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Abstract
One of the most common statistical analyses in experimental psychology concerns the comparison of two means using
the frequentist t test. However, frequentist t tests do not quantify evidence and require various assumption tests. Recently,
popularized Bayesian t tests do quantify evidence, but these were developed for scenarios where the two populations are
assumed to have the same variance. As an alternative to both methods, we outline a comprehensive t test framework based
on Bayesian model averaging. This new t test framework simultaneously takes into account models that assume equal and
unequal variances, and models that use t-likelihoods to improve robustness to outliers. The resulting inference is based on
a weighted average across the entire model ensemble, with higher weights assigned to models that predicted the observed
data well. This new t test framework provides an integrated approach to assumption checks and inference by applying a
series of pertinent models to the data simultaneously rather than sequentially. The integrated Bayesian model-averaged t tests
achieve robustness without having to commit to a single model following a series of assumption checks. To facilitate practical
applications, we provide user-friendly implementations in JASP and via the RoBTT package in R. A tutorial video is available
at https://www.youtube.com/watch?v=EcuzGTIcorQ

Keywords Bayesian model-averaging · t test · Bayes factor · t-likelihood · Robust inference · Unequal variances

The independent-samples t test assesses the difference
between two group means; consequently, it is one of the
most commonanalytical techniques in experimental psychol-
ogy. Indeed, Wetzels et al. (2011) show that psychologists
report on average 3.4 t tests per article, resulting in one t test
for every 2.8 pages. In conversation, one of our former col-
leagues has even expressed the opinion that “all interesting
scientific questions in psychology can be broken down into
two groups and a t test”. These t tests are almost always con-
ducted within the framework of frequentist statistics, with
a p value as the final metric of interest. However, in recent
years, several Bayesian t tests have been proposed to assess
the difference in group means using Bayes factors (Gönen
et al., 2005; Rouder et al., 2009; Gronau et al., 2020). These
Bayes factor tests offer several advantages over the frequen-
tist t tests based on p values. First, the Bayesian framework
does not force the researcher intomaking an all-or-none deci-
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sion to reject or accept a hypothesis, since Bayes factors
provide a continuous measure of the strength of evidence
(Wagenmakers et al., 2016). Second, the Bayesian frame-
work generalizes seamlessly to sequential analysis. Unlike
p values, Bayes factors are consistent under both the null
and the alternative hypothesis, meaning that as data accumu-
late indefinitely, the chance that the Bayes factor points to
the correct hypothesis approaches 1. This property enables
hypothesis testers to stop whenever the evidence is deemed
to be sufficiently compelling, and this allows for a flexible
testing regime that is both efficient and ethical (Berger and
Wolpert, 1988; Edwards et al., 1963; Rouder, 2014; Schön-
brodt et al., 2017; Stefan et al., 2020; Wagenmakers et al.,
2022; for a discussion, see de Heide and Grünwald, 2021;
Hendriksen et al., 2021; Sanborn and Hills, 2014).1 Third,

1 Sequential analyses are also possible in the frequentist framework,
although this usually entails an explicit advance commitment either
to the number of interim tests or the precise value of the test-relevant
parameter under the alternative hypothesis (see e.g., Jennison and Turn-
bull, 1999; Lakens, 2014; Schnuerch and Erdfelder, 2020; Stefan et al.,
2020).
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the Bayesian framework allows researchers to quantify evi-
dence in favor of the null hypothesis as well as the alternative
hypothesis (Gallistel, 2009; Rouder et al., 2009). This allows
a key distinction to be made between “absence of evidence”
and “evidence of absence” (Keysers et al., 2020).

The currently popular Bayesian t tests are limited to the
equal variance case (Gönen et al., 2005; Morey & Rouder,
2015; Rouder et al., 2009). Bayesian t tests for unequal
variances were already pioneered by Dickey in the 1970s
(Dayal & Dickey, 1976; Dickey, 1976, 1973, 1977), with
other versions of unequal-variance t tests proposed later (Bar-
bieri et al., 2016; Bartolucci et al., 1998; Fu et al., 2020;
Moreno et al., 1999; Wetzels et al., 2009). Currently, how-
ever, no unequal-variance Bayesian t test is readily available
in popular statistical software packages andnomethod allows
researchers to define priors on an intuitive scale or in a way
that is appropriate for testing (i.e., using a prior that is not
data dependent). This is surprising given that unequal vari-
ances are common in psychology and the unequal variance
scenario is more flexible (Delacre et al., 2017; Erceg-Hurn
&Mirosevich, 2008; Grissom, 2000; Keselman et al., 1998).

A related problem is that in practice, it can be difficult to
determine whether or not the variances are equal, especially
when sample sizes are small. In the frequentist framework,
inference usually follows a two-step approach: the first step is
to test for unequal variances, and the second step, contingent
on the outcome of the first, is to conduct either the Student’s
t test or theWelch test (for a summary of examples see Hayes
& Cai, 2007, p. 219).2 However, this two-step approach fails
to take into account the uncertainty about unequal variances;
moreover, it tempts researchers into assuming the variances
are equal even though the power to detect unequal variances
may be low.

In the Bayesian framework, the conundrum ofwhat model
to select can be avoided using model-averaging or multi-
model inference, a technique that takes into account all
pertinent models simultaneously, weighting their impact
with respect to their predictive performance (Hinne et al.,
2020; Hoeting et al., 1999). Specifically, in Bayesian model-
averaging, parameters are estimated for all models under
consideration (i.e., both equal-variance and unequal-variance
models) and these estimates are then averaged based on how
well the associated models predicted the observed data. Con-
sequently, with Bayesian model-averaging researchers can

2 It is sometimes advocated to useWelch t test by default (e.g., Delacre
et al., 2017) instead of first testing for equality of variances. While this
suggestion may improve the practice of testing equality of means, it
does not solve the fundamental problem of basing the inference on a
single model rather than considering multiple models simultaneously.

draw inferences from equal-variance and unequal-variance
models simultaneously, where each model’s relative infer-
ential impact is determined by its relative plausibility. This
way model-averaging circumvents the problem associated
with sequentially performing all-or-none decisions.

An additional concern with standard t tests is their sen-
sitivity to outliers; a few extreme observations can exert a
large impact on the value of the t-statistic and thereby have
a disproportional effect on the resulting test. Several meth-
ods may be used to mitigate the impact of outliers (e.g.,
Mair and Wilcox, 2020; Wilcox, 2017), and here we focus
on a relatively straightforward solution, namely to consider
models where the t-likelihood is used in place of the nor-
mal likelihood. A t-distribution has fatter tails, which means
that relatively extreme observations have a higher chance of
occurring. The use of a t-likelihood is not new, but previ-
ous work typically focused on parameter estimation without
simultaneously taking the normal likelihood under consid-
eration (e.g., Bayarri and Mayoral, 2002; Gelman and Hill,
2006, p. 124;Kruschke, 2013;Kruschke, 2018;O’Hagan and
Forster, 2004, pp. 223-231; Western, 1995)

In practice, it can be difficult to ascertain whether or
not outliers are present, and whether or not their presence
warrants the application of a robust method. Consequently,
researchers usually apply intuitive but potentially problem-
atic decision strategies, such as “histomancy” – the attempt
to derive likelihood functions from gazing at empirical
histograms (McElreath, 2016, p. 326). Bayesian model-
averaging resolves the tension between robust and classical
methods because the data determine the degree to which
inference is based on robust models versus standard models.
Importantly, the extent of this difference is gradual instead
of all-or-none.

