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We combine quantum optimal control with a variational ansatz based on non-Gaussian states
for fast, non-adiabatic preparation of quantum many-body states. We demonstrate this on the
example of the spin-boson model, and use a multi-polaron ansatz to prepare near-critical ground
states. For one mode, we achieve a reduction in infidelity of up to ≈ 60 (≈ 20) times compared
to linear (optimised local adiabatic) ramps respectively; for many modes we achieve a reduction in
infidelity of up to ≈ 5 times compared to non-adiabatic linear ramps. Further, we show that the
typical control quantity, the leakage from the variational manifold, provides only a loose bound on
the state’s fidelity. Instead, in analogy to the bond dimension of matrix product states, we suggest
a controlled convergence criterion based on the number of polarons. Finally, motivated by the
possibility of realizations in trapped ions, we study the dynamics of a system with bath properties
going beyond the paradigm of (sub/super) Ohmic couplings. We apply the ansatz to the study
of the out-of-time-order-correlator (OTOC) of the bath modes in a non-perturbative regime. The
scrambling time is found to be a robust feature only weakly dependent on the details of the coupling
between the bath and the spin.

Introduction. The description of quantum systems out-
of-equilibrium represents a notorious challenge. In many
relevant situations one has to resort to numerical ap-
proaches ranging from non-equilibrium Monte Carlo to
tensor networks [1–10]. A specific class of problems con-
sists of systems containing bosonic degrees of freedom
with an (even locally) unbounded Hilbert space. To
deal with such situations, various schemes have been de-
vised, such as path integral techniques [11–14] or effec-
tive Hamiltonian [15, 16] and lightcone conformal trunca-
tion [17–19] used predominantly in high-energy physics,
which aim at describing the relevant part of the (bosonic)
Hilbert space by a suitable choice of truncation proce-
dure.

Another possibility is to exploit the continuous-
variable structure of the bosonic states. Here, a novel
scheme using a time-dependent variational ansatz based
on non-Gaussian states has been recently proposed
[20, 21] and successfully applied to the studies of sys-
tems ranging from Kondo impurity problem [22], central
spin [23] or spin-Holstein models [24] to Bose and Fermi
polarons [25–27].

In this work we demonstrate that such ansatze consti-
tute a natural framework for the implementation of effi-
cient state preparation schemes using quantum optimal
control [28–31]. Specifically, we implement a multipo-
laron ansatz [32–38] and consider the paradigmatic spin-
boson model [11–14, 39–43] including in principle arbi-
trary couplings beyond the (sub/super) Ohmic ones and
away from perturbative regimes. The choice of the spin-
boson model is motivated by the fact that it plays a major
role in the description of impurity problems, whilst also
encompassing many platforms that are currently used for
quantum simulation and computing, ranging from super-

conducting circuits to trapped ions [44–58]. In particu-
lar, recent realizations of the quantum Rabi-Hubbard [59]
and Rabi models [60, 61] represent an ideal testbed to ex-
perimentally probe the here-presented theoretical results.
We apply the developed machinery to study (i) the

onset of chaos of the bosonic bath quantified by the
OTOCs, demonstrating its robustness with respect to the
spin-bath couplings and (ii) fast non-adiabatic quantum
many-body state preparation, including the preparation
of near-critical ground states. We also highlight the limi-
tations of the leakage as a control parameter and consider
the number of polarons instead.

The model. We consider the spin-boson model, where
the interaction of a two-level system with a bath of N
harmonic oscillators is described by the Hamiltonian

H =
∆

2
σx +

N∑
k=1

ϵkb
†
kbk − 1

2
σz

N∑
k=1

gk(b
†
k + bk). (1)

Here ∆ describes the tunnelling strength, ϵk the mode
frequency and gk the interaction between the spin and k-
th mode. The operators σx,y,z are Pauli operators acting

on the spin, and bk (b†k) the annihilation (creation) op-

erators of the bath modes satisfying [bk, b
†
k′ ] = δkk′ . The

Hamiltonian (1) conserves the parity Pex = eiπNex , where

Nex = 1/2(σx +1)+
∑

k b
†
kbk counts the total number of

excitations.
Unless stated differently, we consider Ohmic couplings,

described by
∑

k g
2
kδ(ω − ϵk) = 2αωcωΘ(ωc − ω). Here

ω > 0, ωc is a high-frequency cut-off and α is a dimen-
sionless measure of the spin-bath interaction strength.
We choose a mode discretization ϵk = ωck/N , k =
1, 2, . . . , N . Note that we do not enforce any restrictions
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on any of the relevant energy scales, i.e. ∆, ϵk, gk or
ωc. In particular, we do not require that ωc is the largest
energy scale. Such tunability is motivated by the ex-
perimental possibilities offered by trapped ion systems,
where in principle arbitrary spin-boson Hamiltonians of
the form (1) can be engineered [62].
Time-dependent variational principle with non-Gaussian
states. We consider a variational state |ψ(x⃗)⟩
parametrized by a set of M real variational parameters
xµ, x⃗ = {x1, . . . , xM}. Using the McLachlan variational
principle, the imaginary and real time evolution are gov-
erned by the equations of motion [20, 21, 62]

ẋν = −(gµν)
−1∂µϵ(x⃗, t), (2a)

ẋν = −(ωµν)
−1∂µE(x⃗, t). (2b)

Here ϵ(x⃗, t) = E(x⃗, t)/ ⟨ψ(x⃗)|ψ(x⃗)⟩, E(x⃗, t) =
⟨ψ(x⃗)|H(t) |ψ(x⃗)⟩, gµν = 2Re ⟨vµ|vν⟩ and ωµν =
2 Im ⟨vµ|vν⟩ with |vµ⟩ = ∂µ |ψ(x⃗)⟩ the tangent vectors
of the variational manifold and ∂µ = ∂/∂xµ [62]. We use
(2a), (2b) to access the ground state in the τ → ∞ limit
of imaginary time, and to calculate real-time dynamics
respectively.

