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Chapter 1

Introduction

Algorithms are everywhere. Imagine the day of a millennial in Amsterdam. The
shortest route is shown on their phone, the ‘recommended for you’ music list
plays on their headphones while they head off to an appointment with the bank
for their mortgage. Without realizing it, they have come across three different al-
gorithms already in the early morning, and they are no exception. People’s lives
are intertwined with algorithms nowadays, with some algorithms more promi-
nently present than others. Moreover, the word ‘algorithm’ has also become a
part of people’s lives, almost anyone has heard of it. We think the book Introduc-
tion to Algorithms by Cormen et al. [2022], often bestowed the title ‘algorithm
bible’, rightfully claims that the word algorithm appears somewhere in the news
seemingly every day. By the Oxford English Dictionary [2024], an algorithm is
defined as a set of rules that must be followed when solving a particular problem,
which allows a great length of flexibility. This thesis showcases this flexibility of
algorithms: we use a variation of techniques to address several problems, ranging
from theoretical problems to practical real-world planning puzzles.

The algorithms that we consider in this thesis are designed to solve combina-
torial optimization problems. With the example of determining the shortest route
to the appointment at the bank in mind, let us digest what it actually means to
find a solution to an optimization problem. A solution represents some plan or
set of decisions. In the example, a solution is defined as one of the possible routes
from our location to the appointment. We say that a solution is feasible if it sat-
isfies the conditions for being a valid solution to the optimization problem. We
need for example that the route starts at our location and ends at the location
of the appointment, otherwise the solution is useless. To decide if one solution is
better than another, we introduce an objective. An objective function quantifies
the quality of each solution. It can be regarded as a cost function, which indicates
the quality or cost of each solution in a single number, the objective value. In the
routing example, the objective value of a solution can be defined as the length of
the route. An instance of an optimization problem is defined by a set of feasible

1
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2 Chapter 1. Introduction

solutions and an objective function. The goal of an optimization problem is to
find a feasible solution such that there exists no other feasible solution that has a
better objective value. We call this solution an optimal solution. To accomplish
this goal, we need algorithms. An algorithm takes an instance of an optimization
problem as input and returns a solution. In the example, an algorithm would
take the road network as input and would output a route that leads you from
your location to the appointment.

Now, we question ourselves what defines a good algorithm. This thesis ex-
plores three possible criteria for answering that question. The first criterion checks
whether an algorithm finds the right solutions, i.e., if it always returns a feasible
solution to the optimization problem. In most cases, we would only accept an
algorithm that finds feasible solutions. However, sometimes, especially when it
is hard to find feasible solutions, it might also be interesting to consider slightly
infeasible solutions.

The second scale along which we can measure how well an algorithm works
is the quality of the computed solutions, that is, does an algorithm return a
good, or even the best, solution? Some algorithms are guaranteed to find the
optimal solution. In the shortest path example, that means the algorithm would
return the shortest route, guaranteeing that the distance of any other route to
the appointment cannot be shorter. In practice, a solution with an objective
value close to the optimal solution’s objective is often satisfactory, and usually
easier to compute. Therefore, there also exist algorithms with weaker guarantees,
like algorithms for which any returned solution has an objective value that is
only a bounded factor worse than the optimal. In the routing example, this
would mean that the algorithm returns a route together with a guarantee that
the optimal route is, for example, at most 5% shorter than the returned route.
Algorithms with guarantees like that are called approximation algorithms. There
are also algorithms that do not offer any guarantee on the solution value, called
heuristics. Heuristics aim to find satisfactory solutions, often by simplifying the
problem, making educated guesses, or following rules of thumb. For example, if
you know your destination in the routing problem is north of you, a heuristic
solution can be computed by taking the road that points in that direction at
every crossroad. Even though this could lead to a sensible solution, there is no
guarantee about the length of this route compared to the optimal one. Oftentimes,
heuristics run faster than algorithms with performance guarantees, since it is not
required to prove any optimality guarantee.

That leads us to the third way of assessing an algorithm: time. That is, can an
algorithm find a solution fast? The time that an algorithm runs can be measured
in multiple ways. A straightforward procedure would be to measure the number of
seconds that an algorithm takes. Even though this method is pragmatic and easy
to measure, unfortunately, it is also machine-dependent and makes comparisons
between machines hard. A more robust way to measure algorithm times is to
count the number of elementary operations a computer would need to run the
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Figure 1.1: Paradigm 1: a combinatorial problem is solved with machine learning
directly from the input instance.

algorithm. Often, we consider an asymptotic lower bound for the number of
operations an algorithm would need to solve a worst-case instance, measured
in the input size. However, considering the worst-case instance might give a
pessimistic view of the running time, so sometimes it also makes sense to consider
the running time of an average-case instance. If the number of computing steps
that an algorithm takes is a polynomial in the size of the problem input, we say
that an algorithm runs in polynomial time, or the algorithm is efficient. Intuitively
this means that the running time of the algorithm grows polynomially whenever
the problem size grows. In contrast, if the running time is for example exponential
in the input size, the running time might increase significantly whenever large
instances need to be solved. Sometimes the search for a polynomial algorithm
remains unfruitful and you might be better off proving that the problem at hand
is too hard to expect an efficient algorithm. In this case, you might be able to
prove that the problem is at least as hard as a lot of well-studied problems, namely
the set of NP-hard problems. This is a large set of problems that are considered
hard, meaning that no polynomial time algorithm is known for any of them, and
moreover, would an algorithm be known for a single one of these problems, all
problems in the class can be solved in polynomial time.

Machine Learning for Combinatorial Algorithms. To summarize, this
thesis studies how we can improve algorithms in order to perform their job right,
well, and fast. In three chapters of this thesis, we try to improve algorithms along
these measures by enhancing them with machine learning (ML) techniques. Ma-
chine learning focuses on teaching computers to perform specific tasks based on
algorithms and statistical models. Instead of executing exact instructions, ma-
chine learning models learn patterns from data or experience. Machine learning
and, more generally, artificial intelligence, have made a huge rise recently. In
fact, this rise is probably the reason why many people have heard of algorithms
nowadays. Success stories include contributions to health care, natural language
processing, image recognition, board games, etc. (see, e.g., [Chugh et al., 2021,
Lu and Weng, 2007, Otter et al., 2020, Qayyum et al., 2020, Silver et al., 2018,
2017]).

We believe that the combinatorial optimization community can benefit from
the recent advances in machine learning by integrating algorithms from both
fields. Combining machine learning and optimization algorithms is a hot topic,
and can be approached in many different ways. An overview is given by Bengio
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Instance Solution
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Figure 1.2: Paradigm 2: machine learning is consulted once by a combinatorial
algorithm.

