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A B S T R A C T

A new energy-consistent discretization of the viscous dissipation function in incompressible flows is proposed.
It is implied by choosing a discretization of the diffusive terms and a discretization of the local kinetic
energy equation and by requiring that continuous identities like the product rule are mimicked discretely. The
proposed viscous dissipation function has a quadratic, strictly dissipative form, for both simplified (constant
viscosity) stress tensors and general stress tensors. The proposed expression is not only useful in evaluating
energy budgets in turbulent flows, but also in natural convection flows, where it appears in the internal energy
equation and is responsible for viscous heating. The viscous dissipation function is such that a consistent total
energy balance is obtained: the ‘implied’ presence as sink in the kinetic energy equation is exactly balanced by
explicitly adding it as source term in the internal energy equation.

Numerical experiments of Rayleigh–Bénard convection (RBC) and Rayleigh–Taylor instabilities confirm that
with the proposed dissipation function, the energy exchange between kinetic and internal energy is exactly
preserved. The experiments show furthermore that viscous dissipation does not affect the critical Rayleigh
number at which instabilities form, but it does significantly impact the development of instabilities once they
occur. Consequently, the value of the Nusselt number on the cold plate becomes larger than on the hot plate,
with the difference increasing with increasing Gebhart number. Finally, 3D simulations of turbulent RBC show
that energy balances are exactly satisfied even for very coarse grids. Therefore, the proposed discretization
also forms an excellent starting point for testing sub-grid scale models and is a useful tool to assess energy
budgets in any turbulence simulation, with or without the presence of natural convection.
1. Introduction and problem description

In this article we study the viscous dissipation function and its role
in natural convection flows described by the incompressible Navier–
Stokes equations, with buoyancy effects modeled by the Boussinesq
approximation [1]. These ‘Boussinesq‘ or ‘Oberbeck-Boussinesq’ equa-
tions have attracted much scientific interest over several decades [2],
not only because of their physical relevance, but also of their intrigu-
ing mathematical properties. An important test case studied with the
Boussinesq system is that of Rayleigh–Bénard convection [3], in which
a box of fluid is heated from the bottom and cooled from the top,
giving rise to convection cells. The Boussinesq equations also describe
a (miscible) form of Rayleigh–Taylor instability, which occurs when a
heavy (cold) fluid is positioned above a light (warm) fluid.

A common assumption in many incompressible natural convection
studies is that the effect of viscous dissipation on the internal energy
(effectively on the temperature) is neglected. This assumption is not
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always valid, for example when considering natural convection in the
Earth mantle, when considering highly viscous liquids, when large
length scales are involved, or in devices operating at high rotational
speed [4–11]. Of course, when considering compressible flows, e.g.
high-speed flows, including heating by viscous dissipation is known to
be important, and several benchmarking studies have been performed
related to modeling natural convection in the Earth mantle [12,13].
These studies typically assume infinite Prandtl numbers, and ignore
the unsteady and convective terms in the momentum equations. In
this paper, we will restrict ourselves to the incompressible situation
with the Boussinesq approximation. Nevertheless, we anticipate that
our idea of discretizing the viscous dissipation term in an energy-
consistent manner has a broader scope of applicability since it is also
applicable to non-Oberbeck–Boussinesq [14] and compressible flows
(see e.g. [15,16]).

In the incompressible case, Ostrach [11], Gebhart [10] and Turcotte
et al. [9] should be explicitly mentioned, being among the first to
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address the role of viscous dissipation and to introduce next to the well-
nown Rayleigh and Prandtl numbers another dimensionless quantity,
hich is known as the dissipation number or the Gebhart number. In
ddition, we mention the work of Barletta and co-authors [17–20],

who considered the role of viscous dissipation in natural convection in
several papers, studying the correct mathematical formulation of the
problem and linear stability analysis for different geometries. Turcotte
et al. [9] were probably one of the first to perform numerical experi-
ments of incompressible natural convection flows that include viscous
issipation. They performed simulations on coarse grids (10 × 10)
nd low Rayleigh numbers (Ra = 104, 105) for different values of the
issipation number and concluded that Rayleigh–Bénard convection
as significantly affected when the dissipation number was of order
nity. The main quantity of interest is the Nusselt number, which is a
easure for the heat transfer at the walls.

From an energy perspective, the viscous dissipation source term in
the internal energy equation occurs as a sink in the kinetic energy
equation, which cancel each other when considering the total energy
quation. However, most energy analyses, especially for incompressible
low, focus on the role of the potential energy term and its split into
vailable and background potential energy [21–23], or on the kinetic

energy budget [24]. To the author’s knowledge, the role of viscous
dissipation in the kinetic energy equation and its numerical treatment
for the internal energy equation have not been explored in detail. In
addition, even for the cases where viscous dissipation does not have a
trong effect on the temperature, having an accurate and consistent way

of evaluating the viscous and thermal dissipation budgets (as present
in for example Grossmann–Lohse theory [3]) is another benefit of our
roposed discretization scheme.

In this paper, the main novelty is that we propose a discretization
of the viscous dissipation function and apply it to the context of natural
onvection flow, where it appears as a source term in the internal
nergy equation. Our discretization is such that we get a correct global

energy balance, on continuous, semi-discrete, and fully discrete level.
irst, on the continuous level, a non-dimensionalization is proposed
hat makes the internal and kinetic energy scaling consistent. Second,
n the semi-discrete level, we propose a discrete dissipation operator,

and show that it cannot be chosen freely but is implied by the dis-
cretization of the viscous terms in the momentum equations and by
he definition of the kinetic energy. Third, on the fully discrete level,
e propose a time integration method that preserves the total energy

balance upon time marching.
Importantly, the discrete dissipation operator that we propose here

s not restricted to the context of natural convection flows. For exam-
le, when estimating the dissipation of kinetic energy in DNS or LES
imulations of turbulent flows, a consistent expression for the energy

dissipation is crucial in evaluating energy budgets and developing sub-
grid scale models. Another example for which our dissipation operator
is important is the case of incompressible Taylor–Couette flow (the flow
between two rotating cylinders): the power supplied to the cylinders is
converted into heating of the fluid, which can be very significant (1
K/min for the set-up with water reported in [25]). In order to predict
the correct temperature increase, the viscous dissipation operator that
we propose in this work is needed. In existing simulations of Taylor–
Couette flow this effect is ignored (probably because in experimental
set-ups active cooling is used to keep the temperature under control).
With our dissipation operator, one can perform more realistic studies, in
which internal heating through viscous dissipation and cooling through
the boundaries can both be included.

The paper is structured as follows. Section 2 introduces the gov-
rning equations, energy balances, and new non-dimensionalization.
ections 3 and 4 describe the energy-consistent spatial and temporal

discretization. Section 5 describes steady-state results of Rayleigh–
Bénard convection including viscous dissipation, and Section 6 de-
scribes energy-conserving simulations of Rayleigh–Taylor instabilities
including viscous dissipation. Section 7 shows the effect of viscous
issipation in 3D DNS of Rayleigh–Bénard convection.
2 
Fig. 1. Problem set-up for Rayleigh–Bénard convection.

2. Energy-conserving formulation

2.1. Governing equations

The Boussinesq approximation states that density variations are
small and can be ignored in all terms of the Navier–Stokes (NS) equa-
tions, except in the one pertaining to the gravity term. The NS equations
describing conservation of mass and momentum then read

∇ ⋅ 𝒖 = 0, (1)

𝜌0
( 𝜕𝒖
𝜕 𝑡 + ∇ ⋅ (𝒖⊗ 𝒖)

)

= −∇𝑝 + 𝜇∇2𝒖 + 𝜌𝒈, (2)

where 𝒖(𝒙, 𝑡) is the velocity field, 𝑝(𝒙, 𝑡) the pressure, 𝜇 the dynamic vis-
cosity, 𝜌(𝒙, 𝑡) the density and 𝜌0 a reference density. Without loss of gen-
erality, we consider a two-dimensional (instead of three-dimensional)
domain 𝛺, with the gravity vector pointing in the negative 𝑦-direction
so that 𝒈 = −𝑔𝒆𝑦. An example of the domain as used in the Rayleigh–
Bénard problem, including the boundary conditions, is given in Fig. 1.
In the results section we will also consider the Rayleigh–Taylor prob-
lem, which has adiabatic boundaries on top and bottom, instead of
isothermal as in case of Rayleigh–Bénard.

The density 𝜌 is assumed to vary only with temperature 𝑇 (𝒙, 𝑡),
ccording to 𝜌(𝑇 ) = 𝜌0−𝛽 𝜌0(𝑇−𝑇0), where 𝛽 is the isobaric coefficient of

thermal expansion (𝛽 = − 1
𝜌

(

𝜕 𝜌
𝜕 𝑇

)

𝑝
). The NS equations are then written

s

𝜌0
( 𝜕𝒖
𝜕 𝑡 + ∇ ⋅ (𝒖⊗ 𝒖)

)

= −∇𝑝′ + 𝜇∇2𝒖 − 𝛽 𝜌0(𝑇 − 𝑇0)𝒈, (3)

where 𝑝 = 𝑝′ − 𝜌0𝑔 𝑦 and ∇𝑝 = ∇𝑝′ − 𝜌0𝑔𝒆𝑦.
The equation for the internal energy 𝑒𝑖 describes the temperature

evolution according to
𝜕
𝜕 𝑡 ( 𝜌0𝑐 𝑇⏟⏟⏟

𝑒𝑖

) + ∇ ⋅ (𝒖(𝜌0𝑐 𝑇 )) = 𝛷 + 𝜆∇2𝑇 , (4)

where 𝜆 is the thermal conductivity and 𝑐 equals 𝑐𝑣 in case of an ideal
gas (the specific heat at constant volume), and equals 𝑐𝑝 −

𝑝𝛽
𝜌 for a real

gas [26]). The contribution of pressure work to the change in internal
energy, 𝑝∇ ⋅ 𝒖, has been discarded in Eq. (3) because of Eq. (1).

The viscous dissipation function

̂ ∶= �̂� ∶ ∇𝒖 = 𝜇

[

2
( 𝜕 𝑢
𝜕 𝑥

)2
+ 2

(

𝜕 𝑣
𝜕 𝑦

)2
+
(

𝜕 𝑢
𝜕 𝑦 + 𝜕 𝑣

𝜕 𝑥
)2

]

≥ 0. (5)

is the key quantity in this work, where the stress tensor is given by
�̂� = 𝜇(∇𝒖+ (∇𝒖)𝑇 ). Expression (5) holds in 2D and is easily generalized
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to 3D. Since the fluid is incompressible and 𝜇 is assumed constant, we
have ∇ ⋅ �̂� = 𝜇∇ ⋅ (∇𝒖 + (∇𝒖)𝑇 ) = 𝜇∇2𝒖 + 𝜇∇(∇ ⋅ 𝒖) = 𝜇∇2𝒖, which is the
form of the diffusive terms used in Eq. (3). The simplified form could
be interpreted as ∇ ⋅𝝉 = 𝜇∇2𝒖, with 𝝉 = 𝜇∇𝒖, although 𝝉 is not a proper
stress tensor (it is not symmetric). Remarkably, the simplified form of
the diffusive terms implies a different dissipation function, namely

𝛷 ∶= 𝜇‖∇𝒖‖2 ≥ 0. (6)

where ‖∇𝒖‖2 = ∇𝒖 ∶ ∇𝒖 (the Frobenius inner product). The details
egarding the difference between 𝛷 and �̂� are given in Appendix A. In

2D and Cartesian coordinates the viscous dissipation can be written as

𝛷 = 𝜇

[

( 𝜕 𝑢
𝜕 𝑥

)2
+
(

𝜕 𝑢
𝜕 𝑦

)2
+
( 𝜕 𝑣
𝜕 𝑥

)2
+
(

𝜕 𝑣
𝜕 𝑦

)2
]

. (7)

In this work we focus mainly on the discretization for expression (7),
but we will also explain the discretization of the more general form (5),
see Appendix B, Eq. (B.21).

2.2. Total energy conservation

Conservation of kinetic energy follows by taking the dot product
of Eq. (3) with 𝒖:
𝜕
𝜕 𝑡 (

1
2
𝜌0|𝒖|2

⏟⏞⏟⏞⏟
𝑒𝑘

) + ∇⋅( 1
2
𝜌0|𝒖|2𝒖) = −𝒖⋅∇𝑝′+𝜇∇⋅(𝒖⋅∇𝒖) −𝜇‖∇𝒖‖2+𝛽 𝑔 𝜌0(𝑇−𝑇0)𝑣,

(8)

where 𝒈 ⋅ 𝒖 = −𝑔 𝑣 and we have used the identity

𝒖 ⋅ ∇2𝒖 = −‖∇𝒖‖2 + ∇ ⋅ (𝒖 ⋅ ∇𝒖). (9)

Upon adding the kinetic and internal energy Eqs. (4) and (8), the
viscous dissipation term cancels and we arrive at the equation for the
otal energy 𝑒 = 𝑒𝑘 + 𝑒𝑖:
𝜕
𝜕 𝑡 (𝑒𝑘+𝑒𝑖) + ∇⋅((𝑒𝑘+𝑒𝑖)𝒖) = −∇⋅(𝑝′𝒖) +𝜇∇⋅(𝒖⋅∇𝒖) +𝛽 𝑔 𝜌0(𝑇 −𝑇0)𝑣+𝜆∇2𝑇 .

(10)

All terms are in conservative (divergence) form, except the potential
nergy term. Upon integrating over the domain 𝛺 and assuming no-slip
onditions 𝒖 = 𝟎 on all boundaries, we obtain the global balances

d𝐸𝑘
d𝑡

= −∫𝛺
𝛷d𝛺 + ∫𝛺

𝛽 𝑔 𝜌0(𝑇 − 𝑇0)𝑣d𝛺 , (11)

d𝐸𝑖
d𝑡

= ∫𝛺
𝛷d𝛺 + ∫𝜕 𝛺

𝜆∇𝑇 ⋅ 𝒏 d𝑆 , (12)

d𝐸
d𝑡

=
d𝐸𝑘
d𝑡

+
d𝐸𝑖
d𝑡

= ∫𝛺
𝛽 𝑔 𝜌0(𝑇 − 𝑇0)𝑣d𝛺 + ∫𝜕 𝛺

𝜆∇𝑇 ⋅ 𝒏 d𝑆 , (13)

where 𝐸 = ∫𝛺 𝑒 d𝛺 = 𝐸𝑘 + 𝐸𝑖. In case the boundary conditions are
adiabatic (∇𝑇 ⋅ 𝒏 = 0), the last term in (13) vanishes and the total
energy equation expresses that the sum of internal and kinetic energy
changes due to the buoyancy flux ∫𝛺 𝛽 𝑔 𝜌0(𝑇 − 𝑇0)𝑣 d𝛺 — this case will
be dealt with in the Rayleigh–Taylor set-up in Section 6. Note that in
compressible flows, the buoyancy flux can be written in terms of the
time derivative of the potential energy — see Appendix D. In such a
ase, the Boussinesq system with the viscous dissipation function in
he internal energy equation and with adiabatic boundaries can be
onsidered to be truly energy-conserving, with the total energy being

the sum of kinetic, internal and potential energy. In the incompressible
case, this does not hold, so we use the term ‘energy-consistent’ to
indicate that we have included the viscous dissipation function in the
internal energy equation in such a way that the total energy equation
is not affected by it.
3 
Table 1
Different non-dimensional forms resulting from different choices of 𝑢r ef .