The crucial input to the equations of motion is a non-
Gaussian state, which we choose to be a multipolaron
state of the form

|ψ(x⃗)⟩ =
Np∑
p=1

D(↑)
p |↑, 0⟩+D(↓)

p |↓, 0⟩ , (3)

where D
(↑,↓)
p = eκ+iθD(α⃗), D(α⃗) =

∏N
k=1 exp[αkb

†
k −

α∗
kbk] is the standard displacement operator of the

bosonic modes and κ, θ encode the respective weights.
Here α⃗ = (α1, . . . , αN ), and we have dropped the p, ↑, ↓
indices for ease of notation. We note that in the limit
Np → ∞, by completeness of theN -mode bosonic Hilbert
space, |ψ(x⃗)⟩ forms an over-complete basis, and thus is
in principle capable of fully describing the state of an
arbitrary spin-boson system.

The ansatz (3) who’s evolution is governed by Eqs. (2)
is an example of time-dependent variational principle
(TDVP). It has recently found numerous applications to
the time evolution of spin systems, where it is often for-
mulated as a tensor network with time dependent pa-
rameters [63–68]. Typically, the quality of the ansatz’s
evolution is quantified by a leakage

Λ(t) = ||(∂t + iH(t)) |ψ(x⃗)⟩ ||, (4)

which measures the rate at which the ansatz wavefunc-
tion leaves the variational manifold under the action of
the Hamiltonian H(t). The fidelity of the ansatz with
respect to the true state |Ψ(t)⟩ at time t can be bounded
by [66]

F(t) = | ⟨Ψ(t)|ψ(x⃗)⟩ |2 ≤
(
1− I(t)2

2

)2

, (5)

where I(t) =
∫ t

0
dτΛ(τ) is the time-integrated leakage.

Results. Firstly, we benchmark the performance of
the ansatz (3) by considering the Hamiltonian Eq. (1)
with a single mode, also known as the quantum Rabi
model (QRM). In this case the Ohmic coupling reduces

to g =
√
2αϵ (with ωc = ϵ), so we use g and α inter-

changeably. The QRM features a crossover from a bi-
to quad-polaron state at the critical coupling strength

gc = 2
√
ϵ2 +

√
ϵ4 + (gc0/2)4. In the so-called thermo-

dynamic limit ∆/ϵ → ∞ the crossover corresponds to a
quantum phase transition from a normal to a superradi-
ant phase at gc0 =

√
ϵ∆ [69, 70].

In Fig. 1a,b we show the order parameter ⟨σx⟩ of the
ground state in the vicinity of the crossover, and the
real-time dynamics for a quench from an initial state
|ψ(t = 0)⟩ = |0⟩ |+⟩. We see a fast convergence to the
exact diagonalization (ED) results for a moderate po-
laron number Np. The respective fidelities (5) are then
shown in Fig. 1c,d.
The dotted lines in Fig. 1d show the fidelity bound

from the right-hand side of Eq. (5). The bound appears
to be relatively loose, in that it overestimates the actual
decay of the fidelity. Although the leakage provides at
least some control over the accuracy of a given ansatz,
the multipolaron state (3) has the advantage that it of-
fers the number of polarons as a control parameter. In
particular |ψ(t)⟩ → |Ψ(t)⟩ in the limit Np → ∞. As such,
considering the real-time dynamics of an observable O,
we introduce a convergence criterion

(∆O/Ō)(Np)(T ) =

∫ T

0
dt|O(max[Np])(t)−O(Np)(t)|

|
∫ T

0
dtO(Np)(t)|

, (6)

which quantifies the relative (time-integrated) change
in the evolution of the observable with respect to the
maximum considered number of polarons Np. Here

O(Np)(t) = ⟨ψ(t)|O|ψ(t)⟩ is the expectation value ob-
tained with Np polarons. We note that similar conver-
gence criteria have been discussed in Refs. [35, 36]. When
considering the ground state, we shall use instead the en-
ergy variance var(H) as the convergence with var(H) = 0
for |ψ⟩ = |Ψ⟩ [32].
With these definitions at hand, we return to the spin-

boson Hamiltonian (1) to plot ground state properties
and real-time dynamics for N = 10 modes, shown in
Fig. 1e,f respectively. The inset of Fig. 1e plots var(H).
We see rapid improvement for Np > 1, with relatively
worse performance near the critical point αc ≈ 5. This is
expected because our ansatz does not include squeezing,
which is a property of the ground state near the critical
point [70]. In the inset of Fig. 1f we plot (∆O/Ō)(Np)(T )
for O = σx. We find Np > 5 sufficient to accurately cap-
ture real-time dynamics, with Np > 10 highly accurate.

