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We show that a single polynomial entanglement measure is enough to verify equivalence between
generic n-qubit states under Stochastic Local Operations with Classical Communication (SLOCC).
SLOCC operations may be represented geometrically by Möbius transformations on the roots of
the entanglement measure on the Bloch sphere. Moreover, we show how the roots of the 3-tangle
measure classify 4-qubit generic states, and propose a method to obtain the normal form of a 4-qubit
state which bypasses the possibly infinite iterative procedure.

I. INTRODUCTION

Quantum entanglement is one of the key manifesta-
tions of quantum mechanics and the main resource for
technologies founded on quantum information science.
In particular, quantum states with non-equivalent entan-
glement represent distinct resources which may be use-
ful for different protocols. The idea of clustering states
into classes exhibiting different qualities under quantum
information processing tasks resulted in their classifica-
tion under stochastic local operations assisted by classi-
cal communication (SLOCC). Such a classification was
successfully presented for two, three and four qubits [1–
4]. However, the full classification of larger systems is
completely unkown. Even the much simpler problem
of detecting if two n-qubit states (n > 4) are SLOCC-
equivalent is, in general, quite demanding [5–8].

Among several approaches to the entanglement quan-
tification and classification problem, a particularly use-
ful one is via SL-invariant polynomial (SLIP) mea-
sures. Well-known examples are concurrence and 3-
tangle, which measure the 2-body and 3-body quantum
correlations of the system [9, 10]. SLIP measures provide
not only a convenient method for entanglement classifi-
cation but also its practical detection. Indeed, it was
shown that almost all SLOCC equivalence classes can be
distinguished by ratios of such measures [3]. Any given
two n-qubit states are then SLOCC-equivalent if a com-
plete set of SLIP measures has the same values for both
of them [5]. For more than four qubits, however, the size
of such a set grows exponentially, making it intractable
to use this approach to discriminate SLOCC-equivalent
states with more than four qubits [11].

In this paper, we show that, contrary to intuition, a
single SLIP measure is enough to verify the SLOCC-
equivalence between any two generic pure n-qubit states.
By generic state, we mean the set of all pure states ex-
cept of the measure zero subset with respect to the Haar
measure. We achive this by using a mathematical trick,
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in particular, we use a SLIP measure defined for n qubit
systems to verify equivalence of systems of n+1 quibits.
In essence, we look how the roots of the SLIP measure for
those states behave under SLOCC. We show that if the
states are SLOCC-equivalent, then the roots of the SLIP
measure for each state must be related by a Möbius trans-
formation, which is straightforward to verify. In particu-
lar, we use this procedure to show that the 3-tangle mea-
sure is enough to discriminate between generic 4-qubit
states. Finally, we show how one may use the roots of a
SLIP entanglement measure to obtain the normal form
of a 4-qubit state which bypasses the possibly infinite
iterative standard procedure.

II. POLYNOMIAL INVARIANT MEASURES

An entanglement measure is a function E(|ψ⟩) defined
for pure states of n qubits which vanishes on the set of
separable states. One of the desired features of entangle-
ment measures is invariance under SLOCC operations.
Mathematically, a SLOCC operation might be uniquely
determined by the action of local invertible operators
L ∈ SL(2,C)⊗n [1]. An entanglement measure E defined
for all pure states of n qubits is called a SL-invariant
polynomial of homogeneous degree h if it is homogeneous
polynomial of degree h in the state coefficients, an it is
invariant under any local operation O = O1 ⊗ · · · ⊗ On,
where Oi ∈ SL(2,C). It is easy to see that those two
conditions are equivalent to the fact that E satisfies

E
(
κO |ψ⟩

)
= κhE

(
|ψ⟩
)

for each real constant κ > 0 and invertible linear op-
erator O [1, 3, 12]. Such polynomial will be denoted

by SLIPhn, where the upper index indicates the degree
of the polynomial and the lower index is related to the
number of qubits. Well-known examples are concur-
rence and 3-tangle [9, 10]. Both of those measures,
concurrence and 3-tangle, can be written as the abso-
lute value of the anti-linear expectation value of sim-
ple operators. Indeed, for a two-qubit pure state |ψ⟩ =
c00 |00⟩+c01 |01⟩+c10 |10⟩+c11 |11⟩ its concurrence reads
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as C(|ψ⟩) = |c00c11−c01c10| =
∣∣ ⟨ψ|σy⊗σy |ψ̄⟩ ∣∣. Further-

more, the 3-tangle τ (3) defined for 3-qubit states |ψ⟩ ∈ H3
2

takes relatively simple form:

τ (3)
(
|ψ⟩
)
=

∣∣∣∣∣ ∑
j=Id,x,y,z

ηj

(
⟨ψ|σj ⊗ σy ⊗ σy |ψ̄⟩

)2∣∣∣∣∣, (1)

with notation (ηId, ηx, ηy, ηz) = (−1, 0, 1, 1). Moreover,
the degree-4 polynomial invariants for 4 qubits described
by Luque and Thibon in Ref [13] can be also written as
similar expressions [14]. This simple idea of exploring
the anti-linear expectation value of the tensor product of
Pauli operators was further used for constructing invari-
ants of an arbitrary number of qubits [12, 14, 15]. For
example, the following formulas

E(2k+1)
(
|ψ⟩
)
= (2)

=

∣∣∣∣∣ ∑
j=Id,x,y,z

ηj

(
⟨ψ|σj ⊗ σy ⊗ · · · ⊗ σy︸ ︷︷ ︸

2k

|ψ̄⟩
)2∣∣∣∣∣,

E(2k)
(
|ψ⟩
)
= (3)

=

∣∣∣∣∣ ∑
j,i=Id,x,y,z

ηj νi

(
⟨ψ|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy︸ ︷︷ ︸

2k

|ψ̄⟩
)2∣∣∣∣∣,

with (ηId, ηx, ηy, ηz) = (νId, νx, νy, νz) = (−1, 0, 1, 1) are
a degree-4 SLIP measure for odd and even number of
qubits respectively [14].

A general method to construct various SLIP measures
based on this simple idea of exploring the anti-linear ex-
pectation value of the tensor product of Pauli operators
was further invented in Ref [12, 14, 15]. In particular

Any SLIP measure E can also be extended to mixed
states by determining the largest convex function on the
set of mixed states which coincides with E on the set of
pure states [16]. Despite its simple definition, the evalu-
ation of a convex roof extension requires non-linear min-
imization procedure, and for a general density matrix is
a challenging task [17–20]. An attempt to address this
challenging task was carried out by introducing the so-
called zero-polytope, the convex hull of pure states with
vanishing E measure [21–24]. In the particular case of
rank-2 density matrices ρ, the zero-polytope can be rep-
resented inside a Bloch sphere, spanned by the roots of
E [22, 25]. We adapt this approach focusing only on the
roots of polynomial invariants, equivalently the vertices
of the zero-polytope.

III. SYSTEM OF ROOTS

Consider a (n + 1)-partite qubit state |ψ⟩. The state
|ψ⟩ can be uniquelly written as

|ψ⟩ = |0⟩ |ψ0⟩+ |1⟩ |ψ1⟩ , (4)

providing the canonical decomposition of the reduced
density matrix ρ = |ψ0⟩ ⟨ψ0|+ |ψ1⟩ ⟨ψ1| obtained by trac-
ing out the first qubit. Note that the states |ψ0⟩ and
|ψ1⟩ are in general neither normalized nor orthogonal.
Consider now the family of states

|ψz⟩ = z |ψ0⟩+ |ψ1⟩ , (5)

where z is taken from the extended complex plane Ĉ,
i.e., complex numbers plus infinity. We denote this the
extended plane representation. In addition, consider any
SLIPhn measure E defined on the set of n-partite pure
qubit states. Since E is polynomial in the coefficients of
|ψz⟩, it is also polynomial in the complex variable z [21].
Therefore, the polynomial E(z |ψ0⟩+ |ψ1⟩) has exactly h
roots: ζ1, . . . , ζh (which may be degenerated and/or at
infinity), related to the degree of E. By using the com-
plex number z, the states |ψz⟩ can be mapped to the
surface of a sphere via the standard stereographic projec-
tion (θ, ϕ) := (arctan 1/|z|, −arg z) written in spherical
coordinates. This way, a point on the unit 2-sphere (θ, ϕ)
can be associated with the quantum state

|ψ̃z⟩ := cos
θ

2
|ψ0⟩+ sin

θ

2
eiϕ |ψ1⟩ (6)

with z = ctg(θ/2) e−iϕ, such that |ψ0⟩ lies in the North
pole and |ψ1⟩ lies in the South pole, see Figure 1. We
denote this the Bloch sphere representation. Note that

|ψ̃z⟩ ∝ |ψz⟩ and that neither of these states is normalized,
since |ψ0⟩ and |ψ1⟩ are not normalized in general either.

Figure 1. The stereographic projection relating the family
of states |ψz⟩ on the extended complex plane with the associ-

ated family of states |ψ̃z⟩ on the Bloch sphere. The spherical
coordinates (θ, ϕ) and the complex coordinate z are related
via the stereographic projection z = ctg(θ/2) e−iϕ.

A. Local operations on the system of roots

To each linear invertible operator O =
(
a b
c d

)
, one may

associate a Möbius transformation z 7→ z′ := az+b
cz+d , map-

ping the extended complex plane Ĉ into itself [26, 27].
The composition of such transformations represents the
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multiplication of the associated operators. In particu-
lar, z 7→ z′ := dz−b

−cz+a is an inverse Möbius transfor-

mation related with O−1 =
(
d −b
−c a

)
. Note that al-

though Möbius transformations are typically represented
on the extended complex plane, one may represent them
as transformations on the Bloch sphere via the stereo-
graphic projection. The correspondence between invert-
ible operators and Möbius transformations represented
on the Bloch sphere was already successfully used for
SLOCC classification of permutation-symmetric states
[28–30].

To study the effect of SLOCC operations on the sys-
tem of roots we begin by acting on the first qubit of a
state |ψ⟩ written in the form of Eq. (4) with an invertible
linear operator O. In terms of the family of states |ψz⟩
in Eq. (5), this operation induces the map

|ψz⟩ 7→ |ψz′⟩ =
az + b

cz + d
|ψ0⟩+ |ψ1⟩ , (7)

i.e. the index is mapped via the Möbius transforma-
tion z 7→ z′ := az+b

cz+d , see Appendix A. In addition, since

|ψ̃z⟩ ∝ |ψz⟩, we have that the family of states |ψ̃z⟩ also
transforms according to Eq. (7). This reflects the fact

that the states |ψz⟩ and |ψ̃z⟩ associated to the extended
complex plane and the Bloch sphere are related by a
stereographic projection of the variable z. Using Eq. (7)
and the defining equation E(ζi |ψ0⟩ + |ψ1⟩) = 0 for the
roots ζi of the polynomial E, one concludes that the roots
transform according to the inverse Möbius transforma-
tion associated to the operator O, i.e. ζi 7→ dζi−b

−cζi+a .

