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Data-driven discovery of mechanical models
directly from MRI spectral data

D.G.J. Heesterbeek, M.H.C. van Riel, T. van Leeuwen, C.A.T. van den Berg, A. Sbrizzi

Abstract—Finding interpretable biomechanical models can pro-
vide insight into the functionality of organs with regard to
physiology and disease. However, identifying broadly applica-
ble dynamical models for in vivo tissue remains challenging.
In this proof of concept study we propose a reconstruction
framework for data-driven discovery of dynamical models from
experimentally obtained undersampled MRI spectral data. The
method makes use of the previously developed spectro-dynamic
framework which allows for reconstruction of displacement fields
at high spatial and temporal resolution required for model
identification. The proposed framework combines this method
with data-driven discovery of interpretable models using Sparse
Identification of Non-linear Dynamics (SINDy). The design of
the reconstruction algorithm is such that a symbiotic relation
between the reconstruction of the displacement fields and the
model identification is created. Our method does not rely on
periodicity of the motion. It is successfully validated using
spectral data of a dynamic phantom gathered on a clinical
MRI scanner. The dynamic phantom is programmed to perform
motion adhering to 5 different (non-linear) ordinary differential
equations. The proposed framework performed better than a
2-step approach where the displacement fields were first recon-
structed from the undersampled data without any information
on the model, followed by data-driven discovery of the model
using the reconstructed displacement fields. This study serves as
a first step in the direction of data-driven discovery of in vivo
models.

Index Terms—Data-driven discovery, Dynamic system identi-
fication, Magnetic resonance imaging, Spectro-dynamic MRI,
Ordinary differential equations.

I. INTRODUCTION

DERIVING models from first principles is generally
prohibitively challenging for non-linear biomechanical

systems. Data-driven discovery (DDD) has recently emerged
as an attractive method for identifying interpretable closed
form models from spatiotemporal measurements of complex
dynamic systems [1]–[3]. The seminal work by Brunton et
al. [4]–[6] introduces a new approach to DDD using sparse
regression to determine the underlying non-linear dynamical
models directly from time-series data. This method for Sparse
Identification of Non-linear Dynamics (SINDy) leverages the
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fact that most physical systems can be described with only
a few terms making the governing equations sparse in a
high-dimensional non-linear function space. Although the
robustness of the method has been extensively researched
using simulated data with added Gaussian noise [7], [8], its
effectiveness using real measurement data is less well explored
[9].

Our goal is to use SINDy to identify dynamical models directly
from experimentally obtained undersampled spectral data from
the MRI scanner. MRI scanners, that naturally gather data in
the spectral domain (k-space), provide excellent soft tissue
contrast without the use of harmful radiation. However, this
modality generally lacks temporal resolution at reasonable
spatial resolutions required for in vivo imaging. This severely
complicates the dynamical analysis, restricting the motion
analysis on physiological time scales [10].

The spectral motion model, which has been presented as part
of the recently developed Spectro-dynamic MRI framework
[11], is leveraged to overcome these problems. This framework
enables us to distill displacement fields with a high spa-
tiotemporal resolution directly from k-space data. By working
directly in k-space, the intermediate step of reconstructing time
series images (the spatial domain approach) is circumvented.
This allows for the use of undersampled k-space data, which
makes real-time imaging with high temporal resolution pos-
sible. Unlike gated approaches to dynamic MRI, where the
motion is binned into different states [12], this approach does
not rely on periodicity of the dynamics. Coupling the recently
introduced spectral motion model with SINDy allows for data-
driven discovery of non-linear models with high temporal
resolution, directly from undersampled k-space in an iterative
manner.

Using this approach to identify reduced order dynamical mod-
els for in vivo soft tissue holds great promise. Reduced order
models are often applied to describe complex biophysical
processes as they significantly reduce the system complexity
[13]. Future applications of this technique for in vivo tissue
include the identification of reduced order models that describe
cardiac motion dynamics which are essential for understanding
the functionality of the cardiac system or stomach motility
for understanding an important component of the digestive
process.

The contribution of this proof of concept study is that we
identify the governing equations directly from experimentally
obtained undersampled k-space data from a dynamic phantom,
acquired using a clinical MRI system. This controlled envi-
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ronment allows us to test and thoroughly validate the method
using a series of dynamics of increasing complexity. These
models include forced non-linear systems and non-linear Van
der Pol oscillators previously employed to describe cardiac
time series data [14].

The remainder of the paper is organized as follows. In section
II the theory behind our approach is presented, followed by
an outline of the methods in section III in which the set-up of
the MRI experiments is discussed together with the numerical
implementation of the inverse problem. The main results are
presented in section IV and include a comparison with a more
direct 2-step approach. Open problems and possible next steps
are discussed in section V, ending with a conclusion in section
VI.

II. THEORY

To provide necessary background, the building blocks of our
data-driven discovery methodology are reviewed. These in-
clude the SINDy framework [4], the employed spectral motion
model [11] and the data consistency model [15]. Afterwards,
the proposed system identification method from k-space data
is introduced.

