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The advent in our daily life of Extended Reality (XR) technologies, such as Virtual and Augmented Reality, has led to the rise of
user-centric systems, offering higher level of interaction and presence in virtual environments. In this context, understanding
the actual interactivity of users is still an open challenge and a key step to enabling user-centric system. In this work, our goal
is to construct an efficient clustering tool for 6 Degree-of-Freedom (DoF) navigation trajectories by extending the applicability
of existing behavioural tool. Specifically, we first compare the navigation in 6-DoF with its 3-DoF counterpart, highlighting
the main differences and novelties. Then, we investigate new metrics aimed at better modelling behavioural similarities
between users in a 6-DoF system. More concretely, we define and compare 11 similarity metrics which are based on different
distance features (i.e., user positions in the 3D space, user viewing directions) and distance measurements (i.e., Euclidean,
Geodesic, angular distance). Our solutions are validated and tested on real navigation paths of users interacting with dynamic
volumetric media in both 6-DoF Virtual Reality and Augmented Reality conditions. Results show that metrics based on both
user position and viewing direction better perform in detecting user similarity while navigating in a 6-DoF system. Such
easy-to-use but robust metrics allow us to answer a fundamental question for user-centric systems: “how do we detect if
users look at the same content in 6-DoF?”, opening the gate to new solutions based on users interactivity, such as viewport
prediction, live streaming services optimised based on users behaviour but also for user-based quality assessment methods.
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1 INTRODUCTION
Extended Reality (XR) is transforming the way users interact with media content, surpassing the passive paradigm
of traditional video technology, and offering more degrees of presence and interaction in a virtual and immersive
environment. This technology is envisioned to lead the next generation virtual worlds [20]. Specifically, the term
XR indicates all current immersive technologies, spanning from fully physical to fully virtual world realities.
While Augmented Reality (AR) combines virtual and real objects on a screen device, Virtual Reality (VR) allows
users to immerse themselves in an entirely synthetic and virtual experience where they can navigate and interact.
Depending on how much a user can move in the 3D space, immersive environments can be classified as 3- or
6-Degrees-of-Freedom (DoF). In the former scenario, the de-facto multimedia content is the omnidirectional or
spherical video, representing an entire 360◦ environment on a virtual sphere. The viewer is fully immersed in a
virtual space where they can navigate and interact thanks to an immersive device – typically a head-mounted
display (HMD), which enables to view only a portion of the environment around themself, named viewport. The
media is displayed from an inward position, and the viewer can interact with the content only by changing the
viewing direction (i.e., by looking up/down or left/right or tilting the head side to side). In a 6-DoF system, the
user can also change viewing perspective by moving (e.g., walking, jumping) inside the virtual space. The scene
is therefore populated by volumetric objects (i.e., meshes or point clouds) which are observed from an outward
position. These extra degrees of freedom bring the virtual experience even closer to reality: a higher level of
interactivity makes the user more immersed and present within the virtual environment [9].

Despite their differences, the common denominator of both interactive systems is that the viewer acts as an
active decision-maker of the displayed content. This active role defines an user-centric era, in which content
processing, streaming, and rendering need to be tailored to the viewer interaction to remain bandwidth-tolerant
whilst meeting quality and latency criteria [37, 57]. Media codecs need to be optimised to maximise the quality
experienced by users [17, 47, 59]. Similarly, streaming should be tailored to users interactivity to ensure high-
quality content and smooth navigation [31, 46, 51]. From here, the importance to understand, analyse and predict
users movements (i.e., user behaviour ) within an immersive scenario [18, 35, 38, 55]. A better understanding
of how the population behave within XR experience has an impact that goes also beyond multimedia system
applications, leading to user clustering/profiling which is essential for several reasons, from security purposes to
medical applications [32]. For example, in the context of authentication, profiling enables secure authentication for
specific categories of users or continuous verification based on behavioural analysis, thus increasing security [54].
In medical applications, detecting cluster of similar users allows for personalised healthcare, while identifying
outlier behaviour could simplify the detection and treatment of mental disorders [25].

Thanks to the large availability of publicly datasets [21, 28, 34], user navigation in 3-DoF immersive systems
has been deeply investigated, showing the importance of analysing and detecting key behavioural aspects
in interactive (user-centric) systems [1, 6, 41, 42, 48]. However, the 6-DoF counterpart has been overlooked
in the literature [2, 19, 50, 60]. Due to the change in the viewing paradigm (from inward to outward) and to
more level of interaction in 6-DoF, current studies in 3-DoF cannot be directly applied to 6-DoF domains [44].
Filling this gap is the main goal of this paper by providing new metrics for user behavioural analysis in 6-DoF.
Specifically, we focus on extending the applicability of clustering methods to investigate users similarity (i.e., users
sharing common behaviours while interacting with the content) within 6-DoF environments. Starting from
the state-of-the-art clustering algorithm developed in 3-DoF [36], and the main limitations of the tool when
extended to 6-DoF described in [44], we further extend our previous work presented in [45] by investigating
new methodologies for better modelling user similarities and overcoming those limitations. First, we recall the
definition of user navigation trajectory in 6-DoF. Then, we present the exact user similarity metric, which we will
be considering as our ground truth. Given its computational complexity, after an exhaustive study, we propose a
simpler and yet reliable proxy for it. More concretely, we define and compare 11 similarity metrics which are
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(a) Point Clouds [23] from a VR experiment [51]. (b) Meshes [30] from an AR experiment [60].

Fig. 1. Volumetric sequences of publicly available navigation trajectory datasets used in our experiments.

based on different distance features (i.e., user positions in the 3D space, user viewing directions) and distance
measurements (i.e., Euclidean, Geodesic distance, angular distance). We validate and test our proposed similarity
metrics on a publicly available dataset of navigation trajectories collected in a 6-DoF VR scenario [51] based on
four volumetric sequences shown in Fig. 1 (a). Results highlight that similarity metrics based on more distance
features are promising solutions to correctly detect users with similar behaviour while experiencing volumetric
content. Finally, we further validate the proposed tool by testing it on navigation trajectories collected in a
different setting, a 6-DoF AR scenario [60] composed by two volumetric sequences shown in Fig. 1 (b). Similarities
among users are detected as well in this new interactive setting, showing that the proposed metrics are general
enough to be efficient in multiple interactive systems with 6-DoF.

In summary, we extend our previous work [45] by including user viewing direction as additional distance
feature, and adding three new similarity metrics. We also present a novel use case of behavioural analysis in an
AR environment to emphasise the importance of testing the proposed metrics in different XR settings. Thus, the
main contributions of this paper to the open problem of behavioural analysis in 6-DoF can be summarised as
follow:

• introduction of the general problem of detecting behavioural similarities in a 6-DoF system, and definition
of novel similarity metrics able to model the user behaviour in this scenario. These are expressed as a
function of various distance features and measurements and we divide them into two groups: single- and
multi-features metrics;

• an exhaustive analysis of the different proposed metrics aimed at capturing users behaviour similarity (in
terms of displayed content). This analysis based on 6-DoF VR trajectories reveals that the position on
the floor alone is not always sufficient to characterise the user behaviour and thus the viewing direction
cannot be neglected;

• a case study of behavioural analysis in an AR system via a state-of-the-art clustering tool using our
proposed similarity metrics. This second example tests our proposed metrics showing their flexibility and
validity also in a different XR setting.

The remainder of this article is organised as follows: Section 2 reviews related work on behavioural analysis
in 3-DoF and 6-DoF systems; the main challenges and the importance of detecting behavioural similarities in
6-DoF are discussed in Section 3. Our proposed similarity metrics are detailed in Section 4, with experimental
setup and validation on real 6-DoF navigation trajectories collected in VR in Section 5 and Section 6. Section 7
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demonstrates the applicability of our metrics in a 6-DoF AR setting. Further discussions, including limitations
and future work, are given in Section 8, and final conclusion in Section 9.

2 RELATED WORK
We now describe how user behaviour has been analysed in 3-DoF systems, showing also the benefit of this
type of analysis in user-centric systems. Then, we show which methods have been used for the analysis in
6-DoF scenarios, highlighting the still outstanding open challenges.

