L)

Check for
updates

Open-Sourcing VR2Gather: A Collaborative Social VR System
for Adaptive Multi-Party Real Time Communication

Jack Jansen* Silvia Rossi Pablo Cesar
Thomas Roggla* Irene Viola p.s.cesar@cwi.nl
jack@cwi.nl,t.roggla@cwi.nl s.rossi@cwi.nl,i.viola@cwi.nl Centrum Wiskunde & Informatica
Centrum Wiskunde & Informatica Centrum Wiskunde & Informatica TU Delft
The Netherlands The Netherlands The Netherlands

2 fetsn 9 - L ———
Figure 1: Playing instruments together virtually with VR2Gather: in the center, the virtual experience of two users playing
drums and guitar while on the sides their physical setup.

Abstract ACM Reference Format:

Jack Jansen, Thomas Roggla, Silvia Rossi, Irene Viola, and Pablo Cesar. 2024.
Open-Sourcing VR2Gather: A Collaborative Social VR System for Adaptive
Multi-Party Real Time Communication. In Proceedings of the 32nd ACM
International Conference on Multimedia (MM °24), October 28-November 1,

Social Virtual Reality is envisioned to transform how individu-
als communicate remotely, offering a sense of immersion and co-
presence within a virtual space. Current platforms enabling remote

social interactions rely on synthetic user representations. We ad- 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 4 pages. https:
dress this limitation by enabling realistic human representation //doi.org/10.1145/3664647.3685515

through volumetric content capture, encoding and transmission.

Specifically, we present an extended version of VR2Gather, now a 1 Introduction

fully open source Unity package, available at https://github.com/
cwi-dis/VR2Gather-acmmm-oss. Our platform is a customisable
system to transmit volumetric content in a multi-party real-time
environment, easy to integrate into existing applications.

Social Virtual Reality (VR) enhances immersive experiences by
transforming how individuals interact with media content, surpass-
ing traditional video technology. These technologies are envisioned
to lead the next generation of virtual worlds [4]. VR is already
changing traditional ways to communicate remotely, placing users

CCS Concepts at the center and offering a sense of immersion and novel inter-
« Computing methodologies — Virtual reality; « Information action possibilities. Social VR goes a step further by enabling the
systems — Multimedia streaming; - Human-centered com- virtual co-presence of multiple users within the same virtual space
puting — Collaborative interaction. and allowing for interactions with others or virtual objects.

Social VR platforms such as Roblox!, Mozilla Hubs* and Ubig
Keywords [2] are already available to general audiences, providing immer-

sive and remote social interactions. For instance, Roblox supports
in-game content creation and distribution while Mozilla Hubs of-
fers easy design and deployment, giving users the possibility to
create and customize their own social VR spaces. Ubiq is a research-
oriented Unity framework that includes standard features of social
VR platforms such as avatar personalisation and shared objects

@ This work is licensed under a Creative Commons Attribution to pfototype IMIMELSIve experlence.s. Some. solutions are als.o ex-
= International 4.0 License. tensible to enable large-scale experimentation [13] and are either

open-source or offer free solutions for small projects [1]. However,

Open Source Software, Social Virtual Reality, Communication Sys-
tem, Real-time Volumetric Capture, Realistic Point Clouds

“Both authors contributed equally to this research.

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia all these platforms only support synthetic avatar representations,
© 2024 Copyright held by the owner/author(s). _

ACM ISBN 979-8-4007-0686-8/24/10 !Roblox: https://www.roblox.com/

https://doi.org/10.1145/3664647.3685515 2Mozilla Hubs: https://hubs.mozilla.com

11210


https://github.com/cwi-dis/VR2Gather-acmmm-oss
https://github.com/cwi-dis/VR2Gather-acmmm-oss
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664647.3685515
https://doi.org/10.1145/3664647.3685515
https://doi.org/10.1145/3664647.3685515
https://www.roblox.com/
https://hubs.mozilla.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664647.3685515&domain=pdf&date_stamp=2024-10-28

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

compromising both physical and emotional presence in immersive
experiences [3, 9, 10]. To overcome this, VR2Gather is a social VR
multi-party real-time communication system which enables real-
istic digital human representation based on point clouds which
capture live participants [5, 15].

