulting LES 
equations do not have a coarse grid discretization error, but an underlying fine grid discretization error and a commutator error from 
the discrete filter, which can be learned using a neural network. In our recent work [1], we showed the benefits of the “discretize 
first” approach on a 1D convection equation. With the discretize-first approach we obtain stable results without the need for the 
stabilizing techniques mentioned above (backscatter clipping, a-posteriori training, projection onto an eddy-viscosity basis).

In the current paper, the goal is to extend the “discretize first” approach to the full 3D incompressible Navier-Stokes equations. 
One major challenge that appears in incompressible Navier-Stokes is the presence of the divergence-free constraint. We show that 
discrete filters are in general not divergence-consistent (meaning that divergence-free DNS solutions do not stay divergence-free upon 
filtering). Kochkov et al. used a face-averaging filter to achieve divergence-consistency [35]. We employ this filter and show how it 
leads to a different set of equations than for non-divergence-consistent filters. Overall, the main result is that our divergence-consistent 
neural closure models lead to stable simulations.

In addition, we remark that divergence-consistent filtering is an important step towards LES closure models that satisfy an energy 
inequality. Such models were developed by us in [74] for one-dimensional equations with quadratic nonlinearity (Burgers, Korteweg 
- de Vries). When extending this approach to 3D LES, the derivation of the energy inequality hinges on having a divergence-free 
2

constraint on the filtered solution field.
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Fig. 2. Finite volume discretization on a staggered grid. The pressure is defined in the volume center, and the velocity components on the volume faces.

Our article is structured as follows. In section 2, we present the discrete DNS equations that serve as the ground truth in our 
problem, based on a second order accurate finite volume discretization on a staggered grid. In section 3, we introduce discrete 
filtering. Unclosed equations for the large scales are obtained. We show that the filtered velocity is not automatically divergence-

free. We then present two discrete filters on a staggered grid, of which one is divergence-consistent. In section 4, we present our 
discrete closure modeling framework, resulting in two discrete LES formulations. We discuss the validity of the LES models in terms 
of divergence-consistency. A discussion follows on the choice of closure model and how we can learn the closure model parameters. 
In section 5, we present the results of numerical experiments on a decaying turbulence test case. Section 6 ends with concluding 
remarks.

Additional details are included in the appendices. In Appendix A, we include details about the discretization procedure. In Ap-

pendix B, we explain the numerical experiments. In Appendix C, we show that the face-averaging filter is divergence-consistent on 
both uniform and non-uniform grids. In Appendix D, we show the problems that can occur when filtering before differentiating the 
divergence-free constraint. In Appendix E, we analyze the transfer functions of a continuous face-averaging filter and a continuous 
volume-averaging filter. In Appendix F, we analyze the difference between “discretize first” and “filter first” for an analytical solution 
to the incompressible Navier-Stokes equations. In Appendix G, we provide results for two more test cases: a decaying turbulence test 
case in 2D, and a forced turbulence test case in 3D.

2. Direct numerical simulation of all scales

In this section, we present the continuous Navier-Stokes equations and define a discretization aimed at resolving all the scales of 
motion. The resulting discrete equations will serve as the ground truth for learning an equation for the large scales.

2.1. The Navier-Stokes equations

The incompressible Navier-Stokes equations describe conservation of mass and conservation of momentum, which can be written 
as a divergence-free constraint and an evolution equation:

∇ ⋅ 𝑢 = 0, (1)

𝜕𝑢

𝜕𝑡
+∇ ⋅ (𝑢𝑢𝖳) = −∇𝑝+ 𝜈∇2𝑢+ 𝑓, (2)

where Ω ⊂ ℝ𝑑 is the domain, 𝑑 ∈ {2, 3} is the spatial dimension, 𝑢 = (𝑢1, … , 𝑢𝑑 ) is the velocity field, 𝑝 is the pressure, 𝜈 is the 
kinematic viscosity, and 𝑓 = (𝑓 1, … , 𝑓𝑑 ) is the body force per unit of volume. The velocity, pressure, and body force are functions 
of the spatial coordinate 𝑥 = (𝑥1, … , 𝑥𝑑 ) and time 𝑡. For the remainder of this work, we assume that Ω is a rectangular domain with 
periodic boundaries, and that 𝑓 is constant in time.

2.2. Spatial discretization

For the discretization scheme, we use a staggered Cartesian grid as proposed by Harlow and Welch [29]. Staggered grids have 
excellent conservation properties [41,56], and in particular their exact discrete divergence-free constraint is important for this work. 
Details about the discretization can be found in Appendix A.

We partition the domain Ω into 𝑁 finite volumes. Let 𝑢(𝑡) ∈ ℝ𝑑𝑁 and 𝑝(𝑡) ∈ ℝ𝑁 be vectors containing the unknown velocity 
and pressure components in their canonical positions as shown in Fig. 2. They are not to be confused with their space-continuous 
counterparts 𝑢(𝑥, 𝑡) and 𝑝(𝑥, 𝑡), which will no longer be referred to in what follows. The discrete and continuous versions of 𝑢 and 𝑝
3

have the same physical dimensions.
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Equations (1) and (2) are discretized as

𝐷𝑢 = 0, (3)

d𝑢
d𝑡

= 𝐹 (𝑢) −𝐺𝑝, (4)

where 𝐷 ∈ℝ𝑁×𝑑𝑁 is the divergence operator, 𝐺 = −Ω−1
𝑢 𝐷𝖳Ω𝑝 ∈ℝ𝑑𝑁×𝑁 is the gradient operator, Ω𝑢 ∈ℝ𝑑𝑁×𝑑𝑁 and Ω𝑝 ∈ℝ𝑁×𝑁 are 

element-wise scaling operators containing the velocity and pressure volume sizes, and 𝐹 (𝑢) ∈ℝ𝑑𝑁 contains the convective, diffusive, 
and body force terms.

2.3. Pressure projection

The two vector equations (3) and (4) form an index-2 differential-algebraic equation system [27,28], consisting of a divergence-free 
constraint and an evolution equation. Given 𝑢, the pressure can be obtained by solving the discrete Poisson equation 0 =𝐷𝐹 (𝑢) −𝐷𝐺𝑝, 
which is obtained by differentiating the divergence-free constraint in time. This can also be written

𝐿𝑝 =Ω𝑝𝐷𝐹 (𝑢), (5)

where the Laplace matrix 𝐿 = Ω𝑝𝐷𝐺 = −Ω𝑝𝐷Ω−1
𝑢 𝐷𝖳Ω𝑝 is symmetric and negative semi-definite. We denote by 𝐿† the solver to the 

scaled pressure Poisson equation (5). Since no boundary value for the pressure is prescribed, 𝐿 is rank-1 deficient and the pressure 
is only determined up to a constant. We set this constant to zero by choosing

𝐿† =
(
𝐼 0

)( 𝐿 𝑒
𝑒𝖳 0

)−1(
𝐼
0

)
, (6)

where 𝑒 = (1, … , 1) ∈ℝ𝑁 is a vector of ones and the additional degree of freedom enforces the constraint of an average pressure of 
zero (i.e. 𝑒𝖳𝐿† = 0) [45]. In this case we still have 𝐿𝐿† = 𝐼 , even though 𝐿†𝐿 ≠ 𝐼 .

We now introduce the projection operator 𝑃 , which plays an important role in the development of our new closure model strategy 
in section 3: 𝑃 = 𝐼 −𝐺𝐿†Ω𝑝𝐷. It is used to make velocity fields divergence-free [16], since 𝐷𝑃 =𝐷−Ω−1

𝑝 𝐿𝐿†Ω𝑝𝐷 = 0. It naturally 
follows that 𝑃 is a projector, since 𝑃 2 = 𝑃 −𝐺𝐿†Ω𝑝𝐷𝑃 = 𝑃 .

Having defined 𝑃 , it is (at least formally) possible to eliminate the pressure from equations (3)-(4) into a single “pressure-free” 
evolution equation for the velocity [62], given by

d𝑢
d𝑡

= 𝑃𝐹 (𝑢). (7)

This way, an initially divergence-free velocity field 𝑢 stays divergence-free regardless of what forcing term 𝐹 is applied. We note that 
equation (7) alone does not enforce the divergence-free constraint, as it also requires the initial conditions to be divergence-free.

𝐿† and 𝑃 are non-local operators that are not explicitly assembled, but their action on vector fields is computed on demand using 
an appropriate linear solver. Formulation (7) is used as a starting point for developing a new filtering technique in section 3.

2.4. Time discretization

We use Wray’s low storage third order Runge-Kutta method (Wray3) for the incompressible Navier-Stokes equations [77,62]. 
While explicit methods may require smaller time steps (depending on the problem-specific trade-off of stability versus accuracy), 
they are easier to differentiate with automatic differentiation tools.

Given the solution 𝑢𝑛 at a time 𝑡𝑛, the next solution at a time 𝑡𝑛+1 is given by

𝑢𝑛+1 = 𝑢𝑛 +Δ𝑡𝑛
𝑠∑

𝑖=1
𝑏𝑖𝑘𝑖, (8)

where

𝑘𝑖 = 𝑃𝐹

(
𝑢𝑛 +Δ𝑡𝑛

𝑖−1∑
𝑗=1

𝑎𝑖𝑗𝑘𝑗

)
, (9)

Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛, 𝑠 is the number of stages, 𝑎 ∈ℝ𝑠×𝑠, and 𝑏 ∈ℝ𝑠. In practice, each of the RK steps (9) are performed by first computing 
a tentative (non-divergence-free) velocity field, subsequently solving a pressure Poisson equation, and then correcting the velocity 
field to be divergence-free. As the method is explicit, this is equivalent to (9) and does not introduce a splitting error [62]. For Wray3, 
we set 𝑠 = 3, 𝑏1 = 1∕4, 𝑏2 = 0, 𝑏3 = 3∕4, 𝑎21 = 8∕15, 𝑎31 = 1∕4, 𝑎32 = 5∕12, and the other coefficients 𝑎𝑖𝑗 = 0.

3. Discrete filtering and divergence-consistency

The DNS discretization presented in the previous section is in general too expensive to simulate for problems of practical interest, 
4

and it is only used to generate reference data for a limited number of test cases. In this section, we present discrete filtering from 
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Fig. 3. Alternative view of Fig. 1 to highlight the effect of differentiating the constraint. The red arrows show the traditional route of filtering first and then discretizing. 
The solid green arrows show our proposed route of discretizing first, then differentiating the constraint, then filtering, and finally reintroducing a pressure term (if 
the filter is divergence-consistent). This is done to circumvent the pressure problems of the dashed green route (discretizing first, then filtering).

the fine DNS grid to a coarse grid in order to alleviate the computational burden. This means we filter the discretized equations, 
in contrast to many existing approaches, which filter the continuous Navier-Stokes equations, and then apply a discretization. The 
advantages of “discretizing first” were already mentioned in section 1. However, one disadvantage of “discretizing first” is that the 
filtered velocity field is in general not divergence free. Kochkov et al. pointed out that using a face-averaging filter preserves the 
divergence-free constraint for the filtered velocity [35]. We will employ this filter and compare it to a non-divergence-preserving 
volume-averaging filter.

3.1. Filtering from fine to coarse grids

We consider two computational grids: a fine grid of size 𝑁 ∈ ℕ𝑑 and a coarse grid of size 𝑁̄ ∈ ℕ𝑑 , with 𝑁̄𝛼 ≤𝑁𝛼 for all 𝛼 ∈
{1, … , 𝑑}. The operators 𝐷, 𝐹 , 𝐺, 𝑃 , etc., are defined on the fine grid. On the coarse grid, similar operators are denoted 𝐷̄, 𝐹 , 𝐺̄, 
𝑃 , etc.

Consider a flow problem. We assume that the flow is fully resolved on the fine grid, meaning that the grid spacing is at least twice 
as small as the smallest significant spatial structure of the flow. The resulting fully resolved solution 𝑢 ∈ ℝ𝑑𝑁 is referred to as the 
DNS solution. In addition, we assume that the flow is not fully resolved on the coarse grid, meaning that the coarse grid spacing is 
larger than the smallest significant spatial structure of the flow. The aim is to solve for the large scale features of 𝑢 on the coarse grid. 
For this purpose, we construct a discrete spatial filter Φ ∈ℝ𝑑𝑁̄×𝑑𝑁 . The resulting filtered DNS velocity field is given by

𝑢̄ =Φ𝑢 ∈ℝ𝑑𝑁̄ , (10)

and is a coarse-grid quantity. We stress that 𝑢̄ is by definition a consequence of the DNS. It is not obtained by solving the Navier-Stokes 
equations on the coarse grid. That is instead the goal in the next sections.

Since Φ is a coarse-graining filter, it does not generally commute with discrete differential operators. In particular, the divergence-

free constraint is preserved for continuous convolutional filters, but this is not automatically the case for discrete filters. We consider 
this property in detail, and investigate its impact on the resulting large scale equations.

3.2. Equation for large scales

When directly filtering the differential-algebraic system (3)-(4), multiple challenges arise. These are detailed in Appendix D and 
summarized here:

• The filter Φ works on inputs defined in the velocity points, and is targeted at filtering the momentum equation. It is not directly 
clear how to filter the divergence-free constraint (which is defined in the pressure points), and whether a second filter needs to 
be defined for the pressure points.

• The momentum equation includes a pressure term. While its gradient can be filtered with Φ, it is not clear what a filtered pressure 
𝑝̄ should be, or how it should appear in the filtered momentum equation.

To circumvent these issues, we propose to differentiate the discrete divergence constraint first (to remove the pressure), and then 
apply the filter to the pressure-free DNS equation (7). This results in the sequence “discretize – differentiate constraint – filter”, as 
shown by solid green arrows in Fig. 3. The advantage over the route defined by dashed green arrows, “discretize – filter”, is that 
we do not need to consider the pressure or the divergence-free constraint, and a single filter for the velocity field is sufficient. The 
“implied” filtered pressure will be discussed in section 4.1. The resulting equation for the filtered DNS-velocity 𝑢̄ is d𝑢̄d𝑡 = Φ𝑃𝐹 (𝑢), 
which is rewritten as

d𝑢̄
d𝑡

= 𝑃𝐹 (𝑢̄) + 𝑐(𝑢), (11)
5

with the unclosed commutator error defined by
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Fig. 4. Four coarse volumes (blue) and their fine grid sub-grid volumes (red) in 2D. For each of the coarse volume faces, the discrete filter ΦFA combines the DNS 
velocities 𝑢 into one LES velocity 𝑢̄ using averaging. The interior sub-grid velocities are not present in 𝑢̄. The coarse grid pressure 𝑝̄ is defined in the coarse volume 
centers, but is not obtained by filtering 𝑝. Instead, it is computed from 𝑢̄. Left: Structured grid, used in this work. Right: Unstructured grid.

Fig. 5. DNS velocity components 𝑢 contributing to a single filtered DNS component 𝑢̄ for two filters. Both filters have a filter width equal to the grid size. Both 𝑢(𝑡)
and 𝑢̄(𝑡) share the same dimension as the continuous velocity 𝑢(𝑥, 𝑡). Left: Volume-averaging filter ΦVA. Right: Face-averaging filter ΦFA.

𝑐(𝑢) = Φ𝑃𝐹 (𝑢) − 𝑃𝐹 (Φ𝑢). (12)

A crucial point is that when filtering from a fine grid to a coarse grid, one generally does not get a divergence-free filtered velocity 
field (𝐷̄𝑢̄ ≠ 0), as discrete filtering and discrete differentiation do not generally commute.

