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Abstract. Choreographies describe possible sequences of interactions
among a set of agents. We aim to join two lines of research on choreogra-
phies: the use of the shuffle on trajectories operator to design more ex-
pressive choreographic languages, and the use of models featuring partial
orders, to compactly represent concurrency between agents. Specifically,
in this paper, we explore the application of the shuffle on trajectories
operator to individual posets, and we give a characterisation of shuffles
of posets which again yield an individual poset.
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1 Introduction

Distributed systems are becoming ever more important. However, designing and
implementing them is difficult. The complexity resulting from concurrency and
dependencies among agents makes the process error-prone and debugging non-
trivial. As a consequence, much research has been dedicated to analysing com-
munication patterns, or protocols, among sets of agents in distributed systems.
Examples of such research goals are to show the presence or absence of certain
safety properties in a given system, to automate such analysis, and to guarantee
the presence of desirable properties by construction.

Part of this research deals with choreographies. Choreographies can be used as
global specifications for asynchronously communicating agents, and contain cer-
tain safety properties by construction. As a drawback, choreographic languages
typically have limitations on their expressiveness, since they rely on grammat-
ical constructs for their safety properties, which exclude some communication
patterns. We have recently shown that the shuffle on trajectories operator can
be used to specify choreographies without compromising expressiveness [2]. Con-
sequently, it could serve as a basis for more expressive choreographic languages.

Other recent work on choreographies includes the use of models featuring
partial orders, such as event structures [1] and pomsets [6,3], to represent and
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analyse the behaviour of choreographies. By using a partial order to explicitly
capture causal dependencies between pairs of actions, these models avoid the
exponential blowup from, e.g., parallel composition of finite state machines.

We aim to join these two lines of research by extending the shuffle on trajec-
tories operator from words, i.e., totally ordered traces, and languages to partially
ordered traces and sets thereof. In this paper, as a first step, we explore the ap-
plication of the shuffle on trajectories operator to individual partially ordered
sets, or posets. The main challenge is that the resulting behaviour cannot always
be represented as one poset and may require a set of them. In particular, we give
a characterisation of shuffles of posets which again yield an individual poset.

Outline We recall the concept and definition of the shuffle on trajectories oper-
ator in Section 2. We briefly discuss posets in Section 3. In Section 4 we discuss
how to apply the shuffle on trajectories operator to posets, and specifically which
shuffles of posets will yield an individual poset as a result. Finally, we briefly
discuss future work in Section 5.

The proofs of Proposition 1 and Lemma 1 can be found in the appendix.

2 Shuffle on trajectories

We recall the basic definitions from [2]. The shuffle on trajectories operator is
a powerful variation of the traditional shuffle operator3, which adds a control
trajectory (or a set thereof) to restrict the permitted orders of interleaving. This
allows for fine-grained control over orderings when shuffling words or languages.
The binary operator was defined — and its properties thoroughly studied — by
Mateescu et al. [4]; a multiary variant was introduced slightly later [5].

When defined on words, the shuffle on trajectories takes n words and a tra-

jectory, which is a word over the alphabet {1, . . . , n}. This trajectory specifies
the exact order of interleaving of the shuffled words: in Figure 1, the trajectory
1221112112 specifies that the result should first take a symbol from the first
word, then from the second, then again from the second and so on.

Formally, let w1, . . . , wn be finite words over some alphabet and let t be a
finite word over the alphabet {1, . . . , n}. Let ε be the empty word. Then:

�

n
t (w1, . . . , wn) =

{

a�n
t′ (w1, . . . , w

′

i, . . . , wn) if t = it′ and wi = aw′

i

ε if t = w1 = . . . = wn = ε

We note that �n
t (w1, . . . , wn) is only defined if the number of occurrences of i

in t precisely matches the length of wi for every i. We then say that t fits wi.

Example 1.

– �3
121332(ab, cd, ef ) = acbefd , since 121332 fits every word.

3 In concurrency theory, the shuffle operator is also known as free interleaving, non-
communication merge, or parallel composition.
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Fig. 1. The shuffle of ‘banana’ and ‘pear’ over a trajectory 1221112112: ‘bpeanaanar’.

– �2
121(ab, cd) is undefined, since 121 does not fit cd.

The shuffle on trajectories operator naturally generalises to languages: the
shuffle of a number of languages on a set (i.e., a language) of trajectories is
defined as the set of all valid shuffles of words in the languages for which the
trajectory fits all the words. Formally:

�

n
T (L1, . . . , Ln) = {�n

t (w1, . . . , wn) | t ∈ T,w1 ∈ L1, . . . , wn ∈ Ln}

As the operator’s arity is clear from its operands, we typically omit it.