Figure 1 shows an experience running on the VR2Gather plat-
form: two remote participants, physically separated and equipped
with a headset and controllers (left and right side of Figure 1), can
communicate and play various virtual instruments together on the
same stage, viewing realistic representations of themselves (middle
part of Figure 1). The instruments (e.g. guitar and drums) are virtual
objects, shared and synchronized across all participants. An initial
version of VR2Gather was presented in [15] as a monolithic Unity
application, making integration into third party applications more
difficult. Moreover, not all components of that system were open
source: the orchestrator responsible for facilitating communica-
tion between participants was closed-source and a few internal
dependencies were only available under a commercial license.

In this paper, we present an extended and reworked version
of VR2Gather, which is now a fully open source Unity package,
provided under permissive licenses (MIT and BSD 2-Clause), avail-
able at https://github.com/cwi-dis/VR2Gather-acmmm-oss. Being
a Unity package makes the integration into existing social VR ap-
plications easier. All previously closed source components of the
system have either been replaced by open source equivalents or
were re-implemented from the ground up. VR2Gather experiences
do not rely on a central cloud-based game engine. Instead, each
participant runs a local copy of the whole application while com-
munication and synchronization are handled through a central,
experience-agnostic cloud component that manages forwarding of
control messages, point cloud streams and conversational audio
between participants. Finally, our updated framework includes a
complete code overhaul, enabling the customization of assemblies?
to better meet requirements of different applications. Specifically,
VR2Gather includes an assembly to process point clouds for acqui-
sition, compression and rendering; a data transport assembly with
support for different transmission protocols (i.e. SocketIO, TCP and
DASH are available by default, with WebRTC under development)
for data transfer over the Internet; and a receiver assembly that
takes the transmitted packets and renders them in the virtual scene.
Our platform is already being used by an international community
in various use cases across different domains such as cultural her-
itage, healthcare and entertainment [15]. This shows its versatility
and adaptability in addressing diverse application needs also in
terms of system requirements. By offering an easier-to-integrate
and fully open-source version, VR2Gather can become an invalu-
able tool for researchers and practitioners across different fields,
facilitating experimentation at large scale and fostering collabora-
tion and innovation in the realm of immersive technologies.

2 System Architecture

Figure 2 outlines the general architecture of VR2Gather. Two or
more geographically separated users, equipped with HMDs and
controllers, are captured by one or more RGBD cameras. Thanks to

3The term assembly in the context of Unity refers to a unit of modularisation, bundling
together code, materials, assets and/or prefabs and allowing their reuse.

11211

Jack Jansen, Thomas RA(iggla, Silvia Rossi, Irene Viola, & Pablo Cesar

VR2Gather, participants can experience the same virtual scene in
which they can communicate and interact with objects. VR2Gather
is comprised of a local application running at the client side, which
allows users to share a virtual scene with a representation of them-
selves and shared objects; communication and synchronization are
handled instead through a cloud component of the system. Specifi-
cally, our VR2Gather platform is a Unity package comprised of a
series of assemblies, each one dedicated to a specific purpose such
as: user representation, shared objects and actions, orchestration and
session management and live media transport. Each assembly also
exposes a well-defined abstract interface, enabling reuse and re-
placement of individual components with custom implementations
as needed. In the following, we provide more in depth detail of the
principal parts of our VR2Gather system.

In terms of user representations, different methods are supported
by VR2Gather, such as synthetic avatars, point clouds or invisi-
ble spectators. For example Figure 1 is a screenshot taken by a
third user who did not have a representation but merely acted as a
spectator. This also implies that our platform can support different
capture systems composed by a variable number of cameras, as
described in [11]. All point cloud handling, including capturing,
tiling, compression, decompression, synchronization and rendering
are implemented in a separate Unity package, cwipc_unity* and
the underlying native package cwipc® which is based on the MPEG
Anchor codec presented in [8]. The package allows the creation of
pipelines for point cloud streams (represented by the thick lines
in Figure 2) with minimal copying of the actual point cloud data,
even across language boundaries (C to Python or C#). The point
cloud pipeline architecture is described in more detail in [15], while
additional information on tiling and multi-quality techniques are
given in [14]. Note that cwipc_unity is distributed as a separate
standalone package because it has a wider application area than
only social VR: it can also be used to render pre-recorded point
cloud streams, or capture and display point clouds for other types
of Unity applications.

