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Abstract
Explorable heap selection is the problem of selecting the nth smallest value in a binary
heap. The key values can only be accessed by traversing through the underlying infi-
nite binary tree, and the complexity of the algorithm is measured by the total distance
traveled in the tree (each edge has unit cost). This problem was originally proposed
as a model to study search strategies for the branch-and-bound algorithm with storage
restrictions byKarp, Saks andWidgerson (FOCS ’86),who gave deterministic and ran-
domized n ·exp(O(

√
log n)) time algorithms using O(log(n)2.5) and O(

√
log n) space

respectively. We present a new randomized algorithm with running time O(n log(n)3)

against an oblivious adversary using O(log n) space, substantially improving the pre-
vious best randomized running time at the expense of slightly increased space usage.
We also show an �(log(n)n/ log(log(n))) lower bound for any algorithm that solves
the problem in the same amount of space, indicating that our algorithm is nearly
optimal.
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1 Introduction

Many important problems in theoretical computer science are fundamentally search
problems. The objective of these problems is to find a certain solution from the search
space. In this paperwe analyze a search problem thatwe call explorable heap selection.
The problem is related to the famous branch-and-bound algorithm and was originally
proposed by Karp, Saks and Widgerson [2] to model node selection for branch-and-
bound with low space-complexity. Furthermore, as we will explain later, the problem
remains practically relevant to branch-and-bound even in the full space setting.

The explorable heap selection problem1 is an online graph exploration problem for
an agent on a rooted (possibly infinite) binary tree. The nodes of the tree are labeled
by distinct real numbers (the key values) that increase along every path starting from
the root. The tree can thus be thought of as a min-heap. Starting at the root, the agent’s
objective is to select the nth smallest value in the tree while minimizing the distance
traveled, where each edge of the tree has unit travel cost. The key value of a node
is only revealed when the agent visits it, and thus the problem has an online nature.
When the agent learns the key value of a node, it still does not know the rank of this
value.

The selection problem for ordinary heaps, which allow for random access (i.e.,
jumping to arbitrary nodes in the tree for “free”), has also been studied. In this model,
it was shown by [3] that selecting the nth minimum can be achieved deterministically
in O(n) time using O(n) workspace. We note that in both models, �(n) is a natural
lower bound. This is because verifying that a value L is the nth minimum requires
�(n) time—one must at least inspect the n nodes with value at most L—which can
be done via straightforward depth-first search.

A simple selection strategy is to use the best-first rule,2 which repeatedly explores
the unexplored nodewhose parent has the smallest key value.While this rule is optimal
in terms of the number of nodes that it explores, namely�(n), the distance traveled by
the agent can be far from optimal. In the worst-case, an agent using this rule will need
to travel a distance of �(n2) to find the nth smallest value. A simple bad example for
this rule is to consider a rooted tree consisting of two paths (which one can extend to
a binary tree), where the two paths are consecutively labeled by all positive even and
odd integers respectively. Moreover, the space complexity becomes �(n) in general
when using the best-first rule, because essentially all the explored nodes might need
to be kept in memory. We note that irrespective of computational considerations on
the agent, either in terms of working memory or running time restrictions, minimizing
the total travel distance in explorable heap selection remains a challenging online
problem.

Improving on the best-first strategy, Karp, Saks and Wigderson [2] gave a random-
ized algorithm with expected cost n · exp(O(

√
log(n))) using O(

√
log(n)) working

1 [2] did not give the problem a name, so we have attempted to give a descriptive one here.
2 Frederickson’s algorithm [3] is in fact a highly optimized variant of this rule.
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space. They also showed how to make the algorithm deterministic using O(log(n)2.5)

space. In this work, our main contribution is an improved randomized algorithm with
expected cost O(n log(n)3) using O(log(n)) space. Given the �(n) lower bound, our
travel cost is optimal up to logarithmic factors. Furthermore we show that any algo-
rithm for explorable heap selection that uses only s units of memory, must take at least
n · logs(n) time in expectation. An interesting open problem is the question whether
a superlinear lower bound also holds without any restriction on the memory usage.

To clarify the memory model, it is assumed that any key value and O(log n) bit
integer can be stored using O(1) space. We also assume that maintaining the current
position in the tree does not take up memory. Furthermore, we assume that key value
comparisons and moving across an edge of the tree require O(1) time. Under these
assumptions, the running times of the above algorithms happen to be proportional to
their travel cost. Throughout the paper, we will thus use travel cost and running time
interchangeably.

Motivation
The motivation to look at this problem comes from the branch-and-bound algorithm.
This is a well-known algorithm that can be used for solving many types of problems.
In particular, it is often used to solve integer linear programs (IPs), which are of the
form argmin{c�x : x ∈ Z

n, Ax ≤ b}. In that setting, branch-and-bound works by
first solving the linear programming (LP) relaxation, which does not have integrality
constraints. The value of the solution to the relaxation forms a lower bound on the
objective value of the original problem. Moreover, if this solution only has integral
components, it is also optimal for the original problem. Otherwise, the algorithm
chooses a component xi for which the solution value x̂i is not integral. It then creates
two new subproblems, by either adding the constraint xi ≤ �x̂i� or xi ≥ 	x̂i
. This
operation is called branching. The tree of subproblems, in which the children of a
problem are created by the branching operation, is called the branch-and-bound tree.
Because a subproblem contains more constraints than its parent, its objective value
is greater or equal to the one of its parent. The algorithm can also be used to solve
mixed-integer linear programs (MIPs), where some of the variables are allowed to be
continuous.

At the core, the algorithm consists of two important components: the branching rule
and the node selection rule. The branching rule determines how to split up a problem
into subproblems, by choosing a variable to branch on. Substantial research has been
done on branching rules, see, e.g., [4–7].

The node selection rule decides which subproblem to solve next. Not much theoret-
ical research has been done on the choice of the node selection rule. Traditionally, the
best-first strategy is thought to be optimal from a theoretical perspective because this
rule minimizes the number of nodes that need to be visited. However, a disadvantage
of this rule is that searches using it might use space proportional to the number of
explored nodes, because all of them need to be kept in memory. In contrast to this, a
simple strategy like depth-first search only needs to store the current solution. Unfor-
tunately, performing a depth-first search can lead to an arbitrarily bad running time.
This was the original motivation for introducing the explorable heap selection problem
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[2]. By guessing the number N of branch-and-bound nodes whose LP values are at
most that of the optimal IP solution (which can be done via successive doubling), a
search strategy for this problem can be directly interpreted as a node selection rule. The
algorithm that they introduced can therefore be used to implement branch-and-bound

efficiently in only O
(√

log(N )
)
space.

