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Abstract
We study a reduced order model (ROM) based waveform inversion method applied to a
Helmholtz problem with impedance boundary conditions and variable refractive index. The
first goal of this paper is to obtain relations that allow the reconstruction of the Galerkin
projection of the continuous problem onto the space spanned by solutions of the Helmholtz
equation. The second goal is to study the introduced nonlinear optimization method based
on the ROM aimed to estimate the refractive index from reflection and transmission data.
Finally we compare numerically our method to the conventional least squares inversion
based on minimizing the distance between modelled to measured data.

Keywords Reduced order models · Nonlinear inversion · Helmholtz equation · Full
waveform inversion

1 Introduction

Reduced order model techniques have been studied for a long time in the context of solv-
ing boundary value problems numerically. The main difference between conventional finite
element methods and the reduced order model (ROM) approach is that in the latter, one
approximates the solution of the problem in a finite-dimensional subspace spanned by so-
lutions of the PDE itself (i.e., solutions for different wavenumbers in case of the Helmholtz
equation). The advantage of using the ROM method for solving forward boundary value
problems is the rapid convergence of the approximates to the true solution of the problem.
We refer the interested reader to [1–4] and the references therein for more information on
the subject.

Recently, reduced order model techniques have received attention and have been applied
to Neumann inverse boundary value problems for estimating coefficients of diffusion type
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elliptic partial differential equations, see [5] [6]. In short, in the cited papers, the authors
consider boundary traces of solutions of the diffusion equation that correspond to a discrete
set of spectral parameters. Using these measurements they reconstruct the so-called ROM
matrices (often called as ROM projections), which describe the restriction of the differential
operator on the finite dimensional space spanned by solutions of the forward problem. Using
the Lanczos algorithm (see [7]) and the ROM matrices as input, it is possible to linearise the
inverse problem by obtaining an estimate of the state using some knowledge of a reference
coefficient. Subsequently the unknown coefficient can be estimated by solving an integral
equation. Roughly speaking, the use of the ROM method to obtain a linearised solution of
the inverse problem can be thought as a discrete analog of the classical Gelfand-Levitan-
Marchenko approach, see [8–12].

The approach that we take in this paper was inspired by similar works developed for
time-domain wave propagation with Dirichlet boundary conditions, see [13, 14] and [15].
For practical applications, however, impedance boundary conditions are of great interest
since they are equivalent to the Sommerfeld radiation condition in 1D (and an approxima-
tion of the radiation condition in two and three dimensions). Also, in this paper we present
a method that requires the so-called ROM projections as input for optimization as opposed
to the works cited above. In particular, in the above works, the authors apply the nonlinear
Lanczos transform on the ROM projections, and they use the transformed matrices as in-
put. Despite possible variations of a Lanczos based ROM waveform inversion that could be
defined for the Helmholtz impedance problem, we would like to investigate a ROM based
optimization method that avoids the use of the Lanczos method altogether. One reason to
avoid using the Lanczos method is the induced instability, as we saw in [16]. Therefore,
in this paper we explore how a ROM based nonlinear inversion approach can be applied
to the Helmholtz framework, by studying the one dimensional case and using the recon-
structed ROM projections as input for optimization. The motivation behind studying the
ROM method within an optimization framework are the promising results that have been
observed in the time-domain setting. Also, as we shall see in detail, in the case where we
consider impedance boundary conditions, the stiffness and mass (ROM) matrices do not
depend linearly on the data. Thus we expect different convexity properties for misfit func-
tionals based on the ROM approach compared with functionals based on the conventional
so-called full waveform inversion (FWI) approach based on minimizing the distance be-
tween modelled to measured data. In comparison to our previous work ([16]) where we
studied Linearization type methods using the Lanczos method and data assimilation to solve
the inverse problem for the Schödinger case, here, in the Helmholtz case, we employ nonlin-
ear optimization and we avoid completely the involvement of the Lanczos method to solve
the inverse problem.

Our main contributions in this paper include the introduction of our nonlinear inversion
method based on ROMs in the frequency domain, and the study of its well posedness in
an infinite dimensional framework. In particular, we solve the inverse scattering problem
using the ROM method in an optimization framework without using Lanczos (or any other)
orthogonalization for the ROM. We also compare our method to the conventional full wave-
form inversion method in terms of the convexity of the misfit functionals, and how accurately
each method reconstructs a coefficient (refractive index of Helmholtz operator) using both
noiseless and noisy measurements.

The paper is organized as follows. We start with Sect. 2 where we present a couple
of well-posedness results regarding the forward problem. In Sect. 3 we present the main
results. In particular we explain how to recover the ROM matrices using double sided data.
We also study the well-posedness of the associated nonlinear variational inverse problem
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and we present the optimality condition. We continue with Sect. 4 where we present several
numerical experiments of our ROM based FWI method and we conclude the paper with a
discussion section.

2 Preliminaries

In this section we provide some preliminaries and well known results needed for later. Our
forward problem is to find a weak solution u ∈ H 1(0,1) such that

(
− d2

dx2
− k2m

)
u(k) = 0, x ∈ (0,1) (1)

u′(k) + ıku(k) = 1, x = 0 (2)

u′(k) − ıku(k) = 0, x = 1. (3)

We assume that k > 0 and that the coefficient m, is an element of the admissible set

Kad := {m ∈ H 1((0,1); [1,∞)), m(0) = m(1) = 1}. (4)

In a variational framework, the above differential equation becomes,

(u′(k),ψ ′) − k2(mu(k),ψ) − ık{u(k)|x=1ψ(1) + u(k)|x=0ψ(0)} = −ψ(0), (5)

∀ψ ∈ H 1(0,1).