A. Data-driven discovery

Data-driven discovery as introduced by Brunton et al. [4] aims
to distill the governing equations directly from time-series data
of a dynamic process. For mechanical problems it is sensible to
start with the general form of Newton’s second law of motion:

üj =
1

mobj
Fj(uj , u̇j , f

ext
j , t), (1)

where uj is the displacement in the j’th dimension, u̇j and
üj are the first and second order time derivatives of this
displacement respectively, mobj is the object’s mass, Fj is
a (possibly non-linear) unknown forcing term inherent to
the system in the j’th dimension and f ext

j is a known mass
normalized external forcing term in the j’th dimension. A
list of the symbols used in this section is presented in table
I. The goal of DDD is to find a closed form expression for
Fj from noisy measurements on the displacement uj that are
assumed to be known. The measured displacement data for
one dimension are represented as a vector in time:

u =




u(t1)
u(t2)

...
u(tT )


 , (2)

for T measurements. Here, the subscript j is left out for
increased readability. The same temporal discretization is
performed on the (known) mass normalized external forcing,
resulting in the vector f ext. To find the closed form expression
for F , a finite set of candidate basis operators is introduced
that F might comprise of. Using C basis operators, a T × C
matrix B is defined. An example of a matrix with 5 candidate
basis operators is:

B(u) =
[
u, u2, Dtu, (Dtu)

2, u⊙Dtu
]
, (3)

where Dt is the temporal first order finite difference operator
and ⊙ is used for pointwise multiplication. All exponents
in the context of matrix B(u) are to be understood in the
pointwise sense as well. These 5 candidate basis operators are
a subset of the 17 monomials used in the actual reconstruction
which are described in section III-C. Note that matrix B from
equation (3) can contain any non-linear operator. Using the
measured displacement data u, we can describe the dynamic
system as follows:

Dttu = B(u)ξ + f ext + η, (4)

which is a discretized version of (1). Here Dtt is the temporal
second order finite difference operator, ξ the C-dimensional
vector selecting and weighting the active basis operators and η
a vector containing noise. Here noise is to be understood in the
broader sense and could include measurement errors, model
imperfections, numerical errors related to the finite difference
approximations, et cetera. Assuming η can be modeled as zero
mean Gaussian noise, sparse regression can be applied to find
an expression for ξ, using the measured time evaluation of the
displacement u:

argmin
ξ
||Dttu− f ext −B(u)ξ||22 + λS ||ξ||1, (5)

where λS denotes the weighting of the sparsity constraint.
The L2-norm of the residual (first term of the minimization
problem) will be denoted with R(u, ξ,f ext, B(u)).

B. Spectral motion model

MR signals are generated by nuclear spins coherently pre-
cessing under the influence of magnetic fields. The transverse
magnetization m(r⃗, t) : Ωr×Ωt → C is typically the quantity
that is imaged during an MRI scan. It depends on the spatial
position r⃗ ∈ Ωr ⊆ Rd and time t ∈ Ωt ⊆ R, where d is the
spatial dimension of the problem at hand (d = 2 for this study).
In steady-state, the total amount of transverse magnetization
in the field of view can be considered constant under the
reasonable assumption that the receive and excitation fields
are homogeneous. This conservation principle leads to the
continuity equation [11]:

∂m

∂t
+∇ · (mv⃗) = 0, (6)

where v⃗(r⃗, t) : Ωr × Ωt → Rd is the velocity field. In the
remainder of this paper the notation ·⃗ will be used to represent
physical vector fields.

During an MRI scan, additional linear gradients are applied to
provide spatial encoding. This results in measurements on the
spectral information of the transverse magnetization m(r⃗, t)
that are gathered on the scanner:

m̂(k⃗, t) = F(m(·, t))(k⃗) =
ˆ

Rd

m(r⃗, t)e−i2πk⃗·r⃗ dr⃗. (7)

As the transverse magnetization m(r⃗, t) is sampled in the
spectral domain, it is more natural to write (6) in the spectral
domain as well by applying a Fourier transform [11]:

∂m̂

∂t
+ i2π

d∑

j=1

kj(m̂ ∗ v̂j) = 0, (8)
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with v̂j = F(vj) and ∗ the convolution operator.

As (6) is derived in the Eulerian (or spatial) coordinate frame,
the velocity fields in this equation are also described in this
framework (v⃗ in (6) is v⃗Eul). However, in this work we will
try to find the governing equations of the displacement fields
in the Lagrangian (or material) coordinate frame (u in section
II-A is uLag). For the description of the locally rigid motion
used in this work (introduced in section III), the partial time
derivative of the displacement in the Lagrangian framework is
the Eulerian velocity:

∂u⃗Lag

∂t
= v⃗Eul. (9)

For computational tractability, the Lagrangian displacement
fields u⃗Lag(r⃗, t) : Ωr × Ωt → Rd are parameterized using
P spatial basis functions ϕ⃗p(r⃗) : Ωr → Rd and corresponding
generalized coordinates qp(t) : Ωt → R such that:

u⃗Lag(r⃗, t) =

P∑

p=1

ϕ⃗p(r⃗)qp(t). (10)

Using prior information on the structure of the phantom
used for the experiments, the number of unknowns reduces
substantially with this parameterization of the displacement
field. Combining (8), (9) and (10), the spectral motion model
is derived:

∂m̂

∂t
+ i2π

d∑

j=1

P∑

p=1

kj(m̂ ∗ ϕ̂j;p)
∂qp
∂t

= 0, (11)

with ⃗̂
ϕp = F(ϕ⃗p). Equation (11) relates the k-space infor-

mation m̂ to the displacement field u⃗ expressed using the
predefined spatial basis functions ϕ⃗p(r⃗) and the generalized
coordinates qp(t).

During an MRI scan, time-resolved k-space information m̂
is sampled in a discrete manner. The k-space domain Ωk is
discretized to an N = N1× ...×Nd grid, and the time domain
Ωt to T time points. The values of m̂ at the discrete points are
stored in the vector m̂ ∈ CNT . For dynamics on physiological
timescales, it is infeasible to sample the entire vector m̂ as
will be discussed in section II-C. The discretized generalized
coordinates qp(t) belonging to the spatial basis functions ϕ⃗p

are stored in the vector q ∈ RPT . We define the spectral
motion model term G as the L2-norm of the residual of the
discretized version of (11):

G(m̂, q) = ||Dtm̂+A(m̂,Φ)q||22, (12)

with A a linear operator dependent on the k-space information
and Φ the variable containing all information on the spatial
parameterisation (ϕ⃗p for p ∈ {1, ..., P}). For fully sampled k-
space data m̂(Ωk,Ωt), the model in (12) is usually sufficient
for solving the (for our spatial parameterisation) overdeter-
mined inverse problem of finding the displacement fields, by
minimizing G(m̂, q) for the parameter q. However, obtaining
this amount of data is infeasible for subjects undergoing
motion on physiological (typically sub-second) timescales.

