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Abstract
Simulations of condensed matter systems often focus on the dynamics of a few distinguished components but require integrating the
dynamics of the full system. A prime example is a molecular dynamics simulation of a (macro)molecule in solution, where both the
molecules(s) and the solvent dynamics needs to be integrated. This renders the simulations computationally costly and often unfeasible for
physically or biologically relevant time scales. Standard coarse graining approaches are capable of reproducing equilibrium distributions
and structural features but do not properly include the dynamics. In this work, we develop a stochastic data-driven coarse-graining method
inspired by the Mori-Zwanzig formalism. This formalism shows that macroscopic systems with a large number of degrees of freedom
can in principle be well described by a small number of relevant variables plus additional noise and memory terms. Our coarse-graining
method consists of numerical integrators for the distinguished components of the system, where the noise and interaction terms with
other system components are substituted by a random variable sampled from a data-driven model. Applying our methodology on three
different systems – a distinguished particle under a harmonic potential and under a bistable potential; and a dimer with two metastable
configurations – we show that the resulting coarse-grained models are not only capable of reproducing the correct equilibrium distributions
but also the dynamic behavior due to temporal correlations and memory effects. Our coarse-graining method requires data from full-scale
simulations to be parametrized, and can in principle be extended to different types of models beyond Langevin dynamics.

Computer simulations have been extremely powerful in
the study of (soft) condensed matter systems. Application
of molecular dynamics, Langevin or Monte Carlo enables the
modeling of phase transitions, material properties, conforma-
tional changes in biomolecules, and many other applications
(1–8). In addition to thermodynamical properties, dynami-
cal simulations also give access to time-correlation-dependent
properties such as diffusion, viscosity, mean first passage times
for reactive events, relaxation and even aging processes. While
accurate, but still approximate, (classical) atomistic force
fields are available for many type of molecules, they become
computationally very costly for large systems. One important
reason is that the timescale separation between the funda-
mental timestep in the integration of the equation of motion
and the timescale needed to observe the phenomenon of in-
terest can be many orders of magnitude. This renders the
computational effort to reach the physically or biologically
relevant timescales needed for e.g. nucleation or protein-ligand
(un)binding prohibitively large.

Precisely for that reason a plethora of coarse-grained
methodologies have been developed (8–12), e.g. methods
have been developed to coarse-grain entire protein domains
and subdomains into single effective coarse-grained particles
(13–17). Recently, deep learning approaches have been used to
learn coarse-grained free energy functions using force-matching
schemes to train the neural networks (18–21). In many of these
works, coarse-grained force fields have been developed, in which
fast but unimportant degrees of freedom have been integrated
out, thus reducing the number of degrees of freedom in the
model to the most relevant.

Similar to the original atomistic force field, coarse-grained
force field models can be used in molecular dynamics setup,
usually Langevin Dynamics, but are much more efficient due
to the reduced number of degrees of freedom and the allowed

larger time step. In the resulting dynamics, the effect of the
integrated-out degrees of freedom is taken care of by a heat
bath. However, a major drawback is that one no longer resolves
the dynamics on short timescales, which are often still needed
to reproduce the correct behaviour on longer timescales of
(time-correlated) observables.

To recover this time-correlated behaviour, inertial Langevin
dynamics or overdamped (Brownian) dynamics are usually
performed with an effective friction or diffusion constant, which
also governs the stochastic noise represented by the stochastic
Wiener process. However, the choice of the diffusion or friction
constant is rather ad hoc, might be position dependent, or
even incorporate hydrodynamic interactions (22–24).

From a first principles point of view, it is desirable that a
coarse-grained force field can reproduce the correct dynamics.
Formally, the well-known Mori-Zwanzig formalism achieves
precisely that, by constructing a generalized Langevin equa-
tion in which all the dynamics of the degrees of interest are
condensed into three components: the projected dynamics,
the so-called memory term, and a noise term (25–28). In
traditional approaches, the dynamics are projected into slow
variables. However, it is theoretically possible to perform exact
dynamical coarse-graining even in systems without time scale
separation by using a wise choice of collective variables, which
are not necessarily slow (29).

In essence, the Mori-Zwanzig formalism shows that macro-
scopic systems with a large number of degrees of freedom can
be well described by a small number of relevant variables,
with their dynamics given in terms of the three components
mentioned above. However, the actual derivation and practical
implementation of reduced (coarse-grained) models following
this formalism are often very difficult due to the challenge of
accurately computing the memory kernel (26, 30–32). To make
this more tractable, approximations such as the short memory
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approximation are frequently used. The assumptions underly-
ing such approximations can be reasonable for certain systems,
but less so for others, especially if there is no clear separation
of timescales between the resolved and unresolved degrees of
freedom (33). In another related work (34), instead of try-
ing to reproduce the memory kernel, a set of non-Markovian
features and the extended dynamic equation are learned by
matching the evolution of the correlation functions.