3.3. Divergence-consistent discrete filter

Our approach is to design the filter and coarse grid such that the divergence-free constraint is preserved. This is achieved by 
merging fine DNS volumes to form coarse LES volumes, such that the faces of DNS and LES volumes overlap (as shown in Fig. 4). 
The extracted large scale velocities 𝑢̄ =Φ𝑢 are then obtained by averaging the DNS velocities that are found on the LES volume faces

[35]. We denote this face-averaging discrete filter by ΦFA. This approach to filtering also naturally generalizes to unstructured grids, 
as long as the coarse volume faces overlap with the fine ones. An example is shown to the right in Fig. 4 for triangular volumes.

The face-averaging filter ΦFA is different to more traditional volume-averaging filters such as the volume-averaging top-hat filter 
[60] (that we denote ΦVA). The face-averaging filter can be thought of as a top-hat filter acting on the dimensions orthogonal to 
the velocity components only, while the volume-averaging filter is averaging over all dimensions. The associated transfer function 
of these two types of filters are further analyzed in Appendix E. In this work, we define the two discrete filters ΦFA and ΦVA with 
uniform weights and with filter width equal to the coarse grid spacing Δ̄. Since both filters are top-hat like, the filter width is defined 
as the diameter of the averaging domain in the infinity norm. Note that due to the normalization, all discrete velocity components 
𝑢̄𝛼
𝐽

and 𝑢𝛼
𝐼

share the same dimension as the continuous velocity 𝑢𝛼 (𝑥, 𝑡) (not velocity times area or velocity times volume).

The two discrete filter supports are compared in Fig. 5. One advantage of the face-averaging filter is that it does not require 
modifications at non-periodic boundaries, while the volume-averaging filter does (for example by using a volume of half the size and 
twice as large weights to avoid averaging outside solid walls). But the main advantage lies in the preservation of the divergence-free 
constraint, as we now show.

When 𝑢̄ is obtained through face-averaging, the difference of fluxes entering and leaving an LES volume is equal to a telescoping 
sum of all sub-grid flux differences, which in turn is zero due to the fine grid divergence-free constraint. The proof is shown in 
Appendix C. Note that this property no longer holds if the filter weights are non-uniform or if the filter width is different from the 
coarse grid spacing. The face-averaging filter thus preserves by construction the divergence-free constraint for the filtered DNS velocity:

FA
6

For Φ ∶ ∀𝑢, 𝐷𝑢 = 0 ⟹ 𝐷̄𝑢̄ = 0. (13)
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This property is the primary motivation for our filter choice (it can also be thought of as a discrete equivalent of the divergence 
theorem ∇ ⋅ 𝑢 = 0 ⟹ ∫𝜕 𝑢 ⋅ 𝑛 dΓ = 0 for all ). It can be used to show that the face-averaging filter has the property

𝐷̄Φ𝑃 = 0 (14)

since, for all 𝑢, if 𝑤 = 𝑃𝑢, then 𝐷𝑤 = 0 by definition of 𝑃 , and thus 𝐷̄Φ𝑃𝑢 = 𝐷̄Φ𝑤 = 𝐷̄𝑤̄ = 0 from (13). In other words, divergence-

free fine grid velocity fields stay divergence-free upon filtering. For a general volume-averaging filter, we would not be able to 
guarantee that all the sub-grid fluxes cancel out, and we would not get a divergence-free constraint for 𝑢̄. This constraint is often 
enforced anyways, possibly introducing unforeseen errors, as pointed out by Sirignano et al. [68]. With the face-averaging filter, we 
do not need to worry about such errors.

With the face-averaging filter choice, the momentum commutator error is divergence-free, since

𝐷̄𝑐 = 𝐷̄
(d𝑢̄
d𝑡

− 𝑃𝐹 (𝑢̄)
)
= d(𝐷̄𝑢̄)

d𝑡
− (𝐷̄𝑃 )𝐹 (𝑢̄) = 0 (15)

since 𝐷̄𝑢̄ = 0 and 𝐷̄𝑃 = 0 on the coarse grid just like 𝐷𝑃 = 0 on the fine grid. As a result, 𝑐 = 𝑃 𝑐, and the right hand side of the large 
scale equation is divergence-free. This allows us to rewrite equation (11) as

d𝑢̄
d𝑡

= 𝑃
(
𝐹 (𝑢̄) + 𝑐(𝑢)

)
. (16)

The fact that the projection operator 𝑃 now also acts on the commutator error will play an important role in learning a new LES 
closure model in section 4.

Since 𝐷𝑢(0) = 0 and thus 𝐷̄𝑢̄(0) = 0 (for the face-averaging filter), we can rewrite the filtered equation into an equivalent con-

strained form, similar to the unfiltered equations (3)-(4):

𝐷̄𝑢̄ = 0, (17)

d𝑢̄
d𝑡

= 𝐹 (𝑢̄) + 𝑐(𝑢) − 𝐺̄𝑝̄, (18)

where 𝑝̄ is the “implied” pressure defined in the coarse volume centers. It is obtained by solving the pressure Poisson equation with 
the additional sub-grid forcing term 𝑐 in the right hand side:

𝐿̄𝑝̄ = Ω̄𝑝𝐷̄
(
𝐹 (𝑢̄) + 𝑐(𝑢)

)
. (19)

Note that the coarse pressure 𝑝̄ is not obtained defining a pressure filter, but arises from enforcing the coarse grid divergence-free 
constraint. In other words, by filtering the pressure-free momentum equation (7) with a divergence-consistent filter, we discover 
what the (implicitly defined) filtered pressure is. An implicit volume-averaging pressure filter can still be defined, see Appendix C for 
further details.

3.4. Other divergence-consistent filters

We comment here on other approaches for constructing divergence-consistent discrete filters.

3.4.1. Discrete differential filters

Continuous filters can be built using differential operators, for example Germano’s filter 𝑢̄(𝑥, 𝑡) = (1 − Δ̄2∕24∇2)−1𝑢 [24,12]. 
Differential filters can also be extended to the discrete case. Trias and Verstappen propose using polynomials of the discrete diffusion 
operator (which we will denote 𝐷2) as a filter [72]:

Φ= 𝐼 +
𝑚∑
𝑖=1

𝛾𝑖𝐷
𝑖
2, (20)

where 𝑚 is the polynomial degree and 𝛾𝑖 are filter coefficients. This ensures that the filter has useful properties. However, divergence 
freeness is only respected approximately, the convective operator may need to be modified to preserve skew-symmetry, and there is 
no coarsening (𝑁̄ =𝑁).

3.4.2. Spectral cut-off filters

Spectral cut-off filters are divergence-consistent, but only so with respect to the spectral divergence operator 𝑢̂𝑘 ↦ 2𝜋i𝑘𝖳𝑢̂𝑘 (which 
acts element-wise in spectral space). For pseudo-spectral discretizations, spectral cut-off filters are therefore natural choices. On our 
staggered grid however, a spectral cut-off filter would not automatically be such that 𝐷̄𝑢̄ = 0.

3.4.3. Projected filters

By including the projection operator into the filter definition, any filter can be made divergence-consistent [72]. For example, the 
7

volume averaging filter ΦVA can be replaced with Φ̃VA = 𝑃ΦVA, which is a divergence-consistent filter. However, this makes the filter 
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non-local. The projection step is also more expensive, which could be a problem when the filter is used to generate many filtered 
DNS training data samples for a neural closure model.

4. Learning a closure model for the large scale equation

In this section, we present our new closure model formulation: a discrete LES model based on the divergence-consistent face-

averaging filter.

4.1. Discrete large eddy simulation

Our “discretize-differentiate-filter” framework has led to equation (11), which describes the exact evolution of the large scale 
components 𝑢̄ for a general filter, but still contains the unclosed term 𝑐(𝑢) from equation (12). Solving this equation would require 
access to the underlying DNS solution 𝑢. We therefore replace 𝑐(𝑢) with a parameterized closure model 𝑚(𝑢̄, 𝜃) ≈ 𝑐(𝑢), which depends 
on 𝑢̄ only [57,60,8]. This produces a new approximate large scale velocity field 𝑣̄ ≈ 𝑢̄. It is defined as the solution to the discrete LES 
model

DIF ∶
d𝑣̄
d𝑡

= 𝑃𝐹 (𝑣̄) +𝑚(𝑣̄, 𝜃). (21)

Given the discretize-differentiate-filter framework, this constitutes a general LES model formulation, which does not assume yet that 
the filter is divergence-consistent. We therefore give it the label DIF (divergence-inconsistent formulation).

Since our face-averaging filter is divergence-consistent, we propose an alternative LES model, by replacing 𝑐 with 𝑚 in equation 
(16) instead of in equation (11). The result is a new divergence-consistent LES model:

d𝑣̄
d𝑡

= 𝑃
(
𝐹 (𝑣̄) +𝑚(𝑣̄, 𝜃)

)
. (22)

This equation is in “pressure-free” form, which was obtained by differentiating the constraint. By reversing the process, i.e. integrating 
the constraint in time, the model can now be written back into a constrained form in which the pressure reappears:

DCF ∶
𝐷̄𝑣̄ = 0,
d𝑣̄
d𝑡

= 𝐹 (𝑣̄) +𝑚(𝑣̄, 𝜃) − 𝐺̄𝑞.
(23)

This is our proposed divergence-consistent formulation that will be denoted by “DCF”. The derivation of (23) from (22) hinges on the 
fact that 𝐷̄𝑣̄(0) = 𝐷̄𝑢̄(0) = 0. The pressure field 𝑞 ≈ 𝑝̄ is the filtered pressure field ensuring that the LES solution 𝑣̄ stays divergence-

free. We stress that in our approach no pressure filter needs to be defined explicitly. With a divergence-consistent formulation the 
filtered pressure can be seen as a Lagrange multiplier.

We note that the system (23) seems to have the same form as the LES equations that are common in literature, being obtained by 
the classic route “filter first, then discretize” (see red route in Fig. 3). One might argue that the divergence-consistent face-averaging 
filter is just a way to make sure that the operations of differentiation and filtering commute. However, as we mentioned in section 1, 
there is an important difference: in contrast to the classic approach, in our approach we have precisely defined what the filter is, and 
the training data (𝑢̄) is fully discretization-consistent with our learning target (𝑣̄). This is a key ingredient in obtaining model-data 
consistency and hence stable closure models [19,37].

4.2. Divergence-consistency and LES

We now compare in more detail the properties of the two models, the “divergence-inconsistent” formulation DIF and the 
“divergence-consistent” formulation DCF, see Table 1.

DIF is valid for a general (non-divergence-consistent) filter and leads to a non-divergence free 𝑣̄. In case a divergence-consistent 
filter is used, the model DIF is still different from DCF, unless 𝑃𝑚 =𝑚. This is because one can have an exact commutator error 𝑐
with the property 𝑃 𝑐 = 𝑐 (meaning 𝐷̄𝑐 = 0) but still learn an approximate commutator error 𝑚 such that 𝑃𝑚 ≠𝑚 (meaning 𝐷̄𝑚 ≠ 0).

If the DCF model is used with a volume-averaging filter, inconsistencies appear. For example, while the filtered DNS data is not 
divergence-free, the DCF model would enforce the LES solution to be (incorrectly) divergence-free.

So far, we have only discussed the two LES formulations in terms of their divergence properties, leaving out other properties that 
could also be important. In section 5, we compare the four combinations from Table 1 for a turbulent flow test case, and discuss 
whether they are good choices or not.

4.3. Choosing the objective function

To learn the model parameters 𝜃, we exploit having access to exact filtered DNS data samples 𝑢̄ and exact commutator errors 𝑐(𝑢)
obtained through (explicitly) filtered DNS solutions. A straightforward and commonly used approach [33,48,4] is then to minimize 
8

a loss function of a-priori type, that only depends on the DNS-solution 𝑢. We use the commutator error loss
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Table 1

Divergence compatibility chart for LES models 
(rows) and filter properties (columns). The last row 
shows our preferred combination.

Model Filter 𝐷̄𝑢̄ = 0 𝐷̄𝑣̄ = 0

DIF VA False False

DIF FA True True if 𝐷̄𝑚 = 0
DCF VA False True

DCF FA True True

Fig. 6. Computational chain of loss functions. Solid lines are affected by changes in 𝜃. Dotted lines are not affected by 𝜃, and can be precomputed before training.

Left: A-priori loss function (24). The mean squared error 𝐿 is computed between the closure model 𝑚 and the commutator error 𝑐. Right: A-posteriori loss function 
(25) (here shown for five unrolled time steps). DNS initial conditions are sampled from the distribution 0 , and filtered (Φ) to produce LES initial conditions. After 
every time step, the LES solution is compared to the corresponding filtered DNS solution using the mean squared error 𝐿. The parameters 𝜃 are used in each LES RK 
time step, but not in the DNS time steps.

𝐿prior(, 𝜃) = 1
#

∑
𝑢∈

‖𝑚(𝑢̄, 𝜃) − 𝑐(𝑢)‖2‖𝑐(𝑢)‖2 (24)

where  is a batch of # DNS snapshots. Note that (24) does not involve 𝑣̄, so the effect of the closure model on the LES solution 
is not taken into account. We therefore call this a-priori training [63]. This approach makes training fast, since only gradients of the 
neural network itself are required for gradient descent.

Alternatively, one can minimize an a-posteriori loss function, that also depends on the LES solution 𝑣̄. We use the trajectory loss

𝐿post(𝑢0, 𝜃) =
1

𝑛unroll

𝑛unroll∑
𝑖=1

‖𝑣̄𝑖 − 𝑢̄𝑖‖2‖𝑢̄𝑖‖2 , (25)

where 𝑢̄𝑖 = Φ𝑢𝑖 is obtained by filtering the DNS solution, 𝑢𝑖+1 = RKΔ𝑡(𝑢𝑖) is obtained using one RK4 time step from section 2.4, 𝑢0
are random initial conditions, and the LES solution 𝑣𝑖+1 = RKΔ𝑡,,𝑚,𝜃(𝑣𝑖) is computed using the same time stepping scheme as 𝑢𝑖+1
but with LES formulation , closure 𝑚, and parameters 𝜃, starting from the exact initial conditions 𝑣̄0 = 𝑢̄0.

The parameter 𝑛unroll determines how many time steps we unroll. If we choose 𝑛unroll = 1, 𝐿post will be very similar to 𝐿prior. 
If we choose a large 𝑛unroll, we predict long trajectories, and the loss may be more sensitive to small changes in 𝜃 (“exploding” 
gradients). List et al. and Melchers et al. argue that the number of unrolled time steps should depend on the characteristic time scale 
(Lyapunov time scale) of the problem [43,51]. For chaotic systems (including turbulent flows), 𝐿post is expected to grow fast in time, 
and the number of unrolled time steps should be small. List et al. found good results with 𝑛unroll ∈ [30, 60] for the incompressible 
Navier-Stokes equations in 2D [43]. For the chaotic Kuramoto-Sivashinsky equation in 1D, Melchers et al. found 𝑛unroll = 30 to give 
optimal long term results, with 𝑛unroll = 120 performing poorly [51]. Kochkov et al. found 32 steps to be ideal for unrolling [35]. For 
our test case, we choose 𝑛unroll = 50, so that the trajectory becomes long enough in time while keeping the number of steps limited. 
See Appendix B.5 for further details.