2

1
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 1. Schematic representation of the k-space sampling scheme with 12
phase encodes. The numbers indicate the temporal order in which the read-
outs are sampled. The dimensions of k-space during the actual dynamical
experiments is |Ωk| = N1 × N2 = 64 × 64. In this figure k1 is the read-
out direction and k2 the phase encode direction. For the reconstruction, 4
consecutively acquired read-out lines are grouped to form one time instance
ti. This results in an effective temporal resolution of ∆t = 4TR.

C. Data consistency model

When high temporal resolution is required, hardware con-
straints prohibit a fully sampled read-out. To capture the mo-
tion information efficiently, a different subset of Ωk is captured
at every time instance: Ωksub

(ti) ⊆ Ωk (see figure 1). The
acquired data contains measurement noise and is assembled
in the vector d. To reach sub-second time resolution, the
cardinality of the set Ωksub

(ti) has to be significantly lower
than N : |Ωksub

(ti)| = n ≪ N . To deal with the high
undersampling rate and measurement noise, a data consistency
model H is introduced:

H(m̂,d) = ||Em̂− d||22, (13)

with E ∈ {0, 1}nT×NT a binary matrix containing the
sampling pattern.

D. Proposed spectral DDD framework

Using data-driven discovery techniques to find the governing
equations that underlie the motion of objects in the MRI
scanner requires measurements with a high spatiotemporal
resolution. A combination of the spectral motion model (12),
the data consistency model (13) and basic prior information
about the dynamics proved to be enough to reconstruct time-
resolved motion on a millisecond timescale [15]. In this work
we assume that no prior information about the dynamics is
available, and propose a symbiosis between the SINDy frame-
work (5), the spectral motion model and the data consistency
model. This results in the following minimization problem:

argmin
m̂,q,ξ

H(m̂,d)+λGG(m̂, q)+λRR(q, ξ)+λS ||ξ||1, (14)

where λG, λR and λS denote the weighting of the different
terms. Note that the variables in R(u, ξ) are replaced with the
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variables R(q, ξ) after spatial parameterisation (10). The data-
driven discovery term R(q, ξ) can be seen as a model-based
regularization on the displacement fields, that is updated every
time ξ is updated. Our hypothesis is that the simultaneous
interplay between these 3 models will result in a more robust
and stable method for system identification compared to a
more direct 2-step approach, which consists of reconstructing
the displacement fields u first and subsequently performing a
SINDy step. Details on the 2-step approach will be discussed
in section III-E, after which a comparison with the proposed
method will follow in section IV.

III. METHODS

The MR-compatible Quasar™ MRI4D Motion Phantom
(Modus Medical Devices Inc., London, ON, Canada) was
used to gather dynamical data in a controlled experimental
setting. This phantom can be programmed to move a piston
such that its position in time adheres to a predefined Ordinary
Differential Equation (ODE). The goal is to identify the
underlying ODE that governs the phantom motion with the
approach presented in section 2. This approach is compared
with a 2-step approach to demonstrate the superiority of the
proposed method.

TABLE I
NOMENCLATURE

Symbol Description

Notation

bold Data vector
·⃗ Physical vector
·̂ Spectral quantity

Physical quantities

t Time
r⃗/k⃗ Spatial/spectral coordinate
m Transverse magnetization
u Displacement
v Velocity

mobj Object’s mass
η Stochastic noise vector

Reconstruction

B Matrix containing basis operators
ξ System selection vector
d Acquired k-space data
ϕ Spatial basis function
q Generalized coordinate

R,G,H DDD/spectral motion/data consistency model
ΩS ,ΩD Stationary/dynamic domain

Operators

Dt(t) Temporal first (second) order finite difference operator
⊙ Pointwise multiplication
F Fourier transform

Constants

T Number of measurements in time
C Number of basis operators
P Number of spatial basis functions

N(n) Number of (measured) k-space samples per time index
λG, λR, λS Weighting parameters

d Spatial dimension of the problem

A. Experimental setup

The Quasar™ MRI4D Motion Phantom is positioned in the
scanner as shown in figure 2 and 3. It consists of a stationary
water tank with two cylindrical cavities. The central cavity acts
as a guide for the cylinder driven by the mechanical motor.
This moving cylinder is loaded with two gel-filled tubes (TO5,
Eurospin II test system, Scotland). The off-center cavity is
loaded with a stationary cylinder completely filled with gel.

The scans were performed on a 1.5T Philips Ingenia MRI
scanner (Philips, Best, The Netherlands). We used a spoiled
gradient echo sequence with TR = 5.5ms, TE = 2.2ms
and a flip angle of 5°. The field of view was set to be
320× 320mm2 in the coronal plane, with a slice thickness of
15mm. We used the body coil for data acquisition to obtain a
reasonably homogeneous receive field, which is necessary for
dynamical experiments. For the simple, locally rigid motion
we have explored in this paper, better encoding efficiency is
not required. The data sampling was performed on a 64× 64
grid, resulting in a spatial resolution of 5× 5mm2. The phase
encoding was played out such that two successive read-out
lines were well separated in k-space conform the approach
followed in [15]. The temporal resolution of the reconstructed
motion fields will be set during the reconstruction process
by grouping multiple successive read-out lines to form one
discrete time index ti. The sampling scheme and grouping
strategy are schematically visualized in figure 1 for a situation
with 12 phase encodes. Grouping read-out lines results in
more information per discrete time point, at the cost of a
reduced temporal resolution. For our experiments 4 read-outs
lines were grouped to form one discrete time point resulting
in an effective temporal resolution of ∆t = 4TR = 22ms
and a k-space undersampling factor of 64/4 = 16. The
sampling pattern was cycled 40 times during each individual
experiment resulting in a total of 64 × 40 = 2560 read-outs
and an acquisition time of 14.08s. To demonstrate that the
proposed method can perform system identification along any
arbitrary direction, the read-out direction (k1) was rotated with
α = 0°, 45° and 90° with respect to the direction of motion.
To evaluate the repeatability, all experiments were repeated 5
times.