Finally, although the system of roots changes with local
operations acting on the qubit that is being traced out
in Eq. (4), it is invariant under local operations acting

on any other qubit since the polynomial E is SL(2,C)⊗n
invariant. We summarize these results in the theorem
below, see Appendix A for a detailed proof.

Theorem 1. Consider an (n+ 1)-partite pure quantum

state |ψ⟩ = |0⟩ |ψ0⟩+ |1⟩ |ψ1⟩. The roots ζi of any SLIPhn
entanglement measure associated to the partial trace of
the first qubit:

1. are invariant under invertible operators, i.e. invari-
ant under 1⊗On⃗ ∈ SL(2,C)⊗n operators;

2. transform via an inverse Möbius transformation
ζ ′i =

dζi−b
−cζi+a w.r.t the O =

(
a b
c d

)
⊗ 1n operator.

It is crucial to emphasize that normalizing the states |ψ0⟩
and |ψ1⟩ after the action of the operator O, as is the case
in existing related works [21, 22, 24, 25, 31], would spoil
the mapping of Eq. (7). As a consequence, the action of
SLOCC operators on the states |ψz⟩ would no longer be
given by the corresponding Möbius transformation, and
the statements in Theorem 1 would no longer hold.

The decomposition (4) can be performed with respect
to any other subsystem, each with its own system of
roots. Any local operator Ok =

(
a b
c d

)
acting on the

k-th qubit will influence independently the correspond-
ing k-th system of roots via the Möbius transformation
ζi 7→ dζi−b

−cζi+a . On the other hand, if acting globally with

a local operator O1 ⊗ · · · ⊗ On+1, all roots (and thus all
zero-polytopes) will be affected. Since a Möbius trans-
formation is a bijective mapping on the Bloch sphere,
the total number of roots will always be preserved [31].
Moreover, the existence of a local transformation between
two given states becomes straightforward to verify since
Möbius transformations are fully classified.

IV. VERIFICATION OF SLOCC-EQUIVALENCE

Theorem 1 provides a solution for the problem of dis-
criminating quantum states up to SLOCC-equivalence.
To verify if two pure states are SLOCC-equivalent, one
can use the following procedure, which takes a single
SLIPhn measure and two pure (n+1)-qubit states as an in-
put. In the generic situation, it returns a set of at most
(3!
(
h
3

)
)n+1 SLOCC operators as an output. The input

states are SLOCC-equivalent iff they are interconnected
by one of the output operators.

Procedure 1. Choose any SLIPhn entanglement measure
of degree h ≥ 3 and two (n+ 1)-qubit states.

1) Calculate the roots of a chosen measure for each
subsystem for both states. If for any subsystem
the number of roots of both states is not equal,
such states are not SLOCC-equivalent. Otherwise,
denote by hi the number of roots of both states
calculated for i-th subsystem. If hi ≥ 3 for all
1 ≤ i ≤ n + 1, the procedure will be conclusive.
Note that for a generic state hi = h ≥ 3 for each
subsystem i.

2) Focus on one subsystem i, 1 ≤ i ≤ n + 1, and
determine all Möbius transformations which trans-
forms the roots of the first state into roots of the
second state. For example, choose three of the hi
roots from each state and write the unique Möbius
transformations between the two triplets of roots.
Repeat this for all 3!

(
hi

3

)
possibilities of choosing 3

out of hi roots for the second state. Derive the local
operators Oi associated to Möbius transformations.

3) Repeat step 2) for all other subsystems and then
consider the tensor products O1⊗ · · ·⊗On+1 of all
the local operators obtained.

4) If the two given (n + 1)-qubit states are SLOCC-
equivalent, at least one of these operators must
transform one state into the other (up to the nor-
malization). Otherwise, they are not SLOCC-
equivalent.

Proposition 1. Consider any SLIPhn measure and two
(n + 1)-qubit states. If both states have at least 3
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Figure 2. A normal system of roots z, 1/z,−z,−1/z together with the conjugate points z̄, 1/z̄,−z̄,−1/z̄ span the cuboid whose
faces are parallel to the XZ, XY and Y Z planes. There are 24 rotations of the Bloch sphere which preserve this property,
composing the elements of the group G24. Two of them, namely the rotation by a π/2 angle around X and Y axes are presented.
The system of roots transforms according to Eqs. F1-F3, giving z 7→ z′ := z−i

−iz+1
and z 7→ z′′ := z−1

z+1
for the two rotations.

roots with respect to each subsystem, they are SLOCC-
equivalent iff they are interconnected by one of the oper-
ator obtained as an outcome of Procedure 1.

We refer to Appendix B for a proof of this statement.
Intuitively, a generic pure quantum state shall have ex-
actly h distinct roots for each subsystem, where h is the
degree of the SLIPhn measure. Thus, any such measure
of degree h ≤ 3 should be sufficient to verify SLOCC-
equivalence between generic quantum states. We con-
firmed this intuition by looking at several examples of
degree-4 measures. In particular, Eqs. (2) and (3) pro-
vides a family of SLIP measures for arbitrary number
of qubits. We examined those measures, and for each
number 4 ≤ n ≤ 20 of qubits, we generated a sample
of a thousand (n + 1)-qubit states and each state had,
indeed, four distinct roots with respect to any subsystem
[32]. Furthermore, we confirm this numerical result an-
alytically and proved that a generic pure quantum state
has, indeed, four distinct roots for each subsystem for
measures defined via Eqs. (2) and (3). By generic state,
we mean the set of all pure states except of the mea-
sure zero subset with respect to the Haar measure, see
Appendix C for more details. This result applies for an
arbitrary number of qubits, thus proving the following
proposition.

Proposition 2. A single SLIP measure is enough to
provide necessary and sufficient conditions for any two
generic pure n-qubit states to be SLOCC-equivalent.

We refer to Appendix D for a technical proof of the above
statement.

V. NORMAL SYSTEM OF ROOTS

In the previous section we showed that in principle
any SLIP measure of degree h ≥ 3 can be used to ver-
ify SLOCC-equivalence. In this section, we consider the
special case when such a measure has degree h = 4.

Firstly, recall that any three distinct points on the
sphere can be transformed onto any other three dis-
tinct points via a unique Möbius transformation, see Ap-
pendix E. While this is not the case for four points, it is
possible to take any four complex points z1, z2, z3, z4 and
associate a so-called cross-ratio

λ
(
z1, z2, z3, z4

)
:=

z3 − z1
z3 − z2

z4 − z2
z4 − z1

, (8)

which is preserved under Möbius transformations [26, 29].
Systems of four distinct points are related via Möbius
transformations if their cross-ratios are related in the
same way. The cross-ratio is not invariant under per-
mutations of points, however, and depending on the or-
dering taken for the four points, it takes six values:
λ, 1

λ , 1−λ,
1

1−λ ,
λ−1
λ , λ

λ−1 [29]. A particular interesting set

of four points is one of the form z, 1/z,−z,−1/z, which
we call a normal system. Any set of four points may be
mapped into a normal system, for which z, 1/z,−z,−1/z
will be the solutions of the fourth degree equation λ =
4z2/(1 + z2)2, where λ is the corresponding cross-ratio
from Eq. (8). Such a map is unique up to symmetries of
the cube, i.e the group of 24 rotations generated by π/2
rotations along the X,Y, Z axis, denoted by G24. Ap-
pendix F contains the exact description of the group G24.
In Appendix G we formally show the following mathe-
matical result.

Proposition 3. Each non-degenerated four points
z1, z2, z3, z4 on the Bloch sphere can be transformed onto
the normal form z, 1z ,−z,−

1
z via a Möbius transforma-

tion T . The latter is uniquely defined up to 24 rotations
in the group G24.

This mathematical result has interesting implications
for the SLOCC verification and classification problems.
Indeed, assume that E is SLIP4

n measure of degree h = 4,

and the state |ψ⟩ ∈ H⊗(n+1)
2 has exactly four distinct

roots for each subsystem. By Proposition 3, one can
find a Möbius transformation Ti that transforms roots
for each system i into the normal form. By Theorem 1,
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the local operators Oi corresponding to transformations
Ti transform state |ψ⟩ into the form with roots for i-th
system being in normal form, hence

|ψ′⟩ := O1 ⊗ · · · ⊗ On+1 |ψ⟩ (9)

is a state for which roots of measure E for each subsys-
tem are in normal form. We call |ψ′⟩ a E-normal form
of a state |ψ⟩ with respect to measure E. Note that
the E-normal form of a state, if it exists, is defined up
to the group Gn+1

24 of local rotations. We illustrate this
procedure on a simple example of broadly discussed four-
partite state 1√

2
(|0⟩ |GHZ⟩+ |1⟩ |W⟩) [22, 24]. We calcu-

late its roots for τ (3) measure (1) and find the Möbius
transformation transforming them into a normal system,
see Appendix H for detailed calculations. As a result,
we obtain SLOCC operator that transforms the afore-
mentioned state into its normal form with respect to τ (3)

measure, see Figure 3.
In this way, for the chosen SLIP4

n measure E, we de-
fined the E-normal form of any state that has exactly four
roots with respect to measure E for each system. As we
have shown in Proposition 2, choosing for example mea-
sure E defined on Eqs. (2) and (3), provides E-normal
form of the generic state of any number of qubits.

This allows us to address more ambitious problems,
when for example, one needs to verify the pairwise
SLOCC-equivalence of a larger number of states. In-
deed, one can reduce each of them to E-normal form and
then compare them using only a finite (and relatively
small) group Gn+1

24 of local rotations. Furthermore, such
E-normal form might be possibly used for an even more
challenging task of SLOCC-classification of pure states.
Indeed, as we will demonstrate in the next section, the
τ (3)-normal form for measure (1) can be successfully used
to classify generic four qubit states. Recall that the prob-
lem of classifying n ≤ 5 states still remains open [5–8].

We shall finish this section by pointing out the intrigu-
ing connection between E-normal form of a state and,
so-called, normal form of a state [33]. Recall that a state
is in a normal form if reduced density matrices to one
subsystem are all maximally mixed, i.e. proportional to
the identity. Normal form, if it exists, is defined up to
the local unitary operations. The process of determining
the normal form of a state, if it exists, may turn to be
an infinite iterative minimization process [33]. On the
other hand, the process of obtaining E-normal form of a
state is straightforward and consists of a finite number of
steps. As we observed, for four qubit states the normal
form of a state coincides with its τ (3)-normal form, see
Appendix H. For systems with a larger number of qubits
n > 4 (especially for n = 5.6), we unsuccessfully searched
for measures E for which E-normal form would coincide
with normal form of a state. Such measures, if found,
would lead to a simple procedure for obtaining a normal
form of a state for arbitrary number of qubits.