The a-priori loss function is easy to evaluate and easy to differentiate with respect to 𝜃, as it does not involve solving the LES ODE 
given by the model  ∈ {DIF, DCF}. However, minimizing 𝐿prior does not take into account the effect of the prediction error on 
the LES solution error. The a-posteriori loss does take into account this effect, but has a longer computational chain involving the 
9

solution of the LES ODE [73,47,43,42,36]. This is illustrated in Fig. 6.
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4.4. Choosing the model architecture

Traditionally, closure models are formulated in a continuous setting and they replace the unclosed term ∇ ⋅ (𝑢𝑢 − 𝑢̄𝑢̄) by either 
structural or functional models [60]. In recent machine learning approaches, discrete data are inherently used for training the closure 
model, and the loss function can take into account both structural and functional elements [26]. In this work we use the common 
approach of using a convolutional neural network for the closure model 𝑚 [43] (see section 4.4.2), and compare it to a traditional 
eddy-viscosity model (see section 4.4.1).

4.4.1. Eddy viscosity models

Eddy viscosity models are functional models that consist of adding an additional diffusive term

𝑚(𝑢̄, 𝜃) = ∇ ⋅ (2𝜈𝑡𝑆̄) (26)

to the continuously filtered Navier-Stokes equations, where 𝑆̄ = 1
2

(
∇𝑢̄+∇𝑢̄𝖳

)
is the large scale strain rate tensor and 𝜈𝑡 is a turbulent 

viscosity (parameterized by 𝜃). This term models transfer of energy from large to unresolved scales. Note that 𝑢̄(𝑥, 𝑡) and 𝑚(𝑢̄(⋅, 𝑡), 𝜃)(𝑥)
are here continuous quantities that subsequently need to be discretized to 𝑢̄(𝑡) and 𝑚(𝑢̄(𝑡), 𝜃).

The Smagorinsky model [69,40] predicts a local viscosity of the form

𝜈𝑡 = 𝜃2Δ̄2
√

2 tr(𝑆̄𝑆̄), (27)

where Δ̄ is the filter width and 𝜃 ∈ [0, 1] is the only model parameter (the Smagorinsky coefficient). In our experiments, this parameter 
is fitted to filtered DNS data, similar to [64,26]. The model is discretized on the coarse grid, and Δ̄ is taken to be the LES grid size.

4.4.2. Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are commonly used in closure models when dealing with structured data [4,64,26,43], and 
since we are dealing with a structured Cartesian grid, this will be employed here as well. A convolutional node conv ∶ (𝑢𝑛)𝑁chan

𝑛=1 ↦ 𝑣
in a CNN transforms 𝑁chan discrete input channel functions into one discrete output function in the following non-linear way:

𝑣𝐼 = 𝜎

⎛⎜⎜⎜⎜⎝
𝑏+

∑
𝐽∈{−𝑟,…,𝑟}𝑑
𝑛∈{1,…,𝑁chan}

𝐾𝑛
𝐽 𝑢

𝑛
𝐼+𝐽

⎞⎟⎟⎟⎟⎠
, (28)

where 𝜎 is a non-linear activation function, 𝑏 ∈ℝ is a bias, 𝐾 ∈ℝ(2𝑟+1)𝑑×𝑁chan is the kernel, and 𝑟 is the kernel radius.

In a convolutional node it is typically assumed that all the input channels are fields defined in the same grid points. Our closure 
model, on the other hand, is defined on a staggered grid, with inputs and outputs in the velocity points, whose locations differ in the 
different Cartesian directions, see Fig. 2. Our CNN closure model is therefore defined as follows:

𝑚CNN = decollocate◦
⎛⎜⎜⎝
conv
⋮

conv

⎞⎟⎟⎠◦…◦
⎛⎜⎜⎝
conv
⋮

conv

⎞⎟⎟⎠◦ collocate (29)

where the full vector of degrees of freedom 𝑢̄ contains 𝑑 sub-vectors 𝑢̄𝛼 used as input channels to the CNN. The degrees of freedom 
in these sub-vectors belong to their own canonical velocity points. We therefore introduce a so-called collocation function as an 
initialization layer to the CNN in order to produce quantities that are all defined in the pressure points. The subsequent inner 
layers map from pressure points to pressure points using kernels of odd diameters. Since the closure term is required in the velocity 
points, a “decollocation” function is introduced in the last layer to map back from pressure points to velocity points. Here, we use 
a linear interpolation for both collocation and decollocation functions. It is also possible to use “divergence of a stress tensor” as 
a decollocation function in order to mimic the structure of the continuous commutator error. However, our commutator error also 
includes discretization effects, where this form may not be relevant. It would also require more (de)collocation functions to produce 
the off-diagonal elements of the tensors (which should be the volume corners in 2D and volume edges in 3D).

5. Numerical experiment: forced turbulence in a periodic box

We consider a unit square domain Ω = [0, 1]𝑑 with periodic boundaries. The DNS initial conditions are sampled from a ran-

dom velocity field defined through its prescribed energy spectrum 𝐸̂𝑘 . Similar to [52,61,49], we create an initial energy profile by 
multiplying a growing polynomial with a decaying exponential as

𝐸̂𝑘 =
8𝜋
3𝜅5𝑝

𝜅4e
−2𝜋

(
𝜅
𝜅𝑝

)2

, (30)

where 𝑘 ∈ℤ𝑑 is the wavenumber, 𝜅 = ‖𝑘‖, and 𝜅𝑝 is the peak wavenumber. The profile should grow for 𝜅 < 𝜅𝑝, and the decay should 
10

take over for 𝜅 > 𝜅𝑝. To further distinguish between the different setups and prevent energy decay during long simulations, we add 
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Fig. 7. Kinetic energy spectra of DNS and filtered DNS at final time. The filters are both applied for 4 different filter sizes 𝑛̄, visible in the four sudden stops at the 
cut-off wavenumbers 𝑛̄∕2. The numbers below the lines indicate the grid sizes 𝑛̄ and 𝑛. Left: 2D simulation, with theoretical scaling 𝜅−3 . Right: 3D simulation, with 
theoretical scaling 𝜅−5∕3 .

a Kolmogorov-type body force to inject energy into the system, as in [13,35,42]. It is defined as a sinusoidal force at wavenumber 
𝜅 = 4 as

𝑓𝛼(𝑥1,… , 𝑥𝑑 ) = 𝛿𝛼=1 sin(8𝜋𝑥2). (31)

For more details about the initialization procedure, see Appendix B.2.

We perform all simulations in our open source package IncompressibleNavierStokes.jl, implemented in the Julia programming 
language [11]. We use the KernelAbstractions.jl [17] framework for implementing back-end agnostic differential operators, Lux.jl [54]

for neural networks components, Zygote.jl [31] for reverse mode automatic differentiation, and Makie.jl [18] for visualization. All 
array operations for DNS, LES, and training are performed on a CUDA-compatible GPU, using CUDA.jl [10,9].

5.1. Filtered DNS (2D and 3D)

Before showing results of our new divergence-consistent LES models, we perform a-priori tests to investigate some characteristics 
of the DNS and filtered DNS solutions. Note that “a-priori” here is used in relation to the analysis of the results (namely before the 
LES model is employed), while “a-priori” in section 4.3 was related to the training procedure.

We generate two DNS trajectories 𝑢(𝑡) (one in 2D, one in 3D), starting from the initial conditions defined above. The 2D simulation 
is performed with resolution 𝑁 = (4096, 4096), and the 3D simulation with 𝑁 = (1024, 1024, 1024). For both simulations, we set 
𝜅𝑝 = 20 and solve until 𝑡end = 1 using adaptive time stepping. The Reynolds number is Re = 104 in 2D and Re = 6000 in 3D. All array 
operations are performed on the GPU with double precision floating point numbers in 2D (to show divergence freeness), which works 
fine for this study even though GPUs are not optimized for double precision, and single precision in 3D (to fit all the arrays in the 
memory of a single H100 GPU.

For the filter, we consider the face-averaging filter ΦFA and the volume-averaging filter ΦVA. For the 2D setup, we use 𝑁̄ = (𝑛̄, 𝑛̄), 
and for the 3D setup, we use 𝑁̄ = (𝑛̄, 𝑛̄, 𝑛̄), with 𝑛̄ ∈ {32, 64, 128, 256}.

5.1.1. Energy spectra

Fig. 7 shows the kinetic energy spectra at the final time for the 2D and 3D simulations. The initial velocity field is smooth 
(containing only low wavenumbers), while the final DNS fields also contain higher wavenumbers. The theoretical slopes of the 
inertial regions of 𝜅−3 in 2D and 𝜅−5∕3 in 3D [57] are also shown (see section Appendix B.1). The inertial region is clearly visible 
in 2D, but less so in 3D since the DNS-resolution is smaller. The effect of diffusion is visible for 𝜅 > 128 in the 2D plot and for 
𝜅 > 32 in the 3D plot, with an attenuation of the kinetic energy. The energy injection wavenumber is visible as a spike in the 3D 
plot, but not in the 2D plot. The filtered DNS spectra are also shown. A grid of size (𝑛, … , 𝑛) can only fully resolve wavenumbers 
in the range 0 ≤ 𝜅 ≤ 𝑛∕2 − 1, which is visible in the sudden stops of the filtered spectra at 𝑛̄∕2 − 1. The face-averaging filter and 
the volume-averaging filter have very similar energy profiles. Note that the filtered energy is slightly dampened even before the 
filter cut-off wavelengths. Since both ΦFA and ΦVA are top-hat like, their transfer functions do not perform sharp cut-offs in spectral 
space, but affect all wavenumbers [57,8]. The face-averaging filter is damping slightly less than the volume-averaging filter. This is 
because it averages over one less dimension than the volume-averaging filter, leaving the dimension normal to the face intact. Still, 
the coarse-graining of the discrete filters creates a spectral cut-off effect that hides the damping of the top-hat transfer functions. 
This is because the filter width is very close to the coarse-graining spectral cut-off filter width. For further details about the transfer 
11

functions, see Appendix E.
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Fig. 8. A-priori results: Discrete curl −𝛿2𝜑1 + 𝛿1𝜑
2 of various 2D fields 𝜑 ∈ {𝑢(0), 𝑢, 𝑢̄, 𝑃𝐹 (𝑢), 𝑃𝐹 (𝑢̄), 𝑐(𝑢)}. The filter is face-averaging, 𝑁̄ = 1282 .

Fig. 9. Vortex cores visualized as 10 isocontours of negative regions of 𝜆2(𝑆2 + 𝑇 2), where 𝜆2 denotes the second largest eigenvalue, and 𝑆 = 1
2
(∇𝑢 + ∇𝑢𝖳) and 

𝑇 = 1
2
(∇𝑢 − ∇𝑢𝖳) are the symmetric and anti-symmetric parts of the velocity gradient. Left: DNS, initial time. Middle: DNS, final time. Right: Filtered DNS (face-

averaging, 𝑁̄ = 1283), final time.

5.1.2. Filtered fields

Fig. 8 shows the discrete curl ∇ × 𝜑 of various 2D fields 𝜑 ∈ {𝑢(0), 𝑢, ̄𝑢, 𝑃𝐹 (𝑢), 𝑃𝐹 (𝑢̄), 𝑐(𝑢)} for the face-averaging filter with 
𝑁̄ = 1282. We plot the curl since 𝜑 is a vector field. Each pixel corresponds to a pressure volume, in which the curl is interpolated 
for visualization. The filtered field 𝑢̄ in the top-right corner is clearly unable to represent all the sub-grid fluctuations seen in the DNS 
field 𝑢, but the large eddies of 𝑢 are still recognizable in 𝑢̄. We stress again that the aim of our neural closure models is to reproduce 
𝑢̄, without having knowledge of the DNS field 𝑢. This will be shown in section 5.2.

Note in particular that the coarse grid right hand side 𝑃𝐹 (𝑢̄) contains small oscillations which make the discrete curl look grainy. 
These are due to the under-resolved central-difference discretization on the coarse grid, and are subsequently also present in the 
discrete commutator error 𝑐. The closure model 𝑚 thus has to predict the oscillations in 𝑐 in order to correct for those in 𝑃𝐹 (𝑢̄), using 
information from the smooth field 𝑢̄ only. If 𝑐 was defined by filtering first and then discretizing, as is commonly done in LES, these 
oscillations would not be part of 𝑐 and other means of stabilization would be needed to correct for the oscillations in 𝑃𝐹 (𝑢̄), such 
as explicit LES [46,21,7] (where the filter is applied to the non-linear convective term in the LES right hand side). This problem has 
also been addressed in literature; for example, Geurts et al. [25] and Beck and Kurz [6] argue that all commutator errors should be 
modeled, and Stoffer et al. [70] show that instabilities in the high wavenumbers can occur if the discretization is not included in the 
commutator error.

Fig. 9 shows the vortex cores of the 3D simulation at initial and final time. The vortex cores are visualized as isocontours of 
12

𝜆2-criterion [32]. It is defined as negative regions of 𝜆2(𝑆2 + 𝑇 2), where 𝜆2 denotes the second largest eigenvalue in absolute value 
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Table 2

Magnitude of various quantities derived from two DNS trajectories 𝑢(𝑡) (one in 2D, one in 3D). All 
quantities are averaged over time. The machine precision for 64-bit numbers is 𝜖 ≈ 2.22 × 10−16 , and 
for 32-bit numbers 𝜖 ≈ 1.19 × 10−7 .

𝑁 Bits Filter 𝑁̄ ‖𝐷̄𝑢̄‖‖𝑢̄‖ ‖𝑢̄−𝑃 𝑢̄‖‖𝑢̄‖ ‖𝑐−𝑃 𝑐‖‖𝑐‖ ‖𝑐‖‖𝑃𝐹+𝑐‖ ‖𝑢̄‖2
Ω̄‖𝑢‖2Ω

40962 64

FA 322 1.5 × 10−14 2.5 × 10−16 2.3 × 10−13 0.56 0.92
FA 642 2.1 × 10−14 1.9 × 10−16 3.4 × 10−13 0.35 0.98
FA 1282 3.4 × 10−14 1.6 × 10−16 6.1 × 10−13 0.18 0.99
FA 2562 5.3 × 10−14 1.3 × 10−16 1.3 × 10−12 0.077 1.0
VA 322 1.1 0.017 0.11 0.54 0.89
VA 642 0.67 0.0058 0.096 0.33 0.97
VA 1282 0.39 0.0019 0.088 0.18 0.99
VA 2562 0.19 0.00059 0.12 0.08 1.0

10243 32

FA 323 2.2 × 10−5 2.8 × 10−7 3.9 × 10−6 0.85 0.63
FA 643 2.2 × 10−5 1.4 × 10−7 3.5 × 10−6 0.70 0.80
FA 1283 2.2 × 10−5 7.6 × 10−8 4.0 × 10−6 0.51 0.91
FA 2563 2.4 × 10−5 4.5 × 10−8 7.6 × 10−6 0.31 0.96
VA 323 3.3 0.043 0.19 0.80 0.60
VA 643 4.2 0.028 0.15 0.66 0.77
VA 1283 4.8 0.017 0.13 0.49 0.89
VA 2563 5.0 0.0094 0.13 0.30 0.95

of the 3 × 3-tensor, and 𝑆 = 1
2 (∇𝑢 +∇𝑢𝖳) and 𝑇 = 1

2 (∇𝑢 −∇𝑢𝖳) are the symmetric and anti-symmetric parts of the velocity gradient 
tensor. With the prescribed initial low wavenumber energy spectrum, only large DNS vortex structures are present at the initial time. 
They are clearly visible in the left plot. As energy gets transferred to higher wavenumbers, smaller turbulent vortex structures are 
formed (middle plot). The same DNS field still contains larger vortex structures, which become visible after filtering (right plot).