𝑢r ef 𝛼1 =
𝜈

𝑢r ef𝐻 𝛼2 =
𝛽 𝑔 𝛥𝑇 𝐻
𝑢2r ef 𝛼3 =

𝜈 𝑢r ef
𝑐 𝛥𝑇 𝐻 𝛼4 =

𝜅
𝑢r ef𝐻 𝛾 = 𝛼1

𝛼3

I
√

𝛽 𝑔 𝛥𝑇 𝐻
√

Pr
Ra

1 Ge
√

Pr
Ra

1
√

Pr Ra 1
Ge

II 𝜅
𝐻

Pr Pr Ra Ge
Ra

1 Pr Ra
Ge

III
√

𝑐 𝛥𝑇
√

Pr Ge
Ra

Ge
√

Pr Ge
Ra

√

Ge
Pr Ra 1

In most studies of Rayleigh–Bénard convection the dissipation func-
ion 𝛷 is left out from the internal energy Eq. (4), while its correspond-

ing counterpart in the momentum equation (𝜇∇2𝒖) is still included. As
a consequence, the energy lost in the kinetic energy equation is not
alanced by the heat generated in the internal energy equation, so that
he total energy equation features a dissipation term, which destroys
he global energy balance.

2.3. Non-dimensionalization

We non-dimensionalize Eqs. (1), (2) and (4) by taking a reference
length 𝐻 (cavity height), a reference temperature difference 𝛥𝑇 (dif-
ference between the cold and hot plates), and a reference velocity 𝑢r ef
yet to be specified. These choices determine the time scale 𝐻∕𝑢r ef and
the pressure scale 𝜌0𝑢2r ef . An important question, which we will address
here, is how the choice of non-dimensionalization changes the total
energy equation. The non-dimensional equations are written as (for
etails, see Appendix C):

∇̃ ⋅ �̃� = 0, (14)
𝜕�̃�
𝜕𝑡

+ ∇̃ ⋅ (�̃�⊗ �̃�) = −∇̃�̃�′ + 𝛼1∇̃2�̃� + 𝛼2�̃� 𝒆𝑦, (15)

𝜕�̃�
𝜕𝑡

+ ∇̃ ⋅ (�̃��̃� ) = 𝛼3�̃� + 𝛼4∇̃2�̃� , (16)

where the parameters 𝛼𝑖, 𝑖 = 1 … 4 are a function of the Rayleigh num-
ber Ra = 𝛽 𝑔 𝛥𝑇 𝐻3

𝜈 𝜅 , the Prandtl number Pr = 𝜈
𝜅 and the Gebhart number

Ge = 𝛽 𝑔 𝐻
𝑐 (also known as the dissipation number [6]). In Table 1 we

present three different options for 𝑢r ef with the corresponding values
of 𝛼. Choices I and II are common in literature, see for example [27]
for choice I and [1,18,28] for choice II; they correspond to a free-
fall velocity scale and the thermal diffusivity scale, respectively. Other
choices are also possible, e.g. 𝑢r ef = 𝛽 𝑔 𝛥𝑇 𝐻2∕𝜈 [5], but this choice does
not lead to a ‘clean’ expression in terms of the dimensionless numbers
defined above. To our best knowledge, choice III is new and inspired
by the form of the total energy equation. Physically, this choice can
e interpreted as the velocity that is obtained when internal energy is
ransformed into kinetic energy.

The non-dimensional form of the total energy equation follows by
aking the dot product of (15) with �̃� and add the internal energy

Eq. (16). The global energy balances in non-dimensional form read

d�̃�𝑘

d𝑡
= −𝛼1

𝛬 ∫�̃�
�̃� d�̃� +

𝛼2
𝛬 ∫�̃�

�̃� �̃� d�̃� , (17)

d�̃�𝑖

d𝑡
=

𝛼3
𝛬 ∫�̃�

�̃� d�̃� +
𝛼4
𝛬 ∫𝜕�̃�

∇̃�̃� ⋅ 𝒏 d�̃� , (18)

d�̃�
d𝑡

=
d�̃�𝑘
d𝑡

+ 𝛾
d�̃�𝑖
d𝑡

=
𝛼2
𝛬 ∫�̃�

�̃� �̃� d�̃� +
𝛾 𝛼4
𝛬 ∫𝜕�̃�

∇̃�̃� ⋅ 𝒏 d�̃� , (19)

where �̃� = 1
𝛬 ∫�̃� 𝑒 d�̃�, 𝛬 = 𝐿∕𝐻 is the aspect ratio of the box, and

𝛾 = 𝛼1
𝛼3

is a weighting factor, which is reported in Table 1 for different
choices of 𝑢r ef . For definitions of 𝑒𝑘, 𝑒𝑖 and 𝑒, see Appendix C. The
proposed choice III is the only choice that features 𝛾 = 1, meaning that
he dimensionless kinetic and internal energy equation are consistent

with each other and do not require a weighting factor in order for the
iscous dissipation term to cancel.

The choice for a particular reference velocity typically depends on
the problem at hand. Choices I and II have the advantage that in case
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of Ge = 0 (most commonly investigated in literature), one obtains
𝛼3 = 0 and the dissipation terms simply drops from the internal energy
equation. However, when Ge is small but nonzero, the weight factor
𝛾 becomes very large for choices I and II. Choice III does not suffer
from this issue, because 𝛾 = 1 independent of Ge, so kinetic energy and
internal energy can be summed independent of Ge. However, choice III
has the disadvantage that it does not work in the case Ge = 0, since
it leads to 𝛼𝑖 = 0 for all 𝑖. In summary: for Ge = 0, choices I and II
are preferred; for small but nonzero Ge, choice III is preferred; in other
cases, all choices are fine.

The discussion in the next sections will be agnostic for the choice
f 𝑢ref, and expressed in terms of the general parameters 𝛼𝑖. Note that
n the simulations in Sections 5–7, we will employ choice I. Choices II

and III give equivalent results apart from scaling factors.

2.4. Effect of viscous dissipation on Nusselt number and thermal dissipation

A main quantity of interest in natural convection flows is the Nusselt
number Nu and we will investigate how it changes upon including
viscous dissipation in the internal energy equation. First, define the
average of the sum of convective and conductive fluxes through a
horizontal plane 𝑦 = 𝑦′ by

𝐹 (𝑦′) ∶= 1
𝐿 ∫

𝐿

0

(

𝜌0𝑐 𝑇 𝑣 − 𝜆𝜕 𝑇
𝜕 𝑦

)

(𝑥,𝑦′)
d𝑥. (20)

Then, the Nusselt number based on 𝐹 follows as [3]:

Nu(�̃�′) ∶= 𝐹 (𝑦′)
𝜆𝛥𝑇 ∕𝐻

= 1
𝛬 ∫

𝛬

0

(

1
𝛼4

�̃� �̃� − 𝜕�̃�
𝜕 ̃𝑦

)

(�̃�, ̃𝑦′)
d�̃�. (21)

For steady state or statistically steady state (using a suitable average),
nd in the absence of viscous dissipation, it is straightforward to show
rom the internal energy equation that Nu(�̃�) = Nu(�̃� = 0) = Nu, which is
 constant, independent of �̃�′ [1,28]. However, upon including viscous
issipation, this relation no longer holds true and instead the steady
nternal energy equation yields

𝛼4(Nu(�̃�′) − Nu(0)) = 𝛼3𝜖𝑈 (�̃�′), (22)

where the integrated dissipation function is given by

𝜖𝑈 (�̃�′) ∶= 1
𝛬 ∫

�̃�′

0 ∫

𝛬

0
�̃� d�̃�d�̃�. (23)

Eq. (22) is an important relation which shows that (taking �̃�′ = 1)

𝛼4(Nu(1) − Nu(0)) = 𝛼3𝜖𝑈 (1), (24)

so the Nusselt number of the upper plate is always larger than or equal to
the Nusselt number of the lower plate.

A second relation between Nusselt number and viscous dissipation
can be obtained from the global kinetic energy balance, Eq. (17). The
econd term in the right-hand side of Eq. (17) can be rewritten with
q. (22), following the analysis in [28]:
𝛼2
𝛬 ∫�̃�

�̃� �̃� d�̃� =
𝛼2
𝛬 ∫

1

0 ∫

𝛬

0
�̃� �̃� d�̃�d�̃� = 𝛼2𝛼4 ∫

1

0
Nu(�̃�) d�̃�

+
𝛼2𝛼4
𝛬 ∫

𝛬

0 ∫

1

0

𝜕�̃�
𝜕 ̃𝑦 d�̃�d�̃�

= 𝛼2𝛼4Nu(0) + 𝛼2𝛼3 ∫

1

0
𝜖𝑈 (�̃�) d�̃�

+
𝛼2𝛼4
𝛬 ∫

𝛬

0
(�̃� (�̃�, �̃� = 1) − �̃� (�̃�, �̃� = 0))d�̃�

= 𝛼2𝛼4(Nu(0) − 1) + 𝛼2𝛼3 ∫

1

0
𝜖𝑈 (�̃�) d�̃�.

(25)

For (statistically) steady flow, this term equals the first term in the
ight-hand side of Eq. (17), yielding the second relation between the

Nusselt number and the viscous dissipation 𝜖𝑈

𝛼 𝛼 (Nu(0) − 1) = 𝛼 𝜖 (1) − 𝛼 𝛼
1
𝜖 (�̃�) d�̃�. (26)
2 4 1 𝑈 2 3 ∫0 𝑈 𝑉

4 
We recognize the well-known equation 𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈 (1), see
e.g. [1], but with the additional negative term −𝛼2𝛼3 ∫

1
0 𝜖𝑈 (�̃�) d�̃�.

Lastly, we link the thermal dissipation 𝜖𝑇 to the Nusselt number and
the viscous dissipation function. The non-dimensional internal energy
equation, Eq. (16), is multiplied by �̃� , and after integrating by parts,
sing the skew-symmetry of the convective operator, and employing
he boundary condition �̃� (�̃� = 1) = 0, one obtains
1
𝛬

d
d𝑡 ∫�̃�

1
2
�̃� 2 d�̃� =

𝛼3
𝛬 ∫�̃�

�̃� �̃� d�̃� −
𝛼4
𝛬 ∫

𝛬

0

(

�̃� 𝜕�̃�
𝜕 ̃𝑦

)

�̃�=0
d�̃�

−
𝛼4
𝛬 ∫�̃�

‖∇̃�̃� ‖2 d�̃� . (27)

With the boundary condition �̃� (�̃� = 0) = 1, and the assumption of
(statistically) steady flow, this relation is further simplified to
𝛼4Nu(0) = 𝛼4𝜖𝑇 −

𝛼3
𝛬 ∫�̃�

�̃� �̃� d�̃� , (28)

where

𝜖𝑇 ∶= 1
𝛬 ∫�̃�

‖∇̃�̃� ‖2 d�̃� . (29)

Since �̃� ≥ 0, �̃� ≥ 0, we conclude that viscous dissipation lowers the
usselt number of the lower plate. In absence of viscous dissipation in

he internal energy equation, one obtains the familiar relation Nu = 𝜖𝑇 .
n combination with Eq. (24), we obtain for the Nusselt number of the
pper plate:

𝛼4Nu(1) = 𝛼4𝜖𝑇 +
𝛼3
𝛬 ∫ (1 − �̃� )�̃� d�̃� . (30)

Assuming that the temperature satisfies 0 ≤ �̃� ≤ 1, we find that viscous
dissipation increases the Nusselt number of the upper plate. In other words,
he thermal dissipation lies in between the two Nusselt numbers:

Nu(0) ≤ 𝜖𝑇 ≤ Nu(1). (31)

The three relations (24), (26) and (28) are summarized in Table 2 and
will be confirmed in the numerical experiments in Section 5.

3. Energy-consistent spatial discretization

3.1. Mass, momentum and kinetic energy equation

To discretize the non-dimensional mass and momentum Eqs. (14)
and (15), we use the staggered-grid energy-conserving finite volume

ethod described in [29], extended by including the buoyancy term
in the momentum equations. This leads to the following semi-discrete
equations:

𝑀 𝑉ℎ(𝑡) = 0, (32)

𝑉
d𝑉ℎ(𝑡)
d𝑡

= −𝐶𝑉 (𝑉ℎ(𝑡)) − 𝐺 𝑝ℎ(𝑡) + 𝛼1𝐷𝑉 𝑉ℎ(𝑡) + 𝛼2(𝐴𝑇ℎ(𝑡) + 𝑦𝑇 ). (33)

Here, 𝑉ℎ ∈ R𝑁𝑉 are the velocity unknowns, 𝑝ℎ ∈ R𝑁𝑝 the pressure
unknowns, and 𝑇ℎ ∈ R𝑁𝑝 the temperature unknowns; see Fig. 2 for
their positioning. 𝑀 ∈ R𝑁𝑝×𝑁𝑉 is the discretized divergence operator,
𝐺 = −𝑀𝑇 ∈ R𝑁𝑉 ×𝑁𝑝 the discretized gradient operator, 𝛺𝑉 ∈ R𝑁𝑉 ×𝑁𝑉

 matrix with the ‘velocity’ finite volume sizes on its diagonal, and 𝐶𝑉
nd 𝐷𝑉 constitute central difference approximations of the convective
nd diffusive terms. 𝐴 is a matrix that averages the temperature from
he center of the ‘temperature’ finite volumes to center of the ‘velocity’
inite volumes, and the vector 𝑦𝑇 incorporates the nonzero boundary
ondition for the temperature at the lower plate.