B. Dynamics

Motion profiles adhering to 5 different ODEs were used as
position setpoint in the phantom’s motion control software.
These ODEs were chosen to be of increasing complexity and
model order (see table II). The model order is defined as the
amount of terms in the ODE excluding ü and the external
forcing f ext = f(t). In other words, it defines the amount of
active terms in the matrix B (non-zero entries in the sparse
ξ vector, as defined in (4)). The first 3 dynamics describe
a forced harmonic oscillator with respectively no, linear and
cubical damping. The forcing function can be found in figure
S1 of the Supplementary materials and is assumed to be
known. The ODEs belonging to Dynamic 4 and 5 describe
different types of Van der Pol oscillators. These oscillators
are used frequently in non-linear dynamics and have been
shown to govern time-series data related to cardiac motion
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Fig. 2. (a) The Quasar™ MRI4D Motion Phantom. A large water compart-
ment surrounds a stationary cylinder (off-center) and a dynamic one (center),
driven by a mechanical motor. The dynamic cylinder is loaded with two
smaller signal generating, gel-filled tubes. (b) Phantom positioned in the
clinical MRI scanner during the experiment.

[16], [17]. An improved cardiac model using the modified Van
der Pol oscillator [14] (with the linear term left out) is used
for Dynamic 5 to test for an even higher model order of 4. The
specific ground truth values for the parameters can be found in
table S1 of the Supplementary materials. Note the large range
in the parameter values, particularly for dynamics 3-5.

C. Reconstruction

As the motion is locally rigid, the resulting motion fields
can be described as spatially piecewise constant functions.
Distinguishing between the stationary domain ΩS and the
dynamic domain ΩD (see figure 3), and taking into account
the 2 spatial dimensions, 4 different spatial basis functions
(P = 4) are defined:

ϕ⃗1(r⃗) =

{
(1, 0)T ∀r⃗ ∈ ΩD

(0, 0)T ∀r⃗ ∈ ΩS

ϕ⃗2(r⃗) =

{
(0, 1)T ∀r⃗ ∈ ΩD

(0, 0)T ∀r⃗ ∈ ΩS

ϕ⃗3(r⃗) =

{
(0, 0)T ∀r⃗ ∈ ΩD

(1, 0)T ∀r⃗ ∈ ΩS

ϕ⃗4(r⃗) =

{
(0, 0)T ∀r⃗ ∈ ΩD

(0, 1)T ∀r⃗ ∈ ΩS

(15)

Conform (10), this introduces 4 generalized coordinates qp(t)
corresponding to the temporal evolution of respectively, the
displacement of the dynamic compartment in the x and y-
direction and the displacement of the static compartment in the
x and y-direction. We will use q{1,2,3,4} ∈ RT when referring
to the discretized general coordinates corresponding to one
spatial basis function (respectively ϕ⃗{1,2,3,4}).

Fig. 3. The 4 basis functions ϕ⃗(r⃗) used for spatial parameterisation conform
(10). Two basis functions are defined for the dynamic compartment (ΩD , top
row), and two for the static compartment (ΩS , bottom row). The generalized
coordinates qp(t) corresponding to each spatial basis function, are estimated
during the reconstruction. Only q1(t) corresponding to basis function ϕ⃗1(r⃗)
should be nonzero.

As the cost function is block multiconvex, the minimization
problem from (14) can be solved for m̂, q and ξ using the
Block Coordinate Descent (BCD) method [18]. In this iterative
approach, the cost function is cyclically optimized over a
subset of the variables exploiting the convexity, while the
rest of the variables is kept fixed at the previously updated
value. The reconstruction procedure is implemented in Matlab
(The MathWorks Inc., Natick, MA, USA) and sketched in
Algorithm 1.

The large-scale linear least-squares problem on line 4 is
solved using the iterative lsqr solver. The non-linear least-
squares problem on line 5 is solved using the lsqnonlin
function. The non-linearity in this problem arises from the
non-linear operators on u in matrix B(u). Solving for ξ before
pruning (line 9) is performed using an Alternating Direction
Method of Multipliers (ADMM) implementation. Solving for
ξ after pruning (line 12) is performed using the QR solver

TABLE II
SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS GOVERNING THE
DYNAMICS OF THE MOTION PHANTOM. THE TIME DEPENDENT FORCING
f(t) CAN BE FOUND IN FIGURE S1 OF THE SUPPLEMENTARY MATERIALS.

Dynamic ODE Model order
1 ü+ a1u = f(t) 1
2 ü+ a2u+ b2u̇ = f(t) 2
3 ü+ a3u+ b3u̇3 = 2f(t) 2
4 ü+ a4u+ b4u̇+ c4u2u̇ = 0 3
5 ü+ a5u̇+ b5u2u̇+ c5u3 + d5u2 = 0 4



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL.X, 2024 6

from the Matlab operator mldivide(\). With the prescribed
solvers, the reconstruction took approximately 15 minutes for
all dynamics on a workstation with a 3.80 GHz Intel Xeon
W-2235 CPU.