5.1.3. Divergence, commutator errors, and kinetic energy

Table 2 shows the magnitude of various quantities derived from the two DNS trajectories. All quantities 𝑞(𝑢(𝑡)) are averaged over 
time with a frequency of 𝑠 = 20 time steps as follows:

⟨𝑞⟩𝑠 = 1
𝑛𝑡∕𝑠+ 1

𝑛𝑡∕𝑠∑
𝑖=0

𝑞(𝑢(𝑡𝑠𝑖)). (32)

The considered quantities 𝑞(𝑢) are: Normalized divergence ‖𝐷̄𝑢̄‖‖𝑢̄‖ , magnitude of non-divergence-free part of filtered velocity field ‖𝑢̄−𝑃 𝑢̄‖‖𝑢̄‖ , magnitude of non-divergence-free part of commutator error ‖𝑐−𝑃 𝑐‖‖𝑐‖ , magnitude of commutator error in the total filtered right 

hand side ‖𝑐‖‖𝑃𝐹+𝑐‖ , and resolved kinetic energy 
‖𝑢̄‖2

Ω̄‖𝑢‖2Ω . The norms are defined as ‖𝑢‖ =√∑𝑑
𝛼=1 ‖𝑢𝛼‖2 for vector fields such as 𝑢 and 

‖𝑢𝛼‖ =√∑
𝐼 |𝑢𝛼𝐼 |2 for scalar fields such as 𝑢𝛼 . Additionally, the norm ‖ ⋅ ‖Ω is weighted by the volume sizes.

It is clear that both 𝑢̄ and 𝑐(𝑢) are divergence-free for the face-averaging filter, in both 2D and 3D. For the volume-averaging 
filter on the other hand, 𝑢̄ and 𝑐(𝑢) are not divergence-free. At 𝑁̄ = 322, the orthogonal projected part 𝑢̄− 𝑃 𝑢̄ comprises about 1.7%
of 𝑢̄. This is more visible for the commutator error, for which the orthogonal part is 11% of the total commutator error. When the 
grid is refined to 𝑁̄ = 2562 however, the non-divergence-free parts of 𝑢̄ shrink to 0.059% since the flow is more resolved. However, 
the non-divergence free part of commutator error is 12%, since the commutator error itself is smaller. For volume-averaging with 
𝑁̄ = 323, the non-divergence free parts of 𝑢̄ and 𝑐(𝑢) are 4.3% and 19% respectively. They shrink to 0.94% and 13% for 𝑁̄ = 2563. 
Note that the volume-averaging filter width was chosen to be equal to the grid spacing, but these divergence errors would be larger 
if we increased the filter width.

For both 2D and 3D, and both filters types, the commutator error becomes smaller when the grid is refined, which is expected 
since more scales are resolved. The commutator error magnitude does not seem to depend much on whether we use face-averaging 
or volume-averaging, since they both have the same characteristic filter width. For face-averaging with 𝑁̄ = 322 and 𝑁̄ = 1283, more 
than half of the total right hand side is due to the commutator error, even though 92% and 91% of the kinetic energy is resolved by 𝑢̄. 
For these resolutions, it is very important to have a good closure model. For 𝑁̄ = 2562, the filtered DNS right hand side is much closer 
to the corresponding coarse unfiltered DNS right hand side, with 𝑐(𝑢) comprising 7.7% of the total right hand side 𝑃𝐹 (𝑢̄) + 𝑐(𝑢). A 
closure model is still clearly needed, even though 100% of the energy being resolved by 𝑢̄. Bae et al. [2] also found the discretization 
part of the commutator errors to be quite significant, in particular near walls (which we do not consider in this study).

In summary, the DNS and filtered DNS results confirm the theoretical analysis in section 3.3. The volume-averaging filter lacks 
divergence-consistency of the solution and the closure term. The magnitude of the closure term is similar for both filters. The benefits 
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of divergence-consistency will be demonstrated in the a-posteriori analysis in the subsequent section.
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Fig. 10. Relative a-priori errors
1
𝑛u

∑
𝑢

‖𝑚−𝑐‖‖𝑐‖ for the testing dataset. Left: Face-averaging filter. Right: Volume-averaging filter.

5.2. LES (2D)

Next, we turn to the results for the key challenge set out in this paper: testing our neural closure models in an LES setting, with 
divergence-consistent filters, aiming to approximate the trajectory 𝑢̄(𝑡) given 𝑢̄(0). We now only consider the 2D problem to reduce 
the computational time, since the same network is trained repeatedly in multiple configurations. For 3D results, see Appendix G.2. 
The DNS resolution is set to 𝑁 = (4096, 4096). The Reynolds number is Re = 6000. The initial peak wavenumber is 𝜅𝑝 = 20. We 
use single precision floating point numbers for all computations, including DNS trajectory generation, to reduce memory usage and 
increase speed. Details about the datasets are found in Appendix B.4.

For the closure model 𝑚, we consider three options:

1. No closure model, 𝑚0 = 0. This is the baseline model.

2. Smagorinsky closure model, 𝑚S.

3. Convolutional neural closure model, 𝑚CNN. The architecture is shown in Appendix B.3.

The no-closure model can be thought of as “coarse DNS”, and it is included to show the necessity of a closure model when compared to 
the filtered DNS reference data. The Smagorinsky model is a traditional closure model. While it is conventionally used in combination 
with volume-averaging filters, it can also be used with a face-averaging filter. The idea behind the Smagorinsky eddy viscosity 𝜈𝑡 =
(𝜃Δ̄)2

√
2 tr(𝑆̄𝑆̄) is that it is equal to the large-scale strain weighted by the “average sub-filter eddy size” 𝜃Δ̄, which is parameterized 

by the fractional constant 𝜃 ∈ [0, 1]. The largest unresolved eddy then has the size Δ̄. This argument also holds for the face-averaging 
filter, where the largest unresolved eddy has a characteristic size Δ̄, and the averaged unresolved eddy has a size 𝜃Δ̄ for some 
coefficient 𝜃 (potentially with a different value than for volume-averaging). See Appendix B.5 for details about the training.

5.2.1. A-priori errors

Fig. 10 shows the average relative a-priori errors 1
𝑛u

∑
𝑢
‖𝑚−𝑐‖‖𝑐‖ for the testing dataset and the three CNN parameters 𝜃prior, 𝜃post

DIF
, 

and 𝜃post

DCF
. For the no-closure model 𝑚0, the a-priori error is always ‖0 − 𝑐‖∕‖𝑐‖ = 1. For both FA and VA and for all grid sizes, the 

a-priori trained parameters 𝜃prior perform the best. This is expected, since the a-priori loss function used to obtain 𝜃prior is similar to 
the a-priori error.

5.2.2. A-posteriori errors

The relative a-posteriori error 1
𝑛𝑡

∑𝑛𝑡
𝑖=1 ‖𝑣̄𝑖 − 𝑢̄𝑖‖∕‖𝑢̄𝑖‖ is computed for the trajectory in the testing dataset. A closure model pa-

rameter set 𝜃 is only used for testing on the same coarse grid and same filter type that it was trained for. Since the turbulent flow 
is a chaotic system, it does not make sense to plot the point-wise error over long time periods. We therefore plot the errors at time 
𝑡 = 0.27. For later time instances, one needs to consider statistical quantities. Fig. 11 shows the average error over time.

For DCF (right), the no-closure and the Smagorinsky closure have similar errors. The CNN is clearly outperforming the other 
two closures. The a-priori trained CNN is performing significantly better for face-averaging than for volume-averaging. Since the 
commutator errors are fully consistent with DCF in the face-averaging case, high accuracy can be achieved with a-priori training 
alone. In the volume-averaging case, the commutator errors are inconsistent with DCF, leading to higher errors. When switching to 
the a-posteriori loss function however, the volume-averaging CNN drastically improves and catches up with the face-averaging one, 
and the errors become indistinguishable for the two filters. In the face-averaging case, the a-priori trained CNN is already performing 
well, and training with 𝐿post only leads to minor improvements. Note that the a-posteriori training is done starting from the best 
14

performing a-priori trained parameters.
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Fig. 11. Relative a-posteriori errors 1
𝑛𝑡

∑𝑛𝑡
𝑖=1 ‖𝑣̄𝑖 − 𝑢̄𝑖‖∕‖𝑢̄𝑖‖ at time 𝑡 = 0.27 for the testing dataset. The CNN is trained separately for each resolution and each filter 

type with 𝐿prior (green squares) and 𝐿prior-then-𝐿post (yellow diamonds). Solid lines: Face-averaging (ΦFA). Dashed lines: Volume-averaging (ΦVA). Left: General 
model DIF. Right: Divergence-consistent model DCF.

Fig. 12. Total kinetic energy evolution for 𝑛̄ = 256. Left: Unprojected closure model DIF. Right: Constrained model DCF. Top: Face-averaging filter. Bottom:

Volume-averaging filter.

For DIF (left), the no-closure and the Smagorinsky closure have similar profiles as for DCF. For the no-closure, the two LES 
formulations are actually identical. For all resolutions except for 𝑛̄ = 32, 𝑚CNN(⋅, 𝜃prior) is showing signs of instability and is performing 
worse than 𝑚0. The a-posteriori training does manage to detect and reduce this error, but it is still unstable and higher than 𝑚0 .

5.2.3. Stability

To further investigate the stability, we compute the evolution of the total kinetic energy as a function of time. This is shown 
in Fig. 12. The model DIF becomes unstable in the long term, so we only compute the energy until the time 𝑡 = 1. The no-closure 
solution and Smagorinsky solution both stay close to the target energy during the first time unit, after which they become completely 
decorrelated from the reference solution due to the chaotic nature of turbulence. However, their energy profile does follow the same 
trend as the reference, staying slightly above. For DCF, the a-posteriori trained CNN stays on the reference energy level for much 
longer than the two other models. As in Fig. 11, 𝑚CNN(⋅, 𝜃prior) and 𝑚CNN(⋅, 𝜃post) are very similar in the face-averaging case (as can 
be seen in the zoom-in window), until they reach the point of decorrelation. In the volume-averaging case however, 𝑚CNN(⋅, 𝜃prior)
performs more poorly than 𝑚CNN(⋅, 𝜃post). For DIF, the high CNN errors from Fig. 11 are confirmed by the rapid growth of the total 
kinetic energy. Similar growth in energy of unconstrained neural closure models after a period of seemingly good overlap with the 
reference energy has been observed by Beck and Kurz [4,37], although in a different configuration. Training with 𝐿post improves the 
stability, and the energy stays close to the reference for a longer period. This was not sufficient to stabilize DIF, however, and the 
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energy eventually starts increasing.
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Fig. 13. Energy spectra at final time for 𝑛̄ = 128. Top: Face-averaging filter. Bottom: Volume-averaging filter. Since the DIF simulations become unstable, we do 
not show their spectrum at time 𝑡 = 5.

The growth in kinetic energy and resulting lack of stability for the divergence-inconsistent model can be explained by the energy-

conservation properties of our spatial discretization. The convective terms are discretized with a second order central scheme (in 
so-called divergence form), which can be shown to be equivalent to a skew-symmetric, energy-conserving form provided that the 
velocity field is divergence-free [75]. If the velocity field is not divergence-free, there is no guarantee that the convective terms are 
energy-conserving, which can lead to growth in kinetic energy and loss of stability.

It is interesting to point out that during the first time unit for DCF, the CNN models manage to stay close to the target energy 
level without being explicitly trained to do so. It is also possible to add an energy mismatch term in the loss function, thus encouraging 
the CNN to produce a correct energy level [43]. Such training could potentially be used to further improve the stability of DIF.

5.2.4. Energy spectra

The energy spectra at different times are shown in Fig. 13. The no-closure model spectrum is generally close to the reference 
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spectrum, but contains too much energy in the high wavenumbers. This is likely due to the oscillations discussed in the previous 
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Fig. 14. Vorticity of filtered DNS solution 𝑢̄ (right) and LES solutions 𝑣̄ computed using no closure (first column), Smagorinsky model (second column), DIF (third 
column), and DCF (fourth column) at different times.

sections. The Smagorinsky closure is correcting for this (as intended). For DCF, the a-posteriori trained CNN spectrum is visually 
very close to the reference spectrum, also at the final time, long after the LES trajectory has diverged from the filtered DNS trajectory. 
This shows that the trained model can capture turbulence statistics correctly even though the system is chaotic. For DIF , all the 
CNNs produce too much energy in the high wave numbers. Training with 𝐿post seems to improve this somewhat.

5.2.5. LES solution fields

The curl of the LES solutions (LES vorticity) at the final time is shown in Fig. 14. The reference solution 𝑢̄ has a smooth vorticity 
field for all resolutions, since the low-pass filtering operation removes high wavenumber components. The no-closure model solution, 
on the other hand, shows sharp oscillations. Only the initial conditions are smooth, since 𝑣̄(0) = 𝑢̄(0). As the solution evolves in time, 
the central difference scheme used in the right hand side 𝑃𝐹 is too coarse for the given Reynolds numbers, and produces well known 
oscillations [65]. For higher resolutions, these oscillations go away, and 𝑣̄ starts visually resembling 𝑢̄.

Adding an DCF constrained CNN closure term trained using 𝐿post

DCF
seems to correct for the oscillations of the no-closure model, 

and we recover the smooth fields with recognizable features from the reference solution (compare 𝑢̄ and 𝑣̄ inside the red square). 
We are effectively doing large eddy simulation, as large eddies are visually found in the right positions after simulation. However, 
if we remove the projection and use the DIF CNN closure model, the solution becomes unstable, even after accounting for this by 
training with 𝐿post

DIF
. This confirms the observations from Fig. 11.

We stress again that the CNN closure model is accounting for the total commutator error resulting from the discrete filtering 
procedure. This commutator error includes the coarse grid discretization error, and also the oscillations produced by the central 
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difference scheme.
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Fig. 15. Divergence evolution for 𝑛̄ = 256. Left: Unprojected closure model DIF. Right: Constrained model DCF. Top: Face-averaging filter. Bottom: Volume-

averaging filter.

Table 3

Computational time (in seconds) for DNS and filtering of training, 
validation, and testing data (𝑢̄), a-priori training for 10000 itera-

tions (𝐿prior), and a-posteriori training for 1000 iterations (𝐿post).

𝑢̄ Filter 𝑛̄ 𝐿prior 𝐿
post

DIF
𝐿

post

DCF

1.5739 × 104

FA 32 160.6 4460.6 4449.3
FA 64 244.0 4509.1 4584.7
FA 128 497.4 4901.2 4853.9
FA 256 1562.3 5822.8 5803.7
VA 32 157.8 4490.8 4569.4
VA 64 243.9 4498.5 4608.6
VA 128 513.2 4914.2 4873.3
VA 256 1583.6 5793.1 5849.2

5.2.6. Divergence

Fig. 15 shows the evolution of the average divergence 
√

1
𝑁̄

∑
𝐼 (𝐷̄𝑣̄)2

𝐼
for the two LES models DIF and DCF.

For the face-averaging filter, the filtered DNS divergence (reference) is of the order of 10−4 due to the single precision arithmetic. 
For DIF, all closure models produce a divergence increasing in time. This is likely due to the instability observed in the previous 
figures. For DCF, all closure models produce divergences at the same order of magnitude as the reference, since the solution is 
projected at every time step.

For the volume-averaging filter, the filtered DNS divergence (reference) is of the order of 10−1 , since ΦVA does not preserve the 
divergence constraint. For DIF, all closure models produce an increasing divergence, just like for ΦFA. For DCF, all closure models 
produce divergence free solutions, even though the reference solution is actually not divergence-free.