Nowadays, computers have a lot ofmemory available. This usuallymakes it feasible
to store all explored nodes of the branch-and-bound tree in memory. However, many
MIP-solvers still make use of a hybrid method that consists of both depth-first and
best-first searches. This is not only done because depth-first search uses less memory,
but also because it is often faster. Experimental studies have confirmed that the depth-
first strategy is in many cases faster than best-first one [8]. This seems contradictory,
because the running timeof best-first search is often thought to be theoretically optimal.

In part, this contradiction can be explained by the fact that actual IP-solvers often
employ complementary techniques and heuristics on top of branch-and-bound, which
might benefit from depth-first searches. Additionally, a best-first search can hop
between different parts of the tree, while a depth first search subsequently explores
nodes that are very close to each other. In the latter case, the LP-solver can start
from a very similar state, which is known as warm starting. This is faster for a vari-
ety of technical reasons [9]. For example, this can be the case when the LP-solver
makes use of the LU-factorization of the optimal basis matrix [10]. Through the use of
dynamic algorithms, computing this can be done faster if a factorization for a similar
LP-basis is known [11]. Because of its large size, MIP-solvers will often not store the
LU-factorization for all nodes in the tree. This makes it beneficial to move between
similar nodes in the branch-and-bound tree. Furthermore, moving from one part of
the tree to another means that the solver needs to undo and redo many bound changes,
which also takes up time. Hence, the amount of distance traveled between nodes in
the tree is a metric that influences the running time. This can also be observed when
running the academic MIP-solver SCIP [12].

The explorable heap selection problem captures these benefits of locality by mea-
suring the running time in terms of the amount of travel through the tree. Therefore,
we argue that this problem is still relevant for the choice of a node selection rule, even
if all nodes can be stored in memory.

Related work
The explorable heap selection problem was first introduced in [2]. Their result was
later applied to prove an upper bound on the parallel running time of branch-and-bound
[13].

When random access to the heap is provided at constant cost, selecting the n’th
value in the heap can be done by a deterministic algorithm in O(n) time by using an
additional O(n) memory for auxilliary data structures [3].

The explorable heap selection problem can be thought of as a search game [14]
and bears some similarity to the cow path problem. In the cow path problem, an agent
explores an unweighted unlabeled graph in search of a target node. The location of the
target node is unknown, but when the agent visits a node they are told whether or not
that node is the target. The performance of an algorithm is judged by the ratio of the
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number of visited nodes to the distance of the target from the agent’s starting point.
In both the cow path problem and the explorable heap selection problem, the cost of
backtracking and retracing paths is an important consideration. The cow path problem
on infinite b-ary trees was studied in [15] under the assumption that when present at
a node the agent can obtain an estimate on that node’s distance to the target.

Other explorable graph problems exist without a target, where typically the graph
itself is unknown at the outset. There is an extensive literature on exploration both
in graphs and in the plane [16, 17]. In some of the used models the objective is to
minimize the distance traveled [?], [18–20]. Other models are about minimizing the
amount of usedmemory [21].What distinguises the explorable heap selection problem
from these problems is the information that the graph is a heap and that the ordinal of
the target is known. This can allow an algorithm to rule out certain locations for the
target. Because of this additional information, the techniques used here do not seem
to be applicable to these other problems.

Outline
InSect. 2we formally introduce the explorable heap selectionproblemandanynotation
we will use. In Sect. 3 we introduce a new algorithm for solving this problem and
provide a running time analysis. In Sect. 4 we give a lower bound on the complexity
of solving explorable heap selection using a limited amount of memory.

2 The explorable heap selection problem

We introduce in this section the formal model for the explorable heap selection prob-
lem. The input to the algorithm is an infinite binary tree T = (V , E), where each node
v ∈ V has an associated real value, denoted by val(v) ∈ R. We assume that all the
values are distinct. Moreover, for each node in the tree, the values of its children are
larger than its own value. Hence, for every v1, v2 ∈ V such that v1 is an ancestor of
v2, we have that val(v2) > val(v1). The binary tree T is thus a heap.

The algorithmic problem we are interested in is finding the nth smallest value in
this tree. This may be seen as an online graph exploration problem where an agent
can move in the tree and learns the value of a node each time they explore it. At each
time step, the agent resides at a vertex v ∈ V and may decide to move to either the left
child, the right child or the parent of v (if it exists, i.e. if v is not the root of the tree).
Each traversal of an edge costs one unit of time, and the complexity of an algorithm
for this problem is thus measured by the total traveled distance in the binary tree. The
algorithm is also allowed to store values in memory.

We now introduce a few notations used throughout the paper.

• For a node v ∈ V , also per abuse of notation written v ∈ T , we denote by T (v) the
subtree of T rooted at v.

• For a tree T and a valueL ∈ R, we define the subtree TL := {v ∈ T | val(v) ≤ L}.
• We denote the nth smallest value in T by SELECTT (n). This is the quantity that we
are interested in finding algorithmically.
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• We say that a value V ∈ R is good for a tree T if V ≤ SELECTT (n) and bad
otherwise. Similarly, we call a node v ∈ T good if val(v) ≤ SELECTT (n) and bad
otherwise.

• We will use [k] to refer to the set {1, . . . , k}.
• When we write log(n), we assume the base of the logarithm to be 2.

For a given value V ∈ R, it is easy to check whether it is good in O(n) time: start a
depth first search at the root of the tree, turning back each time a value strictly greater
than V is encountered. In the meantime, count the number of values below V found
so far and stop the search if more than n values are found. If the number of values
below V found at the end of the procedure is at most n, then V is a good value. This
procedure is described in more detail later in the DFS subroutine.

Wewill often instruct the agent tomove to an already discovered good vertex v ∈ V .
Theway this is done algorithmically is by saving val(v) inmemory and starting a depth
first search at the root, turning back every time a value strictly bigger than val(v) is
encountered until finally finding val(v). This takes atmost O(n) time, sincewe assume
v to be a good node. If we instruct the agent to go back to the root from a certain vertex
v ∈ V , this is simply done by traveling back in the tree, choosing to go to the parent
of the current node at each step.