Here, we take a different, data-driven, route. Instead of
aiming to derive the various terms in the generalized Langevin
equation (GLE), assisted by invoking certain approximations
or by using data to fit e.g. an assumed functional form of
the memory kernel, or by matching correlation functions, we
use a database to sample a noise process that combines the
memory term and the noise term of the GLE. In particular, we
explore the application of the data-driven heat bath approach
developed in (35). Building on earlier work on data-driven
stochastic modeling of unresolved processes (36), this general
data-driven methodology was developed and subsequently
applied to multiscale simulations of ocean flow in (37). This is
an example of the ongoing development in which data are used
to inform or augment physics-based models. Other examples
are the use of QM data to inform molecular dynamics based
on electronic structure and the deployment of data-driven
closures in computational fluid dynamics (38, 39).

In this work, we develop and apply this data-driven ap-
proach for molecular condensed matter systems, in particu-
lar of distinguishable solute particles dissolved in a bath of
fluid particles. This situation applies to (a) complex solute
molecule(s) suspended in a solvent, e.g. proteins in water, or
polymer solutions. Our coarse-graining method integrates out
the fluid particles and replaces their influence with a stochas-
tic data-driven model while retaining all time-correlations
correctly. This results in a set of numerical integrators for
the distinguished components of the system, where the noise
and interaction terms are substituted by a random variable
sampled from a data-driven model. We demonstrate the valid-
ity of our methodology on three different systems, all with a
three dimensional solvent: As a first test case, we consider a
single distinguished particle immersed in a (solvent) bath of
fluid particles, with the distinguished particle experiencing an
(external) harmonic potential, The second system allows the
same particle to hop between two states in an external bistable
potential, so that long-time correlations become important.
The third test case is a constrained dimer with two metastable
configurations.

We find that in most cases the coarse-grained model best
reproduces the time (auto) correlations and mean first passage
times of the fully resolved model when the data-driven model
for the auxiliary variable (i.e., the variable that represents the
influence of the solvent particles) is made to be dependent on
the current velocity of the distinguished particle, as well as
on the auxiliary variable at both the current and the previous
time step. However, in the last example, we show that more
sophisticated systems might require a more complex set of
variables.

The resulting coarse-grained models not only have all the
advantages of coarse-grained force fields, i.e. they reproduce
the correct equilibrium distributions with a significant speed
up w.r.t the fully resolved model, but also correctly predict
the dynamic behavior due to memory effects. However, they

still require data from full-scale simulations to construct the
data-driven model.

Our application of the data-driven coarse-grained dynamics
methodology enables the prediction of kinetic observables in
a bottom-up manner and can in principle be extended to
different types of models beyond Langevin dynamics. E.g., it
could be included in reaction-diffusion dynamics (40), their
generalized dynamics (41, 42) and their multiscale schemes (43–
46); as well as in biomembrane simulations (24, 47–50). Other
potential applications include computational fluid dynamics
and climate modeling (36–39, 51). Future work should include
testing the method on more complex systems such as proteins,
colloids and surfactant solutions. The sampling of the auxiliary
variables in high-dimensional cases such as these ones could in
principle be handled by implementing a deep learning (neural
network) pipeline.

1. Data-driven dynamical coarse-graining

1.1. Separating the distinguished from solvent compo-
nents. To introduce our data-driven dynamical coarse-graining
approach, first consider L+N interacting particles and assume
the dynamics of each particle i follows a Langevin equation

Ẋ i = Ui,

miU̇i = −ΓUi − ∇iV (X) + ξi(t), [1]

where X i, Ui corresponds to the position and velocity of the
ith particle, V (X) is the interaction potential, Γ the friction
coefficient, and mi the particle’s mass. Note that the friction
coefficient can be in general a tensor, e.g. for anisotropic par-
ticles, but here we take a scalar for simplicity. The noise term,
represented by the Wiener process, satisfies the fluctuation-
dissipation relation ⟨ξi(t)ξj(t′)⟩ = 2ΓkBT δijδ(t − t′).

We further assume that from these L + N particles, the
first L correspond to distinguished particles, while the re-
maining ones (N) correspond to solvent particles. We are
mainly interested in the dynamics of distinguished particles.
To distinguish them from solvent particles, we will denote their
positions and velocities as xj , vj with j = 1, . . . , L. Similarly,
for the bath particles, we will use qk, uk with k = 1, . . . N .
Thus the positions and velocities of all the particles in the sys-
tem are represented by X = (x, q) = (x1, . . . , xL, q1, . . . , qN )
and U = (v, u) = (v1, . . . , vL, u1, . . . , uN ), respectively. To
simplify notation, we will further assume all distinguished
particles have the same mass M and all the solvent particles
have the same mass m.

