
Round-tripping Invisible XML
Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

Invisible XML takes textual documents where the structure is implicit and
produces documents with the structure made explicit. This paper addresses
the question of the extent to which it is possible to recreate the original tex-
tual document from its structured version, how it can be done, and what if
any the ramifications are for ixml.

Keywords: ixml, structured data, parsing, XML, round-tripping,
grammar transformation, serialisation

1. Contents
• Introduction
• Round-tripping
• The Problem Space
• Grammar Transformation
• Dealing with Attributes
• Strict and Permissive Grammars
• Syntactic Equivalences
• Loss of Information
• Ambiguity
• Inserted Layout
• Future Work

• Similarities between Serialisation and Transformation
• Possible Additions to ixml

• Conclusion
• References

2. Introduction
Invisible XML [1] is a language and process that takes linear textual input, recog-
nises the implicit structure in the input, and converts it to an equivalent struc-
tured XML output. It does this by parsing the input using a grammar describing
the format of the input document, and serialising the resultant parse-tree as XML,
using extra information in the grammar to drive the serialisation.

153

If that were all it did, then round-tripping the XML back to text would be triv-
ial: it would simply be a case of concatenating the text nodes of the XML, and
you'd be done.

However, there are issues with regards to ixml serialisation:

• input characters may be deleted from the parse-tree on serialisation;
• extra characters that weren't in the input may be inserted;
• some parse-tree nodes may be serialised as attributes rather than elements,

causing a reordering of the input text, since attributes appear before element
content.

As hinted at in earlier papers on ixml [2], [3], round-tripping could be achieved
by having a special-purpose general parser which attempts to recreate a parse-
tree that could have produced the serialisation, and then concatenating the result-
ing text nodes.

This paper takes a different approach: by transforming the input grammar
into a grammar that represents all possible serialisations of the input grammar, it
can use the same parser as used by ixml, with some small additions, to parse the
serialisation back into a parse-tree that would have produced that serialisation.

This raises a number of technical issues similar to the normal ixml process, in
particular what to do with ambiguity, where a serialisation could have been pro-
duced by more than one input.

3. Round-tripping
The term round-tripping is normally considered to be the process of recreating
the original document that produced the output you have [4]. For several reasons
discussed below, except in limited cases, it is not possible to recreate a character-
perfect original document from the ixml output. This is partly under the gram-
mar author's control, which is to say, it is possible to write an ixml grammar that
can be perfectly round-tripped. On the other hand, in the other direction round-
tripping is always possible: it is always possible to construct from the ixml output
an input that would create exactly the same output again.

So for the purposes of this paper, our definition of round-tripping is not "cre-
ate an identical input to the one that created this output", but:

Create an input that would produce the identical output.

As an example, an ixml grammar that reads a program in a programming lan-
guage, deleting comments and spurious whitespace, on round-tripping would of
course no longer contain the comments and extra whitespace: they were deleted
and didn't appear in the structured version. However the round-tripping would
still produce effectively the same program.

Round-tripping Invisible XML

154

4. The Problem Space
Let's take the simplest case. Here is a simple grammar for dates:

date: day, "/", month, "/", year.
day: d, d.
month: d, d.
year: d, d, d, d.
-d: ["0"-"9"].

Given as input
30/06/2024

this will produce as output:
<date>
 <day>30</day>/
 <month>06</month>/
 <year>2024</year>
</date>

As you can see, all characters in the input are preserved in the output, in order.
The only difference is that tags have been placed around the characters to indi-
cate the structure.

So to round-trip this, all that is necessary is to concatenate the text nodes of
the XML, to give the input that created the output:

30/06/2024
This is what is meant above by "it is possible to write an ixml grammar that can
be perfectly round-tripped": if the grammar deletes no characters, and only uses
elements, round-tripping is trivial.

The fact that some tags have been suppressed in the output (namely the <d>
elements, due to the "-" before the rule for d) has no effect, since we are only inter-
ested in characters.

However, ixml has facilities to control the serialisation format. For instance,
the slash characters "/" in the input are there only as punctuation to separate the
different parts, but play no role in the output, and so can be deleted from the seri-
alisation:

date: day, -"/", month, -"/", year.
giving

<date>
 <day>30</day>
 <month>06</month>
 <year>2024</year>
</date>

Round-tripping Invisible XML

155

Now we can no longer just concatenate the text nodes to get back to the input.
Similarly, characters can be inserted into the serialisation. Suppose the input

date format only had two digits for the year, but the output serialisation required
four. You can write this:

date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
year: +"20", d, d.
-d: ["0"-"9"].

which for the input 30/06/24 would give:

<date>
 <day>30</day>
 <month>06</month>
 <year>2024</year>
</date>

Finally, elements can be serialised as attributes:
date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
@year: +"20", d, d.
-d: ["0"-"9"].

which gives
<date year='2024'>
 <day>30</day>
 <month>06</month>
</date>

This reorders the input, since attributes are serialised before elements.
These issues need to be addressed in order to enable round-tripping of con-

tent in the general case.