In later sections, we will often say that a subroutine takes a subtree T (v) as input.
This implicitly means that we in fact pass it val(v) as input, make the agent travel to
v ∈ T using the previously described procedure, call the subroutine from that position
in the tree, and travel back to the original position at the end of the execution. Because
the subroutine knows the value val(v) of the root of T (v), it can ensure it never leaves
the subtree T (v), thusmaking it possible to recurse on a subtree as if it were a rooted tree
by itself. We write the subtree T (v) as part of the input for simplicity of presentation.

We will sometimes want to pick a value uniformly at random from a set of values
{V1, . . . ,Vk} of unknown size that arrives in a streaming fashion, for instance when
we traverse a part of the tree T by doing a depth first search. That is, we see the value
Vi at the i th time step, but do not longer have access to it in memory once we move
on to Vi+1. This can be done by generating random values {X1, . . . , Xk} where, at the
i th time step, Xi = Vi with probability 1/i , and Xi = Xi−1 otherwise. It is easy to
check that Xk is a uniformly distributed sample from {V1, . . . ,Vk}.

3 A new algorithm

The authors of [2] presented a deterministic algorithm that solves the explorable heap
selection problem in n ·exp(O(

√
log(n))) time and O(n

√
log(n)) space. By replacing

the binary search that is used in the algorithm by a randomized variant, they are able
to decrease the space requirements. This way, they obtain a randomized algorithm
with expected running time n · exp(O(

√
log(n))) and space complexity O(

√
log(n)).

Alternatively, the binary search can be implemented using a deterministic routine by
[22] to achieve the same running time with O(log(n)2.5) space.

We present a randomized algorithm with a running time O(n log(n)3) and space
complexity O(log(n)). Unlike the algorithms mentioned before, our algorithm fun-
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damentally relies on randomness to bound its running time. This bound only holds
when the algorithm is run on a tree with labels that are fixed before the execution of
the algorithm. That is, the tree must be generated by an adversary that is oblivious to
the choices made by the algorithm. This is a stronger assumption than is needed for
the algorithm that is given in [2], which also works against adaptive adversaries. An
adaptive adversary is able to defer the decision of the node label to the time that the
node is explored. Note that this distinction does not really matter for the application
of the algorithm as a node selection rule in branch-and-bound, since there the node
labels are fixed because they are derived from the integer program and branching rule.

Theorem 1 There exists a randomized algorithm that solves the explorable heap selec-
tion problem, with expected running time O(n log(n)3) and O(log(n)) space.

As mentioned above, checking whether a value v is good can be done in O(n) time
by doing a depth-first search with cutoff value val(v) that returns when more than n
good nodes are found. For a set of k values, we can determine which of them are good
in O(log(k)n) time by performing a binary search.

The explorable heap selection problem can be seen as the problem of finding all
n good nodes. Both our method and that of [2] function by first identifying a subtree
consisting of only good nodes. The children of the leaves of this subtree are called
“roots” and the subtree is extended by finding a number of new good nodes under
these roots in multiple rounds. Importantly, the term ‘good node’ is always used with
respect to the current call to Extend. So, a node might be good in one recursive call,
but not good in another.

In [2] this is done by running O(c
√

2 log(n)) different rounds, for some constant

c > 1. In each round, the algorithm finds n/c
√

2 log(n) new good nodes. These nodes
are found by recursively exploring each active root and using binary search on the
observed values to discover which of these values are good. Which active roots are
recursively explored further depends on which values are good. The recursion in the
algorithm is at most O(

√
log(n)) levels deep, which is where the space complexity

bound comes from.
In our algorithm, we take a different approach. We will call our algorithm consec-

utively with n = 1, 2, 4, 8, . . . . Hence, for a call to the algorithm, we can assume
that we have already found at least n/2 good nodes. These nodes form a subtree of
the original tree T . In each round, our algorithm chooses a random root under this
subtree and finds every good node under it. It does so by doing recursive subcalls to the
main algorithm on this root with values n = 1, 2, 4, 8, . . .. As soon as the recursively
obtained node is a bad node, the algorithm stops searching the subtree of this root,
since it is guaranteed that all the good nodes there have been found. The largest good
value that is found can then be used to find additional good nodes under the other roots
without recursive calls, through a simple depth-first search. Assuming that the node
values were fixed in advance, we expect this largest good value to be greater than half
of the other roots’ largest good values. Similarly, we expect its smallest bad value to be
smaller than half of the other roots’ smallest bad values. By this principle, a sizeable
fraction of the roots can, in expectation, be ruled out from getting a recursive call.
Each round a new random root is selected until all good nodes have been found.
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Fig. 1 An illustration of R(T ,L0) with L0 = 4. The number above each vertex is its value, the blue nodes
are R(T ,L0), whereas the subtree above is TL0

This algorithm allows us to effectively perform binary search on the list of roots,
ordered by the largest good value contained in each of their subtrees in O(log n)

rounds, and the same list ordered by the smallest bad values (Lemma 2). Bounding
the expected number of good nodes found using recursive subcalls requires a subtle
induction on two parameters (Lemma 1): both n and the number of good nodes that
have been identified so far.

3.1 Subroutines

We first describe three subroutines that will be used in our main algorithm.

The procedure DFS
The procedure DFS is a variant of depth first search. The input to the procedure is
T , a cutoff value L ∈ R and an integer n ∈ N. The procedure returns the number of
vertices in T whose value is at most L.

It achieves that by exploring the tree T in a depth first search manner, starting at the
root and turning back as soon as a node w ∈ T such that val(w) > L is encountered.
Moreover, if the number of nodes whose value is at most L exceeds n during the
search, the algorithm stops and returns n + 1.

The algorithm output is the following integer.

DFS(T ,L, n) := min
{∣∣TL

∣∣, n + 1
}
.

Observe that the DFS procedure allows us to check whether a node w ∈ T is a
good node, i.e. whether val(w) ≤ SELECTT (n). Indeed, w is good if and only if
DFS(T , val(w), n) ≤ n.

This algorithm visits only nodes in TL or its direct descendants and its running time
is O(n). The space complexity is O(1), since the only values needed to be stored in
memory are L, val(v), where v is the root of the tree T , and a counter for the number
of good values found so far.