It is also convenient to split the (pair) potential function
V into two parts. The first part, U , includes interactions
among pairs of distinguished particles, or between an external
potential and distinguished particles. The second one, Us,
gathers all the pair interactions involving the solvent, thus

V (x, q) = U(x) + Us(x, q). [2]

We assume that the distinguished particles move on longer
time scales than the bath particles. Usually this is the case if
the distinguished particles are larger objects or macromolecules
(e.g. proteins), and the bath particles are small e.g. solvent
molecules like water. Inspired by the Mori-Zwanzig formalism
(28) and based on eq. (1), we can write the Langevin equation
for the L distinguished particles by condensing all the small



Fig. 1. One dimensional binning example fro rn+1
x |rn

x . The cloud of
data points from the simulation (section 2.2) are projected onto two
dimensions: the x coordinate of rn and the x coordinate of rn+1. If
rn takes a value inside some bin, then rn+1 is sampled uniformly from
that bin. The binning implementations in this work are done in between
three to nine dimensions, depending on the number and dimension of
the conditioning variables.

scale features arising from the interaction with the solvent and
the noise into an auxiliary variable r,

ẋj = vj ,

Mv̇j = −Γvj − ∇U(x) + r. [3]

These equations only describe the dynamics of the distin-
guished particles; if one knows r, one does not need to in-
tegrate the solvent dynamics. The r variable captures part
of the projected dynamics, the memory kernel and the noise
term. In general, r is dependent on (x, v), the positions and
momenta of the distinguished particles. If we knew the exact
model for r as suggested by the generalized Langevin equa-
tion, this equation would correspond to an exact dynamical
coarse-graining of the original dynamics (eq. (1)) (26, 28).
However, in most cases, we do not know it explicitly, but we
can nonetheless try to approximate it from data. This way we
do not need to integrate the dynamics of the solvent particles,
greatly reducing the computational effort. In other words, we
would like to obtain a reduced model of the form

˙̃xj = ṽj ,

M ˙̃vj = −Γṽj − ∇U(x̃) + r̃, [4]

where we denote with a tilde the reduced model variables.
The coordinates of the distinguished particles act as coarse-
grained coordinates of the whole system. The random variable
r̃ should then be sampled from a data-driven model, which
we need to develop. To tackle this, we will first translate the
problem into a discrete-time setting and then we will formulate
a data-driven numerical integrator for the reduced model.

1.2. Langevin integrator. Langevin integrators usually rely
on splitting methods to improve the accuracy and stability of
the integration schemes. These methods are constructed by
first decomposing the differential equations into parts that can
be solved exactly and then set together a sequence of updates
corresponding to an exact solution of each piece in a given
time step or fraction of time step.

To obtain and implement a coarse-grained data-driven in-
tegrator it is convenient to use a Langevin integrator that can,
despite the splitting, integrate a full time-step of the velocity
in a single operation. In appendix A, we introduce two of the

most used Langevin integrators (2) for an arbitrary Langevin
equation eq. (13): the BOAOB and the ABOBA integrators.
The splitting approach in the former does not allow for a full
times-step integration of the velocity at once; however, the
integration in the latter one does. Thus, in this work, we will
base our derivation on the ABOBA scheme, but the derivation
is analogous to any other integrator with a splitting that allows
for a full-time-step integration of the velocity at once, such
as the Stochastic Position Verlet method (2) among others.
It can further be extended to integrators that do not allow
for a full-time-step integration of the velocity (e.g. BOAOB);
however, this requires sampling the auxiliary variable more
than once per time step, resulting in a more cumbersome
implementation.

Following appendix A, the ABOBA integrator for the
Langevin equation from eq. (1) can be written as follows

X
n+1/2 = X

n + U
n dt

2 ,

U
n+1 = c1U

n − dt

2 M−1 (1 + c1) ∇U
(
xn+1/2

)
−dt

2 M−1 (1 + c1) ∇Us

(
xn+1/2, qn+1/2

)
+ c2M−1/2ζn

X
n+1 = X

n+1/2 + U
n+1 dt

2 ,

[5]

where the velocity integration was condensed into one
step, c1 = e−γdt, c2 =

√
kBT (1 − c2

1), M =
diag(M, . . . , M, m, . . . , m), and γ = ΓM−1 with the corre-
sponding potentials. In general, note that as we are assuming
Γ is scalar and M a diagonal matrix, γ is also a diagonal
matrix and the matrix exponentials are easily defined. Alter-
natively one can write the integration componentwise without
using matrices, or simply assume equal masses and friction
coefficients, yielding scalar values. The superindices n are the
values of the corresponding variable at time ndt with timestep
dt, and ζn are iid samples from a 3(L + N) dimensional stan-
dard normal distribution (N (0, 1)). To extract the data and
to implement the reduced model integrator with this numeri-
cal scheme, we split the velocity integration step in Eq. 5 as
follows

rn+1 = −dt

2 M−1 (1 + c1) ∇Us

(
X

n+1/2
)

+ c2M−1/2ζn,

U
n+1 = c1U

n − dt

2 M−1 (1 + c1) ∇U
(

X
n+1/2

)
+ rn+1,

[6]

where rn+1 represents the small-scale features/interactions.
We will use this reformulation of the integrator to extract the
data for the data-driven integrator of the reduced model.

1.3. Data extraction and binning. If we run the Langevin
integrator for the full model with the solvent, we can store
data points of the form (t, x, v, r), corresponding to time,
position, velocity and small-scale features/interactions of the
distinguished particle. We do not need to store any of the
data from the solvent molecules. For instance at the end of
time step n + 1, we store (tn+1, xn+1, vn+1, rn+1). Note that
even if we do not store rn+1, we could still calculate it from
xn+1, vn+1, although some extra effort is required.