Bath dynamics. The ansatz Eq. (3) can be used
to further quantify the bath dynamics. To this end
we evaluate the fidelity OTOC, F = ⟨W †(t)V †W (t)V ⟩
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FIG. 1. Single mode: (a) Order parameter ⟨σx⟩ of the
Pex = 1 ground state and (c) fidelity F = | ⟨Ψgs|ψgs⟩ |2 for
ϵ/∆ = 0.15/1.0. The white/grey regions indicate the phase
boundary between the normal/superradiant phase in the ther-

modynamic limit with the critical point gc =
√
ϵ∆. (b) Time

evolution of ⟨σx⟩ from initial state |0⟩ |+⟩ for ϵ/∆ = 1.0/1.1,
g/∆ = 2.0/1.1. (d) The fidelity F = | ⟨Ψ(t)|ψ(t)⟩ |2 (solid)
with the lower bound obtained from the leakage (dotted), cf.
Eq. (5). Many modes: (e) Order parameter ⟨σx⟩ for N = 10
modes. For illustration, we also include the perturbative re-
sult with critical point αc ≈ 1 + ∆/2ωc separating the delo-
calized (white) and localized (grey) phases [39, 41]. The inset
plots var(H), which is largest near αc due to the absence of
squeezing in the ansatz. Panel (f) shows real-time dynamics
from initial state |0⟩ |+⟩, with the purple line Np = 16. Pa-
rameters are ωc/∆ = 1.0/1.1 and α = 4.0.

with V = |ψ(0)⟩ ⟨ψ(0)| the projector on the initial state
and W = exp(iδϕG) [71–73]. For a small perturbation

δϕ ≪ 1, 1 − F ∝ var(G). We choose G = xk = b†k + bk,
the position quadrature of the k-th mode. Such fidelity
OTOCs have been considered in the analysis of chaos in
the QRM in Ref. [74], where it was found that the scram-
bling time t∗ corresponding to the maximum of var(x) in
the superradiant phase and for a quench from a vacuum
depends only weakly on the exact value of the coupling
g in the thermodynamic limit ∆/ε→ ∞.

We demonstrate the versatility of the ansatz by mov-
ing beyond the paradigm of Ohmic-type baths. This is
further motivated by the possibility to engineer arbitrary
spin-bath couplings in trapped-ion systems [61, 62, 75].
We consider a set of equally spaced k-modes with cou-
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FIG. 2. (a) Bath mode position quadrature of the mid-k
(k = 6) mode for a quench from a state |ψ(t = 0)⟩ = |0⟩ |+⟩
for the coupling profiles g+k (blue, dashed) and g−k (orange,
solid), see Eq. (7) and the inset in panel (b). The vertical
dashed line indicates the scrambling time t∗ corresponding to
the first maximum of var(x6). The inset shows t

∗ vs. coupling
amplitude ḡ for the two profiles. (b) The occupation of the
bath modes at the scrambling time. Parameters are ωc/∆ =
1/1.1, ḡ/∆ = 1/1.1 and N = 11, Np = 10.

pling profiles

g±k =
ḡ

2
tanh[±0.25(k − ⌈N/2⌉)] + ḡ, (7)

as shown in the inset of Fig. 2b. For both bath profiles,
we study quench dynamics from |ψ(t = 0)⟩ = |0⟩ |+⟩ for
N = 11 modes far from the thermodynamic limit with
∆/ωc = 1.1. In Fig. 2a we show the variance var(x6) of
the mid-coupling (sixth) mode with the scrambling time
t∗ indicated. The inset shows the dependence of t∗ as a
function of the coupling strength amplitude ḡ (here all
the couplings correspond to the (pseudo-) coherent dy-
namics in the phase diagram [62]) and the corresponding
bosonic excitation number distribution at t∗ is shown in
Fig. 2b. We find that the weak dependence of t∗ from
the QRM in the superradiant phase and thermodynamic
limit seems to be a robust feature that persists in the
many mode case with very different coupling profiles and
far from perturbative limits [62]. We leave this interest-
ing opening for future systematic investigations and turn
into the application of the ansatz to fast quantum state
preparation.
Quantum optimal control. Adiabatic quantum state

preparation, where the Hamiltonian parameters are
changed such that the state during time evolution cor-
responds to the instantaneous ground state, is an often-
employed and established paradigm with many applica-
tions in systems with global rather than local control of
parameters. A prototypical example where this scheme
fails is the preparation of critical states, as the adiabatic
criterion cannot be satisfied due to the closure of the gap
[76]. Going beyond adiabatic schemes requires the design
of ramp protocols that generate a dynamical trajectory
that takes the initial state to the target final state. The
variational principle, which casts both the real and imag-
inary time evolution in the form of first order differen-
tial equations (2) for the variational parameters, offers
an ideal setup to implement such ramp protocols with
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quantum optimal control methods.
We consider the chopped-random basis protocol

(CRAB) [29], which consists of optimizing over a set of
harmonic evolutions of the control parameter. Let us
first consider the quantum Rabi model. In analogy to
the preparation of ground states by tuning the coupling
strength g [61, 75], we consider the following time evo-
lution of the coupling strength g(t) = gf t/tf f(t) where
f(t) is a Fourier decomposition into M harmonics,

f(t) =
1

N

1 + M∑
j=1

Aj sin(νjt) +Bj cos(νjt)

 . (8)

Here N = 1 +
∑

j Bj is a normalisation factor that en-

sures g(tf ) = gf , νj = 2πj(1 + rj)/tf , rj ∈ {0, 1} are
random integers, and the coefficients Aj , Bj are the op-
timization parameters. In the above, gf is the target
coupling determining the corresponding ground state.