Here, (·, ·) denotes the L2-inner product. We now present some known results about the
forward problem. Well-posedness of the forward problem can be shown either using the Lax-
Milgram theory, see for example [17] or [18], or using the equivalent Lippmann-Schwinger

equation of the direct scattering problem. We denote the anti-dual of H 1 as H 1′ and the
brackets 〈·, ·〉 denote duality.

Proposition 1 Given k > 0, there exist a unique solution u(k,m) ∈ H 1(0,1) that satisfies
the state equation (1)-(3).

Proof A more detailed sketch of the proof can be found in the appendix, and for full details
we refer to [10, 18]. In short, the forward problem can be reduced to the following linear
problem, of finding u ∈ H 1(0,1):

�T (I + k2A)u = −δ0, H 1(0,1)
′
, (6)

where � is the linear Riesz isomorphism, T is defined through the form

a1(u, v) =
∫ 1

0
u′v′dx − ik{(uv)|x=0 + (uv)|x=1}, u, v ∈ H 1, (7)

such that

a1(u, v) = (T u,v)H 1 , u, v ∈ H 1, (8)
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where δ0 is the Dirac measure (“delta” distribution) supported on 0. We define V such that

〈Vu,v〉 = a2(u, v) =
∫ 1

0
muvdx, u, v ∈ H 1, (9)

and A = T −1�−1ViH 1→L2 , where iH 1→L2 is the compact imbedding operator of H 1(0,1) to
L2(0,1). �

Corollary 2 The traces

f (λ) = u(
√

λ)|x=0, g(λ) = u(
√

λ)|x=1, λ > 0 (10)

are well defined.

We assume to have measurements of the solutions for a discrete set of wavenumbers,

W = {ki : i = 1, . . . ,N},
of the form

f (k2) = u(k)|x=0, g(k2) = u(k)|x=1. (11)

From the data we reconstruct the ROM projection of the forward scattering problem onto
the finite dimensional space

XN = span{ui : i = 1, . . .N}, (12)

with ui = u(ki). As we shall see in detail, this projection yields three matrices, the stiffness,
the mass and the boundary matrix, S,M,B respectively.

3 Main Results

In this section we present our main results. We start with describing how to recover the so-
called ROM matrices from double-sided data. We then continue with the study of our ROM
based nonlinear inversion method.

3.1 ROM Matrices Construction Using Two-Sided Data

In this paragraph we describe the passage from boundary measurements to the ROM pro-
jections of the forward problem. We can express (5) equivalently as

(S − k2M(m) − ıkB)u = −δ0, (13)

as an H 1(0,1)
′
relation. For example

S : H 1(0,1) → H 1(0,1)
′

(14)

acts as follows

〈Sy,φ〉 = (y ′, φ′). (15)

Similarly, we define M,B.
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Remark 1 For the sake of completeness, it is useful to connect S,M,B with the operators
used in the proof of proposition 1. We get

〈(S − k2M(m) − ıkB)u, v〉 = −〈δ0, v〉, ∀v ∈ H 1, (16)

or

〈(S − k2M(m) − ıkB)u, v〉 = a1(u, v) − k2a2(u, v) = (T (I + k2A)u, v)H 1 = (17)

〈�T (I + k2A)u, v〉, ∀v ∈ H 1. (18)

Therefore

S − k2M(m) − ıkB = �T (I + k2A) (19)

We now consider relation (13) on XN which is spanned by exact solutions that correspond
to different wavenumbers, as explained in Sect. 2. We first observe that we can restrict S on
XN such that

〈S|Xnu,φ〉 = 〈Su,φ〉, u ∈ XN,φ ∈ H 1(0,1). (20)

and subsequently the elements

〈S|XN
u,φ〉 = 〈Su,φ〉, u ∈XN,φ ∈XN . (21)

This way, we define the stiffness matrix, S ∈ C
N×N with entries

Sij = 〈Sui, uj 〉 = (u′
i , u

′
j ), i, j ∈ {1, . . .N}. (22)

Similarly, we define the mass matrix

Mij = (mui, uj ), i, j ∈ {1, . . .N}, (23)

and the matrix containing the boundary responses

Bij = gigj + fifj , i, j ∈ {1, . . .N}. (24)

The main characteristic making this approach useful for solving the inverse problem, is that
the ROM matrices can be computed directly from the data. From now on we denote

fi = f (k2
i ), i = 1, . . . ,N,

and

gi = g(k2
i ), i = 1, . . . ,N.

Lemma 3 The ROM system matrices S,M are given in terms of the boundary data

Mij = −fj − fi

k2
j − k2

i

+ ı
gigj + fifj

kj − ki

, i 
= j, (25)

Mii =
{

− Re(f ′)(λ) + 2
√

λ
(
g(λ)g′(λ) + f (λ)f ′(λ)

)∣∣∣
λ=k2

i
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Sij = −k2
j fj − k2

i fi

k2
j − k2

i

+ ı(k2
j ki + k2

i kj )
gigj + fif j

k2
j − k2

i

, i 
= j, (26)

Sii =
{
(−λRe(f )′(λ) − Re(f )(λ)) + 2λ3/2Im

(
g(λ)g′(λ) + f (λ)f ′(λ)

)}∣∣∣
λ=k2

i

(27)

i, j = 1, . . . ,N .

Proof The proof can be found in the appendix A.2. �

Remark 2 Observe that for our scattering framework that involves impedance boundary con-
ditions, having measurements at both sides of the interval is crucial to reconstruct the ROM
matrices (similarly as in our study of the Schrödinger case [16]). In comparison to the cur-
rent setting, in the Neumann (or analogously Dirichlet) case (see [5]), having double sided
data is not necessary to reconstruct the mass and the stiffness matrices. This is because no
boundary terms or integrals appear in the weak form of the differential equation (contrary
to the scattering case that we study here). Using double sided data and one source in the
context of the ROM based inversion has been also considered in [19].