The energy-conserving nature of our finite volume method is crucial
in deriving an energy-consistent discretization of viscous dissipation.
The energy-conserving property means that, in absence of boundary
ontributions, the discretized convective and pressure gradient opera-
ors do not contribute to the kinetic energy balance: 𝑉 𝑇

ℎ 𝐶𝑉 (𝑉ℎ) = 0 and
𝑇𝐺 𝑝 = 0, just like in the continuous case. This is achieved by using a
ℎ ℎ
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Table 2
Steady-state Nusselt number relations, with and without viscous dissipation.
Origin Without viscous dissipation With viscous dissipation

Internal Nu(1) = Nu(0) 𝛼4(Nu(1) − Nu(0)) = 𝛼3𝜖𝑈 (1)

Kinetic 𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈 (1) 𝛼2𝛼4(Nu(0) − 1) = 𝛼1𝜖𝑈 (1) − 𝛼2𝛼3 ∫
1
0 𝜖𝑈 (�̃�) d�̃�

Internal energy × 𝑇 Nu(0) = 𝜖𝑇 𝛼4Nu(0) = 𝛼4𝜖𝑇 − 𝛼3
𝛬
∫�̃� �̃� �̃� d�̃�
d
(

c

o
T
t
e

Fig. 2. Staggered grid with positioning of unknowns around a pressure volume.

skew-symmetric convection operator and the compatibility between 𝑀
nd 𝐺 via 𝐺 = −𝑀𝑇 . The discrete kinetic energy balance then reads:
d𝐸𝑘,ℎ

d𝑡
= −𝛼1𝜖𝑈 ,ℎ + 𝛼2𝑉

𝑇
ℎ (𝐴𝑇ℎ + 𝑦𝑇 ), (34)

where 𝐸𝑘,ℎ = 1
2𝑉

𝑇
ℎ 𝛺𝑉 𝑉ℎ. The global viscous dissipation (i.e. summed

over the entire domain) is given by 𝜖𝑈 ,ℎ = ‖𝑄𝑉ℎ‖22 > 0, where 𝑄 stems
from decomposing the symmetric negative-definite diffusive operator
as 𝐷𝑉 = −𝑄𝑇𝑄. Eq. (34) is the semi-discrete counterpart of Eq. (17).

3.2. Proposed viscous dissipation function

Given a discretization that satisfies a discrete kinetic energy bal-
ance, the key step is to design a discretization scheme of the internal
energy Eq. (16) which is such that discrete versions of the global bal-
ances (12) and (13) are obtained. In particular, the viscous dissipation
n the internal energy equation should cancel the viscous dissipation
erm in the kinetic energy equation, where the latter is fully deter-
ined by the choice of the diffusion operator and the expression for the
ocal kinetic energy. The choice for the diffusion operator (second-order
entral differencing) is straightforward. The choice for the expression
f the local kinetic energy on a staggered grid is however not obvious.
e propose the following definition:

𝑘𝑖,𝑗 ∶=
1
4
𝑢2𝑖+1∕2,𝑗 +

1
4
𝑢2𝑖−1∕2,𝑗 +

1
4
𝑣2𝑖,𝑗+1∕2 +

1
4
𝑣2𝑖,𝑗−1∕2. (35)

This choice gives a local kinetic energy equation that is consistent with
the continuous equations, as is detailed in Appendix B, and consistent
with the global energy definition.

The expression for 𝛷ℎ then follows from differentiating the ex-
pression for 𝑘𝑖𝑗 in time, substituting the momentum equations, and
rewriting the terms involving the diffusive operator (see Appendix B).
The implied dissipation then follows by constructing a discrete ver-
ion of (9). As example, we construct the discrete version of 𝑢 𝜕2𝑢

𝜕 𝑥2 =
(

𝜕 𝑢
𝜕 𝑥
)2

+ 𝜕
𝜕 𝑥

(

𝑢 𝜕 𝑢
𝜕 𝑥
)

, being

𝑢𝑖+1∕2,𝑗
𝛥𝑥

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

−
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

𝛥𝑥

)

= −1
( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗

)2
− 1

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
)2
2 𝛥𝑥 2 𝛥𝑥

5 
+ 1
𝛥𝑥

(

1
2
(𝑢𝑖+3∕2,𝑗 + 𝑢𝑖+1∕2,𝑗 )

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

−1
2
(𝑢𝑖+1∕2,𝑗 + 𝑢𝑖−1∕2,𝑗 )

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)

. (36)

The first two terms on the right-hand side contribute to the viscous
issipation function. Repeating this process for the other components
𝑢 𝜕2𝑢
𝜕 𝑦2 , 𝑣 𝜕2𝑣

𝜕 𝑥2 , 𝑣 𝜕2𝑣
𝜕 𝑦2 ), as outlined in Appendix B.2, yields the following

novel expression for the local dissipation function:

𝛷𝑖,𝑗 =
1
2
𝛷𝑢

𝑖+1∕2,𝑗 +
1
2
𝛷𝑢

𝑖−1∕2,𝑗 +
1
2
𝛷𝑣

𝑖,𝑗+1∕2 +
1
2
𝛷𝑣

𝑖,𝑗−1∕2 , (37)

where

𝛷𝑢
𝑖+1∕2,𝑗 = −1

2

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

)2
− 1

2

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)2

− 1
2

( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
𝛥𝑦

)2
− 1

2

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
𝛥𝑦

)2
, (38)

𝛷𝑣
𝑖,𝑗+1∕2 = −1

2

(𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑥

)2
− 1

2

(𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑥

)2

− 1
2

(𝑣𝑖,𝑗+3∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑦

)2
− 1

2

(𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑦

)2
. (39)

At boundaries, an adaptation of 𝛷ℎ is required in order to have a
discrete equivalent of Eq. (9). This is detailed in Eq. (B.15).

Note that 𝛷ℎ is derived based on local energy consideration which
upon summation equals the global dissipation, just like Eq. (23):

1𝑇𝛺𝑝𝛷ℎ = 𝜖𝑈 ,ℎ. (40)

3.3. Internal energy equation

Having proposed a consistent expression for 𝛷ℎ, the spatial dis-
retization of the internal energy Eq. (16) reads:

𝛺𝑝
d𝑇ℎ
d𝑡

= −𝐶𝑇 (𝑉ℎ, 𝑇ℎ) + 𝛼3𝛺𝑝𝛷ℎ(𝑉ℎ) + 𝛼4(𝐷𝑇 𝑇ℎ + �̂�𝑇 ), (41)

where

[𝐶𝑇 (𝑉ℎ, 𝑇ℎ)]𝑖,𝑗 =𝛥𝑦
(

𝑢𝑖+1∕2,𝑗
1
2
(𝑇𝑖+1,𝑗 + 𝑇𝑖,𝑗 ) − 𝑢𝑖−1∕2,𝑗

1
2
(𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗 )

)

+

𝛥𝑥
(

𝑣𝑖,𝑗+1∕2
1
2
(𝑇𝑖,𝑗+1 + 𝑇𝑖,𝑗 ) − 𝑣𝑖,𝑗−1∕2

1
2
(𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1)

)

(42)

is the convection operator. The convection operator has a discrete
skew-symmetry property which will be used in the derivation of the
thermal dissipation balance in the next subsection. 𝐷𝑇 the standard
second-order difference stencil with boundary conditions encoded in
�̂�𝑇 .

The total internal energy is given by 𝐸𝑖,ℎ = 1𝑇𝛺𝑝𝑇ℎ (simply sum-
ming over all finite volumes). Due to the no-slip boundary conditions
n the velocity field, the convective operator satisfies 1𝑇𝐶𝑇 (𝑉ℎ, 𝑇ℎ) = 0.
he summation over the diffusive operator can be written in terms of
he Nusselt numbers (detailed in the next section). The total internal
nergy equation thus reads
d𝐸𝑖,ℎ

d𝑡
= 𝛼31𝑇𝛺𝑝𝛷ℎ + 𝛼41𝑇 (𝐷𝑇 𝑇ℎ + �̂�𝑇 ),

𝑇
(43)
= 𝛼31 𝛺𝑝𝛷ℎ + 𝛼4(Nu𝐻 − Nu𝐶 ),
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Fig. 3. Steady-state temperature field for Ra = 105 on a 128 × 128 grid, for different Ge.
where in the second line the Nusselt numbers are instantaneous Nusselt
numbers. Upon adding the total kinetic energy Eq. (34), and using
property (40), the global energy balance results:

d𝐸ℎ
d𝑡

=
d𝐸𝑘,ℎ

d𝑡
+ 𝛾

d𝐸𝑖,ℎ

d𝑡
= 𝛼2𝑉

𝑇
ℎ (𝐴𝑇ℎ + 𝑦𝑇 ) + 𝛾 𝛼41𝑇 (𝐷𝑇 𝑇ℎ + �̂�𝑇 ),

= 𝛼2𝑉
𝑇
ℎ (𝐴𝑇ℎ + 𝑦𝑇 ) + 𝛾 𝛼4(Nu𝐻 − Nu𝐶 ),

(44)

which is the semi-discrete counterpart of Eq. (19). In other words,
we have proposed a discrete viscous dissipation function that leads to
a correct expression for the total energy equation, namely such that
the viscous dissipation from the kinetic and internal energy equations
exactly balances, independent of the mesh size. Note that in the case of
homogeneous Neumann boundary conditions for the temperature on all
boundaries, the last term disappears.

3.4. Discrete global balances and Nusselt number relations

We now derive discrete versions of the Nusselt relations that incor-
porate the viscous dissipation function, i.e. relations (24) and (28). Our
symmetry-preserving spatial discretization is such that exact discrete
relations can be derived. It is important to realize that the discrete
approximation for the Nusselt number cannot be chosen independently
(when the goal is to have exact discrete global balances) but is implic-
itly defined once the discretization of the diffusive operator is chosen.
Consider the discretized global internal energy equation for steady
conditions,

𝛼31𝑇𝛺𝑝𝛷ℎ(𝑉ℎ) + 𝛼41𝑇 (𝐷𝑇 𝑇ℎ + �̂�𝑇 ) = 0. (45)

The second term can be simplified as

1𝑇 (𝐷𝑇 𝑇ℎ+�̂�𝑇 ) = −
𝑁𝑥
∑

𝑖=1

𝑇𝑖,1 − 𝑇𝐻
1
2𝛥𝑦

𝛥𝑥+
𝑁𝑥
∑

𝑖=1

𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2𝛥𝑦

𝛥𝑥 = Nu𝐻− Nu𝐶 , (46)

where the Nusselt numbers on the lower (hot) and upper (cold) plate
are defined as

Nu𝐻 ∶= −
𝑁𝑥
∑

𝑖=1

𝑇𝑖,1 − 𝑇𝐻
1
2𝛥𝑦

𝛥𝑥, (47)

Nu𝐶 ∶= −
𝑁𝑥
∑

𝑖=1

𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2𝛥𝑦

𝛥𝑥. (48)

This leads to the discrete version of (24):

𝛼4(Nu𝐶 − Nu𝐻 ) = 𝛼31𝑇𝛺𝑝𝛷ℎ(𝑉ℎ). (49)

The discrete version of (28) follows by considering the inner product
of Eq. (41) with 𝑇 𝑇

ℎ instead of 1𝑇 . An important property of the
convective discretization (42) is that

𝑇
𝑇ℎ 𝐶𝑇 (𝑉ℎ, 𝑇ℎ) = 0, ∀ 𝑇ℎ, if 𝑀 𝑉ℎ = 0. (50)

6 
This property is most easily derived by recognizing that 𝐶ℎ(𝑉ℎ, 𝑇ℎ) can
be written in terms of a matrix–vector product �̃�𝑇 (𝑉ℎ)𝑇ℎ, where �̃�𝑇 (𝑉ℎ)
is skew-symmetric if 𝑀 𝑉ℎ = 0. In addition, the inner product of 𝑇ℎ with
the diffusive terms can be written as

𝑇 𝑇
ℎ (𝐷𝑇 𝑇ℎ + �̂�𝑇 ) =

𝑁𝑥
∑

𝑖=1

⎛

⎜

⎜

⎝

−𝑇𝐻
𝑇𝑖,1 − 𝑇𝐻

1
2𝛥𝑦

+ 𝑇𝐶
𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2𝛥𝑦

⎞

⎟

⎟

⎠

𝛥𝑥 − 𝜖𝑇 ,ℎ, (51)

where

𝜖𝑇 ,ℎ ∶=
𝑁𝑥
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

1
2

⎛

⎜

⎜

⎝

𝑇𝑖,1 − 𝑇𝐻
1
2𝛥𝑦

⎞

⎟

⎟

⎠

2

+
𝑁𝑦
∑

𝑗=2

(𝑇𝑖,𝑗 − 𝑇𝑖,𝑗−1
𝛥𝑦

)2

+ 1
2

⎛

⎜

⎜

⎝

𝑇𝐶 − 𝑇𝑖,𝑁𝑦

1
2𝛥𝑦

⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

× 𝛥𝑥𝛥𝑦 +
𝑁𝑦
∑

𝑗=1

𝑁𝑥
∑

𝑖=2

(𝑇𝑖,𝑗 − 𝑇𝑖−1,𝑗
𝛥𝑥

)2

𝛥𝑥𝛥𝑦

(52)

is the discrete analogue of (27) and Eq. (51) is the discrete version of
∫ 𝑇 d2𝑇

d𝑦2 = [𝑇 d𝑇
d𝑦 ] −∫ ( d𝑇d𝑦 )

2. With the boundary condition 𝑇𝐻 = 1, 𝑇𝐶 = 0,

we get the balance

𝛼4Nu𝐻 = 𝛼4𝜖𝑇 ,ℎ − 𝛼3𝑇
𝑇
ℎ 𝛺𝑝𝛷ℎ(𝑉ℎ), (53)

which is the discrete version of Eq. (28).

4. Energy-consistent temporal discretization

The system of Eqs. (32), (33) and (41) needs to be integrated in
time with a suitable method in order to preserve a time-discrete version
of the global energy balance (44). A common choice is to use an
explicit method (e.g. Adams–Bashforth) for the nonlinear convective
terms and an implicit method (e.g. Crank–Nicolson) for the (stiff) linear
diffusion terms [23,28,30], or an explicit method for both convection
and diffusion [31,32]. In such an approach, the temperature equation is
typically solved first (given velocity fields at previous time instances),
and then the mass and momentum equations are solved with a pressure-
correction approach. However, these methods do not preserve the
global energy balance as they violate the energy-conserving nature of
the nonlinear terms when marching in time [33].