The goals of this manuscript are threefold. First, we
present an unequal-variance t test (i.e., a Bayesian Welch
t test) which requires that prior distributions are assigned
to Cohen’s δ 3 and to the relative size of the precision.
Second, we combine the unequal-variance t test with the
equal-variance t test (i.e., the Bayesian Student’s t test) into a
model-averaged t test (i.e., a model-averaged Bayesian t test,
MB t test). Third, we extend the model-averaged t test by
adding models with a t-likelihood to the model ensemble
(i.e., a robust model-averaged Bayesian t test, RoMB t test).
By averaging across the entire ensemble of eight models,

3 Cohen’s δ is the population version of Cohen’s d, in other words, the
“true” effect size which would manifest itself in a hypothetical study
with an infinitely-large sample size. Cohen’s δ is the difference in pop-
ulation means (rather than the sample means) scaled by the appropriate
standard deviation. In an equal variance case this is δ = μ1−μ2

σ
.
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robust answers can be obtained to the following questions:

1. What is the evidence for the presence vs. the absence of
a difference in means?

2. What is the evidence for equal vs. unequal variances?
3. What is the evidence for normal likelihoods vs. t-

likelihoods?

We illustrate the new methodology with the data of
Pleasant and Barclay (2018) who investigated why highly
cooperative people sometimes get punished (“antisocial pun-
ishment”) and with the data of Roozenbeek et al. (2021) who
showed that an accuracy nudge intervention can increase the
discernment between true and fake news on social media.
To facilitate application in practice we also implemented the
t tests in the RoBTT R package (Bartoš & Maier, 2022).

Bayesian Student’s t test

Before proceeding to the case of unequal variances, we
briefly revisit the Bayesian equal-variance t test (i.e., Rouder
et al., 2009).4 The Bayesian Student’s t test contrasts
two competing hypotheses: The null hypothesis H0, which
assumes that the data are normally distributed, that the vari-
ances are equal between the groups, and that the effect of
the intervention is absent (i.e., the true difference in means
between the intervention and the control group is zero), and
the alternative hypothesis H1, which additionally assumes
that there exists a true non-zero difference in means between
the two groups. The corresponding models of the data-
generating process canbe found inAppendixB.The evidence
for either hypothesis is quantified using the Bayes factor (see
InfoBox 1), which compares the marginal likelihood of the
data under the alternative hypothesis to the marginal likeli-
hood of the data under the null hypothesis.5

4 Note that the BayesFactor R package already incorporates solu-
tions for this case, which are faster than our sampling-based approach
(Morey & Rouder, 2015). The explanation of the equal-variance case
is intended to set the stage for the extensions.
5 The order is inverted if the Bayes factor in favor of the null over the
alternative is calculated.

InfoBox 1: Description of Bayes factors.

Developed by geophysicist Sir Harold Jeffreys in the second half
of the 1930s, the Bayes factor is a general inference criterion
for Bayesian hypothesis testing and model comparison (Etz &
Wagenmakers, 2017; Jeffreys, 1935; Kass & Raftery, 1995; Ly
et al., 2016; Wrinch & Jeffreys, 1921). The Bayes factor quan-
tifies the relative predictive accuracy (i.e., the likelihood of the
observed data) for competing hypotheses.Hypotheses that predict
the data relatively well experience a gain in credibility, whereas
hypotheses that predict the data relatively poorly suffer a decline
(Wagenmakers et al., 2016; Wagenmakers, 2020):

BF10 = p(data |H1)

p(data |H0)
(1)

When the rival hypotheses have free parameters, as is usually
the case, overall predictive accuracy is computed as a weighted
average across the prior distribution (i.e., using the law of total
probability, the likelihood function is integrated over the prior):

p(data |Hk)
︸ ︷︷ ︸

Marginal likelihood

=
∫

�

p(data | θk ,Hk)
︸ ︷︷ ︸

Likelihood function

× p(θk |Hk)
︸ ︷︷ ︸

Prior distribution

dθk .

(2)

This equation shows that the likelihood function and the prior
distribution jointly determine the predictions of a hypothesis; both
components therefore exert an influence on the Bayes factor.

With the Bayes factor in hand, the prior model odds can be
updated to posterior model odds. A prior model probability rep-
resents the plausibility of a model before data collection, which
can then be updated as follows:

P(H1 | data)
P(H0 | data)
︸ ︷︷ ︸

Posterior odds

= p(data | H1)

p(data | H0)
︸ ︷︷ ︸

Bayes factor

× P(H1)

P(H0)
︸ ︷︷ ︸

Prior odds

. (3)

For instance, if P(H1) = P(H0) = 1/2 (i.e., unit prior odds)
and the data are five times more likely under H1 than under H0,
then the posterior odds are 5.Using the standardwayof converting
odds to probability by odds

(1+odds) , posterior model probabilities are
P(H1 | data) = 0.833 and P(H0 | data) = 0.167.

Although Bayes factors (BF) are a continuous measure of
the strength of evidence and any discretizationwill inevitably
result in loss of information, the following rule of thumb
may help with interpretation: 1 < BF < 3 corresponds
to weak evidence, 3 < BF < 10 corresponds to moder-
ate evidence, and BF > 10 corresponds to strong evidence
(e.g., Jeffreys, 1939; Lee and Wagenmakers, 2013, p. 105;
Wasserman, 2000). When considering the evidence for the
null rather than the alternative, the Bayes factor can simply
be inverted (i.e., BF01 = 1/BF10).
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Prior distributions

A unique part of any Bayesian analysis is the appropriate
specification of parameter prior distributions (e.g., Stefan
et al., 2020). The crucial prior distribution for the equal-
variance t test is the prior on the standardized difference
between the group means, that is, on Cohen’s δ, the popu-
lation version of Cohen’s d. We follow Rouder et al. (2009)
and assign δ a Cauchy(0, 1/

√
2) distribution.6

However, the researcher is free to adopt their own prior
distribution, tailored to their specific research question. For
example, when the direction of the effect and its likely size
are known it can be more efficient to adopt an informed prior
(e.g., Gronau et al., 2017; Vohs et al., 2021); similarly, one
may adopt prior distributions that are informed by past data
(e.g., Bartoš et al., 2021; Ibrahim et al., 2015).

In the case of two models, the Bayes factor quantifies
the evidence provided by the data, independent of the prior
plausibility of the models (cf. Eq. 1). Throughout this work
we adhere to Jeffreys’s simplicity postulate and take on a
position of equipoise: p(H0) = p(H1) = 1/2 (e.g., Jeffreys,
1950, p. 316). This means that the relative plausibility of
the competing models is determined solely by their relative
predictive performance for the observed data.

Running example

Let us illustrate the Bayesian equal-variance t test on the
data of Pleasant and Barclay (2018), who investigated why
people sometimes show “antisocial punishment” (Fig. 1).
Pleasant and Barclay (2018) predicted that antisocial pun-
ishment would occur more often in a “biological markets
condition” (i.e., where participants compete to play a trust
game with a third-party individual) than in a control condi-
tion. The third-party individual saw the average contributions
of the players in the previous round, and this may motivate
individuals to try andmake their competitors look bad by pre-
venting them from cooperating using antisocial punishment
(i.e., spending a part of one’s monetary reward to reduce
the monetary reward of another player). Pleasant and Bar-
clay (2018) compared the groups using an unequal-variance
t test and reported a statistically significant difference in the
expected direction, t(13.76) = 3.84, p = .002, d = 1.51.