To assess the performance of the protocol, we prepare a
target ground state in the vicinity of the crossover (phase
transition), which is located at coupling gc. Specifically,
we evaluate the preparation time tf needed to prepare the
target state with a fidelity F > 0.99. For comparison, we
also consider a linear ramp protocol g(t) = gf t/tf , and a
local adiabatic (LA) ramp obtained by solving the differ-
ential equation γ = |∆2(g)/ġ(t)|, where ∆(g) is the in-
stantaneous energy gap between the ground and first cou-
pled excited state, and γ ≫ 1 an adiabaticity parameter
[77, 78]. In Fig. 3a, we plot the infidelity as a function of
the preparation time for the CRAB, linear and LA ramp
protocols. The corresponding time profiles of the cou-
plings g(t) are shown in Fig. 3b. For a set tf the CRAB
protocol offers a significant reduction in infidelity of ≈ 60
times and ≈ 20 times compared to linear and optimised
adiabatic ramps respectively. To verify that the CRAB
optimization does not correspond to adiabatic evolution,
in Fig. 3c we show the overlap |⟨Ψgs(t)|ψ(t)⟩|2 of the vari-
ational state with the instantaneous ground state |Ψgs(t)⟩
(we also verify that the variational state corresponds to
the exact evolution |⟨Ψ(t)|ψ(t)⟩|2 ≈ 1). In Fig. 3d we
show the extracted preparation times for the three pro-
tocols as a function of the coupling together with the
ground state boson number (grey dashed). We see that
the CRAB optimization clearly outperforms both the lin-
ear and the LA ramp protocols: up to ≈ 10 times and ≈ 2
times faster than linear and optimised adiabatic ramps
respectively.

Moving to the many-mode case, we consider N = 10
modes with Ohmic couplings. The target ground state for
each α is determined using the imaginary time evolution
(2a). The infidelity for a given ramp time tf for the linear
and CRAB protocols is shown in Fig. 3e (we omit the LA
ramp for simplicity [62]). The inset shows the finite-size
scaling of the gap [79]. The grey dashed line, obtained
by extrapolating the data for F = 0.9 from Fig. 3a and
using the scaled gap is shown for comparison [62].

Next, we consider the target fidelity F > 0.9, as very
high target fidelities are more stringent on the quality
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FIG. 3. Single mode: (a) The infidelity 1 − F , F =
| ⟨ψgs|ψ(tf )⟩ |2, where |ψgs⟩ is the target ground state with
α = 7, and |ψ(tf )⟩ the state prepared with CRAB, Linear
and LA ramps. An example of the three ramps for tf = 70
is shown in (b). In panel (c) we verify the accuracy of the
CRAB simulation (purple) and its non-adiabaticity (red) by
computing the overlap with the instantaneous ground state
|Ψgs(t)⟩. Panel (d) shows the minimum ramp times required
to prepare a target ground state at α with fidelity F > 0.99.
The right-axis shows the ground state boson number (grey
dashed line). Many modes: (e) Infidelity for CRAB and
Linear ramp protocols vs. ramp time for N = 10 modes with
finite size scaling of the minimum gap (inset). For comparison
we show the grey dashed line obtained by extrapolating the
Linear ramp data from panel (a), see [62]. (f) Ramp times
required to prepare the target state with fidelity F > 0.90 vs.
α, see text for details. Parameters used: Np = 5, ωc/∆ =
0.15.

of the approximation (requiring sufficiently large Np),
cf. the Fig. 1f. Fig. 3f shows the preparation times tf
vs. α. Here, the adiabaticity parameter γ = O(1) [62],
which indicates that the linear ramp times result in non-
adiabatic evolution, which here is sufficient to reach the
target F = 0.9 with only a mild improvement factor ≈ 2
in the preparation times using the CRAB protocol [62].
This should be contrasted with γ ≈ 10 − 20 in Fig. 3d
resulting in higher improvement factor of ≈ 10 using the
CRAB protocol.

Outlook. We have demonstrated the application of
a multipolaron non-Gaussian variational ansatz to the
bath dynamics beyond (sub/super) Ohmic couplings and
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quantum optimal control. As next steps, it would be in-
teresting to investigate the bath dynamics in such non-
perturbative setting including entanglement growth be-
tween the bath modes mediated by the spin or the pos-
sible absence of bound on OTOCs in such a star-graph
like configuration [80], targeting experimental verifica-
tion with trapped ions [60, 61]. Another straighforward
extension of our analysis is the computation of the gap
through linear response [20, 21] and considering carrier
ramp profiles beyond the linear one, such as the LA pro-
file in Fig. 3b. This is likely to further reduce the state
preparation times. Finally and remarkably, already the
simpler Gaussian version of the ansatz [81] allows for ef-
ficient description of systems in higher dimensions [82]
or to extract scaling exponents at the phase transition
[83]. It would be thus highly interesting to extend the

here presented combination of the quantum optimal con-
trol with the multipolaron ansatz to much larger class of
systems, including the open dynamics [84].
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I. NON-ADIABATICITY OF LINEAR RAMPS

In this section we study the linear ramps of Fig. 3 in more detail. We begin with a single mode (N = 1). In Fig. 3d,
the minimum ramp time tf required to prepare the target ground state |ψgs(α)⟩ with 1−F < 0.01 increases with α,
before decreasing again at α ≳ 7. This is counter-intuitive, because the ramp speed is set by the critical gap, which
is smallest at the critical point αc [86]. Provided α > αc, preparing ground states of increasing α should therefore
always require a larger tf .
In Fig. S1a,b we plot the infidelity 1 − F = 1 − | ⟨ψgs(α)|ψ(tf )⟩ |2, with α = 4, 5, . . . , 9 and α = 10, 11, . . . , 15