Given these data points for many time steps and many
trajectories, we can classify the data under several different
assumptions. It is reasonable to expect the random value
of rn+1 to be dependent on previous values of the position,

3



Fig. 2. Harmonic potential example and comparisons of distributions and autocorrelations. a. Illustration of the benchmark simulation. b.
Plot of the external harmonic potential (units of nm and kBT ) acting on the distinguished particle. c. Comparison of the distributions and
autocorrelation functions for the x component of the position and velocity of the distinguished particle between the benchmark simulation and
several reduced models with different conditioning. All models use the same parameters and are simulated on a box with an edge length of 8nm. d.
Same comparison but for a box with an edge length of 5nm.

velocity or even of r itself. This means we would like to sample
from its conditional distribution, i.e. from the distribution of
r conditioned on some chosen variables ξ :

rn+1|ξn, ξn−1, . . . [7]

where ξn can take any combination of values of xn, vn and
rn. This yields different possibilities: e.g., we can assume it to
be conditioned only on the previous position rn+1|xn, or on
one of the previous values of r, rn+1|rn or even two of them
rn+1|rn, rn−1. Each of these choices will yield a different data-
driven model to sample rn+1 at each integration time step (see
also (35)). In the simplest case, we assume the distribution is
only conditioned on the previous position or velocity, rn+1|xn

or rn+1|vn.
To develop the scheme for the reduced model, at each time

step n we need to sample (randomly) from the conditional
distribution 7. We do not know this distribution, however we
can approximate sampling from it by resampling from the data
(i.e., bootstrapping). To do so we partition the data into bins
corresponding to different values of the conditioning variable
ξ (fig. 1). In this way, given the conditioning variables, we
can determine the corresponding bin and resample uniformly
from all the available data in that bin. Of course, binning and
resampling is simple in one dimension, but the implementation
becomes complex for higher dimensions, and even unfeasible
for very high dimension (due to curse of dimension). Moreover,
the higher the dimension, the more likely to encounter empty
bins. In such cases, we simply sample from the closest non-
empty bin.

1.4. Data-driven Langevin integrator. Assuming we have
a data-driven model to sample rn+1, as the one described in
the previous section, we can write the data-driven integrator

for the distinguished particles in Eq. 5 as follows

x̃n+1/2 = x̃n + ṽndt/2,

ṽn+1 = e−γdtṽn − dt

2m

(
1 + e−γdt

)
∇U

(
x̃n+1/2

)
+ r̃n+1,

x̃n+1 = x̃n+1/2 + ṽn+1dt/2.

[8]

Note that as in this case we are assuming equal masses, γ =
Γ/M is simply a scalar. The structure of the integrator follows
the same form of the ABOBA scheme, but it samples part of
the velocity integration from the chosen data-driven model
(r̃n+1|ξ̃n, ξ̃n−1, . . . ). It can thus integrate the dynamics of
the distinguished particle without (explicitly) integrating the
bath particles, i.e. we can write everything in terms of only
the coarse-grained variables x. We refer to these models as
reduced models. Note we wrote r̃ instead of r to emphasize
that these variables are resampled from the data-driven model
and that they belong to the reduced model.

2. Reduced models for solvents with WCA inter-
action

We apply our dynamic coarse-graining method to produce a
reduced model of one or two distinguished particles immersed
in a solvent in three dimensions. To avoid spurious effects
like phase transitions we consider the case in which all pair
interactions —between pairs of solvent particles and between a
distinguished particle and a solvent particle— are mediated by
repulsive WCA potentials (52). The WCA potential is simply
a Lennard-Jones potential truncated and shifted at its minima.
This truncation removes the attractive part leaving only a
repulsion potential between particles. The WCA potential



Fig. 3. Bistable potential example (three dimensional) and comparisons of distributions and autocorrelations. a. Plot of the external bistable
potential (units of kBT ) acting on the distinguished particle. The potential is axis-symmetric along the x−axis. b. Comparison of the distributions
for position and velocity of the distinguished particle between the benchmark simulation and several reduced models with different conditioning, as
well as comparisons of the x component of the autocorrelation functions of the position and velocity. All models use the same parameters and are
simulated on a box with an edge length of 8nm. c. Same comparison but for a box with an edge length of 5nm.

between the ith and jth particle is given by

Us(ζij) =

4ϵ

[(
σ

ζij

)12
−

(
σ

ζij

)6
]

+ ϵ if ζij ≤ 21/6σ

0 otherwise,

[9]

where ζij is the distance between the particles. In addition
to the pair interactions, we either incorporate an external
potential that only acts on the distinguished particle or a pair
potential between distinguished particles. In what follows, we
show the results of the reduced model for two external poten-
tials: harmonic and bistable, as well as for a pair potential for
two distinguished particles modeling a two-state dimer. For all
the simulations below, the parameters of the WCA potential
are ϵ = 1 and σ = d ∗ 2−1/6, where d is the cutoff distance of
the potential and in this work corresponds to the particles’
diameter.