We re-analyze the data using a Bayesian Student’s t test.
Specifically, the data are assumed to come from two nor-
mal distributions with equal variance. The Bayes factor BF10
quantifies the evidence that the data provide for the alterna-

6 TheCauchydistribution is a t-distributionwith one degree of freedom;
compared to the normal distribution, the Cauchy has fatter tails (see
Rouder et al. (2009) for a rationale). The first parameter of the Cauchy
indicates its median and the second parameter indicates its interquartile
range.
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Fig. 1 Social punishment in the control condition vs. the biological
markets condition. Data from Pleasant and Barclay (2018), available
at https://tinyurl.com/mwpuhpx8. Figure created in JASP: JASP Team,
(2022)

tive hypothesis H1 : δ ∼ Cauchy(0, 1/
√
2) over the null

hypothesis H1 : δ = 0. For the purposes of illustration, we
assume that Pleasant and Barclay (2018) analyzed their data
sequentially – updating their beliefs every time after observ-
ing a new pair of groups from each condition. The left panel
of Fig. 2 shows how the evidence for H1 accumulates over
time whereas the right panel shows the associated flow of
posterior probability forH1 andH0. After updating with all
the data we find strong evidence in favor of the alternative
hypothesis (BF10Student = 37.2) with an associated posterior
model probability for H1 of 37.2/38.2 ≈ 0.974 (assuming
unit prior odds, i.e., a prior probability of 1/2). Figure 3 visu-
alizes the prior and posterior distributions of the effect size δ

under H1. The posterior mean equals δ = 1.28, with a 95%
credible interval ranging from 0.41 to 2.20.

BayesianWelch t test

While the equal-variance or Student’s t test is often the
default approach in empirical papers, the variances are often
unequal in practice (Delacre et al., 2017).Herewefirst extend
the equal-variance case to the unequal-variance setting as out-
lined by Wetzels et al. (2009). The model specifications can
be found in Appendix B.

Prior distributions

In addition to the prior on the effect size, the BayesianWelch
t test also requires a suitable prior distribution on the “preci-
sion proportion” parameter ρ (Dablander et al., 2020). This
parameter ρ denotes the proportion of the precision of the
first group relative to the total precision, where precision is
defined as the inverse of the variance. For instance, if the vari-
ances of the groups are 2 and 4, respectively, then the associ-
ated precisions are 1/2 and 1/4 yielding a total precision of 3/4.
The corresponding ρ is then the ratio of 1/2 to 3/4, thus, 2/3.
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Fig. 2 Results from a sequential Bayesian equal-variance t test applied to the data from Pleasant and Barclay (2018). The left panel shows the
Bayes factor in favor of an effect and the right panel shows the probability of H1 and H0 as the data accumulate

One reason for using the precision parametrization is
that ρ ranges from 0 to 1, allowing the convenient speci-
fication of a beta prior distribution. Here we assign ρ an
informedBeta(1.5, 1.5) prior distribution inwhichmostmass
is concentrated around values with realistic proportions.7

Since precision proportion does not provide an immedi-
ate intuition about the differences between the groups, we
present the results in terms of the standard deviation ratio,
SDR = σ1/σ2, which relates to the precision proportion ρ

as SDR = √
ρ/(1−ρ). The informed Beta(1.5, 1.5) prior on ρ

induces a prior onSDR that assigns approximately 90%prob-
ability mass to standard deviation ratios between 1/3 and 3.

Running example (Continued)

Were-analyze the example from the previous sectionwith our
implementation of a Bayesian Welch t test. Figure 4 shows
how our implementation of the Welch Bayes factor and pos-
terior model probabilities progress sequentially. Using the
prior distributions outlined above, the result after updating
with all of the data indicates even stronger evidence in favor
of an effect (i.e., in favor of a difference between means,
BF10,Welch = 67.4, compared to BF10,Student = 37.2 from
the equal-variance test). The data are about 67.4 times more
likely under the alternative hypothesis than under the null
hypothesis, and this raises the probability forH1 from 0.5 to
67.4/68.4 = 0.99. The left panel of Fig. 5 shows the associ-
ated prior and posterior distributions of the effect size δ under
H1. The posterior mean equals δ = 1.36 with a 95% CI that
extends from 0.44 to 2.31. The right panel of Fig. 5 shows

7 Note that in order to fulfill additional desiderata, Dablander et al.
(2020) suggest the Beta(1/2, 1/2) distribution as a default prior on
the precision proportion. Here we use background knowledge about
experimental psychology (i.e., the knowledge that very extreme stan-
dard deviations ratios are less likely than smaller ratios) and adopt an
informed prior instead. The R package offers a variety of choices for
specifying the prior distributions.

the prior and posterior distributions of the standard devia-
tion ratio. The posterior mean of the standard deviation ratio
equals SDR = 3.20 with a 95% credible interval ranging
from 1.68 to 5.49; this confirms the visual impression from
Fig. 1 that the standard deviation of the intervention group is
substantially larger than that of the control group.

Model-averaged Bayesian (MB) t test

In practice, it is usually not known with certainty whether or
not the variances in the two groups are equal; in other words,
researchers need to make inferences about the equality of
means and the equality of variances at the same time.

A principled solution to this problem is provided by
Bayesian model-averaging (Hinne et al., 2020; Hoeting et
al., 1999), a methodology that avoids the standard two-
step procedure (i.e., first test for equality of variance, then
test for equality of means) by applying all pertinent models
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Fig. 3 Prior and posterior distribution for Cohen’s δ for the Bayesian
equal-variance t test under H1
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simultaneously, weighting their inferential impact with their
plausibility.

Box 2 shows how to extend Bayes factors to inclusion
Bayes factors when comparing sets of models. The inclusion
factor generalizes the Bayes factor by dividing the posterior
odds by the prior odds for sets of models rather than individ-
ual models.

InfoBox 2: Description of inclusion Bayes factors.

When comparing sets of hypotheses the Bayes factor generalizes
to the inclusion Bayes factor. To illustrate, consider the following
set of four hypotheses:
1. Hρ

0 : No difference in means and equal variances
2. Hρ

0 : No difference in means and unequal variances

3. Hρ
1 : Difference in means and equal variances

4. Hρ
1 : Difference in means and unequal variances

Suppose it is of interest to assess the evidence for a difference
in means across the four models. The relevant inclusion Bayes
factor is the change from prior to posterior inclusion odds, where
the odds contrast the twomodels that assume a difference in group
means (i.e., Hρ

1 & Hρ
1 ) against the two models that assume no

difference in group means (i.e.,Hρ
0 &Hρ

0 ). The inclusion Bayes
factor can be then written as

BF10
︸︷︷︸

Inclusion Bayes factor
for a difference in means

= P(Hρ
1 | data) + P(Hρ

1 | data)
P(Hρ

0 | data) + P(Hρ
0 | data)

︸ ︷︷ ︸

Posterior inclusion odds
for a difference in means

/

P(Hρ
1 ) + P(Hρ

1 )

P(Hρ
0 ) + P(Hρ

1 )
︸ ︷︷ ︸

Prior inclusion odds
for a difference in means

. (4)

For example, suppose the prior probabilities for each of our
hypotheses were 0.25 and the posterior probabilities are Hρ

0 =
0.05, Hρ

0 = 0.15, Hρ
1 = 0.25, and Hρ

1 = 0.55. The inclusion
Bayes factor is calculated as

BF10
︸ ︷︷ ︸

Inclusion Bayes factor
for a difference in means

= 0.25 + 0.55

0.05 + 0.15
︸ ︷︷ ︸

Posterior inclusion odds
for a difference in means

/

0.25 + 0.25

0.25 + 0.25
︸ ︷︷ ︸

Prior inclusion odds
for a difference in means

= 4. (5)

Inclusion Bayes factors therefore compare two sets of mod-
els rather than two individual models. The model sets can be
constructed such that the inclusion Bayes factor addresses a dif-
ferent question. In the example above, an inclusion Bayes factor
for a difference in variances is obtained by comparingHρ

0 &Hρ
1

againstHρ
0 &Hρ

1 . The prior inclusion odds equals 1, such that the
inclusionBayes factor equals (0.15+0.55)/(0.05+0.25) = 21/3.

When the data strongly favor equal-variance models, the
inclusion Bayes factor from InfoBox 2 approximates the
equal-variance t test; when the data strongly favor unequal-
variance models, the inclusion Bayes factor approximates
the unequal-variance t test. When the data do not provide
strong support concerning equality of variances, the inclu-
sion Bayes factor is affected both by equal-variance models
and by unequal-variance models.