2.1 User Behaviour in 3-DoF environment
The user navigation within a 3-DoF environment has been intensely analysed from different perspectives [37].
Many studies have focused on psychological investigations of user engagement and presence correlated to
movements within the spherical content. In [22], a study from a large-scale experiment (511 users and 80
omnidirectional videos) showed a positive correlation between lower interactivity level and higher engagement
level (strong focus on few points of interest). A correlation between the perceived sense of presence and the
interactivity level was detected in [4], with more random exploratory interactions for less immersed (and hence
less engaged) users. Recently, an exploration analysis has also shown benefit on the user of experience by
aligning the displayed portion of the content with specific region of interest [3]. This impact has been examined,
considering factors such as head motion, sense of presence, and discomfort highlighting that innovative editing
techniques involving gradual rotation of VR content contribute to improve the overall user experience. To further
understand how people observe and explore VR contents, many publicly datasets of navigation trajectories
have been made available. Those datasets usually come with statistical analysis aimed at capturing average
users behaviour, as a function of average angular speeds under various video segment lengths [10], exploration
time [48], or eye fixation distribution [12]. These traditional analysis have been exploited also to investigate the
immersive navigation of dynamic scenes characterised by directional sounds [5]. However, no objective metric to
properly quantify and characterise user behaviour has been presented in these works.
In [28], the dataset has been analysed through a clustering algorithm presented in [36], specifically built to have
in the same cluster users who similarly explore 360° content. This investigation highlighted that movies with
few focus of attention lead to higher engagement shown by users with strong similarities and hence collected
into few and high-populated clusters. Authors in [40] showed the advantages of employing information theory
metrics to study spatio-temporal trajectories, providing a tool to identify and quantify behavioural aspects. This
preliminary quantitative analysis not only explored the similarities between users watching the same content but
also investigated the similarity of a given user across diverse content. A recent follow-up data analysis using
such information theory metrics and across several publicly available VR datasets, has also unveiled correlations
between users head motion and trajectory predictability [41]. The importance of these behavioural insights has
been proved to be crucial for different VR applications. A critical open problem is the ability to predict users’
navigation trajectories within the virtual space. Being able to anticipate viewers’ movement is essential to ensure
high quality of experience and smooth navigation during the immersive experience. For instance, in a tile-based
adaptive streaming scenario, each user receives at high quality only tiles that overlap the predicted displayed
portion of the content [39]. This strategy, while effective from both a bandwidth and quality perspective, strongly
depends on the performance of the selected prediction algorithm. An erroneous estimate would immediately lead
to re-transmissions, and hence, a possible stall or quality reduction effect. Therefore, many new learning models
have been proposed to anticipate users movements [7, 16, 19, 27, 29]. Finally, the analysis and understanding of
user navigation in a VR environment have also shown promising results in determining mental health issues
(e.g., anxiety, autism spectrum disorder, eating disorders, depression) and to help their treatment [14, 15, 26].
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2.2 User Behaviour in 6-DoF environment
Extending such behavioural analysis to a 6-DoF environment is not straightforward due to the change from inward
to outward viewing and the addition of translation in 3D space. In the past, user navigation in 6-DoF scenarios was
studied in the context of locomotion and display technology for CAVE environments [33, 53]. A Cave Automatic
Virtual Environment (CAVE) system is an immersive room on which walls and floor are projected the video
content and viewers are free to move inside [11]. For instance, the study in [53] focused on task performance
analysis in terms of completion time and correct actions. Authors in [33] compared instead the effect of two
different immersive platforms such as CAVE and HMD on the user navigation. More traditional metrics, such as
angular distance and linear velocity, alongside completion time, were also used to compare different navigation
controllers (i.e., joystick-based vs head-controlled navigation) in 6-DoF [8]. Similarly, the navigation with 6-DoF of
users in the form of digital avatars have been also deeply investigated to detect insights into how they behave
and move in virtual worlds (e.g., Second Life) [24]. Their focus was into both temporal and spatial dynamics
of variations in avatar population and the exploration of spatial distribution, movement patterns, and contact
interactions among avatars. While the tools and methodologies mentioned above are highly informative to
summarise the interaction of users within a 6-DoF environment, they usually fail to provide other key insights:
which users navigate similarly, and which are the dominant interaction behaviour among users.

More recently, subjective quality assessment of both static [2] and dynamic [17, 52] volumetric content have
been presented along with general statistical analysis of user movements showing an influence in the navigation
given by the perceived content quality, and pointing out a users preference to visualise volumetric objects from a
close and frontal perspective. This last finding was also confirmed in a behavioural navigation analysis conducted
in an AR mobile application [60]. Here, viewers movements were analysed in terms of distribution on the floor,
viewing angles, and relative distance from the content. A behavioural analysis of user navigating in 6-DoF social
VR movie has been also presented in [43]. An investigation on how users are affected by virtual characters and
narrative elements of the movie has been conducted through objective metrics, showing a more static behaviour
when an interactive task was requested, and more exploratory movements during dialogues. Another exploration
of user behaviour while displaying volumetric content in a 6-DoF environment, examining the influence of
content features, dynamics, quality, and users intrinsic disposition [42]. Specifically, these investigations have
been based on both traditional statistical metrics like distribution of viewing position and direction, exploratory
velocity, and total viewing time, alongside adapted 3-DoF tools such as information theory metrics [40] and
clustering tools [36]. Given the importance of collecting navigation data in 6-DoF immersive experiences, a novel
tool was recently introduced [56].

The aforementioned studies are based on conventional metrics, which consider only one user feature at a
time, either position on the floor or viewing direction but not together. In this paper, we aim to overcome
these limitations by proposing a general and efficient tool for detecting similar viewers while experiencing
6-DoF content.

3 CHALLENGES
Our main goal is to define a new pairwise metric able to capture the (dis)similarity between two 6-DoF users (in
terms of displayed content). This metric needs to be reliable and yet simple to compute. In the following, we first
define navigation trajectories in 6-DoF scenario comparing with its 3-DoF counterpart and present our definition
of similarity among users while navigating in a 6-DoF environment based on [44]. Then, we show an exact user
similarity metric highlighting its limitations, and therefore the need to find a simpler proxy for it. Finally, we
emphasise the advantages of having a similarity metric for behavioural analysis via a clique-based clustering
approach presented in [36], which detect users who are attending the same portion of an omnidirectional content.
This tool relies on a pairwise similarity metric, which is a solid metric in 3-DoF, but results to be poor in 6-DoF.
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Fig. 2. Example of two 6-DoF trajectories projected in a 2D domain for user 8 and 9 . On the right side, a snapshot at time C :
coloured triangles represent viewing frustum per user.

Hence, the need to develop a proper metric representative for 6-DoF system to extend the applicability of such
behavioural tool to 6-DoF scenario.

3.1 User Similarity in 6-DoF
Following [44, 45], we assume that users behave similarly when they observe the same portion of volumetric
content. The user behaviour can be identified by the spatio-temporal sequences of their movements within the
virtual environment, namely navigation trajectories.

In a 3-DoF scenario, the trajectory of a generic user 8 can be formally denoted by the sequence of the user’s
position and the corresponding viewing direction over time: {(G81, E81), (G82, E82), .., (G8= , E8=)} where G8C is the user
position while E8C is the vector representing the viewing direction at timestamp C . In this context, however, users
are positioned at the centre of the spherical content; thus, G8C is constant and can be neglected. The vector of the
viewing direction can be also approximated by ?8C , which is the centre of the viewport projected on the immersive
content (i.e., spherical video), such that the trajectory becomes {?81,?82, .., ?8=} [44]. The viewport centre alone is
highly informative of the user behaviour, and it can be used as proxy of viewport overlap among users as shown
in [36]. Specifically, the geodesic distance between viewport centers is highly reliable as similarity metric to asses
users similarity, namely a low value indicates high similarity between 3-DoF users.

In a 6-DoF setting, however, the added degrees of freedom lead to more challenges in the design of the
system and in the representation of user navigation. Fig. 2 shows an example of two users navigating in a
6-DoF scenario. On the left side, there are navigation trajectories of two users 8 and 9 projected on a 2-D domain
(i.e., floor). Each point GC represents the spatial coordinates (i.e., [x,y,z]) on the floor, while each associated
vector symbolises the viewing direction EC . The navigation trajectory of a generic user 8 can be represented as
{(G81, E81), (G82, E82), .., (G8= , E8=)} where G8C and E8C are the user position and viewing direction vector at timestamp C ,
respectively. However, unlike the 3-DoF scenario, the users position changes over time, therefore their distance
from the immersive content can also change over time. As a consequence, the viewport centre alone is no longer
sufficient to characterise the user behaviour [44]. On the right part of Fig. 2, there is indeed a snapshot at a
specific time instant C . In more detail, the shaded triangular areas represent the viewing frustum per user, which
indicates the region within the user viewport, and AC is the distance between the user and the volumetric content.
We have also depicted the viewport centre ?C projected on the displayed volumetric object. Given the two users 8
and 9 at time C , in the case of A 8C � A

9
C , the user 9 (very close to the object) is visualising a very focused and detailed

part of it; conversely, user 8 is pointing to the same area but from a much further distance, thus the experienced
content is different with less defined details. Despite this difference, the small distance �C (8 , 9) between viewport
centres ?8C and ? 9

C might suggest a high similarity between the users, which does not reflect the reality in the case
of A 8C � A

9
C . In this scenario, we cannot rely on the viewport centre alone to characterise the user behaviour; the
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distance A and the spatial coordinates on the virtual floor G are also needed to define the navigation trajectory for
a generic 6-DoF user 8 . Thus, an alternative definition of navigation trajectory is given by the following triple
over time {(G81,?81, A 81), (G82,?82, A 82), . . . , (G8= ,?8= , A 8=)}. This information is crucial to define a simple similarity metric
among users in this new setting.