Instance Solution
Combinatorial
Algorithm

Machine Learning
Decision

Figure 1.3: Paradigm 3: machine learning is consulted repetitively by a combina-
torial algorithm.

et al. [2021], who distinguish three different paradigms of combinations between
ML and combinatorial optimization. The first of these paradigms, schematically
shown in Figure 1.1, is to leverage machine learning to solve combinatorial op-
timization problems directly from the input instance. As opposed to this first
paradigm, in which ML replaces the combinatorial algorithm, the second and
third paradigms use ML predictions alongside combinatorial methods. Paradigm
2 consults a machine learning prediction a single time, as schematically shown in
Figure 1.2, and paradigm 3 consults machine learning predictions repetitively, as
schematically shown in Figure 1.3.

We can use the classification by Bengio et al. [2021] to illustrate what we
believe are the limitations and possibilities of using ML predictions to solve com-
binatorial problems. We believe it is a rather demanding task for an ML model
to solve a combinatorial problem directly from the instance, as is expected from
algorithms that follow the first paradigm. Moreover, we believe that these algo-
rithms do not leverage the power of known combinatorial algorithms. In some
sense, you could argue that designing these algorithms is like reinventing the
wheel. We therefore believe that the impact of ML on combinatorial algorithms
is limited if an algorithm follows the first paradigm.

On the contrary, we believe there is much potential in algorithms that follow
the second and third paradigms. For many combinatorial problems, well-working
algorithms without ML already exist. We believe ML predictions can improve
these algorithms even further by replacing subroutines in them with new ML
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techniques. In this way, we can exploit some of the existing qualities of combi-
natorial algorithms, while improving designated tasks within the algorithm with
ML, resulting in a well-working interplay between ML and combinatorial algo-
rithms. In this thesis, we study the impact of ML on combinatorial algorithms
following the second and third paradigms both from a practical and a theoretical
point of view.

On the practical side, we study which tasks in an existing algorithm can be
identified to be replaced with ML. Specifically, ML can have a great impact on
tasks that benefit from learning from data or experience. Next to identifying the
suitable subroutines in existing algorithms, we study how the ML model should
be trained. In ML, it is crucial to learn from the right data, and it turns out
that if ML is used alongside a combinatorial algorithm, it is not straightforward
which data samples should be learned from. In this thesis, we present guidelines
and techniques that advise how to train ML models when they are used alongside
combinatorial algorithms.

On the theoretical side, we distinguish three properties, which are defined
to measure the impact of ML predictions in combinatorial algorithms. First,
consistency expresses how an algorithm behaves in case of perfect predictions,
i.e., if the predictions are error-free. The consistency therefore indicates the
potential of using ML predictions in an algorithm. Second, robustness expresses
how the algorithm behaves if the predictions are arbitrarily bad. It is used to
measure how much the algorithm degrades by incorrect or imprecise predictions.
Lastly, we study the behavior of an algorithm given that predictions are within
an error of η, for a suitably defined error parameter η.

Practice versus Theory. All problems considered in this thesis are motivated
by practical applications. However, this does not prevent us from considering
these applications through a theoretical lens. I.e., next to studying well-working
algorithms for practical problem instances, we aim to find algorithms with prov-
able properties. We give some examples of results presented in this thesis that
highlight the different viewpoints that we take. On the one hand, we show in
this thesis that ML can speed up practical algorithms for real-world problems by
exploiting patterns in the data. On the other hand, we show theoretical bounds,
as defined earlier, for using ML in classical shortest-path algorithms. On one side,
we show how to exploit the characteristics of specific instances of NP-hard prob-
lems to solve them to optimality in tractable time, but on the other side, we prove
that there is an algorithm for the same problem that computes solutions that are
arbitrarily close to the optimal solution with an arbitrarily small violation of the
constraints. We believe it is important to consider the theoretical perspective
for practical applications because the gained insights give solid reasons and more
intuition on why and how methods work.
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In the remainder of this introduction, we introduce the practical applications
addressed in this thesis and elaborate on the research questions that we aim to
answer.

SSMTSP. Imagine you arrive in a new city and want to go to a supermarket,
but you do not prefer any supermarket over the other. You want to find the route
to the closest supermarket since you are in a rush. Formally, this problem can be
defined as finding the shortest path from a given source node to any of several
designated target nodes in a given directed graph with non-negative edge weights.
It is known as the single-source many-targets shortest-path problem (SSMTSP).

There exist algorithms for this problem that run in polynomial time and
guarantee to find an optimal solution, if it exists. For example, the classical
shortest-path algorithm for the single-source single-target shortest-path problem
by Dijkstra [1959] can be used to solve the SSMTSP, and an improved version
tailored to many targets is presented by Bast et al. [2003]. During the execution
of this latter algorithm, the value of the best-known shortest path to any of the
target locations is maintained. This solution is stored and updated not only to
return it upon the algorithm’s completion but also to accelerate the optimization
process. Specifically, any other path encountered during scanning that is longer
than the best-known solution can safely be discarded, ultimately speeding up the
optimization. Clearly, the sooner such a solution is found the better, since this
allows for more paths to be discarded.

We study if it is possible to predict the length of the shortest path after just a
few iterations and use this prediction as a best-known solution value; discarding
any encountered longer path during scanning the graph. Since we want to keep the
guarantee of returning an optimal solution, a problem arises when a prediction is
too low, since this could lead to the problematic discard of the optimal solution.
We give an algorithm that is guaranteed to find the optimal solution, even in
the case of these so-called underpredictions. We study both theoretically and
empirically how much our algorithm saves.

In our earlier introduced terminology for assessing algorithms, we answer the
following question:

• Can we make the algorithm for the SSMTSP faster, while maintaining the
guarantee that it finds the best solution?

Casting Problem. The second application considered in this thesis is the Cast-
ing Problem, motivated by a practical real-world problem in a metal foundry. In
such a foundry, metal objects of different weights are cast out of larger metal
heats. An instance of this problem can be defined by a set of knapsacks and a set
of items, where each knapsack has a given capacity corresponding with the size of
a heat and each item has a given weight. A feasible solution to this problem is an
assignment of all items to knapsacks, such that the total weight of items assigned
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to a knapsack is at most the capacity of the knapsack. The efficiency of a solution
can be quantified by considering the utilization ratio for the knapsacks. For a
given solution the utilization ratio of a knapsack is defined by the total weight of
items assigned to the knapsack divided by the knapsack’s capacity. The goal of
the casting problem is to find a feasible solution that maximizes the sum of the
knapsacks’ utilization ratios.