Bayesian model-averaged parameter estimation allows us
to account for the uncertainty of eachmodel. Specifically, the
model-averaged posterior distribution is a weighted average
of the posterior distributions from each of the models in the
ensemble, with the mixing weight given by each model’s
posterior probability. Algorithmically, one may construct the
model-averaged posterior distribution as follows: (1) sample
a model in proportion to the posterior model probabilities;
(2) from the selected model, draw a parameter value from its
posterior distribution; (3) repeat steps 1 and 2 many times.

Figure 6 shows how the model space is partitioned in
our model-averaged Bayesian t test (MB t test). We see that
the prior model probability is divided equally across models
assuming equal and unequal means as well as across models
assuming equal and unequal variances. The prior distribu-
tions for the unequal-variance t test are the same as in the
previous section. The equal-variance models are defined by
ρ = 0.5. The prior distribution on the standardized mean
difference is again Cauchy(0, 1/

√
2).

Running example (Continued)

We now analyze the running example using the MB t test by
model-averaging over equal and unequal variances. The left
panel of Fig. 7 shows the inclusion Bayes factor for equal and
unequal variances, whereas the right panel of Fig. 7 tracks
the probability of the four different models over time. Specif-
ically, the left panel shows that the evidence for an effect (red
line) increases as the data accumulate, up to a final value of
BF10,MB = 39.5. This panel also shows that the evidence for
unequal variances (blue line) increases as the data accumu-
late, with a final value of (BFρρ,MB = 265.6).

The right panel of Fig. 7 shows that the final posterior
probability is highest for the model that assumes a differ-
ence in both means and variances (red line; Hρ

1 = 0.98); the
next best model assumes no difference in means but a differ-
ence in variances (green line) – it remains a non-negligible
competitor until almost all data have been observed.

Figure 8 shows the posterior model probabilities after all
the data are analyzed.We see thatmost of the posteriormodel
probability is concentrated on theHρ

1 model.
With respect to parameter estimation, the left panel of

Fig. 9 shows the model-averaged prior and posterior distri-
bution for the difference in means δ. The model-averaged
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Fig. 4 Results from a sequential Bayesian Welch t test applied to the data from Pleasant and Barclay (2018). The left panel shows the Bayes factor
in favor of an effect and the right panel shows the probability of H1 and H0 as the data accumulate

posterior mean equals δ = 1.32 and the central 95% CI
ranges from 0.00 to 2.31. The right panel of Fig. 9 shows the
model-averaged prior and posterior distributions of Cohen’s
δ and SDR across the models in which the parameters are
present. The model-averaged posterior mean equals SDR
= 2.84 and the central 95% CI ranges from 1.67 to 5.41,
suggesting a pronounced difference in standard deviations
between the two groups, consistent with the visual impres-
sion from Fig. 1. The standard deviation in the intervention
condition is about three times larger than that in the control
condition.

Robust model-averaged Bayesian (RoMB)
t test

A limitation of model-averaging over the four models in
the previous section is that all of these models use a nor-
mal likelihood. These models are therefore sensitive to rare
extreme observations. We mitigate this weakness by also
model-averaging over t-likelihoods, resulting in a Robust
Model-Averaged Bayesian (RoMB) t test. Figure 10 illus-
trates why extreme observations are more common under
t-distributions. The normal distribution (grey) hasmuch thin-
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Fig. 5 Prior and posterior distribution for Cohen’s δ and ρ for the Bayesian Welch t test under H1. The left panel shows the prior and posterior
distribution for δ under H1; the right panel shows the prior and posterior distribution for the standard deviation ratio (note the logarithmic scaling
of x-axis)

123



Psychonomic Bulletin & Review

Fig. 6 Default prior model probabilities of the model-averaged Bayesian t test. Marginal model probabilities are displayed on the nodes and
conditional model probabilities are displayed on the edges

ner tails than a t-distribution with three degrees of freedom
(black). Therefore, when using a normal likelihood, the
estimate will be strongly influenced by outliers compared
to the t-distribution, under which extreme observations are
much less surprising. In addition to accommodating outliers,
Bayesian model-averaging also allows a test for the presence
versus absence of outliers, namely an inclusion Bayes factor
that contrasts the set of models with a t-likelihood to the set
of models with a normal likelihood.

Figure 11 shows the prior model space. Compared to
the models from the previous section, the model space has
nowbeen extended by including t-likelihoodmodels.Model-
averaged inference is now based on 2 × 2 × 2 = 8 models

simultaneously and the prior model probability is distributed
equally across the different models.

Prior distributions

We again specify a Cauchy(0, 1/
√
2) prior distribution for

the effect size δ and a Beta(1.5, 1.5) prior distribution for the
precision proportion ρ. Inclusion of the t-likelihood requires
specification of one additional prior distribution – a prior
distribution for the parameter that indicates the degrees of
freedom of the t-distribution. We use an exponential distri-
bution with scale 1 shifted to the right by two (ν ∼ e−(x−2)),
resulting in a prior mean of three degrees of freedom and
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Fig. 7 Results froma sequentialmodel-averagedBayesian t test applied
to the data from Pleasant and Barclay (2018). The left panel shows the
inclusion Bayes factor in favor of a difference in means and in favor
of unequal variances. The right panel shows the probability of the four

different models as the data accumulate. Note that the last two Bayes
factors in favor of unequal variances are 147.33 and 256.00 and there-
fore outside the plotting range
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Fig. 8 Posterior model probabilities of the model-averaged Bayesian
t test applied to the data from Pleasant and Barclay (2018). Total prob-
abilities are displayed on the nodes and conditional probabilities on
the edges. H0 denotes the models assuming the null hypotheses to be

true, H1 denotes the models assuming the alternative hypotheses to be
true; Hρ denotes equal-variance models, and Hρ denotes the unequal-
variance models

interquartile range from 2.3 to 3.4 degrees of freedom.
By shifting the prior distribution, we ensure that the mean
and variance of the t-likelihood are always defined, which
is essential for the effect size parametrization in terms of
Cohen’s δ. The shifted exponential prior distribution assigns
most of the mass to low degrees of freedom, which makes it
sufficiently distinct from the models using the normal likeli-
hood to allow for a diagnostic test of outliers.

Running example (Continued)

We now illustrate model-averaging over t-likelihoods with
the example from the previous sections. The left panel of
Fig. 12 shows the sequential inclusion Bayes factors for a
difference in means (red line), unequal variances (blue line),
and outliers (green line). The evidence for the presence of a
difference in means has become somewhat stronger now that
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Fig. 9 Prior and posterior distribution for Cohen’s δ and ρ for the
Bayesian model-averaged t test. The left panel shows the conditional
prior and posterior distribution for δ assuming an effect to be present;

the right panel shows the conditional prior and posterior distribution
for the standard deviation ratio assuming unequal variance (note the
logarithmic scaling of x-axis)
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Fig. 10 The t-distribution has thicker tails than the normal distribution

t-likelihoods are also considered (BF10,RoMB = 51.2, up from
39.5 based on only normal-likelihood models). In addition,
there is absence of evidence regarding outliers (BFtn = 1.16)
and strong evidence for unequal variances (BFρρ = 16.9,
down from 265.6 based on only normal-likelihood models).
The corresponding posterior probabilities can be found in
Fig. 13.

Figure 14 shows the posterior distribution of the parame-
ters model-averaged across the models in which the param-
eters are present. The posterior mean for effect size is δ =
1.12, 95% CI [0.18, 2.19]. Note that the posterior mean is
somewhat smaller but more precise than the one obtained
without accounting for outliers. The model-averaged pos-

terior mean for SDR equals 2.75, 95% CI [1.00, 5.20]. For
the degrees of freedom, themodel-averaged posteriormedian
equals ν = 2.80, 95%CI [2.05 5.92]. Note that in this section
we tested a sharp point null hypothesis; however, researchers
who believe that the point null is never true can conduct per-
inull testing instead, as outlined in Appendix A (cf. Ly and
Wagenmakers, in press).