2.1. Harmonic potential. In this example, we incorporate
an external harmonic potential acting only on the distinguished
particle in three dimensions,

U(x) = k

2 (x · x). [10]

The integration of the full model (including the solvent) is
done with the ABOBA scheme from eq. (5). Following the
setup proposed in section 1.2, we obtain trajectories of the

form tn, xn, vn, rn corresponding to the time, position, velocity
and small scale features of the distinguished particle at time
tn = ndt with timestep dt = 0.05ns. To generate the data-
driven model, we produce 2500 trajectories of the full model,
each with a time length of 500ns.

The parameters of the simulation are the following: N =
500 solvent particles with a diameter of d = 0.5nm and a mass
of 18g/mol (approximately the mass of a water molecule). The
friction coefficient is Γ = 0.3(g/mol)/ns. As we use reduced
energy units, we set kBT = 1. The distinguished particle
(L = 1) is assumed to have three times the mass of the sol-
vent particles (54g/mol). All the simulations employ periodic
boundary conditions and are done on two simulations boxes,
one with an edge length of 8nm (solvent density 0.98nm−3)
and another one with 5nm (solvent density 4.01nm−3). Fi-
nally, the harmonic potential uses k = 0.6.

Using the data produced with the benchmark model, we
binned the data following section 1.3 using 10 bins per dimen-
sion, and we derived several data-driven models for the solvent
interaction by conditioning on different variables. Using each of
these data-driven models, we construct reduced models for the
distinguished particle following section 1.4. For this example,
we produce four data-driven models, each of them using differ-
ent conditioning to sample the small-scale features: r̃n+1|x̃n;
r̃n+1|ṽn; r̃n+1|ṽn, r̃n and r̃n+1|ṽn, r̃n, r̃n−1 (fig. 2). Note that
in this example, r̃n is a 3-dimensional vector, and the same
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Fig. 4. Comparison of the first passage time distributions from one
minima to the other for the bistable potential example. Distributions
estimated over 10000 samples for simulations with a box edge length
of 8nm (left) and 5nm (right). Mean first passage times shown in ns

calculated over 1000 bootstrapped samples.

holds for x̃n and ṽn. Thus, r̃n+1|x̃n denotes the distribution
of a 3-dimensional variable conditioned on a 3-dimensional
set of conditioning variables, whereas r̃n+1|ṽn, r̃n, r̃n−1 has a
9-dimensional set of conditioning variables.

To validate the reduced model, we produce a benchmark
simulation of the full model of 100 trajectories with the same
parameters as above, but with a length of 10µs. For compari-
son, we produce another 100 trajectories of the same length
and with the same parameters using each of the reduced mod-
els. Figure 2 shows the comparison between position and
velocities distributions for two different sizes of simulation
boxes. It further shows the comparison between autocorrela-
tions functions between the benchmark model and the different
reduced models. The plots show a better match for the models
with r̃n+1|ṽn, r̃n and r̃n+1|ṽn, r̃n, r̃n−1. This is expected as
the distinguished particle’s velocity determines the frequency
and strength of the collisions against solvent particles, and
thus it is essential to account for this velocity to reproduce
the effective forces. Moreover, the autocorrelations are more
accurately reproduced as more history is included in the condi-
tioning variables, modeling better the expected memory effects.
This is particularly visible in the position autocorrelation for
the smaller simulation box (higher density), where only the
conditioning r̃n+1|ṽn, r̃n, r̃n−1 matches the benchmark simu-
lation. This is not surprising since we expect memory effects
to be more significant in more dense solvents.

2.2. Bistable potential. Completely analogous to the har-
monic potential, we next incorporate an external bistable
potential given by

U(x̄) = k
[
(1 − (x/µ)2)2 + y2 + z2]

[11]

where there is a minima at (−µ, 0, 0) and another one at
(µ, 0, 0). This will provide a more stringent test, as the tran-
sition rate will be dependent on the solvent. For the data
extraction as well as for the comparison simulations, we use
exactly the same parameters as in the previous example, ex-
cept for the change of the external potential, for which we set
k = 1, µ = 1.5.

For validation, we produce benchmark simulations using
the full model, as well as reduced model simulations, both for
100 trajectories, each with a length of 10µs. In fig. 3, we show
comparisons of the position and velocity distributions along
cuts through the x, y and z axes, for the reduced models with
r̃n+1|ṽn; r̃n+1|ṽn, r̃n and r̃n+1|ṽn, r̃n, r̃n−1, respectively. We

repeat the simulations for two different simulation boxes with
edge lengths 8nm and 5nm (densities of 0.98 and 4.01nm−3,
respectively).

Figure 3 also shows a comparison of the position, velocity
and autocorrelation functions for both models, where it is very
clear the reduced model with r̃n+1|ṽn, r̃n, r̃n−1 is the best to
capture the correlations, especially on the more crowded simu-
lations (smaller simulation box). Moreover, for the simulation
with an 8nm3 box, the autocorrelation function oscillations
are due to oscillations of the distinguished particle in the har-
monic potential. However, these oscillations are dampened
out due to a more dense environment in the simulation with a
box of 5nm3.