Each user runs their own, independent instance of the VR2Gather
Unity application, which is responsible for rendering the virtual
scene and managing the shared objects and actions taken within it.
Shared objects in this context refer to virtual objects within the
scene that users can interact with. For instance, in Figure 1, the bass
guitar is a shared object that users can pick up and play by hitting
the strings to produce sound. This behavior and these actions are
synchronised across all users by a central session manager.

The Orchestrator is the central cloud component of VR2Gather
that is responsible for orchestration and session management. It con-
sists of the Orchestrator itself and optionally an external Selective
Forwarding Unit (SFU), as shown in Figure 2. This cloud component
is a server application deployed on either one of the clients or an
external machine reachable by all participating clients. It can be
deployed on a headless server running any operating system, with
the only requirement being a stable and fast internet connection.
In more detail, the orchestrator is responsible for keeping track
of users and their associated data, creation and destruction of ses-
sions and their data as well as distributing updates on positions

*https://github.com/cwi-dis/cwipc_unity
Shttps://github.com/cwi-dis/cwipc


https://github.com/cwi-dis/VR2Gather-acmmm-oss
https://github.com/cwi-dis/cwipc_unity
https://github.com/cwi-dis/cwipc

Open-Sourcing VR2Gather

Real World

Unity-client

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

VR2Gather

Shared

Objects

Unity-client

& Actions

Selective
Forwarding
Unit (SFU)

Orchestrator

Shared

-,

Objects

Yyvyv

& Actions

Figure 2: VR2Gather architecture: two users, physically separated, are captured by depth cameras and their representations
are broadcast over the Internet. A local copy of VR2Gather on the client side allows sharing a virtual scene; communication
and synchronization are handled by cloud components. Thick and thin arrows represent media streams and control messages.

and movements of users and interactive objects to all users within
a scene. The SFU component is used for exchanging binary data
between users, more specifically, it handles transmission of point
cloud data and audio between users within a session over an exist-
ing Internet connection. In a default setup, the orchestrator also
handles the functions of the SFU via its Socket.IO connection, but
external SFUs providing support for transmission over raw TCP or
DASH can be configured. Support for media transmission using the
WebRTC protocol is currently under development. More details on
the provided transport protocols are given in [15].

This separation of control and live media messaging allows each
component to be replaced independently. Moreover, all VR2Gather-
specific business logic is contained entirely within the clients, mean-
ing there is no strict requirement for clients to be implemented in
Unity.

3 Implementation Details

VR2Gather is based on the Unity platform and is implemented
in C#, making it usable on all major operating systems. It ships
as a package with the intention that end users can integrate the
functionality into their own applications. Therefore, the package
is divided into a series of assemblies, each capturing a distinct
functional area. The package also ships with a series of prefabs®
that make it easy to get started quickly by already providing scenes
that take care of user settings, login and user representation setup.

The assemblies managing user representation offer different
ways a user can be represented in the virtual space from digital
avatars to fully-formed point clouds, taking advantage of functional-
ity offered by cwipc_unity. The package cwipc_unity is a wrapper
around the cwipc open-source point cloud library. The cwipc native
package core is implemented in C++, with the API also available
in C, C#, Python and Jupyter. It is available for Windows, Mac
and Linux, and to a limited extent for Android. Binary installers

Unity term for prefabricated scenes and associated behaviors.

11212

are available. Similarly, the cwipc_unity package is available for
Windows, Mac and Linux. An Android version is also planned.

Other key assemblies of the VR2Gather package are the ones re-
sponsible for session and user management, broadcasting of object
positions and custom events as well as media transport. By default,
VR2Gather ships with code to interact with the orchestrator for
session management and management of custom events triggered
within the virtual scene. However, the system is designed in such
a way, that end-users can provide their own session management
solution and write code to interact with VR2Gather by implement-
ing the corresponding abstract interfaces. The orchestrator itself is
implemented in Typescript, using Socket.IO in combination with
its underlying transport protocol Engine.IO. This allows VR2Gather
clients to communicate even when behind NAT firewalls, such as
in a home setup. Socket.IO provides a wrapper around WebSocket
connections with optional HTTP long polling fallback. Its archi-
tecture is designed around an event system, where clients send
named events with optional data payloads to a central server and
the server updates its internal state accordingly. New sessions are
registered with a unique name and an associated scenario which
designates the virtual scene rendered within the session. Once this
data is registered to the orchestrator’s internal data tree, partici-
pating users can join the session. The orchestrator takes care of
continuously broadcasting updates on positions and movements of
users and interactive objects to all users within a session. Events
triggered within a session, e.g. the press of a button, are relayed
from the originating user through the orchestrator to the session
creator, which then triggers the broadcast of the event to all other
users, again, through the orchestrator.