We illustrate this procedure by transforming the
widely discussed four-partite state 1√

2
(|0⟩ |GHZ⟩ +

|1⟩ |W⟩) [22, 24] into its normal form, see Figure 3. With-
out this technique, the standard way of obtaining the
normal form would indeed result in an infinite iterative
procedure.

Figure 3. The system of four roots (represented as blue dots)

related to the 3-tangle polynomial measure τ (3) evaluated on
the first subsystem of the state 1/

√
2(|0⟩ |GHZ⟩ + |1⟩ |W⟩).

This system of four points can be mapped into a normal sys-
tem (i.e. symmetrically related points z,−z, 1/z,−1/z) by a
Möbius transformation. Similar local transformations can be
performed with respect to other subsystems, transforming the
states into a state in the normal form.

VI. STATE CLASSIFICATION

We show that for small numbers of qubits n = 3, 4,
our approach might be successfully used for the more
demanding problem of entanglement classification.
Focusing first on the three-qubit case, genuinely entan-

gled pure states are SLOCC-equivalent to either |GHZ⟩ =
1√
2
(|000⟩+ |111⟩) or |W⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩) [34].

Using the 2-tangle τ (2) [9] as the entanglement measure,
one may use the roots to distinguish between the two
classes. Indeed, all rank-2 reduced density matrices of
the |W⟩ state have a single root, while there are always
two distinct roots for the |GHZ⟩ state [25].
Contrary to the three qubit case, there are infinitely

many SLOCC classes of four qubit states [34]. Al-
though four qubit states were divided into nine families
[2, 35, 36], we will focus on generic 4-qubit states, i.e. 4-
qubit states with random coefficients belonging to the so
called Gabcd family - the 4-qubit SLOCC family with the
most degrees of freedom. The representative state is of
the form |Gabcd⟩ = a+d

2

(
|0000⟩+ |1111⟩

)
+ a−d

2

(
|0011⟩+

|1100⟩
)
+ b+c

2

(
|0101⟩+ |1010⟩

)
+ b−c

2

(
|0110⟩+ |1001⟩

)
,

where a2 ̸= b2 ̸= c2 ̸= d2 are pairwise different. Choos-
ing the 3-tangle τ (3) (1) as the entanglement measure,
the states |Gabcd⟩ have four non-degenerate roots already
in the normal form, see Appendix I. Since the normal
form of roots is unique up to the group G24, the problem
of SLOCC-equivalence of states |Gabcd⟩ becomes solv-
able, with a discrete amount of solutions. Indeed, it can
quickly be confirmed if two states in the Gabcd class are
SLOCC equivalent by checking if one can be obtained
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from the other by the action of an element of the finite
class of operators O ∈ G⊗4

24 . We thus find that exactly
192 states of the form |Gabcd⟩ are SLOCC-equivalent.

Proposition 4. Two states |Gabcd⟩ and |Ga′b′c′d′⟩ are
SLOCC-equivalent iff their coefficients are related by the
following three operations: multiplication by a phase fac-
tor (a′, b′, c′, d′) = eiϕ(a, b, c, d), and permutation of co-
efficients (a′, b′, c′, d′) = σ(a, b, c, d), and change of sign
in front of two coefficients from a, b, c, d.

See Appendix I for a detailed proof of the above state-
ment. We finish this section by pointing out some in-
triguing connections between this result and other re-
lated problems. Note that the symmetry in Proposi-
tion 4 is given by the Weyl group of Cartan type D4

and it has already been observed that the generators of
four-qubit polynomial invariants exhibit this type of sym-
metry [35, 37]. As a consequence, this result constitutes
a new relation between 4-qubit invariants and the con-
vex roof extension of 3-tangle τ (3), which may shed some
light on the problem of generalizing the CKW inequality
[10] for four qubit states [12, 19, 20, 38, 39], and beyond
[38–40].

VII. CONCLUSIONS

In this paper, we showed how a single SLIPhn entangle-
ment measure is enough to verify if two generic (n+ 1)-
qubit states to be SLOCC equivalent. Our result is ap-
plicable for any number of qubits. This was possible by
showing that the roots of any SLIPhn measure transform
via Möbius transformations under the SLOCC opera-
tions performed on the subsystems. In that way, SLOCC
equivalence between two states is implied by the easily
verifiable existence of a Möbius transformation relating
aforementioned roots for each subsystem. Moreover, we
define the E-normal form of the state with respect to
the given SLIPh=4

n measure E, for which roots are sym-
metrically distributed on the Bloch sphere. Such form
is simple to determine and exists for generic states. In
comparison, so-called, normal form of state requires pos-
sibly infinite iterative minimization procedure. Further-
more, we demonstrated our approach on 4-qubit states,
and showed that the roots of the 3-tangle measure τ (3)

are enough to fully classify 4-qubit states from the most
generic Gabcd family. Lastly, as we observed that for 4-
qubit states the τ (3)-normal form coincides with the nor-
mal form of a state, which gives a procedure to determine
the normal form of state that circumvents the possibility
of an infinite iterative process of the standard procedure.
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APPENDICES

In appendices, we present detailed proofs of the state-
ments presented in the main body of the paper, as
well as a summary of the related results concerning
Möbius transformations, SLIP entanglement measures,
Haar measure on the set of pure quantum states, and
SLOCC-classification.

Appendixes A and B contain proofs of Theorem 1 and
Proposition 1 respectively.

Appendix C summarizes basic results regarding the
Haar measure on the set of pure quantum states and dis-
cusses the notion of generic quantum states. Appendix D
proves the main result of a paper, namely Proposition 2.
The proof is based on two technical lemmas related to the
systems of odd and even number of qubits, see Lemma 1
and Lemma 2 respectively.

Appendix E presents a well-known form of a unique
Möbius transformation transforming two given tuples of
3 points one onto another. Appendixes F and G discuss
details regarding an E-normal form of a state with re-
spect to a given measure E. Furthermore, Appendix H
provides an explicit example of transformation of a state
into its E-normal form.

Appendix I presents proof of Proposition 4, which
is reproducing the SLOCC-classification results for the
generic systems of four qubits. The E-normal form
proves to be useful for that purpose.

Lastly, in Appendix J, we apply the presented method
to verify the SLOCC equivalence between certain 5-qubit
states.



7

Appendix A: Proof of Theorem 1

We present a proof for Theorem 1. Any n + 1 partite

qubit state |ψ⟩ ∈ H⊗(n+1)
2 might be written as

|ψ⟩ = |0⟩ |ψ0⟩+ |1⟩ |ψ1⟩ . (A1)

Such a form provides the canonical decomposition of the
reduced density matrix ρ = |ψ0⟩ ⟨ψ0| + |ψ1⟩ ⟨ψ1| over
the non-normalized states |ψ0⟩ , |ψ1⟩ ∈ H⊗N

2 , obtained
by tracing out the first qubit. Consider now a reversible
operator O =

(
a b
c d

)
∈ SL(2,C) acting on the first qubit.

Under the action of this operator, the state |ψ⟩ is trans-
formed into

|ψ′⟩ := O |ψ⟩ =
(
a |0⟩+ b |1⟩

)
|ψ0⟩

+
(
c |0⟩+ d |1⟩

)
|ψ1⟩ = |0⟩ |ψ′

0⟩+ |1⟩ |ψ′
1⟩ ,

where

|ψ′
0⟩ := a |ψ0⟩+ c |ψ1⟩ , (A2)

|ψ′
1⟩ := b |ψ0⟩+ d |ψ1⟩ . (A3)

Consider now any superposition of states |ψ′
0⟩ and |ψ′

1⟩.
Observe that

|ψ′
z⟩ := z |ψ′

0⟩+ |ψ′
1⟩ = z

(
a |ψ0⟩+ c |ψ1⟩

)
+ b |ψ0⟩+ d |ψ1⟩
= (az + b) |ψ0⟩+ (cz + d) |ψ1⟩

∝ az + b

cz + d
|ψ0⟩+ |ψ1⟩ ,

where the compex number cz+d was factored out in order
for the transformation to map states from the extended
plane representation to the extended plane representa-
tion. In other words, we have

O |ψz⟩ = |ψz′⟩ , z′ =
az + b

cz + d
, (A4)

i.e. the operator O transforms states in the extended
plane representation by applying a Möbius transforma-
tion on the index z. Suppose now that ζi is a zero of a h-
degree polynomial function E, i.e. E(ζi |ψ0⟩+ |ψ1⟩) = 0.
Acting on the first qubit with O, the density matrix after
tracing out the first qubit becomes |ψ′

0⟩ ⟨ψ′
0| + |ψ′

1⟩ ⟨ψ′
1|,

so the entanglement measure E will be zero for some new
roots ζ ′i, such that E(ζ ′i |ψ′

0⟩+|ψ′
1⟩) = 0. Using Eqs. (A2)-

(A3), the later equation can be transformed into

E

(
(cζ ′i + d)

(
aζ ′i + b

cζ ′i + d
|ψ0⟩+ |ψ1⟩

))
= 0 (A5)

where the factor (cζ ′i + d) is irrelevant since any root
multiplied by it will still be a valid root. Comparing
with the equation for the roots before the action of O, we

reach the conclusion that the roots transform according
to the inverse Möbius transformation as

ζ ′i =
dζi − b
−cζi + a

, (A6)

under the action of the operator O. As a consequence,
the roots of the zero-polytope transform with respect to
the inverse Möbius transformation associated to the op-
erator O =

(
a b
c d

)
. Analize now the case when O is a

unitary operator O = U . Since any unitary operator U
can be represented as a rotationR =

(
cosα sinα eiϕ

−sinα e−iϕ cosα

)
(up to an irrelevant global phase), it will simply rotate
the Bloch ball, together with the zero-polytope.
Consider now multilocal operators On⃗ = O1 ⊗ . . . ⊗
On acting on the remaining qubits of the state |ψ⟩ from
Eq. (A1). The state |ψ⟩ will transform accordingly as

|ψ′⟩ := On⃗ |ψ⟩ = |0⟩On⃗ |ψ0⟩︸ ︷︷ ︸
:=|ψ′

0⟩

+ |1⟩On⃗ |ψ1⟩︸ ︷︷ ︸
:=|ψ′

1⟩

. (A7)

After the action of On⃗, a state in the extended plane
representation will have a value of entanglement measure
E equal to

E
(
z |ψ′

0⟩+ |ψ′
1⟩
)
= E

(
On⃗
(
z |ψ0⟩+ |ψ1⟩

))
.