The (iteration dependent) hyperparameters λ, β and K are de-
termined using a heuristic approach. For one reference dataset
the hyperparameters are empirically determined by studying
the algorithmic convergence. Convergence plots are presented
in figure S2 of the Supplementary materials. The selected
hyperparameters are subsequently fixed for all datasets and
can be found in table S4 of the Supplementary materials. The
main focus during hyperparameter tuning is on the residual
of the data-driven learning model R, as we consider model
identification the primary aim of our reconstruction. The value
of R indicates the agreement between the selected model (ξ⃗)
and the acquired k-space data (via the reconstructed second
order time derivative of the displacement (¨⃗q)).

In the first few iterations, the estimates for q will be too
noisy to achieve reasonable information on the second-order
time derivative used for model identification. For this reason
no estimate for ξk is calculated in the first k ≤ Kdyn
iterations and the model-based regularization term reduces
to R

(
q, ξk−1, bf ext, B(q)

)
= ||Dttq||22 (as ξk−1 = 0 and

b = 0) and acts as a regularizer for smoothness. After Kdyn
iterations, the second order derivative is assumed to have
been smoothed sufficiently to start the data-driven discovery
properly. As the amount of iterations increase after k > Kdyn,
when DDD has commenced, the confidence in the model iden-
tification and the related model-based regularizer R(q, ξk−1)
increases as well. For this reason, adaptive weighting of
the model-based regularizer R is applied on line 5 of the
algorithm, using the iteration-dependent scalar βk.

For model identification, we use a set of 17 monomials as
candidate basis operators. These monomials are a product of
powers of the displacement u and the first order time derivative
of the displacement u̇. The set of candidate basis operators
contains all terms required for a 4th order Taylor expansion
plus 3 additional higher order terms (u3u̇2, u2u̇3 and u3u̇3).
The matrix B containing the candidate basis operators is
normalized for each iteration on line 9 of the algorithm to
deal with the large range of parameter values (see table S1 of
the Supplementary materials) during sparse regression. This
normalization is performed using the vector with L2-norms:
diag

(
B(q)TB(q)

)
.

Basis operators that are not relevant for describing the dy-
namics are removed after Kprune steps. This pruning of the
candidate basis operators will improve the convergence of the
method as the sparsity constraint on line 9 of the algorithm
is known to cause underestimation of the system parameter
values. The set of indices that belongs to basis operators that
are pruned after Kprune steps is denoted by Iprune. This set
is created by selecting the basis operators with the lowest
value for ξnorm. The amount of remaining candidate basis
operators, that is C − |Iprune|, determines the model order of
the discovered system and is fixed in the reconstruction.

Model identification is only performed on the generalized
coordinates that reach a certain threshold after k = Kdyn
iterations to avoid model fitting when no displacement is
present. For our experiments this means that q1, related to the
direction of motion of the dynamic compartment of the phan-
tom (see figure 3), is reconstructed with model identification
and the other 3 generalized coordinates (q2, q3 and q4) are
reconstructed without model identification. For reconstruction
without model identification the algorithm iteratively repeats
step 3 and 4 as if Kdyn > K.

D. Model selection

One important aspect of data-driven discovery is the selection
of the model complexity. In our work, this is represented by
the model order, which is the number of active terms in the
B matrix (number of non-zero entries in ξ). To determine
the model order, we ran all reconstructions for a range of
orders and plot the corresponding residuals for each of them
(see figure S3 of the Supplementary materials). We select the
model which shows the best balance between the obtained
residual and model complexity. As seen in figure S3 of the
Supplementary materials, all selected model orders are equal
to the model orders of the underlying dynamics as presented
in table II.

E. 2-step approach

To benchmark the proposed joined reconstruction of the sys-
tem’s active terms (i.e. the sparse vector ξ) and displacement
u, we compare the proposed method to a 2-step approach.
For the 2-step approach the magnetization and displacement
are reconstructed prior to the system identification step. Addi-
tional smoothness regularization is added to the displacement
fields, resulting in the following 2-step optimization problem
sketched below:

step 1: argmin
m̂,q

H(m̂,d) + λGG(m̂, q) + λR||Dttq||22

step 2: argmin
ξ

λRR(q, ξ) + λS ||ξ||1.
(16)

The regularization weights λ for the 2-step approach are again
determined empirically and separately from the weights of
the proposed method (see table S4 of the Supplementary
materials).

F. Experiments

To validate our proposed method and show the superiority
compared to the 2-step approach, the following 3 experiments
were conducted.
1) Experiment I: Spectral data is gathered using our clinical
MRI scanner for all 5 dynamics in table II. The proposed
method as described in Algorithm 1 is used to perform
model identification. The corresponding estimates for the
displacement are compared to the ground truth displacement
programmed into the phantom. The second order time deriva-
tive of the displacement is calculated using finite difference
methods. As it is directly connected to model identification via
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Algorithm 1 Dynamic identification directly from k-space.

1: Input: λG, λR, λS , βk, K, Kdyn, Kprune, f ext

2: Initialization: m̂0 ← 0, q0 ← 0, ξ0 ← 0, b← 0
3: for k = 1 to K do
4: m̂

k ← argmin
m̂

λGG(m̂, qk−1) +H(m̂,d) ▷ Reconstruction full k-space m̂

5: qk ← argmin
q

λGG(m̂k
, q) + λRβ

kR
(
q, ξk−1, bf ext, B(q)

)
▷ Reconstruction displacement fields q

6: if k > Kdyn then
7: b← 1
8: if k < Kprune then ▷ Reconstruction ξ with sparsity
9: ξnorm ← argmin

ξ
λRR

(
qk, ξ,f ext, diag

(
B(qk)TB(qk)

)−1 ⊙B(qk)
)
+ λS ||ξ||1

10: ξk ← diag
(
B(qk)TB(qk)

)−1 ⊙ ξnorm
11: else ▷ Reconstruction ξ without sparsity using pruned set
12: ξk ← argmin