Instead, we show here that the implicit midpoint method can be em-
ployed to achieve energy-consistent time integration. The fully discrete
system reads:

𝑀 𝑉 𝑛+1∕2
ℎ = 0, (54)

𝛺𝑉
𝑉 𝑛+1
ℎ − 𝑉 𝑛

ℎ
𝛥𝑡

= −𝐶𝑉 (𝑉
𝑛+1∕2
ℎ ) − 𝐺 𝑝𝑛+1∕2ℎ + 𝛼1𝐷𝑉 𝑉

𝑛+1∕2
ℎ

+ 𝛼 (𝐴𝑇 𝑛+1∕2 + 𝑦 ), (55)
2 ℎ 𝑇
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𝛺𝑝
𝑇 𝑛+1
ℎ − 𝑇 𝑛

ℎ
𝛥𝑡

= −𝐶𝑇 (𝑉
𝑛+1∕2
ℎ , 𝑇 𝑛+1∕2

ℎ ) + 𝛼3𝛺𝑝𝛷(𝑉 𝑛+1∕2
ℎ )

+ 𝛼4(𝐷𝑇 𝑇
𝑛+1∕2
ℎ + �̂�𝑇 ). (56)

Here 𝑉 𝑛+1∕2
ℎ = 1

2 (𝑉
𝑛
ℎ + 𝑉 𝑛+1

ℎ ) and 𝑇 𝑛+1∕2
ℎ = 1

2 (𝑇
𝑛
ℎ + 𝑇 𝑛+1

ℎ ). Upon
ultiplying (55) by (𝑉 𝑛+1∕2

ℎ )𝑇 and (56) by 1𝑇 , and adding the two
resulting equations, we get the discrete energy balance,
𝐸𝑛+1
ℎ − 𝐸𝑛

ℎ
𝛥𝑡

=
𝐸𝑛+1
𝑘,ℎ − 𝐸𝑛

𝑘,ℎ

𝛥𝑡
+ 𝛾

𝐸𝑛+1
𝑖,ℎ − 𝐸𝑛

𝑖,ℎ

𝛥𝑡
= 𝛼2(𝑉

𝑛+1∕2
ℎ )𝑇 (𝐴𝑇 𝑛+1∕2

ℎ + 𝑦𝑇 ) + 𝛾 𝛼41𝑇 (𝐷𝑇 𝑇
𝑛+1∕2
ℎ + �̂�𝑇 ), (57)

which is the fully-discrete counterpart of Eqs. (19) and (44). The deriva-
ions hinges again on skew-symmetry of the convection operator 𝐶𝑉 ,

the compatibility between 𝑀 and 𝐺 (𝐺 = −𝑀𝑇 ), and the consistency
requirement on the viscous dissipation function, Eq. (40). Again, we
stress that the discrete energy equation results from exactly balanc-
ng the viscous dissipation between the kinetic and internal energy

equations, independent of the mesh size and the time step.
The system of Eqs. (54)–(56) leads to a large system of nonlinear

equations which has a saddle point structure due to the divergence-
free constraint. We solve the system in a segregated fashion and iterate
at each time step with a standard pressure-correction method until the
residual of the entire system is below a prescribed tolerance.

We will compare this energy-conserving time integration approach
to an explicit one-leg method commonly used for direct numerical
imulations [31,32] in Section 6. This one-leg scheme reads

𝑀 𝑉 𝑛+1
ℎ = 0, (58)

𝛺𝑉
(𝑏 + 1

2 )𝑉
𝑛+1
ℎ − 2𝑏𝑉 𝑛

ℎ + (𝑏 − 1
2 )𝑉

𝑛−1
ℎ

𝛥𝑡
= −𝐶𝑉 (𝑉 ∗

ℎ ) − 𝐺 𝑝𝑛+1ℎ

+ 𝛼1𝐷𝑉 𝑉
∗
ℎ + 𝛼2(𝐴𝑇 ∗

ℎ + 𝑦𝑇 ),
(59)

𝛺𝑝
(𝑏 + 1

2 )𝑇
𝑛+1
ℎ − 2𝑏𝑇 𝑛

ℎ + (𝑏 − 1
2 )𝑇

𝑛−1
ℎ

𝛥𝑡
= −𝐶𝑇 (𝑉 ∗

ℎ , 𝑇 ∗
ℎ )

+ 𝛼3𝛺𝑝𝛷(𝑉 ∗
ℎ ) + 𝛼4(𝐷𝑇 𝑇

∗
ℎ + �̂�𝑇 ),

(60)

where 𝑉 ∗
ℎ = (1 + 𝑏)𝑉 𝑛

ℎ − 𝑏𝑉 𝑛−1
ℎ and 𝑇 ∗

ℎ = (1 + 𝑏)𝑇 𝑛
ℎ − 𝑏𝑇 𝑛−1

ℎ , and we will
take 𝑏 = 1

2 . The energy balance for this scheme follows again from
ultiplying the momentum equations by (𝑉 𝑛+1∕2

ℎ )𝑇 and the internal
energy equation by 1𝑇 , and adding the two, leading to
𝐸𝑛+1
ℎ − 𝐸𝑛

ℎ
𝛥𝑡

= −(𝑉 𝑛+1∕2
ℎ )𝑇𝐶𝑉 (𝑉 ∗

ℎ ) + 𝛼1(𝑉
𝑛+1∕2
ℎ 𝐷𝑉 𝑉

∗
ℎ + 1𝑇𝛺𝑝𝛷(𝑉 ∗

ℎ ))

+ 𝛼2(𝑉
𝑛+1∕2
ℎ )𝑇 (𝐴𝑇 ∗

ℎ + 𝑦𝑇 ) + 𝛾 𝛼41𝑇 (𝐷𝑇 𝑇
𝑛+1∕2
ℎ + �̂�𝑇 ). (61)

We observe that the explicit nature of the one-leg scheme introduces
two errors in the energy equation. First, the convective terms do not
cancel from the energy equation, because (𝑉 𝑛+1∕2

ℎ )𝑇𝐶𝑉 (𝑉 ∗
ℎ ) is not equal

to zero. Second, a contribution from the viscous dissipation function
appears as (𝑉 𝑛+1∕2

ℎ )𝑇𝐷𝑉 𝑉 ∗
ℎ does not exactly cancel 1𝑇𝛺𝑝𝛷(𝑉 ∗

ℎ ).

5. Steady state results (Rayleigh–Bénard)

The concept of energy consistency is best demonstrated through
time-dependent simulations. However, we start with steady-state re-
sults in order to validate the spatial discretization method and to get
intuition for the effect of the Gebhart number on the Nusselt number.
For the results reported here we employ a direct solver that solves the
entire coupled non-linear system of equations that arises from spatial
discretization. As initial guess we take the following divergence-free
velocity field:

𝑢(𝑥, 𝑦) = −64𝑥2(𝑥 − 1)2𝑦(𝑦 − 1)(2𝑦 − 1), (62)

𝑣(𝑥, 𝑦) = 64𝑥(𝑥 − 1)(2𝑥 − 1)𝑦2(𝑦 − 1)2, (63)
 c

7 
Table 3
Convergence of Nusselt number (47) with grid refinement for different Rayleigh
umbers and Ge = 0.
Grid Ra = 103 Ra = 104 Ra = 105
322 1.000 2.170 3.933
642 1.000 2.161 3.916
1282 1.000 2.159 3.912
2562 1.000 2.158 3.911
Cai et al. [35] (2562) 1.000 2.158 3.911

Table 4
Convergence of Nusselt numbers (47) and (48) with grid refinement for different
Rayleigh and different Gebhart numbers.

(a) Ra = 104 (b) Ra = 105
Grid Ge = 0.1 Ge = 1 Grid Ge = 0.1 Ge = 1

Nu𝐻 Nu𝐶 Nu𝐻 Nu𝐶 Nu𝐻 Nu𝐶 Nu𝐻 Nu𝐶
322 2.111 2.228 1.582 2.729 322 3.786 4.080 2.448 5.319
642 2.103 2.219 1.578 2.716 642 3.770 4.062 2.441 5.299
1282 2.101 2.217 1.576 2.713 1282 3.766 4.057 2.439 5.293
2562 2.100 2.216 1.576 2.712 2562 3.765 4.056 2.439 5.292

which is inspired by the regularized driven cavity problem [34]. For
the temperature we take a random field (between 0 and 1). The idea
ehind this choice of initial condition is to avoid the non-linear solver
o be stuck in the trivial solution (𝒖 = 0). Note that in all simulations in
his article, we will set Pr = 0.71 (air), and use non-dimensionalization
hoice I. Choices II and III give equivalent results apart from scaling
actors.

5.1. Grid convergence study for no-dissipation case (Ge = 0)

Fig. 3(a) shows the temperature field when viscous dissipation is
ot included (Ge = 0). The resulting Nusselt numbers as a function
f grid refinement are displayed in Table 3 and indicate excellent

agreement with literature [35]. We note that the Nusselt numbers as
defined by (47) and (48) are first-order approximations. More accurate
approximations can be constructed by including more interior points.
We are not using such high-order accurate approximations as they
would not satisfy the discrete global balance (49). Note also that we
only report Nu𝐻 since Nu𝐶 = Nu𝐻 up to machine precision.

5.2. Grid convergence study for viscous dissipation case (Ge > 0)

When including viscous dissipation (Ge > 0) in the internal energy
equation, the flow field changes qualitatively and loses its symmetric
nature, as can be observed in Figs. 3(b)–3(c). The Nusselt numbers at
the hot and cold plate start to deviate from each other, their difference
being equal to the dissipation function, according to Eq. (49) (or
24)). This is reported in Table 4 and Fig. 4(a). The critical Rayleigh

number that we find from the bifurcation diagram is Ra𝑐 ≈ 2585,
hich is in excellent agreement with the value of 2585.02 reported in

literature [36,37]. It is independent of the value of the Prandtl number,
s shown in [36], and also independent of the value of the Gebhart
umber. This latter fact follows by extending the linear stability anal-
sis in [36] and realizing that the term ∇𝒖 ∶ ∇𝒖 with 𝒖 = 𝒖0 + 𝜀𝒖′

nd background state 𝒖0 = 0 leads to the term 𝜀2∇𝒖′ ∶ ∇𝒖′, which
isappears when gathering terms of (𝜀). The results in Fig. 4(a) show

indeed that the bifurcation point is the same for different values of Ge.
Fig. 4(b) shows a different interpretation of the Nusselt number,

ndicating the relation with the thermal dissipation and viscous dis-
ipation according to Eq. (53) (or (28)). The results confirm that the
hermal dissipation lies in between the Nusselt number of the hot and
old plate.
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Fig. 4. Bifurcation diagram for Rayleigh–Bénard problem including viscous dissipation.
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6. Time-dependent, energy-conserving simulation (Rayleigh–
aylor)

The previous section confirmed the (discrete) steady-state Nusselt
umber balances. In this section we consider the core idea of this
rticle: achieving exact energy conservation in a time-dependent simu-
ation. Exact energy conservation requires that all contributions from
oundary terms disappear, which we achieve by prescribing no-slip
onditions 𝒖 = 0 and adiabatic conditions 𝜕 𝑇

𝜕 𝑛 = 0 on all boundaries (the
ressure does not require boundary conditions). The energy balance
hen represents a pure exchange of kinetic, internal and potential

energy according to
𝐸𝑛+1
ℎ − 𝐸𝑛

ℎ
𝛥𝑡

=
𝐸𝑛+1
𝑘,ℎ − 𝐸𝑛

𝑘,ℎ

𝛥𝑡
+ 𝛾

𝐸𝑛+1
𝑖,ℎ − 𝐸𝑛

𝑖,ℎ

𝛥𝑡
= 𝛼2(𝑉

𝑛+1∕2
ℎ )𝑇 (𝐴𝑇 𝑛+1∕2

ℎ + 𝑦𝑇 ).

(64)

However, with adiabatic boundary conditions we cannot simulate the
lassic Rayleigh–Bénard problem. Instead, we turn to the well-known
ayleigh–Taylor problem, featuring a cold (heavy) fluid on top of a
arm (light) fluid. A sketch of the set-up is shown in Fig. 5. The energy-

conserving implicit midpoint (‘IM’) method detailed in Section 4 will be
ompared to the explicit one-leg (‘OL’) method commonly used in DNS
tudies [31,32] (where we take 𝑏 = 1

2 and a fixed time step).
The domain size is 1 × 2, the grid is 64 × 128, the time step

𝛥𝑡 = 5 ⋅ 10−3 and the end time 𝑇 = 50. We consider the case Pr = 0.71,
Ra = 106 and Ge = {0.1, 1}. The instability does naturally arise due
to growth of round-off errors, but this takes rather long, so instead
a perturbation is added to the initial interface: 𝑦 = 1 + 0.05 sin(2𝜋 𝑥).
The instability quickly develops and an asymmetry in the solution
appears, triggering a sequence of well-known ‘mushroom’ type plumes:
hot plumes rising upward and cold plumes sinking downward (Fig. 6).
The development of the instability is essentially the same for IM and
OL — see also Fig. 7(a) for a more quantitative comparison. Note that if
no perturbation is added, the onset of stability is sensitive to the choice
of time integration method, due to differences in the accumulation of
round-off errors. Fig. 6 also shows that the initial development of the
instability is insensitive to the value of Ge, just like the bifurcation point
in the steady state Rayleigh–Bénard simulation was insensitive to the
value of Ge.

Since there is no driving force and all boundary conditions are
homogeneous, viscosity damps the velocity field back to a homoge-
eous steady state, while at the same time increasing the temperature
hrough dissipation. This increase in temperature is clear from Fig. 7(a),

where the average temperature is displayed. Compared to the initial
temperature difference 𝛥𝑇 = 1, the relative temperature increase is
8 
Fig. 5. Problem set-up with initial condition for Rayleigh Taylor problem.

about 2% for Ge = 0.1 and more than 20% for Ge = 1. Note that
any existing natural convection models, which ignore the viscous
issipation term, would not predict any temperature increase. With our

proposed energy-consistent viscous dissipation function, the tempera-
ture increase exactly matches the kinetic energy loss through viscous
dissipation. This is confirmed in Fig. 7(b), which shows the energy error

𝜀𝐸 ∶=
|

|

|

|

|

|

𝐸𝑛+1
𝑘,ℎ − 𝐸𝑛

𝑘,ℎ

𝛥𝑡
+ 𝛾

𝐸𝑛+1
𝑖,ℎ − 𝐸𝑛

𝑖,ℎ

𝛥𝑡
− 𝛼2(𝑉

𝑛+1∕2
ℎ )𝑇 (𝐴𝑇 𝑛+1∕2

ℎ + 𝑦𝑇 )
|

|

|

|

|

|

. (65)

For IM the error remains at the tolerance with which we solve the
ystem of nonlinear equations (10−12). For OL, the error is around
(10−6) when the instability is most pronounced (around 𝑡 = 5, see

Fig. 6), and decreases when the flow settles back to a steady state. This
small energy error of the OL scheme seems acceptable given that OL
is roughly 4–5× less expensive than IM, because IM requires roughly
4–5 iterations (Poisson solves) per time step, instead of only 1 for OL.
Consequently, OL will be employed for the 3D simulations in the next
section. Note that this balance of accuracy versus computational costs
depends on the details of the flow problem and might differ in other
test cases.
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Fig. 6. Rayleigh–Taylor temperature fields at 𝑡 = 5 for different Ge and different time integration methods (IM = Implicit Midpoint, OL = One-Leg scheme).
Fig. 7. Rayleigh–Taylor results, IM = Implicit Midpoint, OL = One-Leg scheme.
7. Energy-conserving simulation of a turbulent flow

As a final test-case, we consider the numerical simulation of an
air-filled (Pr = 0.71) Rayleigh–Bénard flow at two different Rayleigh
numbers, Ra = 108 and 1010. Direct numerical simulations (DNS) were
carried out and analyzed in previous studies [38,39] without taking
into account the viscous dissipation effects (Ge = 0). Here, the results
are extended to Ge = 0.1 and Ge = 1 keeping the same domain size
(𝜋 × 1 × 1) and mesh resolution (400 × 208 × 208 for Ra = 108, and
1024 × 768 × 768 for Ra = 1010). Grids are constructed with a uniform
grid spacing in the periodic 𝑥-direction whereas wall-normal points
(𝑦 and 𝑧 directions) are distributed following a hyperbolic-tangent
function as follows (identical for the 𝑧-direction)

𝑦𝑖 =
1
2

(

1 + t anh (𝛾𝑦(2(𝑖 − 1)∕𝑁𝑦 − 1))

t anh 𝛾𝑦

)

, 𝑖 = 1,… , 𝑁𝑦 + 1, (66)

where 𝑁𝑦 and 𝛾𝑦 are the number of control volumes and the concen-
tration factor in the 𝑦-direction, respectively. In our case, 𝛾𝑦 = 𝛾𝑧 = 1.4
for Ra = 108 and 𝛾𝑦 = 𝛾𝑧 = 1.6 for Ra = 1010. For further details, the
reader is referred to our previous works [38,39].