However, since E is SL(2,C)⊗n invariant, we have that
E(z |ψ0⟩+ |ψ1⟩) = 0 iff E(z |ψ′

0⟩+ |ψ′
1⟩) = 0, and so the

roots of both polynomial equations are the same. As a
consequence, the roots of the the zero-polytope will re-
main unchanged under the action of On⃗. This concludes
the proof of Theorem 1.

Appendix B: Proof of Proposition 1

In order to prove Proposition 1, we begin with the
following simple observation:

Observation 1. For two sets Λ = {z1, . . . , zh} and
Λ′ = {w1, . . . , wh} of h distinct elements of the extended

complex plane zi, wi ∈ Ĉ, h > 2, there exists at most
h(h − 1)(h − 2) = 3!

(
h
3

)
Möbius transformations which

maps Λ into Λ′.

Proof. Suppose that T is a Möbius transformation which
transforms Λ into Λ′. Thus,

T (z1) = wi1 , T (z2) = wi2 , T (z3) = wi3 ,

for distinct indices i1, i2, i3 = 1, . . . , h. Observe that
there are exactly h(h−1)(h−2) possibilities for choice of
those indices. For each such possibility, there is an unique
Möbius transformation, which maps z1 7→ wi1 , z2 7→
wi2 , z3 7→ wi3 , see Appendix D [41]. Therefore there are
at most h(h − 1)(h − 2) Möbius transformations which
maps Λ into Λ′.
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Remark 1. Usually, there are more efficient methods
to determine all Möbius transformations which maps a
given set Λ into the other Λ′. For example, if |Λ| =
|Λ′| = 4, one may calculate the values of cross-ratios. If
they differ for any choice of orderings in Λ and Λ′, those
sets are not related by any Möbius transformation.

Proof of Proposition 1. Suppose that two (n + 1)-qubit

states |ψ⟩ , |ϕ⟩ ∈ H⊗(n+1)
2 have at least 3 roots calcu-

lated with respect to a given SLIPhn measure E for each
subsystem. We shall show that both states are SLOCC-
equivalent iff in the outcome of Procedure 1 there is an
operator O providing such equivalence.
Firstly, notice that if in the outcome of Procedure 1

there is an operator providing SLOCC-equivalence, both
states are SLOCC-equivalent. Hence, described condi-
tion is a sufficient condition for SLOCC-equivalence.

Secondly, we shall see that the described condition is
a necessary condition for SLOCC-equivalence. Indeed,
suppose that states |ψ⟩ , |ϕ⟩ are SLOCC-equivalent, i.e.
there exists an operator

O = O1 ⊗ · · · ⊗ On+1 (B1)

such that O |ψ⟩ ∝ |ϕ⟩ for some operators Oi ∈ SL(2,C).
Denote by Ti the Möbius transformation corresponding
to Oi. Denote by Λi = {zi1, . . . , zihi

} the system of roots
of the state |ψ⟩ calculated with respect to i-th subsystem.
According to Theorem 1, the i-th system of roots of a
state |ϕ⟩ ∝ O |ψ⟩ is simply Λ′

i = {Ti(zi1), . . . , Ti(zihi
)}.

In particular Ti maps Λi into Λ′
i, hence will be found

in Step 2 of Procedure 1. Note, that there might be
other operators transforming Λi into Λ′

i, hence in Step
2, one may obtain multiple local operators. Similarly
for any other subsystem, the transformation Ti (and the
corresponding local operator Oi) will be found. Hence
among all local operators in the outcome of Procedure 1,
there will be operator O from Eq. (B1).

Appendix C: Fubini–Study measure and generic
states

A Fubini–Study measure of the set of pure quantum
states (known also as a Haar measure) is a unique proba-
bility distribution on Hd+1 which is invariant under any
unitary operation acting on the whole Hd+1. It can be
explicitly written as a probability density distribution

Ω
(
ν1, . . . , νd, θ1, . . . , θd

)
=

d!

πd

d∏
i=1

cos θi sin θ
2i−1
i (C1)

where θi ∈ [0, π2 ], νi ∈ [0, 2π], on the set of pure quantum
states parametrized as

|ψ⟩ =
d∑
i=0

(
eiνi cos θi

d∏
ℓ=i+1

sin θℓ

)
|i⟩ ∈ Hd+1, (C2)

with the convention θ0 = ν0 = 0 [26]. Notice that states
in Eq. (C2) are normalized and∫ 2π

0

· · ·
∫ 2π

0

∫ π
2

0

· · ·
∫ π

2

0

Ω
(
ν1, . . . , νd, θ1, . . . , θd

)
dν1·

· dν2 · · · dνddθ1 · · · dθd = 1

hence Ω it is, indeed, a probability distribution. No-
tice that all random variables θi, νi in Eq. (C1) are cho-
sen independently according to the uniform distribution
Θ(νi) =

1
2πνi on [0, 2π] for νi variables, and according to

Ωi

(
θi

)
= 2 i cos θi sin θ

2i−1
i (C3)

distribution on [0, π2 ].

Since H⊗n
2
∼= H2n , the Fubini–Study measure is also

well defined on the set of pure quantum states of n-
qubits H⊗n

2 . We shall notice some properties of such
a distribution, while expressing the state in the form
|ψ⟩ = |0⟩ |ψ0⟩ + |1⟩ |ψ1⟩. For simplicity, we introduce
the index sets J = {0, 1}n, J0 = J \ {0, . . . , 0}, and
for any index I = (i1, . . . , in) ∈ J , we denote by
|I| the decimal representation of the binomial string I,
i.e. |I| =

∑n
j=1 2

j−1ij . In order to determine the Fu-

bini–Study measure on H⊗n+1
2 , we shall use the follow-

ing isomorphism between H⊗n+1
2

∼= H2n+1 defined on the
basis vectors as |iI⟩ 7→ |̄i2n + |I|⟩ for I ∈ J , and where
ī = i+ 1(mod 2). In such a way, the Fubini–Study mea-
sure on H⊗n+1

2 is given by the probability density distri-
bution independent for each random variable and written
jointly as

Ω
(
νI , θI , ν

′
I′ , θ

′
I′ : I ∈ J , I ′ ∈ J′

)
=

(2n+1 − 1)!

π2n+1−1
·

(C4)∏
I∈J

cos θI sin θ
2n+1+2|I|−1
I

∏
I′∈J′

cos θ′I′ sin (θ′I′)
2|I′|−1

where θI , θ
′
I ∈ [0, π2 ], and νI , ν

′
I ∈ [0, 2π], on the set of

pure quantum states parametrized as

|ψ⟩ = |0⟩ |ψ0⟩+
( ∏
I∈J

sin θI
)
|1⟩ |ψ′

1⟩ (C5)

where

|ψ0⟩ =
∑
I∈J

dI |I⟩ , dI = eiνI cos θI
∏
J∈J :
|J|>|I|

sin θJ , (C6)

|ψ′
1⟩ =

∑
I∈J

cI |I⟩ , cI = eiν
′
I cos θ′I

∏
J∈J :
|J|>|I|

sin θ′J ,

with the convention θ′0···0 = ν′0···0 = 0. Notice that the
state coefficients of |ψ0⟩ depends only on θI , νI variables,
while state coefficients of |ψ′

1⟩ depends only on θ′I , ν
′
I vari-

ables. Furthermore, state coefficient dI of |ψ0⟩ depends
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only on the variables νI and θJ for J ∈ J such that
|J | ≥ |I|. In particular, d0···0 is the only coefficient in
|ψ0⟩ depending on θ0···0, while d0···0, d0···01 are the only
coefficients in |ψ0⟩ depending on θ0···01, etc.

By a generic pure quantum state |ψ⟩ ∈ H⊗n
2 we un-

derstand a random state chosen with respect to the Fu-
bini–Study measure on the set of quantum states [26]. In
that sense, we say that some property occurs with proba-
bility zero for generic state iff it occurs only on the set of
measure zero among all pure quantum states with respect
to the Fubini–Study measure. Notice that such a notion
of generic states [42–44] is not the only one which appear
in literature. Some authors refers to generic states as
those whose stabilizers meet certain symmetry conditions
[45–47]. It is worth mentioning that those two notions
of generic states among pure quantum states agrees up
to the measure zero subset on the set of pure quantum
states with respect to the Fubini–Study measure.

Appendix D: Proof of Proposition 2

In this section, we shall prove that a generic pure quan-
tum state will have exactly four distinct roots for each
subsystem, for measures defined in Eqs. (2) and (3). We
begin with the following lemma.

Lemma 1 (Even case). Consider a generic pure quan-
tum state |ψ⟩ ∈ H⊗n+1

2 of even number of qubits written
in the form |ψ⟩ = |0⟩ |ψ0⟩ + |1⟩ |ψ1⟩ where |ψ0⟩ , |ψ1⟩ ∈
H⊗n

2 , and a SLIP measure E(n) presented in Eq. (2).
The conditional probability that the polynomial equation
E(n)

(
|ψ0⟩ + z |ψ1⟩

)
= 0 has no multiple root at z = 0

under the condition that it has at least a single root at
z = 0 is zero.

Proof of Lemma 1. Consider an (n+1)-qubit state |ψ⟩ ∈
H⊗n+1

2 written in the form |ψ⟩ = |0⟩ |ψ0⟩+ |1⟩ |ψ1⟩, and
suppose that n = 2k + 1 is an odd number. We shall
evaluate the entanglement measure presented in Eq. (2)
on the following state |ψ0⟩+ z |ψ1⟩, i.e.

E(2k+1)
(
|ψ0⟩+ z |ψ1⟩

)
=

=

∣∣∣∣∣ ∑
j=Id,x,y,z

ηj

(
⟨ψ0|σj ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩+

+ 2z ⟨ψ1|σj ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩

+ z2 ⟨ψ1|σj ⊗ σy ⊗ · · · ⊗ σy︸ ︷︷ ︸
2k

|ψ̄1⟩
)2∣∣∣∣∣.

Furthermore, we expand the equation above as an ab-
solute value of a degree four polynomial in z variable,
namely

E(2k+1)
(
|ψ0⟩+z |ψ1⟩

)
=
∣∣C0+C1z+C2z

2+C3z
3+C4z

4
∣∣

where the coefficients Ci are of the following form:

C0 =
∑

j=Id,x,y,z

ηj ⟨ψ0|σj ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ ·

· ⟨ψ0|σj ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ = E(2k+1)
(
|ψ0⟩

)
,

C1 =2
∑

j=Id,x,y,z

ηj ⟨ψ1|σj ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ ·

· ⟨ψ0|σj ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ ,
. . .