3 Posets

Partially ordered sets, or posets for short, consist of a set of nodes E (events),
and a partial order4 ≤ defining dependencies between pairs of events — i.e., an
event can only fire if all events preceding it in the partial order have already
fired. We write a < b to denote that a ≤ b and a 6= b. We write a ≥ b resp. a > b
to denote that b ≤ a resp. b < a. We write a 6≷ b to denote that a 6≤ b and b 6≤ a;
we then say that a and b are concurrent. We occasionally write EP ,≤P , <P ,
≥P , >P and 6≷P to specify that the set of events or relation belongs to poset P ,
but where this is clear from context we typically omit the subscript.

The behaviour (or language) of a poset P , written L(P ), is the set of all
maximal traces, i.e., maximal sequences of its events, that abide by ≤. In this
sense, posets can be considered a generalisation of words with concurrency: they
feature a fixed set of symbols (events)5, but they can allow multiple orderings of
them instead of only a single one. Concurrent events can happen in any order.
Consequently, all traces obtained from a trace in L(P ) by swapping adjacent con-
current events must also be in L(P ). In fact, any trace in L(P ) can be obtained
from any other trace in L(P ) in this fashion.

4 Recall that a partial order is reflexive, transitive and antisymmetric.
5 There is a difference between words and posets in the sense that the events in a

poset must be unique, whereas a word may contain duplicate symbols. It would be
more accurate to say that words generalise to labelled posets, or lposets, and from
there to partially ordered multisets, or pomsets. However, in this paper we focus on
posets, where all symbols are thus unique.
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Fig. 2. Graphical representation of a number of posets and lposets, where an arrow
from a to b should be read as a ≤ b. The partial order is the reflexive and transitive
closure of the dependencies depicted by the arrows. For the lposets, the labels are
shown rather than their events.

Example 2. For poset Pex in Figure 2, E = {a, b, c, d} and the partial order
consists of a ≤ a, a ≤ c, a ≤ d, b ≤ b, b ≤ d, c ≤ c and d ≤ d. Its language
L(Pex) consists of the traces abcd, abdc, acbd, bacd, and badc.

We note that the dependencies in a poset can also be observed in its set of
traces. For example, if a < b then a will precede b in every trace, and if a 6≷ b
then there will both be traces where a precedes b and traces where b precedes a.
Formally, we can extract the following relation ≤L from a set of traces L ⊆ E∗:

∃x, y, z ∈ E∗ : xaybz ∈ L

∀x̂, ŷ, ẑ ∈ E∗ : x̂bŷaẑ /∈ L

a ≤L b a ≤L a

a ≤L b ≤L c

a ≤L c

We then propose the following:

Proposition 1. Let P = 〈EP ,≤P 〉 be a poset. Then ≤L(P ) = ≤P .

To model trajectories, which require duplicate symbols, we must also intro-
duce labelled posets, or lposets. In these, every event is assigned a label, which
is not necessarily unique. Its traces then use these labels instead of the events.

4 Shuffling posets

As a first step towards shuffling posets, we first reinterpret shuffles on words
as posets. In other words: we consider the case where all posets, including the
trajectory, are totally ordered and thus consist of a single trace. This is shown
in Figure 3, which features the shuffle from Figure 1 interpreted as a poset. The
traces ‘banana’ and ‘pear’ are present as totally ordered parts of the poset, and
the trajectory adds additional dependencies between the two, as shown by the
vertical (and diagonal) arrows.

Generalising this to arbitrary posets and lposets is not trivial, but we have
some knowledge to assist us. Crucially, since we can determine the language of a
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b a1 n1 a2 n2 a3

p e a4 r

1 1 1 1 1 1

2 2 2 2

Fig. 3. The figure on the left shows the shuffle from Figure 1 interpreted as a shuffle
of posets. Indices have been added to duplicate symbols to make them unique. Some
of the arrows are redundant but are kept to illustrate the general idea. The figure on
the right shows the trajectory, 1221112112, as an lposet.

poset, it must be so that the result of shuffling posets yields the same language
as the shuffle of the languages of these posets, which is defined in Section 2:

L(�Pt
(P1, . . . , Pn)) = �L(Pt)(L(P1), . . . , L(Pn))

If the result is an individual poset, by Proposition 1 it must then be:

�Pt
(P1, . . . , Pn) = 〈EP1 ∪ . . . ∪ EPn

,≤
�L(Pt)

(L(P1),...,L(Pn))〉

For example, consider �LPt1
(P1, P2), with LPt1 , P1 and P2 as in Figure 2.