3.2 Overlap Ratio as the ground-truth metric
Since we are interested in capturing viewers that are attending similar volumetric content at the same time
instance, following the work presented in [45], the straightforward measure that could show this behaviour is
the overlap among viewports. Given the two users 8 and 9 in Fig. 2, we denote their displayed viewport at time
C as S8

C and S 9
C , respectively, defined as the set of points of the volumetric content falling within their viewing

frustum. Then, we denote the overlap set by S8
C ∩ S 9

C , the portion of points displayed by both users. Equipped
with the above notation, we can now introduce a key metric for the analysis: the overlap ratio $ (8 , 9). This is
defined as the cardinality of the overlap set, normalised by the cardinality of the set containing all points of the
volumetric content visualised by both users. More formally, the overlap ratio in a specific time C is:

$C (8 , 9) =
|S8

C ∩ S 9
C |

|S8
C ∪ S8

C |
(1)

where S8
C and S 9

C are the displayed viewport of users 8 and 9 , respectively. In particular, a high value of overlap
ratio means high similarity between users, and conversely. Even if this metric is exact and a clear indicator of
how much similar users are with respect to their displayed content, its evaluation is not trivial as it is intensely
time-consuming. For instance, the overlap ratio between two users requires on average 0.8986 seconds per frame
on an Intel R machine with CPU E5-4620 at 2.10 GHz. This operation needs to be computed for all the possible
combinations of users, leading to a large overhead which does not meet requirements for real-time and scalable
applications. A new measure is needed to perform real-time applications. In the rest of the paper, we will use
this metric as the ground truth of overlap among users and investigate different weights that can approximate
viewport overlap between users, and thus being an indication of users (dis)similarity.

3.3 Clustering as a tool for behavioural analysis
Being able to assess users similarities in an objective way is crucial to detect users with similar behaviour thorough
a clique-based clustering algorithm presented in [36]. This requires indeed a reliable graph where only the nodes
identifying similar users (i.e., who are displaying the same portion of the content) are connected. Equipped with
such a meaningful graph, the clique-based clustering iteratively finds optimal sub-graphs of all interconnected
nodes, ensuring the largest cluster of users who all share a large viewport overlap. Specifically, given a set of
users who are experiencing the same content, we can represent their movements in a time-window ) as a set
of graphs {GC })C=1. Each unweighted and undirected graph GC = {V , EC ,AC } represents behavioural similarities
among users at time C , where V and EC denote the node and edge sets of GC , respectively. Each node in V
corresponds to a user interacting with the content. Each edge in EC connects neighbouring nodes defined by the
binary adjacency matrix AC . Assuming that users are connected if they are displaying similar content, we can
formally define the adjacency matrix AC as follow:

AC (8 , 9) =
{
1, if 6C (8 , 9) ≥ �Cℎ

0, otherwise.
(2)

where 6C (8 , 9) is a similarity metric between user 8 and 9 with �Cℎ is a threshold value. In [36], this graph
construction is based on a pairwise metric specific to 3-DoF trajectories. On this final graph, the clique-based
clustering can be applied to identify clusters of users with similar behaviour.
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Table 1. Definition of distance features and measurements.

Symbol Definition

D
is
ta
nc

e
Fe

at
ur

es 
G user position on the VR floor
? viewport center projected on the volumetric content
A relative distance between user and volumetric content
E vector of the viewing direction

D
is
ta
nc

e
M
ea

su
re
m
en

ts 
L(·, ·) difference of relative distance between two users
E(·, ·) Euclidean distance
G(·, ·) Geodesic distance
\ (·, ·) Angle between two vectors

Identifying a general and reliable metric 6(8 , 9) that approximates behavioural similarities among users who
experience the same 6-DoF content is a key step to extend the applicability of this exiting behavioural tools, and
it is the main focus of this paper, aimed at formulating various multi-modal metrics, and testing/validating them
with real-world data from XR settings.

4 PROPOSED METRICS
In this section, we present eleven similarity metrics that will be the object of an exhaustive study in the following
to understand which one approximates at the best the viewport overlap. Those metrics are expressed as a function
of various distance features and measurements considering either users position on the floor (G ) or users viewing
direction in terms of the viewport centre projected on the volumetric content (?) or viewing vector (E) or a
combination of them. We divide the proposed similarity metrics into two groups: single-feature and multi-feature
metrics. For the sake of notation, we omit the temporal parameter C . Table 1 summarises the distance features
and measurements that we consider, while our proposed similarity metrics are reported in Table 2.

4.1 Single-feature metrics to assess users similarity
The first set of similarity metrics is based on one distance feature. We model the similarity functions via radial
basis function kernel. Specifically, we consider the following Gaussian kernel [49]:

:
(� )
U (8 , 9) = 4−U� (8 ,9 ) (3)

where � (8 , 9) is the selected distance between two generic users 8 and 9 , while U > 0 is a parameter to better
regularise the distance. The distance � (8 , 9) can be evaluated in multiple ways and we consider the distance
features and measurements taken into account in [45]. In this work, we also introduce metrics based on the angle
between the vector of users viewing direction.
The first two similarity metricsF1 andF2 are based only on the location of users in the virtual space with respect
to the virtual object or other viewers. The former metric is based on the Euclidean distance E(G8 ,G 9 ) between
user 8 and 9 on the virtual floor. Instead,F2 considers the difference in terms of the relative distance of users to
the centroid of the displayed content, L = | |A 8 − A 9 | |. Specifically, we define them as follows:

F1 = 4−UE(G8 ,G 9 ) = :
(E)
U (G8 ,G 9 ); (4)

F2 = 4−U | |A
8−A 9 | | = :

(L)
U (A 8 , A 9 ). (5)

The metrics F3 and F4 are instead based on the distance between the viewport centres ? of user 8 and user 9
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Table 2. Similarity metrics: definitions, included distance features and measurements, regulator and threshold values.

Symbol Definition Distance Feature and Metric Regulator values (Cℎ

F1 :
(E)
U (G8 ,G 9 ) E(G8 ,G 9 ) U = 1 0.61

F2 :
(L)
U (A 8 , A 9 ) L(A 8 , A 9 ) U = 1 0.78

F3 :
(G)
U (?8 ,? 9 ) G(?8 ,? 9 ) U = 1 0.59

F4 :
(E)
U (?8 ,? 9 ) E(?8 ,? 9 ) U = 1 0.83

F5 :
(\ )
U (E8 , E 9 ) \ (E8 , E 9 ) U = 1 0.76

F6 :
(E)
U (G8 ,G 9 ) · : (L)

V
(A 8 , A 9 ) · : (G)

W (?8 ,? 9 ) E(G8 ,G 9 ), L(A 8 , A 9 ), G(?8 ,? 9 ) U = 0.5; V = 0.05; W = 0.2 0.59
F7 :

(E)
U (G8 ,G 9 ) · : (L)

V
(A 8 , A 9 ) · : (E)

W (?8 ,? 9 ) E(G8 ,G 9 ), L(A 8 , A 9 ), E(?8 ,? 9 ) U = 0.125; V = 0.05; W = 0.2 0.75
F8 :

(E)
U (G8 ,G 9 ) · : (L)

V
(A 8 , A 9 ) · : (\ )

W (E8 , E 9 ) E(G8 ,G 9 ), L(A 8 , A 9 ), \ (E8 , E 9 ) U = 0.125; V = 0.05; W = 0.1 0.75
F9 :

(E)
U (G8 ,G 9 ) · V [[ (A8 ) + [ (A 9 )] · : (G)

W (?8 ,? 9 ) E(G8 ,G 9 ), A 8 ,A 9 , G(?8 ,? 9 ) U = 0.5; V = 0.5; W = 0.25 0.69
F10 :

(E)
U (G8 ,G 9 ) · V [[ (A8 ) + [ (A 9 )] · : (E)

W (?8 ,? 9 ) E(G8 ,G 9 ), A 8 , A 9 , E(?8 ,? 9 ) U = 0.25; V = 0.5; W = 0.5 0.81
F11 :

(E)
U (G8 ,G 9 ) · V [[ (A8 ) + [ (A 9 )] · : (\ )

W (E8 , E 9 ) E(G8 ,G 9 ), A 8 , A 9 , \ (E8 , E 9 ) U = 0.5 ; V = 0.5; W = 0.1 0.76

projected on the volumetric content. To take into account the heterogeneous shape of the volumetric content,
the distance inF3 is measured in terms of the Geodesic distance G(?8 ,? 9 ) while inF4 in terms of the Euclidean
distance E(?8 ,? 9 ). More formally, they are defined as:

F3 = :
(G)
U (?8 ,? 9 ) = 4−UG(?8 ,? 9 ) (6)

F4 = :
(E)
U (?8 ,? 9 ) = 4−UE(?8 ,? 9 ) . (7)

Finally, the metricF5 is based on the angular distance \ (E8 , E 9 ) between the two vectors of the viewing direction
of user 8 and user 9 . Specifically, it is defined as follows:

F5 = :
(\ )
U (E8 , E 9 ) = 4−U\ (E

8 ,E 9 ) . (8)