Notice that the equation E(n)
(
|ψ0⟩+z |ψ1⟩

)
= 0 has root

at z = 0 iff the coefficient C0 = 0, and has a multiple root
at z = 0 iff coefficients C0, C1 = 0. Therefore we shall
prove that the conditional probability

P
(
C1 = 0 |C0 = 0

)
= 0 (D1)

that C1 = 0 under the condition C0 = 0 is zero.
We can rewrite the coefficients C0, C1 in the following

way

C0 = ⟨ψ0|A(ψ0)⟩ ,
C1 = ⟨ψ1|A(ψ0)⟩ ,

where |A(ψ0)⟩ is the following vector

|A(ψ0)⟩ = A(ψ0) |ψ0⟩ ,

defined by operator

A(ψ0) =
∑

j=Id,x,y,z

(
ηj ⟨ψ0|σj ⊗ σy · · · ⊗ σy|ψ0⟩

)
·

· σj ⊗ σy · · · ⊗ σy .

Notice that |A(ψ0)⟩ is a function of state coefficients of
|ψ0⟩ only. State coefficients of |ψ1⟩ are not related to
the state coefficients of |ψ0⟩ in anyway by a norm, see
Eqs. (C5) and (C6), hence the space of solutions for the
equation

C1 = ⟨ψ1|A(ψ0)⟩ = 0 (D2)

is of zero measure iff |A(ψ0)⟩ ̸≡ 0. Therefore, condition
Eq. (D1) can be rewritten as the conditional probability

P
(
|A(ψ0)⟩ ≡ 0 | ⟨ψ0|A(ψ0)⟩ = 0

)
= 0 (D3)

that |A(ψ0)⟩ ≡ 0 under the condition ⟨ψ0|A(ψ0)⟩ = 0 is
zero.
For simplicity, we shall introduce the following nota-

tion:

βk = ⟨ψ0|σk ⊗ σy · · · ⊗ σy|ψ0⟩ ,

for i = 0, 2, 3. It is easy to see that ⟨ψ0|A(ψ0)⟩ =
−β2

0 + β2
2 + β2

3 , hence the condition ⟨ψ1|A(ψ0)⟩ = 0 can
be rewritten as∑

k

ηkβ
2
k = −β2

0 + β2
2 + β2

3 = 0 , (D4)
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Furthermore, the operator A(ψ0) takes the following form

A(ψ0) =

(∑
µ

ηµβµσµ

)
⊗ σy ⊗ · · · ⊗ σy .

Observe that condition |A(ψ0)⟩ = A(ψ0) |ψ0⟩ ≡ 0 is
equivalent to requiring that |ψ0⟩ belongs to the null space
N (A(ψ0)) of the matrix A(ψ0). Therefore, we have an
immediate implication: if the null space of the operator
A(ψ0) is trivial, i.e. N (A(ψ0)) = {0} then |A(ψ0)⟩ ̸≡ 0.
Since the null space of σy is empty, so is the null space of
any number of tensor products of σy. Hence, we shall find

a null space N
(∑

µ ηµβµσµ

)
. One simple way to do this

is to calculate the eigenvectors of
∑
µ ηµβµσµ and look at

the space spanned by the eigenvectors whose eigenvalues
are 0. It is straightforward to show that the eigenval-
ues and eigenvectors of a general combination of Pauli
matrices

∑
µ aµσµ are given by

v± =

{(
a3±
√
a21+a

2
2+a

2
3

a1+ia2
1

)}
, λ± = a0 ±

√
a21 + a22 + a23 .

Hence, for aµ = ηµβµ under the condition C0 = 0 (in
form Eq. (D4)), we have the eigensystem

v± =

{(
−iβ3±

√
β2
0

β2

1

)}
, λ± = β0 ±

√
β2
0 .

Therefore if β0 ̸= 0 then |A(ψ0)⟩ ̸≡ 0. Recall that the
condition C0 = 0 is equivalent to β2

0 = β2
2 + β2

3 , hence
the following conditional probability

P
(
β0 = 0 |β2

0 = β2
2 + β2

3

)
= 0 (D5)

that β0 = 0 under the condition β2
0 = β2

2 + β2
3 is zero

implies Eq. (D3). In the remaining part of the proof, we
shall show that Eq. (D5) holds true.

We begin by expanding the n-qubit state |ψ0⟩ in the
computational basis

|ψ0⟩ =
n∑

j1,...,jn=0

dj1 ··· jn |j1, . . . , jn⟩ .

Notice that βk takes the following form in the computa-
tional basis

βk =
∑

j1,...,jn
i1,...,in

dj1 ··· jndi1 ··· in ⟨j1|σk|i1⟩ ·

· ⟨j2, . . . , jn|σy ⊗ · · · ⊗ σy|i2, . . . , in⟩ .

Notice that because of the cancelation β2 = 0, we can
further simplify the expression for βk and single out one
state coefficient, namely d0 ··· 0. We have

β0 = 2(−1)k (D0 + D3),

β2 = 0, (D6)

β3 = 2(−1)k (D0 − D3),

where

D0 =
∑
I∈I

(−1)|I|d0 Id0Ī ,

D1 =
∑
I∈I

(−1)|I|d1 Id1Ī , (D7)

where I = {0, 1}n−1 is the index set introduced for
consistency of the notation, and for any bit-string I =
(i1, . . . , in−1), we define its complement Ī = as Ī :=
(ī1, . . . , ¯in−1) where īj = ij + 1 (mod 2), and |I| =∑n−1
j=1 ij . Expanding βk according to Eq. (D6), the con-

dition β2
0 = β2

2 + β2
3 becomes the following(

D0 + D1

)2
=
(
D0 − D1

)2
(D8)

and hence has exactly two solutions, either D0 = 0 or
D1 = 0. Notice that under any of those two solutions
the condition β0 = 0, i.e D0 + D1 = 0 becomes D0 =
D1 = 0. Hence Eq. (D5) can be rewritten as the following
conditional probability

P
(
D0 = 0 ∧ D1 = 0

∣∣∣D0 = 0 ∨ D1 = 0
)
= 0. (D9)

Notice that

P
(
D0 = 0 ∧ D1 = 0

∣∣∣D0 = 0 ∨ D1 = 0
)
≤ (D10)

P
(
D0 = 0

∣∣∣D1 = 0
)
+ P

(
D1 = 0

∣∣∣D0 = 0
)
,

hence we shall show that both terms on the right-hand
side of the equation above vanish.

Note that equation D0 = 0 imposes conditions on the
state coefficients d0I , I ∈ I only, while equation D1 = 0
on the state coefficients d1I , I ∈ I, see Eq. (D7). Since
equations D1 = 0 and D0 = 0 impose conditions on
different state coefficients, intuitively condition D0 = 0
should not enforce D1 = 0 being satisfied (and vice-
versa). This can be rigorously showed by the properties
of Fubini–Study measure. Recall that state coefficients
d1I in |ψ0⟩ depend on θ1I , and ν1I where I ∈ {0, 1}n−1

only, see Eqs. (C5) and (C6). Therefore, the condition
D1 = 0 can be rewritten in θ1I and ν1I variables as

f(θ1I , ν1I : I ∈ I) = 0, (D11)

where f is an elementary function in θ1I , ν1I : I ∈ I
variables. The exact form of f can be traced back from
Eq. (D7) and Eq. (C6). In particular f , as an elementary
function, is continuous on its domain. Similarly, the con-
dition D0 = 0 can be rewritten in θ0I and ν0I variables
as

g(θ0I , ν0I : I ∈ I) = 0, (D12)

where g is an elementary, hence continuous, function.
Therefore, P(D1 = 0 |D0 = 0) can be rewritten as the
following conditional probability

P
(
f(θ1I , ν1I : I ∈ I) = 0

∣∣∣ g(θ0I , ν0I : I ∈ I) = 0
)
= 0

(D13)
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where f, g are elementary (in particular continuous) func-
tions on its domains defined on different variables. Re-
call that the random variables θI , νI : I ∈ {0, 1}n were
chosen independently with continuous probability den-
sity distributions described in Eq. (C4), i.e νI are cho-
sen independently according to the uniform distribution
Θ(νI) =

1
2πνI on [0, 2π], and θI are chosen according to

ΩI

(
θI

)
=
(
2n+1 + 2 |I|

)
cos θI sin θ

2n+1 +2 |I| −1
I (D14)

distribution on [0, π2 ]. Therefore, a random quantum
state |ψ0⟩ which satisfies condition g(θ0I , ν0I : I ∈ I) = 0
is given by randomly chosen values of θI , νI : I ∈ {0, 1}n
with respect to the probability distributions in Eq. (D14)
for which g(θ0I , ν0I : I ∈ I) = 0. It does not im-
pose, however, any further constrains on ν1I θ1I coeffi-
cients. Hence the value of f(θ1I , ν1I : I ∈ I) under con-
dition g(θ0I , ν0I : I ∈ I) = 0 does not vanish except
of measure zero subspace for such induced probability
distribution, hence P(D1 = 0|D0 = 0) = 0. An analo-
gous argument shows that P(D0 = 0|D1 = 0) = 0, and
hence that Eq. (D9) holds true, which finishes the proof
of Lemma 1.

Below, we prove the result analogous to Lemma 1, for
any odd number of qubits.

Lemma 2 (Odd case). Consider a generic pure quan-
tum state |ψ⟩ ∈ H⊗n+1

2 of odd number of qubits written
in the form |ψ⟩ = |0⟩ |ψ0⟩ + |1⟩ |ψ1⟩ where |ψ0⟩ , |ψ1⟩ ∈
H⊗n

2 , and a SLIP measure E(n) presented in Eq. (3).
The conditional probability that the polynomial equa-
tion E(n)

(
|ψ0⟩ + z |ψ1⟩

)
= 0 has no multiple root at

z = 0 under the condition that it has at least single root
at z = 0 is zero.