LPt1 has traces 1121 and 1112, P1 has traces abcd, acbd and cabd, and P2 has a
single trace e. Shuffling these languages yields L1 = {abced, acbed, cabed, abcde,
acbde, cabde}. From this we extract ≤L1 , which contains all the dependencies
present in P1 and P2 and, additionally, a ≤L1 e, b ≤L1 e and c ≤L1 e. This
corresponds to poset Pr1 in Figure 2, which indeed yields the language L1.

However, now consider �LPt2
(P1, P2), again as in Figure 2. LPt2 has traces

1211, 1121 and 1112, which yields L2 = L1∪{abecd, acebd, caebd}. From this we
extract ≤L2, which still contains all the dependencies in P1 and P2, but otherwise
only a ≤L2 e: the traces abecd and acebd imply that b and c are concurrent with e.
However, then the trace aebcd should also be in L2, which it is not. We can then
conclude from Proposition 1 that there exists no poset P such that L(P ) = L2.
In fact, L2 corresponds to a set of two posets, namely Pr2a and Pr2b in Figure 2.

We proceed by giving a characterisation of shuffles of posets for which the
result corresponds to an individual poset. A key insight is that, if the result must
correspond to an individual poset, then any two events which are concurrent in
one of the operands of the shuffle must, in the resulting poset, have the same
relation (<, > or 6≷) to any third event originating from another operand:

Lemma 1. Let LPt be an lposet and P1, . . . , Pn, P posets such that L(�LPt
(P1,

. . . , Pn)) = L(P ) and L(P ) 6= ∅. If a, b ∈ EPi
such that a 6≷Pi

b and c ∈ EPj

with i 6= j, then either a, b <P c, or a, b >P c, or a, b 6≷P c.

We can then group the events in every Pi according to the reflexive and
transitive closure of the concurrency relation 6≷Pi

; two events which are related
in this closure then belong to the same group. Note that, while the events in a
group are partially ordered, the groups of every Pi are, by construction, totally
ordered. It follows from Lemma 1 that two events in the same group, even when
not concurrent, must have the same relation to any event outside of their group
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a b c d

e

1 1 1 1

2

Fig. 4. The figure on the left shows Pr1 , corresponding to�LPt1
(P1, P2) (see Figure 2),

restructured to show the groups of P1 and P2. An arrow from one group of events to
another should be read as an arrow from all events in the originating group to all
events in the target group. The figure on the right shows the restructured LPt1 ; the
dependencies within groups in LPt1 are irrelevant for the resulting traces.

in P . This in turn implies a similar condition on the trajectory lposet: any two i-
labelled events in LPt that can match two events from the same group of Pi must
have the same relation to any j-labelled event in LPt (where j is not necessarily
unequal to i) that can match an event outside of their group.

Figure 4 shows Pr1 , corresponding to�LPt1
(P1, P2), and LPt1 (from Figure 2),

both restructured to show the groups of P1 and P2. This demonstrates an in-
teresting parallel with Figure 3: both feature horizontal traces with additional
arrows specifying dependencies between components of these traces. However,
in Figure 3 the components consist of individual events, whereas in Figure 4 the
components consist of posets. In this sense, shuffles resulting in individual posets
generalise shuffles on traces.

Concluding, we can then characterise shuffles on posets which result in in-
dividual posets as those where the trajectory lposet is structured along the
operand posets’ groups, as in Figure 4, possibly with dependencies between dif-
ferent operands’ groups.

5 Future work

Now that we have studied shuffles of posets resulting in individual posets, there
are two evident avenues for future work: (1) shuffles of lposets, where one label
may occur multiple times rather than just considering orderings of unique events
and (2) shuffles of posets resulting in sets of posets and shuffles of sets of posets,
where the main challenge may be to minimise the resulting number of posets.
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A Proofs from the paper

Proposition 1. Let P = 〈EP ,≤P 〉 be a poset. Then ≤L(P ) = ≤P .

Proof.

– Suppose that a ≤P b for some a, b ∈ EP . Then, since ≤P is a partial order,
either:
• a = b, in which case also a ≤L(P ) b since ≤L(P ) is reflexive; or
• a ≤P b but a 6= b, in which case a will precede b in every (maximal)

trace of P . Furthermore, L(P ) will not be empty, and then a ≤L(P ) b by
its first rule.