4.2 Multi-feature metrics to assess users similarity
As emerged in [44], both user viewing direction and position on the virtual floor are relevant to detect similar
behaviour among users. Thus, the last set of proposed similarity metrics considers a combination of distance
features and measurements. Appendix A depict a further analysis of the correlation among these selected distance
features and measurements. Despite a general correlation between the selected metrics, this does not result
consistent across the different visualised volumetric content. Thus, we consider all of them to propose novel
multi-feature similarity metrics and to determine which one best approximates the viewport overlap among users.
Specifically, we define F6,F7 andF8 based on the previous similarity metrics F1 andF2, but include also the
distance of their viewport centres ? projected on the volumetric content in terms of Geodesic distance G(?8 ,? 9 ),
Euclidean distance E(?8 ,? 9 ) and angular distance \ (E8 , E 9 ), respectively. More formally, we defineF6 as:

F6 = :
(E)
U (G8 ,G 9 ) · : (L)

V
(A 8 , A 9 ) · : (G)

W (?8 ,? 9 )

= 4−UE(G8 ,G 9 ) · 4−V | |A 8−A 9 | | · 4−WG(?8 ,? 9 ) ;
(9)

the second weight is equal to:

F6 = :
(E)
U (G8 ,G 9 ) · : (L)

V
(A 8 , A 9 ) · : (E)

W (?8 ,? 9 )

= 4−UE(G8 ,G 9 ) · 4−V | |A 8−A 9 | | · 4−WE(?8 ,? 9 ) ;
(10)
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and finallyF7 is equal to:

F7 = :
(E)
U (G8 ,G 9 ) · : (L)

V
(A 8 , A 9 ) · : (\ )

W (E8 , E 9 )

= 4−UE(G8 ,G 9 ) · 4−V | |A 8−A 9 | | · 4−W\ (E8 ,E 9 ) .
(11)

For the sake of clarity, V and W are regulators such as U .
The preliminary analysis presented in [44] has also highlighted a correlation between the viewport overlap of
two users and their relative distance from the volumetric content. The closer users are to the volumetric content,
the smaller and more detailed is the portion of the displayed content; the farther they are, the bigger but with
fewer details becomes the displayed portion. Thus, in the first case, the high overlap between displayed areas of
two different users is more difficult. To take into consideration this behaviour, we model the relative distance
via a hyperbolic tangent kernel. This function captures the non-linear relationship between user distance and
content overlap leading to a better representation of the user interactions. Given the relative distance A8 between
the user 8 and volumetric content, we evaluate it as follows:

[ (A8 ) = tanh (A8 ) . (12)

Thus modelling the relative distance of users with this function, metrics F9 and F10 are based on both user
distance in the virtual floor E(G8 ,G 9 ), and on the volumetric content in terms of Geodesic distance G(?8 ,? 9 ) and
Euclidean distance E(?8 ,? 9 ), respectively; whileF11 considers angular distance \ (E8 , E 9 ) together with the user
distance in the virtual floor E(G8 ,G 9 ). More formally, we defineF9 as follows:

F9 = :
(E)
U (G8 ,G 9 ) · V

[
[ (A 8 ) + [ (A 9 )

]
· : (G)

W (?8 ,? 9 )

= 4−UE(G8 ,G 9 ) · V
[
tanh (A8 ) + tanh

(
A 9
) ]

· 4−WG(?8 ,? 9 ) ;
(13)

whileF10 is:

F10 = :
(E)
U (G8 ,G 9 ) · V

[
[ (A 8 ) + [ (A 9 )

]
· : (E)

W (?8 ,? 9 )

= 4−UE(G8 ,G 9 ) · V
[
tanh (A8 ) + tanh

(
A 9
) ]

· 4−WE(?8 ,? 9 ) ;
(14)

end finally,F11 is:

F11 = :
(E)
U (G8 ,G 9 ) · V

[
[ (A 8 ) + [ (A 9 )

]
· : (\ )

W (E8 , E 9 )

= 4−UE(G8 ,G 9 ) · V
[
tanh (A8 ) + tanh

(
A 9
) ]

· 4−W\ (E8 ,E 9 ) .
(15)

5 EXPERIMENTAL SETUP
We now validate and test our proposed similarity metrics based on real navigation trajectories collected in a VR
setting and selected performance metrics. In the following, we first describe the navigation dataset and how we
evaluate the performance of our similarity metrics (Section 5.1 and 5.2, respectively).

5.1 Dataset and Methodology
Dataset. Existing datasets with user navigation collected while displaying volumetric objects in a 6-DoF envi-
ronment are still very limited. In the following, we use the open dataset presented in [51]. This is comprised of
navigation trajectories of 26 users participating in a visual quality assessment study in VR. For the study, four
dynamic point cloud sequences were employed [23], namely Long dress (PC1), Loot (PC2), Red and black (PC3),
Soldier (PC4) (Fig. 1 (a)). Each sequence was distorted at four different bit rate points with two compression
algorithms (i.e., MPEG anchor codec and standard V-PCC). Hidden references were also employed in the test, for
a total of 36 stimuli. Similarly to what is shown in Fig. 2, a single object of interest was placed in the VR scene,
and users were instructed to focus on the volumetric content for the duration of the session and rate its visual
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quality. Thus, the navigation data adheres to the assumptions listed in Section 3. However, it is important to note
that, since this was not a task-free experiment, user navigation may have been influenced by the requirement to
rate the content’s quality, which we leave to future work for further investigation. Finally, in the experiments
conducted in [51], each sequence was 5 seconds long and looped, allowing participants to watch the content as
long as they wanted. In the following analysis, to ensure data consistency across all participants, we decided to
consider only the first 5 seconds of the collected trajectories, which correspond to the first loop of the volumetric
content.
Graph Construction. To implement the graph-based clustering proposed in [36] based on our proposed sim-
ilarity metrics, we need to construct a binary graph following Equation (2), as described in Section 3.3. To be
noted, our proposed similarity metrics are based on distance measurements. As shown in [36], the correlation
between overlap and distance is inversely proportional. This means that high values of overlap (and thus, high
similarity) correspond to low distance. Therefore, the condition to construct the adjacency metric AC based on our
proposed similarity metrics becomes the following:F (8 , 9) ≤ (Cℎ whereF (8 , 9) is one of the similarity metrics
in Table 2. (Cℎ is a threshold value which identifies similar users and thus, neighbours on the graph. In short,
users with a similarity metric below (Cℎ are neighbours in the graph. Hence, the first step now is to identify
(Cℎ . For each proposed similarity metric, we empirically evaluate the Receiver Operating Characteristic (ROC)
curves based on the navigation trajectories of the entire dataset (i.e., navigation trajectories of both distorted and
reference version of the content) above described and select the best value of threshold as originally done in
[36]. Specifically, we set the thresholding values such that a good trade-off between True Positive Rate (TPR)
and False Positive Rate (FPR) is met. As ground truth for the ROC, we assumed that two users are attending
the same portion of the content, and thus are classified as similar, if their viewports overlap by at least 75% of
their total viewed area as in the original work [39]. The predicted event is instead evaluated using the eleven
metrics presented in the previous section, and the corresponding threshold values are selected in order to have
TPR equal to 0.75. For the sake of clarity, the ground-truth value of viewport overlap has been set equal to 75%
because this ensures per each similarity metric a low probability to have a wrong classification (i.e., FPR below
0.4) without compromising the probability of correctly classifying the similarity event (i.e., TPR) which remains
above 0.75. In the last column of Table 2, we provide the selected (Cℎ per each similarity metric that will be used
in the following. To tune the best set of regulator parameters, we also run an ablation study based on the entire
selected dataset of navigation trajectories which is presented in Appendix B. Table 2 reports also all the final
values selected after the ablation study and that will be used in the following.

5.2 Performance Evaluation Setup
To test our proposed similarity metrics, we consider three performance metrics: the averaged overlap ratio per
cluster, the relevant clustered population, and the precision. The first two are more specific to our navigation
trajectory in VR systems, while the last one is a popular index used to evaluate clustering algorithm performance.
Overlap ratio per cluster: as defined in Section 3.2, the overlap ratio computes the portion in common of
displayed content between two users. Therefore, to compare the performance of our detected clusters with the
different similarity metrics, we average the overlap ratio among all the pair of users who are put in the same
group. More formally, given a detected cluster �: , the corresponding overlap ratio $: is defined as follows:

$: =
1
=:

∑
8 ,9∈�:
8≠9

$ (8 , 9) (16)

where 8 and 9 are two generic users, =: is the cardinality of elements bellowing to cluster �: and $ (8 , 9) is the
overlap ratio as in Equation 1.
Relevant clustered population: the more users are clustered together with high viewport overlap, the more
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Table 3. Results in terms of averaged and standard deviation per each performance metric across the navigation trajectories
experienced with not-distorted content in the selected dataset (Figure 1 (a)).