Remark 3 Observe that in R
2,3, similar relations as in the above lemma will hold true. In

particular, in the multidimensional Helmholtz impedance boundary value problem, we need
to have knowledge of the wavefields throughout the entire boundary of our domain in order
to reconstruct the ROM matrices.

3.2 Solving the Inverse Problem with Nonlinear Optimization

In this paragraph we study a nonlinear inversion method based on the ROM approach. As
we discussed in the introduction, our proposed optimization method serves as an option
for using the ROM apparatus to the Helmholtz framework. In the case of the Schrödinger
equation for example, a linearization type technique based on the Lanczos method could be
also used [16]. The Lanczos method has been also combined with nonlinear optimization in
the Dirichlet and Neumann setting. In particular, in the Dirichlet case, see, [13, 15], the input
for the optimization is the tridiagonal matrix that the Lanczos orthogonalisation method
returns using the ROM projections as input.

Is important to note that within the Helmholtz framework, we would wish to avoid using
the Lancszos method completely. Unlike orthogonalization with respect to the usual L2-
inner product, see [5, 16], orthogonalizing with respect to an inner product influenced by the
unknown, m, might not yield snapshots that depend weakly on the medium. That means that
the orthogonalized snapshots can potentially include multiple scattering behaviours inside
the volume of the domain.

In the Helmholtz setting of this paper we consider an optimization alternative for solving
the inverse problem that requires the stiffness matrix only as input. Despite possible varia-
tions of a ROM based optimization combined with the Lanczos method that can be defined
particularly for the Helmholtz impedance case, one should be aware of the possible issues
regarding the stability of the Lanczos algorithm as noted in [16]. In any case, with our work
we want to investigate a ROM based optimization method that avoids the Lanczos method
altogether.

Now, after acquiring the ROM matrix, S = Sobs., we set up the following nonlinear op-
timization problem of estimating the refractive index m, using the stiffness matrix Sobs. as
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input:

min{φ(m) : m ∈Kad} (28)

with

φ(m) := 1

2
‖Sobs. − S(m)‖2

F + ε

2
‖m‖2

H 1(0,1)
, for some ε > 0. (29)

S(m) is given according to relation (22) for a given m, and ‖ · ‖F is the Frobenius norm
(i.e. we try to estimate m by matching modelled S(m) with reconstructed Sobs.). We refer to
relation (4) for the definition of the admissible set Kad . The special form of the functional
that implicitly defines φ, let J , (product of wavefields in the computation of the modelled
stiffness) makes showing existence of minimizers interesting. In particular since J is a sum
of both weakly lower semicontinuous and not weakly lower semicontinuous functionals
there is no guarantee on the behaviour of φ in terms of weak lower semicontinuity.

3.2.1 Existence of Minimizers

There are many ways of showing existence of minimizers in optimal control problems, see
e.g. [20]. Here, the form that the elements of our modeled data have (elements of S are
L2 inner-products of the derivatives of the states) are not standard and create challenges in
proving existence of solutions for the inverse problem. To be specific, the functional that
implicitly defines φ through the reduced formulation includes non-weakly lower semicon-
tinuous terms. In this framework, it is convenient to analyse the coefficient to state map
m �→ u(m) for showing well-posedness for the optimization problem. Showing “smooth-
ness” of the coefficient to state map has been shown formally in the R2,3 scattering problem,
see [21]. We work similarly here. Also, with ∂1, ∂2 we denote the partial Fréchet derivatives
with respect to the first and second variables of a function respectively.

We consider the function F : C([0,1]; (0,∞)) × H 1(0,1) → H 1(0,1)
′
given by

F(m,u) = (S − k2M(m) − ıkB)u + δ0, (m,u) ∈ C([0,1]; (0,∞)) × H 1(0,1). (30)

Using the implicit function theorem applied on F , we obtain that a wavefield u is a smooth
function of the coefficient m as stated below.

Lemma 4 Given k > 0, the map C([0,1]; (0,∞))  m → u(k,m) ∈ H 1(0,1) is continuous
and Fréchet differentiable.

All details on the above lemma are given in the appendix A.3. Now, we are ready show
existence of minimizers for the variational inverse problem of our study.

Remark 4 As we shall see in the proof of the following theorem, it is convenient to study the
smoothness of u as a function of m ∈ C[0,1] since we will make a passage from H 1-weakly
convergent sequence of coefficients to C[0,1]-strongly convergent sequences.

Theorem 5 The misfit functional φ as defined in relation (29) obtains minimizers on the
admissible class Kad = {m ∈ H 1((0,1); [1,∞)), m(0) = m(1) = 1}.
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Proof We denote

φ(m) = 1

2

N∑
i,j=1

{
|Sij (m) − Sobs.

ij |2
}

+ ε

2
‖m‖2

H 1(0,1)
=

1

2

N∑
i,j=1

φij (m) + ε

2
‖m‖2

H 1(0,1)
,m ∈Kad . (31)

Let (i, j) ∈ {1, . . . ,N}2. Since φ ≥ 0 for all m ∈ Kad , there exists μ > 0 such that

μ = inf
m∈Kad

φij (m). (32)

Therefore there is a sequence

(φ(mν))ν∈N ⊂ {φ(m) : m ∈Kad} (33)

such that

φ(mν) → μ, ν → ∞. (34)

Since we use a regularization parameter, and since {φ(mν)}ν is included in a ball, it follows
that the sequence (mν)ν∈N ⊂ Kad is bounded. Therefore, there is a subsequence (mν)ν∈N1 ⊂
(mν)ν∈N that has a weak limit, let m̂, in σ(H 1,H 1′

). Symbolically

mν ⇀ m̂ in σ(H 1((0,1),R),H 1((0,1),R)
′
). (35)

m̂ is included in Kad since the set is closed and convex. Due to the Sobolev’s compact
embedding we also obtain that

mν → m̂ in C([0,1];R). (36)