ξ
λRR

(
qk, ξ,f ext, B(qk)

)

s.t. ξi∈Iprune = 0
13: end if
14: end if
15: end for

the data-driven discovery termR = ||Dttq1−f ext−B(q1)ξ||22,
it provides an additional indication of the quality of the
discovered dynamics. For all experiments described in section
IV, the read-out direction was parallel to the direction of
motion (α = 0◦). A comparison to the acquisition setting
where the read-out direction (k1) was rotated with α = 45°
and 90° with respect to the direction of motion is investigated
in figure S4 of the Supplementary materials.
2) Experiment II: Spectral data from dynamic 5 is processed
using the proposed method and the 2-step approach. A com-
parison in terms of model identification and related second
order time derivative is performed and analyzed.
3) Experiment III: To test our framework for higher under-
sampling factors, spectral data from dynamic 3 is retrospec-
tively undersampled and subsequently processed using the
proposed method and the 2-step approach. The retrospec-
tive undersampling is performed by cyclically keeping 20
consecutive read-outs and removing the next 40, resulting
in an additional undersampling factor of 3. Combined with
the already realized undersampling factor of 16 (see section
III-A), this results in an effective undersampling factor of:
3× 16 = 48.

IV. RESULTS

The results presented in this section only relate to generalized
coordinate q1. For the generalized coordinates q2, q3 and q4

the reconstructed displacements are close to 0 as expected
from the design of the phantom.

A. Experiment I

The model identification is presented in figure 4. In all
experiments the correct basis operators have been identified
with corresponding parameters for system identification close
to the ground truth values. The error flags show the standard
deviation from 5 repetitions of the experiment. Although

the absolute value of the reconstructed system parameters is
presented for readability, all estimates have been reported in
table S1 of the Supplementary materials and show the correct
sign conform the ground truth values.

The estimates for the displacement (q1(t)) are shown in figure
5. Note that the 95% interval (mean ±1.96σ) is narrow
over the entire time domain indicating high precision of the
estimates. The ground truth displacement is generally close to
the mean of the 95% interval indicating that the reconstructed
displacement field is accurate.

The estimates for the second order time derivative of the
displacement (q̈1(t)), used for model identification, are shown
in figure 6. Again, the estimates show high accuracy and pre-
cision over the entire time domain. Only for dynamic 5 which
contains very abrupt direction changes, the largest peaks get
underestimated. This underestimation does not significantly
deteriorate the quality of the model identification as seen in
figure 4.

The estimates for the time-resolved images for dynamic 5 are
shown in video S1 of the Supplementary materials. The time-
resolved images are obtained by performing an inverse Fast
Fourier Transform (IFFT) on the estimated time-resolved k-
space data: F−1(m̂).

Rotating the read-out direction with respect to the direction
of motion with 45◦ and 90◦ does not significantly influence
the model identification as presented in figure S4 of the
Supplementary materials for dynamic 3. For all other dynamics
similar results were found (not shown).

B. Experiment II

In figure 7, the proposed method is compared to the 2-
step approach in terms of model identification and related
second order time derivative for dynamic 5 at an effective
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Fig. 4. Model identification for dynamic 1-5. The bars refer to the absolute
value of the reconstructed system parameters displayed together with the
absolute value of the ground truth. The specific values for the reconstructed
system parameters are reported in table S1 of the Supplementary materials.
The color of the bars match the color of the corresponding y-axis. The error
flags denote the standard deviation from 5 repetitions of the experiment.

temporal resolution of ∆t = 4TR = 22ms. Note that the
proposed method performs better than the 2-step approach in
terms of model identification. Out of the 20 operators that
have to be selected (4 operators chosen for each of the 5

repetitions) 20 are correctly identified with reasonable system
parameter values (20/20) using the proposed method compared
to 11/20 for the 2-step approach. Furthermore, the related
estimation of the second order time derivative is significantly
more accurate and precise for the proposed method. This
comparison is repeated for an effective temporal resolution
of ∆t = 2TR = 11ms and the results are presented in figure
S5 of the Supplementary materials. For this time resolution,
the same qualitative conclusions can be drawn.

C. Experiment III

In figure 8, the proposed method is compared to the 2-step
approach in terms of model identification and related second
order time derivative for dynamic 3. In this experiment, the
measured data is retrospectively undersampled in the temporal
direction to add an extra undersampling factor of 3. The
undersampling is sketched in figure 8 using red shading (re-
move measured spectral data at these time indices) and green
shading (keep measured spectral data at these time indices).
Note that the proposed method performs better compared to
the 2-step approach in terms of model identification: 10/10
correctly identified compared to 5/10. Furthermore, the related
estimation of the second order time derivative is significantly
more accurate and precise for the proposed method. However,
the reconstructed system parameter values are overestimated,
especially for the operator u.

V. DISCUSSION

In this work, we proposed a reconstruction framework that
simultaneously performs model identification and estimates
time-resolved images and displacement fields. We formulate
an optimization problem that consists of a data-driven dis-
covery model with inherent sparsity regularization, a spectral
motion model relating the displacement fields and the MRI k-
space information and a data consistency model. This joint
reconstruction problem was solved in an iterative manner,
exploiting the convexity of the different sub-problems. Con-
trolled phantom experiments in an MRI scanner showed that
using our framework, accurate system identification is possible
for a broad set of non-linear dynamics governed by ODEs.
The method works directly from k-space which allows for
high temporal resolution of the time-resolved images and dis-
placement fields (22 ms in this work) that subsequently allow
for system identification on this time-scale. The framework is
able to deal with a broad range of system parameter values.