Metrics F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PC
1 Overlap 0.69 ± 0.03 0.64 ± 0.04 0.66 ± 0.04 0.68 ± 0.07 0.66 ± 0.04 0.68 ± 0.05 0.73 ± 0.05 0.67 ± 0.04 0.68 ± 0.05 0.72 ± 0.05 0.67 ± 0.04

Relevant Pop. 0.86 ± 0.05 0.94 ± 0.04 0.93 ± 0.05 0.87 ± 0.06 0.84 ± 0.05 0.85 ± 0.06 0.81 ± 0.09 0.89 ± 0.04 0.83 ± 0.06 0.82 ± 0.09 0.88 ± 0.07
Precision 0.42 ± 0.06 0.33 ± 0.05 0.38 ± 0.07 0.31 ± 0.06 0.34 ± 0.04 0.45 ± 0.06 0.47 ± 0.10 0.41 ± 0.05 0.43 ± 0.08 0.38 ± 0.08 0.40 ± 0.05

PC
2 Overlap 0.56 ± 0.08 0.54 ± 0.08 0.55 ± 0.10 0.55 ± 0.10 0.52 ± 0.08 0.58 ± 0.07 0.56 ± 0.09 0.57 ± 0.07 0.57 ± 0.09 0.60 ± 0.09 0.57 ± 0.07

Relevant Pop. 0.86 ± 0.06 0.92 ± 0.04 0.85 ± 0.07 0.91 ± 0.06 0.81 ± 0.08 0.82 ± 0.08 0.80 ± 0.06 0.83 ± 0.06 0.77 ± 0.10 0.69 ± 0.12 0.77 ± 0.07
Precision 0.43 ± 0.09 0.27 ± 0.07 0.31 ± 0.08 0.27 ± 0.08 0.36 ± 0.08 0.45 ± 0.09 0.39 ± 0.09 0.43 ± 0.09 0.50 ± 0.07 0.52 ± 0.07 0.51 ± 0.07

PC
3 Overlap 0.64 ± 0.05 0.59 ± 0.06 0.63 ± 0.05 0.68 ± 0.06 0.62 ± 0.06 0.64 ± 0.06 0.65 ± 0.05 0.64 ± 0.05 0.67 ± 0.06 0.71 ± 0.07 0.67 ± 0.06

Relevant Pop. 0.86 ± 0.06 0.93 ± 0.05 0.90 ± 0.07 0.84 ± 0.07 0.80 ± 0.06 0.84 ± 0.07 0.80 ± 0.09 0.82 ± 0.05 0.77 ± 0.06 0.59 ± 0.09 0.74 ± 0.07
Precision 0.47 ± 0.12 0.34 ± 0.09 0.39 ± 0.06 0.38 ± 0.06 0.42 ± 0.08 0.48 ± 0.11 0.49 ± 0.10 0.47 ± 0.10 0.51 ± 0.11 0.54 ± 0.12 0.51 ± 0.14

PC
4 Overlap 0.58 ± 0.04 0.52 ± 0.05 0.56 ± 0.03 0.59 ± 0.06 0.55 ± 0.06 0.59 ± 0.04 0.60 ± 0.04 0.58 ± 0.04 0.61 ± 0.04 0.66 ± 0.05 0.61 ± 0.05

Relevant Pop. 0.85 ± 0.06 0.92 ± 0.04 0.92 ± 0.06 0.88 ± 0.08 0.84 ± 0.06 0.85 ± 0.06 0.81 ± 0.07 0.84 ± 0.05 0.83 ± 0.07 0.67 ± 0.09 0.80 ± 0.06
Precision 0.35 ± 0.07 0.22 ± 0.04 0.31 ± 0.06 0.25 ± 0.07 0.28 ± 0.05 0.37 ± 0.07 0.36 ± 0.07 0.36 ± 0.07 0.40 ± 0.08 0.42 ± 0.10 0.39 ± 0.08

A
ll
PC

s Overlap 0.62 ± 0.05 0.57 ± 0.06 0.60 ± 0.06 0.62 ± 0.07 0.59 ± 0.06 0.62 ± 0.05 0.64 ± 0.06 0.61 ± 0.05 0.63 ± 0.06 0.67 ± 0.06 0.63 ± 0.06
Relevant Pop. 0.86 ± 0.06 0.93 ± 0.04 0.90 ± 0.06 0.88 ± 0.07 0.82 ± 0.06 0.84 ± 0.07 0.81 ± 0.08 0.84 ± 0.05 0.80 ± 0.07 0.69 ± 0.10 0.80 ± 0.07

Precision 0.42 ± 0.08 0.29 ± 0.06 0.35 ± 0.07 0.30 ± 0.07 0.35 ± 0.06 0.44 ± 0.08 0.43 ± 0.09 0.42 ± 0.08 0.46 ± 0.08 0.46 ± 0.09 0.45 ± 0.08

meaningful our clusters become. We consider clusters with more than two elements as relevant. Thus, the relevant
clustered population is the ratio of users in these types of clusters.
Precision: in a classification task, this index evaluates the portion of elements that are classified correctly and
has values between 0 and 1 [13]. More formally:

% =
)%

)% + �%
(17)

where True Positive (TP) (False Positive (FP)) is the number of viewers classified correctly (incorrectly) together
in a cluster. In our case, two users are identified positively if they are in the same cluster and their viewport
overlap is actually over the desired value (i.e., 75% of overlap).

6 RESULTS
Equipped with the similarity metrics, the corresponding values of regulators and thresholds given in Table 2,
we now conduct our validation study. In this part of the study, we decided to focus only on the analysis of the
dataset experienced in VR, Fig. 1 (a). In particular, we investigate the navigation trajectories experienced with
non-distorted content to avoid any bias due to the quality of the content. First, we consider our metrics in a
frame-based scenario in which users are clustered in one given frame at a time then, we test our proposed metrics
over a time window of duration 1B .

6.1 Frame-Based Analysis
As a first step, we implement a frame-based analysis (i.e., frame-based clustering) on the entire dataset taking
into account navigation trajectories experienced only with not-distorted content in the select dataset. In Table 3,
we report the average and standard deviation of performance metrics described in Section 5.2 obtained by our
proposed similarity metrics per each content. In the last row of the table, we show also the final performance
averaged across the volumetric contents. Clusters based on F2 group in relevant clusters the majority of the
population in all the analysed PCs (reaching the maximum value of 0.94 in PC1) to the detriment of precision,
which falls to values between 0.22 and 0.34. In terms of overlap ratio and precision, the most promising similarity
metric is mainlyF10 followed byF9 andF11. These outperform the other weights in most of the PCs, ensuring
an overlap ratio within the same cluster with values in the range of 0.60 and 0.72 for F10. The only exception
is in PC1, where the best performing metric in terms of overlap ratio and precision isF7, which for the other
contents cases is always performing worse. Finally, the values of precision are always over 0.38, with an average
value above 0.45, for all the three last metrics in the group of multi-feature metrics.
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(a) Ground-truth ($Cℎ = 75%) (b) F1 (single feature metric) (c) F2 (single feature metric)

(d) F3 (single feature metric) (e) F4 (single feature metric) (f) F5 (single feature metric)

(g) F6 (multi-feature metric) (h) F7 (multi-feature metric) (i) F8 (multi-feature metric)

(j) F9 (multi-feature metric) (k) F10 (multi-feature metric) (l) F11 (multi-feature metric)

Fig. 3. Cluster results in frame 50 of sequence PC1 (Longdress). Each dot represents a user on the virtual floor while the blue
star stands for the volumetric content. In the legend in brackets, per each cluster with more than 2 users are reported: the
number of users in the same cluster, averaged pairwise viewport overlap and corresponding variance within the cluster.

We now visually compare some examples of detected clusters by the different similarity metrics. Fig. 3 shows
the clusters obtained using the ground-truth metric$ to construct the graph (Fig. 3 (a)), along with the ones based
on each proposed similarity metric (Fig. 3 (b-l)) for frame 50 of sequence PC1 (LongDress). In particular, each
user is represented by a point on the VR floor which is coloured based on the assigned ID cluster, whereas the
volumetric content is symbolised by a blue star. Per each relevant cluster (i.e., cluster with more than 2 users), we
provide in the legend the following results: the number of users inside the cluster, and the average and variance
of the overlap ratio among all users within the cluster. Finally, we represent the remaining users which are in
either single or couple-cluster as black points; the total number of these users is also provided in the legend as
“Small clusters (total number of non-relevant clusters)”. We can notice that our ground truth (Fig. 3 (a)) generates
5 main clusters with an average overlap ratio per cluster above 0.82. In particular, cluster ID 1 has the highest
number of users (8), with a high overlap ratio (0.84). Only 4 users in this case are put in single clusters. The goal is
to find a similarity metric that can well approximate these results. In Fig. 3 (b-l), we can notice that our proposed
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(a) Ground-truth ($Cℎ = 75%) (b) F1 (single feature metric) (c) F5 (single feature metric)

(d) F9 (multi-feature metric) (e) F10 (multi-feature metric) (f) F11 (multi-feature metric)

Fig. 4. Cluster results in frame 50 of sequence PC2 (Loot). Each dot represents a user on the virtual floor while the blue
star stands for the volumetric content. In the legend in brackets, per each cluster with more than 2 users are reported: the
number of users in the same cluster, averaged pairwise viewport overlap and corresponding variance within the cluster.