We show that the problem of finding a feasible solution to the casting problem
is already NP-hard. Therefore, we do not expect to find a polynomial time algo-
rithm or even a polynomial time approximation algorithm if we desire a feasible
solution. In this thesis, we explore what we can achieve for this NP-hard problem
using two different perspectives.

First, we take a practical point of view and consider a given set of empirical
instances. We show that by considering a disaggregated problem formulation,
we can decrease the running time, ultimately leading to solving the considered
problem instances to optimality. Second, we address the problem with a theo-
retical point of view and study what is possible if we relax one of the feasibil-
ity constraints by considering bicriteria approximation algorithms. Informally,
a bicriteria approximation algorithm for the casting problem tries to find an al-
most optimal solution that violates the knapsack capacity constraints by only a
bounded factor.

Using our earlier introduced terminology for algorithm assessment, we answer
the following two questions about the casting problem:

• Even if it seems theoretically unlikely, can we exploit large-scale practical
instances such that we can find the right and best solutions fast?

• If finding right solutions fast does not seem possible, or at least unlikely,
can we find good, almost right, solutions fast?

CVRPTW. We consider an example of supermarket planning again but ap-
proach it from the supermarket’s perspective this time. Home deliveries of gro-
ceries have become more frequent, which challenges supermarkets to solve large
planning puzzles every day. The planners at the supermarket need to solve the
problem of deciding which groceries are delivered by what vehicle, and what order
the groceries are delivered in. They need to take constraints into consideration
involving the time windows of customers and the capacity of the vehicles. The
goal of this problem is to find the most efficient solution, where efficiency is often
defined based on traveled distance and the number of used vehicles. One can
imagine that both for minimizing cost, but also for minimizing environmental
footprint, it is important to find efficient solutions. These problems are known as
capacitated vehicle routing problems with time windows (CVRPTW).

A universal approach that has proven to be highly efficient for solving these
routing problems is the Large Neighborhood Search (LNS) heuristic [Pisinger and
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Ropke, 2010]. LNS iteratively improves a solution by destroying and repairing a
part of the solution, while leaving the rest of the solution untouched. To illustrate,
for the application to the CVRPTW, LNS considers a subset of routes in each
iteration and tries to find an improvement within this subset of routes. In order
to quickly obtain solutions with a good objective value, it is crucial to destroy
smartly, since the repair routine of LNS is usually expensive, both in computing
time and computing power. Given that it is easy to create exemplary iterations
where we can observe which destroy steps are effective and which are not, we aim
to learn from these previous iterations. Our idea is that if we can improve the
destroy step by learning from previous iterations, we can quickly obtain better
solutions.

In our terminology, this boils down to answering the following question:

• By improving the destroy step of the LNS algorithm, can we learn how to
become faster at finding good solutions?

1.1 Collaboration with Dassault Systèmes

This thesis is the result of a collaboration between CWI and the DELMIA Quintiq
department of Dassault Systèmes. DELMIA Quintiq specializes in optimization
and supply chain planning solutions. The R&D department of DELMIA Quintiq
is constantly aiming to improve the algorithms that function as the engine of
these planning solutions. The applications range from manufacturing and work-
force planning to routing planning problems. The collaboration with DELMIA
Quintiq inspired the research presented in this thesis, both in a direct manner
as well as in more subtle ways. There is a clear direct influence on the last two
chapters of this thesis. The Logistics Planner is a tool that is used daily by clients
of DELMIA Quintiq to solve last-mile routing problems. Together with the R&D
department of DELMIA Quintiq we have studied the neighborhood creation rou-
tines in the Logistics Planner application. These routines are an essential part
of the application, so there was an obvious desire to improve them, if possible.
We have tried to improve the neighborhood creation method by introducing two
new techniques. We were able to test these techniques using benchmark instances
provided by DELMIA Quintiq. Subsequently, we have translated this research
to the well-studied world of vehicle routing problems. The translation to vehicle
routing problems allowed us to make the code and the entire framework that our
methods were embedded in publicly available.

A different project with Dassault Systèmes inspired the research in this thesis
more indirectly. In this project, we predicted the outcome of an optimization
run with ML after running only a small fraction of the iterations. The con-
cept of predicting the outcome of an optimization run based on its start seemed
more generally applicable, and specifically well to the single-source many-targets
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shortest-path problem, as explained above. Ultimately, this led to the results now
presented in Chapter 3.

1.2 Overview and Publications

Chapter 1. In this chapter, we introduce the problems that we study, elaborate
on the different viewpoints that we take and address the research questions that
we aim to answer in this thesis.

Chapter 2. In the next chapter, we introduce the notation and concepts used
in the rest of the thesis. There is a section about graphs, after which there is
a section about optimization problems, complexity, (approximation) algorithms,
and heuristics. Moreover, we explain the basics of machine learning methods used
in this thesis.

Chapter 3. The work in this chapter is based on the findings in the following
article, in which both authors had an equal contribution. The article is currently
under revision with Mathematical Programming Computation.

W. Feijen and G. Schäfer. Dijkstra’s Algorithm with Predictions to Solve the
Single-Source Many-Targets Shortest-Path Problem. Mathematical Programming
Computation, 2024a. Under revision.

In this chapter, we study the SSMTSP, as defined in the introduction. We
enhance an existing adaptation of Dijkstra’s algorithm with an ML procedure,
which predicts the shortest path distance after a few iterations, based on the
so-called trace of the algorithm. This prediction is used to prune the search
and reduce the number of queue operations on the underlying priority queue.
First, we present extensive experimental results on random instances showing
that we can save on computing time significantly. The rest of the chapter studies
a theoretical lower bound on the number of saved operations of our proposed
algorithm. Crucially, we require that our algorithm returns an optimal solution,
even if predictions are off. This means that for some worst-case instances, we
do not save any queue operations, even if the predictions are perfect. In general
instances, however, our algorithm may save a significant number of priority queue
operations. In fact, we give a closed-form expression of the expected number of
saved queue operations on random instances.

Chapter 4. The results in the following article serve as the basis for the work
in this chapter and the next chapter. The majority of the research and writing of
the paper was done by the first author. The paper is currently under submission.

W. Feijen and G. Schäfer. A Polynomial-Time Bicriteria Approximation
Scheme for the Casting Problem, 2024b. Under submission.
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Chapters 4 and 5 study the casting problem, as defined in the introduction.
In Chapter 4, we show that the casting problem is NP-hard. However, we show
that it remains possible to solve empirical instances of the casting problem to
optimality, even if they grow in size. First, we show that adding a decision variable
in the formulation of the problem enables mathematical programming solvers to
solve the problem faster. Second, we introduce a disaggregated formulation of the
problem and show that we can create variables for the disaggregated formulation
in such a way that any feasible solution with them is automatically optimal. The
disaggregated formulation allows us to solve all the instances introduced in Deb
and Myburgh [2017], with up to 100 million knapsacks, to optimality, taking
at most ∼75 minutes. As a comparison, the algorithm in Deb and Myburgh
[2017] needs more than 6 days to solve the largest instance, with no optimality
guarantee.