Comparison with a 2-step approach, where the time-resolved
images and displacement fields are reconstructed prior to the
system identification step, shows the strength of the proposed,
unified framework. The joined iterative reconstruction of the
time-resolved images and displacement fields together with
the system identification proves to be symbiotic; model in-
formation from the system identification step is leveraged for
estimation of the displacement fields by using model-based
regularization. This results in more accurate displacement
information, which in turn benefits the system identification.
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Fig. 6. Estimate for the second order time derivative of the displacement
(q̈1). The 95% interval is calculated from 5 repetitions of the experiment.
Note the different scaling of the y-axis for dynamic 5 to visualize the large
accelerations due to abrupt direction changes.

For complicated quickly changing dynamics or high retrospec-
tive data undersampling factors, the differences between the
methods become significant.

We have shown that the proposed method outperforms the 2-
step approach in terms of finding the correct basis operators,
when considering additional undersampling. However, the ap-
plied retrospective undersampling strategy is rather aggressive
as for repeated intervals of 40 time indices, no data is available.
This results in an overestimation of the system parameters as
shown in figure 8. To deal with even higher undersampling
factors, more effective strategies such as parallel imaging
[19] and compressed sensing [20] might be utilized. These

strategies will become relevant for 3D implementation and we
leave this analysis for future work.

One of the limitations of the method is that the convergence
is dependent on a reasonable initialization for the model
identification step. When the displacement fields after Kdyn
steps (see Algorithm 1) are still too far from the ground
truth displacements, convergence becomes increasingly harder.
Although the current empirically determined hyperparameters
result in robust convergence for our datasets, more complex
dynamics might require a more extensive hyperparameter
optimization step [21] to assure convergence.

Another limitation is that the time dependent external forcing

Fig. 7. Model identification (displayed as in figure 4) and related second order time derivative for dynamic 5, reconstructed using the 2-step approach and
the proposed method. The specific values for the reconstructed system parameters are reported in table S2 of the Supplementary materials. The color of the
bars match the color of the corresponding y-axis. The numbers above the bars refer to the amount of times the candidate basis operators are selected out of 5
repetitions of the experiment. The red arrows indicate the misidentified operators or operators with an unreasonable system parameter value when compared
to the ground truth.
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Fig. 8. Model identification (displayed as in figure 4) and related second order
time derivative for dynamic 3, reconstructed using the 2-step approach and the
proposed method. The specific values for the reconstructed system parameters
are reported in table S3 of the Supplementary materials. The color of the bars
match the color of the corresponding y-axis. The numbers above the bars
refer to the amount of times the candidate basis operators are selected out of
5 repetitions of the experiment. Retrospective undersampling of the gathered
data is performed (undersampling factor of 3). The red shading suggests
the time indices for which the measured data points were removed before
reconstruction. The red arrow indicates the misidentified operator.

of the systems is assumed to be known. For future in vivo
applications this forcing, or a surrogate thereof, could be
measured using e.g. an electrocardiogram (ECG) [22], an
electromyography (EMG) [23] or a respiratory belt, depending
on the application. The data-driven discovery framework is
readily generalized to include external forcing by extending
the operator library B(u) to include the recorded actuation.
This extension of the SINDy framework is described in [24].

An inherent limitation of SINDy is that the step of selecting
the candidate basis operators is crucial to arrive at models with
good predictive power. For this study, all 5 dynamics are part
of the solution space spanned by the candidate basis operators.
However, when the basis operators that the system consist of
are not present in the operator library B(u), a projection onto
the function space spanned by the available basis operators can
be enough for a phenomenological description if the span is
sufficiently close to the model describing the dynamics. This
was already explored in the Supplementary materials of the
seminal paper on SINDy [4]. Furthermore, this limitation does
not have to impose a major constraint on the method as the
set of candidate basis operators can be arbitrarily large.

The framework currently presented requires several extensions
before it can be used for general in vivo applications. The
spectral motion model derived in section II-B is based on
the conservation of magnetization, and through-slice motion
will violate this assumption. This makes an extension to 3D
a logical next step when moving to in vivo applications
where pure 2D displacements are rare. As the motion in vivo
is generally non-rigid, the simple piecewise constant basis
functions ϕ⃗(r⃗), that are tailored to the design of the motion
phantom, will have to be replaced by different spatial basis
functions that describe the in vivo motion more effectively. Ap-

plying spatial parameterisation to capture deformable motion
using B-splines is currently investigated by the authors since
the motion fields are generally smooth almost everywhere
[25]. Considering deformable motion also implies changing
the governing equations from ODEs to Partial Differential
Equations (PDEs). The data-driven discovery framework can
be extended to PDEs in a straightforward manner [5], such
that the presented framework can remain partially unchanged.

Finally, this research can be considered as a first step in
the direction of learning complete non-linear continuum me-
chanical descriptions [26] of in vivo tissue in the form of
constitutive relations. Constitutive models, relating imposed
deformations to the resulting stress response of a material,
form a general mathematical description of deformable me-
chanics. Many spatiotemporal models describing soft tissue
are available in literature [27], and using data-driven discovery
combined with high quality motion fields could be of value
for finding phenomenological models consistent with patient
data from a broad range of subjects. These discovered models
can help us to better understand soft tissue functionality with
regard to physiology and disease.

VI. CONCLUSION

A reconstruction framework for model identification and esti-
mating time-resolved displacement fields directly from spectral
data has been proposed and successfully validated using exper-
imentally obtained MRI spectral data of a dynamic phantom.
The reconstructed displacement fields have a high temporal
resolution required for accurate model identification without
relying on periodicity of the motion. The proposed framework
serves as a first step in the direction of data-driven discovery
of in vivo models.
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VII. Supplementary materials

A. Dynamic system model and identification

Figure S1: The external forcing f(t) used in the ordinary differential equations governing the
dynamics of the motion phantom. This time dependent function is generated as the sum of 2 scaled
and translated sinc functions.
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Table S1: Parameters used for modeling the solutions to the ordinary differential equations pre-
sented in table II of the paper, together with the reconstructed parameters and their respective
standard deviations in brackets. These values correspond to the bar chart from figure 4 in the
paper.