Instantaneous temperature fields corresponding to the statistically
steady state are displayed in Fig. 8. As expected, thermal dissipation
effects at Ge = 1 lead to a significant increase in the average cavity
temperature which is clearly visible for both Rayleigh numbers. As in
9 
2D, the flow symmetry (in average sense) with respect to the mid-
height plane is lost for Ge > 0 leading to higher (lower) Nusselt number
for the top (bottom) wall. Subsequently, the top (bottom) thermal
boundary layer becomes thinner (thicker) with respect to the case at
Ge = 0. This implies that mesh resolution requirements in the near-
wall region are also asymmetrical; however, in this work, for the sake
of simplicity, the grid spacing at the two walls is the same regardless
of the Gebhart number.

All simulations have been carried out for 500 time-units starting
from a zero velocity field and uniformly distributed random temper-
atures between 𝑇𝐶 and 𝑇𝐻 . As the fluid sets in motion, initially the
discrete kinetic energy of the system increases. Then, after a sufficiently
long period of time (around 50 time-units) a statistically steady state is
reached. This is clearly observed in Fig. 9 where the time-evolution
of various rate-of-changes of energy are shown. Results correspond to
Ra = 108 and Ge = 1 using a very fine (400 × 208 × 208 ≈ 17.3M) and
a very coarse mesh. Similar results are obtained for the other tested
configurations. As expected, once a statistically steady state is reached,
the kinetic energy fluctuates around its mean value and therefore its
rate-of-change d𝐸𝑘,ℎ∕d𝑡 (in red) fluctuates around zero. Only two terms
contribute to the global kinetic energy of the system (see Eq. (34)):
the global viscous dissipation, 𝜖𝑢,ℎ (in yellow), and the contribution of
the buoyancy forces given by 𝛼2𝑉 𝑇

ℎ (𝐴𝑇ℎ(𝑡) + 𝑦𝑇 ) (in blue). These two
contributions cancel each other on average when a statistically steady
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Fig. 8. Instantaneous temperature fields for 3D RBC at different Rayleigh and Gebhart numbers. For a visualization of the 3D time-dependent simulation results, we refer to the
supplementary material.
Fig. 9. Time-evolution of the most relevant energy contributions for Ge = 1; (left) Finest grid: 400 × 208 × 208 ≈ 17.3M; (right) Coarsest grid: 50 × 26 × 26 ≈ 0.034M.
state is reached. The former is transferred into internal energy, 𝐸𝑖,ℎ,
whereas the latter can be viewed as a transfer from potential to kinetic
energy. In addition, the total energy of the system is exactly in balance
with the buoyancy term and the heat conduction through the top and
bottom boundaries (green line), as given by (44), repeated here for
convenience:
d𝐸𝑘,ℎ

d𝑡
+ 𝛾

d𝐸𝑖,ℎ

d𝑡
− 𝛼2𝑉

𝑇
ℎ (𝐴𝑇ℎ + 𝑦𝑇 ) − 𝛾 𝛼4(Nu𝐻 − Nu𝐶 ) = 0. (67)

This proofs that the viscous dissipation function has indeed been dis-
cretized correctly, since an imbalance between the viscous dissipation
implied by the kinetic energy equation and the explicitly added viscous
dissipation in the internal energy equation would otherwise show
10 
up. Notice that, in this case, we are comparing rate-of-changes of
energy; therefore, we are only considering the effect of the spatial
discretization. In our previous test-case (see Section 6), we showed
that time-integration errors are in practice very small. These energy
balances are exactly satisfied for any grid, so even for very coarse
grids (see Fig. 9, right). Notice again that it is important that the
Nusselt numbers are evaluated consistently with the discretization of
the diffusive terms in the internal energy equation, as explained in
Section 3.4.

In addition to these instantaneous balances, we show in Fig. 10 that
the time averages of the exact relations given in Eqs. (24), (26) and
(28) are preserved at the discrete level, similar to what was shown
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Fig. 10. Time-averaged Nusselt numbers at lower and upper plate for a set of meshes at Ge = 0, Ge = 0.1 and Ge = 1.
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in steady-state in 2D (see Fig. 4(a)). However, here we display time-
averaged Nusselt numbers and consider a wide range of meshes. The
finest meshes correspond to the DNS simulations shown in Fig. 8
whereas coarser and coarser meshes have been generated by reducing
the number of grid points in each spatial direction by factors of ap-
proximately

√

2. Hence, after six successive mesh coarsenings, the total
number of grid points is reduced by approximately ((

√

2)6)3 = 29 = 512.
his under-resolution causes a pile-up of (kinetic) energy close to the
mallest resolved scales, that leads to higher values of 𝜖𝑈 and, therefore,

an increase of both Nu𝐻 (see Eq. (26)) and Nu𝐶− Nu𝐻 (see Eq. (24)). On
he other hand, the appearance of a maximum may be due to the poor

resolution of the thermal boundary layers, which become increasingly
hicker, leading to an underestimation of the thermal gradient at the

wall and, consequently, a decrease in the Nusselt number. These effects
were already observed in previous studies [40]. Although the solution
s surely less accurate at coarse grids, the fact that an energy balance is
till satisfied, makes our approach an excellent starting point for devel-
ping or testing sub-grid scale models, as the additional dissipation that
s introduced by the sub-grid scale model can be exactly quantified.

8. Conclusions

In this paper we have proposed a new energy-consistent discretiza-
tion of the viscous dissipation function. The viscous dissipation function
is an important quantity, for example in turbulent flow computations,
where it is critical to assess the global energy balances, or in natural
convection flows, where it leads to internal heating. This latter case has
been the focus of this article, and we have shown that including the
viscous dissipation function in the internal energy equation leads to a
consistent total energy balance: viscous dissipation acts as a sink in the
kinetic energy equation and as a source in the internal energy equation,
such that the sum of internal and kinetic energy only changes due to
buoyancy and thermal diffusion.

Our key result is a new discretization of the local viscous dissipation
unction that abides by the total energy balance. We have shown
hat it is determined by two choices, namely the discretization of
he diffusive terms in the momentum equations and the expression
or the local kinetic energy. The discretization of the diffusive terms
s detailed for both general (non-constant viscosity) and simplified
constant viscosity) stress tensor expressions. The proposed expression
or the local kinetic energy is such that a discrete local kinetic energy
quation is satisfied, independent of mesh size and time step. It leads to
 quadratic, strictly dissipative form of the viscous dissipation function,
lso for general stress tensors. Near boundaries we have proposed
11 
corrections to the viscous dissipation function to keep the dissipative
property.

The numerical experiments in 2D and 3D show that viscous dissipa-
tion does not affect the critical Rayleigh number at which instabilities
form, but it does significantly impact the development of instabili-
ties once they occur, leading to a significant difference between the
Nusselt numbers on the cold and hot plates. Moreover, simulations
of turbulent Rayleigh–Bénard convection have clearly shown that the
proposed discretization is stable even for very coarse grids. Namely, the
numerical discretization does not interfere with the energy balances
and, therefore, we consider that the proposed method is an excellent
starting point for testing sub-grid scale models.

The analysis in this paper has been performed for the classic finite-
olume staggered grid method. Extensions to other discretization meth-
ds, such as finite differences or finite elements, are in principle pos-
ible provided that a discrete local kinetic energy balance mimicking
he continuous balance can be identified. Another limitation of this
ork is the assumption of incompressible flow, which might seem

estrictive given the fact that viscous dissipation typically becomes
mportant for compressible flows. However, the idea of discretizing
he viscous dissipation term in an energy-consistent manner is also
pplicable to non-Oberbeck–Boussinesq [14] and compressible flows,
ee e.g. [15,16], and we expect our work can therefore be extended in

these directions.
As mentioned, an important avenue for future work lies in the

ssessment of subgrid-scale models for turbulent flows, including those
riven by buoyancy. For example, in large-eddy simulation, the ki-
etic energy equation of the resolved scales and of the subgrid-scales
eatures viscous dissipation terms, and the current work provides a
asis for proper discrete representations of these terms. Another avenue

is to investigate the effect of internal heating by viscous dissipation
n Taylor–Couette experiments, which is an important effect that is
ypically ignored in numerical simulations.
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Appendix A. Forms of the dissipation function

In this appendix we explain why the dissipation function changes
epending on which form of the stress tensor is used. The stress tensor
or an incompressible fluid with non-constant viscosity is given by

̂ = 𝜇(∇𝒖 + (∇𝒖)𝑇 ). (A.1)

In the case of constant viscosity 𝜇, the divergence of the stress tensor
can be simplified:

∇ ⋅ �̂� = 𝜇∇ ⋅ (∇𝒖 + (∇𝒖)𝑇 ) = 𝜇∇ ⋅ ∇𝒖 + 𝜇∇ ⋅ (∇𝒖)𝑇 = 𝜇∇2𝒖 + 𝜇∇(∇ ⋅ 𝒖)

= 𝜇∇2𝒖 =∶ ∇ ⋅ 𝝉 , (A.2)

where

𝝉 = 𝜇∇𝒖 = �̂� − 𝜇(∇𝒖)𝑇 . (A.3)

Note that 𝝉 is not a proper stress tensor, since it is not symmetric. We
stress that ∇ ⋅ 𝝉 = ∇ ⋅ �̂�, even though 𝝉 ≠ �̂�.

In the kinetic energy equation the divergence of the stress tensor is
multiplied by 𝒖: 𝒖 ⋅ (∇ ⋅ 𝝉). Since ∇ ⋅ 𝝉 = ∇ ⋅ �̂�, we also have

𝒖 ⋅ (∇ ⋅ 𝝉) = 𝒖 ⋅ (∇ ⋅ �̂�). (A.4)

Expanding both the left-hand and right-hand side with a vector identity
note: also valid for non-symmetric 𝝉) gives:

∇ ⋅ (𝝉 ⋅ 𝒖) − 𝝉 ∶ ∇𝒖 = ∇ ⋅ (�̂� ⋅ 𝒖) − �̂� ∶ ∇𝒖. (A.5)

or

∇ ⋅ (𝝉 ⋅ 𝒖) −𝛷 = ∇ ⋅ (�̂� ⋅ 𝒖) − �̂� . (A.6)

The crucial point is that, even though Eq. (A.6) holds, the individual
erms are not equal, i.e. 𝛷 ≠ �̂� and ∇ ⋅ (𝝉 ⋅ 𝒖) ≠ ∇ ⋅ (�̂� ⋅ 𝒖).

This insight can be further clarified by evaluating these expressions
n 2D Cartesian coordinates:

∇ ⋅ (�̂� ⋅ 𝒖) = 𝜇
[

𝜕
𝜕 𝑥

(

2𝑢 𝜕 𝑢
𝜕 𝑥

)

+ 𝜕
𝜕 𝑦

(

𝑢
(

𝜕 𝑢
𝜕 𝑦 + 𝜕 𝑣

𝜕 𝑥
))

+ 𝜕
𝜕 𝑥

(

𝑣
(

𝜕 𝑢
𝜕 𝑦 + 𝜕 𝑣

𝜕 𝑥
))

+ 𝜕
𝜕 𝑦

(

2𝑣 𝜕 𝑣
𝜕 𝑦

)]

, (A.7)

�̂� = 𝜇

[

2
( 𝜕 𝑢
𝜕 𝑥

)2
+
(

𝜕 𝑢
𝜕 𝑦 + 𝜕 𝑣

𝜕 𝑥
)2

+ 2
(

𝜕 𝑣
𝜕 𝑦

)2
]

, (A.8)

∇ ⋅ (𝝉 ⋅ 𝒖) = 𝜇
[

𝜕
𝜕 𝑥

(

𝑢 𝜕 𝑢
𝜕 𝑥

)

+ 𝜕
𝜕 𝑦

(

𝑢 𝜕 𝑢
𝜕 𝑦

)

+ 𝜕
𝜕 𝑥

(

𝑣 𝜕 𝑣
𝜕 𝑥

)

+ 𝜕
𝜕 𝑦

(

𝑣 𝜕 𝑣
𝜕 𝑦

)]

,

(A.9)

𝛷 = 𝜇

[

( 𝜕 𝑢
𝜕 𝑥

)2
+
(

𝜕 𝑢
𝜕 𝑦

)2
+
( 𝜕 𝑣
𝜕 𝑥

)2
+
(

𝜕 𝑣
𝜕 𝑦

)2
]

. (A.10)

Note that in a closed domain (𝒖 = 0 on all boundaries), we have the
relation

∫𝛺
𝛷 d𝛺 = ∫𝛺

�̂� d𝛺 . (A.11)
12 
Fig. B.11. Stencil of velocity and pressure points involved in the local kinetic energy
quation.

Appendix B. Discrete dissipation operator from local kinetic en-
ergy equation

B.1. Momentum equations and choice of local kinetic energy

The energy-conserving discretization presented in Eq. (33) can be
ritten component-wise as:

d𝑢𝑖+1∕2,𝑗
d𝑡

= −conv𝑢𝑖+1∕2,𝑗 −
𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗

𝛥𝑥
+ 𝛼1diff𝑢𝑖+1∕2,𝑗 , (B.1)

d𝑣𝑖,𝑗+1∕2
d𝑡

= −conv𝑣𝑖+1∕2,𝑗 −
𝑝𝑖,𝑗+1 − 𝑝𝑖,𝑗

𝛥𝑦
+ 𝛼1diff𝑣𝑖,𝑗+1∕2 + 𝛼2

1
2
(𝑇𝑖,𝑗 + 𝑇𝑖,𝑗+1).