Finally, fig. 4 shows a comparison of the first passage time
distributions going from one minima to the other. Note that
the mean first passage time increases with density as expected.
Once again the memory effects become relevant in the smaller
box, where we need to condition on two past values of the
auxiliary variable to accurately reproduce the first passage
time distribution.

2.3. Two-state dimer. For this example, we consider a dimer
of two particles with two metastable configurations determined
by the following interaction potential

U(∆x) = 2

[
1 −

(
2∆x − σ0 − σ1

σ1 − σ0

)2
]2

[12]

where ∆x is the relative distance between the particles of the
dimer, and we assume σ0 < σ1. There is a minima at ∆x = σ0
corresponding to the closed state and another one at ∆x = σ1,
corresponding to the open state, both with the same depth
(fig. 5). Although the simulation is done in three dimensions,
the dimer is constrained to move exclusively along the x-axis
to enable the efficient testing of different conditioning variables.
In this section, we always use σ0 = 0.5 and σ1 = 1.5. Unless
stated otherwise, we once again use the same computational
setup and parameters as in the previous section.

Figure 5 illustrates the dimer example and compares sta-
tionary distributions and time-autocorrelations between the
benchmark model and the reduced models. We compare the
distribution of the relative distance between the dimer parti-
cles and the distribution of the velocity in x-direction of one
of the dimer particles, as well as the autocorrelations for the
relative distance and x-velocity. We do this comparison for two
different solvent concentrations (simulation boxes with edge
lengths 8nm and 5nm). Because of the constrained motion of
the dimer particles, in this example we have dim(ṽn)=2 (it
contains the x-velocity component of each dimer particle) and
similarly dim(r̃n)=2.

We first note that, by comparing the benchmark distribu-
tions for the two simulation boxes in fig. 5b and fig. 5c, the
closed state is more likely to be observed in the smaller box,
due to restricted motion in more dense environments. Thus,
the dimer state distribution depends not only on the dimer
interaction potential but also on the solvent properties and
concentration, especially in dense settings. As modeling more
dense solvents requires taking into account memory effects, re-
producing the distribution precisely will also require modeling
the memory accurately in the coarse-grained models.

The comparisons in fig. 5b show that the reduced models
r̃n+1|ṽn, r̃n and r̃n+1|ṽn, r̃n, r̃n−1 reproduce the distributions



Fig. 5. Dimer example (three dimensional solvent) with distributions and autocorrelations comparisons. a. Illustration of the two possible states
of the dimer, open or closed, together with the plot of the pair interaction potential (units of kBT ). b. Comparison between the benchmark
simulation and several reduced models with different conditioning for the following: distribution of the relative distance between dimer particles;
distribution of the velocity (x−component) of one particle; relative distance autocorrelation; and relative velocity autocorrelation. All models use
the same parameters and are simulated on a box with an edge length of 8nm. c. Same comparison but for a box with an edge length of 5nm. d.
Same comparison as (c) but using alternative variables for the conditioning in the data-driven model. The FPT distributions from the closed state
to the open state is also shown, as well as the meanFPTs (ns).

and autocorrelations quite well for the large box (less dense)
system. However, as shown in fig. 5c, in case of the dense so-
lution the reduced models that use the same conditioning vari-
ables give substantial errors in the relative distance distribution
and autocorrelation, due to their dependence on the solvent
properties. Figure 5d shows that using a broader set of condi-
tioning variables including the relative distance between dimer
particles ∆x̃, we can obtain significantly better results. In par-
ticular, the model in fig. 5d with r̃n+1|ṽn, ṽn−1, ∆x̃n, r̃n, r̃n−1,
reproduces the distributions very accurately as well as the
FPT distributions and the mean FPTs. It further yields a
better match for the relative distance autocorrelation. How-
ever, although still in good agreement, the relative velocity
autocorrelation is not as precise as in the example from fig. 5b.

This last issue highlights an important aspect of the binning
approach: the trade-off between the choice and number of
conditioning variables and the dimension of the distribution for

the auxiliary variables r. While a larger number of conditioning
variables likely provides a more complete representation of
the relevant dependencies, it also results in fewer data points
in the individual bins (assuming the same total amount of
data). For instance, in the dimer example, each velocity
or r variable used in the conditioning adds two dimensions
(one degree of freedom along the x axis per particle), and the
relative distance adds one more. Thus, while in the model with
r̃n+1|ṽn, r̃n the dimension of the set of conditioning variables
is four, in the model with r̃n+1|ṽn, ṽn−1, ∆x̃n, r̃n, r̃n−1 the
dimension is nine. Because in the binning approach sparsity
grows exponentially with the number of dimensions for fixed
amount of data, using more conditioning variables will result
in more underpopulated (data-sparse) bins and may lead to
inaccuracies in certain regimes, such as we observe in fig. 5c and
fig. 5d. This illustrates a limitation of the binning approach.
To better handle high-dimensional settings, it can be replaced

7



with more sophisticated sampling methods, such as the deep-
learning method proposed in (53). We leave this for future
study.