metrics tend to create three main clusters, very populated but with a low overlap ratio. For instance, F3 and
F7 generate a main big cluster with respectively 18 and 21 users, while the corresponding overlap ratio drops
drastically to 0.62 and 0.64. Among single feature metrics, the only exceptions are given byF1 andF5, which
generate a variable set of 4 clusters with consistent values of overlap ratio, over 0.64 and 0.66, respectively. Let us
now consider as an example the users 13, 15 and 17, which in the ground-truth case (Fig. 3 (a)) form their own
cluster (i.e., ID 5) with a high overlap ratio (0.83), as well as user 24, who is quite isolated from other users and
belongs to a single cluster. Among single feature metrics (Fig. 3 (b-f)), we can notice thatF2,F3 andF4 fail in
detecting the group of users 13, 15 and 17 as similar, dividing them instead in different clusters or merging them
with existing big clusters. On the contrary,F1 andF5 detect this group of participants as similar and assign them
to the same cluster. From these observations, we can notice that the viewport centre on the volumetric content,
on whichF3 andF4 are based, is not sufficient to correctly identify similar users. Analogously, considering only
the difference in terms of the relative distance between the user and volumetric content, as done inF2, does not
allow the detection of similarity among users. Thus, the most promising metrics in the group of single feature
metrics seem to beF1 andF5, which are based on the user position on the virtual floor and the vector of viewing
direction, respectively. The second group of metrics in Fig. 3 (g-l) shows clusters based on multi-feature similarity
metrics. In this set of metrics, users 13, 15 and 17 are identified within the same cluster only by three metrics,
namelyF6,F9 andF11, which also detect user 24 as a single cluster. On the contrary, the other two metricsF7,
andF8 create a main cluster with users 17, 24 and 13 while user 15 is assigned to a different main cluster with
participants in a different location on the virtual floor; finally,F10 assigns most of these users to small clusters.
Considering also the analysis shown previously in Table 3, multi-feature metrics appear to be overall better suited
to detect similar users than previous single-feature ones. This is expected, as the higher degrees of freedom are
given to users, the more challenging the system, and thus detecting users similarities.
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Given the above remarks, in the following, we further analyse the selected dataset taking into account only
a subset of metrics, namely, F1, F5, F9, F10 and F11, based on the best-performing similarity metrics in the
previous investigation in terms of precision (F9,F10 andF11). To have a fair comparison, we also keep the most
promising among the single-feature metrics, namelyF1 andF5. In Fig. 4, we show a similar visual example of
frame-based analysis frame 50 of PC2 (Loot). In this case, it is interesting to notice how the ground-truth clusters
in Fig. 4 (a) are very intricate. A total of 5 main clusters are found, with an overlap ratio consistently over 0.79. A
considerable number of participants (7) is instead put in small clusters. In this case, all the selected similarity
metrics fail to detect such a consistent group of participants in terms of overlap ratio. Except for F9 and F10

that create 5 clusters, the remaining proposed metrics generate 4 main clusters. However, in all these cases, the
overlap ratio drops drastically in a range between 0.52 and 0.76. In this example, the small group of participants
located on the right side of the volumetric content, specifically users 13, 15, 18 and 24, are assigned to single
clusters in the ground-truth case, as shown in Fig. 4 (a). On the contrary, users 13, 15 and 18 are assigned to the
same cluster with an overlap ratio equal to 0.52 from all the similarity metrics under investigation. We can also
observe that, in the case of the ground-truth clustering, users 5, 17, 21 and 23 are all assigned to different clusters,
with user 17 being in a small cluster; however, that is not the case in any of the metrics under consideration;
in fact, such users are more often not grouped in the same cluster. Among all the metrics,F5 appears to be the
most promising, as it is the only one identifying user 17 as a separate small cluster, and grouping users 26 and 27
in the same cluster, as done by the ground truth. However, the results are still far from adequately matching
the ground truth clustering algorithm. To conclude, this example shows also the complexity and critical aspects
of addressing the open problem of evaluating the (dis)similarity between 6-DoF users at each given time of an
immersive experience. Our proposed metrics represent a first step in this direction but further investigations are
needed to better understand the intricate nature of user navigation in XR systems.

6.2 Trajectory-Based analysis
We now analyse the performance metrics over time (i.e., trajectory-based analysis). Specifically, we compute
clique-based clusters over a time window of 1B (i.e., chunk) and a time similarity threshold of 0.8B (i.e., users
should be similar in the 80% of the chunk length). At each chunk, we evaluate the average overlap ratio per
relevant cluster, the average of the relevant population and the precision of detected clusters. In the following, we
have As an example, we show in Fig. 5 the performance results as functions of time per each selected similarity
metric (F1,F5,F9,F10 andF11) per sequence PC1 (Longdress) in the first row and PC2 (Loot) in the second one.
We also add the performance of clusters detected by the ground-truth metric $ (i.e., red line); the goal is indeed
to find a metric able to perform similarly to our ground truth over time. In PC1, all the similarity metrics reach an
average overlap ratio within clusters between 0.6 and 0.75 (Fig. 5 (a)). Metrics based on single features, such asF1

andF5, exhibit lower performance, while others perform quite similarly, with a slight predominance ofF10. In
the second example (Fig. 5 (d)), the mean overlap ratio decreases to values between 0.35 and 0.75. However, also
in PC2, we observe that clusters based onF10 show a slightly better performance. In terms of relevant users, it is
worth noting that all the proposed similarity metrics, in both sequences, generate larger clusters compared to the
ground-truth metric. The latter considers only 50-70% (0.5-0.7) of the population as relevant in PC1 (Fig. 5 (b)), and
this drops to 0.2 in PC2 (Fig. 5 (e)). In more detail, the clusters resulting from our proposed metrics consistently
put in relevant clusters over 0.7 of the entire population for all the time in both the volumetric sequences. Finally,
in terms of precision, the only similarity metric that generated clusters with P consistently over to 0.4 in most of
the time of both sequences is F9. However, it is interesting to notice that the clusters generated based on F11

have a constant value of precision over time equal to 0.4. On the contrary, clusters based onF5 are on average
less performing in terms of precision in both PC1 (Fig. 5 (c)) and PC2 (Fig. 5 (f)). These investigations show that
similarity metrics based on multi-feature, such as F9 and F11, are more promising for detecting with higher
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(a) PC1: Mean Overlap Ratio in
Relevant Cluster.

(b) PC1: Mean Relevant Users. (c) PC1: Precision.

(d) PC2: Mean Overlap Ratio in
Relevant Cluster.

(e) PC2: Mean Relevant Users. (f) PC2: Precision.

Fig. 5. Clustering over time (chunk = 1 sec.) results per sequence PC1 (Longdress) and PC2 (Loot ): comparison between
ground-truth $ and a subset of proposed metrics (F1,F5,F9,F10 andF11).

precision similar behaviour while experiencing volumetric content.
From this validation analysis on the VR dataset shown in Fig. 1, we can conclude the following:

• overall, multi-feature metrics are more precise in detecting users with similar behaviour (in terms of
displayed content) both in a frame- and chunk-based analysis;

• in particular, in spite of the slightly more complex formulation multi-feature metrics, such as F9, F10

and F11 are robust and easy-to-use metrics that ensure a robust and reliable behavioural analysis via
clustering tools;

• on the contrary, metrics based only on a single feature (i.e., single feature metrics) are not always sufficient
to correctly identify similar users;

• the only exceptions among single-feature metrics areF1 andF5 which are based only on the position of the
user on the floor and the vector of viewing direction, respectively. Despite their simplicity, these metrics
are overall comparable with multi-feature metrics. Hence, they can be used for an easy-to-implement
preliminary behavioural analysis.

These outcomes are based on point clouds of human body and trajectories collected in a visual quality assessment
study.Thus, it is important to point out that these observations are valid for similar volumetric contents (i.e., human
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(a) VV1: Mean Overlap Ratio in Relevant
Cluster.

(b) VV1: Mean Relevant Users. (c) VV1: Precision.

(d) VV2: Mean Overlap Ratio in Relevant
Cluster.

(e) VV2: Mean Relevant Users. (f) VV2: Precision.

Fig. 6. Spherical clustering over time (chunk = 1 sec.) results per sequence VV1 (Nico) and VV2 (Sir Fredrick): performance
comparison between ground-truth, and a subset of proposed metrics (F1,F5,F9,F10 andF11).

body). The user navigation might be also affected by the task to rate the quality of the content: for instance,
participants might have checked only visual impairments rather than freely explore the volumetric content. We
leave further analysis across multiple types of content and task-free datasets for future work.