The procedure Roots
The procedure Roots takes as input a tree T as well as an initial fixed lower bound
L0 ∈ R on the value of SELECTT (n). We assume that the main algorithm has already
found all the nodes w ∈ T satisfying val(w) ≤ L0. This means that the remaining
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Fig. 2 An illustration of the Roots procedure with L0 = 4,L = 7 and U = 10. Only two active roots
remain, and are both colored in blue. The other roots are considered killed since all the good values have
been found in their subtrees

values themain algorithmneeds to find in T are all lying in the subtrees of the following
nodes, that we call the L0-roots of T :

R(T ,L0) := {
r ∈ T \TL0

∣∣ r is a child of a node in TL0

}

In other words, these are all the vertices in T one level deeper in the tree than TL0 , see
Fig. 1 for an illustration. In addition to that, the procedure takes two other parameters
L,U ∈ R as input, which correspond to (another) lower and upper bound on the value
of SELECTT (n). These bounds L and U will be variables being updated during the
execution of the main algorithm, whereLwill be increasing and U will be decreasing.
More precisely, L will be the largest value that the main algorithm has certified being
at most SELECTT (n), whereas U will be the smallest value that the algorithm has
certified being at least that. A key observation is that these lower and upper bounds
can allow us to remove certain roots in R(T ,L0) from consideration, in the sense that
all the good values in that root’s subtree will be certified to have already been found.
The only roots that the main algorithm needs to consider, when L and U are given,
are thus the following.

Roots(T ,L0,L,U) :=
{
r ∈ R(T ,L0) | ∃w ∈ T (r) with val(w) ∈ (L,U)

}
(1)

This subroutine can be implemented as follows. Run a depth first search starting
at the root of T . Once a node r ∈ T with val(r) > L0 is encountered, the subroutine
marks that vertex r as belonging to R(T ,L0). The depth first search continues deeper
in the tree until finding a nodew ∈ T (r) with val(w) > L. At this point, if val(w) < U ,
then the search directly returns to r without exploring any additional nodes in T (r)

and adds r to the output. If however val(w) ≥ U , then the search continues exploring
T (r)
L (and its direct descendants) by trying to find a node w with val(w) ∈ (L,U). In

case the algorithm explores all of T (r)
L with its direct descendants, and it turns out that

no such node exists (i.e. every direct descendant w of T (r)
L satisfies val(w) ≥ U), then

r is not added to the output.
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This procedure takes time O(|TL|), i.e. proportional to the number of nodes in T
with value at most L. Since the procedure is called only on values L which are known
to be good, the time is bounded by O(|TL|) = O(n).

In the main algorithm, we will only need this procedure in order to select a root
from Roots(T ,L0,L,U) uniformly at random, without having to store the whole list
in memory. This can then be achieved in O(1) space, since one then only needs to
store val(v),L0,L and U in memory, where v is the root of the tree T .

The procedure GoodValues
The procedure GoodValues takes as input a tree T , a subtree T (r) for a node r ∈ T ,
a value L′ ∈ R≥0 and an integer n ∈ N. The procedure then analyzes the set

S :=
{
val(w)

∣∣ w ∈ T (r), val(w) ≤ L′}

and outputs both the largest good value and the smallest bad value in that set, that we
respectively callL andU . If no bad values exist in S, the algorithm setsU = ∞. Notice
that this output determines, for each value in S, whether it is good or not. Indeed, any
V ∈ S is good if and only if V ≤ L, and is bad if and only if V ≥ U .

The implementation is as follows. Start by initializing the variables L = −∞ and
U = L′. These variables correspond to lower and upper bounds on SELECTT (n). Loop
through the values in

S′ :=
{
val(w) | w ∈ T (r), L < val(w) < U

}

using a depth first search starting at r and sample one value V uniformly randomly
from that set. Check whether V is a good value by calling DFS(T ,V, n). If it is good,
update L = V . If it is bad, update U = V . Continue this procedure until S′ is empty,
i.e. |S′| = 0. If, at the end of the procedure, L = L′ = U , then set U = ∞. The output
is thus:

GoodValues(T , T (r),L′, n) := {L,U}
where

L := max
{
V ∈ S | V ≤ SELECTT (n)

}
,

U := min
{
V ∈ S | V > SELECTT (n)

}
.

Sampling a value from S′ takes O(|S|) time. Checking whether a sampled valued
is good takes O(n) time. In expectation, the number of updates before the set S′
is empty is O(log(|S|)), leading to an expected total running time of O((|S| +
n) log(|S|)). As we will later see in the proof of Lemma 3, we will only end up
making calls GoodValues(T , T (r),L′, n) with parameters T (r) and L′ satisfying
DFS(T (r),L′) = O(n). Since |S| = DFS(T (r),L′), this leads to an expected running
time of O(n log(n)).
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The procedure can be implemented in O(1) space, since the only values needed to
be kept in memory are val(v) (where v is the root of the tree T ), val(r ), L, U and L′,
as well as the fact that every call to DFS also requires O(1) space.

3.2 Themain algorithm

We now present our main algorithm. This algorithm is named Select and outputs the
nth smallest value in the tree T . A procedure used in Select is the Extend algorithm,
described below, which assumes that at least n/2 good nodes have already been found
in the tree, and also outputs the nth smallest one.

Algorithm 1 The Select procedure
1: Input : n ∈ N

2: Output : SELECT(n), the nth smallest value in the heap T .
3: procedure Select(n)
4: k ← 1
5: L ← val(v) // v is the root of the tree T
6: while k < n do
7: if k < n/2 then
8: k′ ← 2k
9: else
10: k′ ← n
11: end if
12: L ← Extend(T , k′, k,L)

13: k ← k′
14: end while
15: return L
16: end procedure

Let us describe a few invariants from the Extend procedure.

• L and U are respectively lower and upper bounds on SELECTT (n) during the
whole execution of the procedure. More precisely, L ≤ SELECTT (n) and U >

SELECTT (n) at any point, and hence L is good and U is bad. The integer k counts
the number of values ≤ L in the full tree T .

• No root can be randomly selected twice. This is ruled out by the updated values
of L and U , and the proof can be found in Theorem 2.

• After an iteration of the inner while loop, L′ is set to the cth smallest value in T (r).
The variable c′ then corresponds to the next value we would like to find in T (r)

if we were to continue the search. Note that c′ ≤ 2c, enforcing that the recursive
call to Extend satisfies its precondition, and that c′ ≤ n − (k′ − c) implies that
(k′ − c) + c′ ≤ n, which implies that the recursive subcall will not spend time
searching for a value that is known in advance to be bad.

• From the definition of k′ and c one can see that k′ ≥ k + c. Combined with the
previous invariant, we see that c′ ≤ n − k.