Chapter 5. In this second chapter about the casting problem, we let go of the
empirical viewpoint and instead study what is possible in terms of polynomial-
time algorithms for the NP-complete casting problem. We present two bicriteria
approximation algorithms in this chapter, which allow an infeasible solution, pro-
vided that the infeasibility is bounded by a constant factor. The first bicriteria
approximation algorithm that we present returns solutions that have an objective
value that is at least as good as the optimal feasible solution, while the capacity
constraints are violated by at most a factor 3/2. The second bicriteria approxi-
mation algorithm that we present is a polynomial time bicriteria approximation
scheme, i.e., a family of algorithms that yields a solution that has a solution value
that is arbitrarily close to the optimal solution and for which the capacity con-
straint violation can be made arbitrarily small. However, the execution time of
the approximation algorithm increases as the errors decrease in size.

Chapter 6. This chapter is based on the following paper. The research ideas
in this paper are a joint contribution of all authors, the development and imple-
mentation of the ideas and writing of the article was done by the first author.
The paper is currently under submission.

W. Feijen, G. Schäfer, K. Dekker, and S. Pieterse. Learning-Enhanced Neigh-
borhood Selection for the Vehicle Routing Problem with Time Windows, 2024b.
Under submission.

The last two chapters of this thesis each introduce an improvement of the
destroy step in an LNS algorithm. The new subroutines aim to leverage machine
learning to improve their ability to identify which parts of the solution to destroy.
In Chapter 6 we introduce a subroutine called Learning-Enhanced Neighborhood
Selection (LENS). It functions within an LNS algorithm applied to the CVRPTW.
LENS considers multiple sets of routes in each iteration and predicts which set of
routes has the most potential to improve the solution. This set of routes is then
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selected, destroyed, and repaired, after which the solution has possibly improved.
The crucial idea is that the predictions by LENS favor those sets of routes for
which it is worth running the expensive repair routine. We illustrate the workings
of LENS on synthetic CVRPTW instances.

Chapter 7. This chapter’s work is founded on the results presented in the
following article. The research ideas in this paper are a joint contribution of
all authors, the development and implementation of the ideas and writing of the
article was done by the first author. The paper will be published in the conference
proceedings.

W. Feijen, K. Dekker, and S. H. v. Zwam. Learn to Create Neighborhoods in
Real-World Vehicle Routing Problem. In Proceedings of the International Confer-
ence on Machine Learning, Optimization, and Data Science, 2024a. Forthcoming.

In this chapter, we present a second subroutine that can be used as a destroy
step of an LNS algorithm. In this second approach, called smart neighborhood
creation (SNC), we take the concepts introduced in Chapter 6 a step further.
Instead of selecting the set of routes from a list of options of sets as LENS does,
in SNC the set is created by adding routes one by one. In SNC, the decision of
which route to be added to the neighborhood is made by a trained ML policy.
Moreover, we enable the ML models to self-adapt to changes in the problem
structure by training them with reinforcement learning. We apply SNC to two
different applications. First, we show the workings of SNC on real-world last-
mile pick-up and delivery problem instances, coming from the Logistics Planner
application by DELMIA Quintiq. Second, we apply SNC to the same synthetic
CVRPTW instances as in Chapter 6.





Chapter 2

Preliminaries

In this chapter, we introduce the key concepts, background information, and
essential terminology necessary for understanding the subsequent chapters of the
thesis. The section about graphs is based on Schrijver et al. [2003] and the section
about algorithms and complexity is based on Cormen et al. [2022]. We refer to
these publications for a more detailed description of the introduced concepts.

We use N to refer to the natural numbers, i.e., the positive integers, and N0

to refer to N ∪ {0}. We use R to refer to the real numbers and R≥0 to refer to
the non-negative reals. For n ∈ N, we use the notation [n] to denote {1, . . . , n}.

2.1 Graphs

A graph, denoted by G = (V,E), is a tuple consisting of a set of nodes, V , and
a set of edges, E ⊆ V × V . A graph can be directed or undirected. In a directed
graph, the edges point from one node u ∈ V to another node v ∈ V , and are
denoted with (u, v). In directed graphs, we also call the nodes vertices and the
edges arcs. An edge in an undirected graph is denoted with {u, v}. An example of
a directed, bipartite graph and an undirected, complete graph are given in Figure
2.1. If the vertices in a graph can be partitioned in two sets, say L and R, such
that every edge in the graph has one endpoint in L and the other endpoint in
R, a graph is called bipartite. If there is an edge between every pair of nodes, a
graph is called complete.

A walk in a graph is defined by a sequence of alternating vertices and edges,
ending and starting with a vertex, say P = (v0, e1, v1, . . . , em, vm), such that ei is
an edge from vi−1 to vi, for i = 1, . . . ,m. If all the vertices in a walk are distinct,
P is called a path. We call a path that starts in s (v0 = s) and ends in t (vm = t)
an s-t-path. The edges in a graph sometimes have an associated weight (or cost)
in the form of a weight function w : E �→ R. The weight or cost of a path is
defined as the sum of the cost of the edges on the path.

13
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Figure 2.1: Example of a directed, bipartite graph (left) and an undirected, com-
plete graph (right).

2.2 Algorithms and Complexity

In this thesis, we consider combinatorial optimization problems.

Definition 2.2.1. A combinatorial optimization problem (or optimization prob-
lem) Π can be defined as a triple (I, F, c), where

• I is a set of instances. An instance is a specific scenario or set of parameters
for the problem.

• F (I) is a set of feasible solutions for each instance I ∈ I. Oftentimes, F (I)
is only given implicitly, e.g., as all the s− t-paths in a given graph for some
given nodes s and t.

• c(I, s) is the cost of a feasible solution s ∈ F (I).

If the problem instance I ∈ I is given, or clear from the context, we sometimes
denote F and c(s) instead of F (I) and c(I, s), respectively. The goal of a combi-
natorial optimization problem is to find an optimal solution for a given instance
I ∈ I. An optimization problem can be a minimization problem or a maximiza-
tion problem. If problem Π is a minimization problem, an optimal solution for
I ∈ I is a solution s∗ ∈ F (I) such that

c(I, s∗) ≤ c(I, s) ∀s ∈ F (I).

Similarly, if problem Π is a maximization problem, an optimal solution for I ∈ I
is a solution s∗ ∈ F (I) such that

c(I, s∗) ≥ c(I, s) ∀s ∈ F (I).