5.2.7. Computational cost

The computational time for generating filtered DNS data and training the neural networks is shown in Table 3. One single DNS 
trajectory is used to compute filtered DNS trajectories for all filters and coarse grid sizes. In total, we compute 8 DNS trajectories. 
The two models DIF and DCF both produce similar timings, as exactly the same number of operations are performed (but in a 
different order). The similar times for the three lowest resolutions are likely due to the fact that the same number of time steps are 
unrolled for all LES resolutions, resulting in an equal number of GPU kernel calls. Since 322 and 1282 are both relatively small, the 
kernels for the differential operators (convection, Poisson solves, etc.) do not show any speed-up for the lower resolution. This does 
not seem to be the case for the 𝐿prior training however, where most of the kernel calls are to the highly optimized convolutional 
operators in CUDNN [15].

The benefit of a-posteriori training is clear in situations where the a-priori trained model is unstable (in our case: DIF), but for 
18

a-priori trained models that are stable and accurate (such as DCF for the face-averaging filter), one could ask whether the additional 
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cost of a-posteriori training is worth it. We think the additional accuracy is useful, since the learned weights can be reused without 
having to retrain the model, as long as the same configuration is used (grid size, Reynolds number etc.).

6. Conclusion

The use of neural networks for LES closure models is a promising approach. Neural networks are discrete by nature, and thus require 
consistent discrete training data. To achieve model-data consistency, we propose the paradigm “discretize, differentiate constraint, 
filter, and close” (in that particular order). This ensures full model-data consistency and circumvents pressure problems. We do not 
need to define a pressure filter, only a velocity filter is needed. Our framework allows for training the neural closure model using 
a-priori loss functions, where the model is trained to predict the target commutator error directly, or using a-posteriori loss functions, 
where the model is trained to approximate the target filtered DNS-solution trajectory.

To ensure that the filtered DNS velocity stays divergence-free, we employed the divergence-consistent face-averaging filter used 
by Kochkov et al. [35]. This allows for using a divergence-constrained LES model similar to those commonly used in LES, but with the 
important difference that the training data obtained through discrete DNS is fully consistent with the LES environment. This resulted 
in our new divergence-consistent LES model, which was found to be stable with both a-priori and a-posteriori training. Using the 
same formulation with a divergence-inconsistent filter (VA) did however require a-posteriori training to achieve the same accuracy. 
A-posteriori training is more expensive than a-priori training, but still has the advantage of increased accuracy.

The divergence-consistent filter stands out from commonly used (volume-averaging) discrete filters, for which the filtered DNS 
solution is generally not divergence-free. We showed that the resulting LES model can produce instabilities. A-posteriori trained 
models were found to improve the stability over a-priori trained models, but this was not sufficient to fully stabilize the model in 
our experiment. With a divergence-consistent formulation, such stability issues did not occur. Another common approach to achieve 
stability is to add noise to the training data. However, this could destroy the divergence-free property of the data, and appropriate 
measures would need to be taken to avoid this. We tried adding different levels of noise to the training data, but the resulting 
validation error was found to be better without noise.

Another important property of our discrete approach is that the (coarse grid) discretization error is included in the training data 
and learned by the neural network. Turbulence simulations with DNS and LES rely on non-dissipative discretization methods, such 
as the second order central difference discretization we used in this work, but they produce oscillations and instabilities on coarse 
grids. This could limit their use in LES, where using coarse grids is one of the main goals. Various smoothing methods, such as explicit 
LES or (overly) diffusive closure models are commonly used to address this issue. We let the closure model learn to account for the 
oscillations. The fact that the coarse grid discretization effects (and thus the oscillations) are included in the training data allows the 
neural network to recognize and correct for these oscillations, even when training with a-priori loss functions.

We realize that the choice of a divergence-consistent face-averaging filter imposes some constraints on the filter choice. The 
weights have to be uniform (top-hat filter like) to ensure that all the sub-filter velocities cancel out, and the extension to other 
filters like Gaussians is an open problem. In addition, we took the filter width to be equal to the grid spacing. The face-average filter 
naturally extends to unstructured grids, as shown in Fig. 2. However, this requires that the DNS grid perfectly overlaps with the 
faces of the LES grid. This can be achieved by designing the DNS and LES grids at the same time. Lastly, the face-averaging filter is 
only divergence-consistent with respect to the second-order central difference divergence operator on a staggered grid. We intend to 
explore the use of filters that are divergence-consistent with respect to higher-order discretization methods (such as the discontinuous 
Galerkin element method) and non-staggered grids. The “discretize first” approach can also be applied on collocated grids. While 
is possible to define a face-averaging filter on a collocated Cartesian grid, the divergence-consistent property of the filter would no 
longer hold. On an unstructured collocated grid, it might not make sense to define a face-averaging filter.

Future work will include the use of non-uniform grids with solid walls boundary conditions. This modification will require a 
change in the neural network architecture, but not in the face-averaging filtering procedure itself. The CNN architecture assumes 
that the grid is uniform, but weighting the kernel stencil with non-uniform volume sizes could be a way to design a discretization-

informed neural network. We intend to exploit the fact that discrete DNS boundary conditions naturally extend to the LES model 
for the face-average filter. We also intend to incorporate other constraints into the LES model, such as conservation of quantities of 
interest, in particular kinetic energy conservation, as studied in [74].
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Appendix A. Finite volume discretization

In this work, the integral form of the Navier-Stokes equations is considered, which is used as starting point to develop a spatial 
discretization:

1|| ∫
𝜕

𝑢 ⋅ 𝑛dΓ = 0, (A.1)

d
d𝑡

1|| ∫ 𝑢dΩ = 1|| ∫
𝜕

(
−𝑢𝑢𝖳 − 𝑝𝐼 + 𝜈∇𝑢

)
⋅ 𝑛dΓ + 1|| ∫ 𝑓dΩ, (A.2)

where  ⊂Ω is an arbitrary control volume with boundary 𝜕, normal 𝑛, surface element dΓ, and volume size ||. We have divided 
by the control volume sizes in the integral form, so that system (A.1)-(A.2) has the same dimensions as the system (1)-(2).

A.1. Staggered grid configuration

In this section we describe a finite volume discretization of equations (A.1)-(A.2). Before doing so, we introduce our notation, 
which is such that the mathematical description of the discretization closely matches the software implementation.

The 𝑑 spatial dimensions are indexed by 𝛼 ∈ {1, … , 𝑑}. The 𝛼-th unit vector is denoted 2ℎ𝛼 = (2ℎ𝛼𝛽 )𝑑𝛽=1, where the (half) Kronecker 
symbol ℎ𝛼𝛽 is 1∕2 if 𝛼 = 𝛽 and 0 otherwise. The Cartesian index 𝐼 = (𝐼1, … , 𝐼𝑑 ) is used to avoid repeating terms and equations 𝑑
times, where 𝐼𝛼 is a scalar index (typically one of 𝑖, 𝑗, and 𝑘 in common notation). This notation is dimension-agnostic, since we 
can write 𝑢𝐼 instead of 𝑢𝑖𝑗 in 2D or 𝑢𝑖𝑗𝑘 in 3D. In our Julia implementation of the solver we use the same Cartesian notation (u[I] 
instead of u[i, j] or u[i, j, k]).

For the discretization scheme, we use a staggered Cartesian grid as proposed by Harlow and Welch [29]. Staggered grids have 
excellent conservation properties [41,56], and in particular their exact divergence-freeness is important for this work. Consider a 
rectangular domain Ω =

∏𝑑
𝛼=1[𝑎𝛼, 𝑏𝛼], where 𝑎𝛼 < 𝑏𝛼 are the domain boundaries and 

∏
is a Cartesian product. Let Ω =

⋃
𝐼∈ Ω𝐼

be a partitioning of Ω, where  =
∏𝑑

𝛼=1{
1
2 , 2 −

1
2 , … , 𝑁𝛼 −

1
2} are volume center indices, 𝑁 = (𝑁1, … , 𝑁𝑑 ) ∈ ℕ𝑑 are the number of 

volumes in each dimension, Ω𝐼 =
∏𝑑

𝛼=1 Δ
𝛼
𝐼𝛼

is a finite volume, Γ𝛼
𝐼
=Ω𝐼−ℎ𝛼 ∩Ω𝐼+ℎ𝛼 =

∏
𝛽≠𝛼 Δ𝛽

𝐼𝛽
is a volume face, Δ𝛼

𝑖 =
[
𝑥𝛼
𝑖− 1

2

, 𝑥𝛼
𝑖+ 1

2

]
is a volume edge, 𝑥𝛼0 , … , 𝑥𝛼

𝑁𝛼
are volume boundary coordinates, and 𝑥𝛼𝑖 =

1
2

(
𝑥𝛼
𝑖− 1

2

+ 𝑥𝛼
𝑖+ 1

2

)
for 𝑖 ∈ {1∕2, … , 𝑁𝛼 − 1∕2} are volume 

center coordinates. We also define the operator 𝛿𝛼 which maps a discrete scalar field 𝜑 = (𝜑𝐼 )𝐼 to

𝜑𝐼+ℎ𝛼 −𝜑𝐼−ℎ𝛼
20

(𝛿𝛼𝜑)𝐼 = |Δ𝛼
𝐼𝛼
| . (A.3)

http://www.surf.nl
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Fig. A.16. Finite volume discretization on a staggered grid. Note that the grid can be non-uniform, as long as each volume in a given column has the same width and 
each volume in a given row has the same height. Here, 𝐼 and 𝐽 are two arbitrary Cartesian indices, with 𝐼 ∈  in a volume center and 𝐽 ∈  + ℎ1 + ℎ2 in a volume 
corner for illustrative purposes.

It can be interpreted as a discrete equivalent of the continuous operator 𝜕

𝜕𝑥𝛼
. All the above definitions are extended to be valid in 

volume centers 𝐼 ∈ , volume faces 𝐼 ∈  + ℎ𝛼 , or volume corners 𝐼 ∈  +
∑𝑑

𝛼=1 ℎ𝛼 . The discretization is illustrated in Fig. A.16.

A.2. Equations for unknowns

We now define the unknown degrees of freedom. The average pressure in Ω𝐼 , 𝐼 ∈  is approximated by the quantity 𝑝𝐼 (𝑡). The 
average 𝛼-velocity on the face Γ𝛼

𝐼
, 𝐼 ∈  +ℎ𝛼 is approximated by the quantity 𝑢𝛼

𝐼
(𝑡). Note how the pressure 𝑝 and the 𝑑 velocity fields 

𝑢𝛼 are each defined in their own canonical positions 𝑥𝐼 and 𝑥𝐼+ℎ𝛼 for 𝐼 ∈ . This is illustrated for a given volume 𝐼 in Fig. A.16. In 
the following, we derive equations for these unknowns.

Using the pressure control volume  = Ω𝐼 with 𝐼 ∈  in the integral constraint (A.1) and approximating the face integrals with 
the mid-point quadrature rule ∫Γ𝐼 𝑢 dΓ ≈ |Γ𝐼 |𝑢𝐼 results in the discrete divergence-free constraint

𝑑∑
𝛼=1

(𝛿𝛼𝑢𝛼)𝐼 = 0. (A.4)

Note how dividing by the volume size results in a discrete equation resembling the continuous one (since |Ω𝐼 | = |Γ𝛼
𝐼
||Δ𝛼

𝐼𝛼
|).

Similarly, choosing an 𝛼-velocity control volume  = Ω𝐼 with 𝐼 ∈  + ℎ𝛼 in equation (A.2), approximating the volume- and face 
integrals using the mid-point quadrature rule, and replacing remaining spatial derivatives in the diffusive term with a finite difference 
approximation gives the discrete momentum equations

d
d𝑡
𝑢𝛼𝐼 = −

𝑑∑
𝛽=1

(𝛿𝛽 (𝑢𝛼𝑢𝛽 ))𝐼 + 𝜈

𝑑∑
𝛽=1

(𝛿𝛽𝛿𝛽𝑢𝛼)𝐼 + 𝑓𝛼(𝑥𝐼 ) − (𝛿𝛼𝑝)𝐼 , (A.5)

where we made the assumption that 𝑓 is constant in time for simplicity. The outer discrete derivative in (𝛿𝛽𝛿𝛽𝑢𝛼)𝐼 is required at the 
position 𝐼 , which means that the inner derivative is evaluated as (𝛿𝛽𝑢𝛼)𝐼+ℎ𝛽 and (𝛿𝛽𝑢𝛼)𝐼−ℎ𝛽 , thus requiring 𝑢𝛼

𝐼−2ℎ𝛽
, 𝑢𝛼

𝐼
, and 𝑢𝛼

𝐼+2ℎ𝛽
, 

which are all in their canonical positions. The two velocity components in the convective term 𝑢𝛼𝑢𝛽 are required at the positions 𝐼 −ℎ𝛽
and 𝐼 + ℎ𝛽 , which are outside the canonical positions. Their value at the required position is obtained using averaging with weights 
1∕2 for the 𝛼-component and with linear interpolation for the 𝛽-component. This preserves the skew-symmetry of the convection 
operator, such that energy is conserved (in the convective term) [75].

Appendix B. Numerical experiment details

B.1. Energy spectra

For our discretization, we define the energy at a wavenumber 𝑘 as 𝐸̂𝑘 = 1
2‖𝑢̂𝑘‖2, where 𝑢̂𝛼 = DFT(𝑢𝛼) is the discrete Fourier 

transform of 𝑢. Since 𝑘 ∈ ℤ𝑑 , it is not immediately clear how to compute a discrete equivalent of the scalar energy spectrum as a 
function of ‖𝑘‖. We proceed as follows. The energy at a scalar level 𝜅 > 0 is defined as the sum over all energy components of the 
dyadic bin 𝜅 = {𝑘 | 𝜅∕𝑎 ≤ ‖𝑘‖ ≤ 𝜅𝑎} as

𝐸̂ =
∑

𝐸̂ . (B.1)
21
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𝑘
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Table B.4

CNN architecture, with 𝜖 = 1∕100. The total radius is 8, which means that the 
component 𝑚(𝑢̄, 𝜃)𝐼 depends on the components 𝑢̄𝐼+𝐽 for 𝐽 ∈ [−8, 8]2 . In compar-

ison, the diffusion operator has a radius of 1.

Layer Radius Channels Activation Bias Parameters

Interpolate𝑢→𝑝

Conv 2 2→ 24 tanh Yes 1224
Conv 2 24→ 24 tanh Yes 14424
Conv 2 24→ 24 tanh Yes 14424
Conv 2 24→ 24 tanh Yes 14424
Conv 2 24→ 2 𝑥↦ 𝑥 No 1200
Interpolate𝑝→𝑢

45696

The parameter 𝑎 > 1 determines the width of the interval. Lumley argues to use the golden ratio 𝑎 = (1 +
√
5)∕2 ≈ 1.6 [23]. Note that 

there is no averaging factor in front of the sum (B.1), even though the number of wavenumbers in the set increases with 𝜅.

For homogeneous decaying isotropic turbulence, the spectrum should behave as follows. In the inertial region, for large Reynolds 
numbers, the theoretical decay of 𝐸̂ should be 𝐸̂𝜅 =(𝜅−3) in 2D and (𝜅−5∕3) in 3D [57]. For the lowest wavenumbers, we should 
have 𝐸̂𝜅 =(𝜅4) or 𝐸̂𝜅 =(𝜅2).

It is also common to use a linear bin such as 𝜅 = {𝑘 | 𝜅 − 1
2 ≤ ‖𝑘‖ < 𝜅 + 1

2} [52,61,49]. However, this leads to a different power 
law scaling in the inertial range than the well known 𝜅−3 and 𝜅−5∕3.

B.2. Initial conditions

To generate initial conditions in a periodic box, we consider a prescribed energy spectrum 𝐸̂𝑘 . We want to create an initial velocity 
field 𝑢 with the following properties:

• The Fourier transform of 𝑢, noted 𝑢̂, should be such that 12‖𝑢̂𝑘‖2 = 𝐸̂𝑘 for all 𝑘.