Sequential updating with the robust
model-averaged Bayesian t test

In order to incorporate domain expertise or knowledge
obtained from previous studies, researchers may wish to use
prior distributions that are more informed than the default
priors applied above (Gronau et al., 2020; Stefan et al., 2020,
2019). One straightforward example is that researchers who
conduct a replication study may wish to use the posterior
distribution from the original study as the prior distribution
for the analysis of the replication data. In this procedure,
known as the replication Bayes factor, usually only the prior
distribution will be updated to correspond to the posterior
distribution of the previous study (Verhagen & Wagenmak-
ers, 2014). In the model-averaging case, we need to extend
this by also updating the prior model-probabilities to cor-
respond to the posterior model probabilities of the original
study. Note that this is a key benefit of model-averaging – in
the model selection case, the sequential inference becomes
compromised if researchers need to switch between different

Fig. 11 Prior model probabilities of the robust model-averaged t test.
Marginalmodel probabilities are displayed on the nodes and conditional
model probabilities on the edges. H0 denotes the models assuming the
null hypotheses of equal means to be true, H1 denotes the models

assuming the alternative hypotheses to be true. Hρ denotes equal-
variance models,Hρ denotes the unequal-variance models.Ht denotes
themodels using t-likelihoods andHn denotes themodels using normal
likelihood
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Fig. 12 Results from a sequential robust model-averaged Bayesian
t test applied to the data from Pleasant and Barclay (2018). The left
panel shows the inclusion Bayes factor in favor of an effect, unequal

variances, and outliers. The right panel shows the probability of the
eight different models as the data accumulate

types of tests during the updating process because the evi-
dence for differentmodels has changed. Ly et al. (2019) show
that the replication Bayes factor can be obtained by dividing
the Bayes factor based on analyzing both data sets together
(original study and replication) by the Bayes factor from the
original study, which is the approach that we employ here (as
it facilitates updating on the nuisance priors on the variances
within each group, which cannot be specified manually in
our software implementation).

Running example

Assume a group of scientists conducted a replication of the
Pleasant and Barclay (2018) study using the RoMB t test.
They collected 20 people in the treatment group (mean =
12.35, SD = 12.18) and 20 people in the control group (mean
= 3.65, SD = 3.94).

Applying RoMB to the complete data set (the origi-
nal example and this replication), we find BF10,RoMB =

Fig. 13 Posterior model probabilities of the robust model-averaged
Bayesian t test applied to the data from Pleasant and Barclay (2018).
Total probabilities are displayed on the nodes and conditional probabil-
ities on the edges.H0 denotes the models assuming the null hypotheses

to be true, H1 denotes the models assuming the alternative hypotheses
to be true.Hρ denotes equal-variance models,Hρ denotes the unequal-
variance models. Ht denotes the models using t-likelihoods and Hn

denotes the models using normal likelihood
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Fig. 14 Prior and posterior distribution for Cohen’s δ, ρ, and t for the robust model-averaged Bayesian t test. All panels show the conditional prior
and posterior distributions assuming the parameter to be present

1135.2, BFρρ,RoMB = 30370.9, and BFνν,RoMB = 0.187.
Thus, the replication Bayes factors from evidence updat-
ing (BFcombined/BForiginal) are BF10,rep = 22.2 (1135.2/51.2),
BFρρ,rep = 1797.1 (30370.9/16.9), and BFνν,rep = 0.161
(0.187/1.16). In other words, we would conclude that the
data of the replication study are more in line with the dif-
ference in means being the same as in the first study then
with the null hypothesis of no difference. For the equality of
variances, we also conclude that the data is more in line with
the results of the first study than with the null of equal vari-
ances. However, for the outliers, we see stronger evidence
for the absence of outliers than for the alternative defined by
the posterior of the first study.

The total sample size (original study and replication study)
model-averaged estimates are δ = 1.07, 95%CI [0.48, 1.64],
ρ = 0.90, 95% CI [0.81, 0.95], and median ν = ∞, 95% CI
[2.57,∞]. These estimates underscore the results from the
Bayes factor analysis: the data indicates a large difference
in means and unequal variances but absence of outliers. In
conclusion, the hypothetical replication study would support
the original findings about the presence of the effect and
unequal variances, and additionally provide evidence for the
absence of outliers.

Additional example: impact of accuracy
nudge interventions on discernment

While the model-averaged Bayesian t tests allow for more
rich and robust inferences on the running example of Pleasant
and Barclay (2018), the conclusions regarding the mean dif-
ference remained similar regardless of the type of test used.
In this section, we introduce an additional example, which
underscores how the new model-averaged t tests can lead
to substantially different conclusions for widely used behav-
ioral interventions. Roozenbeek et al. (2021) conducted a
study to test the effectiveness of an accuracy nudge inter-
vention. This study was a direct preregistered replication of
Pennycook et al. (2020).8 The intervention involved asking

8 This paper was a part of the project Systematizing Confidence in
Open Research and Evidence (SCORE, Alipourfard et al., 2021), a
large project aiming to assess the credibility of social science findings
that involves validating the preregistration of contributing studies, thus
diminishing the scope for selective reporting and other biases.
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participants the question, “To the best of your knowledge, is
the above headline accurate?”.

Roozenbeek et al. (2021) tested whether this nudge
increased discernment, which is defined as the difference
in sharing intentions for real versus false headlines. In
other words, people with high discernment can differenti-
ate between true and false headlines well, while those with
low discernment struggle to do so. Each participant rated
15 real and 15 false headlines related to COVID-19 in a
random order and was asked the following question: “If
you were to see the above on social media, how likely
would you be to share it?” (from extremely unlikely to
extremely likely on a six-point Likert scale). Roozenbeek
et al. (2021) then compared the accuracy nudge group to
a simple control group using a participant-level t test of
the difference score between sharing intentions for true vs.
false headlines (i.e., discernment). This “yielded a significant
(noncorrected) effect for discernment (treatment: M = 0.26,
control: M = 0.19, mean difference: −0.075, 95%CI =
[−0.15,−0.0019]), t(1581) = −2.013, p = .044, d =
−0.10, 95%CI = [−0.20,−0.0025]. A Bayesian t test
revealed a Bayes factor (BF) indicating that the data are
approximately 1.7 times more likely to occur under the focal
hypothesis than under the null hypothesis (BF10 = 1.705).”
(Roozenbeek et al., 2021, p.173). Roozenbeek et al. (2021)
use a very tight Cauchy(0, 0.05) prior incorporating their
expectation of small effects based on the target study. We
first reanalyze the paper with the default priors of our t test
and then consider how the results are affected by switching
to the informed prior used by Roozenbeek et al. (2021).

The model-averaged Bayesian t test (i.e., only averaging
over the equal and unequal variance versions of the test)
finds weak or anecdotal evidence against an effect, BF10,MB

= 0.419, and strong evidence for unequal variances BFρρ,MB

= 62.1, a result similar to Roozenbeek et al. (2021). The
model-averaged estimates are δ = 0.03, 95%CI [0.00, 0.17],
ρ = 0.57, 95%CI [0.52, 0.60] corresponding to a minuscule
effect and modest inequality in variances.

Figure 15 visualizes the discernment scores in each group
with overlaying normal (dashed lines) and t-distribution (full
lines) from the posterior means of models assuming the pres-
ence of the effect and unequal variances. The visualization of
the fit indicates that the t-distributions can accommodate the
data much better than the normal distributions, which does
not capture the data in the tails well. We therefore next revisit
the data using the robust version of our t test.9

9 Even after applying the t-distributions, there is still excess
kurtosis/zero-inflation that could bemodeled in future extensions incor-
porating a double-exponential/zero-inflated model.