The problem of deciding if a feasible solution exists for a given instance I ∈ I, or
equivalently, deciding if F (I) is not empty, is called the feasibility problem of I.
The answer to the feasibility problem is either yes or no. We call problems with
either a yes or a no answer a decision problem. An instance for a decision problem
that has a yes answer (no answer, resp.) is called a yes-instance (no-instance,
resp.).
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For each optimization problem, there is a specific decision problem that we
call the decision problem related to the optimization problem. For an instance
I of a minimization problem Π = (I, F, c) and a given number K, the decision
problem related to Π outputs yes if there is a feasible solution s ∈ F such that
c(s) ≤ K and no otherwise.

2.2.1 Algorithms and Running Time

The optimization problem, feasibility problem and decision problem defined above
are all examples of computational problems. A computational problem is nothing
more than an input/output relationship. An algorithm takes an input and de-
scribes a specific procedure of computing a corresponding output. An algorithm
can therefore be used to tackle computational problems. For a combinatorial op-
timization problem, the input of an algorithm consists of an instance, the output
could be a feasible solution. If an algorithm terminates with the correct output
for every input instance, we say that an algorithm is correct, or it solves the
computational problem. In contrast, an incorrect algorithm might not terminate
at all, or it might terminate with a wrong answer. In Chapter 5 of this thesis, we
see that even incorrect algorithms can be of interest if we can control the size of
the error.

Two algorithms solving the same computational problem might differ tremen-
dously in their efficiency. Analyzing the efficiency of algorithms is often done
by measuring the resources that the algorithm requires. Sometimes resources
like memory usage or computer hardware are used as a comparison, but mostly
computational time is used to measure an algorithm’s efficiency.

To make machine-independent claims about the computation time of algo-
rithms, we consider a generic model of computation called a random-access ma-
chine (RAM). The RAM model contains several elementary operations, inspired
by the design of real computers, that form the building blocks of all algorithms.
The elementary operations are arithmetic (add, subtract, multiply, divide, re-
mainder, floor, ceiling), data movement (load, copy, store), and control (sub-
routine call, return, (conditional) branching). In the RAM model, each such
operation takes a constant amount of time. For storing data, the RAM model
has the data types integer and floating point. In order to prevent that we can
abuse the amount of data stored in one data entry and perform constant time
operations on it, we limit the size of each stored entry. We typically assume that
integers are represented by at most c log n bits, where n is the size of the input
and c ≥ 1 is some constant. In this way, we can store n in one entry, but the size
of an entry cannot grow arbitrarily since c is constant.

Generally speaking, the time that an algorithm takes is dependent of the
instance and its size, so we often describe the running time of an algorithm
as a function of the input size. First, we clarify what we mean by input size
and running time. It is problem-dependent what the best notion for input size
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is. Oftentimes we use the number of items in the input, for example, the total
number of nodes and edges in a graph. Sometimes the number of bits necessary
to describe the input is used as the input size. The running time of an algorithm
can then be described as the number of elementary operations in the RAM model
executed before it terminates, expressed as a function of the size of the input.

Oftentimes, it is not necessary to determine the exact relation between the
running time of an algorithm and the size of the input. It suffices to compute the
rate at which the running time increases whenever the size of the input increases.
This rate yields a good comparison between the performance of algorithms on
large instances. This can be accomplished using the big O notation, essentially
an asymptotically upper bound of a function:

Definition 2.2.2. Let f and g be two real-valued functions, then

f(n) = O(g(n))

if there exists c > 0 and n0 > 0 such that

0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0.

For the sake of completeness, we also introduce the asymptotic lower bound no-
tation Ω (we say big omega), and the combination of the asymptotic upper and
lower bound notation Θ (we say big theta).

Definition 2.2.3. Let f and g be two real-valued functions, then

f(n) = Ω(g(n))

if there exists c > 0 and n0 > 0 such that

f(n) ≥ c · g(n) ∀n ≥ n0.

Definition 2.2.4. Let f and g be two real-valued functions, then

f(n) = Θ(g(n))

if both f(n) = O(g(n)) and f(n) = Ω(g(n)).

We have established how to measure the running time of an algorithm based
on the input size, but we have not yet covered which instances should be used for
this aim. Oftentimes, we take a worst-case perspective and consider the worst-
case running time, i.e., the longest running time for any input of size n. Doing so
provides an upper bound of the running time, and a guarantee that the running
time cannot be more, for every other instance.

In combinatorial optimization, we are striving for efficient algorithms in the
worst case. An algorithm is efficient if it runs in polynomial time in the input
size.
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Definition 2.2.5. An algorithm is efficient, or runs in polynomial time, if its
running time is upper bounded by a polynomial expression in the size of the
input, i.e., if the size of the input is n, there exists a constant c > 0 independent
of n such that the running time is O(nc).

The worst-case running time might sometimes give a too pessimistic represen-
tation of the running time and it might be insightful to consider random instances
to compute the average case running time or expected running time. To accom-
plish this it is necessary to define a random model and define a probability dis-
tribution over possible instances. In Chapter 3, we perform such a computation,
called a probabilistic analysis.

2.2.2 Complexity

In this section, we aim to give an intuition of the complexity classes P and NP, we
refer to Cormen et al. [2022] or Garey and Johnson [1979] for a formal definition
of the complexity classes using formal language theory.

We can classify decision problems based on their complexity. The first class
that we consider, P, can be regarded as the class of easy decision problems: all
problems for which an efficient algorithm exists.

Definition 2.2.6. A decision problem belongs to the complexity class P if an
efficient algorithm exists to solve it.

The second set of decision problems that we consider is the set of NP-complete
problems. Before we define what it means to be NP-complete, we give some
intuition on these problems. Contrary to the problems in P, it is unknown if an
efficient algorithm exists for the problems that are NP-complete. At the same
time, no one has ever been able to prove that an efficient algorithm cannot exist.
Moreover, the set of NP-complete problems has the astonishing property that the
existence of an efficient algorithm for any NP-complete problem means that there
is an efficient algorithm for all problems that are NP-complete.

To introduce what it means for a decision problem to be NP-complete, we
need the notion of a verification algorithm and the related complexity class NP.
A verification algorithm takes as input, next to the instance, an extra piece of
information called the certificate. A verification algorithm A verifies a problem
if, given any yes-instance of the problem, there is a certificate y that A can use
to prove that it is a yes-instance. Moreover, for a no-instance of the problem, no
such certificate may exist.