(B.2)

The convective terms are discretized starting from the divergence form,
and due to discrete mass conservation they can be written in skew-
symmetric form, which is energy-conserving. These terms are not the
main focus of this work and we refer to [31,33] for details.

The aim here is to find a local kinetic energy equation expression
nd the exact form of the dissipation terms. The local kinetic energy
hould be such that it results in the well-known global kinetic energy
alance [31] upon integration over the entire domain. This global
inetic energy equation is obtained by taking the inner product of

all momentum equations with the full velocity vector 𝑉ℎ (containing
𝑢𝑖+1∕2,𝑗 and 𝑣𝑖,𝑗+1∕2 at all locations). This resulting global kinetic energy
definition 1

2𝑉
𝑇
ℎ 𝛺ℎ𝑉ℎ still leaves room for the definition of the local

kinetic energy.
Our proposal is to choose for the local kinetic energy the definition

𝑘𝑖,𝑗 ∶=
1
4
𝑢2𝑖+1∕2,𝑗 +

1
4
𝑢2𝑖−1∕2,𝑗 +

1
4
𝑣2𝑖,𝑗+1∕2 +

1
4
𝑣2𝑖,𝑗−1∕2. (B.3)

Upon differentiating,
d𝑘𝑖,𝑗
d𝑡

= 1
2
𝑢𝑖+1∕2,𝑗

d𝑢𝑖+1∕2,𝑗
d𝑡

+ 1
2
𝑢𝑖−1∕2,𝑗

d𝑢𝑖−1∕2,𝑗
d𝑡

+ 1
2
𝑣𝑖,𝑗+1∕2

d𝑣𝑖+1∕2,𝑗
d𝑡

+ 1
2
𝑣𝑖,𝑗−1∕2

d𝑣𝑖,𝑗−1∕2
d𝑡

, (B.4)

and substituting the momentum equations, our proposed definition
gives a local kinetic energy equation that is consistent with the con-
tinuous equations. The stencil of points required to evaluate (B.4) is
shown in Fig. B.11.

The choice (B.3) is inspired by the fact that it naturally allows a
discrete equivalent of 𝒖 ⋅ ∇𝑝 = ∇ ⋅ (𝑝𝒖) − 𝑝∇ ⋅ 𝒖:
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1
2
𝑢𝑖+1∕2,𝑗

𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗
𝛥𝑥

+ 1
2
𝑢𝑖−1∕2,𝑗

𝑝𝑖,𝑗 − 𝑝𝑖−1,𝑗
𝛥𝑥

+ 1
2
𝑣𝑖,𝑗+1∕2

𝑝𝑖,𝑗+1 − 𝑝𝑖,𝑗
𝛥𝑦

+1
2
𝑣𝑖,𝑗−1∕2

𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1
𝛥𝑦

=

𝑢𝑖+1∕2,𝑗
1
2 (𝑝𝑖+1,𝑗 + 𝑝𝑖,𝑗 ) − 1

2 𝑢𝑖−1∕2,𝑗 (𝑝𝑖,𝑗 + 𝑝𝑖−1,𝑗 )

𝛥𝑥

+
𝑣𝑖,𝑗+1∕2

1
2 (𝑝𝑖,𝑗+1 + 𝑝𝑖,𝑗 ) − 𝑣𝑖,𝑗−1∕2

1
2 (𝑝𝑖,𝑗 + 𝑝𝑖,𝑗−1)

𝛥𝑦

−𝑝𝑖,𝑗

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

+
𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2

𝛥𝑦

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
div(𝑢)𝑖,𝑗

. (B.5)

Furthermore, choice (B.3) for the local kinetic energy leads to a con-
sistent quadratic dissipation form in the case of a general stress tensor,
as will be shown in Appendix B.4.

B.2. Diffusion and dissipation

We continue to investigate the dissipation implied by the diffusive
term in the momentum Eq. (B.1) and the kinetic energy choice (B.3).
Restricting ourselves momentarily to the term 𝜕2𝑢

𝜕 𝑥2 , we are looking for
a discrete equivalent of the relation

𝑢 𝜕
2𝑢

𝜕 𝑥2 = −
( 𝜕 𝑢
𝜕 𝑥

)2
+ 𝜕

𝜕 𝑥
(

𝑢 𝜕 𝑢
𝜕 𝑥

)

. (B.6)

This is given by 𝑢𝑖+1∕2,𝑗 ⋅ diff𝑢𝑖+1∕2,𝑗 :
𝑢𝑖+1∕2,𝑗
𝛥𝑥

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

−
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

𝛥𝑥

)

= −1
2

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

)2
− 1

2

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)2

+ 1
𝛥𝑥

(

1
2
(𝑢𝑖+3∕2,𝑗 + 𝑢𝑖+1∕2,𝑗 )

𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

−1
2
(𝑢𝑖+1∕2,𝑗 + 𝑢𝑖−1∕2,𝑗 )

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)

. (B.7)

Eq. (B.7) is important because the discrete local dissipation expression
is explicitly needed in the internal energy equation.

The analysis for the term 𝜕2𝑢
𝜕 𝑦2 is completely analogous, and hence we

an define the following discrete function that describes the dissipation
mplied by the discretized diffusion term of the momentum equation for
𝑖+1∕2,𝑗 :

𝛷𝑢
𝑖+1∕2,𝑗 = −1

2

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

)2
− 1

2

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)2

−1
2

( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
𝛥𝑦

)2
− 1

2

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
𝛥𝑦

)2
. (B.8)

Similarly, the dissipation implied by the discretized diffusion term of
the momentum equation for 𝑣𝑖,𝑗+1∕2 is:

𝛷𝑣
𝑖,𝑗+1∕2 = −1

2

(𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑥

)2
− 1

2

(𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑥

)2

−1
2

(𝑣𝑖,𝑗+3∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑦

)2
− 1

2

(𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑦

)2
. (B.9)

The entire dissipation term appearing in the kinetic energy equation for
d𝑘𝑖,𝑗
d𝑡 is then

𝛷𝑖,𝑗 =
1
2
𝛷𝑢

𝑖+1∕2,𝑗 +
1
2
𝛷𝑢

𝑖−1∕2,𝑗 +
1
2
𝛷𝑣

𝑖,𝑗+1∕2 +
1
2
𝛷𝑣

𝑖,𝑗−1∕2. (B.10)

B.3. Boundary conditions

The analysis in the previous section ignored the effect of boundary
onditions. Upon integrating (B.6) over the domain, we get

∫ 𝑢 𝜕
2𝑢

𝜕 𝑥2 d𝑥 = −∫

( 𝜕 𝑢
𝜕 𝑥

)2
d𝑥 +

[

𝑢 𝜕 𝑢
𝜕 𝑥

]

⏟⏟⏟
, (B.11)
boundary term

13 
and the boundary term vanishes in case of homogeneous Dirichlet,
homogeneous Neumann or periodic conditions. The discrete version
should mimic this behavior.

Consider the case where the solution on the boundary is given by
𝑢1∕2,𝑗 = 𝑢𝑏,𝑗 (Fig. B.12, left). Then the first unknown for which the

omentum Eq. (B.1) is solved is 𝑢3∕2,𝑗 , and Eq. (B.7) becomes

𝑢3∕2,𝑗
𝛥𝑥

( 𝑢5∕2,𝑗 − 𝑢3∕2,𝑗
𝛥𝑥

−
𝑢3∕2,𝑗 − 𝑢𝑏,𝑗

𝛥𝑥

)

= 1
𝛥𝑥

(

1
2
(𝑢5∕2,𝑗 + 𝑢3∕2,𝑗 )

𝑢5∕2,𝑗 − 𝑢3∕2,𝑗
𝛥𝑥

− 1
2
(𝑢3∕2,𝑗 + 𝑢𝑏,𝑗 )

𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
𝛥𝑥

)

−1
2

( 𝑢5∕2,𝑗 − 𝑢3∕2,𝑗
𝛥𝑥

)2
− 1

2

( 𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
𝛥𝑥

)2
. (B.12)

In case where 𝑢𝑏,𝑗 = 0, we want the boundary term to vanish, like the
term 𝑢 𝜕 𝑢

𝜕 𝑥 in the continuous case. However, when setting 𝑢𝑏,𝑗 = 0, the
term that corresponds to 𝑢 𝜕 𝑢

𝜕 𝑥 reads:

−1
2
(𝑢3∕2,𝑗 + 𝑢𝑏,𝑗 )

𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
𝛥𝑥

= −1
2

𝑢23∕2,𝑗
𝛥𝑥

, (B.13)

and the discrete boundary contribution does not vanish for 𝑢𝑏,𝑗 = 0.
This issue is caused by the fact that the finite volumes do not cover the
entire domain, because there is no momentum equation to be solved
for 𝑢𝑏,𝑗 (as it is given by the boundary data). We resolve this issue by
splitting instead as

−
𝑢3∕2,𝑗
𝛥𝑥

( 𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
𝛥𝑥

)

= − 𝑢𝑏,𝑗
𝛥𝑥

( 𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
𝛥𝑥

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
boundary contribution

−
𝑢3∕2,𝑗 − 𝑢𝑏,𝑗

𝛥𝑥

( 𝑢3∕2,𝑗 − 𝑢𝑏,𝑗
𝛥𝑥

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dissipation contribution

, (B.14)

so that the contribution to the dissipation function is

−
( 𝑢3∕2,𝑗 − 𝑢𝑏, 𝑗

𝛥𝑥

)2
, (B.15)

instead of − 1
2

( 𝑢3∕2,𝑗−𝑢𝑏,𝑗
𝛥𝑥

)2
.

For the discretization of 𝜕2𝑢
𝜕 𝑦2 , we have a different situation, because

he solution points are not aligned with the boundary. The first un-
nown is 𝑢𝑖+1∕2,1, which is situated at a distance 1

2𝛥𝑦 above the lower
oundary. In this case we can write
𝑢𝑖+1∕2,𝑗
𝛥𝑦

( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
𝛥𝑦

−
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

𝛥𝑦

)

𝑗=1
=

𝑢𝑖+1∕2,1
𝛥𝑦

⎛

⎜

⎜

⎝

𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
𝛥𝑦

−
𝑢𝑖+1∕2,1 − 𝑢𝑖+1∕2,𝑏

1
2𝛥𝑦

⎞

⎟

⎟

⎠

= 1
𝛥𝑦

( 1
2
(𝑢𝑖+1∕2,2 + 𝑢𝑖+1∕2,1)

×
𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1

𝛥𝑦
− 𝑢𝑖+1∕2,𝑏

𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
1
2𝛥𝑦

⎞

⎟

⎟

⎠

−1
2

( 𝑢𝑖+1∕2,2 − 𝑢𝑖+1∕2,1
𝛥𝑦

)2
− 1

2

⎛

⎜

⎜

⎝

𝑢𝑖+1∕2,1 − 𝑢𝑖+1∕2,𝑏
1
2𝛥𝑦

⎞

⎟

⎟

⎠

2

, (B.16)

and we have a correct discrete equivalent of the continuous expression,
and no correction to 𝛷 is needed.

The analysis for the 𝑣-component follows in a similar fashion. A
correction is needed in the expression for 𝛷 associated to 𝜕2𝑣

𝜕 𝑥2 , but not
for 𝜕2𝑣

𝜕 𝑦2 .
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Fig. B.12. Staggered grid near vertical (left) and horizontal (right) boundary.
r

𝛷

𝛷

B.4. Extension to non-constant viscosity: general stress tensor

For the case of non-constant 𝜇, the discretization of the diffusion
terms in the momentum equation changes to
diff𝑢𝑖+1∕2,𝑗 =

1
𝛥𝑥

[(

2𝜇𝑖+1,𝑗
𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗

𝛥𝑥

)

−
(

2𝜇𝑖,𝑗
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

𝛥𝑥

)]

+

1
𝛥𝑦

[(

𝜇𝑖+1∕2,𝑗+1∕2
𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

𝛥𝑦

)

−
(

𝜇𝑖+1∕2,𝑗−1∕2
𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

𝛥𝑦

)]

+

1
𝛥𝑦

[(

𝜇𝑖+1∕2,𝑗+1∕2
𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2

𝛥𝑥

)

−
(

𝜇𝑖+1∕2,𝑗−1∕2
𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2

𝛥𝑥

)]

.

(B.17)

Importantly, we first show that this form reduces to the expression
in Eq. (B.1) for constant 𝜇. In the continuous equations, this happens
because
𝜕
𝜕 𝑥

(

2 𝜕 𝑢
𝜕 𝑥

)

+ 𝜕
𝜕 𝑦

(

𝜕 𝑢
𝜕 𝑦 + 𝜕 𝑣

𝜕 𝑥
)

= 𝜕
𝜕 𝑥

( 𝜕 𝑢
𝜕 𝑥

)

+ 𝜕
𝜕 𝑦

(

𝜕 𝑢
𝜕 𝑦

)

+ 𝜕
𝜕 𝑥

(

𝜕 𝑢
𝜕 𝑥 + 𝜕 𝑣

𝜕 𝑦
)

= 𝜕2𝑢
𝜕 𝑥2 + 𝜕2𝑢

𝜕 𝑦2 . (B.18)

The derivation hinges on the divergence-freeness of 𝒖 and interchang-
ing of differentiation in 𝑥− and 𝑦-directions. Discretely, the same
derivation holds, which can be shown by rewriting as follows:

1
𝛥𝑥

[( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

)

−
( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

𝛥𝑥

)]

+ 1
𝛥𝑦

[( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
𝛥𝑦

)

−
( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

𝛥𝑦

)]

+

1
𝛥𝑥

[( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

)

−
( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗

𝛥𝑥

)

+
(𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖+1,𝑗−1∕2

𝛥𝑦

)

−
(𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2

𝛥𝑦

)]

,

(B.19)

and the second line evaluates to zero, as it contains the difference of
the divergence associated to volumes (𝑖 + 1, 𝑗) and (𝑖, 𝑗).