The robust version of the t test finds strong evidence for
the absence of a mean difference (BF10,RoMB = 0.036), weak
evidence against unequal variances (BFρρ,RoMB = 0.529),
and strong evidence for outliers (BFνν,RoMB = 1.4 × 1038).
The model-averaged effect size estimate shrinks to zero,
δ = 0.00, 95% CI [0.00, 0.00], and the inequality in vari-
ances almost disappears ρ = 0.52, 95% CI [0.50, 0.59].
The degrees of freedom approach the lower limit, median
ν = 2.52, 95% CI [2.12, 3.09], indicating that the distri-
butions have very heavy tails. In other words, when taking
outliers into account, the evidence for a mean difference
between conditions changes from weak evidence against an
effect to strong evidence against an effect.

Finally, when we use the informed Cauchy(0, 0.05) prior
by Roozenbeek et al. (2021) we find weak evidence in
favor of the null hypothesis, BF10,RoMB = 0.399, (in con-
trast to Roozenbeek et al., 2021 who found weak evidence
for the alternative hypothesis even under same prior distribu-
tions), weak evidence against unequal variances BFρρ,RoMB

= 0.547, and still extreme evidence for outliers BFνν,RoMB =
1.0 × 1038). The model-averaged estimates are δ = 0.00,
95% CI [−0.02, 0.05], ρ = 0.52, 95% CI [0.50, 0.59], and
median ν = 2.53, 95% CI [2.14, 3.10].

The example shows how model-averaging over t-likeli-
hoods can substantially change the conclusions in typi-
cal psychology experiments when the effects are driven by
extreme values (Table 1). This underscores the importance
of relying on the RoMB version of the t test for most applica-
tions as it will substantially increase robustnesswhen outliers
are present but come at little cost when they are absent (as
in this case, the most weight will be given to the models
assuming the absence of outliers). Note that we do not take
this example to refute the effectiveness of accuracy nudges
in general, as this would require a broader reanalysis of all
relevant papers (e.g., Martel et al., 2024; Pennycook et al.,
2020) using meta-analytic techniques, which is outside the
scope of the current manuscript.

Simulation

To assess parameter recovery and the benefits of the model-
averaging methods, we evaluated the performance of the
proposed methods via a simulation study. We orthogonally
varied the following four factors:

• Effect size (Cohen’s δ): 0, 0.3, 0.5;
• Standard deviation ratio: 1, 1.5, 2;
• Presence of outliers by simulating from a normal distri-
bution (i.e., no outliers) or from Student’s t-distribution
with ν = {10, 5} degrees of freedom;

• Total sample size: 20, 50, 100.
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Fig. 15 Discernment scores for the accuracy nudge treatment and control condition are better captured by a t-distribution than a normal distribution.
t-distributions are displayed as full lines and normal distributions as dashed lines. Data from Roozenbeek et al. (2021)

• Sample size allocation: 1/2, 1, 2

Each setting in this 3 × 3 × 3 × 3 × 3 design was used
to simulate 1,000 fictitious experiments. We compared the
performance of the following four tests, outlined above: (1)
the Bayesian version of Student’s t test; (2) the Bayesian
version of the Welch t test; (3) the model-averaged ver-
sion of t test that incorporates uncertainty about equality of
variances (MB t test); and (4) the model-averaged version
that further incorporates uncertainty about outliers (RoMB
t test). We evaluate the impact of model specification on
the Bayes factors in terms of the evidence distortion fac-
tor. The evidence distortion factor allows us to evaluate
the change in evidence from applying an incorrect model
(i.e., a model with a likelihood that does not correspond
to the data-generating process). For example, suppose data
were simulated from a model corresponding to Student’s
t test. If we were to use Welch t test, the relative evi-
dence distortion factor (i.e., EDF(Welch/Student)) would
correspond to EDF = BF10, Welch/BF10, Student. Similarly, the evi-
dence distortion factor EDF(MB/Student) = BF10,MB/BF10,Student

measure the distortion of evidence if a normal likelihood

equal/unequal model-averaged t test is used instead. Conse-
quently, using the correct test for a given data set corresponds
to an evidence distortion factor of 1, i.e., no evidence dis-
tortion. For brevity, we discuss results from a few selected
conditions; a detailed summary of the complete factorial
design can be reproduced at https://osf.io/mwkp6/.

Equal sample sizes

Figure 16 shows a pronounced effect on the evidence dis-
tortion factor for Student’s, Welch’s, and MB t test in the
presence of outliers for equal sample sizes in each group
(panel C1 and C2). Specifically, both Student’s and Welch’s
versions of the Bayesian t test tend to overestimate the
evidence in favor of the alternative hypothesis when the
variances are unequal, outliers are present, and there is no
difference in the means (C1); in addition, these versions
underestimate the evidence for the alternative hypothesis
when the variances are unequal, outliers are present, and
there is a difference in the means (C2). In other words, when
outliers are present but unaccounted for, this makes it more
difficult to identify the correct model for the group means.

Table 1 Frequentist and Bayesian t tests can lead to different conclusions

t test Prior Result Conclusion

(Frequentist) Welch’s Not applicable p = 0.044 Reject H0

Bayesian model-averaged Default BF10,MB = 0.419 Anecdotal evidence for H0

Robust Bayesian model-averaged Default BF10,RoMB = 0.036 Strong evidence for H0

Bayesian model-averaged Informed BF10,MB = 1.70 Anecdotal evidence for H1

Robust Bayesian model-averaged Informed BF10,RoMB = 0.399 Anecdotal evidence for H0

Note. Data from Roozenbeek et al. (2021). The default prior corresponds to δ ∼ Cauchy(0, 1/
√

(2)), the informed prior corresponds to δ ∼
Cauchy(0, 0.05)
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Fig. 16 Evidence distortion of the Bayes factor for the difference in
means for different methods and conditions under equal sample sizes.
The four methods are the Student’s t test (green), the Welch t test (yel-
low), a model-averaged version of t test that combines Student’s and
Welch’s t test (MB t test; blue) and a version that also incorporates

uncertainty about the outliers (RoMB t test; red). Whenever the dif-
ference in means is present (second row) then δ = 0.5. Whenever the
variances are unequal (columns 2 and 3) SDR is 2, whenever the data
are simulated from a t-distribution (column 3) this was done with ν = 5
degrees of freedom

Moreover, the underestimation of evidence was rapidly
increasing with sample size as can be seen by the increasing
distortion with increasing sample size in C2. However, even
the model-averaged test occasionally leads to overestimation
or underestimation in comparison to the true model. The rea-
son is that sometimeswhen simulating from the t-likelihoods,
we do not actually observe any extreme observations (i.e., the

actual data is better described by normal), in which case the
RoMB does not select the t-likelihood models. In the cases
reported on the OSF, we see that while the model-averaged
version of the t test produced slightly more variable esti-
mates, it was always centered around the correct value and
provided appropriate evidence assessment even in conditions
with unequal variances or outliers.
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In line with previous research (Lumley et al., 2002) the
difference between the methods in terms of the posterior
mean effect size was relatively modest. (Appendix C). Over-
all, averaging over t-likelihoods comeswith small costswhen
outliers are absent, but with large gains in particular for test-
ing when outliers are present.