respectively, lines colored light to dark. The non-Gaussian state (NGS) calculation (solid lines) agrees well with exact
diagonalization (ED) (dashed lines). For α ≥ 7, we see a surprisingly rapid and oscillatory decay in infidelity, with
the number of local minima increasing for increasing α.
To further investigate this behaviour, we verify our intuition that longer ramps should monotonously correspond

to more adiabatic evolution. To do so, in Fig. S1c we plot the maximum infidelity of the instantaneous state with
the instantaneous ground state, max[1 − F(t)] = max0≤t≤tf [1 − | ⟨ψgs(t)|ψ(t)⟩ |2]. As expected the infidelity always
decreases as tf increases, while increasing as α increases.
Finally, in Fig. S1d we compare tf∆ = 250 (pink) and tf∆ = 400 (olive) ramp profiles. The left axis (solid lines)

shows 1−F(t) = 1− | ⟨ψgs(t)|ψ(t)⟩ |2, while the right axis (dashed lines) shows the ramp profile g(t)/∆. The dashed

horizontal line shows the critical point gc = 2
√
ϵ2 +

√
ϵ4 + (gc0/2)4 where gc0 =

√
ϵ∆. Note that g =

√
2αϵ and

ϵ = ωc for N = 1. We see the non-adiabaticity is located near the critical point, as expected. Despite the fact that the
tf∆ = 250 ramp is less adiabatic than the tf∆ = 400 ramp, the dynamics are such that |Ψ(t)⟩ returns to the ground
state with higher fidelity. The minimum linear ramp time required to achieve F ≥ 0.99 is therefore not actually
realized by a fully adiabatic ramp.
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FIG. S1. Single mode: The final infidelity 1− F = 1− | ⟨ψgs(α)|ψ(tf )⟩ |2 with α = 4, 5, . . . , 9 (a) and α = 10, 11, . . . , 15 (b),
lines colored light to dark. The dynamics are computed with ED (dashed) and NGS (solid) with Np = 5 polarons. We verify
that longer ramps are always more adiabatic by plotting (c) the maximum infidelity between the instantaneous state and the
instantaneous ground state. Finally, we show (d) two example ramp profiles tf∆ = 250 and tf∆ = 400. Surprisingly, despite
being less adiabatic, the final state of the tf∆ = 250 ramp has a higher fidelity with the target state than the tf∆ = 400 ramp.
Parameters used are ωc/∆ = 0.15

Next, we consider ground state preparation in the many-mode case (N = 10). Fig. S2 plots the final infidelity
1 − F = 1 − | ⟨ψgs(α)|ψ(tf )⟩ |2. The target ground state is obtained using the imaginary-time equations of motion
(2a) while the real-time dynamics are computed using the real-time equations of motion (2b), both with Np = 5. We
note that this data remains consistent with the limiting case (1 − F) → 0 as tf → ∞. We observe non-monotonous
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FIG. S2. Many modes: Infidelity 1 − F = 1 − | ⟨ψgs(α)|ψ(tf )⟩ |2 for N = 10 modes, calculated from real-time equations of
motion with the NGS ansatz and Np = 5 polarons. Note the non-monotonous decay in infidelity, similar to the single-mode
result. The minimum tf required to prepare the target state with infidelity 1 − F < 0.1 corresponds to the first time each α
line crosses the dashed horizontal line. Parameters used are ωc/∆ = 0.15.

decay of the infidelity as tf increases, which is reminiscent of the single-mode behaviour. Thus, the many-mode linear
ramp is also non-adiabatic.

We have shown that both the single and many-mode linear ramp protocols are in fact non-adiabatic. As a conse-
quence, the comparison presented in Fig. 3 between CRAB and linear ramp protocols is not a comparison between
CRAB and adiabatic ramp protocols. If we were to restrict the linear ramp to being adiabatic, the factor by which
the CRAB protocol outperforms the linear ramp would increase, particularly at large α.

II. SCALING ANALYSIS OF LINEAR ADIABATIC RAMP TIMES

In this section we use the adiabatic theorem to estimate the scaling of the adiabatic linear ramp times with α and
the number of modes. We firstly review the adiabatic theorem, obtaining a lower bound on adiabatic ramp times.
Secondly, we numerically verify this bound for a single mode by changing α. We then extend our analysis to the
many-mode case to make predictions about the ramp time in regimes where ED is not tractable.

We begin with the adiabatic theorem. Following Ref. [87], we denote the eigenstates of a time-dependent Hamilto-
nian H(t) as |Ek(t), t⟩, with corresponding eigenvalues Ek(t), and where k = 0 labels the ground state. The critical
gap is defined as the minimum gap between the two smallest magnitude connected eigenvalues E0 and Ej ,

∆c = min0≤t≤tf [Ej(t)− E0(t)]. (S1)

From the adiabatic theorem, if we prepare the system at t = 0 in the ground state |E0, 0⟩ and let it evolve under H(t)

until t = tf , then the overlap between |E0, 0⟩ and the final state |ψ(tf )⟩ is lower bounded by |⟨E0, tf |ψ(tf )⟩|2 ≥ 1− ϵ2
if ∣∣∣⟨dH/dt⟩j,0∣∣∣∆−2

c ≤ ϵ,∀ t (S2)

where ϵ is a small number and ⟨dH/dt⟩j,0 = ⟨Ej , t| dH/dt |E0, t⟩ is the matrix element describing the coupling strength
between the two eigenstates. We consider the spin-boson Hamiltonian (1). The ground state parity is Pex = 1, while
the first (second) excited state parity is Pex = −1 (+1). The relevant gap is therefore between E0 and E2.