Since u(k, ·) is continuous as a function of m, we obtain for every i, j = 1, . . . ,N that

u(ki,mν) → u(ki, m̂), in H 1(0,1) (37)

and

u(kj ,mν) → u(kj , m̂), in H 1(0,1), (38)

as ν → ∞. Since d
dx

: H 1(0,1) → L2(0,1) is bounded, we obtain that

du(ki,mν)

dx
→ du(ki, m̂)

dx
, in L2(0,1) (39)

and

du(kj ,mν)

dx
→ du(kj , m̂)

dx
, in L2(0,1), (40)

as ν → ∞, for all i, j = 1, . . . ,N . Finally, for all i, j = 1, . . . ,N we obtain that

lim
ν

φij (mν) = lim
ν

∣∣∣
∫

ui(mν)
′uj (mν)

′dx − Sobs.
ij

∣∣∣
2 =
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∣∣∣
∫

ui(m̂)′uj (m̂)′dx − Sobs.
ij

∣∣∣
2 = φij (m̂),

since the absolute value function is continuous and the following limit exists,

lim
ν

∫ 1

0
ui(mν)

′uj (mν)
′dx ∈ C. (41)

Therefore by the strong convergence of the sequences (φij (mν)ν, i, j = 1, . . . ,N and the
weak lower semicontinuity of the norm, we obtain

μ = lim
ν

φ(mν) ≥ lim inf
ν

φ(mν) =
N∑

ij=1

φij (m̂) + ε

2
lim inf

ν
‖mν‖2

H 1 ≥ φ(m̂) ≥ μ (42)

�

3.2.2 Derivative of Misfit and Optimality Condition

Here we derive the first order optimality condition of the problem in the continuous setting.
We first define the form

b(u, v) =
∫ 1

0
u′v′dx, u, v ∈ H 1(0,1). (43)

We obtain the following result.

Proposition 6 Let (i, j) ∈ {1, . . . ,N}2. Then the function φij : H 1((0,1); (0,∞)) → [0,∞]
as defined in relation (31) is C1, with derivative at an m0

〈Dmφij (m0), h〉 = Re({b(ui(m0), uj (m0)) − Sobs
ij }{〈b(·, uj (m0)),Dui(m0)h〉+
〈b(ui(m0), ·),Dmuj (m0)h)〉}),

for a direction h ∈ H 1((0,1);R).

Proof We know that if

q : H 1((0,1);R) → C (44)

is differentiable, then

1

2
〈Dm|q(m0)|2, h〉 = Re(q(m0)〈Dmq(m0), h〉) (45)

In our case, q(m0) = b(ui(m0), uj (m0)) − Sij , with

〈Db(u, v), (h, z)〉 = b(u, z) + b(h, v) (46)

at (u, v) ∈ {H 1(0,1)}2, at direction (h, z). Therefore

〈Dmq(m0), h〉 =
〈Db(ui(m0), uj (m0)) ◦ Dm(ui(m0), uj (m0)), h〉 =
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〈Db(ui(m0), uj (m0)),Dm(ui(m0), uj (m0))h〉 =
b(Dmuj (m0)h,ui(m0)) + b(Dmui(m0)h,uj (m0)) =

〈b(ui(m0), ·),Dmuj (m0)h)})〉 + 〈b(·, uj (m0)),Dui(m0)h〉. (47)
�

We define G : H 1(0,1) → H 1(0,1)
′
such that

〈Gφ,u〉 =
∫ 1

0
u′φ′dx = b(u,φ). (48)

This gives for a direction h ∈ H 1((0,1);R)

b(Dmuj (m0)h,ui(m0)) = b(Dmuj (m0)h,ui(m0)) =
〈Gui,Dmujh〉 = 〈(Dmuj )∗Gui, h〉.

Since h = h (h is real), we obtain the following (see [22, page 37])

〈(Dmuj )∗Gui, h〉 = 〈(Dmuj )∗Gui, h〉 =
〈(Dmuj )∗Gui, h〉. (49)

We obtain similarly,

b(Dmui(m0)h,uj (m0)) = 〈(Dmui)
∗Guj ,h〉

Combining the above results we obtain the following theorem.

Theorem 7 The function φ : H 1((0,1); (0,∞)) → [0,∞], as defined in (29), is C1, with
derivative at an m0

Dmφ(m0) =
N∑

i,j=1

Re
({

(Dmuj )∗Gui + (Dmui)
∗Guj

}
(b(ui(m0), uj (m0)) − Sobs.

ij )
)
+

ε(m0, ·)H 1(0,1).

Remark 5 Since we have derived the analytical expression of the F-derivative of φ, then the
optimality condition is a variational inequality of the form,

〈Dmφ(m̂),m − m̂〉 ≥ 0, ∀m ∈Kad , (50)

with Dmφ(m̂) given above at a local minimizer, m̂.

4 Numerical Results

In this section we include a number of numerical experiments/comparisons between the
ROM based FWI method and the conventional FWI method. Before doing so, we include a
paragraph regarding the discrete optimality condition of the ROM based misfit functional.
In the numerical implementation below we use finite elements of “hat-funtion” type to ap-
proximate the solution of the differential equation.
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4.1 Numerical Implementation: Discrete Optimality Condition

In this paragraph we derive the discrete optimality condition that we use for the numerical
computation of the gradient of the ROM based misfit. In the discrete case, given L, a first
order finite-difference matrix and η = 1/Nx being the length of the spatial discretisation (Nx

spatial points) we have that

Sij = η(Lui,Luj )CNx , (51)

assuming that we realize (ui)
N
i=1 discretely. Now, in order to follow similar steps as in the

continuous case, we take a direction h ∈ R
n and we consider as before, φ = ∑N

i,j=1 φij (for
simplicity we do not use any regularization, thus we take ε = 0).