7 CASE STUDY: A BEHAVIOURAL ANALYSIS IN AR SETTING
We are now interested in understanding if the insights from the above study could be applied to other human-
like datasets. To show also the robustness of our proposed similarity metrics, we therefore apply them to a
different dataset. In particular, we select the dataset presented in [60]. Authors have collected in a task-free
experiment the navigation trajectories of 20 users while displaying volumetric content in an Augmented Reality
(AR) scenario. Similarly to the previously analysed dataset presented in Section 5.1, a single object of interest
was placed in the scene. Specifically, two dynamic volumetric human body sequences represented as 3D meshes
with texture information were used: Nico (VV1) and Sir Frederic (VV2) in Fig. 1 (b). In order to conduct our
study, both the sequences were kindly made available by Volograms upon request [30, 58]. The navigation data
were collected in a remote scenario through an Android AR application, which allowed users to display the
volumetric content from any desired location and portable device (e.g., smartphone) [60]. Participants were also
free to display the volumetric content how they most preferred. Thus, the main differences with the previously
analysed dataset are the following: a different format of volumetric content (3D mesh instead of point cloud), a
different immersive scenario (AR instead of VR application), a different aim of the experiment (task-free instead
of a quality assessment) and a heterogeneity of viewing devices (any smartphone device instead of a specific
HMD). In particular, the 3D mesh content does not allow for a simple formulation of the overlap ratio as we
have described it in Section 3.2. For consistency, we convert the sequences from 3D meshes to point clouds by
discarding edge information and only keeping vertices as points; we discuss the inherent challenges to define our
ground-truth metric in Section 8.
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Similarly to our previous investigations, we now apply to this new scenario the spherical clustering based on
the subset of best-performing feature metrics, such asF1,F5,F9,F10 andF11. We evaluate clusters in chunks of
length 1B with a time similarity threshold of 0.8B and the threshold values�Cℎ reported in Table 2. At each chunk,
we compute the average overlap ratio per relevant cluster (i.e., cluster with at least two elements), the average
of the relevant population and the precision of the detected clusters. Fig. 6 shows these results as a function of
time per each selected similarity metric, in particular, the first row refers to VV1 (Nico) while the second one to
VV2 (Sir Frederic). Since viewers were allowed to drop the AR experience at any desired time, in the following
we consider only the time window in which 75% of the user population (15 out of 20 viewers) are still in the
experiment: 63 and 83 seconds, respectively for VV1 and VV2. We observe that both the sequences have an initial
moment of adjustment where viewers are displaying different portions of the content. This is detected by clusters
based on the overlap ratio (i.e., red line) which do not have a consistent pairwise overlap. For instance, Fig. 6 (a)
shows in the first 40B of the immersive experience for VV1 the average of overlap ratio within the main detected
clusters has up and down for the ground-truth and is quite low for all the selected similarity metrics. However,
this behaviour stabilises around 40B when the overlap ratio for the ground-truth metric converge to 0.8. Similarly,
the performance metric detected byF1,F10 andF11 reaches values above 0.6 with a very low variance for both
the metrics. On the contrary, the overlap ratio of cluster detected byF5 andF9 have a more inconsistent variance
over time. Compared to other metrics and to the ground truth, these metrics in terms of relevant users (Fig. 6 (b))
generate overall bigger clusters. In particular, it considers most of the time half of the population in big clusters,
which is quite the opposite behaviour to the ground-truth metric. This metric indeed generates small relevant
clusters most of the time; clusters based onF1,F10 andF11 follow a very similar trend. In this case, results based
on F1 are the best performing in terms of precision, as shown in Fig. 6 (c) with values close or above 0.4. A
slightly different behaviour is observable for VV2 in the second line of Fig. 6. In this volumetric content, users
explore the scene more randomly during the first minute of the experience leading to such different behaviours
that the ground-truth fails in detecting relevant clusters between 18 and 39 seconds (Fig. 6 (d)). This divergent
user behaviour might be due to the task-free experiment which bring participants to observe different part of
the content. We leave as future work further investigations to understand the impact of structured tasks and
not on the user behaviour. However in this case, similarity metrics F10 and F11 are more precise in reflecting
the ground-truth behaviour and thus, detecting viewers with similar behaviour and putting them within the
same clusters (Fig. 6 (f)). Finally, it is worth noticing that all the similarity metrics reach a higher overlap ratio
compared to the ground-truth performance (Fig. 6 (f)). For example, some metrics asF1 in the first 10 seconds or
F11 around 50 seconds reach an overlap ratio of 40% and above 80%, respectively while the ground-truth has very
lower values. This shows the ability of our proposed metrics in identifying users with similar displayed viewports,
however, raises new questions on the selected ground-truth and how accurately it captures such similarities in
different XR conditions.

From the behavioural analysis of this second dataset, which, although composed of only 20 navigation
trajectories, was collected in an AR setting, we can conclude the following:

• our proposed similarity metrics demonstrate flexibility and generality, proving their suitability for
analysing not only navigation trajectories in VR settings but also in AR conditions. This suggests their
robustness across different extended reality environments;

• overall, multi-feature metrics, in particular F10 and F11 are more precise in identifying where there is
similarity between users in very eclectic behaviours such as in VV2 (the second line of Fig. 6);

• interestingly, in this second analysis, our ground-truth similarity metric, designed to capture consistent
user similarity, exhibits low performance in terms of overlap ratio. This finding suggests also inherent
challenges in accurately capturing user similarity in dynamic AR settings, paving the way for further
investigation.
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(a) VV1 (b) VV2

Fig. 7. Single-user cluster per sequence VV1 (Nico) and VV2 (Sir Fredrick) obtained via spherical clustering based on overlap
ratio, and a subset of proposed similarity metrics (F1,F5,F9,F10 andF11).

8 DISCUSSION AND FUTURE WORK
We presented the main challenges of user behavioural analysis in a 6-DoF system caused by the new settings
and the added locomotion functionalities. In particular, our main goal was to extend the applicability of existing
behavioural tool, such as clique-based clustering, [36] designed for 3-DoF scenario to its 6-DoF counterpart.
However, behavioural analysis of 6-DoF users is not considered in the literature yet; as such, there is no reference
metric available to detect viewers who are displaying the same portion of the content. As first step, we had to
define a general ground-truth user similarity metric, namely the overlap ratio. To be as general as possible, we
established the overlap as the percent of points displayed in common by two users. This is fairly straightforward,
albeit time-consuming, to compute for point cloud contents, in which each point is rendered separately. For
other types of volumetric contents, determining the overlap ratio is not as simple. Considering the number
of vertexes that fall into a given frustum could lead to misleading results when large faces between sparsely
distributed vertexes are present. Moreover, the metric requires to render each volumetric video at any given
time and for each viewer, making its computation not trivial and intensely time-consuming. To address this
challenge and objectively assess users similarity in a simple way, in this paper we investigated various similarity
metrics aimed at better modelling behavioural similarities between users in a 6-DoF setting. Specifically, we
were interested in modelling similarities among users observing the same volumetric content. We defined and
compared 11 different metrics based on different distance features (i.e., user positions in the 3D space, user
viewing directions) and distance measurements (i.e., Euclidean, Geodesic, angular distance). More concretely, we
considered user information, such as their location in the virtual floor and viewing direction, which is consistently
available in immersive systems. Our proposed metrics can be computed in less than 10 milliseconds on average
per frame, ensuring their applicability in real-time applications. To test and validate our similarity metrics using
a clique-based clustering tool proposed for 3-DoF scenario, we employed real navigation trajectories collected
in a 6-DoF VR environment [51] (Figure 1 (a)). Our extensive analysis showed that overall metrics based on a
combination of distance features (multi-feature metrics), such asF9,F10 andF11, exhibit encouraging values of
overlap ratio and superior precision in detecting users with similar behaviour, whether analysed frame by frame
or in chunks of data. On the contrary, metrics based solely on a single feature (referred to as single-feature metrics)
fall short in consistently identifying similar users accurately. However, exceptions to this trend are found inF1

andF5, which leverage user position on the floor and the vector of viewing direction, respectively. Remarkably,
despite their simplicity, these metrics perform comparably to multi-feature metrics, making them suitable for a
straightforward preliminary behavioural analysis.
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To test the flexibility of our proposed metrics, we tested their performance on a different kind of 6-DoF naviga-
tion trajectories [60]. In this second dataset, viewers displayed volumetric content in an AR scenario through
smartphones. Therefore, even if users were enabled with the same 6-DoF locomotion settings, the viewing device
and the FoV were different. Despite these differences, our proposed similarity metrics are still good at identifying
viewers who are displaying similar content. However, it is also worth mentioning that our ground-truth metric
of similarity is very tight in detecting similar users, especially in an AR scenario. As an example, Fig. 7 shows
the number of single clusters detected over time by the overlap ratio (i.e., red line) and the sub-set of most
performing similarity metrics for both the volumetric sequences of the second analysed dataset. In particular, in
VV2 (Fig. 7 (b)), the clique-based clustering based on the overlap ratio does not detect similar users such that
the majority of the population are put in a single cluster. Therefore, further analysis is needed to test if in this
scenario a different overlap threshold better model similarity among users. Finally, it is important to point out
that these observations are currently only valid for similar volumetric contents (i.e., human body). We leave
further analysis across multiple datasets and types of content for future work.
This work opens the gate to further investigations aimed at detecting user behavioural differences in a 6-DoF ex-
perience done in VR and AR settings. These are indeed essential to be exploited in efficient user-centric solutions
for XR systems to enable for example new modalities of live streaming services optimised for users profiles but
also for user-based quality assessment methods.