For a single mode (N = 1), the time-dependent parameter is the coupling strength g(t) which follows a linear ramp
profile g(t) = gf t/tf . The matrix element is |dH/dt| = gf/(2tf )σz(b

† + b), and thus the linear ramp is adiabatic if

tf ≫ gf
2∆2

c

|⟨σz(b† + b)⟩2,0|. (S3)

For many-modes, the linear ramp profile is gk(t) = gk,f t/tf and thus the matrix element is |dH/dt| =

1/(2tf )
∑

k gk,fσz(b
†
k + bk). The linear ramp is therefore adiabatic if

tf ≫ 1

2∆2
c

∣∣∣∣∣∣
〈∑

k

gk,fσz(b
†
k + bk)

〉
2,0

∣∣∣∣∣∣ . (S4)
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FIG. S3. Single mode: (a) Energy spectrum with parities Pex = 1 (red) and Pex = −1 (gold). The dotted vertical line
denotes the critical point αc. In panel (b) we extract tf from ED (green circles), as described in the text. In the same panel,
we compare to the estimate obtained from the adiabatic theorem (purple triangles). We find the adiabatic theorem estimate
to be accurate in the superradiant phase, but not the normal phase. Parameters used are ωc/∆ = 0.15.

We now turn to results, beginning with N = 1. Fig. S3a plots the energy spectrum as a function of α. Note that
in the normal phase α ≤ αc, ∆c as defined in Eq. (S1) is always defined at tf as the gap narrows with increasing α.
Fig. S3b shows the minimum tf required to adiabatically prepare the target state |ψgs(α)⟩. We calculate tf using two
methods. Firstly, by numerically calculating the gap and matrix element to determine the right-hand side of Eq. (S3).
Because the right-hand side of Eq. (S3) is related to tf by an inequality, we normalize to the α = 15 result, yielding
a scaling of tf (α)/tf (α = 15) (purple triangles). The second method is a real-time numerical simulation of the linear
ramp, which enables us to find the minimum ramp time tf such that 1 − ⟨Ψgs(t)|Ψ(t)⟩ ≤ 0.10 ∀ 0 ≤ t ≤ tf (green
circles). Here, the specific choice of the infidelity value at each time step is arbitrary and should be chosen ≪ 1 to
ensure the adiabaticity. Note that this corresponds to the first time each α line crosses the dashed horizontal line at
1− F(t) = 0.1 in Fig. S1c. Comparing the adiabatic to ED, we find that both agree well in the superradiant phase.
However, in the normal phase the adiabatic theorem overestimates tf .

Next, we predict the scaling of tf with mode number. In Fig. S4a we show the gap as a function of α for N = 1, . . . , 5
obtained with ED. In Fig. S4b we plot the critical gap ∆c as a function of 1/N , as well as a linear fit (dashed black
line) allowing for extrapolation for N beyond the reach of ED. Note that in principle the many-mode spectra can also
be obtained using NGS [21], which we leave for future work.

In Fig. S4c we numerically calculate the right-hand side of Eq. (S4) for N = 1, . . . , 5 with α = 7 (triangles). To
extrapolate beyond N = 5, we perform a linear fit (black dashed line). We are able to verify the tf scaling for
small mode numbers (N = 1, 2, 3) using a real-time ED simulation to determine the minimum ramp time such that
1 − ⟨Ψgs(t)|Ψ(t)⟩ ≤ 0.10 ∀ 0 ≤ t ≤ tf when preparing |Ψgs(α = 7)⟩ (stars). We see excellent agreement between the
ED result and the adiabatic criterion Eq. (S4).

Considering a specific example of N = 10, from Fig. S4c we have tf (N = 10)/tf (N = 1) ≈ 18. From Fig. S1,
preparing |ψgs(α = 7)⟩ with infidelity 1 − F < 0.1 requires tf (N = 1) ≈ 170. Therefore, tf (N = 10) ≈ 3 × 103 for
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FIG. S4. Many modes: The gap (a) between the ground and first parity-connected eigenstates for N = 1, 2, . . . , 5 (light to
dark). In panel (b) we plot ∆c as a function of 1/N , with the black dashed line a linear fit. In panel (c) we plot Eq. (S4) for
N = 1, . . . , 5 (triangles), where the gap and matrix element are calculated using ED. We perform a linear fit (black dashed
line) to extrapolate tf to larger t. For small N we simulate the real-time ramp dynamics and determine the minimum tf such
that 1−F(t) = 1− | ⟨ψgs(t)|ψ(t)⟩ |2 ≤ 0.1 ∀ t (stars). Parameters used are ωc/∆ = 0.15.
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FIG. S5. Adiabaticity parameter γ (solid line, left axis) and ramp time tf∆ (dotted line, right axis). For N = 1 (a),
note the decrease in γ at large α. The tf is obtained from Fig. 3(d), ie. by determining the minimum tf such that 1 − F =
1−| ⟨ψgs|ψ(tf )⟩ |2 ≤ 0.01. For N = 10 (b), γ ∼ O(1). The ramp is less adiabatic than the single-mode case because we determine
tf with a higher infidelity threshold as in Fig. 3(f), namely by finding the minimum tf such that 1−F = | ⟨ψgs|ψ(tf )⟩ |2 ≤ 0.1.

N = 10. In contrast, in Fig. 3 we find that the CRAB protocol prepares the same state with the same infidelity in
tf = 1.25× 103, which is over twice as fast.

We note that although we have only performed this analysis for |ψgs(α = 7)⟩, we expect the findings to be robust
in the localised phase (ie. α > αc). Further work is needed to investigate the scaling in the delocalised phase due to
the inaccurate prediction in the normal phase of the QRM, see Fig. S3.