Another non-trivial issue arising in more complex systems is:
what is the right choice of conditioning variables to construct
the reduced model? On one hand, we want that they accurately
represent the dependencies of the underlying distribution, but
we also want their joint dimension to be as small as possible.
We hypothesize that neural network architectures could also
be used to find an optimal low-dimensional set of conditioning
variables — perhaps even as linear or non-linear combination
of the main variables. In the dimer example, using the relative
distance was an obvious choice, but in more complex systems
it might not be as straightforward.

3. Discussion & Conclusion
In this study, we developed a coarse-graining method for distin-
guished particles immersed in a solvent with WCA interactions,
inspired by the Mori-Zwanzig formalism and building on earlier
work in (35). The numerical integration of the coarse-grained
model is based on Langevin numerical integrators, where the
interaction and noise terms of the integration step for the
distinguished particle are replaced by an auxiliary random
variable, avoiding the need to integrate the solvent dynamics.
The auxiliary variable is then sampled from a data-driven
model, which is constructed based on full-scale simulations;
it consists of sampling data from an unknown distribution,
which can in principle be conditioned on previous values of
the different observables, as well as the auxiliary variable itself.
Given an ansatz of possible conditioning variables, we classify
and bin the data from the full-scale simulations, so we can
approximately sample from the chosen conditional distribution.
This results in a data-driven Langevin integrator, which does
not require integrating the solvent. As we demonstrate with
several numerical examples, it not only accurately reproduces
the equilibrium distributions of the positions and velocity but
also the dynamics and memory effects, as illustrated in the
autocorrelation functions plots.

Quite remarkably, in the two examples involving transi-
tions between different states of the distinguished particle(s),
our method correctly reproduces the long-timescale transition
dynamics as characterized by the first passage time (FPT)
distributions (cf. figures fig. 4 and fig. 5d). This is noteworthy
as simulations of the Langevin dynamics of only the distin-
guished particle(s) yield a mean FPT that is off by one order
of magnitude.

The main advantage of this approach is the gain in compu-
tational efficiency. In all the three examples in this work, the
solvent consisted of N = 500 particles with pair interactions
plus the distinguished particle(s). In the reduced models, we do
not need to integrate the solvent, and thus the efficiency gain
is of the order of somewhere between N and N2, depending
on the algorithm employed to calculate the pair interactions.
Moreover, once the effects of the solvent are parameterized in
the reduced model, we can run the simulations on much larger
spatial domains with the same efficiency. This means we can
use simulations in smaller domains to construct the reduced
model, and then, assuming the same solvent concentration,
simulate the systems in larger domains with the reduced model.
This is essential to efficiently implement multi-molecular sim-
ulations; albeit higher-order correlations between the solvent

and interacting molecules might not be taken into account.
This opens the door to new research directions to tackle these
issues.

Although our approach is very successful for the simple
systems that we investigated, it does have limitations. More
complex systems are likely to require a larger set of condition-
ing variables to capture the dependencies of the distribution
of the auxiliary variable r, as also discussed in section 2.3.
Thus, parameterizing r in the data-driven model suffers from
the curse of dimensionality, because with the binning method
used here the data required to successfully parameterize it
grows exponentially for each additional conditional variable.
One promising approach to sample from a high-dimensional
and unknown distribution is to use generative neural network
architectures, such as conditional variational autoencoders (54)
and diffusion models (55). Alternatively, neural network re-
sampling (53) has been successfully used in the past in similar
setups. We leave these endeavors for future work.

An important issue arising in more complex systems is
how to choose the conditioning variables. Although physical
intuition is indeed helpful, the optimal choice is not trivial.
One could simply choose a combination of variables involving
positions, velocities and auxiliary variables at the current or
previous time step. However, a linear or even a non-linear
combination of these variables is perhaps more optimal, such as
the relative distance in the dimer case in section 2.3, or perhaps
the angular velocity of a more complex molecule. Similarly,
it can be advantageous to use variable values at multiple
previous time steps, possibly separated by several time steps.
An interesting approach to explore would be to engineer neural
network architectures able to find an optimal low-dimensional
set of conditioned variables while simultaneously doing the
training.

Another point is that in our work we have kept the inte-
gration time steps of the full model and the reduced model
identical in our work. In standard coarse graining approaches
a longer time step can be taken because the effective potentials
are usually smoother. Here, this is not the case, as we are
still using the bare solute-solute interaction potentials. Still,
as solutes are usually larger and move slower, it is well possi-
ble that a longer time-step can be used (as was also done in
(35, 36), albeit for different systems). This will be investigated
in future work.