5. Grammar Transformation
As already pointed out, earlier papers have suggested using a special-purpose
parser to deal with round-tripping, but this paper proposes a different approach:
transforming the input ixml grammar into a different ixml grammar that recogni-
ses the output format, and then using the same parser that ixml already uses.

As an example, for the first grammar above
date: day, "/", month, "/", year.
day: d, d.
month: d, d.

Round-tripping Invisible XML

156

year: d, d, d, d.
-d: ["0"-"9"].

a grammar can be generated that recognises the serialisation:

date: -"<date>", day, "/", month, "/", year, -"</date>".
-day: -"<day>", d, d, -"</day>".
-month: -"<month>", d, d, -"</month>".
-year: -"<year>", d, d, d, d, -"</year>".
-d: ["0"-"9"].

Using this grammar and the regular ixml parser to parse the output XML, gives:

<date>30/06/2024</date>
(We have glossed over the issue of extra inserted whitespace for pretty printing,
which we will discuss later; we will also detail later reasons why the root element
remains).

This leads immediately to the second example. where everything is the same
except the rule:

date: day, -"/", month, -"/", year.
with a transformed equivalent rule:

date: -"<date>", day, +"/", month, +"/", year, -"</date>".
which similarly generates the same output

<date>30/06/2024</date>
And finally (for now), the version with added output characters

date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
year: +"20", d, d.
-d: ["0"-"9"].

with transformation:

date: -"<date>", day, +"/", month, +"/", year, -"</date>".
-day: -"<day>", d, d, -"</day>".
-month: -"<month>", d, d, -"</month>".
-year: -"<year>", -"20", d, d, -"</year>".
-d: ["0"-"9"].

giving as output:

<date>30/06/24</date>
So from these three examples we can see some patterns for the transformations
emerging:

Round-tripping Invisible XML

157

• non-hidden rules except for the root become hidden rules in the transforma-
tion, and start and end with its tags, both marked as deleted;

• hidden rules remain hidden, and no tags are recognised;
• in alternatives:

• nonterminals remain the same;
• regular terminals stay the same;
• deleted terminals become inserted terminals;
• inserted terminals become deleted terminals.

6. Dealing with Attributes
The main problem left arises with attributes, which turn up at a different position
in the serialisation. For instance the grammar

date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
@year: +"20", d, d.
-d: ["0"-"9"].

which generates the output

<date year='2024'>
 <day>30</day>
 <month>06</month>
</date>

which can be recognised with

date: -"<date", year, -">", day, +"/", month, +"/", -"</date>".
-day: -"<day>", d, d, -"</day>".
-month:-"<month>", d, d, -"</month>".
-year: -" year='", -"20", d, d, -"'".
-d: ["0"-"9"].

but would produce on output

<date>2430/06/</date>
In other words, while it can recognise the attribute, it turns up in the wrong place
for the round-tripping, and so a mechanism is needed for putting it back in the
right place.

In normal ixml processing, when serialising to XML, the ixml grammar identi-
fies the place in the input where the eventual attribute is, and implicitly identifies
the place where the attribute must be serialised on output, namely the nearest
ancestor element that isn't hidden. This is done with a two-pass algorithm: when
serialising an element, children of the element, and of hidden children elements

Round-tripping Invisible XML

158

are traversed first to find rules marked as attributes, which are then serialised
before the element children.

To reverse this process, we must recognise the attribute at its implicit position
in the input, and explicitly identify in the grammar the place where it needs to be
serialised; this will always be later in the output than where the attribute was
found. We can do this by defining two extra marks: one to indicate that the attrib-
ute as parsed should not be serialised at that position, and another to indicate the
position where it should be serialised.

This is comparable to how terminals are inserted and deleted on serialisation:
-"abc" means "parse the string but serialise nothing", while +"abc" means "parse
nothing, but serialise the string". Unfortunately, "-" has already been assigned a dif-
ferent role for nonterminals on serialisation, but "+" is free to use with the same
meaning.

So using the mark "*" to mean "parse the input, but serialise nothing", and "+" to
mean "parse nothing but serialise the node of this name from earlier in the tree marked
with a "*"", we can specify:

date: -"<date", *year, -">", day, +"/", month, +"/", +year, -"</date>".
-day: -"<day>", d, d, -"</day>".
-month: -"<month>", d, d, -"</month>".
-year: -" year='", -"20", d, d -"'".
-d: ["0"-"9"].

This now correctly produces
<date>30/06/24</date>

Note that these are not changes to the ixml language itself, but only internal addi-
tions: the transformations are done on internal representations of the grammar,
and not on external representations (but see the section on future work).