(Dmφij (m0), h)Rn = Re{(Dm(Sij (m0) − Sobs.
ij ),DmSij (m)h)CNx } =

Re{((DmSij (m))∗{Sij (m0) − Sobs.
ij }, h)CNx )}. (52)

We obtain that

DmSij = η(Dmuj )
∗L∗Lui + ηu∗

jL
∗L(Dmui) ⇒ (53)

(DmSij )
∗ = ηu∗

i L
∗L(Dmuj ) + η(Dmui)

∗L∗Luj . (54)

Also,

Dmφij = Re{η(u∗
i L

∗L(Dmuj ) + η(Dmui)
∗L∗Luj )[Sij − Sobs.

ij ]}. (55)

Now,

ηu∗
i L

∗L(Dmuj ) = η(L(Dmuj ),Lui)CNx = η(Lui,LDmuj )CNx = ηDmu∗
jL

∗Lui, (56)

therefore we get

Dmφij = ηRe{[Sij − Sobs.
ij ](Dmu∗

jL
∗Lui + (Dmui)

∗L∗Luj )}

Remark 6 In stead of using a variational inequality as our optimality conditions, we can seek
for simplicity solutions such that Dmφ(m̂) = 0.

Remark 7 In the continuous case we defined an operator G such that

〈Gφ,u〉 =
∫ 1

0
∂xφ∂xudx. (57)

In the discrete sense this means that

〈Gφ,u〉 ≈ η(Lφ,Lu)RNx = η(L∗Lφ,u)RNx = ηφ∗L∗Lu,

where L∗ is the adjoint of L defined by the inner product, (·, ·).
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Fig. 1 Comparison between the ROM based FWI and the conventional FWI when we use 10 wavenumbers
with kmin = 18 and kmax = 24. On the right we show m0 and mtrue

4.2 Comparison with Conventional FWI: Convexity

In this section we compare our ROM based FWI approach with the conventional FWI. We
use double sided data for both methods. We can now consider u as a function of discrete
values of x (assuming as before Nx amount of spatial nodes). We also recall that we use N -
samples of the wavenumber. We formulate the FWI problem as follows; given band-limited
observations zi ∈C

2, i = 1, . . . ,N , with

zi = (f (ki), g(ki)), i = 1, . . . ,N,

and sampling matrix

P =
(

1 0 · · ·0
0 0 · · ·1

)
∈R

2×Nx ,

find m such that the following functional

φf wi(m) = 1

2

N∑
i=1

‖Pu(ki,m) − zi‖2
2

is minimized. As we shall see in the chosen examples, the ROM based method has a convex
profile that avoids local minimizers of the conventional FWI functional. We showcase that
by performing three experiments. In the first two we use measurements corresponding to
relatively high wavenumbers compared to the maximum value of the respective m. In the
last one we use both high wavenumber measurements and strong contrast.

We show that the ROM based FWI misfit avoids the local minimizers of the FWI func-
tional by plotting the values of the two misfits as functions of m, when m = m0 + adm,
with m0 = 1, and with a having range in an interval Ia such that there exists a′ ∈ Ia with
mtrue = m0 + a′dm, (dm = mtrue − m0). We observe that in the first two examples the
ROM misfit functional is convex (figures 1, 2). In the third example the functional is not
convex, but the local minimizers of the conventional FWI are avoided (figure 3). Possibly,
the rank-2 terms that are included in the stiffness matrix convexify the misfit functional by
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Fig. 2 Comparison between the ROM based FWI and the conventional FWI when we use 2 wavenumbers
k = 20,20.1. On the right we show m0 and mtrue

Fig. 3 Comparison between the ROM based FWI and the conventional FWI when we use 2 wavenumbers
with k = 20,20.1. On the right we show m0 and mtrue

reducing the nonlinearity. It is important to notice that in similar works, see for example
[14], the observed reduction of the nonlinearity of the misfit functional could be, at least
partly, due to the transformation of the ROM system using the Lanczos algorithm. Keep in
mind though that in our case, without the use of impedance type boundary conditions, the
stiffness matrix depends linearly on the data, thus we do not expect any improvements on
the convexity compared to the traditional FWI method.

4.3 Comparison with Conventional FWI: Reconstruction of a Smooth Coefficient

We split this section in two parts. In the first part we compare the two methods assuming
that we have access to noiseless measurements. In the second part we add noise to the
measurements.
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Fig. 4 From left to right. The coefficient, the reflection data f , the transmission data g

4.3.1 Reconstruction Using Noiseless Data

Following the standard adjoint state method, we present the numerical reconstruction of
a refractive index using the ROM based FWI. For the numerical reconstruction we use a
standard fixed point iteration of the form

m(κ+1) = m(κ) − ωDmφ(m(κ)), κ = 1,2, . . . , (58)

with step ω. In Fig. 4 we show the refractive index of our experiment, the reflection and
the transmission data. We compare the results of our method with the results of the conven-
tional FWI method using the same step ω for both metods, and when we run the fixed point
iteration for 15,30 and 45 steps. Results can be seen in Figs. 5-7. Finally, Fig. 8 shows that
after a sufficiently large number of iterations, the ROM based method recovers a coefficient
that is closer to the true one. Also, the data fit of the reflection data is slightly better when
we follow the ROM based method. The data fit of the transmission data does not seem to
improve when following the ROM based method.

4.3.2 Reconstrunction with Noise in the Data

In this subsection we compare the methods on noisy data. We add i.d.d. normally distributed
noise to the data with mean zero and variance σ 2. We study the case when σ = 1 × 10−4.
We do not add any additional regularization. The results are shown in Fig. 9. We observe
that the ROM based approach is affected by the noise and it yields inferior results compared
with the conventional FWI method.