• 𝑢 should be divergence-free with respect to our discretization: 𝐷𝑢 = 0.

• 𝑢 should be parameterized by controllable random numbers, such that a wide variety of initial conditions can be generated.

These properties are achieved by sampling a velocity field in spectral space, projecting (making it divergence-free), transforming to 

physical space, and projecting again. In detail, let 𝑎𝑘 =
√

2𝐸̂𝑘e2𝜋i𝜏𝑘 , where 𝜏𝑘 =
∑𝑑

𝛼=1 𝜉
𝛼
𝑘

is phase shift, 𝜉𝛼
𝑘
∼  [0, 1] is a random 

uniform number if 𝑘𝛽 ≥ 0 for all 𝛽. If 𝑘𝛽 < 0 for any 𝛽, we add the symmetry constraint 𝜉𝛼
𝑘
= sign(𝑘𝛼)𝜉𝛼|𝑘| where |𝑘| = (|𝑘𝛽 |)𝑑𝛽=1. 

Then ‖𝑢̂𝑘‖ = |𝑎𝑘|, and 𝑎𝑘 has a random phase shift. We then multiply the scalar 𝑎𝑘 with a random unit vector 𝑒𝑘 projected onto 
the divergence-free spectral grid as follows: 𝑢̂𝛼

𝑘
= 𝑎𝑘𝑃𝑘𝑒

𝛼
𝑘
∕‖𝑃𝑘𝑒𝛼𝑘‖, where 𝑃𝑘 = 𝐼 − 𝑘𝑘𝖳

𝑘𝖳𝑘
∈ ℂ𝑑×𝑑 is a projector for each 𝑘 ensuring 

that 2𝜋i𝑘𝖳𝑢̂𝑘 = 0 for all 𝑘 (which is the equivalent of ∇ ⋅ 𝑢 = 0 in spectral space) [57]. The normalization with respect to ‖𝑃𝑘𝑒𝛼𝑘‖
ensures that no energy is lost in the projection step. In 2D, we choose a random vector on the unit circle 𝑒𝑘 = (cos(𝜃𝑘), sin(𝜃𝑘)) with 
𝜃𝑘 ∼ [0, 2𝜋]. In 3D, we choose a random vector on the unit sphere 𝑒𝑘 = (sin(𝜃𝑘) cos(𝜙𝑘), sin(𝜃𝑘) sin(𝜙𝑘), cos(𝜃𝑘)) with 𝜃𝑘 ∼ [0, 𝜋]
and 𝜙𝑘 ∼ [0, 2𝜋]. Finally, we obtain the velocity field 𝑢 by taking the inverse discrete Fourier transform, and also projecting it again 
since divergence-freeness on the “spectral grid” and on the staggered grid are slightly different. This gives the random initial field

𝑢 = 𝑃 DFT−1(𝑢̂). (B.2)

Note that the second projection may result in a slight loss of energy, but since 𝑢 is already divergence-free on the spectral grid, our 
experience is that the loss is non-significant.

B.3. CNN architecture

The CNN architecture is shown in Table B.4. We use periodic padding. For the last convolutional layer, we use no activation and 
no bias, in order not to limit the expressiveness of 𝑚. For the inner layers, we use bias and the tanh activation function.

The choice of channel sizes is chosen solely to have sufficient expressive capacity in the closure model. The kernel radius on the 
other hand, is chosen to be small (𝑟 = 2, diameter 5) to ensure that the closure model uses local information. In addition, the resulting 
small stencils that are learned can possibly be interpreted as discrete differential operators of finite difference type, separated by 
simple non-linearities. In this way, the CNN can be thought of as a generalized Taylor series expansion of the commutator error in 
terms of the filtered velocity field, similar to certain continuous filter expansions [60]. We do not investigate this further in this study, 
but it could be a direction for future research.

The same CNN architecture 𝑚 is used for all grids and filters. We choose a simple architecture since the goal of the study is not to 
get the most accurate closure model, but rather to compare different filters, LES formulations, and loss functions for the same closure 
22

architecture. For the LES formulation, we only consider the two models DIF and DCF.
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Table B.5

Optimized Smagorinsky coefficients for each 
coarse resolution, filter type, and LES model.

𝑛̄ 𝜃FA
DIF

𝜃VA
DIF

𝜃FA
DCF

𝜃VA
DCF

32 0.129 0.131 0.144 0.142

64 0.114 0.116 0.143 0.141

128 0.061 0.064 0.096 0.093

256 0.000 0.000 0.023 0.014

Fig. B.17. Relative a-priori error on validation set during a-priori training for 104 iterations. From left to right: 𝑛̄ = 32,64,128,256.

B.4. Data generation

To create data, we run 8 DNS simulations of size 𝑁 = 40962. We use adaptive time-stepping. For every random initial flow 
field 𝑢(0), we let the DNS run for a burn-in time 𝑡burn = 0.5 to initialize the flow beyond the artificial initial spectrum (30). We 
then start saving 𝑢̄ and 𝑐 every time step until 𝑡end = 5. Every 50 time steps we compute 𝑢̄ and 𝑐(𝑢) on four coarse grids of size 
𝑛̄ ∈ {32, 64, 128, 256}. The first 6 trajectories are used for training, and the remaining 2 for validation and testing.

B.5. Training

Both the Smagorinsky model and the CNN are parameterized and require training. Since the Smagorinsky parameter is a scalar, 
we perform a grid search to find the optimal parameter for each of the grid sizes, filter types and projection orders. The relative 
a-posteriori error for the training set is evaluated. We choose the value of 𝜃 ∈ {0, 1∕1000, 2∕1000, … , 300∕1000} that gives the lowest 
training error. The resulting Smagorinsky constants are shown in Table B.5. Note that the Smagorinsky constants are theoretically 
grid-independent, since information about the grid is incorporated using the filter width that enters the expression separately. We 
still optimize the coefficient for each grid size in order to achieve a fair comparison with the CNN. It is important to stress that the 
Smagorinsky closure term (divergence of weighted strain tensor in equation (26)) is not divergence-free, just like the other right hand 
side terms like convection and diffusion. As a result, the optimal Smagorinsky coefficients for DIF at the higher LES resolutions 
(where the CNN is unstable) go to zero, thus creating a divergence-free right hand side.

For the CNN, the initial model parameters 𝜃0 are sampled from a uniform distribution. They are improved by minimizing the 
stochastic loss function using the ADAM optimizer [34]. The gradients are obtained using reverse mode automatic differentiation.

We start by training using the a-priori loss function (24). We learn one set of parameters 𝜃prior for each of the training grids and 
filter types. Each time, the model is trained for 50 epochs using the Adam optimizer [34] with default weight decay and momentum 
parameters. Each epoch consists of iterating through the 198 training batches, each containing 64 (𝑢̄, 𝑐) snapshot pairs, resulting in 
roughly 104 iterations of stochastic gradient descent. The learning rate is set before each epoch using a cosine annealing scheduler [44]

with initial learning rate 10−3 and final learning rate 10−6. Every 20 iterations the a-priori error is evaluated on the validation dataset. 
The validation error is shown in Fig. B.17. Note that the commutator error is different for each LES resolution and filter type, and so 
the relative a-priori error is not directly comparable between setups. The parameters giving the lowest validation error are retained 
after training.

Since the a-priori loss 𝐿prior does not take into account the effect of the LES model we use, we fine-tune the a-priori trained 
CNN parameters by training using the a-posteriori loss function 𝐿post

 . This time, the LES model  ∈ {DIF, DCF} is part of the 
loss function definition. We use 𝑛unroll = 50, and train for 1000 iterations, as shown in Fig. B.18. Since the weights are already 
converged from the a-priori training, we use a smaller learning rate with the scheduler, starting at 10−4 and ending at 10−6. The 
best parameters from the a-priori training (𝜃prior) are used as initial parameters for the a-posteriori training. The Adam optimizer is 
reinitialized without the history terms from the a-priori training session. The parameters 𝜃post

 giving the lowest a-posteriori error on 
the validation dataset during training are retained after training.

For FA with 𝑛̄ = 256, the parameters found with a-priori training are already close to the optimum, and subsequent a-posteriori 
training only leads to minor improvements. For VA with 𝑛̄ = 256, the same a-priori training validation error is much higher than for 
23

FA. A-posteriori training therefore improves the validation error significantly, and eventually reaches the same error as for FA. This 
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Fig. B.18. Relative a-posteriori error on validation set during a-posteriori training for 1000 iterations. From left to right: 𝑛̄ = 32,64,128,256.

is likely due to the fact that for VA, the commutator error used in a-priori training is inconsistent with DCF. Training with 𝐿post

DCF

corrects for this inconsistency. For FA, the computed commutator errors are fully consistent with DCF, and a-posteriori training is 
not needed.

Appendix C. Divergence-free filter

In this appendix we give the proof that the face-averaging filter is divergence-free. The proof is a natural consequence of the 
continuous divergence-theorem.

C.1. Simple example

Consider a uniform 2D-grid with 3 × 3 fine volumes in each coarse volume. The divergence-free constraint for a volume Ω𝑖,𝑗 of 
the fine grid reads:

(𝐷𝑢)𝑖,𝑗 = (𝛿1𝑢1)𝑖,𝑗 + (𝛿2𝑢2)𝑖,𝑗 = 0, (C.1)

where

(𝛿1𝑢1)𝑖,𝑗 =
𝑢1
𝑖+ 1

2 ,𝑗
− 𝑢1

𝑖− 1
2 ,𝑗

Δ1 and (𝛿2𝑢2)𝑖,𝑗 =
𝑢2
𝑖,𝑗+ 1

2

− 𝑢2
𝑖,𝑗− 1

2

Δ2 . (C.2)

Let (𝑎, 𝑏) and (𝑖, 𝑗) be coarse-grid and fine-grid indices such that Ω𝑖,𝑗 is in the center of Ω̄𝑎,𝑏. The four face-averaged velocities at the 
boundary of Ω̄𝑎,𝑏 are

𝑢̄1
𝑎+ 1

2 ,𝑏
= 1

3𝑢
1
𝑖+ 3

2 ,𝑗−1
+ 1

3𝑢
1
𝑖+ 3

2 ,𝑗
+ 1

3𝑢
1
𝑖+ 3

2 ,𝑗+1

𝑢̄1
𝑎− 1

2 ,𝑏
= 1

3𝑢
1
𝑖− 3

2 ,𝑗−1
+ 1

3𝑢
1
𝑖− 3

2 ,𝑗
+ 1

3𝑢
1
𝑖− 3

2 ,𝑗+1

𝑢̄2
𝑎,𝑏+ 1

2
= 1

3𝑢
2
𝑖−1,𝑗+ 3

2
+ 1

3𝑢
2
𝑖,𝑗+ 3

2
+ 1

3𝑢
2
𝑖+1,𝑗+ 3

2

𝑢̄2
𝑎,𝑏− 1

2
= 1

3𝑢
2
𝑖−1,𝑗− 3

2
+ 1

3𝑢
2
𝑖,𝑗− 3

2
+ 1

3𝑢
2
𝑖+1,𝑗− 3

2
.

(C.3)

The coarse-grid divergence reads

(𝐷̄𝑢̄)𝑎,𝑏 = (𝛿1𝑢̄1)𝑎,𝑏 + (𝛿2𝑢̄2)𝑎,𝑏. (C.4)
24

For the first term, we get



Journal of Computational Physics 522 (2025) 113577S.D. Agdestein and B. Sanderse

(𝛿1𝑢̄1)𝑎,𝑏 =
𝑢̄1
𝑎+ 1

2 ,𝑏
− 𝑢̄1

𝑎− 1
2 ,𝑏

Δ̄1

= 1
3

𝑢1
𝑖+ 3

2 ,𝑗−1
− 𝑢1

𝑖− 3
2 ,𝑗−1

3Δ1 + 1
3

𝑢1
𝑖+ 3

2 ,𝑗
− 𝑢1

𝑖− 3
2 ,𝑗

3Δ1 + 1
3

𝑢1
𝑖+ 3

2 ,𝑗+1
− 𝑢1

𝑖− 3
2 ,𝑗+1

3Δ1

= 1
9Δ1

(
𝑢1
𝑖+ 3

2 ,𝑗−1
− (𝑢1

𝑖+ 1
2 ,𝑗−1

− 𝑢1
𝑖+ 1

2 ,𝑗−1
) − (𝑢1

𝑖− 1
2 ,𝑗−1

− 𝑢1
𝑖− 1

2 ,𝑗−1
) − 𝑢1

𝑖− 3
2 ,𝑗−1

)
+ 1

9Δ1

(
𝑢1
𝑖+ 3

2 ,𝑗
− (𝑢1

𝑖+ 1
2 ,𝑗

− 𝑢1
𝑖+ 1

2 ,𝑗
) − (𝑢1

𝑖− 1
2 ,𝑗

− 𝑢1
𝑖− 1

2 ,𝑗
) − 𝑢1

𝑖− 3
2 ,𝑗

)
+ 1

9Δ1

(
𝑢1
𝑖+ 3

2 ,𝑗+1
− (𝑢1

𝑖+ 1
2 ,𝑗+1

− 𝑢1
𝑖+ 1

2 ,𝑗+1
) − (𝑢1

𝑖− 1
2 ,𝑗+1

− 𝑢1
𝑖− 1

2 ,𝑗+1
) − 𝑢1

𝑖− 3
2 ,𝑗+1

)
= 1

9

(
(𝛿1𝑢1)𝑖+1,𝑗−1 + (𝛿1𝑢1)𝑖,𝑗−1 + (𝛿1𝑢1)𝑖−1,𝑗−1

+ (𝛿1𝑢1)𝑖+1,𝑗 + (𝛿1𝑢1)𝑖,𝑗 + (𝛿1𝑢1)𝑖−1,𝑗
+ (𝛿1𝑢1)𝑖+1,𝑗+1 + (𝛿1𝑢1)𝑖,𝑗+1 + (𝛿1𝑢1)𝑖−1,𝑗+1

)
.

(C.5)

With a similar derivation for 𝛿2𝑢̄2, we get the following expression for the coarse grid divergence:

(𝐷̄𝑢̄)𝑎,𝑏 =
1
9

(
(𝐷𝑢)𝑖−1,𝑗−1 + (𝐷𝑢)𝑖,𝑗−1 + (𝐷𝑢)𝑖+1,𝑗−1

+ (𝐷𝑢)𝑖−1,𝑗 + (𝐷𝑢)𝑖,𝑗 + (𝐷𝑢)𝑖+1,𝑗
+ (𝐷𝑢)𝑖−1,𝑗+1 + (𝐷𝑢)𝑖,𝑗+1 + (𝐷𝑢)𝑖+1,𝑗+1

)
= 0.

(C.6)

The filtered velocity field is indeed divergence-free.

It is also interesting to point out that 𝐷̄𝑢̄ can be seen as a volume average of 𝐷𝑢, i.e. 𝐷̄𝑢̄ = Ψ𝐷𝑢, or 𝐷̄Φ = Ψ𝐷, for a certain 
pressure filter Ψ built with uniform 3 × 3-stencils of weights 1∕9. In other words: the face-averaging velocity filter goes hand in hand 
with a volume-averaging pressure filter.