We continue to derive the dissipation function. As explain in Sec-
tion 2.1 and in Appendix A, the dissipation function changes when
the generic stress tensor for non-constant 𝜇 is considered. Multiplying
(B.17) with 𝑢𝑖+1∕2,𝑗 and rewriting leads to
�̂�𝑢

𝑖+1∕2,𝑗 = 𝑢𝑖+1∕2,𝑗 ⋅ diff𝑢𝑖+1∕2,𝑗 =
1
𝛥𝑥

(

𝜇𝑖+1,𝑗 (𝑢𝑖+3∕2,𝑗

+𝑢𝑖+1∕2,𝑗 )
𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗

𝛥𝑥
− 𝜇𝑖,𝑗 (𝑢𝑖+1∕2,𝑗 + 𝑢𝑖−1∕2,𝑗 )

𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)

−𝜇𝑖+1,𝑗

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
)2

− 𝜇𝑖,𝑗

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
)2

+

𝛥𝑥 𝛥𝑥 e

14 
1
𝛥𝑦

(

𝜇𝑖+1∕2,𝑗+1∕2
𝑢𝑖+1∕2,𝑗+1 + 𝑢𝑖+1∕2,𝑗

2

×
[ 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

𝛥𝑦
+

𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑥

]

−𝜇𝑖+1∕2,𝑗−1∕2
𝑢𝑖+1∕2,𝑗 + 𝑢𝑖+1∕2,𝑗−1

2

×
[ 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

𝛥𝑦
+

𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑥

]

)

−
𝜇𝑖+1∕2,𝑗+1∕2

2

( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
𝛥𝑦

)

×
( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗

𝛥𝑦
+

𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑥

)

−
𝜇𝑖+1∕2,𝑗−1∕2

2

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
𝛥𝑦

)

×
( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1

𝛥𝑦
+

𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑥

)

. (B.20)

The last two terms are not in quadratic form yet. The quadratic form
esults upon considering the full kinetic energy expression (B.3), i.e.

adding �̂�𝑢
𝑖−1∕2,𝑗 = 𝑢𝑖−1∕2,𝑗 ⋅ diff𝑢𝑖−1∕2,𝑗 , �̂�

𝑣
𝑖,𝑗+1∕2 = 𝑣𝑖,𝑗+1∕2 ⋅ diff𝑣𝑖,𝑗+1∕2 and

̂ 𝑣
𝑖,𝑗−1∕2 = 𝑣𝑖,𝑗−1∕2 ⋅ diff𝑣𝑖,𝑗−1∕2. The full dissipation function then reads

̂ 𝑖,𝑗 =
1
2
�̂�𝑢

𝑖+1∕2,𝑗 +
1
2
�̂�𝑢

𝑖−1∕2,𝑗 +
1
2
�̂�𝑣

𝑖,𝑗+1∕2 +
1
2
�̂�𝑣

𝑖,𝑗−1∕2 =

−
𝜇𝑖+1,𝑗
2

( 𝑢𝑖+3∕2,𝑗 − 𝑢𝑖+1∕2,𝑗
𝛥𝑥

)2
− 𝜇𝑖,𝑗

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗
𝛥𝑥

)2

−
𝜇𝑖−1,𝑗
2

( 𝑢𝑖−1∕2,𝑗 − 𝑢𝑖−3∕2,𝑗
𝛥𝑥

)2

−
𝜇𝑖+1∕2,𝑗+1∕2

4

( 𝑢𝑖+1∕2,𝑗+1 − 𝑢𝑖+1∕2,𝑗
𝛥𝑦

+
𝑣𝑖+1,𝑗+1∕2 − 𝑣𝑖,𝑗+1∕2

𝛥𝑥

)2

−
𝜇𝑖+1∕2,𝑗−1∕2

4

( 𝑢𝑖+1∕2,𝑗 − 𝑢𝑖+1∕2,𝑗−1
𝛥𝑦

+
𝑣𝑖+1,𝑗−1∕2 − 𝑣𝑖,𝑗−1∕2

𝛥𝑥

)2

−
𝜇𝑖−1∕2,𝑗+1∕2

4

( 𝑢𝑖−1∕2,𝑗+1 − 𝑢𝑖−1∕2,𝑗
𝛥𝑦

+
𝑣𝑖,𝑗+1∕2 − 𝑣𝑖−1,𝑗+1∕2

𝛥𝑥

)2

−
𝜇𝑖−1∕2,𝑗−1∕2

4

( 𝑢𝑖−1∕2,𝑗 − 𝑢𝑖−1∕2,𝑗−1
𝛥𝑦

+
𝑣𝑖,𝑗−1∕2 − 𝑣𝑖−1,𝑗−1∕2

𝛥𝑥

)2

−
𝜇𝑖,𝑗+1
2

(𝑣𝑖,𝑗+3∕2 − 𝑣𝑖,𝑗+1∕2
𝛥𝑦

)2
− 𝜇𝑖,𝑗

(𝑣𝑖,𝑗+1∕2 − 𝑣𝑖,𝑗−1∕2
𝛥𝑦

)2

−
𝜇𝑖,𝑗−1
2

(𝑣𝑖,𝑗−1∕2 − 𝑣𝑖,𝑗−3∕2
𝛥𝑦

)2
. (B.21)

Appendix C. Non-dimensionalization

The study of the Rayleigh–Bénard convection problem is simplified
by introducing dimensionless quantities. As explained in [4], p. 46,
three dimensionless groups (or ‘similarity parameters’) are needed to
fully describe the problem. An important question that we address here
is how the choice of non-dimensionalization changes the total energy
quation.
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We non-dimensionalize Eqs. (1), (2) and (4) by taking a reference
length 𝐻 (cavity height), a reference temperature difference 𝛥𝑇 (dif-
ference between the cold and hot plates), and a reference velocity 𝑢r ef .
From these choices we find the time scale 𝐻∕𝑢r ef and the pressure scale
𝜌0𝑢2r ef . The non-dimensional quantities are thus

̃ = 𝒙
𝐻

, 𝑡 =
𝑡𝑢r ef
𝐻

, �̃� = 𝒖
𝑢r ef

, �̃� =
𝑇 − 𝑇0
𝛥𝑇

, �̃�′ =
𝑝′

𝜌0𝑢2r ef
, (C.1)

and the non-dimensional equations read

∇̃ ⋅ �̃� = 0, (C.2)
𝜕�̃�
𝜕𝑡

+ ∇̃ ⋅ (�̃�⊗ �̃�) = −∇̃�̃�′ + 𝜇
𝜌0𝑢r ef𝐻

∇̃2�̃� +
𝛽 𝑔 𝛥𝑇 𝐻
𝑢2r ef

�̃� 𝒆𝑦, (C.3)

𝜕�̃�
𝜕𝑡

+ ∇̃ ⋅ (�̃��̃� ) = 𝜈 𝑢r ef
𝑐 𝐻 𝛥𝑇 �̃� + 𝜅

𝑢r ef𝐻
∇̃2�̃� , (C.4)

where 𝜈 = 𝜇∕𝜌0 and 𝜅 = 𝜆∕(𝜌0𝑐). The two latter equations are re-written
by introducing the parameters 𝛼𝑖, 𝑖 = 1 … 4, as
𝜕�̃�
𝜕𝑡

+ ∇̃ ⋅ (�̃�⊗ �̃�) = −∇̃�̃�′ + 𝛼1∇̃2�̃� + 𝛼2�̃� 𝒆𝑦, (C.5)

𝜕�̃�
𝜕𝑡

+ ∇̃ ⋅ (�̃��̃� ) = 𝛼3�̃� + 𝛼4∇̃2�̃� . (C.6)

The 𝛼𝑖’s can be expressed in terms of three dimensionless numbers,
being the Rayleigh number Ra, the Prandtl number Pr and the Gebhart
number Ge (also known as the dissipation number [6]):

Ra = 𝛽 𝑔 𝛥𝑇 𝐻3

𝜈 𝜅 , (C.7)

Pr = 𝜈
𝜅
, (C.8)

e = 𝛽 𝑔 𝐻
𝑐

. (C.9)

Alternatively, one can employ the Grashof number Gr = Ra∕ Pr [4]. In
Table 1 we present three different options for 𝑢r ef with the correspond-
ing values of 𝛼.

It is important to realize that the time scales and the velocity fields
orresponding to numerical simulations with choices I, II and III are

different. The time scales are related as 𝑡𝐼
𝑢ref,𝐼

= 𝑡𝐼 𝐼
𝑢ref,𝐼 𝐼 = 𝑡𝐼 𝐼 𝐼

𝑢ref,𝐼 𝐼 𝐼 , so

�̃� 𝐼 𝐼 = 𝑡𝐼∕
√

Ge and 𝑡𝐼 𝐼 𝐼 = 𝑡𝐼 𝐼
√

Ra Pr ∕
√

Ge. The velocity fields are
related as �̃�𝐼𝑢ref,𝐼 = �̃�𝐼 𝐼𝑢ref,𝐼 𝐼 = �̃�𝐼 𝐼 𝐼𝑢ref,𝐼 𝐼 𝐼 , so that �̃�𝐼 𝐼 𝐼 = �̃�𝐼

√

Ge,
and �̃�𝐼 𝐼 𝐼 = �̃�𝐼 𝐼

√

Ge∕
√

Ra Pr. On the other hand, the temperature fields
orresponding to each choice are equivalent, and consequently the
usselt numbers are the same.

To obtain the non-dimensional form of the total energy equation we
take the dot product of (15) with �̃� and add the internal energy Eq. (16).
In order for the dissipation function of the kinetic energy equation to
ancel with the internal energy equation, we require 𝛼1 = 𝛼3. This
equirement is satisfied by 𝑢r ef =

√

𝑐 𝛥𝑇 , i.e. our proposed choice III in
Table 1. For the other choices (I and II), a weighting of the kinetic and
internal energy equations is needed in order to cancel the dissipation
function in the non-dimensional total energy equation. The weighting
factor depends on the definition of the non-dimensional total energy.
First define the dimensionless kinetic and internal energy as

𝑒𝑘 ∶=
𝑒𝑘

𝜌0𝑢2r ef
=

1
2𝜌0|𝒖|

2

𝜌0𝑢2r ef
=

1
2𝜌0𝑢

2
r ef |�̃�|2

𝜌0𝑢2r ef
= 1

2
|�̃�|2, (C.10)

𝑒𝑖 ∶=
𝑒𝑖

𝜌0𝑐 𝛥𝑇
=

𝜌0𝑐 𝑇
𝜌0𝑐 𝛥𝑇

=
𝜌0𝑐 𝛥𝑇 (�̃� + 𝑇0∕𝛥𝑇 )

𝜌0𝑐 𝛥𝑇
= (�̃� + 𝑇0∕𝛥𝑇 ), (C.11)

so that

𝑒 = 𝑒𝑘 + 𝑒𝑖 = 𝜌0𝑢
2
r ef 𝑒𝑘 + 𝜌0𝑐 𝛥𝑇 ̃𝑒𝑖 = 𝜌0𝑢

2
r ef

(

𝑒𝑘 +
𝑐 𝛥𝑇
𝑢2r ef

𝑒𝑖

)

. (C.12)

By choosing the non-dimensional total energy as 𝑒 = 𝑒∕𝜌0𝑢2r ef , we obtain

𝑒 = 𝑒𝑘 +
𝑐 𝛥𝑇 𝑒𝑖 = 𝑒𝑘 +

𝛼1 𝑒𝑖 = 𝑒𝑘 + 𝛾 ̃𝑒𝑖. (C.13)

𝑢2r ef 𝛼3

15 
Here 𝛾 = 𝛼1
𝛼3

is the weighting factor, which is reported in Table 1 for
different choices of 𝑢r ef . The global energy balances in non-dimensional
form read
d�̃�𝑘

d𝑡
= −𝛼1

𝛬 ∫�̃�
�̃� d�̃� +

𝛼2
𝛬 ∫�̃�

�̃� �̃� d�̃� , (C.14)

d�̃�𝑖

d𝑡
=

𝛼3
𝛬 ∫�̃�

�̃� d�̃� +
𝛼4
𝛬 ∫𝜕�̃�

∇̃�̃� ⋅ 𝒏 d�̃� , (C.15)

d�̃�
d𝑡

=
d�̃�𝑘
d𝑡

+ 𝛾
d�̃�𝑖
d𝑡

=
𝛼2
𝛬 ∫�̃�

�̃� �̃� d�̃� +
𝛾 𝛼4
𝛬 ∫𝜕�̃�

∇̃�̃� ⋅ 𝒏 d�̃� , (C.16)

where we define �̃� = 1
𝛬 ∫�̃� 𝑒 d�̃�, and 𝛬 = 𝐿∕𝐻 is the aspect ratio of the

box.

Appendix D. Potential energy

Eqs. (11) and (13) feature the buoyancy flux ∫ 𝛽 𝑔 𝜌0(𝑇 − 𝑇0)𝑣d𝛺
stemming from the term ∫ 𝜌𝒈 ⋅ 𝒖d𝛺). In general compressible fluids,
.e. those that satisfy
𝜕 𝜌
𝜕 𝑡 + ∇ ⋅ (𝜌𝒖) = 0, (D.1)

one can show that the buoyancy flux can be written as the time
derivative of the potential energy 𝐸𝑝 = ∫ 𝜌𝑔 𝑦d𝛺 (see [41], section
.4.2; [7], section 3.8). In that case, one could define �̂� = 𝐸𝑘 +𝐸𝑖 +𝐸𝑝
nd have a total energy conservation statement of the form [42]:
d�̂�
d𝑡

= ∫𝜕 𝛺
𝜆∇𝑇 ⋅ 𝒏 d𝑆 . (D.2)

However, in Boussinesq fluids, Eq. (D.1) is not satisfied; instead we
ave
𝜕 𝜌
𝜕 𝑡 + ∇ ⋅ (𝜌𝒖) = 𝜕 𝜌

𝜕 𝑡 + (𝒖 ⋅ ∇)𝜌 + 𝜌∇ ⋅ 𝒖
⏟⏟⏟

=0

= −𝜌0𝛽
[ 𝜕 𝑇
𝜕 𝑡 + (𝒖 ⋅ ∇)𝑇

]

. (D.3)

The right-hand side can be written in terms of the sum of thermal dif-
fusion and viscous dissipation, see Eq. (4), and is generally nonzero. As
a consequence, the time derivative of the potential energy includes not
nly the buoyancy flux, but also additional terms [21,22]. Therefore,

for Boussinesq fluids additional terms appear in the right-hand side
f Eq. (D.2) (independent of whether viscous dissipation is included

in the internal energy equation). In this paper, the meaning ‘energy-
consistent’ thus refers to the exchange between internal and kinetic
energy, and not to the total energy (kinetic + potential + internal),
which is not conserved under the Boussinesq approximation.

Data availability

The incompressible Navier–Stokes code is available at https://
ithub.com/bsanderse/INS2D (Matlab version). A Julia version is avail-
ble from https://github.com/agdestein/IncompressibleNavierStokes.

jl. The data generated in this work is available upon request.

References

[1] Siggia ED. High Rayleigh number convection. Annu Rev Fluid Mech
1994;26:137–68. http://dx.doi.org/10.1146/annurev.fl.26.010194.001033.

[2] Batchelor GK. Heat transfer by free convection across a closed cavity
between vertical boundaries at different temperatures. Quart Appl Math
1954;12(3):209–33. http://dx.doi.org/10.1090/qam/64563.