Unequal sample sizes

Figure 17 shows how unequal sample sizes can further exac-
erbate the evidence distortion factor when Student’s t test is
used. Specifically, we can see that when sample sizes and
variances are unequal, the Bayesian Student’s t test shows
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Fig. 17 Evidence distortion of the Bayes factor for the difference in
means for differentmethods and conditions under unequal sample sizes.
The four methods are the Student’s t test (green), theWelch’s t test (yel-
low), a model-averaged version of t test that combines Student’s and
Welch’s t test (MB t test; blue) and a version that also incorporates

uncertainty about the outliers (RoMB t test; red). Whenever the dif-
ference in means is present (second row) then δ = 0.5. Whenever the
variances are unequal (columns 2 and 3) SDR is 2, whenever the data
are simulated from a t-distribution (column 3) this was done with ν = 5
degrees of freedom.
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much stronger evidence distortion than under equal sample
sizes (panel B2). However, as in Fig. 16, applying the RoMB
results in only minimally increased variability when sample
sizes are equal, or no outliers are present (columns A and B)
but has a substantial benefit when outliers are present (col-
umn C). Appendix D shows the same Figure when the larger
variance is in the smaller group. This shows a similar pat-
tern, however, in the presence of an effect, the inflation is
inverted with the Student’s t test overestimating rather than
underestimating the evidence. The next section analyses the
difference in evidence between Welch’s and Student’s t test
for a wider range of effect sizes and variance ratios.

Comparing Student’s andWelch’s t tests
under unequal sample sizes for a range of
effect sizes and standard deviation ratios

This section highlights further how Student andWelch t tests
can indicate considerably different evidence for the alterna-
tive under unequal sample sizes. In particular, we show how
the evidence differs between Bayesian Student’s t test and
Bayesian Welch’s t test for different observed mean differ-
ences and standard deviation ratios.

Both Bayesian Student’s t test and BayesianWelch’s t test
can be computed from summary statistics: the samplemeans,
standard deviations, and sample size. This allows researchers
to conveniently compute the evidence for a range of possible
observed mean differences and variance ratios under each
test and compare the results.While both tests perform almost
identically when sample sizes are equal, the evidence in favor
of the alternative vs the null hypothesis can differ drastically
when the sample sizes differ.

Figure 18 visualizes the evidence (log scaled) in favor of
the alternative hypothesis from the Bayesian Student t test
(first row left), BayesianWelch t test (first row right), and the
ratio of evidence from the two tests (log scaled, second row
left), under a range of mean differences (MD, x-axis), stan-
dard deviation ratios (SDR, y axis), and with unequal sample
sizes (n1 = 33, n2 = 66). We fix the grand mean (μ) to zero
and the grand standard deviation (σ ) to one. In the figure,
positive mean difference and standard deviation ratios larger
than one correspond to larger means and standard deviations
in the larger sample group, i.e., μ1 = μ − 0.5MD, μ2 =
μ + 0.5MD, σ1 =

√

(2σ 2SDR−2/(1/SDR + 1)), σ2 =
√

(2 ∗ σ 2 ∗ SDR2/(SDR2 + 1)).
The Bayesian Welch t test (the upper right panel), i.e., the

correct test in cases when the true standard deviation ratio
differs from one, shows the evidence in favor of the alterna-
tive hypothesis is larger at the same mean differences with

increasing standard deviation in the larger group (the upper
half of the figure) in comparison to increasing standard devi-
ation in the smaller group. This is the appropriate behavior
as larger sample size in the more variable group increases
our certainty about differences between the two groups more
than larger sample size in the less variable group.

The Bayesian Student t test (the upper left panel) shows
exactly the opposite pattern – the evidence in favor of the
alternative hypothesis is smaller at the samemean differences
with increasing standard deviation in the larger group (the
upper half of the figure) in comparison to increasing standard
deviation in the smaller group. This inappropriate behavior
results from the larger sample size in the less variable group
artificially increasing certainty about the differences between
the two groups if the difference in the variances between the
groups is ignored.

The bottom right panel with the difference between the
evidence from the Bayesian Student’s t test and Bayesian
Welch’s t test highlights that the evidence can increase more
than hundred-fold when considering mean differences of
about 1 standard deviation ratios of 5, but even smaller mean
differences and standard deviation ratio can easily lead to
doubling of the evidence.

Concluding comments

We introduced a model-averaged Bayesian t test that con-
sists of the following ensemble of eight models: (1) models
assuming a difference in group means is absent vs. present;
(2) models assuming between-group variances are equal vs.
unequal; and (3) models assuming likelihoods are normal
vs. based on the t-distribution. A key advantage of this
methodology is that it obviates the need to test assump-
tions sequentially and then base inference on a single model
selected in an all-or-none fashion. With the model-averaged
Bayesian t test, researchers can focus their attention on the
substantive research questions rather than the statistical anal-
ysis plan, as the datawill guide the inference to be basedmost
strongly on the models that predict the data best. Our simula-
tions show that the benefits ofmodel-averaging are especially
pronounced for Bayesian testing, whereas the improvements
in performance for estimation are relatively modest.

Our simulation study and the example ofRoozenbeek et al.
(2021) show that for realistic settings, choosing the wrong
type of t test can lead to a sizeable distortion in evidence.
Given that using the RoMB t test usually comes at little cost
when a simpler model describes that data best but has sub-
stantial benefits for testingwhenunequal variances or outliers
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Fig. 18 Comparison of Bayes factors from Bayesian Student’s t test
and Bayesian Welch t test on a sample with unequal sample size. Top
left: Bayesian Student’s t test; top right: Bayesian Welch t test; bottom

left: ratio of evidence from the two tests (log scaled). Positive mean
difference and standard deviation ratios larger than one correspond to
larger means and standard deviations in the larger sample group

are present, we believe it is promising tool in the toolbox of
approaches for comparing independent group means.

The ensemble method is less dependent on particular
assumptions (e.g., equality of variances, normal likelihood)
than any particular model in the ensemble; nevertheless, the
ensemble method is not assumption-free. Specifically, the

method assumes that at least one of the specified models
provides an adequate description of the data. Sometimes
this might not be the case. Especially the t-likelihood might
not be able to capture many of the ways in which outliers
operate in practice. First, the t-likelihood assumes that out-
liers are symmetric. Second, the maximum spread of the
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t-distribution might be too small to accommodate more vari-
able data-generating processes, such as discrete mixtures of
distributions. While we believe that even in this case the
t-likelihood will still provide an improvement over simply
using a normal likelihood, it is important to also consider non-
parametric or rank tests (e.g., MacFarland & Yates, 2016).

In addition, our test is not suitable for all data types. Our
t test is based on a linear link function with normal likeli-
hood. Different data types require different link or likelihood
functions. For example, proportion data may be analyzed
with Bayesian binomial test or contingency tables (Morey
& Rouder, 2018; Wagenmakers & Grünwald, 2006; Jamil
et al., 2017) and probability judgments using a beta model
(Ferrari & Cribari-Neto, 2004). In addition, Likert scale data
may be better analyzed with cumulative link models specifi-
cally designed for such data (McElreath, 2020; Bürkner and
Vuorre, 2019, pp. 394–410) rather thanwith anyof themodel-
averaged Bayesian t tests presented in this manuscript.

Onepragmatic disadvantageofBayesianmodel-averaging
is the increased computation time. However, the time penalty
is not prohibitive; moreover, for model-averaging across
models with normal likelihood the computation time is inde-
pendent of sample size (since the models can be estimated
with summary statistics). With t-likelihoods the estimation
time does increase with sample size; however, the time
penalty remains modest.10

The Bayesian model-averaged t test can be expanded in
several ways. For example, lognormal and gamma likelihood
functions could be considered in case of positively bounded
values. The set-up could be also generalized from two-sample
to multigroup settings, allowing researchers to draw robust
and reliable inference for ANOVA-like problems under dif-
ferences in variances or in the presence of outliers.