C.2. Proof for the general case

A similar proof can be shown for a general non-uniform grid in 2D or 3D. Consider a coarse grid index 𝐽 . The fine grid volumes 
Ω𝐼 contained inside Ω̄𝐽 are indexed by 𝐼 ∈𝐽 = {𝐼 | Ω𝐼 ⊂ Ω̄𝐽 }. The face-averaging filter is defined by

𝑢̄𝛼𝐽 =
∑
𝐼∈𝛼

𝐽

𝜌𝛼𝐽 ,𝐼 𝑢
𝛼
𝐼 , (C.7)

where 𝛼
𝐽
= {𝐼 | Γ𝛼

𝐼
∈ Γ̄𝛼

𝐽
} contains the face-indices and 𝜌𝛼

𝐽,𝐼
are weights to be determined. We assume that 𝜌𝛼

𝐽,𝐼
is independent of 𝐼𝛼

and 𝐽𝛼 . The fine grid divergence is given by

(𝐷𝑢)𝐼 =
𝑑∑

𝛼=1
(𝛿𝛼𝑢𝛼)𝐼 =

𝑑∑
𝛼=1

𝑢𝛼
𝐼+ℎ𝛼

− 𝑢𝛼
𝐼−ℎ𝛼|Δ𝛼

𝐼𝛼
| = 0. (C.8)

The coarse grid divergence is given by

(𝐷̄𝑢̄)𝐽 =
𝑑∑

𝛼=1
(𝛿𝛼𝑢̄𝛼)𝐽

=
𝑑∑

𝛼=1

𝑢̄𝛼
𝐽+ℎ𝛼

− 𝑢̄𝛼
𝐽−ℎ𝛼|Δ̄𝛼

𝐽𝛼
| by definition of finite difference operator

=
𝑑∑

𝛼=1

1|Δ̄𝛼
𝐽𝛼
|
⎛⎜⎜⎝

∑
𝐼∈𝛼

𝐽+ℎ𝛼

𝜌𝛼𝐽 ,𝐼 𝑢
𝛼
𝐼 −

∑
𝐼∈𝛼

𝐽−ℎ𝛼

𝜌𝛼𝐽 ,𝐼 𝑢
𝛼
𝐼

⎞⎟⎟⎠ by definition of 𝑢̄𝛼𝐽

=
𝑑∑

𝛼=1

1|Δ̄𝛼
𝐽𝛼
| ∑
𝐼∈𝐽

(
𝜌𝛼𝐽,𝐼+ℎ𝛼

𝑢𝛼𝐽 ,𝐼+ℎ𝛼
− 𝜌𝛼𝐽,𝐼−ℎ𝛼

𝑢𝛼𝐽 ,𝐼−ℎ𝛼

)
telescoping sum over 𝐼𝛼

=
𝑑∑ 1 ∑

𝜌𝛼
(
𝑢𝛼 − 𝑢𝛼

)
since 𝜌𝛼 is independent of 𝐼 (C.9)
25

𝛼=1 |Δ̄𝛼
𝐽𝛼
| 𝐼∈𝐽

𝐽 ,𝐼 𝐼+ℎ𝛼 𝐼−ℎ𝛼 𝐽 ,𝐼 𝛼
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=
∑
𝐼∈𝐽

|Ω𝐼 ||Ω̄𝐽 |
𝑑∑

𝛼=1

|Γ̄𝛼
𝐽
||Γ𝛼

𝐼
| 𝜌𝛼𝐽,𝐼 𝑢

𝛼
𝐼+ℎ𝛼

− 𝑢𝛼
𝐼−ℎ𝛼|Δ𝛼

𝐼𝛼
| rewrite terms with |Ω𝐼 | = |Γ𝛼𝐼 ||Δ𝛼

𝐼 | ∀𝛼
=

∑
𝐼∈𝐽

|Ω𝐼 ||Ω̄𝐽 | (𝐷𝑢)𝐼 if we choose 𝜌𝛼𝐽,𝐼 = |Γ𝛼𝐼 |∕|Γ̄𝛼𝐽 |
= 0 since (𝐷𝑢)𝐼 = 0.

The chosen 𝜌𝛼
𝐽,𝐼

is indeed independent of 𝐼𝛼 and 𝐽𝛼 . We also get the property 
∑

𝐼∈𝛼
𝐽
𝜌𝛼
𝐽 ,𝐼

= 1, so constant fine grid velocities are 
preserved upon filtering. In other words, choosing 𝑢̄𝛼

𝐽
as a weighted average of the DNS-velocities passing through the coarse volume 

face Γ̄𝛼
𝐽

gives a divergence-free 𝑢̄. Note that the divergence constraint only holds for the face-size weights chosen above. Using 
arbitrary weights such as Gaussian weights would not work.

We also observe that for the general case, just like for the simple case in Appendix C.1, we can write 𝐷̄Φ = Ψ𝐷 for a certain 
pressure filter Ψ. It is defined by

(Ψ𝑝)𝐽 =
∑
𝐼∈𝐽

|Ω𝐼 ||Ω̄𝐽 |𝑝𝐼 (C.10)

for all fields 𝑝 defined in the pressure points. If we consider the 3 × 3 compression from Appendix C.1, with 𝐽 = (𝑎, 𝑏), we effectively 
get 𝑎,𝑏 = {𝑖 − 1, 𝑖, 𝑖 + 1} × {𝑗 − 1, 𝑗, 𝑗 + 1} and |Ω𝐼 |∕|Ω̄𝐽 | = 1∕9 for all 𝐼 ∈𝐽 .

Appendix D. Discretize-then-filter (without differentiating the constraint)

In this appendix we show a problem that arises when discretely filtering the differential-algebraic system (3)-(4), instead of 
filtering the “pressure-free” equation (7). Since the discrete DNS system (3)-(4) includes a divergence term and pressure term, we 
need to define a pressure-filter Ψ (in addition to the velocity filter Φ), such that 𝑝̄ =Ψ𝑝. This results in the following set of equations:

Ψ𝐷𝑢 = 0, (D.1)

d𝑢̄
d𝑡

=Φ𝐹 (𝑢) − Φ𝐺𝑝. (D.2)

These can be rewritten as follows:

𝐷̄𝑢̄ = 𝑐𝐷(𝑢, 𝑢̄), (D.3)

d𝑢̄
d𝑡

= 𝐹 (𝑢̄) + 𝑐(𝑢, 𝑢̄) − 𝐺̄𝑝̄+ 𝑐𝑃 (𝑝, 𝑝̄). (D.4)

Here 𝑐𝐷(𝑢, ̄𝑢) ∶= (𝐷̄Φ − Ψ𝐷)𝑢 represents the commutator error between the discrete divergence operator and filtering, 𝑐(𝑢, ̄𝑢) ∶=
(Φ𝐹 (𝑢) − 𝐹 (𝑢̄)) represents the commutator error arising from filtering 𝐹 (𝑢) (note that it is different from the one used in equation 
(12)), and the commutator error for the pressure 𝑐𝑃 (𝑝, 𝑝̄) = (𝐺̄Ψ −Φ𝐺)𝑝. In case of a face-averaging filter, one has 𝑐𝐷 = 0, which is the 
constraint that needs to be enforced by the filtered pressure, when moving to the LES equations. However, in the above formulation 
an additional commutator error for the pressure appears, which is unwanted and it is unclear how it should be modeled. In the 
discretize-differentiate-filter approach, this issue with the pressure is circumvented.

Appendix E. Continuous filters and transfer functions

The discrete volume-averaging filter ΦVA is an approximation to the continuous top-hat volume-averaging filter 𝑔 defined by

(𝑔 ∗ 𝜑)(𝑥) = ∫
ℝ𝑑

𝑔(𝑦)𝜑(𝑥− 𝑦) dΩ(𝑦)

= 1
Δ̄𝑑 ∫[

− Δ̄
2 ,

Δ̄
2

]𝑑 𝜑(𝑥− 𝑦) dΩ(𝑦),
(E.1)

where 𝜑 is a scalar field,

𝑔(𝑥) = 1
Δ̄𝑑

𝑑∏
𝛼=1

𝐼

(
𝑥𝛼 ∈

[
−Δ̄
2
,
Δ̄
2

])
is the convolutional filter kernel, and 𝐼(𝑎 ∈ 𝐴) is an indicator function equal to 1 if 𝑎 ∈ 𝐴 and 0 otherwise. The continuous filter 𝑔
can also be interpreted in terms of its transfer function 𝐺, defined by

𝑑∏ sin(𝜋𝑘𝛼Δ̄∕2)
26

𝐺𝑘 =
𝛼=1 𝜋𝑘𝛼Δ̄∕2

(E.2)
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Fig. E.19. Transfer functions in 2D and 3D. The two top left plots show the 2D transfer functions of the volume-averaging and face-averaging filters. The upper surface 
is 𝐺𝛼 , the lower one is 𝐺. The top-right plot shows isocontours of the 3D transfer functions 𝐺 (behind) and 𝐺1 (transparent, in front) at a given damping level 0.95. 
The bottom row shows sections of the transfer functions in different wavenumber directions 𝑘∕‖𝑘‖ as a function of the wavenumber magnitude ‖𝑘‖. 𝐺 does not 
depend on the direction.

at a given wavenumber vector 𝑘 = (𝑘1, … , 𝑘𝑑 ). Then the Fourier transform of 𝑔 ∗ 𝜑 is given by (̂𝑔 ∗ 𝜑)𝑘 =𝐺𝑘𝜑̂𝑘.

Similarly, we can define the continuous top-hat face-averaging filter (with face normal to the direction 𝛼) as

(𝑔𝛼 ∗ 𝜑)(𝑥) = ∫
ℝ𝑑

𝑔𝛼(𝑦)𝜑(𝑥− 𝑦) dΩ(𝑦), (E.3)

where the kernel

𝑔𝛼(𝑥) = 1
Δ̄𝑑−1

𝛿(𝑥𝛼)
∏
𝛽≠𝛼

𝐼

(
𝑥𝛽 ∈

[
−Δ̄
2
,
Δ̄
2

])
(E.4)

is the same as for the volume-averaging filter, but with one interval indicator replaced by a Dirac delta function 𝛿. The transfer 
function of the face-averaging filter is given by

𝐺𝛼
𝑘 =

∏
𝛽≠𝛼

sin(𝜋𝑘𝛽 Δ̄∕2)
𝜋𝑘𝛽 Δ̄∕2

. (E.5)

In other words, the 𝛼-face-averaging filter is performing top-hat averaging in every direction except for direction 𝛼, where it leaves 
signals intact.

The transfer functions 𝐺, 𝐺1, and 𝐺2 are shown in Fig. E.19. The filter width is set to Δ̄ = 1∕128, corresponding to a cut-off 
wavenumber level at ‖𝑘‖∞ = 64. We also show the transfer functions 𝐺 and 𝐺1 for the 3D versions of the filters. In 3D, the isocontour 
of 𝐺 at a given damping level takes the shape of a sphere, as 𝐺𝑘 only depends on ‖𝑘‖. The isocontour of 𝐺𝛼 takes the shape of a 
cylinder with axis along the 𝛼-direction, as the value of 𝐺𝛼

𝑘
does not depend on 𝑘𝛼 .

We can clearly see that for all wavenumbers 𝑘, the volume-averaging filter is damping more than the face-averaging filter (∀𝑘, 𝐺𝑘 ≤
𝐺𝛼
𝑘
). For 𝑘𝛼 = 0, we get 𝐺𝑘 =𝐺𝛼

𝑘
(VA and FA coincide), and for 𝑘𝛼 > 0, we get the strict inequality 𝐺𝑘 < 𝐺𝛼

𝑘
. For all 𝑘 such 𝑘𝛽 = 0 for 

𝛽 ≠ 𝛼, we get 𝐺𝛼
𝑘
= 1 (FA does not filter in the normal direction).

Appendix F. Discrete and continuous commutator errors for the 2D Taylor-Green vortex

In this section, we compare the discrete and continuous convective commutator errors. For this purpose we employ an analytical 
27

solution to the Navier-Stokes equations on a periodic domain Ω = [0, 2𝜋]2, being the Taylor-Green vortex [71]:
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𝑢(𝑥, 𝑦, 𝑡) = −sin(𝑥) cos(𝑦)e−2𝜈𝑡,

𝑣(𝑥, 𝑦, 𝑡) = cos(𝑥) sin(𝑦)e−2𝜈𝑡,

𝑝(𝑥, 𝑦, 𝑡) = 1
4
(cos(2𝑥) + cos(2𝑦)) e−4𝜈𝑡.

(F.1)

In the remainder of this appendix, 𝑢, 𝑣, and 𝑝 will refer to this solution only, and the results that follow are specific to this solution. 
We will also drop the time dependence and consider 𝑢(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 0) and similarly for 𝑣 and 𝑝.

F.1. Top-hat filter

First, we note that

𝑥+Δ∕2

∫
𝑥−Δ∕2

sin(𝑥′) d𝑥′ = 2 sin(𝑥) sin(Δ∕2),

𝑥+Δ∕2

∫
𝑥−Δ∕2

cos(𝑥′) d𝑥′ = 2cos(𝑥) sin(Δ∕2). (F.2)

Applying a volume-averaging top-hat filter 𝜑 ↦ 𝜑̄ of width Δ with

𝜑̄(𝑥, 𝑦) = 1
Δ2

𝑥+Δ∕2

∫
𝑥−Δ∕2

𝑦+Δ∕2

∫
𝑦−Δ∕2

𝜑(𝑥′, 𝑦′) d𝑥′d𝑦′ (F.3)

gives the following filtered solution:

𝑢̄(𝑥, 𝑦) = − 1
Δ2

𝑥+Δ∕2

∫
𝑥−Δ∕2

sin(𝑥′) d𝑥′
𝑦+Δ∕2

∫
𝑦−Δ∕2

cos(𝑦′) d𝑦′ = sinc2(Δ∕2)𝑢(𝑥, 𝑦), (F.4)

where sinc(𝑥) = sin(𝑥)∕𝑥 is the transfer function of the 1D top-hat filter. A similar derivation for 𝑣̄ and 𝑝̄ gives

𝑢̄ = sinc2(Δ∕2)𝑢, 𝑣̄ = sinc2(Δ∕2)𝑣, 𝑝̄ = sinc(Δ)𝑝. (F.5)

F.2. Continuous convective commutator error

For the continuous commutator error in the Navier-Stokes equations, we need the nonlinearities 𝑢̄𝑢̄, 𝑢̄𝑣̄, 𝑣̄𝑢̄, and 𝑣̄𝑣̄. They are given 
by

𝑢̄𝑢̄ = 1
4
sinc4(Δ∕2)(1 − cos(2𝑥) + cos(2𝑦) − cos(2𝑥) cos(2𝑦)),

𝑣̄𝑣̄ = 1
4
sinc4(Δ∕2)(1 + cos(2𝑥) − cos(2𝑦) − cos(2𝑥) cos(2𝑦)),

𝑢̄𝑣̄ = −1
4
sinc4(Δ∕2) sin(2𝑥) sin(2𝑦).

(F.6)

Next, we are interested in the quantities 𝑢𝑢, 𝑢𝑣, 𝑣𝑢, and 𝑣𝑣. Integrating 𝑢𝑢, 𝑣𝑣, and 𝑢𝑣 over 𝑥 and 𝑦 separately gives

𝑢𝑢 = 1
4
(1 − sinc(Δ)(cos(2𝑥) − cos(2𝑦)) − sinc2(Δ) cos(2𝑥) cos(2𝑦)),

𝑣𝑣 = 1
4
(1 + sinc(Δ)(cos(2𝑥) − cos(2𝑦)) − sinc2(Δ) cos(2𝑥) cos(2𝑦)),

𝑢𝑣 = −1
4
sinc2(Δ) sin(2𝑥) sin(2𝑦).