[3] Grossmann S, Lohse D. Scaling in thermal convection: A unifying theory. J Fluid
Mech 2000;407:27–56. http://dx.doi.org/10.1017/S0022112099007545.

[4] Barenblatt GI. Scaling. Cambridge texts in applied mathematics, Cambridge:
Cambridge University Press; 2003.

[5] Mckenzie DP, Roberts JM, Weiss NO. Convection in the Earth’s mantle: Towards
a numerical simulation. J Fluid Mech 1974;62(03):465. http://dx.doi.org/10.
1017/S0022112074000784.

[6] Schubert G, Turcotte DL, Olson P. Mantle convection in the Earth and Planets.
Cambridge University Press; 2001.

[7] Kee RJ, Coltrin ME, Glarborg P. Chemically reacting flow: Theory and practice.
Hoboken, N.J: Wiley-Interscience; 2003.

https://github.com/bsanderse/INS2D
https://github.com/bsanderse/INS2D
https://github.com/bsanderse/INS2D
https://github.com/agdestein/IncompressibleNavierStokes.jl
https://github.com/agdestein/IncompressibleNavierStokes.jl
https://github.com/agdestein/IncompressibleNavierStokes.jl
http://dx.doi.org/10.1146/annurev.fl.26.010194.001033
http://dx.doi.org/10.1090/qam/64563
http://dx.doi.org/10.1017/S0022112099007545
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb4
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb4
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb4
http://dx.doi.org/10.1017/S0022112074000784
http://dx.doi.org/10.1017/S0022112074000784
http://dx.doi.org/10.1017/S0022112074000784
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb6
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb6
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb6
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb7
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb7
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb7


B. Sanderse and F.X. Trias Computers and Fluids 286 (2025) 106473 
[8] Hewitt JM, Mckenzie DP, Weiss NO. Dissipative heating in convec-
tive flows. J Fluid Mech 1975;68(4):721–38. http://dx.doi.org/10.1017/
S002211207500119X.

[9] Turcotte DL, Hsui AT, Torrance KE, Schubert G. Influence of viscous dissipation
on Bénard convection. J Fluid Mech 1974;64(2):369–74. http://dx.doi.org/10.
1017/S0022112074002448.

[10] Gebhart B. Effects of viscous dissipation in natural convection. J Fluid Mech
1962;14(2):225–32. http://dx.doi.org/10.1017/S0022112062001196.

[11] Ostrach S. Laminar natural-convection flow and heat transfer of fluids with and
without heat sources in channels with constant wall temperatures. Tech. rep.
NACA-TN-2863, Lewis Flight Propulsion Lab., NACA; 1952.

[12] Blankenbach B, Busse F, Christensen U, Cserepes L, Gunkel D, Hansen U,
Harder H, Jarvis G, Koch M, Marquart G, Moore D, Olson P, Schmeling H,
Schnaubelt T. A benchmark comparison for mantle convection codes. Geophys J
Int 1989;98(1):23–38. http://dx.doi.org/10.1111/j.1365-246X.1989.tb05511.x.

[13] King SD, Lee C, van Keken PE, Leng W, Zhong S, Tan E, Tosi N, Kameyama MC.
A community benchmark for 2-D cartesian compressible convection in the Earth’s
mantle. Geophys J Int 2010;180(1):73–87. http://dx.doi.org/10.1111/j.1365-
246X.2009.04413.x.

[14] Sugiyama K, Calzavarini E, Grossmann S, Lohse D. Flow organization in two-
dimensional non-Oberbeck-Boussinesq Rayleigh-Bénard convection in water. J
Fluid Mech 2009;637:105–35.

[15] Najm HN, Wyckoff PS, Knio OM. A semi-implicit numerical scheme for reacting
flow: I. Stiff chemistry. J Comput Phys 1998;143(2):381–402. http://dx.doi.org/
10.1006/jcph.1997.5856.

[16] Nemati H. Direct numerical simulation of turbulent heat transfer to fluids at
supercritical pressures (Ph.D. thesis), Delft University of Technology; 2016.

[17] Barletta A. Comments on a paradox of viscous dissipation and its relation to the
Oberbeck–Boussinesq approach. Int J Heat Mass Transfer 2008;51(25–26):6312–
6. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.044.

[18] Barletta A, Nield D. Effect of pressure work and viscous dissipation in the analysis
of the Rayleigh–Bénard problem. Int J Heat Mass Transfer 2009;52(13–14):3279–
89. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.005.

[19] Barletta A, Celli M, Nield DA. On the onset of dissipation thermal instability
for the Poiseuille flow of a highly viscous fluid in a horizontal channel. J Fluid
Mech 2011;681:499–514. http://dx.doi.org/10.1017/jfm.2011.213.

[20] Barletta A, Celli M, Brandão PV. On mixed convection in a horizontal channel,
viscous dissipation and flow duality. Fluids 2022;7(5):170. http://dx.doi.org/10.
3390/fluids7050170.

[21] Winters KB, Lombard PN, Riley JJ, D’Asaro EA. Available potential energy
and mixing in Density-Stratified fluids. J Fluid Mech 1995;289:115–28. http:
//dx.doi.org/10.1017/S002211209500125X.

[22] Hughes GO, Gayen B, Griffiths RW. Available potential energy in Rayleigh–
bénard convection. J Fluid Mech 2013;729:R3. http://dx.doi.org/10.1017/jfm.
2013.353.

[23] Gayen B, Hughes GO, Griffiths RW. Completing the mechanical energy pathways
in turbulent Rayleigh-Bénard convection. Phys Rev Lett 2013;111(12):124301.
http://dx.doi.org/10.1103/PhysRevLett.111.124301.

[24] Petschel K, Stellmach S, Wilczek M, Lülff J, Hansen U. Kinetic energy transport
in Rayleigh–Bénard convection. J Fluid Mech 2015;773:395–417. http://dx.doi.
org/10.1017/jfm.2015.216.
16 
[25] van Gils DPM, Bruggert G-W, Lathrop DP, Sun C, Lohse D. The twente turbulent
Taylor–Couette (T3C) facility: Strongly turbulent (multiphase) flow between
two independently rotating cylinders. Rev Sci Instrum 2011;82(2):025105. http:
//dx.doi.org/10.1063/1.3548924.

[26] Barletta A. Local energy balance, specific heats and the Oberbeck–Boussinesq
approximation. Int J Heat Mass Transfer 2009;52(21–22):5266–70. http://dx.
doi.org/10.1016/j.ijheatmasstransfer.2009.06.006.

[27] van der Poel EP, Stevens RJAM, Lohse D. Comparison between two- and three-
dimensional Rayleigh–Bénard convection. J Fluid Mech 2013;736:177–94. http:
//dx.doi.org/10.1017/jfm.2013.488.

[28] Hepworth BJ. Nonlinear two-dimensional Rayleigh-bénard convection (Ph.D.
thesis), University of Leeds; 2014.

[29] Sanderse B. Energy-conserving discretization methods for the incompressible
Navier-Stokes equations:application to the simulation of wind-turbine wakes
(Ph.D. thesis), Technische Universiteit Eindhoven; 2013.

[30] Sugiyama K, Calzavarini E, Grossmann S, Lohse D. Flow organization in two-
dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J
Fluid Mech 2009;637:105–35. http://dx.doi.org/10.1017/S0022112009008027.

[31] Verstappen R, Veldman A. Symmetry-preserving discretization of turbulent flow.
J Comput Phys 2003;187(1):343–68. http://dx.doi.org/10.1016/S0021-9991(03)
00126-8.

[32] Trias FX, Lehmkuhl O. A self-adaptive strategy for the time integration of Navier-
Stokes equations. Numer Heat Transfer B 2011;60(2):116–34. http://dx.doi.org/
10.1080/10407790.2011.594398.

[33] Sanderse B. Energy-conserving Runge–Kutta methods for the incompressible
Navier–Stokes equations. J Comput Phys 2013;233:100–31. http://dx.doi.org/
10.1016/j.jcp.2012.07.039.

[34] Shih TM, Tan CH, Hwang BC. Effects of grid staggering on numerical schemes.
Internat J Numer Methods Fluids 1989;9(2):193–212. http://dx.doi.org/10.1002/
fld.1650090206.

[35] Cai W, Ma H, Wang Y, Chen J, Zheng X, Zhang H. Development of POD reduced-
order model and its closure scheme for 2D Rayleigh–Bénard convection. Appl
Math Model 2019;66:562–75. http://dx.doi.org/10.1016/j.apm.2018.09.031.

[36] Gelfgat AY. Different modes of Rayleigh–Bénard Instability in two- and three-
dimensional rectangular enclosures. J Comput Phys 1999;156(2):300–24. http:
//dx.doi.org/10.1006/jcph.1999.6363.

[37] Venturi D, Wan X, Karniadakis GE. Stochastic bifurcation analysis of Rayleigh–
Bénard convection. J Fluid Mech 2010;650:391–413. http://dx.doi.org/10.1017/
S0022112009993685.

[38] Dabbagh F, Trias FX, Gorobets A, Oliva A. On the evolution of flow topology in
turbulent Rayleigh-Bénard convection. Phys Fluids 2016;28:115105.

[39] Dabbagh F, Trias FX, Gorobets A, Oliva A. Flow topology dynamics in a three-
dimensional phase space for turbulent Rayleigh-Bénard convection. Phys Rev
Fluids 2020;5:024603.

[40] Trias FX, Verstappen RWCP, Gorobets A, Soria M, Oliva A. Parameter-free
symmetry-preserving regularization modeling of a turbulent differentially heated
cavity. Comput & Fluids 2010;39:1815–31.

[41] Smith W. All things flow. Oregon State University; 2019.
[42] Tailleux R. On the energetics of stratified turbulent mixing, irreversible thermo-

dynamics, Boussinesq models and the ocean heat engine controversy. J Fluid
Mech 2009;638:339–82. http://dx.doi.org/10.1017/S002211200999111X.

http://dx.doi.org/10.1017/S002211207500119X
http://dx.doi.org/10.1017/S002211207500119X
http://dx.doi.org/10.1017/S002211207500119X
http://dx.doi.org/10.1017/S0022112074002448
http://dx.doi.org/10.1017/S0022112074002448
http://dx.doi.org/10.1017/S0022112074002448
http://dx.doi.org/10.1017/S0022112062001196
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb11
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb11
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb11
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb11
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb11
http://dx.doi.org/10.1111/j.1365-246X.1989.tb05511.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04413.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04413.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04413.x
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb14
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb14
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb14
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb14
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb14
http://dx.doi.org/10.1006/jcph.1997.5856
http://dx.doi.org/10.1006/jcph.1997.5856
http://dx.doi.org/10.1006/jcph.1997.5856
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb16
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb16
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb16
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.044
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.005
http://dx.doi.org/10.1017/jfm.2011.213
http://dx.doi.org/10.3390/fluids7050170
http://dx.doi.org/10.3390/fluids7050170
http://dx.doi.org/10.3390/fluids7050170
http://dx.doi.org/10.1017/S002211209500125X
http://dx.doi.org/10.1017/S002211209500125X
http://dx.doi.org/10.1017/S002211209500125X
http://dx.doi.org/10.1017/jfm.2013.353
http://dx.doi.org/10.1017/jfm.2013.353
http://dx.doi.org/10.1017/jfm.2013.353
http://dx.doi.org/10.1103/PhysRevLett.111.124301
http://dx.doi.org/10.1017/jfm.2015.216
http://dx.doi.org/10.1017/jfm.2015.216
http://dx.doi.org/10.1017/jfm.2015.216
http://dx.doi.org/10.1063/1.3548924
http://dx.doi.org/10.1063/1.3548924
http://dx.doi.org/10.1063/1.3548924
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.006
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.006
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.006
http://dx.doi.org/10.1017/jfm.2013.488
http://dx.doi.org/10.1017/jfm.2013.488
http://dx.doi.org/10.1017/jfm.2013.488
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb28
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb28
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb28
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb29
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb29
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb29
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb29
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb29
http://dx.doi.org/10.1017/S0022112009008027
http://dx.doi.org/10.1016/S0021-9991(03)00126-8
http://dx.doi.org/10.1016/S0021-9991(03)00126-8
http://dx.doi.org/10.1016/S0021-9991(03)00126-8
http://dx.doi.org/10.1080/10407790.2011.594398
http://dx.doi.org/10.1080/10407790.2011.594398
http://dx.doi.org/10.1080/10407790.2011.594398
http://dx.doi.org/10.1016/j.jcp.2012.07.039
http://dx.doi.org/10.1016/j.jcp.2012.07.039
http://dx.doi.org/10.1016/j.jcp.2012.07.039
http://dx.doi.org/10.1002/fld.1650090206
http://dx.doi.org/10.1002/fld.1650090206
http://dx.doi.org/10.1002/fld.1650090206
http://dx.doi.org/10.1016/j.apm.2018.09.031
http://dx.doi.org/10.1006/jcph.1999.6363
http://dx.doi.org/10.1006/jcph.1999.6363
http://dx.doi.org/10.1006/jcph.1999.6363
http://dx.doi.org/10.1017/S0022112009993685
http://dx.doi.org/10.1017/S0022112009993685
http://dx.doi.org/10.1017/S0022112009993685
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb38
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb38
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb38
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb39
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb39
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb39
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb39
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb39
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb40
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb40
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb40
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb40
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb40
http://refhub.elsevier.com/S0045-7930(24)00304-9/sb41
http://dx.doi.org/10.1017/S002211200999111X

	Energy-consistent discretization of viscous dissipation with application to natural convection flow
	Introduction and problem description
	Energy-conserving formulation
	Governing equations
	Total energy conservation
	Non-dimensionalization
	Effect of viscous dissipation on Nusselt number and thermal dissipation

	Energy-consistent spatial discretization
	Mass, momentum and kinetic energy equation
	Proposed viscous dissipation function
	Internal energy equation
	Discrete global balances and Nusselt number relations

	Energy-consistent temporal discretization
	Steady state results (Rayleigh–Benard)
	Grid convergence study for no-dissipation case (Ge = 0)
	Grid convergence study for viscous dissipation case (Ge > 0)

	Time-dependent, energy-conserving simulation (Rayleigh– Taylor)
	Energy-conserving simulation of a turbulent flow
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Forms of the dissipation function
	Appendix A. Forms of the dissipation function
	Discrete dissipation operator from local kinetic energy equation
	Appendix B. Discrete dissipation operator from local kinetic energy equation
	Momentum equations and choice of local kinetic energy
	Diffusion and dissipation
	Boundary conditions
	Extension to non-constant viscosity: general stress tensor

	Non-dimensionalization
	Appendix C. Non-dimensionalization
	Potential energy
	Appendix D. Potential energy
	Data availability
	Appendix . Data availability
	References