Definition 2.2.7. A decision problem belongs to the complexity class NP if a
verification algorithm exists that verifies the problem in polynomial time, using
a certificate of polynomial size.
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It follows that all decision problems that belong to P automatically belong to
NP, since for every instance of a decision problem in P a solution can be obtained
in polynomial time, which can serve as a certificate to verify if it is a yes-instance
or not. The NP-complete problems mentioned above are also members of NP, in
fact, they are considered to be the hardest problems in NP. To be able to define
a hardness relation between problems we introduce the notion of a reduction.

Definition 2.2.8. A decision problem Π1 is polynomial-time reducible to a deci-
sion problem Π2 if there exists a polynomial (in the input size of Π1) algorithm
that translates yes-instances of Π1 into yes-instances of Π2 and no-instances of
Π1 into no-instances of Π2.

If a decision problem Π1 is reducible to a decision problem Π2, then problem
Π2 can be regarded to be at least as hard as problem Π1. To see this, observe
that an efficient algorithm for Π2 can be used to solve Π1 efficiently, by using the
polynomial-time reduction to translate an instance of Π1 to an instance of Π2,
and then using the algorithm for Π2 to solve the translated instances, returning
yes if and only if the original instance of Π1 was a yes-instance. Note that this
procedure is polynomial in the size of Π1, since the reduction ensures that the
size of the translated instance of Π2 is polynomial in the size of Π1.

The polynomial reduction can be composed: if problem Π1 is polynomial-time
reducible to problem Π2, and problem Π2 is polynomial-time reducible to problem
Π3, then problem Π1 is polynomial-time reducible to problem Π3. This allows us
to define the notion of NP-complete problems.

Definition 2.2.9. A decision problem Π ∈ NP is called NP-complete if all deci-
sion problems in NP can be polynomial-time reduced to Π.

Observe that this definition proves what we claimed earlier, namely if there is an
efficient algorithm for one NP-complete problem, there is an efficient algorithm for
every NP-complete problem. In fact, it would mean there is an efficient algorithm
for every problem in NP. To illustrate this, suppose there is an efficient algorithm
for an NP-complete problem Π1. Since Π1 is NP-complete, any problem Π2 in
NP can be reduced to Π1 and therefore be solved efficiently.

The first problem shown to be NP-complete was the boolean satisfiability
problem (SAT) [Cook, 1971]. This problem deals with the question whether it is
possible to find an assignment of variables such that a given conjunction of several
disjunctions of these variables becomes true. Since then, many more problems
have been shown to be NP-complete. In order to show that any problem, say
Π, is NP-complete, it suffices to reduce any known NP-complete problem to Π.
NP-complete problems lie at the heart of the famous P = NP problem, one of the
Millenium Prize Problems selected by the Clay Mathematics Institute in 2000.
The relation is illustrated in the following theorem.
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Theorem 2.2.10. If a polynomial-time algorithm exists for any NP-complete
problem, then P = NP. Equivalently, if an NP-complete problem exists that
is not polynomial-time solvable, then no NP-complete problem is polynomial-time
solvable.

Proof:
Suppose problem Π1 ∈ P and Π1 is NP-complete. Then any Π2 ∈ NP can be
reduced to Π1, since Π1 is NP-complete. Since Π1 can be solved in polynomial
time, this means that also Π2 can be solved in polynomial time, which proves the
first statement. The second statement in the theorem is a direct consequence of
the first statement. �

As explained above, all NP-complete problems are in NP and moreover, they
have the property that the existence of an efficient algorithm for one of them
proves the existence of an efficient algorithm for all problems in NP. Other prob-
lems can also have this property, without necessarily being in NP. We call those
problems NP-hard, since intuitively they are as hard as NP-complete problems.
In order to define them, we use the notion of a hypothetical subroutine, a routine
that an algorithm may call to solve another problem, without proving that such
a subroutine actually exists.

Definition 2.2.11. A problem Π1 is NP-hard if there exists a polynomial time
algorithm A for an NP-complete problem Π2, where A may make use of a hypo-
thetical subroutine that solves Π1 in polynomial time.

The definition illustrates that if an efficient algorithm exists for an NP-hard
problem, then an efficient algorithm exists for an NP-complete problem. Sub-
sequently, we have seen that this means an efficient algorithm exists for every
problem in NP.

Some problems are NP-hard only if their input numbers grow exponentially
large, other problems are NP-hard even for smaller input numbers. To formalize
this, we will consider a subset of instances of a problem in which the numbers are
bounded. Given a problem Π = (I, F, c), let |I| be the binary encoding length
of I ∈ I and let number(I) be the largest number appearing in I ∈ I. Then
for some non-negative function f : R �→ R, the restricted problem instances are
defined as

If = {I ∈ I | number(I) ≤ f (|I|)} .
This allows us to define strongly NP-hard problems. Intuitively, these are the
problems that remain NP-hard even if all numbers are polynomial.

Definition 2.2.12. A problem Π = (I, F, c) is strongly NP-hard if there exists
a non-negative polynomial function p : R �→ R such that (Ip, F, c) is NP-hard.
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2.2.3 Approximation Algorithms

For problems for which no efficient algorithm is known, we can sometimes defer
to algorithms that do not have the guarantee of finding the optimal solution, but
instead guarantee a solution that is close to the optimal one. Such an algorithm is
called an approximation algorithm, parameterized by an approximation factor α.
Recall that we use s∗ to denote an optimal solution of an optimization problem.

Definition 2.2.13. Let Π = (I, F, c) be a maximization problem. An algorithm
is an α-approximation algorithm with 0 ≤ α ≤ 1 for Π if for every instance I ∈ I
of size n it computes a feasible solution s ∈ F of cost c(s) ≥ α · c(s∗) in time that
is polynomially bounded in n.

The definition for a minimization problem is the same, except α ≥ 1 and for the
cost of the solution found it must hold that c(s) ≤ α · c(s∗).

Sometimes it is possible to find approximation solutions with a solution value
within an arbitrarily small factor of the optimal solution. A polynomial-time
approximation scheme (PTAS) finds solutions like these, moreover, it runs in
polynomial time for any fixed approximation ratio.

Definition 2.2.14. A family of algorithms Aε is called a polynomial time approx-
imation scheme (PTAS) if it gives an ε-approximation for each value of ε > 0.
The algorithm must run in polynomial time in the input size for any fixed value
of ε.

An approximation scheme with a running time that is not only polynomial in the
input size, but also polynomial in 1/ε, is called a fully polynomial time approxi-
mation scheme (FPTAS).