7. Strict and Permissive Grammars
There are two (non-normative) terms used to describe two major applications of
ixml grammars: strict and permissive.

If it is certain that the input being processed with ixml is correct, the grammar
can be laxer in what it accepts. The date grammar is a good example of this. If
dates are only being recognised, and not checked for correctness, then "d, d" is a
perfectly good pattern for recognising the day number. Even though this would
also recognise 32 or 99, since such dates never occur, you don't have to worry
about them. Such grammars are referred to as permissive.

On the other hand if the input might not be correct, then the grammar needs
to be stricter. With dates again, you must then only accept single digits in the
range 1 to 9, and double digits up to 31. Another example is the grammar for ixml
itself, which clearly has to be strict.

Round-tripping Invisible XML

159

For round-tripping we can assume the input is correct, and so the round-trip-
ping grammar can be permissive. For instance, if we take a grammar for a pro-
gramming language, that contains the rule

function-call: name, -"(", parameters, -")".
If parameters can be empty (for instance now()), then the output for that could be
either

<function-call><name>now</name><parameters></parameters></function-call>
or

<function-call><name>now</name><parameters/></function-call>
and we neeed to generate grammar alternatives to recognise both forms.

But if parameters cannot be empty, then we wouldn't need to generate an
alternative for the second case, since it will never occur. However, exactly since it
will never occur, we don't have to worry about it being in the grammar anyway:
since it will never occur, that alternative will never be matched.

Similarly for attributes. If we have a hypothetical grammar that contains
something like:

element: a, b, c, body.
@a: acontent.
@b: bcontent.
@c: ccontent.
acontent: ...
bcontent: ...
ccontent: ...
body: ...

if we were being strict, we might want to generate alternatives that recognise that
a, b, and c could appear in any order:

-element: -"<element", (abc; acb; bac; bca; cab; cba), -">", body, -"</
element>".
abc: a, b, c.
acb: a, c, b.

etc.
However, we can actually produce a permissive rule like:
-element: -"<element", (a; b; c)*, -">", body, -"</element>".
-a: " a='", -acontent, "'".
-b: " b='", -bcontent, "'".
-c: " c='", -ccontent, "'".

since this specifies that the element has three attributes, without requiring them
to be in any particular order. While this grammar also permits <element a="xxx"

Round-tripping Invisible XML

160

a="yyy"> , this is not a problem, since it will never actually occur in the XML we
are required to process.

8. Syntactic Equivalences
ixml adds a number of extensions to its grammar-description language, to make
life easier for the author, and to make grammars more readable, extensions such
as ? for options, *, **, +, and ++ for repetition, and (and) for grouping.

However, while these extensions add expressiveness to the language, they
don't add any recognition power: as pointed out in the ixml specification, they
can all be straightforwardly transformed into grammars without the extensions,
while recognising the same language, and in fact all implementations do this
transformation as a form of code generation when processing the language.

As a consequence, the round-tripping process doesn't have to take the syntac-
tic extensions into account; it can either assume the initial transformations have
alreadt been done, or do them itself; either way it only has to transform simplified
grammar rules that contain none of the extensions.

9. Loss of Information
As pointed out earlier, some information in the source document can be lost
when transforming to XML. If a programming language is being recognised, it
might be decided not to include nodes for comments in the resulting XML. So on
round-tripping, those comments will not reappear in the document. But this is
not a problem, since our aim is just to produce a text document that would result
in the same XML serialisation.

However, there are some constructs where a decision has to be made, princi-
pally because of inclusions and exclusions.

An inclusion is a ixml construct that allows any character from a set of charac-
ters to be matched. We have seen them already in the dates example: ["0"-"9"]
matches any single digit. The transformation of such an inclusion remains the
same: if the input has a single digit, the output will have the same single digit,
and so we recognise it in the same way. The problem comes with deletions. For
strings -"/"becomes +"/" on transformation: a deleted slash on input becomes an
inserted slash on round-tripping. However, with a deleted inclusion, such as -
["0"-"9"], all we know is that a digit was in the input and deleted, but we don't
know which.

There are two options here, both with the same effect. Either transform -
["0"-"9"] by taking a character from the allowable set (for instance the first), and
transform to +"0", or update the serialisation process to allow the construct +
["0"-"9"], though with the same semantic of outputting the first character from
the set.

Round-tripping Invisible XML

161

Either of these still match the requirement that the resulting round-trip would
produce the identical serialisation.

The case for exclusions is slightly harder. A construct such as -~["0"-"9"]
deletes any single character that isn't a digit. In this case a character in the comple-
ment of the set has to be chosen.

10. Ambiguity

In regular ixml processing it can occur that an input document matches the gram-
mar in more than one way. The ixml processor is required to only serialise one of
the possible matches, but must also report that the result is ambiguous: that this
serialisation is only one of the possible interpretations of the input.