5 Conclusion and Discussion

In this paper we studied a nonlinear optimization problem which can be viewed as a modi-
fied FWI problem using the stiffness ROM matrix as input. Due to the unconventional form
of the misfit functional that includes not weakly lower semicontinuous terms, we studied
well-posedness of the problem and we compared numerically our proposed method with the
conventional FWI method. As we observed through our numerical experiments, the ROM
based FWI misfit functional seems to have a convex profile, something that the conventional
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Fig. 5 Comparison between the results produced by the ROM based and conventional FWI methods after
15 steps of the fixed point iteration. On the left, comparison between reconstructed coefficients. The errors
are ‖mrom − m‖2 = 0.214 and ‖mf wi − m‖2 = 0.271. In the middle and on the right we compare data-fit
(transmission and reflection)

Fig. 6 Comparison between the results produced by the ROM based and con- ventional FWI methods after
30 steps of the fixed point iteration. On the left, comparison between reconstructed coefficients. The errors
are ‖mrom − m‖2 = 0.152 and ‖mf wi − m‖2 = 0.169. In the middle and on the right we compare data-fit
(transmission and reflection)

FWI lacks when we use relatively high frequency data. This observed convex behaviour of
the ROM based functional makes the extension of the method to 2 and 3 dimensional inverse
problems for the Helmholtz equation interesting. With this paper we believe that we have
made the first steps towards this extension. Of course, different variations of the ROM based
FWI methods can be proposed, in the sense of using M (or even B) as input. However,
despite the possible limitations of using the Lanczos method within the framework of this
paper, it would be interesting to investigate potential combinations of the Lanczos method
with the ROM based FWI approach. For example it would be interesting to study a method
that compares the misfit between the Lanczos orthogonalized ROM and its counterpart that
corresponds to the modeled parameter. In any case, one should be aware of the possible is-
sues regarding the stability of the Lanczos algorithm. The study of these cases are interesting
and in the future we plan on analysing these variations. Finally, it is worth noting that our
method might have some desired properties, such as improved convexity of the misfit for
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Fig. 7 Comparison between the results produced by the ROM based and con- ventional FWI methods after
45 steps of the fixed point iteration. On the left, comparison between reconstructed coefficients. The errors
are ‖mrom − m‖2 = 0.145 and ‖mf wi − m‖2 = 0.156. In the middle and on the right we compare data-fit
(transmission and reflection)

Fig. 8 From left to right. On the left, comparison of the misfit ‖m − mκ‖2 when mκ is recovered doing κ−
steps of the fixed point iterations either of the conventional or the ROM based FWI method. We compare
similarly the misfits of the reflection and the transmission data yielded by the respective mκ . We used the
same step ω in both fixed point iterations

example, but it is sensitive in the presence of noise. We also plan to investigate various ways
of improving the performance of the ROM based FWI method when the measurements are
not exact.

Appendix: Proofs

A.1 Proof of Proposition 1

Proof of Proposition 1 For the sake of completeness we include a sketch of the proof. We
refer to [17] and [18] for more details. We define the forms a1, a2 : H 1(0,1)2 → C with

a1(u, v) =
∫ 1

0
u′v′dx − ik{(uv)|x=0 + (uv)|x=1}, (A1)
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Fig. 9 Comparison of the two methods when there is noise in the measurements (σ = 1 × 10−4). On the
left, comparison of the misfit ‖m − mκ‖2 when mκ is recovered doing κ− steps of the fixed point iterations
either of the conventional or the ROM based FWI method (dotted lines show average of 5 experiments).
We compare similarly the average of the misfits of the reflection and the transmission data yielded by the
respective mκ . We used the same step in both fixed point iterations

a2(u, v) = −
∫ 1

0
muvdx, u, v ∈ H 1(0,1). (A2)

We note that a1 is coercive and that a1, a2 are bounded forms. For a1, we denote with L,U

the low bound in the coercivity estimate, and the upper bound for the continuity estimate
respectively. We define the linear Riesz isomorphism,

� : H 1(0,1) → H 1(0,1)
′
, (A3)

with �u = (u, ·)H 1 , u ∈ H 1(0,1). Since a1(u, ·) is an antilinear functional on H 1(0,1), and
using the Riesz representation theorem we define T : H 1(0,1) → H 1(0,1) with

a1(u, v) = (T u,v)H 1 . (A4)

T is one-to-one onto and we have the estimates ‖T ‖∞ ≤ U, ‖T −1‖∞ ≤ L. Also, we define

the linear operator V : L2(0,1) → H 1(0,1)
′
, s

V�→ a2(u, ·). We also define the linear map

A1 = T −1�−1V : L2(0,1) → H 1(0,1) (A5)

and

A = A1 ◦ iH 1→L2 : H 1(0,1)
c

↪→ L2(0,1) → H 1(0,1), s �→ A1s. (A6)

A is bounded as composition of bounded operators. Also, for s ∈ H 1(0,1),w ∈ H 1(0,1),
we have a1(As,w) = a2(s,w). We claim that I + k2A is one-to-one. Let now u ∈ H 1(0,1).
Finding a solution of the differential equation, is equivalent to finding u ∈ H 1(0,1) that
satisfies

a1(u, v) + k2a2(u, v) = −〈δ0, v〉,∀v ∈ H 1(0,1) ⇐⇒
a1(u, v) + k2a1(Au,v) = −〈δ0, v〉, ∀v ∈ H 1 ⇐⇒
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a1(u + k2Au,v) = −〈δ0, v〉, ∀v ∈ H 1 ⇐⇒ (A7)

(T (u + k2Au), v)H 1(0,1) = −〈δ0, v〉, ∀v ∈ H 1 ⇒ (A8)

�T (I + k2A)u
H 1(0,1)

′
= −δ0 ⇐⇒ (I + k2A)u = T −1�−1(−δ0) ∈ H 1(0,1). (A9)

Since A ∈ L(H 1(�),H 1(�)) is compact and I +k2A is injective, using the Fredholm alter-
native we obtain that there exists a unique element u ∈ H 1(�) that satisfies the last equation.
Finally, we obtain the forward stability estimate

‖u‖H 1(0,1) ≤ ‖(I + k2A)−1‖L(H 1,H 1)‖T −1‖L(H 1,H 1)‖�−1‖
L(H 1,H 1

′
)
‖δ0‖

H 1
′ .