Dynamic a aRecon b bRecon c cRecon d dRecon

1 10 10.00(0.014) × × × × × ×
2 10 9.98(0.032) 0.5 0.51(0.010) × × × ×
3 5 5.03(0.13) 104 1.05 · 104(1.9 · 102) × × × ×
4 1 0.98(0.002) -3 −2.91(0.021) 8.333 · 104 8.09 · 104(6.04 · 102) × ×
5 -8 −5.03(0.014) 2.22 · 105 1.31 · 105(2.04 · 102) 3.472 · 105 3.42 · 105(8.84 · 102) 1.875 · 103 2.46 · 103(8.05)

Table S2: The reconstructed parameters and their respective standard deviations in brackets for
selected candidate basis functions using the 2-step approach and the proposed method. These
values correspond to the bar chart from figure 7 in the paper.

u u2 u3 u̇ u2 ∗ u̇ u ∗ u̇2

Ground truth value × 1.875 · 103 3.472 · 105 −8 2.22 · 105 ×
2-step approach

mean (std) 14.98(0.21) 2.13 · 103(60.7) 2.40 · 105(5.83 · 104) −0.876(0.767) 7.18 · 104(0) 1.32 · 104(59.1)
# selected out of 5 2 5 5 5 1 2

Proposed method
mean (std) × 2.46 · 103(8.05) 3.42 · 105(8.84 · 102) −5.03(0.014) 1.31 · 105(2.04 · 102) ×

# selected out of 5 0 5 5 5 5 0

Table S3: The reconstructed parameters and their respective standard deviations in brackets for
selected candidate basis functions using the 2-step approach and the proposed method. These
values correspond to the bar chart from figure 8 in the paper.

u u̇ u̇3

Ground truth value 5 × 104

2-step approach
mean (std) 6.69(0.21) 4.33(0.018) −

# selected out of 5 5 5 0

Proposed method
mean (std) 7.21(0.12) − 1.14 · 104(4.89 · 102)

# selected out of 5 5 0 5

B. Reconstruction parameters and convergence

Table S4: Weighting parameters used in reconstruction algorithm 1. H denotes the Heaviside step
function and k the iteration number in the algorithm.

Name Proposed method 2-step approach
K 40 40
Kdyn 10 ×
Kprune 35 35
λG 10−6 10−6

λR 102 102

λS 6 6
βk 1 + 9 ·H(k − 21) ×

2
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Figure S2: Convergence of the data consistency model (H), the spectral motion model (G) and the
data-driven discovery model (R). The vertical dashed lines denote the iterations where algorithmic
changes happen that influence the convergence. The convergence for Dynamic 4 and 5 was verified
by adding 10 extra iterations to the algorithm. No significant changes were observed during these
extra iterations and these results are omitted from the convergence plots.
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C. Model order
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Figure S3: L-curves showing the model order versus the scaled residual of the data-driven discovery
model. Heuristic model order selection is performed by investigating which model order provides
the best balance between predictive value and model complexity (circled). Note that the selected
model orders are equal to the model orders of the underlying dynamics, presented in table II of the
paper. The error flags denote the standard deviation from 5 repetitions of the experiment.
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D. Read-out direction

Figure S4: Model identification for dynamic 3, using 3 different read-out directions. The bars refer
to the absolute value of the reconstructed system parameters together with the absolute value of
the ground truth. The specific values for the reconstructed system parameters are reported in table
S5. The error flags denote the standard deviation from 5 repetitions of the experiment.
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Table S5: The reconstructed parameters and their respective standard deviations in brackets for
dynamic 3. These values correspond to the bar chart from figure S4.

a3 b3
Ground truth 5 104

α = 0◦ 5.03(0.133) 1.05 · 104(1.94 · 102)
α = 45◦ 4.94(0.103) 1.04 · 104(1.84 · 102)
α = 90◦ 5.05(0.114) 1.04 · 104(1.73 · 102)
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E. Reconstruction for temporal resolution ∆t = 2TR = 11ms
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Figure S5: Model identification (displayed as in figure 4 of the paper) and related second order time
derivative for dynamic 5, reconstructed using the 2-step approach and the proposed method at an
effective temporal resolution of ∆t = 2TR = 11ms. The specific values for the reconstructed system
parameters are reported in table S6. The color of the bars match the color of the corresponding
y-axis. The numbers above the bars refer to the amount of times the candidate basis operators are
selected out of 5 repetitions of the experiment.
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Table S6: The reconstructed parameters and their respective standard deviations in brackets for
selected candidate basis functions using the 2-step approach and the proposed method at an effective
temporal resolution of ∆t = 2TR = 11ms. These values correspond to the bar chart from figure S5.

u2 u3 u̇ u2 ∗ u̇ u ∗ u̇2

Ground truth value 1.875 · 103 3.472 · 105 −8 2.22 · 105 ×
2-step approach

mean (std) 1.87 · 103(44.6) 2.70 · 105(2.32 · 104) −1.16(0.46) 7.28 · 104(0) 1.29 · 104(75.1)
# selected out of 5 5 5 5 1 4

Proposed method
mean (std) 2.36 · 103(9.67) 3.48 · 105(8.28 · 102) −5.08(0.044) 1.39 · 105(1.32 · 103) ×

# selected out of 5 5 5 5 5 0
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F. Time-resolved data

Video S1: Single frame in the video of the estimates for the time-resolved images for dynamic 5.
The time-resolved images are obtained by performing an inverse Fast Fourier Transform (IFFT) on
the estimated time-resolved k-space data: F−1(m̂). This is followed by a geometric correction to
account for gradient nonlinearities. The full video can be found online.
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