2.2.4 Large Neighborhood Search

For algorithms that solve practical problems, the need for optimality guarantees
is often less prominent. In practice, heuristics are often used to solve problems,
which aim to find satisfactory solutions by, for example, simplifying the problem,
making educated guesses, or following rules of thumb. A heuristic is a practical
solving method that does not guarantee an optimal solution but often offers a
sufficient solution. Since a heuristic does not need to prove (approximate) opti-
mality of a solution, it often runs faster than an algorithm that is guaranteed to
find an optimal solution.

An example of such a heuristic is Large Neighborhood Search (LNS) (see, e.g.,
Pisinger and Ropke [2010] and Shaw [1998]). LNS is a universal approach that
can be applied to a great deal of combinatorial optimization problems. It forms
the basis of the algorithms that we study in the last two chapters of this thesis.
We describe the approach in more detail below (see also Algorithm 1).
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Algorithm 1 Large Neighborhood Search
1: Input: feasible solution s ∈ F
2: sbest = s
3: repeat
4: η = SelectNeighborhood(s)
5: stemp = Repair(Destroy(s, η))
6: if Accept(stemp, s) then s = stemp

7: if c(stemp) < c(sbest) then sbest = stemp

8: until StoppingCriterion is met
9: return sbest

Let Π = (I, F, c) be the optimization problem under consideration, and let
I ∈ I be the considered instance. In the explanation of LNS, for ease of notation,
we omit the problem instance when denoting the set of feasible solutions and
write F if we mean F (I), and write c(s) if we mean c(I, s). LNS starts with an
arbitrary feasible initial solution s ∈ F as input.

The algorithm keeps track of the best solution sbest encountered so far. In
each iteration, a (small) part of the solution s, called neighborhood, is selected,
which is then destroyed and repaired (or rebuilt) again. The former and latter
are done by a so-called destroy method and repair method, respectively. The goal
of alternating the destroy and repair operations is to compute a new solution in
each iteration with an improved objective value. With this aim, an accept method
is used to determine whether the improvement of the newly created solution is
significant enough (e.g., in terms of a decrease in objective function value) to
be used subsequently. Furthermore, the best-known solution sbest is updated if
necessary. The algorithm continues this way until a predefined stopping criterion
is met.

The LNS algorithm does not specify how the respective stopping criterion
and the neighborhood selection, destroy, repair, and accept methods are defined,
as this is problem-specific. The selection of a neighborhood can for example be
random, based on low-quality parts of the current solution, or based on easy
interchangeability. The destroy method simply destroys the neighborhood that it
gets as input. In practice, many advanced and well-working procedures are used
for the implementation of the repair method, e.g., integer linear programming
solvers or advanced path-building algorithms. The accept method could be a
simple hill-climbing procedure, in which only improving solutions are accepted,
but also simulated annealing can be used. A stopping criterion could be based
on, e.g., time, number of iterations, or the value of the best-known solution.
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2.3 Machine Learning

Machine learning focuses on teaching computers to perform specific tasks based
on algorithms and statistical models. Instead of executing exact instructions,
machine learning models learn patterns from examples and data.

Definition 2.3.1. Machine learning (ML) is a subfield of artificial intelligence
in which algorithms are created that allow computers to learn behavior based on
data. A machine learning system aims to improve its performance on a task T ,
based on empirical data or experience E, measured with a performance measure
P .

We explain the notions of a task, experience and performance measure with
the help of an example. Suppose we are given a graph G = (V,E) and two vertices
in the graph, s, t ∈ V , and we want to predict the shortest path distance from s
to t by a quick inspection of the graph. Instead of running a dedicated algorithm
tailored to do this, suppose we want to make an educated guess about the shortest
path distance, quickly and fairly accurately. Suppose we have a dataset of graphs
with designated start and end nodes, which we have considered in the past, and
therefore know the shortest path distance between s and t in these graphs.

The task T , the objective or the problem at hand, is to predict the shortest
path distance from s to t. The experience E is the data that we can learn from, in
this case, the set of graphs in the database and the corresponding shortest path
distances. The performance measure P evaluates the accuracy of the prediction,
and weighs the predicted distance against the real shortest path distance. In our
example, we can for example take the squared difference between the prediction
and the actual shortest path distance as an error measure.

Predicting the shortest path distance given two nodes in a graph is an example
of supervised learning. In supervised learning, the algorithm learns from labeled
examples in a dataset. Each entry in this dataset is a pair consisting of the features
describing the object on one side, and the desired label on the other. Suppose
the dataset consists of n datapoints, each with p features, then the data can be
represented by matrix X ∈ R

n×p. The i’th row of the matrix, denoted by xi,
corresponds to the i’th data entry, and consists of the features [xi1, xi2, . . . , xip].
Each data in the database has a given label, which together make up the feature
vector y. In case of a classification problem, the labels are categorical, so for
example y ∈ {0, 1}p. If the labels are numerical, for example, y ∈ R

p, we are
dealing with a regression problem. By examining many of the data entries in X
with their corresponding labels in y, an algorithm might be able to learn a pattern
between the features and the labels. Afterward, when the algorithm is presented
with new, unlabeled, entries, it can predict the corresponding label based on the
pattern that it learned.

A model’s ability to predict well on data entries that it did not encounter
before is called generalization. A model that generalizes well captures the essence
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of the pattern in the data, but ignores uninformative noise. In the unfortunate
case that a model also learns to interpret noise as information, overfitting might
happen. An overfitted model performs well on training data, but fails to gen-
eralize to unseen data points. One of the goals of machine learning is to find a
balance between the risk of overfitting and the complexity of a model to enhance
generalization.

As an alternative to supervised learning, a second type of machine learning is
unsupervised learning. In this learning paradigm, the learning data is unlabeled.
Instead of learning to predict a label for each data entry, the aim is to learn the
structure that is present within the data. If we consider the example of the graph
again, an unsupervised learning task could be to cluster the nodes in the graph
based on their proximity.

A third paradigm of machine learning is reinforcement learning, in which an
algorithm learns by interacting with an environment. The algorithm consists of
a so-called agent that makes an action based on a policy. The environment gives
feedback based on the action in the form of rewards, after which the agent might
adapt its policy. The goal of the agent is to adapt its policy in such a way that
it maximizes the total received reward. The example of finding the shortest path
distance between two nodes in a graph can illustrate how reinforcement learning
works. Suppose an agent starts at node s, and travels through the graph, trying
to find the shortest route to node t. After traversing an edge, the agent receives
feedback from the environment indicating how much the distance between the
agent and the target node t decreased. The feedback can help the agent to
adjust its policy such that edges that bring the agent closer to t will be favored.
Ultimately, after many tries, the agent will learn what edges to take to travel
from s to t quickly.

The rest of this section consists of a brief explanation of the machine learning
models that we use throughout this thesis: linear regression, neural networks and
random forests.