Proof. Consider an n-qubit state |ψ⟩ ∈ H⊗n
2 written in

the form |ψ⟩ = |0⟩ |ψ0⟩+|1⟩ |ψ1⟩, and suppose that n = 2k
is an even number. We shall evaluate the value of a
measure E(2k) presented in Eq. (3) on the following state
|ψ0⟩+ z |ψ1⟩. Thus, we have

E(2k)
(
|ψ0⟩+ z |ψ1⟩

)
= (D15)∣∣∣∣∣ ∑

j,i=Id,x,y,z

ηjνi

(
⟨ψ0|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩

+ 2z ⟨ψ1|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩

+ z2 ⟨ψ1|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy︸ ︷︷ ︸
2k

|ψ̄1⟩
)2∣∣∣∣∣

Observe that by expanding it further, it is an absolute
value of a degree four polynomial in the z variable:

E(2k)
(
|ψ0⟩+ z |ψ1⟩

)
=
∣∣C0 +C1z+C2z

2 +C3z
3 +C4z

4
∣∣

where the coefficients are of the following form:

C0 =
∑

j,i=Id,x,y,z

ηjνi ⟨ψ0|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ ·

· ⟨ψ0|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ = E(2k)
(
|ψ0⟩

)
,

C1 = 2
∑

j,i=Id,x,y,z

ηjνi ⟨ψ1|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ ·

· ⟨ψ0|σj ⊗ σi ⊗ σy ⊗ · · · ⊗ σy |ψ̄0⟩ ,
. . .

with (ηId, ηx, ηy, ηz) = (νId, νx, νy, νz) = (−1, 0, 1, 1).
Notice that the equation E(n)

(
|ψ0⟩ + z |ψ1⟩

)
= 0 has

a root at z = 0 iff the coefficient C0 = 0, and has a mul-
tiple root at z = 0 iff coefficients C0, C1 = 0. Therefore
we shall prove that the conditional probability

P
(
C1 = 0 |C0 = 0

)
= 0 (D16)

that C1 = 0 under the condition C0 = 0 is zero.
We can rewrite the coefficients C0, C1 in the following

way

C0 = ⟨ψ0|A(ψ0)⟩ ,
C1 = ⟨ψ1|A(ψ0)⟩ ,

where |A(ψ0)⟩ is the following vector

|A(ψ0)⟩ = A(ψ0) |ψ0⟩ , (D17)

defined by operator

A(ψ0) =
∑

i,j=Id,x,y,z

(
ηjηi ⟨ψ0|σi ⊗ σj ⊗ σy · · · ⊗ σy|ψ0⟩

)
· σi ⊗ σj ⊗ σy · · · ⊗ σy ,

Notice that |A(ψ0)⟩ is a function of state coefficients of
|ψ0⟩ only. State coefficients of |ψ1⟩ are not related to
the state coefficients of |ψ0⟩ in anyway by a norm, see
Eqs. (C5) and (C6), hence the space of solutions for the
equation

C1 = ⟨ψ1|A(ψ0)⟩ = 0 (D18)

is of zero measure iff |A(ψ0)⟩ ̸≡ 0. Therefore, condition
Eq. (D16) can be rewritten as the conditional probability

P
(
|A(ψ0)⟩ ≡ 0 | ⟨ψ0|A(ψ0)⟩ = 0

)
= 0 (D19)

that |A(ψ0)⟩ ≡ 0 under the condition ⟨ψ0|A(ψ0)⟩ = 0
is zero. Observe that in order to show that |A(ψ0)⟩ =
A(ψ0) |ψ0⟩ ̸≡ 0 it is enough to show that the first coeffi-
cient of |A(ψ0)⟩ is non-vanishing, i.e. ⟨0 . . . 0|A(ψ0)⟩ ≠ 0.
Therefore the following conditional probability

P
(
⟨0 . . . 0|A(ψ0)⟩ = 0 | ⟨ψ0|A(ψ0)⟩ = 0

)
= 0 (D20)

that ⟨0 . . . 0|A(ψ0)⟩ = 0 under the condition
⟨ψ0|A(ψ0)⟩ = 0 is zero implies Eq. (D19). In the
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remaining part of the proof, we shall show that
Eq. (D20) holds true.

For simplicity, we shall introduce the following nota-
tion:

βkp = ⟨ψ0|σk ⊗ σp ⊗ σy · · · ⊗ σy|ψ0⟩ ,

for i, j = 0, 2, 3. It is easy to see that the condition
⟨ψ0|A(ψ0)⟩ = 0 can be rewritten as

0 =
∑
k,p

ηkηpβ
2
kp = (D21)

β2
00 − β2

02 − β2
03 − β2

20 + β2
22 + β2

23 − β2
30 + β2

32 + β2
33,

Furthermore, the operator A(ψ0) takes the following form

A(ψ0) =

∑
k,p

ηkηpβkpσk ⊗ σp

⊗ σy ⊗ · · · ⊗ σy =

(D22)

=B ⊗ σy ⊗ · · · ⊗ σy ,

where matrix B is presented on Figure 4.
We shall expand an n-qubit state |ψ0⟩ in the compu-

tational basis

|ψ0⟩ =
n∑

j1,...,jn=0

dj1 ··· jn |j1, . . . , jn⟩ .

Notice that βkp takes the following form in the compu-
tational basis

βkp =
∑

j1,...,jn
i1,...,in

dj1 ··· jndi1 ··· in ⟨j1|σk|i1⟩ ⟨j2|σp|i2⟩ ·

· ⟨j3, . . . , jn|σy ⊗ · · · ⊗ σy|i3, . . . , in⟩ .

We can further simplify the expression for βkp:

β00 = (−1)k−1(D00 + D01 + D10 + D11), (D23)

β03 = (−1)k−1(D00 − D01 + D10 − D11),

β30 = (−1)k−1(D00 + D01 − D10 − D11),

β33 = (−1)k−1(D00 − D01 − D10 + D11),

β22 = 2(−1)k(B0 −B1),

β02 = β32 = β20 = β23 = 0,

where we define the following quantities

Dij =
∑
I∈I

(−1)|I|dij IdijĪ ,

B0 =
∑
I∈I

(−1)|I|d00 Id11Ī ,

B1 =
∑
I∈I

(−1)|I|d01 Id10Ī ,

and I = {0, 1}n−2 is the index set introduced for con-
sistency of the notation, and for I = (i1, . . . , in−2), we

define Ī = (ī1, . . . , ¯in−2) where īj = ij + 1 (mod 2), and

|I| =
∑n−2
j=1 ij . With above notation at hand, Eq. (D21)

becomes the following

8 (D01D10 + D11D00) − 2 (B0 − B1) = 0. (D24)

We shall single out d0···0 state coefficient from the equa-
tion above. Notice that the state coefficient d0...0 appears
in D00 and B0 terms only. Denote by

D̄00 =D00 − 2d0···0d001···1,

D̂00 =D̄00 + 2d0···01d001···10,

B̄0 =B0 − 2d0···0d1···1,

B̂0 =B̄0 + 2d0···01d1···10. (D25)

Observe that d0···0 appears in D00 and B0, but
does not appear in any of the following terms
D̄00, D01, D10, D11, B̄0, B1. Hence Eq. (D24) might be
solved with respect to d0···0 variable, and become

d0...0 =
4(D01D10 +D11D̄00)− (B̄0 −B1)

2(d1···1 − 4D11d001···1)
. (D26)

In such a way, we expressed the condition ⟨ψ0|A(ψ0)⟩ =
0 which appears in Eq. (D20) as an equation satisfied
by the d0···0 state coefficient. As a next step, we shall
investigate thr following equation

⟨0 . . . 0|A(ψ0)⟩ = 0. (D27)

From (D22), (D17), and (D23), we have

⟨A(ψ0)|0 . . . 0⟩ = 4D11d001···1 + 2(B0 −B1)d1···1.

Notice that in the equation above the d0···0 coefficient
appears only in B0 term. By expressing B0 accord-
ing to (D25), and substituting d0···0 according to (D26),
Eq. (D27) becomes

0 = 4d001···1D11 + 8d1···1
d1···1 − 4d001···1D11

· (D28)

·
(
d1···1D01D10 +D11(d001···1(B1 − B̄0) + d1···1D̄00)

)
.

Notice that in the equation above, the coefficient d0···01
appears only in D̄00 and B̄0 terms. With the notation
(D25), we can single out the d0···01 coefficient and solve
Eq. (D28) with respect to d0···01 variable:

d0···01 =
2d21···1D01D10 +D11

4d1···1D11(d001···10d1···1 − d001···1d1···10)
·

·
(
(d001···1d1···1(2B1 + 1) (D29)

− 2d001···1(d1···1B̂0 + 2d001···1D11) + 2d21···1D̂00

)
Notice that with Eqs. (D26) and (D29) in hand, Eq. (D5)
can be rewritten as the following conditional probability

P
(
Eq. (D29) holds

∣∣∣ Eq. (D26) holds
)
= 0 (D30)
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B =


β00 − β03 − β30 + β33 i (β02 − β32) i (β20 − β23) −β22

−i (β02 − β32) β00 + β03 − β30 − β33 β22 i (β20 + β23)
−i (β20 − β23) β22 β00 − β03 + β30 − β33 i (β02 + β32)

−β22 −i (β20 + β23) −i (β02 + β32) β00 + β03 + β30 + β33

 .

Figure 4. The form of matrix B from Eq. (D22).

that the probability that Eq. (D29) holds under the con-
dition that Eq. (D26) holds is zero.

Note that Eq. (D26) expresses state coefficient d0···0
as a function of other state coefficients, and it defines
a subspace in the state space in which it holds. In-
tuitively, there should be no restriction on other state
coefficients, as Eq. (D29), in such a subspace. Hence
Eq. (D30) should be satisfied. This intuition can be rig-
orously shown by properties of the Fubini–Study mea-
sure. In the remaining part of a proof, we show that
Eq. (D30) holds, indeed, true. Notice that d0···0 is on the
left side of Eq. (D26) and does not appear on the right
side of Eq. (D26). We shall recall now some properties of
Fubini–Study distribution on the set H⊗n+1

2 presented in
Eqs. (C5) and (C6). Recall that, d0···0 is the only coeffi-
cient in |ψ0⟩ depending on θ0···0. Therefore, by multiply-
ing Eq. (D29) by

∏
I∈J0

1
sin θI

, where we used notation

J0 = {0, 1}n \ {0, . . . , 0}, Eq. (D29) takes the following
form

ei ν0···0 cos θ0···0 = f(θI , νI : I ∈ J0), (D31)

where f is an elementary function in θI , νI : I ∈ J0
variables, where exact form of f can be traced back
from Eq. (D29) by substituting successively Eq. (D7) and
Eq. (C6). In particular f , as an elementary function,
is continuous on its domain. Similarly, the coefficient
d0···01 is on the left side of Eq. (D26) and does not ap-
pear on the right side of Eq. (D26), moreover there is
no d0···0 coefficient in both sides of Eq. (D26). As we
noticed in Eq. (C6), while d0···0, d0···01 are the only coef-
ficients in |ψ0⟩ depending on θ0···01, therefore, by multi-
plying Eq. (D26) by

∏
I∈J1

1
sin θI

, where we used notation

J1 = J0\{0, . . . , 0, 1}, Eq. (D26) takes the following form

ei ν0···01 cos θ0···01 = g(θI , νI : I ∈ J1), (D32)

where g is an elementary function in θI , νI : I ∈ J1
variables, where exact form of g can be traced back
from Eq. (D26) by substituting successively Eq. (D7) and
Eq. (C6). In particular g, as an elementary function, is
continuous on its domain. In summary, Eq. (D30) can
be rewritten as the following conditional probability