(F.7)

Finally, we can assemble the sub-filter stress tensor 𝜏 :

𝜏𝑥𝑥 = 𝑢𝑢− 𝑢̄𝑢̄

= 1
4

(
1 − sinc4(Δ∕2) + (sinc4(Δ∕2) − sinc(Δ))(cos(2𝑥) − cos(2𝑦))

+ (sinc4(Δ∕2) − sinc2(Δ)) cos(2𝑥) cos(2𝑦)
)
,

𝜏𝑥𝑦 = 𝑢𝑣− 𝑢̄𝑣̄

= 1
4
(sinc4(Δ∕2) − sinc2(Δ)) sin(2𝑥) sin(2𝑦),

(F.8)
28

and similarly for 𝜏𝑦𝑦. Finally, the sub-filter force terms 𝑐𝑥 =
𝜕𝜏𝑥𝑥
𝜕𝑥

+ 𝜕𝜏𝑥𝑦

𝜕𝑦
and 𝑐𝑦 =

𝜕𝜏𝑦𝑥

𝜕𝑥
+ 𝜕𝜏𝑦𝑦

𝜕𝑦
are given by
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𝑐𝑥 = −1
2
(sinc4(Δ∕2) − sinc(Δ)) sin(2𝑥),

𝑐𝑦 = −1
2
(sinc4(Δ∕2) − sinc(Δ)) sin(2𝑦).

(F.9)

Since the filter width is small compared to the domain size (2𝜋), we can assume that high powers of Δ may be negligible. Using the 
Taylor series expansions

sinc(𝑥) = 1 − 1
6
𝑥2 + 1

120
𝑥4 +(𝑥6),

sinc4(𝑥) = 1 − 2
3
𝑥2 + 1

5
𝑥4 +(𝑥6),

(F.10)

we get the coefficient

sinc4(Δ∕2) − sinc(Δ) = 1
240

Δ4 +(Δ6). (F.11)

If we drop the terms in (Δ6) and higher, we get the following simplified expressions for the continuous commutator error:

𝑐𝑥 = − Δ4

480
sin(2𝑥) +(Δ6),

𝑐𝑦 = − Δ4

480
sin(2𝑦) +(Δ6).

(F.12)

F.3. Discrete convective commutator error

Next, we consider the discrete commutator error computed from a discrete DNS. Assume for simplicity that the DNS field is the 
exact solution sampled at the DNS grid points. Consider a grid point (𝑥, 𝑦). Let 𝑑 denote the DNS grid spacing.

F.3.1. Discrete filter

Assume that Δ∕2 = 𝑛𝑑 for some integer 𝑛. A simple discretization of the top-hat volume-averaging filter at a coarse grid point 
(𝑥, 𝑦) is given by

(Φ𝑢)(𝑥, 𝑦) = 1
(2𝑛+ 1)2

𝑛∑
𝑖=−𝑛

𝑛∑
𝑗=−𝑛

𝑢(𝑥+ 𝑖𝑑, 𝑦+ 𝑗𝑑)

= − 1
(2𝑛+ 1)2

𝑛∑
𝑖=−𝑛

sin(𝑥+ 𝑖𝑑)
𝑛∑

𝑗=−𝑛
cos(𝑦+ 𝑗𝑑),

(F.13)

and similarly for Φ𝑣 and Φ𝑝. For the 𝑥-part, we get

𝑛∑
𝑖=−𝑛

sin(𝑥+ 𝑖𝑑) =
𝑛∑

𝑖=−𝑛
(sin(𝑥) cos(𝑖𝑑) + cos(𝑥) sin(𝑖𝑑)) =

(
𝑛∑

𝑖=−𝑛
cos(𝑖𝑑)

)
sin(𝑥). (F.14)

A similar derivation for the 𝑦-part, 𝑣 and 𝑝 give

Φ𝑢 =𝐺2
𝑛,𝑑𝑢, Φ𝑣 =𝐺2

𝑛,𝑑𝑣, Φ𝑝 =𝐺𝑛,2𝑑𝑝, (F.15)

where 𝐺𝑛,𝑑 =
1

2𝑛+1
∑𝑛

𝑖=−𝑛 cos(𝑖𝑑) is the transfer function of the discrete top-hat filter in 1D.

F.3.2. Convective term
We now compute the discrete convective term conv𝑥,𝑑 (𝑢, 𝑣) which contributes to the equation for 𝑢. This term is required at a 

𝑢-velocity grid point (𝑥, 𝑦), and we thus need the quantity 𝑢𝑢 at (𝑥 + 𝑑∕2, 𝑦) and (𝑥 − 𝑑∕2, 𝑦), and the quantity 𝑢𝑣 at (𝑥, 𝑦 + 𝑑∕2) and 
(𝑥, 𝑦 − 𝑑∕2). Knowing that the native points of 𝑣 are (𝑥 ± 𝑑∕2, 𝑦 ± 𝑑∕2) when (𝑥, 𝑦) is the 𝑢-point, we proceed through interpolation.

𝐴𝑥(𝑢) is obtained by interpolating 𝑢 left and right:

𝐴𝑥(𝑢)(𝑥+ 𝑑∕2, 𝑦) = 1
2
(𝑢(𝑥, 𝑦) + 𝑢(𝑥+ 𝑑, 𝑦))

= −1
2
(sin(𝑥) cos(𝑦)(1 + cos(𝑑)) + cos(𝑥) cos(𝑦) sin(𝑑)),

(F.16)
29

𝐴𝑥(𝑣) is obtained by interpolating 𝑣 left and right:
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𝐴𝑥(𝑣)(𝑥, 𝑦+ 𝑑∕2) = 1
2
(𝑣(𝑥− 𝑑∕2, 𝑦+ 𝑑∕2) + 𝑣(𝑥+ 𝑑∕2, 𝑦+ 𝑑∕2))

= 1
2
cos(𝑥)(sin(𝑦)(1 + cos(𝑑)) + cos(𝑦) sin(𝑑)),

(F.17)

𝐴𝑦(𝑢) is obtained by interpolating 𝑢 up and down:

𝐴𝑦(𝑢)(𝑥, 𝑦+ 𝑑∕2) = 1
2
(𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦+ 𝑑))

= −1
2
sin(𝑥)(cos(𝑦)(1 + cos(𝑑)) − sin(𝑦) sin(𝑑)).

(F.18)

Now we can assemble the quadratic terms.

(𝐴𝑥(𝑢)𝐴𝑥(𝑢))(𝑥+ 𝑑∕2, 𝑦) = 1
16

((1 − cos(2𝑥))(1 + cos(2𝑦))(1 + cos(𝑑))2

+ 2 sin(2𝑥)(1 + cos(2𝑦)) sin(𝑑)(1 + cos(𝑑))

+ (1 + cos(2𝑥))(1 + cos(2𝑦)) sin(𝑑)2),

(F.19)

(𝐴𝑦(𝑢)𝐴𝑥(𝑣))(𝑥, 𝑦+ 𝑑∕2) = − 1
16

sin(2𝑥) sin(2𝑦)(1 + 2cos(𝑑) + cos(2𝑑))

− 1
8
sin(2𝑥) cos(2𝑦) sin(𝑑)(1 + cos(𝑑)).

(F.20)

The discrete convective term at a point (𝑥, 𝑦) is defined as

𝐶𝑥𝑥,𝑑 =
1
𝑑
((𝐴(𝑢)𝐴(𝑢))(𝑥+ 𝑑∕2, 𝑦) − (𝐴(𝑢)𝐴(𝑢))(𝑥− 𝑑∕2, 𝑦))

= 1
4𝑑

sin(2𝑥)(1 + cos(2𝑦)) sin(𝑑)(1 + cos(𝑑)),
(F.21)

𝐶𝑥𝑦,𝑑 =
1
𝑑

(
(𝐴𝑦(𝑢)𝐴𝑥(𝑣))(𝑥, 𝑦+ 𝑑∕2) − (𝐴𝑦(𝑢)𝐴𝑥(𝑣))(𝑥, 𝑦− 𝑑∕2)

)
= − 1

4𝑑
sin(2𝑥) cos(2𝑦) sin(𝑑)(1 + cos(𝑑)),

(F.22)

conv𝑥,𝑑 (𝑢, 𝑣) = 𝐶𝑥𝑥,𝑑 +𝐶𝑥𝑦,𝑑 =
1
4
sin(2𝑥)(sinc(𝑑) + sinc(2𝑑)). (F.23)

A similar derivation for the 𝑦-component gives

conv𝑦,𝑑 (𝑢, 𝑣) = 𝐶𝑦𝑥,𝑑 +𝐶𝑦𝑦,𝑑 =
1
4
sin(2𝑦)(sinc(𝑑) + sinc(2𝑑)). (F.24)

Using the Taylor series expansion (F.10) for the expression

sinc(𝑑) + sinc(2𝑑) = 2 − 5
6
𝑑2 + 17

120
𝑑4 +(𝑑6), (F.25)

and remembering that the continuous convective 𝑥-term is 12 sin(2𝑥), we get

conv𝑥,𝑑 (𝑢, 𝑣) =
𝜕

𝜕𝑥
(𝑢𝑢) + 𝜕

𝜕𝑦
(𝑢𝑣) +(𝑑2), (F.26)

and similarly for the 𝑦-component. This is just the confirmation that the computation of the derivatives is second order accurate.

Next, we compute the filtered convective force Φ conv𝑥(𝑢, 𝑣). We get

Φconv𝑥(𝑢, 𝑣) =
1

(2𝑛+ 1)2

𝑛∑
𝑖=−𝑛

𝑛∑
𝑗=−𝑛

1
4
sin(2(𝑥+ 𝑖𝑑))(sinc(𝑑) + sinc(2𝑑))

=𝐺𝑛,2𝑑 conv𝑥,𝑑 (𝑢, 𝑣),

(F.27)

where the transfer function is now applied on 2𝑑 instead of 𝑑. Noting that Φ𝑢 = 𝐺2
𝑛,𝑑

𝑢 and Φ𝑣 = 𝐺2
𝑛,𝑑

𝑣 everywhere on the domain, 
we get

𝐴𝑥,Δ(Φ𝑢)𝐴𝑥,Δ(Φ𝑢) =𝐺4
𝑛,𝑑𝐴𝑥,Δ(𝑢)𝐴𝑥,Δ(𝑢),

𝐴𝑦,Δ(Φ𝑢)𝐴𝑥,Δ(Φ𝑣) =𝐺4
𝑛,𝑑𝐴𝑥,Δ(𝑢)𝐴𝑦,Δ(𝑣), (F.28)
30

conv𝑥,Δ(Φ𝑢,Φ𝑣) =𝐺4
𝑛,𝑑 conv𝑥,Δ(𝑢, 𝑣) =

1
4
𝐺4
𝑛,𝑑 (sinc(Δ) + sinc(2Δ)) sin(2𝑥).
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Fig. G.20. Total kinetic energy evolution for the 2D decaying turbulence case at 𝑛̄ = 128. Left: Unprojected closure model DIF. Right: Constrained model DCF.

Top: Face-averaging filter. Bottom: Volume-averaging filter.

Using a similar derivation for the 𝑦-component, we can now compute the discrete convective commutator error

Φconv𝑥,𝑑 (𝑢, 𝑣) − conv𝑥,Δ(Φ𝑢,Φ𝑣) = −𝐸 1
4
sin(2𝑥),

Φconv𝑦,𝑑 (𝑢, 𝑣) − conv𝑦,Δ(Φ𝑢,Φ𝑣) = −𝐸 1
4
sin(2𝑦),

(F.29)

where

𝐸 =𝐺4
𝑛,𝑑 (sinc(Δ) + sinc(2Δ)) −𝐺𝑛,2𝑑 (sinc(𝑑) + sinc(2𝑑)) (F.30)

is the commutator coefficient.

It is important to note that at any given point (𝑥, 𝑦), the value of the discrete and continuous convective commutator errors (F.29)

and (F.9) are different. The dependence on (𝑥, 𝑦) is the same, but the coefficient in front is different. If a closure model is imposed 
using the traditional route of “filtering first”, but trained using commutator error target data computed using DNS (“discretizing 
first”), there is an inconsistency between the model and the learning environment.

Appendix G. Additional numerical experiments
31

We here include some additional numerical experiments to confirm that our methods work in a variety of settings.
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Fig. G.21. A-priori and a-posteriori errors at time 𝑡 = 0.29 for the 3D case.

Fig. G.22. Energy evolution for the 3D case with 𝑛̄ = 64.

G.1. LES of decaying turbulence (2D)

We repeat the experiment from 5.2, but without the body force. This results in a decaying turbulence setup, where energy dissipates 
over time.

Fig. G.20 shows the total kinetic energy evolution for the decaying turbulence test case. Since our discretization is energy-

conserving, the DNS energy cannot increase in the absence of a body force, and it can only decrease due to dissipation. If 𝐷2 denotes 
the discrete diffusion operator, it can be shown that the kinetic energy 𝐸 = 1

2‖𝑢‖2Ω = 1
2 ⟨𝑢, 𝑢⟩Ω satisfies

d𝐸
d𝑡

= ⟨𝑢,𝐷2𝑢⟩Ω. (G.1)

For DCF, all models produce decaying energy profiles, but the CNN energy is the most accurate. The no-closure model is slightly 
too dissipative, and the Smagorinsky model is even more dissipative. For DIF, the no-closure and Smagorinsky models have similar 
profiles as for DCF, but the CNN models become unstable. Training with the a-posteriori loss function corrects for this instability, 
leading to correct energy levels for a longer time, but the instability is still present.

G.2. LES of forced turbulence (3D)

To show that the formulation also works in 3D, we consider a decaying turbulence test case in a periodic box Ω = [0, 1]3 with 
𝑁 = 10243 finite volumes. We use single precision floating point numbers, Reynolds number Re = 2000, simulation time 𝑡end = 3, 
burn-in time 𝑡burn = 0.5, and 10 random initial conditions. Unlike for the extensive analysis in section 5.2, we only consider 2 LES 
resolutions 𝑛̄ ∈ {32, 64}, one filter (face-averaging), and one LES model (DCF). We use the same body force as in the 2D case, namely 
𝑓 with 𝑓𝛼(𝑥) = 5𝛿𝛼=1 sin(8𝜋𝑥2). We use the same CNN architecture as in the 2D case, but with a kernel size 5 × 5 ×5 instead of 5 ×5, 
resulting in 234 096 learnable parameters instead of 45 696. For the Smagorinsky model, we use the common choice of 𝜃 = 0.17.

Fig. G.21 shows the a-priori and a-posteriori errors for the 3D case at time 𝑡 = 0.29. As in the 2D case (Figs. 10 and 11), the a-priori 
trained CNN produces lower a-priori errors, while the a-posteriori trained CNN produces lower a-posteriori errors. For both training 
methods, the CNN performs better than the no-closure model and Smagorinsky.

Fig. G.22 shows the energy evolution in the 3D case. As in the 2D case (Fig. 12), the CNN energy stays close to the target energy 
much longer than the no-closure and Smagorinsky energies. Additionally, the Smagorinsky energy seems to be more dissipative, while 
32

for the 2D case this was not visible due to the energy injection from the body force.
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Fig. G.23. Energy spectra for the 3D case with 𝑛̄ = 64.

Fig. G.23 shows the energy spectra in the 3D case. A clear peak is visible at the body force injection wavenumber at 𝜅 = 4. The 
Smagorinsky model is clearly too dissipative in the high wavenumbers. The CNN is outperforming both of the two other models, and 
the spectrum stays close long after the LES solution has become decorrelated from the reference solution, confirming that while the 
closure model is not able to predict the exact chaotic solution for long times, it is able to track the turbulent statistics.

Data availability

The manuscript contains a link to the software used to generate all results, including random number seeds for reproducibility. It 
is on GitHub under the MIT License.
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