Transmission of point cloud and audio streams can also be han-
dled by the orchestrator. Each user, upon joining a session, regis-
ters a number of streams that they are able to provide with the
orchestrator. Other users can then subscribe to these streams to
receive the data they are interested in, thus effectively establishing
a publish/subscribe mechanism. The orchestrator will then handle



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

routing of the binary data from senders to interested parties. By
default, this data transmission is handled through the Socket.IO pro-
tocol over its underlying WebSocket connection. It is also possible,
to hand off this task to external SFUs, taking advantage of different
protocols, such as WebRTC, DASH or raw TCP. The transmission
protocol to use can be specified during session creation.

4 Use Cases

As described in [15], VR2Gather has been employed in several use
cases proving the versatility and adaptability of our platform to
different system requirements (e.g. local or public networks, single-
or multi-camera setups) and applications across several domains
(e.g. healthcare, cultural heritage or entertainment).

New possibilities in the healthcare sector have been demonstrated
with VR2Gather through remote consultation between a doctor
and an (acting) injured patient on the street, both equipped with
mainstream mobile devices and relying on a public 5G network
[15]. Museum experiences can also be enriched thanks to our plat-
form, as shown in Mediascape XR [12]. A historical costume of a
Dutch pop singer, too fragile to be exhibited in public, has been
made accessible digitally to visitors who were able to wear and
experience it virtually in a historical concert setting. In this case,
the immersive experience was set up on-premise in a museum, with
direct network connections and a multi-camera setup to ensure the
best visual quality and lowest latency. In terms of entertainment,
our VR2Gather platform offers numerous possibilities for connect-
ing with others and engaging in shared virtual experiences. For
example, relying on VR2Gather, two to five users with different
devices (i.e. HMDs and computers) were captured from multiple
angles to ensure a photorealistic representation and were able to
experience a 3D immersive mystery murder movie [7]. The users
were co-present in the scene with the movie characters and helped
in solving the crime together. Recently, VR2Gather was also used
to evaluate the effect of experiencing a VR theater lobby in a social
setting, as opposed to experiencing it alone [6]. Participants were
traversing different virtual rooms, captured in real-time by depth
cameras and represented in the virtual world as point clouds.

5 Conclusion

In this paper, we proposed an easier-to-integrate and fully open-
source version of VR2Gather, originally presented in [15]. Our
platform is now a Unity package that allows the creation of im-
mersive social VR applications. Participants in a VR2Gather-based
experience can be represented as live volumetric video and see
themselves as they are captured live, thereby allowing more re-
alistic social interaction than in avatar-only based systems. We
presented its key customizable assemblies and showcased several
use cases where the proposed system has already been applied. Cur-
rently, we are distributing a single Unity package of our VR2Gather
platform, but we are planning to turn it in a set of packages, one
per each main assembly, to allow end users to only use components
which they are interested in. Moreover, since Unity has gained a
large foothold in the world of independent game developers and
user experience researchers, we will further extend our software to
support freely available network libraries, such as Photon’, which

"Photon: www.photonengine.com/pun

11213

Jack Jansen, Thomas RA(iggla, Silvia Rossi, Irene Viola, & Pablo Cesar

provides solutions to handle complex multiplayer functionalities
such as client-server communication and synchronization.

Acknowledgements

This work was supported by the European Union as part of the
Horizon Europe Framework Program under grant agreement No
101070109 (TRANSMIXR), No 101135556 (INDUX-R) and the Eu-
ropean Union Horizon 2020 research and innovation programme
under grant agreement No 870610 (TRACTION). The authors would
like to thank all the colleagues who contributed to this project.

References

[1] A. Abilkaiyrkyzy, A. Elhagry, F. Laamarti, and A. Elsaddik. 2023. Metaverse key
requirements and platforms survey. IEEE Access (2023).

S. J. Friston, B. J. Congdon, D. Swapp, L. Izzouzi, K. Brandstitter, D. Archer, O.
Olkkonen, F. J. Thiel, and A. Steed. 2021. Ubiq: A system to build flexible social
virtual reality experiences. In Proceedings of the 27th ACM symposium on virtual
reality software and technology. 1-11.