�

Remark 8 Observe that we even if we assume that m > 0 is bounded, then we can still show
existence and uniqueness of solutions of the forward problem.

A.2 Proof of Lemma 3

Proof of Lemma 3 We take k = ki and we write ui = u(ki, ·). Take φ = uj ,

(u′
i , u

′
j ) − k2

i (mui, uj ) − ıkiui(1)uj (1) − ıkiui(0)uj (0) = −uj (0) (A10)

Now we denote

Mij = (mui, uj ) (A11)

Sij = (u′
i , u

′
j ) (A12)

and we obtain

Sij − k2
i Mij = −fj + ıki{gigj + fifj } (A13)

Similarly for k = kj

(u′
j , u

′
i ) − k2

j (muj ,ui) − ıkjuj (1)ui(1) − ıkjuj (0)ui(0) = −ui(0), (A14)

which gives

Sji − k2
j Mji = −fi + ıkj {gjgi + fjfi}. (A15)

Taking the complex conjugate of the above relation we obtain

Sji − k2
j Mji =

Sij − k2
j Mij = −fi − ıkj {gigj + fif j }. (A16)

Subtracting (A13) - (A16) we arrive at

Sij − k2
i Mij − Sij + k2

jMij =
−fj + ıki{gigj + fifj } + fi + ıkj {gigj + fif j }} ⇒
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(−k2
i + k2

j )Mij = −fj + fi + ıki{gigj + fifj + fi} + ıkj {gigj + fifj } ⇒ (A17)

Mij = −fj + fi + ıki{gigj + fifj } + ıkj {gigj + fifj }
k2

j − k2
i

⇒ (A18)

Mij = −fj − fi

k2
j − k2

i

+ ı
(ki + kj )(gigj + fif j )

k2
j − k2

i

⇒ (A19)

Mij = −fj − fi

k2
j − k2

i

+ ı
gigj + fifj

kj − ki

. (A20)

Similarly we multiply (A13) by k2
j and (A16) by k2

i and we obtain

k2
j Sij − k2

j k
2
i Mij = −k2

j fj + ık2
j ki{gigj + fifj } (A21)

k2
i Sij − k2

j k
2
i Mij = −k2

i fi − ık2
i kj {gigj + fif j } (A22)

Subtracting the above two relations,

(k2
j − k2

i )Sij = −k2
j fj + ık2

j ki{gigj + fifj } + k2
i fi + ık2

i kj {gigj + fif j } ⇒ (A23)

Sij = −k2
j fj + k2

i fi

k2
j − k2

i

+ ı(k2
j ki + k2

i kj )
gigj + fif j

k2
j − k2

i

⇒ (A24)

Sij = −k2
j fj − k2

i fi

k2
j − k2

i

+ ı(k2
j ki + k2

i kj )
gigj + fif j

k2
j − k2

i

(A25)

Now, for the diagonal elements of M . First of all, consider

∫ 1

0
mu(λ)u(μ)dx := M(λ,μ) : [λmin, λmax] × [μmin,μmax] →C. (A26)

M is a continuous function, thus, if we fix μ = μ0, then the following limit exists

lim
λ→μ0

M(λ,μ0) = ‖u(μ0)‖L2(0,1,mdx) > 0 (A27)

The elements of the mass matrix M are given by relation (A20) above. Let k2
i = λ and

k2
j = λ + h, with h ∈R. Take

Mij = M(λ,λ + h) = −f (λ + h) − f (λ)

h
+ ı

g(λ)g(λ + h) + f (λ)f (λ + h)√
λ + h − √

λ
(A28)

We write f = Re(f )+ ıIm(f ) and g = Re(g)+ ıIm(g). The first term of (A28) expression
can be written as

−f (λ + h) − f (λ)

h
= −Re(f )(λ + h) − ıIm(f )(λ + h) − Re(f )(λ) − ıIm(f )(λ)

h
=

−Re(f )(λ + h) − Re(f )(λ)

h
+ ı

Im(f )(λ + h) + Im(f )(λ)

h
. (A29)
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The second term of (A28) is

ı
g(λ)g(λ + h) + f (λ)f (λ + h)√

λ + h − √
λ

=

ı
Re(g)Re(gh) + Im(g)Im(gh) + Re(f )Re(f h) + Im(f )Im(f h)√

λ + h − √
λ

+

(
− Im(g)Re(gh) − Re(g)Im(gh) + Im(f )Re(f h) − Re(f )Im(f h)√

λ + h − √
λ

)
, (A30)

since

gḡh = (Re(g) + ıIm(g))(Re(gh) − ıIm(gh)) =
Re(g)Re(g)h + Im(g)Im(g)h + ıIm(g)Re(gh) − ıIm(gh)Re(g),

where we used the shorthand notation f h = f (λ + h) (also for g). Now, since this limit
exists,

lim
h→0

M(λ,λ + h) = ‖u(λ)‖L2(0,1,mdx) ∈R,

we obtain that

lim
h→0

�(M(λ,λ + h)) = 0, (A31)

thus

lim
h→0

{ Im(f )h + Im(f )

h
+

Re(g)Re(g)h + Im(g)Im(g)h + Re(f )Re(f )h + Im(f )Im(f )h

√
λ + h − √

λ

}
= 0.