• k′ always counts the number of values ≤ L′ in the full tree T . It is important
to observe that this is a global parameter, and does not only count values below
the current root. Moreover, k′ ≥ n implies that we can stop searching below the
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Algorithm 2 The Extend procedure
1: Input: T : tree which is to be explored.
2: n ∈ N: total number of good values to be found, satisfying n ≥ 2.
3: k ∈ N: number of good values already found, satisfying k ≥ n/2.
4: L0 ∈ R: value satisfying DFS(T ,L0, n) = k.
5: Output: the nth smallest value in T .

6: procedure Extend(T , n, k, L0)
7: L ← L0
8: U ← ∞
9: while k < n do
10: r ← random element from Roots(T , L0, L, U )

11: L′ ← max(L, val(r))
12: k′ ← DFS(T , L′, n) // count the number of values ≤ L′ in T
13: c ← DFS(T (r), L′, n) // counting the number of values ≤ L′ in T (r)

14: c′ ← min(n − k′ + c, 2c) // increase the number of values to be found in T (r)

15: while k′ < n do // loop until it is certified that SELECTT (n) ≤ L′
16: L′ ← Extend(T (r), c′, c, L′)
17: k′ ← DFS(T , L′, n)
18: c ← c′
19: c′ ← min(n − k′ + c, 2c)
20: end while
21: L̃, Ũ ← GoodValues(T , T (r),L′, n) // find the good values in T (r)

22: L ← max(L, L̃)

23: U ← min(U , Ũ)

24: k ← DFS(T , L, n) // compute the number of good values found in T
25: end while
26: return L
27: end procedure

current root, since it is guaranteed that all good values in T (r) have been found,
i.e., L′ is larger than all the good values in T (r).

3.3 Proof of correctness

Theorem 2 At the end of the execution of Algorithm 1,L is set to the nth smallest value
in T . Moreover, the algorithm is guaranteed to terminate.

Proof We show L = SELECTT (n) holds at the end of Algorithm 2, i.e. the Extend
procedure. Correctness of Algorithm 1, i.e. the Select procedure, then clearly fol-
lows from that. First, notice that L is always set to the first output of the procedure
GoodValues, which is always the value of a good node in T , implying

L ≤ SELECTT (n)

at any point during the execution of the algorithm. Since the outer while loop ends
when at least n good nodes in T have value at most L, we get

L ≥ SELECTT (n),

which implies that when the algorithm terminates it does so with the correct value.
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It remains to prove that the algorithm terminates. We observe that every recursive
call L′ ← Extend(T (r), c′, c,L′) strictly increases the value of L′, ensuring that at
least one extra value in T is under the increased value. This implies that k′ strictly
increases every iteration of the innerwhile loop, thus ensuring that this loop terminates.

To see that the outer loop terminates, we observe that after each iteration the set
Roots(T ,L0,L,U) shrinks by at least one element. As soon as this set is empty, there
will be no more roots with unexplored good values in their subtrees, so k = n and the
algorithm terminates. ��

3.4 Running time analysis

In order to prove a O(n log(n3)) running time bound for the Select(n) procedure,
we will show that the running time of the Extend procedure with parameters n and k
is O((n − k) log(n)3) + O(n log(n)2).

The main challenge in analyzing the running time of Extend is in dealing with
the cost of the recursive subcalls on line 16. For this we rely on an important idea,
formalized in Lemma 1, stating that if the parent call with parameters n and k makes
z ∈ N recursive calls with parameters (n1, k1), . . . , (nz, kz), then

∑z
i=1(ni − ki ) ≤

n − k in expectation over the random choices of the algorithm.
A second insight is that the outermost while loop on line 9 is executed at most

O(log(n)) times in expectation, which is shown in Lemma 2. The first lemma allows
to show that the running time of the Extend procedure on the recursive part is O((n−
k) log(n)3), through an induction proof. The second lemma helps to show that the
running time of the Extend procedure on the non-recursive part is O(n log(n)2). The
running time analysis of Extend is formally done in Lemma 3. Finally, the running
time of O(n log(n3)) for the Select(n) procedure then follows in Theorem 3.

Let us now prove these claims. We first show that the expectation of
∑z

i=1(ni − ki )
is bounded by n − k.

Lemma 1 Let z be the number of recursive calls with k ≥ 1 that are done in the main
loop of Extend(T , n, k, L0). For every i ∈ [z], let ni and ki be the values that are
given as second and third parameters to the i th such subcall. It holds that:

E

[
z∑

i=1

(ni − ki )

]

≤ n − k.

Proof For simplicity of notation, let us denote the set of roots at the beginning of the
execution of the algorithm byR := Roots(T ,L0,L,U), where L = L0 and U = ∞
at initialization. An important observation is that, once a root r ∈ R is randomly
selected on line 10, all the recursive calls under it (i.e. with its subtree T (r) as first
parameter) on line 16 are consecutive. The last such recursive call ensures that all the
good values in T (r) are found and sets L and U to respectively be the largest good
value and smallest bad value in T (r). From then on, this root leaves the updated set
Roots(T ,L0,L,U) by (1) and will thus never be again considered in the random
choice on line 10. For every r ∈ R, let us define the set:
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C(r) =
{
i ∈ [z] s.t. the i th recursive call is under root r

}

and let us denote by Sr ∈ N the total number of good values in its subtree T (r). Our
goal is to show that:

E

[ ∑

i∈C(r)

(ni − ki )
]

≤ Sr ∀r ∈ R. (2)

Clearly, this would imply the lemma, since the total number of good values to be found
is

∑
r∈R Sr = n−k. For convenience, we define this number to be p := n−k.We now

order the good values to be found and denote them as follows: V1 < V2 < · · · < Vp.
EachvalueVk is to be found in the subtree of a certain root thatwedenote by r(Vk) ∈ R.