S. Gunkel, R. Hindriks, K. M. El Assal, H. M. Stokking, S. Dijkstra-Soudarissanane,
F. Haar, and O Niamut. 2021. VRComm: an end-to-end web system for real-
time photorealistic social VR communication. In Proceedings of the 12th ACM
multimedia systems conference. 65-79.

Hupont Torres Isabelle, Charisi Vasiliki, De Prato Giuditta, Pogorzelska Katarzyna,
Schade Sven, Kotsev Alexander, Sobolewski Maciej, Duch Brown Nestor, Calza
Elisa, Dunker Cesare, and Others. 2023. Next Generation Virtual Worlds: Societal,
Technological, Economic and Policy Challenges for the EU. Technical Report. Joint
Research Centre.

J. Jansen, S. Subramanyam, R. Bouqueau, G. Cernigliaro, M. : Cabré, F. Pérez,
and P. Cesar. 2020. A pipeline for multiparty volumetric video conferencing:
transmission of point clouds over low latency DASH. In Proceedings of the 11th
ACM Multimedia Systems Conference. 341-344.

S. Lee, I. Viola, S. Rossi, Z. Guo, I. Reimat, K. Lawicka, A. Striner, and P. Cesar.
2024. Designing and Evaluating a VR Lobby for a Socially Enriching Remote
Opera Watching Experience. IEEE Transactions on Visualization and Computer
Graphics (2024).

J. Li, S. Subramanyam, J. Jansen, Y. Mei, I. Reimat, K. Lawicka, and P. Cesar.
2021. Evaluating the user experience of a photorealistic social VR movie. In 2021
IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE,
284-293.

Rufael Mekuria, Kees Blom, and Pablo Cesar. 2016. Design, implementation, and
evaluation of a point cloud codec for tele-immersive video. IEEE Transactions on
Circuits and Systems for Video Technology 27, 4 (2016), 828-842.

R. Mekuria, P. Cesar, I. Doumanis, and A. Frisiello. 2015. Objective and subjective
quality assessment of geometry compression of reconstructed 3D humans in a
3D virtual room. In Applications of Digital Image Processing XXXVIII, Vol. 9599.
SPIE, 537-549.

Mario Montagud, Jie Li, Gianluca Cernigliaro, Abdallah El Ali, Sergi Fernandez,
and Pablo Cesar. 2022. Towards socialVR: evaluating a novel technology for
watching videos together. Virtual Reality 26, 4 (2022), 1593-1613.

I Reimat, E. Alexiou, ]. Jansen, I. Viola, S. Subramanyam, and P. Cesar. 2021.
CWIPC-SXR: Point cloud dynamic human dataset for social XR. In Proceedings of
the 12th ACM Multimedia Systems Conference. 300-306.

L. Reimat, Y. Mei, E. Alexiou, J. Jansen, J. Li, S. Subramanyam, 1. Viola, J. Oomen,
and P. Cesar. 2022. Mediascape XR: A Cultural Heritage Experience in Social
VR. In Proceedings of the 30th ACM International Conference on Multimedia. 6955—
6957.

Thomas Roggla, David A Shamma, Julie R Williamson, Irene Viola, Silvia Rossi,
and Pablo Cesar. 2024. A Platform for Collecting User Behaviour Data during
Social VR Experiments Using Mozilla Hubs. In Proceedings of the 16th International
Workshop on Immersive Mixed and Virtual Environment Systems. 41-44.

S. Subramanyam, I. Viola, J. Jansen, E. Alexiou, A. Hanjalic, and P. Cesar. 2022.
Evaluating the impact of tiled user-adaptive real-time point cloud streaming
on VR remote communication. In Proceedings of the 30th ACM International
Conference on Multimedia. 3094-3103.

I Viola, J. Jansen, S. Subramanyam, I. Reimat, and P. Cesar. 2023. VR2Gather: A
collaborative social VR system for adaptive multi-party real-time communication.
IEEE MultiMedia (2023).

[2]

[6]

(10]

[11

[12

[13

[14]

[15


www.photonengine.com/pun

	Abstract
	1 Introduction
	2 System Architecture
	3 Implementation Details
	4 Use Cases
	5 Conclusion
	References