To facilitate the application of the proposed methodology
in empirical practice we implemented the robust Bayesian
t test in the RoBTT R package with accompanying vignettes
as well as the graphical user interface statistical software
JASP (JASP Team, 2022). We also provide a tutorial video
for the JASP implementation at https://www.youtube.com/
watch?v=EcuzGTIcorQ

We do not subscribe to the sentiment that all interesting
scientific questions in psychology can be broken down into
two groups and a Robust Bayesian model-averaged t test;
nevertheless, the comparison of two group means represents
one of the oldest and most popular inferential scenarios,
and we hope that, when compared to what is now standard

10 For data sets with 100–1000 observations, it takes approximately
1–8 min to estimate all 8 models on a single processor core and running
4 Markov chains for 10,000 iterations each.

practice, the methodology proposed here can help experi-
mental psychologists draw conclusions that are richer and
more robust.

Open practices and data availability

All data andmaterials to reproduce the analyses in this article
are available at https://osf.io/mwkp6/.

Appendix A Directional perinull testing

The focus of the main text is on the comparison of a null
hypothesis in which the difference in means is postulated to
be exactly zero (i.e., a point null or sharp hypothesis) ver-
sus an alternative hypothesis in which the effect is assigned
a continuous prior distribution. However, small deviations
from the null hypothesis are often considered trivial or unin-
teresting (e.g., Gelman andCarlin, 2014;Good, 1967;Meehl,
1978; Orben and Lakens, 2020). Moreover, many statisti-
cians view the point-null hypothesis as certainly false, and
use it only as a mathematically convenient approximation.
For these reasons it has been advocated to replace the point
null hypothesis with a perinull hypothesis which assigns the
difference inmeans a continuous distribution tightly centered
around the point null value (e.g., Berger and Sellke, 1987;
Cornfield, 1966; George and McCulloch, 1993). This can
be done smoothly within our t test framework. In addition,
we wish to incorporate the directional prediction of Pleas-
ant and Barclay (2018) by using one-sided prior distribution.
Consequently; we may then specify a one-sided hypothesis
test against a perinull hypothesis. We specify the perinull
hypothesis via a Normal+(0, 0.01) prior distribution on the
Cohen’s δ scale, which gives 95% credence to values within
a ±0.02 interval, and compare it to the one-sided hypothe-
sis specified by truncating the default Cauchy hypothesis at
zero, Cauchy+(0, 1/

√
2).

Comparing a directional alternative hypothesis to a per-
inull hypothesis, the results show strong evidence for a
difference in means BF+0 = 99.91. In addition, there still
weak evidence for outliers BFtn = 1.18 and strong evidence
for unequal variances BFρρ = 16.85.

Figure 19visualizes themodel-averaged estimate obtained
by weighing the individual model estimates based on their
posterior probability. Overall, we find a model-averaged
mean effect size estimate δ = 1.12, 95% CI [0.24, 2.18],
a model-averaged standard deviation ratio estimate SDR =
2.75, 95% CI [1.00, 5.16], and a model-averaged median
degrees of freedom estimate t = 2.79, 95% CI [2.06 5.61].
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Appendix BModel specification

For the unequal-variance t test we define H1,1 as the model
with normal likelihood, unequal variances and unequal
means. The normal likelihood implies that

x1 ∼ Normal(μ + α/2, σ 2
1 ) (6)

x2 ∼ Normal(μ − α/2, σ 2
2 ) (7)

whereμ is interpreted as grant mean, α a difference in means
as suggested by Wetzels et al. (2009). For the variances; we
use the parametrization from Dablander et al. (2020). This
is based on the precisions τ1 = 2ρτ̄ and τ2 = 2(1 − ρ)τ̄

and the average precision is τ̄ = (τ1 + τ2)/2. Defining the
“common” variance by σ 2 = 1/τ̄ and setting σ 2

k = 1/τk for
k = 1, 2, we then get the parametrization

σ 2
1 = σ 2

2ρ
σ 2
2 = σ 2

2(1 − ρ)
(8)

α = δ

√

σ 2
1

n1
n1+n2

+ σ 2
2

n2
n1+n2

(9)

The grant mean μ and common variance σ 2 are nuisance,
whereas the standardized effect size δ and the precision pro-
portion ρ are test-relevant parameters. For a Bayes factor we
need to set priors on the free parameters. Whenever δ or ρ is
free to vary, we then choose

π(μ, σ 2) ∝ 1

σ 2 (10)

π(δ) = Cauchy(0,
1√
2
) (11)

π(ρ) = Beta(1.5, 1.5) (12)

Note that for the unequal variances normal likelihood
modelH0,1, we set δ = 0 and it cannot vary freely anymore.
Hence, for H0,1 only the priors on μ, σ 2 and ρ suffice.
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Student-t likelihood

We replace the normal likelihood models Eqs. 6 and 7 with

x1 ∼ StudentT(μt = μ + α/2, σt = σ 2
1√

ν/(ν − 2)
) (13)

x2 ∼ StudentT(μt = μ − α/2, σt = σ 2
2√

ν/(ν − 2)
) (14)

where μt represents the location and σt the scale of the
location-scaled t-distribution.

For the Bayes factor involving t-likelihood the additional
free parameter ν also needs a prior distribution for which we
choose

π(ν) = exp(ν − 2) (15)

Appendix C Simulation results for posterior
RMSE

Figure 20 visualizes the RMSE of the posterior distribu-
tion for δ across three different conditions: (A) difference
in means, with Cohen’s δ = 0.5; (B) difference in means and
unequal varianceswith anSDRof 2; and (C) and difference in
means, unequal variances, and outliers with the data sampled
from a t-distributionwith 5 degrees of freedom.All three ver-

sions of the t test produce comparable effect sizes estimates
for the first two scenarios; differences in variances should
not affect the posterior distribution since the mean difference
of two normal distributions is independent of the variances
of the two normal distributions. However, we see that the
outliers in the third condition impact the RMSE for the
posterior distribution from the Bayesian version of the Stu-
dent and Welch t test slightly more than the model-averaged
version of the t test. In other words, model-averaging over t-
likelihoods comes at little cost when there are no outliers but
increases accuracywhen outliers are present. The reasonwhy
the RoMB models sometimes outperform the simpler mod-
els even when variances are equal and there are no outliers is
related to the regularizingproperties of the prior distributions.
In cases,where themaximum likelihood estimate forCohen’s
d is larger than the true Cohen’s d value, the estimates will
be shrunken somewhat more towards zero (i.e., the correct
value). Therefore, the t-likelihood models can outperform
the other models even when they capture the data generat-
ing process somewhat less well; however, this superiority is
very small and dependent on the regularizing properties of
the prior distribution.

Appendix D Evidence distortion when the
larger variance is in the smaller group
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Fig. 20 Root mean squared error (RMSE with 95% CI) of the pos-
terior δ for different methods and conditions. The root mean squared
error (and 95% CI) for the posterior distributions of the effect size δ (y-
axis) across samples sizes (x-axis) for different version of the Bayesian
t tests (in color); Student-t test (green), Welch t test (yellow), and the
model-averaged version of t test that combines Student’s and Welch
t test (MB; blue) and also incorporates uncertainty about the outliers

(RoBM; red). Panel A corresponds to a condition with an effect (δ =
0.5) equal-variances and no outliers, panel B corresponds to a condition
with an effect (δ = 0.5), unequal variances (SDR = 2), and the absence
of outliers, and Panel C corresponds to a condition with the effect (δ =
0.5), unequal variances (standard deviation ratio = 2), and outliers (data
simulated from a Student-t distribution with t = 5 degrees of freedom)
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Fig. 21 The four methods are the Student’s-t test (green), the Welch
t test (yellow), a model-averaged version of t test that combines Stu-
dent’s and Welch t test (MB t test; blue) and a version that also
incorporates uncertainty about the outliers (RoMB t test; red). When-

ever the difference in means is present (second row) then δ = 0.5.
Whenever the variances are unequal (columns 2 and 3) SDR is 2, when-
ever the data are simulated from a t-distribution (column 3) this was
done with ν = 5 degrees of freedom
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