We first show that the claim (2) holds for any root r ∈ R such that r �= r(Vp). Let
us thus fix such a root r �= r(Vp). The key observation is that, since the random choice
on line 10 is uniform, and since r(Vp) will always be among the active roots, the
subtree of the root r(Vp) will be explored before the subtree of root r with probability
at least a half. In that case, no recursive calls will be made under root r . This holds
since the updated values L and U after the iteration of r(Vp) ensure that r leaves
Roots(T ,L0,L,U) by (1) and is thus not considered in the random choice in later
iterations. If the root r is however considered before r(Vp), which happens with
probability at most a half, then

∑
i∈C(r)(ni − ki ) ≤ 2Sr , since the sum is telescoping

and the parameters ki and ni at most double at each step on line 19 until all good
values in T (r) are found. Hence, we get that

E

[ ∑

i∈C(r)

(ni − ki )
]

≤ 1

2
0 + 1

2
2Sr ≤ Sr . (3)

It remains to show that claim (2) holds for the root r(Vp) under which the largest
good value lies. In that case, let us denote by V j the largest good value lying in a
subtree of a different root r(V j ) �= r(Vp). We also denote by {r(V j ) ≺ r(Vp)} the
probabilistic event that r(V j ) is considered before r(Vp) in the random choices of the
algorithm. By our choice of V j and Vp, this event happens with probability exactly a
half. Moreover, if this event happens, all the good values outside of T (r(Vp)) will have
been found after exploring T (r(V j )). This means that, when the algorithm considers
r(Vp), it knows that there remain atmost p− j values to be found. That is, wewill have
C(r(Vp)) = {t, . . . , z} for some t , such that kt ≥ Sr(Vp) − (p − j) and nz ≤ Sr(Vp),
leading to

E

[ ∑

i∈C(r(Vp))

(ni − ki )
∣∣ r(V j ) ≺ r(Vp)

]
≤ Sr(Vp) − (

Sr(Vp) − (p − j)
) = p − j,

(4)

where we have again used the fact that the sum is telescoping.
We now consider the event {r(Vp) ≺ r(V j )} and distinguish two cases. Suppose

that the penultimate call i ∈ C(r(Vp)) finds a good value which is bigger than V j .
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By a similar argument as above, the algorithm does not double in the last step, but
truncates due to line 19, meaning that

∑
i∈C(r(Vp))

(ni − ki ) = Sr(Vp) holds in this
case. Combining this with (4) and using the fact that the last p − j values are under
root r(Vp), we get

E

[ ∑

i∈C(r(Vp))

(ni − ki )
]

≤ 1

2
(p − j) + 1

2
Sr(Vp) ≤ Sr(Vp).

Suppose now that the penultimate call i ∈ C(r(Vp)) finds a good value which is
smaller than V j . This means that the number of good values found in T (r(Vp)) is at
most Sr(Vp) − (p − j) at that point. The last call i ∈ C(r(Vp)) then doubles the
parameters, meaning that

∑
i∈C(r(Vp))

(ni − ki ) ≤ 2 (Sr(Vp) − (p − j)) holds, due to
the fact that the sum is telescoping. Combining this with (4) leads to

E

[ ∑

i∈C(r(Vp))

(ni − ki )
]

≤ 1

2
(p − j) + Sr(Vp) − (p − j) ≤ Sr(Vp).

��
We now bound the expected number of iterations of the outermost while-loop.

Lemma 2 The expected number of times that the outermost while-loop (at line 9) is
executed by the procedure Extend is at most O(log(n)).

Proof Let r1, . . . , rm denote the roots returned byRoots(T ,L0,L0,∞). For j ∈ [m],
let � j and u j respectively denote the largest good value and the smallest non-good
value under root r j . Let A�(L) := {r j : � j > L} and Au(U) := {r j : u j < U}.
Observe that Roots(T ,L0,L,U) = A�(L) ∪ Au(U) for any L ≤ U .

Let Li and Ui denote the values of L and U at the start of the i th iteration. After
an iteration i in which root r j was selected, the algorithm updates L and U such that
Li+1 = max(L, � j ) and Ui+1 = min(U , u j ). Observe that Li is nondecreasing and
that Ui is nonincreasing.

We will now show that if a root from A�(Li ) is selected in iteration i , then the
expected size of A�(Li+1) is at most half that of A�(Li ). This will imply that in
expectation only log(n) iterations are needed to make |A�(L)| = 1.

Let Fi be the filtration containing all information up until iteration i . Let Xi be
a random variable denoting the value of |A�(Li )|. Let (sk)k≥1 be the subsequence
consisting of iteration indices i in which a root from A�(Li ) is selected. Because roots
are selected uniformly at random, we have E[Xsk+1 | Fsk ] ≤ 1

2 Xsk .
Let Yi = max(log(Xi ), 0). Note that when Ysk ≥ 1, we have E[Ysk+1 | Fsk ] =

E[log(Xsk+1) | Fsk ] ≤ log(E[Xsk+1 | Fsk ]) ≤ Ysk − 1. Let τ be the smallest k
such that Ysk = 0. Note that τ is the number of iterations i in which a root from
A�(Li ) is selected, and hence τ ≤ n. The sequence (Ysk + k)k=1,...,τ is therefore a
supermartingale and τ is a stopping time. By the martingale stopping theorem [23,
Theorem 12.2], we have E[τ ] = E[Ysτ + τ ] ≤ E[Ys1 + 1] = log(m) + 1.

Now we have shown that in expectation at most log(m) + 1 iterations i are needed
in which roots from A�(Li ) are considered. The same argument can be repeated for
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Au(U). Since in every iteration a root from A�(L) or Au(U) is selected, the expected
total number of iterations is at most 2 log(m) + 2. This directly implies the lemma as
m ≤ |TL| + 1 ≤ n + 1. ��

We are now able to prove the running time bound for the Extend procedure.

Lemma 3 Let R(T , n, k) denote the running time of a call Extend(T , n, k,L0). Then
there exists C > 0 such that

E[R(T , n, k)] ≤ 5C(n − k) log(n)3 + Cn log(n)2.

Proof We will prove this with induction on r := 	log(n)
. For r = 1, we have n ≤ 2.
In this case R is constant, proving our induction base.

Now consider a call Extend(T , n, k, L0) and assume the induction claim is true
when 	log(n)
 ≤ r−1. Let p be the number of iterations of the outer-most while-loop
that are executed.

We will first consider the running time induced by the base call itself, excluding
any recursive subcalls. Note that all of this running time is incurred by the calls
to the procedures DFS, Roots and GoodValues, plus the cost of moving to the
corresponding node before each of these calls. In the base call, the procedure will only
move between nodes that are among the ones with the n smallest values, or the nodes
directly below them. For this reason, we can upper bound the cost of each movement
action by a running time of O(n).

• On line 12, 13, 24 each call DFS incurs a running time of at most O(n). Each of
these lines will be executed p times, incurring a total running time of O(pn).

• On line 17 each call DFS(T , L′, n) incurs a running time of at most O(n). The
code will be executed O(p log(n)) times since c′ doubles after every iteration of
the inner loop and never grows larger than n, thus incurring a total running time
of O(pn log(n)).