P
(
ei ν0···01 cos θ0···01 = g(θI , νI : I ∈ J1)

∣∣∣ (D33)∣∣∣ ei ν0···0 cos θ0···0 = f(θI , νI : I ∈ J0)
)
= 0

that the probability that ei ν0···01 cos θ0···01 = g(θI , νI :
I ∈ J1) under the condition that ei ν0···0 cos θ0···0 =

f(θI , νI : I ∈ J0) is zero, where f, g are elementary
(in particular continuous) functions on its domains in
θI , νI : I ∈ J0 and θI , νI : I ∈ J1 variables respectively.
Recall that the random variables θI , νI : I ∈ J were
chosen independently with continuous probability den-
sity distributions described in Eq. (C4), i.e νI are cho-
sen independently according to the uniform distribution
Θ(νI) =

1
2πνI on [0, 2π], and θI are chosen according to

ΩI

(
θI

)
=
(
2n+1 + 2 |I|

)
cos θI sin θ

2n+1 +2 |I| −1
I (D34)

distribution on [0, π2 ]. Therefore, a random quantum

state |ψ0⟩ which satisfies condition ei ν0···0 cos θ0···0 =
f(θI , νI : I ∈ J0) is given by randomly chosen values
of θI , νI : I ∈ I with respect to the probability distribu-
tions in Eq. (D34) for which the norm of f(θI , νI : I ∈ J0)
is smaller then one, and coefficients ν0···0, θ0···0 uniquely
determined by the value of function f . It does not im-
pose, however, any further constrains on ν0···01 θ0···01 co-
efficient in terms od θI , νI : I ∈ J1 coefficients (except
of the norm of f being sufficiently small). Hence the fol-
lowing equation ei ν0···01 cos θ0···01 = g(θI , νI : I ∈ J1)
will be not satisfied except of measure zero subspace for
such induced probability distribution. This shows that
Eq. (D10) holds true, and hence finishes the proof of
Lemma 1.

Proposition 5. Consider a generic pure quantum state
|ψ⟩ ∈ H⊗n+1

2 written in the form |ψ⟩ = |0⟩ |ψ0⟩+ |1⟩ |ψ1⟩
where |ψ0⟩ , |ψ1⟩ ∈ H⊗n

2 . Furthermore, consider the poly-
nomial equation

E(n)
(
|ψ0⟩+ z |ψ1⟩

)
= 0 (D35)

in z variable, where E(n) is a SLIP measure presented
in Eq. (2) for an even number of qubits n = 2(k + 2)
and Eq. (3) for an odd number of qubits n = 2k + 1.
For a generic state |ψ⟩ ∈ H⊗n+1

2 the above polynomial
equation has exactly four distinct roots with probability
one. In other words, the set of states for which Eq. (D35)
has less then four distinct roots is of measure zero with
respect to the Fubini–Study measure.

Proof Proposition 5. We shall see that the statement of
Proposition 5 esily follows from Lemma 1 and Lemma 2
and properties of Fubini–Study measure. Recall that
Fubini–Study probability distribution on H⊗n+1

2 is in-
variant under any unitary operation acting on the whole
space H⊗n+1

2 . Hence the probability that Eq. (D35) has
multiple roots is bigger or equal to the probability that
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Eq. (D35) has multiple root at z = 0 under the condition
that it has at least single root at z = 0 is zero. Hence
Lemma 1 and Lemma 2 justify the statement.

Observe that while using a SLIP measure defined in
Eqs. (2) and (3) (depending on the parity of the number
of qubits n) in Procedure 1 (described in the main body
of the paper) a generic pure n-qubit state has exactly
four roots with probability one. Therefore, together with
Proposition 1 from the main body of the paper (proven
in Appendix B of the Supplementary Material), it shows
that a single SLIP measure is enough to provide neces-
sary and sufficient conditions for any two generic pure
n-qubit states to be SLOCC-equivalent. Hence, we have
the following corollary.

Corollary 1. A single SLIP measure, Eq. (2) for an
even number of qubits n = 2(k + 2) and Eq. (3) for an
odd number of qubits n = 2k + 1, is enough to provide
necessary and sufficient conditions for any two generic
pure n-qubit states to be SLOCC-equivalent.

Corollary 1 can be written shortly as Proposition 2 from
the main body of the paper.

Appendix E: Unique Möbius transformation

It is well known that for a given tuple of three dis-
tinct points z1, z2, z3 and any second tuple of such points
w1, w2, w3 on the extended complex plane Ĉ, there is a
unique Möbius transformation T , which transforms one
tuple into the other, i.e.

T (z1) = w1, T (z2) = w2, T (z3) = w3 .

There are several ways to determine the form of T . An
explicit form can be found by evaluating the determinant
[41]:

T (z) := det

 zw z w 1
z1w1 z1 w1 1
z2w2 z2 w2 1
z3w3 z3 w3 1

. (E1)

This results into the following form of T

T (z) =
az + b

cz + d
(E2)

where

a = det

z1w1 w1 1
z2w2 w2 1
z3w3 w3 1

, b = det

z1w1 z1 w1

z2w2 z2 w2

z3w3 z3 w3

,
c = det

z1 w1 1
z2 w2 1
z3 w3 1

, d = det

z1w1 z1 1
z2w2 z2 1
z3w3 z3 1

.

Note that the corresponding SL(2,C) operator is of the

form O =
1

N

(
a b
c d

)
with the normalization constant

N =

√
det

(
a b
c d

)
=
√
(z1 − z2)(z1 − z3)(z2 − z3)·

·
√

(w1 − w2)(w1 − w3)(w2 − w3).

Appendix F: Rotation group G24

Consider the set of four symmetrically related points
Φ = {z, 1z ,−z,−

1
z}. It is very convinient to associate

with them the cuboid spanned by eight points:

Φ ∪ Φ̄ =
{
z,

1

z
,−z,−1

z
, z̄,

1

z̄
,−z̄,−1

z̄

}
,

as it is presented on Figure 2. Observe, that all six faces
of the cuboid are parallel to one of the planes: XZ,XY ,
or Y Z. In fact, this property is equivalent to the initial
assumption that the set of points Φ is in normal form.
Clearly, all rotations of the Bloch ball preserve the form
of the cuboid. Nevertheless, only a special subgroup of
all rotations preserve faces of the cuboid being parallel
to XZ,XY , or Y Z. This special subgroup G24 contains
24 elements spanned by three rotations of π/2 around X,
Y , and Z axis, given by:

Rx(π/2) =
(

cos π/4 −i sin π/4
−i sin π/4 cos π/4

)
=

1√
2

(
1 −i
−i 1

)
, (F1)

Ry(π/2) =
(

cos π/4 −sin π/4
sin π/4 cos π/4

)
=

1√
2

(
1 −1
1 1

)
, (F2)

Rz(π/2) =
(
e−iπ/4 0

0 eiπ/4

)
=

1√
2

(
1−i 0
0 1+i

)
(F3)

In fact, this is a group of rotations preserving the regular
cube (the group of orientable cube symmetries). Clearly,
all rotations in the G24 group preserve the normal-form
structure of Φ. On the other hand, the normal form is
uniquelly determined up to 24 rotations in the G24 group.

Appendix G: Proof of Proposition 3

We present a proof of Proposition 3. For each complex
number λ there exists another complex number z, such
that the cross-ratio of the four points is equal to λ, i.e.(

z,
1

z
;−z,−1

z

)
= λ . (G1)

Indeed, the cross-ratio on the left side equals
4z2/(1 + z2)2, and the equation 4z2/(1 + z2)2 = λ has
exactly four solutions

z0 =
4− 2λ+

√
1− λ

2λ
,

1

z0
, −z0, −

1

z0
. (G2)
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Therefore, for a given value λ there exists a unique λ-
normal system, such that the cross-ratio of its vertices
is given by (z0,

1
z0
;−z0,− 1

z0
) = λ. Replacing the vertex

z0 by any other vertex z0, 1/z0,−z0, or −1/z0 does not
change the value of the cross-ratio (z0,

1
z0
;−z0,− 1

z0
) = λ.

Note that there exists a unique Möbius transformation
T which maps z1, z2, z3 onto z0, 1/z0,−z0, with the re-
maining z4 mapped onto −1/z0. Observe as well that the
value of z0 is unique up to its inverse, opposite and op-
posite inverse elements, according to Eq. (G2), with the
corresponding Möbius transformations associated to the
matrices T, σxT, σyT and σzT . Each of those transforma-
tions maps the set of points {z1, z2, z3, z4} onto the same
set of points {z0, 1/z0,−z0,−1/z0}, although the exact
bijection between those two sets of roots is different for
each transformation.

Depending on the order of four points {z1, z2, z3, z4},
the corresponding cross-ratio takes six values: λ, 1

λ , 1 −
λ, 1

1−λ ,
λ−1
λ and λ

λ−1 . For each of these, there
is a corresponding set of solutions of the form
{z0, 1/z0,−z0,−1/z0} via Eq. (G2) with four related
Möbius transformations. Therefore, there are in to-
tal 24 Möbius transformations that map any four non-
degenerated points onto a normal system, each of them
related by an element of the group G24 which has exactly
24 elements.

Appendix H: Transformation of a state into its
Normal form

We illustrate the procedure to determine the normal
form of 4-qubit states on the following example:

|ψ⟩ ∝ |0⟩ |GHZ⟩+ |1⟩ |W⟩ (H1)

= |0000⟩+ |0111⟩+ |1100⟩+ |1010⟩+ |1001⟩
= |0⟩ |000⟩+ |111⟩︸ ︷︷ ︸

|ψ0⟩

+ |1⟩ |100⟩+ |010⟩+ |001⟩︸ ︷︷ ︸
|ψ1⟩

.

of the widely discussed four-partite state [22, 24]. We
shall focus attention on the first subsystem. Correspond-
ing states |ψ0⟩ and |ψ1⟩ are indicated on Eq. (H1). We
shall use the 3-tangle measure. The following polynomial
τ(3)(|ψ0⟩ + z |ψ1⟩) is of a degree four in variable z, and
has exactly four distinct roots:

z1 = 0,

z2 = − 3
√
4,

z3 = − 3
√
4 e2πi/3,

z4 = − 3
√
4 e4πi/3.

The corresponding value of the cross-ratio is equal to
λ = 1+ e4πi/3. As it is shown in Proposition 3, there is a
unique Möbius transformation T which maps z1, z2, z3, z4
onto the system z0,

1
z0
,−z0,− 1

z0
where z0 is a root of a

polynomial 4z2/(1 + z2)2 = λ. Choose one of its roots,

e.g. z0 = 1 +
√
2. Appendix C presents one way of

obtaining the exact transformation T , giving

T (z) =
z − 1+

√
3

3√4

(1+
√
3)(1+i)
2 z + 1+i

3√4

(H2)

which performs the mapping

T (z1) = z0 = 1 +
√
2, T (z2) =

1

z0
, T (z3) = −z0.