– Suppose that a ≤L(P ) b for some a, b ∈ EP . Then, by definition of ≤L(P ),
either:
• a = b, in which case also a ≤P b since ≤P is reflexive; or
• (1) ∃x, y, z ∈ E∗

P : xaybz ∈ L(P ) and (2) ∀x̂, ŷ, ẑ ∈ E∗

P : x̂bŷaẑ /∈ L(P ).
Suppose, for the sake of contradiction, that a 6≤P b. Then either a >P b,
which contradicts (1), or a 6≷P b, which contradicts (2) since there should
then also exist some trace in L(P ) in which b precedes a. We can thus
conclude that a ≤P b.

We note that the transitive rule for ≤L(P ) is subsumed by the other two and
does not need to be considered separately. Nevertheless, a straightforward
inductive argument suffices to cover this.

Lemma 1. Let LPt be an lposet and P1, . . . , Pn, P posets such that L(�LPt
(P1,

. . . , Pn)) = L(P ) and L(P ) 6= ∅. If a, b ∈ EPi
such that a 6≷Pi

b and c ∈ EPj

with i 6= j, then either a, b <P c, or a, b >P c, or a, b 6≷P c.

Proof. If no subscript is given, in this proof, < and 6≷ refer to <P and 6≷P .
We start by making three observations:

(1) As noted in Section 3, if a 6≷Pi
b, then there must exist traces in L(Pi) such

that a occurs before b in one, and after b in another. Furthermore, since all
traces of a poset can be obtained from an arbitrary one by swapping adjacent
concurrent events, there must also exist traces such that a and b are adjacent
to each other, in both orders, e.g., vabw and vbaw for some v, w.

(2) The causal relation between two events in Pi remains the same in P . The
shuffle on trajectories operator does not change the internal order of the
traces of its operands, meaning that, for example if d occurs before e in every
trace of Pi, then it will also occur before e in every trace of P . Similarly,
if Pi both contains traces in which d occurs before e and traces in which d
occurs after e, then so will P . In particular, this means that, since a 6≷Pi

b,
also a 6≷ b.

(3) If two events are concurrent in Pi and can thus be swapped in traces of Pi

when adjacent, then they can also be swapped in traces of P when there
are no other events from Pi in between them. The shuffle on trajectories
operator does not make any distinction between the corresponding traces
from Pi. Additionally, we note that this implies that the two events are
concurrent with all events (from other operands) in between.
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Consider the relation between a, b and c in P . As observed in (2), a 6≷ b.

– Suppose that a < c and c < b. It then follows by transitivity (recall that ≤
is a partial order) that a < b, which contradicts a 6≷ b. Analogously, we can
exclude the case where b < c and c < a.

– Suppose that a < c and b 6≷ c. Then, there must exist a trace uavcwbx in
L(P ) for some u, v, w, x, i.e., a trace where a occurs before c and where b
occurs after c. If vw contains no events from Pi, then it follows from a 6≷ b
and (3) that L(P ) must also contain ubvcwax, which contradicts a < c.
Otherwise, we systematically remove the events from Pi in vw:
• Let d be the leftmost event from Pi in vw such that d < b. Then, since

we must be able to swap adjacent concurrent events in traces of Pi until
a and b are adjacent (as noted in (1)), d must be concurrent with all
events from Pi to the left of it in avw (including a). We can thus swap
d with its left neighbour from Pi until it has been swapped with a, thus
reducing the number of events from Pi in vw by 1. We repeat this until
there are no events left in the remainder of vw that fit this description.

• Analogously, let e be the rightmost event from Pi in the remainder of
vw such that a < e. Then e must be concurrent with all events from Pi

to the right of it until at least b, so we swap it with its right neighbour
from RPi until it has been swapped with b. Again, we repeat this until
there are no events left that fit this description.

• All events from Pi remaining in vw must now be concurrent with both
a and b. We can thus keep swapping a with its right neighbour (or,
alternatively, b with its left neighbour) from Pi until there are no events
from Pi remaining between a and b.

If, at some point, a has passed c and is now to the right of it, then this
contradicts a < c. If a remains to the left of c and b to its right, then we can
swap a and b to contradict a < c. Otherwise, if b has passed c and is now to
the left of it, then b must be concurrent with all events to the right of it at
least until c (as noted in (3)). We can then swap it with its right neighbour
(from P ) until it has been swapped with c, after which we can swap it with
a to contradict a < c.
As all cases lead to a contradiction, we can thus conclude that it is not
possible that a < c and b 6≷ c. Analogously, we can also exclude the cases
where c < a and b 6≷ c, where b < c and a 6≷ c, and where c < b and a 6≷ c.

As we have excluded all other cases, this proves that either a, b < c, or
c < a, b, or a, b 6≷ c. ⊓⊔
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