• The arguments T (r) and L′ of the call to GoodValues on line 21 satisfy
DFS(T (r),L′) = c ≤ c′ ≤ n. Hence, the running time of this procedure is
O(n log(n)) time. The line is executed at most p times, so the total running time
incurred is O(pn log(n)).

Adding up all the running times listed before,we see that the total running time incurred
by the non-recursive part is O(pn log(n)). By Lemma 2, E[p] ≤ log(n). Hence, we
can chooseC such that the expected running time of the non-recursive part is bounded
by

Cn log(n)2.

Now we move on to the recursive part of the algorithm. All calls to Extend(T , n,
k, L0) with k = 0 will have n = 1, so each of these calls takes only O(1) time. Hence
we can safely ignore these calls.

Let z be the number of of recursive calls to Extend(T , n, k, L0) that are done from
the base call with k ≥ 1. Let Ti , ki , ni for i ∈ [z] be the arguments of these function
calls. Note that n/2 ≥ n − k ≥ ni ≥ 2 for all i . By the induction hypothesis, the
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expectation of the recursive part of the running time is:

E

[
z∑

i=1

R(Ti , ni , ki )

]

≤ E

[
z∑

i=1

5C(ni − ki ) log(ni )
3 + Cni log(ni )

2

]

≤ 5C log(n/2)3 E

[
z∑

i=1

(ni − ki )

]

+ C log(n/2)2 E

[
z∑

i=1

ni

]

≤ 5C(log(n) − 1) log(n)2 E

[
z∑

i=1

(ni − ki )

]

+ C log(n)2 E

[
z∑

i=1

ni

]

≤ 5C(log(n) − 1) log(n)2(n − k) + 5C log(n)2(n − k)

≤ 5C(n − k) log(n)3.

Here we used Lemma 1 as well as the fact that
∑z

i=1 ni ≤ 4(n − k). To see why the
latter inequality is true, consider an arbitrary root r that has Sr values under it that
are good (with respect to the base call). Now

∑z
i=1 1{Ti=T (r)}ni ≤ ∑	log(Sr+1)


i=2 2i ≤
2	log(Sr+1)
+1 ≤ 4Sr . In total there are n − k good values under the roots, and hence∑z

i=1 ni ≤ 4(n − k).
Adding the expected running time of the recursive and the non-recursive part, we

see that
E[R(T , n, k)] ≤ 5C(n − k) log(n)3 + Cn log(n)2.

��
This now implies the desired running time for the procedure Select.

Theorem 3 The procedure Select(n) runs in expected O(n log(n)3) time.

Proof The key idea is that Select calls Extend(T , k′, k,L) at most 	log(n)
 times
with parameters (k′, k) = (2i , 2i−1) for i ∈ {1, . . . , 	log(n)
}. By Lemma 3, the
running time of Select can thus be upper bounded by

	log(n)
∑

i=1

E[R(T , 2i , 2i−1)] ≤ 5C log(n)3
	log(n)
∑

i=1

(2i − 2i−1) +
	log(n)
∑

i=1

Cn log(n)2

= O(n log(n)3).

��

3.5 Space complexity analysis

We prove in this section the space complexity of our main algorithm.
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Theorem 4 The procedure Select(n) runs in O(log(n)) space.

Proof Observe that it is enough toprove that the statement holds forExtend(T , n, k,L)

with k ≥ n/2, since the memory can be freed up (only keeping the returned value in
memory) after every call to Extend in the Select(n) algorithm.

Moreover, observe that the subroutines DFS, Roots and GoodValues all require
O(1) memory, as argued in their respective analyses. Any call Extend(T , n, k,L)

only makes recursive calls Extend(T (r), n̂, k̂, L̂) with 1 ≤ n̂ ≤ n − k ≤ 1
2n. So the

depth of the recursion is at most log(n), and the space complexity of the algorithm is
O(log(n)). ��

4 Lower bound

No lower bound is known for the running time of the selection problem on explorable
heaps. However, we will show that any (randomized) algorithmwith space complexity
at most s, has a running time of at least �(n logs(n)). Somewhat surprisingly, the tree
that is used for the lower bound construction is very simple: a root with two trails of
length O(n) attached to it.

We will make use of a variant of the communication complexity model. In this
model a totally ordered set W is given, which is partitioned into (SA, SB). There are
two agents A and B, that have access to the sets of values in SA and SB respectively.
We have |SA| = n + 1 and |SB | = n. Assume that all values SA and SB are different.
Now consider the problem where player A wants to compute the median, that is the
(n + 1)th smallest value of W .

Because the players only have access to their ownvalues, they need to communicate.
For this purpose they use a protocol, that can consist of multiple rounds. In every odd
round, player A can do computations and send units of information to player B. In
every even round, player B does computations and sends information to player A.
We assume that sending one value from SA or SB takes up one unit of information.
Furthermore, we assume that, except for comparisons, no operations can be performed
on the values. For example, the algorithm cannot do addition or multiplication on the
values.

We will now reduce the median computation problem to the explorable heap selec-
tion problem.

Lemma 4 If there is a randomized algorithm that solves SELECT(3n) in f (n)n time
and g space, then there is a randomized protocol for median computation that uses
f (n)/2 rounds in each of which at most g units of information are sent.

Proof Consider arbitrary sets SA and SB with |SA| = n + 1 and |SB | = n and
SA ∩ SB = ∅. Introduce a new element O , such that O < x for all x ∈ SA ∪ SB .
Let MA and MB be two sets with |MA| = |MB | + 1 = n and O < y < x for all
y ∈ MA ∪ MB and x ∈ SA ∪ SB .

Let us write SA = {a1, . . . , an+1}. Now consider a subtree for which the root node
has value a1. For every i ∈ {1, . . . , n}, let every node that has value ai have a child
with value ai+1 and another child with some value that is larger than any value in
SA ∪ SB ∪ MA ∪ MB . We will call this a trail of SA.
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O

MA

SA

MB

SB

Now we will construct a labeled tree in the following way: create a tree with a root
node of value O . Attach a trail of MA as the left child of this root and a trail of MB

as the right child. Attach a trail of SA as a child of the largest node in MA and do the
same for a trail of MB under the largest node of SB . The resulting tree will now look
as shown in the above picture.

Observe that the 3nth smallest value in this tree is the median of SA ∪ SB . Now
we can view the selection algorithm as an algorithm for median computation if we
consider moving between SA and SB in the tree as sending the g units of information
that are in memory to the other player. Because moving between the two sets takes at
least 2n steps, the number of rounds of rounds in the corresponding communication
protocol is at most f (n)n

2n = f (n)/2, proving the statement. ��
We now move on to proving a lower bound for the median computation problem.