Therefore

Mii = lim
h→0

{
− Re(f )(λ + h) − Re(f )(λ)

h
−

Im(g)Re(g)h − Re(g)Im(g)h + Im(f )Re(f )h − Re(f )Im(f )h

√
λ + h − √

λ

}
=

lim
h→0

{
− Re(f )(λ + h) − Re(f )(λ)

h
−

Im(g)Re(g)h − Re(g)Im(g) + Re(g)Im(g) − Re(g)Im(g)h

√
λ + h − √

λ
−

Re(f )Im(f )h − Im(f )Re(f )h

√
λ + h − √

λ

}
⇒

Mii = −dRe(f )

dλ
(λ) − Im(g)(λ)2

√
λ

dRe(g)

dλ
(λ) + Re(g)(λ)2

√
λ

dIm(g)(λ)

dλ
−
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Im(f )(λ)2
√

λ
dRe(f )

dλ
(λ) + Re(f )(λ)2

√
λ

dIm(f )(λ)

dλ
. (A32)

This relation can be simplified even more as

Mii = −dRe(f )

dλ
(λ) + 2

√
λIm

{
g(λ)

dg

dλ
(λ) + f (λ)

df

dλ
(λ)

}
. (A33)

We compute the diagonal of S similarly. �

A.3 Proof of Lemma 4

We start by stating the implicit function theorem.

Theorem 8 Let a function F̃ : C × P → W , C,P,W being Banach spaces. We assume that
there exists an open set C0 ⊂ C such that for every m ∈ C0 there exists a unique u = u(m) ∈
P such that

F̃ (m,u) = 0. (A34)

Then if

F̃ : C × P → W (A35)

is continuous, if

∂2F̃ : C × P → W (A36)

is continuous and if

(∂2F̃ (m,u))−1 : W → P, ∀m ∈ C0, (A37)

exists and is bounded, then there exists a continuous map such that

C0  m �→ u(m) ∈ P. (A38)

Also, if ∂1F̃ is continuous, we obtain that u is Fréchet differentiable.

Lemma 9 The requirements of theorem A.3 hold for F .

Proof Let P = H 1(0,1). For all m ∈ C0 = C([0,1]; (0,∞)) ⊂ C = C([0,1];R) there exists
u such that F(m,u) = 0. Second, we want to show continuity of F . We get for (δm, δu) ∈
C × H 1

F(m + δm,u + δu) − F(m,u) =

S(u + δu) − k2M(m + δm)(u + δu) − ıkB(u + δu) + δ0−
(S(u) − k2M(m)(u) − ıkB(u) + δ0) =

S(δu) − k2M(δm)(u) − k2M(m)(δu) − k2M(δm)(δu) − ıkB(δu). (A39)
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Now, for φ ∈ H 1(0,1)

|〈M(δm)(u),φ〉| =
∣∣∣
∫ 1

0
(δm)uφdx

∣∣∣ ≤ ‖δm‖∞
∫ 1

0

∣∣∣uφ

∣∣∣dx ≤

‖δm‖∞‖u‖∞
∫ 1

0

∣∣∣φ
∣∣∣dx ≤ ‖δm‖∞‖u‖∞‖φ‖∞ ≤ γ 2‖δm‖∞‖u‖H 1‖φ‖H 1 ,

where γ is the bound of the Sobolev imbedding from H 1 to C[0,1]. Similarly,

|〈M(m)(δu),φ〉| ≤ γ 2‖δu‖H 1‖m‖∞‖φ‖H 1 , (A40)

|〈M(δm)(δu),φ〉| ≤ γ 2‖δu‖H 1‖δm‖∞‖φ‖H 1 . (A41)

Also,

|〈Sδu,φ〉| = |(δu′, φ′)| ≤ ‖δu′‖L2‖φ′‖L2 ≤ ‖δu‖H 1‖φ‖H 1 , (A42)

|〈B(δu),φ〉| = |(δuφ)|x=0 + (δuφ)|x=1| ≤ ‖δu‖∞‖φ‖∞ + ‖δu‖∞‖φ‖∞ ≤
2γ ‖δu‖H 1‖φ‖H 1 .

All the above relations yield that

‖F(m + δm,u + δu) − F(m,u)‖
H 1

′ → 0 as δm, δu → 0. (A43)

Also, since for fixed m, F(m, ·) is affine on u, we get that

∂2F(m,u) ∈ L(H 1,H 1
′
), u ∈ H 1, (A44)

and at a point (m,u) at a direction s we get

∂2F(m,u)s = 〈(S − k2M(m) − ıkB)s, ·〉, s ∈ H 1. (A45)

As before, ∂2F is continuous as a function of (m,u). Similarly, for fixed u, we obtain at
(m,u) in a direction h

∂1F(m,u)h = −k2〈M(u)h, ·〉 ⇒ (A46)

∂1F(m,u)h = −k2〈M(u)h, ·〉, ∀(m,u) ∈ C × H 1(0,1), (A47)

and ∂1F is continuous on C × H 1. Since the partial derivatives of F are continuous we
conclude that the gradient of F exists and is continuous. Finally, since at any point of eval-
uation,

∂2F(m,u) = S − k2M(m) − ıkB = �T (I + k2A) (A48)

is invertible, we obtain that the following map

C([0,1]; (0,∞))  m �→ u(k,m) ∈ H 1(0,1) (A49)

is well-defined, continuous and is F-differentiable. �
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Proof of Lemma 4 The proof of the lemma is a corollary of the above result �

Remark 9 Notice that

H 1((0,1); (0,∞))  m �→ u(k,m) ∈ H 1(0,1) (A50)

will also be differentiable. Showing this assertion follows analogously as the proof of
lemma 9 and by utilizing the embedding of H 1(0,1) into C[0,1]. Notice also that
H 1((0,1); (0,∞)) is open in H 1((0,1);R).
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