III. ADIABATICITY OF LINEAR RAMPS IN FIG. 3

In this section we evaluate the adiabaticity of the linear ramps used in Fig. 3. We consider the adiabaticity parameter

γ =

∣∣∣∣ ∆2
c

⟨dH/dt⟩2,0

∣∣∣∣ , (S5)

which measures the extent to which a change in the Hamiltonian H(t) is adiabatic; ie. a ramp is adiabatic if γ ≫ 1.
In Fig. S5 we plot the adiabaticity parameter γ (left axis, solid lines) for both single (a) and many modes (b) using
a given tf (right axis, dashed line). The tf is from Fig. 3d,f, noting that the target infidelity 1− ⟨ψgs|ψ(tf )⟩ used to
obtain the tf is 1−F ≤ 0.01 for N = 1 and 1−F ≤ 0.1 for N = 10.
Here, the single-mode adiabaticity parameter γ ≈ 20 indicates that the ramp is relatively adiabatic, although less

so at large α. The CRAB protocol, which is not constrained to be adiabatic, is able to prepare the same state about
≈ 10 times faster. In contrast, for N = 10, γ ≈ O(1), indicating that, although sufficient to satisfy 1− F < 0.1, the
linear ramps of Fig. 3f are non-adiabatic. This small γ contributes to the fact that the CRAB protocol produces the
same state only ≈ 2 times faster, a mild improvement.

IV. ON SPIN DYNAMICS AND PHASES WITH BATH PROFILES EQ. (7)

Here we briefly comment on the spin dynamics and the possible underlying phases in spin-boson models with the
bath couplings Eq. (7). First we note that the phase diagram of the spin-boson model has been extensively studied
for the case of sub-Ohmic, Ohmic and super-Ohmic baths characterized by the spectral density J(ω) ∝ αωs with
0 < s < 1, s = 1 and s > 1 respectively [39]. There, one finds delocalized and localized equilibrium phases in the
s−α plane as has been demonstrated in a number of works [11, 36, 39–41] with the ground state expectation value of
the magnetization, ⟨σz⟩gs, as the order parameter. Alternatively, a standard approach is to characterize the system
through its non-equilibrium behaviour as quantified by the dynamics of the magnetization ⟨σz(t)⟩ when quenched from
a fully polarized ⟨σz(t = 0)⟩ = ±1 state. The typical cases are a coherent (underdamped) or incoherent (overdamped)
oscillations with ⟨σz(t)⟩ reaching the equilibrium value in the t → ∞ limit. Additionally, a situation with a single
oscillation before reaching the equilibrium is sometimes referred to as pseudo-coherent [14]. It should be kept in
mind that the coherent (incoherent) evolution does not in general correspond to the underlying delocalized (localized)
equilibrium phases [11, 36].
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In Fig. S6 we show the time evolution of ⟨σz⟩ for varying strength of the coupling ḡ for the two profiles g+k (Fig. S6a)

and g−k (Fig. S6b), see Eq. (7). Similarly to the (sub/super) Ohmic cases [14, 36], one can see a transition from a
coherent to pseudo-coherent dynamics as ḡ is increased from ḡ = 0.5 to ḡ = 2.5, the values used in the analysis of
the scrambling time t∗ in Fig. 2a. There, t∗ is only weakly dependent on the actual value of ḡ. We could verify that
this holds also in the case of the Rabi model in both the normal and superradiant phases, see also [74], with the
reservation that t∗ also depends on the initial state from which the quench is being performed. We leave the detailed
investigation of these issues, including the dynamics and the phase diagram for non-standard couplings such as in
Eq. (7) for future studies.
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FIG. S6. Magnetization dynamics ⟨σz(t)⟩ for a quench from an initial state with ⟨σz(t = 0)⟩ = −1 for the couplings of the form
(a) g+k and (b) g−k , see Eq. (7). For increasing coupling strengths ḡ one can see a transition from a coherent (oscillations with
multiple maxima) to pseudo-coherent (oscillation with a single maximum) behaviour for both g+k and g−k . We note that this is
in qualitative agreement with the behaviour observed in spin-boson models with (sub/super) Ohmic couplings [14, 36].

V. REALIZATION OF SPIN-BOSON MODEL IN TRAPPED IONS

In trapped ion systems, the bosonic modes are collective phonon modes that arise due to the mutual Coulomb
repulsion between the ions which are confined by a trapping potential. Spin-boson coupling is typically achieved
using a spin-dependent force, which is realized either via a spatially dependent AC Stark shift [88, 89], or via the
simultaneous driving of a two-photon Raman transition near the red and blue sidebands [90]. In particular, following
recent theoretical proposals [75, 91], the single-mode variant of the spin-boson model, the quantum Rabi model, was
realized in trapped ion platforms, enabling the study of real-time dynamics, ground state preparation and phase
transitions [60, 61].

In this section we propose an experimentally feasible realization of the many-mode spin-boson model that enables
broad tunability over the parameter space. Similar to [75], our implementation utilizes a pair of Raman beams
inhomogeneously detuned from the red and blue sidebands. However, we employ multiple spectral components, which
enables the simultaneous driving of the red and blue sidebands of multiple modes. The broad tunability of our
realization unlocks the study of the spin-boson model both beyond the paradigm of (sub/super)-Ohmic couplings, as
well as in the intermediate mode number regime (N ≈ 10 modes).