The following lemma will play a key part in the proof.

Lemma 5 Let S ⊆ [n] be a randomly distributed subset of [n] with size |S| ≤ k ≤ n.
Then for � ≤ n

8k there exists a length-� interval⊆ [n] (i.e. I = {i, i+1, . . . , i+�−1})
such that: Pr[S ∩ I �= ∅] ≤ 1

4 .

Proof Let I� be the set of length-� intervals in [n]. We have |I�| = n−�+1. Observe
that any value in [n] is contained in at most � elements of I�. Hence, for any set S of
size at most k, there are at most k · � elements of I� that contain any of the elements of
S. That is: |{I ∈ I� : I ∩ S �= ∅}| ≤ k · �. This implies that for a randomly distributed
set S ⊆ [n] we also have:

∑

I∈I�

Pr
S
[I ∩ S �= ∅] =

∑

I∈I�

ES[1I∩S �=∅] = ES

⎡

⎣
∑

I∈I�

1I∩S �=∅

⎤

⎦

= ES[|{I ∈ I� : I ∩ S �= ∅}|] ≤ k · �.

So there must be an I ∈ I� with:

Pr
S
[I ∩ S �= ∅] ≤ k · �

|I�| = k · �

n − � + 1
≤ k · n

8k
1
2n

= 1

4
.

��
Theorem 5 Any randomized protocol for median computation that sends at most g
units of info per round, takes at least �(logg+1(n)) rounds in expectation.
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Proof We will instead prove the following result for a symmetric version of median
computation, because this makes the proof a bit easier. In this setting, we have |SA| =
|SB | = n and the objective is to find both the nth and the (n+1)th smallest element of
SA ∪ SB . We will call the set consisting of these two values the 2-median of SA ∪ SB
and we will denote it by 2median(SA ∪ SB). Because this problem can be trivially
solved by appending two rounds to any median-computation algorithm, proving a
lower bound for this case is sufficient.

Let g′ = g + 1. We can assume that g ≥ 1, and hence g′ ≥ 2. We will prove with
induction on n that the expected number of rounds to compute the median is at least
1
10 logg′(n) − 9. For n < 28(g′)2, this is trivial. Now let n ≥ 28(g′)2. Assume that the
claim is true for values strictly smaller than n. We will now prove the claim for n.

Consider an arbitrary randomized algorithm. Let Vi ⊆ [n] be the set of indices of
the values that are emitted during round i by one of the two players. Observe that the
distribution of the set V1 does not depend on the input, because player A only has
access to his own set of n values that he can compare to each other. Order the values in
SA by increasing order of their values x1, . . . , xn . Order the values of SB in decreasing
order as y1, . . . , yn . We now describe below how the relative ordering of the xi ’s with
respect to the yi ’s is decided adversarially.

Let � = � n
8g �. FromLemma5 it follows that there exists an interval I = {a, . . . , a+

� − 1} ⊆ [n] such that Pr[V1 ∩ I �= ∅] ≤ 1
4 . Now let L = {1, . . . , a − 1} and U =

{a+�, . . . , n}. Observe that {L, I ,U } forms a partition of [n].We now order the values
in the sets such that we have yu < xl < yi < xu < yl for all l ∈ L, u ∈ U , i ∈ I . Note
that this fixes the ordinal index of any element in SA ∪ SB , except for the elements xi
and yi for i ∈ I .

Condition on the event that I ∩ V1 = ∅. Observe that in this case, the results of
all comparisons that player 2 can do in the second round have been fixed. Hence, V2
will be a random subset of [n], whose distribution will not depend on the order of the
values xa, . . . , xa+�−1 with respect to y1, . . . , yn .

We now do a similar argument for the second player. Let �′ = � �
8g �. From Lemma

5, there exists an interval I ′ = {a′, . . . , a′ + �′ − 1} ⊆ I such that Pr[I ′ ∩ V2 �= ∅ |
I ∩ V1 = ∅] ≤ 1

4 . Define L ′ = {a, . . . , a′ − 1} and U ′ = {a′ + �′, . . . , a + � − 1}.
Observe that {L ′, I ′,U ′} forms a partition of I . We now order the values in the sets
such that we have yu < xl < yi < xu < yl for all l ∈ L ′, u ∈ U ′, i ∈ I ′. Note that we
have now fixed the ordinal index of any element in SA ∪ SB , except for the elements
xi and yi for i ∈ I ′.

Because I ′ ⊆ I , we have

Pr[I ′∩(V1∪V2) �= ∅] ≤ Pr[I∩V1 �= ∅]+Pr[I ′∩V2 �= ∅ | S∩V1 = ∅] ≤ 1

4
+ 1

4
= 1

2
.

Now, let R be the number of rounds that the algorithm takes and define S′
A = {xi :

i ∈ I ′} and S′
B = {yi : i ∈ I ′}. Observe that 2median(SA∪SB) = 2median(S′

A∪S′
B).

So the algorithm can now be seen as an algorithm to compute the 2-median of S′
A∪S′

B .
Let R′ be the number of rounds in which elements from the set S′

A∪S′
B are transmitted.

With probability φ := Pr [I ′ ∩ (V1 ∪ V2) = ∅] ≥ 1
2 , no information about S′

A and S′
B
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is transmitted in the first two rounds, meaning that

E[R′] ≤ φ E[R − 2] + (1 − φ)E[R] = E[R] − 2φ ≤ E[R] − 1.

Moreover, by our induction hypothesis it follows that R′ satisfies:

E[R′] ≥ 1

10
logg′(|S′

B |) − 9 = 1

10
logg′(�′) − 9 ≥ 1

10
logg′

(
n

(8g)2
− 2

)
− 9

≥ 1

10
(logg′(n) − 2 logg′(8g′) − 2) − 9 ≥ 1

10
logg′(n) − 10.

The second inequality follows from the definition of �′. The third inequality follows
from the fact that logg′(x − 2) ≥ logg′(x) − 2 for x ≥ 3. The last inequality follows

from g′ ≥ 2. Consequently, we get that E[R] ≥ E[R′] + 1 ≥ 1
10 logg′(n) − 9. ��

Combining Theorem 5 and Lemma 4 now implies the following.

Theorem 6 The time complexity of any randomized algorithm for SELECT(n) with at
most g units of storage is �(logg+1(n)n).
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