9 CONCLUSION
To conclude, this article contributes to advancing the field of behavioural analysis in XR scenarios. By intro-
ducing novel similarity metrics tailored to the new physical settings and locomotion functionalities of users
in XR environments, we have addressed a critical aspect of user-centric system development. Our behavioural
investigation on 6-DoF navigation trajectories with behavioural tool for 3-DoF trajectories provided insights
into the distinctive features and challenges posed by the former. The proposed 11 similarity metrics, based on
various distance features and measurements, were rigorously tested and validated using real navigation paths
from both 6-DoF VR and AR conditions. Our results showed that solutions that consider both user position and
viewing direction are promising to correctly detect users with similar behaviour while experiencing volumetric
content. Moreover, since these metrics are based on simple operations of data that are typically already known
in a multimedia system (i.e., user position in the virtual space and viewing direction), they can be evaluated
on average in less than ten millisecond. This makes our proposed metrics not only robust but also suitable for
real-time applications. Moreover, we have also demonstrated the robustness and versatility of these metrics,
which preserve good performance on navigation trajectories collected both in a 6-DoF VR and AR scenario,
showcasing their applicability across diverse XR settings.
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Fig. 8. Multivariate Scattering plot of the proposed distance features and measurements per each sequence PC1 (LongDress),
PC2 (Loot ), PC3 (Red and Black) and PC4 (Soldier ).

A CORRELATION ANALYSIS OF DISTANCE FEATURES AND MEASUREMENTS
We now investigate the correlation among the distance features on which we based the multi-feature metrics
presented in Section 4.2. Following the preliminary study presented in [44], we consider the following distance
features and measurements: the Euclidean distance E(G8 ,G 9 ) between user 8 and 9 on the virtual floor, the relative
distance of users to the centroid of the displayed content, L = | |A 8 − A 9 | |, the distance between the viewport
centres ? of user 8 and user 9 projected on the volumetric content both in terms of Geodesic distance G(?8 ,? 9 )
and Euclidean distance E(?8 ,? 9 ), and finally the angular distance \ (E8 , E 9 ) between the vectors of the viewing
direction of user 8 and user 9 . To visually explore the relationships between the different distance features, we use
both multivariate scatter plots and Principal Component Analysis (PCA). We evaluate the distance features based
on the navigation trajectories experienced with non-distorted content of the dataset presented in Section 5.1 and
averaged over time. Fig. 8 shows a multivariate scatter plot to investigate the pairwise relationships between the
different distance features. Specifically, subplots in the diagonal show histograms for the distribution of each
variables while the remaining subplots presents a pairwise scatter plot of the analysed metrics. The histograms
in the diagonal provide insights on the distribution and variability of each distance feature. For instance, we
can notice that the Euclidean distance E(G8 ,G 9 ) between users on the floor and the Geodesic distance G(?8 ,? 9 )
between viewport centers projected on the volumetric content cover a quite large range of values while the
Euclidean distance E(?8 ,? 9 ) between viewport centers has a very concentrated distribution around low values.
However, the pairwise scatter plots among the different distance features reveal correlations among all of them.
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(a) PC1 (LongDress) (b) PC2 (Loot)

(c) PC3 (Red and Black) (d) PC4 (Soldier )

Fig. 9. Correlation plots via Principal Component Analysis of the proposed distance features and measurements per each
analysed PC1 (LongDress), PC2 (Loot ), PC3 (Red and Black) and PC4 (Soldier ).

In particular, E(G8 ,G 9 ) and \ (E8 , E 9 ) show a clear positive correlation, suggesting that users who are farther apart
in terms of Euclidean distance tend also to have an high angular distance between their viewing vectors. On the
contrary, the relation between the Geodesic distance G(?8 ,? 9 ) and Euclidean distance E(G8 ,G 9 ) between users
position on the floor is more sparse and a clear correlation cannot be detected. We take a step further in Fig. 9
showing correlation plots via PCA per each of the sequence of the analysed dataset. In each subplot red dots
represent a transformed data in the principal component space, while the blue vectors indicate the direction and
magnitude of the investigated metrics. From this analysis, it is clear that the Geodesic distance G(?8 ,? 9 ) between
viewport center is not highly correlated with the other metrics, in particular with the Euclidean distance E(G8 ,G 9 )
between users position on the floor. Indeed, in all the subplots the corresponding vectors have a right angle
indicating no correlation between them; furthermore a negative correlation is shown by the obtuse angle with the
relative distance L = | |A 8 −A 9 | | of users to the displayed content. A positive correlation is instead confirmed among
the remaining distance features and metrics. However, there are some differences across the four sequences:
the correlation between E(?8 ,? 9 ) and \ (E8 , E 9 ) is very strong in PC1 and PC3 (Fig. 9 (a) and (c)) but less with
E(G8 ,G 9 ); while in PC2 and PC4 (Fig. 9 (b) and (d)) the three vectors are more closely aligned, indicating a strong
positive correlation among the metrics. Despite a general correlation between the selected distance features and
measurements, there is some variability among the sequences that should be deeper investigated in future work.
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Table 4. Parameter selections and their performance for multi-feature metrics (F5 -F11)
F6 F7 F8 F9 F10 F11

se
t1

[U , V ,W] [ 0.2, 0.05, 0.125 ] [ 0.125, 0.125 , 0.5] [ 0.5, 0.1 , 0.05] [ 0.25, 0.5 0.1] [ 0.25, 0.5, 0.5] [ 0.25, 0.5 , 0]
Overlap Ratio 0.64 0.66 0.63 0.66 0.69 0.65

Relevant Population 0.80 0.76 0.81 0.70 0.69 0.69
Precision 0.43 0.45 0.43 0.46 0.49 0.42

se
t2

[U , V ,W] [ 0.05, 1, 0.05 ] [ 0.05, 2, 0.05] [ 0.05, 2 , 0.05 ] [ 0.1, 0.5, 2 ] [ 0.05, 0.5, 2] [ 2, 0.5, 0.05]
Overlap Ratio 0.59 0.59 0.59 0.60 0.64 0.63

Relevant Population 0.91 0.93 0.93 0.88 0.83 0.81
Precision 0.32 0.30 0.30 0.36 0.35 0.43

se
t3

[U , V ,W] [ 0.5 , 0.05 , 0.2 ] [ 0.125, 0.05, 0.2 ] [ 0.125, 0.05, 0.1] [ 0.5, 0.5, 0.25] [ 0.25, 0.5, 0.5] [ 0.5, 0.5, 0.1]
Overlap Ratio 0.64 0.66 0.63 0.65 0.69 0.64

Relevant Population 0.80 0.76 0.80 0.77 0.69 0.71
Precision 0.46 0.46 0.43 0.47 0.49 0.45

(a) Overlap Ratio (b) Relevant population (c) Precision

Fig. 10. Example of parameter selection forF10 with V = 0.5. Values set 1 selected based on max overlap, set 2 max clustered
users, set 3 based on precision.

B ABLATION STUDY
In this section, we present an ablation study to tune the best set of regulator parameters that maximise the
performance of each similarity metric. Equipped with the threshold values given in Table 2, we run a frame-
based clustering to select the best regulators U , V and f per each metric. We test their performance based on
navigation trajectories collected in the entire dataset of trajectories (i.e., navigation trajectories of both distorted
and not-distorted version of the volumetric content) presented in Section 5.1 in terms of the metrics given in
Section 5.2 and considering the following range of values [0, 0.05, 0.1, 0.125, 0.2, 0.25, 0.5, 1, 2]. For single-feature
metrics (F1 −F5), we notice a very small variance in terms of performance. Thus, we selected U = 1 for this set of
metrics.
More challenging is the selection parameters for multi-feature metrics (F6 −F11). Each similarity metric depends
on three parameters: U , V andW . To overcome this, we first select three sets of parameters : one group of parameters
(set 1) based on the maximum overlap ratio, the second (set 2) on the maximum relevant clustered population and
the last group (set 3) as the one reaching the highest precision. As an example, Fig. 10 shows the selection of these
three sets of parameters for the metricF10. Then, we test these on the trajectories experienced with not-distorted
version of the volumetric content to finally select the best set of parameters. Table 4 provides the average of all
the performance of the multi-feature similarity metrics obtained by the three selected sets of parameters. Since
there is no particular configuration that outperforms in terms of overlap ratio, relevant population and precision,
we decided to select set 3. This configuration, besides ensuring the highest value of precision, also guarantees
acceptable values of overlap ratio and relevant population for all the similarity metrics. For example for F10,
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selecting values of set 3 means that users are correctly clustered in almost the 50% of the time (precision equal to
0.49); at the same time the 69% of the population is put in clusters with more than the 2 users (relevant population
equal to 0.69) and on average the overlap of viewport between users in the same cluster is consistent (overlap
ratio equal to 69%). It should be also noted that in Section 5.1 we assumed that users are classified as similar if
their viewports overlap by 75% of their total viewed area. Therefore, we find acceptable to ensure clusters with
on average a consistent viewport overlap ratio of around 70% which is very close to our threshold of similarity,
even if the precision values are not very high.
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