To conclude, the methodology here presented is not limited
to condensed matter systems or to Langevin-type of dynam-
ics. In principle, it can be extended to develop data-informed
physics models for general complex dynamical systems, where
a numerical integrator is employed but not all the degrees
of freedom need to be resolved as long as their effect on the
variables of interest are represented. Some examples of possi-
ble application fields are: climate modeling, social dynamics
modeling, biochemical systems modeling, modeling of power,
transportation or communication systems as well as general
agent-based models.
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APPENDIX
A. Langevin Integrators
The goal of the Langevin integrator is to numerically solve the
Langevin equation. For an arbitrary system of N particles in
three-dimensional space, with positions x = (x1, . . . , xN ) and
velocities v = (v1, . . . , vN ) and under a force-field determined
by the potential V (x), the Langevin equation in its stochastic
differential notation is[

dxt

Mdvt

]
=

[
vdt
0

]
︸ ︷︷ ︸

A

+
[

0
−∇V (x)dt

]
︸ ︷︷ ︸

B

+
[

0
−Γvdt +

√
2kBT Γ1/2dWt,

]
︸ ︷︷ ︸

O

[13]

where M is a diagonal matrix with the corresponding masses
along the diagonal, Γ is the friction coefficient/tensor (inverse
mobility) and W is a 3N−dimensional uncorrelated standard
Brownian motion (Wiener process). The splitting into the
terms A, B and O will be convenient to derive some of the
schemes. A detailed account of integrators for the Langevin
equation can be found in (2). It is also convenient to write
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this equation in terms of the friction coefficient/tensor per
unit mass γ = ΓM−1. In the derivations below, for simplicity,
we assume γ is a scalar and not a tensor, but the expressions
are analogous for the tensor case.

Splitting methods improve the accuracy and stability of
the schemes. They require first decomposing the differential
equations into parts that can be solved exactly and then set
together a sequence of updates corresponding to an exact
solution for each piece. Equation (13) shows a very common
splitting, where each of the terms labeled A, B and O can
be solved exactly when handled independently of each other.
Although one would assume the computational cost of these
methods to be higher due to the splitting, in practice, most of
them only require evaluating the force field once per time step,
which in large simulations is by far the most computationally
costly part of the integrator.

The implementation details of the methods proposed in this
work will depend on the Langevin integrator chosen. Below we
show two of the most used integrators and their corresponding
advantages and disadvantages in the context of this work. We
assume xn, vn are the values of x and v at time ndt with
timestep dt.

BAOAB integrator. This scheme is constructed by solving
the B and A parts first for half a time step, then the O part
for a full-time step, followed by A and B for another half time
step. Thus, the implementation of the scheme for one-time
step is as follows:

vn+1/2 = vn + B (xn, dt/2) ,

xn+1/2 = xn + A
(
vn+1/2, dt/2

)
,

v̂n+1/2 = O
(
vn+1/2, dt

)
,

xn+1 = xn+1/2 + A
(
v̂n+1/2, dt/2

)
,

vn+1 = v̂n+1/2 + B
(
xn+1, dt/2

)
.

[14]

with

B(x, τ) = −M−1∇V (x)τ,

A(v, τ) = vτ,

O(v, τ) = e−γτ v +
√

kBT (1 − e−2γτ )M−1/2ζn,

[15]

where ζn is a sample from a 3N dimensional standard normal
distribution (N (0, 1)). This algorithm works well and with
much larger time steps than the more simple symplectic Euler
method. However, notice the velocity is integrated in steps
1,3 and 5, resulting in a labor-intensive implementation of
the reduced methods presented in this work as the auxiliary
variable will need to be sampled three times per time step.

ABOBA integrator. Alternatively, we can switch the order
of the integrators for the different parts obtaining different
splitting methods. Here is another popular alternative,

xn+1/2 = xn + A (vi, dt/2) ,

vn+1/2 = vn + B
(
xn+1/2, dt/2

)
,

v̂n+1/2 = O
(
vn+1/2, dt

)
,

vn+1 = v̂n+1/2 + B
(
xn+1/2, dt/2

)
,

xn+1 = xn+1/2 + A
(
v̂n+1, dt/2

)
.

[16]

This one is particularly helpful for implementing the reduced
models in this work since all the velocity integrations are
done successively. We can actually condense all the velocity
integration steps into one step,

vn+1 = v̂n+1/2 + B
(
xn+1/2, dt/2

)
= O

(
vn+1/2, dt

)
− dt

2 M−1∇V
(
xn+1/2

)
.

[17]

Expanding O
(
vn+1/2, dt

)
, yields

O
(
vn+1/2, dt

)
= O

(
vn + B

(
xn+1/2, dt/2

)
, dt

)
= e−γdt

(
vn + B

(
xn+1/2, dt/2

))
+

√
kBT (1 − e−2γdt)M−1/2N (0, 1)

= e−γdtvn − dt

2 e−γdtM−1∇V
(
xn+1/2

)
+

√
kBT (1 − e−2γdt)M−1/2N (0, 1).

[18]

Gathering the results

vn+1 = e−γdtvn − dt

2 M−1 (
1 + e−γdt

)
∇V

(
xn+1/2

)
+

√
kBT (1 − e−2γdt)M−1/2N (0, 1).

[19]

Finally, for our implementation, it will be helpful to divide
the potential into two terms: one involving the distinguished
particles and external potentials U(x) and the other one in-
volving all the interactions with solvent Us(x) as suggested in
eq. (2),

vn+1 = e−γdtvn − dt

2 M−1 (
1 + e−γdt

)
∇U

(
xn+1/2

)
− dt

2 M−1 (
1 + e−γdt

)
∇Us

(
xn+1/2

)
+

√
kBT (1 − e−2γdt)M−1/2N (0, 1).

[20]
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