H0 = Hqubit +Hphonon, (S6)

Hqubit =
ω0

2

∑
i

σz
i , (S7)

Hphonon =
∑
k

ωkb
†
kbk. (S8)

Here σα
i , α = {x, y, z} are Pauli operators acting on the ith qubit, and b†k (bk) is the creation (annihilation) operator

for phonon mode k with frequency ωk.

The spin and phonon degrees of freedom are coupled by a pair of Raman beams, each with multiple spectral
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components. In a frame rotating with Hqubit, the Hamiltonian describing the interaction is

Hint =
∑
q=1,2

∑
j

Ωq

2

(
σ+
j e

i
∑

k ηk,j,q(b
†
k+bk)+(ω0−ωq,k)t + h.c.

)
, (S9)

where q indexes the pair of Raman beams, Ωq is the Rabi frequency and ηk,j,q = kqbjk
√
ℏ/(2mωk) the Lamb-Dicke

parameter. Here kq is the wavevector of Raman beam k, and ωq,k the frequencies.
We choose ω1,k (ω2,k) to off-resonantly drive the blue (red) sideband with detunings δbk (δrk). That is, ω1,k =

ω0 + ωk + δbk , ω2,k = ω0 − ωk + δrk. Moving to the rotating frame with respect to Hphonon, assuming the Lamb-Dicke

regime ηk,j,q

√
⟨b†kbk⟩ ≪ 1 to expand the exponentials to the lowest order in η with ηk,j,1 ≈ ηk,j,2 ≡ ηk,j , and making

a rotating wave approximation, we obtain

H̄int =
∑
j

∑
k

ηj,kΩj,k

2

[
b†ke

iδrkt + bke
iδbkt

]
σ−
j + h.c.. (S10)

Next, we require that the motional modes couple only to a single qubit. This can be achieved in several ways, for
example by using two ion species (one species for the ion participating in the interaction and another species for the
remaining spectator ions) [92]; or by shelving the spectator ions into a subspace that does not couple to the Raman
beams [93, 94].The resulting single-spin Hamiltonian is

H̄1
int =

∑
k

ηkΩk

2

[
b†ke

iδrkt + bke
iδbkt

]
σ− + h.c.. (S11)

Making a unitary transformation with respect to H1 = 1/4
∑

n(δ
b
n + δrn)σ

z + 1
2

∑
n(δ

b
n − δrn)b

†
nbn yields

Ȟ1
int =

∑
k

ηkΩk

2
[(b†k + bk)e

−it/2
∑

n̸=k(δ
b
n+δrn)]σ− + h.c. +H1 (S12)

=
∑
k

ηi,kΩi,k

2
[(b†k + bk)e

−itδ(N−1)/2]σ− + h.c. +H1, (S13)

where to obtain the second line we set δbn + δrn = δ ∀n. Making a final unitary transformation with respect to
H2 = (1/4)δ(N − 1)σz to clear the time-dependence from the interaction term, we obtain

HSB = −δ
4
σz +

1

2

∑
k

(δbk − δrk)b
†
kbk +

1

2

∑
k

ηkΩk(b
†
k + bk)σ

x (S14)

After a global −π/2 spin rotation about σy which maps σx → σz, σz → −σx, we identify HSB as Eq. (1) with

∆ =
δ

4
, ϵk =

1

2
(δbk − δrk), gk = −ηkΩk. (S15)

The flexibility to tune δbk , δ
r
k and Ωk for each mode translates in the desired (in principle arbitrary) tunability of the

parameters of the resulting spin-boson Hamiltonian (S14).

VI. FURTHER DETAILS ON SIMULATIONS

All simulations are performed using Julia v1.8. The equations of motion are solved using DifferentialEquations.jl
[95], with the optimal control performed using Optim.jl using a Nelder-Mead algorithm [96]. Exact diagonalisation
was performed using a combination of our own implementation and QuantumOptics.jl [97].

Specifically, computing the equations of motion requires computing the tangent vectors |vµ⟩ and the overlaps
⟨vµ|vν⟩ to construct the symplectic form ωµν and metric gµν . We obtain the tangent vectors and overlaps analytically,
enabling us to construct both ω and g analytically. We obtain their pseudo-inverse, used in the equations of motion
(2), numerically. Another remark is that the equations of motion (2) are norm preserving. We thus choose the
parameters κ, θ in Eq. (3) which ensure proper normalization as well as a global phase factor required for a correct
implementation of the TDVP [21, 98].
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Note that the equations of motion are degenerate if the initial state of at least two polarons is the same. This
means that at least one polaron is unnecessary, and our equations of motion are overparametrized. In this scenario,
this leads to the two polarons with the same initial state evolving identically, which reduces our ansatz of Np polarons
to an effective Np − 1 polarons. To avoid this degeneracy, we always initialise the system such that each polaron has
a slightly different initial state. For the initial vacuum state |ψ⟩ = |+⟩ |0⟩, we randomly initialise each parameter as
xµ ∈ [0, 0.01]. Fidelities between different initial states are then typically F > 0.99. For quantitative studies, such as
the comparison between linear ramps and CRAB when N = 10, we use the same initial state for both the linear and
CRAB ramp.

Finally, we comment on numerical instability. We observe that there are points of numerical instability, whereby
the precision required to evaluate the pseudo-inverse and equations of motion exceeds the target precision of our
differential equation solver. Trajectories that pass through these points can therefore be calculated, but at increased
computational cost. To avoid this, we exploit the randomness of the initial state (already required to distinguish the
polarons) to generate a nearly identical initial state with nearly identical evolution, but which may not pass through
the exact same point of numerical instability. We find this is sufficient to deal with the majority of cases.
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