According to Proposition 3, T (z4) = − 1
z0

and hence T
maps z1, z2, z3, z4 into the normal system of roots. Note
that the corresponding SL(2,C) operator is of the form

O1 =
3
√
2

(1 + i)(3 +
√
3)

(
1 − 1+

√
3

3√4
(1+

√
3)(1+i)
2

1+i
3√4

)
, (H3)

which is presented on Figure 3. Similar calculations for
three remaining subsystems lead to the following SLOCC
operator

O = O1 ⊗O2 ⊗O3 ⊗O4 (H4)

where O1 is presented on Eq. (H3) and O2 = O3 = O4 :=
O1σx, which transforms state (H1) into the |Gabcd⟩ form

|Gabcd⟩ =
a+d
2

(
|0000⟩+ |1111⟩

)
+ a−d

2

(
|0011⟩+ |1100⟩

)
+ b+c

2

(
|0101⟩+ |1010⟩

)
+ b−c

2

(
|0110⟩+ |1001⟩

)
with parameters

a =(−8 + 4i)− (12− 8i)√
3

,

b =
8

3
i(3 + 2

√
3),

c =0,

d =− 4

3
((6 + 3i) + (3 + 2i)

√
3).

Appendix I: Proof of Proposition 4

Consider the state |Gabcd⟩ and its decomposition with
respect to the first subsystem |Gabcd⟩ = |0⟩ |ψ0⟩+|1⟩ |ψ1⟩,
where

|ψ0⟩ = a+d
2 |000⟩+

a−d
2 |011⟩+

b+c
2 |101⟩+

b−c
2 |110⟩ ,

|ψ1⟩ = a+d
2 |111⟩+

a−d
2 |100⟩+

b+c
2 |010⟩+

b−c
2 |001⟩ .

Suppose that τ (3)(ζ |ψ0⟩ + |ψ1⟩) = 0. Since τ (3) is a

SL(2,C)⊗3
invariant, for any local operators O1, O2, O3

we have

τ (3)
(
(O1 ⊗O2 ⊗O3)

(
ζ |ψ0⟩+ |ψ1⟩

))
= 0 .
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Observe that

|ψ0⟩ =(σx ⊗ σx ⊗ σx) |ψ1⟩ ,
|ψ1⟩ =(σx ⊗ σx ⊗ σx) |ψ1⟩ ,

where σx, σy, σz are Pauli matrices. Therefore by tak-
ing all local operators O1,O2,O3 equal to σx, we may
conclude that

0 = τ (3)
(
(σx ⊗ σx ⊗ σx)

(
ζ |ψ0⟩+ |ψ1⟩

))
=

= ζ |ψ1⟩+ |ψ0⟩ ∝
1

ζ
|ψ0⟩+ |ψ1⟩ ,

hence 1/ζ is another root of τ (3). Similarly, by consid-
ering (σy ⊗ σy ⊗ σy) and (σz ⊗ σz ⊗ σz), one may find

another two roots −ζ, −1/ζ of τ (3). This shows that the
roots of τ (3) evaluated on any state from the Gabcd family
are symmetrical with respect to rotations around X,Y, Z
axes by the angle π. Writting τ (3)(z |ψ0⟩+ |ψ1⟩) = 0 ex-
plicitely, we obtain the equation

τ (3)(z |ψ0⟩+ |ψ1⟩) = Az4 − 2(2B +A)z2 +A = 0,

where A = (b2− c2)(a2− d2) and B = (c2− d2)(a2− b2).
The above equation is non-degenerated iff A,B,A+2B ̸=
0, which happens iff a2 ̸= b2 ̸= c2 ̸= d2 are pairwise
different.

Lemma 3. Any local operator O = O1 ⊗ O2 ⊗ O3 ⊗
O4 ∈ SL(2,C)⊗4

which transforms states |Ga′b′c′d′⟩ ∝
O |Gabcd⟩ with a2 ̸= b2 ̸= c2 ̸= d2, is of the formOi ∈ G24.

Proof. A local operator O1 acting on the first qubit and
transforming the state |Gabcd⟩ onto |Ga′b′c′d′⟩, also trans-
forms their systems of roots denoted as Λ and Λ′, respec-
tively, via the action of the corresponding Möbius trans-
formation. Note that both systems Λ and Λ′ are in the
normal form, therefore, according to Proposition 3, we
have that Oi ∈ G24. A similar analysis with respect to
all other qubits shows that O2,O3,O4 ∈ G24.

This way, searching for SLOCC-equivalence between
the states |Gabcd⟩ and |Ga′b′c′d′⟩ becomes restricted to the
search within the finite class of operators O ∈ G⊗4

24 . Since
the group G24 has only 24 elements, one may numerically
verify that there are exactly 8 × 24 = 192 states in the
Gabcd family which are SLOCC-equivalent to |Gabcd⟩ by
O ∈ G⊗4

24 . For example, the following operation

Rx(
π
2 )⊗Rx(

π
2 )⊗Rx(

π
2 )⊗Rx(

π
2 ) (I1)

transforms state |Gabcd⟩ into |G−b−acd⟩. This might be
simply written as a transformation of a tuples of in-
dices: the tuple (a, b, c, d) is transformed into the tuple
(−b,−a, c, b). Similarly, the operators showed on the fol-
lowing right hand sides provide the corresponding trans-

formations of the tuple (a, b, c, d) on the left side:

Ry(
π
2 )⊗Ry(

π
2 )⊗Ry(

π
2 )⊗Ry(

π
2 ) ←→ (a, d, c, b),

Rz(
π
2 )⊗Rz(

π
2 )⊗Rz(

π
2 )⊗Rz(

π

2
) ←→ (−d, b, c,−a),

Ry(π)⊗Ry(π)⊗ 1⊗ 1 ←→ (a,−b,−c, d),
Rx(π)⊗Rx(π)⊗ 1⊗ 1 ←→ (a, b,−c,−d),
Ry(π)⊗ 1⊗Ry(π)⊗ 1 ←→ (d, c, b, a),

Rx(π)⊗ 1⊗Rx(π)⊗ 1 ←→ (b, a, d, c) .

Additionally, the tuples (a, b, c, d) and (−a,−b,−c,−d)
represent the same state. Note that any composition
of the above operations also provides SLOCC equiva-
lences between |Gabcd⟩ states. The eight aforementioned
transformations of tuples generate all permutations of the
a, b, c, d indices, together with the change of a sign of any
two or all four indices. There are exactly 24 permuta-
tions and for each permutation the signs can be matched
in exactly 1 +

(
4
2

)
+ 1 = 8 ways. This gives in total

192 tuples representing SLOCC equivalent states, which
perfectly matches the numerical result.
Finally, another trivial manipulation with indices

a, b, c, d comes from multiplying by a global phase, which
is an irrelevant operation due the fact that quantum
states are elements of a projective space. This operation
transforms the indices as

(eiθa, eiθb, eiθc, eiθd) ∼ (a, b, c, d) ,

resulting in the same quantum state for any real number
θ ∈ [0, 2π). In particular, for θ = π, we observe that
system of opposite indices determines the same state as
the initial one, i.e. (−a,−b,−c,−d) ∼ (a, b, c, d).

Appendix J: Exact scenarios

Number of Value of

subsystem cross-ratio

1 0.8656 + 0.5008 i

2 0.5 + 0.5906 i

3 0.5 - 0.4844 i

4 0.5 + 0.5397 i

5 0.9231 + 0.3845 i

Table I. Cross-ratio of roots of M measure calculated for
each subsystem of |ψ⟩ state rounded to the fourth decimal
place.

In order to exemplify the viability of the results in this
work, we present another non-trivial scenarios where our
method is useful. We show how a single 4-qubit entan-
glement SLIP4

4 measure might be used to verify whether



17

5-qubit states are SLOCC equivalent. Among several
SLIPh4 measures defined for system of four qubits, the
so-called M measure has degree 4 [35, 37] and is defined
as the determinant

M(|ψ⟩) := det


c0000 c1000 c0010 c1010
c0001 c1001 c0011 c1011
c0100 c1100 c0110 c1110
c0101 c1101 c0111 c1111

 (J1)

where ci1,i2,i3,i4 are state coefficients, i.e

|ψ⟩ =
1∑

i1,i2,i3,i4=0

ci1,i2,i3,i4 |i1, i2, i3, i4⟩ .

We demonstrate now how the M measure can be used
to verify whether two given 5-qubit states are SLOCC-
equivalent. As an example, consider the following 5-qubit
state

|ψ⟩ = |00001⟩+ |00111⟩+ |01001⟩+ |01010⟩+ |01101⟩+
|10000⟩+ |10010⟩+ |10101⟩+ |10110⟩+ |11011⟩+
1

2
|11100⟩ .

By permuting the five subsystems of the state |ψ⟩, we ob-
tain in total 5! = 120 five qubit states. In the following,
we will show that such states are not pairwise SLOCC-
equivalent. Indeed, for each subsystem of a state |ψ⟩, we
may calculate the roots of the M measure according to
Procedure 1. For any subsystem, there are four distinct
roots. The values of the corresponding cross-ratios are
presented in Table I. It is straightforward to show that no
two values of cross-ratios corresponding to different sub-
systems (see Table I) are related by λ, 1

λ , 1− λ,
1

1−λ ,
λ−1
λ

or λ
λ−1 . As a direct consequence of Theorem 1, one con-

cludes that those states are not SLOCC-equivalent. In-
deed, the states obtained from |ψ⟩ by non-identical per-
mutation of subsystems will have corresponding cross-
ratios simultaneously permuted. Therefore, for some sub-
systems, the values of cross-ratios corresponding to any
two such states are not related via λ, 1

λ , 1−λ,
1

1−λ ,
λ−1
λ or

λ
λ−1 . As a consequence, there is no Möbius transforma-

tion relating the roots of any subsystem (see Remark 1),
and hence there is no SLOCC operator which might re-
late those two states. A similar reasoning holds true for
any pair of states obtained from |ψ⟩ by permuting its
subsystems by two distinct permutations.
Finally, we note that these results would otherwise

be highly computationally demanding if standard pro-
cedures were applied.
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[41] G. Toth, Finite Möbius Groups, Minimal Immersions of

Spheres, and Moduli , edited by S. 1 (2002).
[42] P. Hayden, D. W. Leung, and A. Winter, Communica-

tions in Mathematical Physics 265, 95–117 (2006).
[43] G. Aubrun and C. Lancie, Quantum Inf. Comput. 15

(2015).

[44] Z. Pucha la, L. Pawela, and K. Życzkowski, Phys. Rev.
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