In a similar way, round-tripping can also be ambiguous, in this case meaning
"this is only one of the possible strings that can produce the same serialisation". In fact,
many ixml grammars that are not ambiguous will produce ambiguous round-
trips. As a simple example, if symbols on the input may be separated by one or
more spaces, that are then deleted on serialisation:

input: sym**spaces.
spaces: -" "+.

then on round-tripping any number of spaces would be acceptable. This can best
be solved by producing the minimum acceptable on round-tripping: one for "+",
and zero for "*".

In a similar way:

-optional-a: -"a"?.

is ambiguous, because nothing is produced in the output, so we don't know if an
"a" was present or not in the input. In this case, either option is acceptable,
though the shorter case is probably preferable.

Ambiguity is marked in ixml by adding an attribute to the root element. This
is why it is necessary to retain the root element on output of the round-trip: the
output is (flat) XML anyway, and we need somewhere to report ambiguity.

11. Inserted Layout

Some implementations may produce a "pretty printed" serialisation of the XML,
with added newlines and indentation. While this could be added to the grammar
productions in the transformed grammar, it adds a danger of extra ambiguity,
since elements may already have whitespace in them as part of the serialisation.
For that reason it is better to round-trip XML without added whitespace.

Round-tripping Invisible XML

162

12. Future Work

12.1. Similarities between Serialisation and Transformation
It is worth remarking that the code to produce the transformed grammars is very
similar to the code used for serialisation. This should be unsurprising, since both
processes walk the parse-tree, and while one outputs the serialisation, the other
outputs a grammar that recognises that serialisation. Consequently the two pro-
cesses are almost isomorphic.

This raises the question: what happens if you take the transformed grammar,
and transform it again, what does it produce? Well, it round-trips the round-trip: it
produces a serialisation that would have produced the round-tripped text. In
other words, it serialises the input as XML.

This already works in basic cases, for instance, round-tripping twice the origi-
nal example in this paper, you get

<date><day>30</day><month>06</month><year>2024</
year></date>

(The <s are because it is outputting text that represents XML, but not XML
itself. For readability, here is that output with the <s expanded:)

<date><day>30</day><month>06</month><year>2024</year></date>
The corollary of this is that the serialisation part of an ixml processor could be
greatly simplified, only having to output characters, and not having to worry
about elements and attributes. Serialisation could be then done by twice trans-
forming the input grammar, and using that instead.

Transformations are currently only partially isomorphic, since there is no
reverse operation for the * mark, and the proposal mentioned above of allowing
the mark + on inclusions and exclusions would need to be adopted to prevent loss
of information in the grammar on transformation.

A second corollary however is that the ixml processor is now unbound from
XML, and could be used to produce other serialisations in a fairly straightforward
way.

12.2. Possible Additions to ixml
Although the additions to ixml to enable round-tripping were added to the inter-
nal form of ixml, and not the external form, if these facilities were to be made
available to users as well, some marks would be needed to be added to the lan-
guage. These are:
• Parse and don't serialise, notated with * in this paper;
• Parse nothing, and serialise a node from elsewhere, notated with + in this

paper, but probably needing to be more general than presented here;

Round-tripping Invisible XML

163

• Flatten a node: undo the recognised structuring by serialising the node as if it
were the content of an attribute.

13. Conclusion
Contrary to expectations, it is possible to round-trip the ixml process, as long as
you properly define what is understood by round-tripping, and slightly adapt
ixml serialisation. This technique is very simple, and not only that, actually
allows the ixml processor to be simplified, and to some extent generalised. An
added advantage is that, with some work that still has to be done, the process is
entirely reversible.

References
[1] Steven Pemberton. Invisible XML Specification. invisiblexml.org. 2022. https://

invisiblexml.org/1.0/ .
[2] Steven Pemberton. Invisible XML. Proceedings of Balisage: The Markup

Conference 2013 vol. 10. 2013. 10.4242/BalisageVol10.Pemberton01. http://
www.balisage.net/Proceedings/vol10/html/Pemberton01/BalisageVol10-
Pemberton01.html..

[3] Steven Pemberton. A Pilot Implementation of ixml. Proc. XML Prague 2022. 2022.
41-50. 978-80-907787-0-2 (pdf). https://archive.xmlprague.cz/2022/files/
xmlprague-2022-proceedings.pdf#page=51 .

[4] Wikipedia editors. Round-trip format conversion. Wikipedia. 2024. https://
en.wikipedia.org/wiki/Round-trip_format_conversion .

Round-tripping Invisible XML

164

https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
https://en.wikipedia.org/wiki/Round-trip_format_conversion
https://en.wikipedia.org/wiki/Round-trip_format_conversion