2.3.1 Linear Regression

Linear regression is a type of supervised learning. Suppose we are given a dataset,
[x1,x2, . . . ,xn] that consists of n datapoints, where each datapoint xi ∈ R

p con-
tains p features. The label vector is denoted by real-valued p-dimensional vector,
y ∈ R

p, so that we are indeed dealing with a regression problem.
In linear regression, the aim is to find a linear relation between the features

and the target value. The assumption in linear regression is that the relation
between the features and the label for the i’th entry can be expressed in the
following equation:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi.
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Or in matrix form:
y = Xβ + ε.

Here, β ∈ R
p+1 is a vector of coefficients that describe the relation between the

features and the target value. We allow a slight abuse of notation and use X
for the n × p + 1 matrix consisting of the rows [1, xi1, xi2, . . . , xip], in contrast
with the previous section, where X was defined as a n × p matrix. ε ∈ R

n is an
n-dimensional vector representing the error or residual, defined as the deviation
between the true labels and the prediction.

The goal of linear regression is to find the coefficient vector β that is the best
fit to model the observations in the data set. This can be achieved by taking the
sum of squared residuals as a performance measure and minimizing this measure.
The sum of squared residuals is defined as follows:

P (X,y,β) = εTε = (y −Xβ)T (y −Xβ) .

The optimal coefficients that minimize this performance measure can be obtained
by solving the following set of equations, to which a unique solution exists if XTX
is invertible:

β =
(
XTX

)−1
XTy.

After computing β, the model can be used to predict the label ŷ for new data as
follows:

ŷ = Xβ.

2.3.2 Neural Network

Neural networks are inspired by the way that a brain works. They consist of
multiple layers of nodes, where each node takes an input, manipulates it and
outputs the result. By doing so, complex patterns can be recognized in the data
through training.

Many different types of neural networks exist, like recurrent networks or con-
volutional networks. We refer to Goodfellow et al. [2016], Haykin [2009], Bishop
and Nasrabadi [2006] for complete overviews. One of the basic neural network
structures is a multilayer perceptron. We explain it in more detail here. A multi-
layer perceptron consists of several layers, each consisting of nodes called neurons.
The following layers are present in a network:

• Input layer. The nodes in the input layer represent the features in the data.

• Hidden layers. Usually, several layers that receive data from the previous
layer, manipulate the data, and send it to the next layer.
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• Output layer. The nodes in the output layer compute the output of the
network. In the case of a classification problem, the output consists of
a distribution over the classes. In the case of a regression problem, the
network outputs the predicted target value.

Each neuron computes a weighted sum of its inputs, adds a bias term, and
applies an activation function to the result. Formally, the output of a neuron j
in layer l is computed as follows:

a
(l)
j = σ

(
nl−1∑
i=1

w
(l)
ij a

(l−1)
i + b

(l)
j

)
.

Here, nl is the number of neurons in the l’th layer, a(l)j is the output of the j’th
neuron in layer l, w(l)

ij is the weight of the edge between neuron i in layer l − 1

and j in layer l, b(l)j is the bias term in the j’th neuron of layer l and σ(·) is the
activation function for the j’th neuron of layer l.

The activation function serves as a way to introduce non-linearity into the
neural network. This enables the network to learn complex structures in the
data. Usual activation functions are for example:

• Sigmoid : σ(x) = 1
1+e−x ,

• ReLU (Rectified Linear Unit): σ(x) = max(0, x),

• Tanh: σ(x) = tanh(x) = ex−e−x

ex+e−x .

Deciding how many layers a neural network should have, how many nodes
there should be per layer, and which activation to use is part of the design of the
neural network. Often several designs are tested to decide which one works best.
The values of the weights and biases in the network are not part of the design,
but they are optimized by exposing the neural network with data, as explained
below.

As for the linear regression model, a neural network can be used to compute
a prediction ŷi based on a feature vector xi. This is done with a process called
forward propagation, in which the feature vector serves as input for the input layer.
Sequentially, the data is passed through the layers in the network, ultimately
computing an output in the output layer. The output serves as the prediction ŷ.

Given the prediction ŷ and the true value y, the loss function can be calcu-
lated. For regression tasks, this can, e.g., be the Mean Squared Error (MSE),
which is the sum of squared residuals divided by the number of observations,
formally defined as:

L(y, ŷ) = − 1

n

n∑
i=1

(yi − ŷi)
2 .
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For binary classification tasks, this can be, e.g., the average log-loss, defined as
follows:

L(y, ŷ) = − 1

n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) .

The structure of a neural network enables an efficient way of training, called
back-propagation. In this process, given a feature matrix X ∈ R

n×p and labels y,
the weights and biases in the network are adjusted in order to minimize the loss
function. Gradient descent is used to update the weights and biases, by following
these steps:

1. Forward pass. For each input vector xi perform the forward propagation as
explained above to obtain ŷi.

2. Loss calculation. Calculate the loss for each y, ŷ pair.

3. Backward pass. Compute the gradient of the loss with respect to the pa-
rameters in the network, namely the weights and biases. The chain rule is
used to compute the loss through the network.

4. Parameter update. The computed gradient of the loss can be used to up-
date the weights and biases in the network, usually with an algorithm like
gradient descent. To illustrate, gradient descent updates the weight w(l)

ij as
follows:

w
(l)
ij = w

(l)
ij − η

∂L

∂w
(l)
ij

.

Here, η is the so-called learning rate of gradient descent and ∂L

∂w
(l)
ij

is the

gradient of the loss with respect to this specific weight.

2.3.3 Random Forest

A random forest is an ML model that consists of several decision trees, hence the
name, which together decide the outcome of a prediction. Random forests can be
used both for classification and regression tasks.

Random forests are a type of ensemble learning. Ensemble learning is based on
the principle of the wisdom of the crowd, since multiple base learners are combined
to create the prediction method. In the case of random forests, these base learners
are decision trees. Suppose there are T decision trees in the forest, denoted by
{h1, h2, . . . , hT}. Each tree hi in the forest is a classification or regression tree,
depending on the problem, trained on a subset of the training data.

A decision tree is a supervised learning algorithm that can be used for both
classification and regression problems. A decision tree is a tree-like model, with a
root node at the top, and internal nodes connecting the leaf nodes at the bottom
to the root node. The root node of a decision tree corresponds to all of the
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Algorithm 2 TrainRandomForest(D, T )

1: input dataset D, number of trees T ,
2: for t = 1, . . . , T do
3: draw a bootstrap sample Dt from D
4: ht = BuildTree(Dt) � train a decision tree ht based on Dt

5: return (h1, . . . , hT )

data in the data set. At each of the internal nodes, including the root node, the
data is split into subsets based on one or several of the features and a threshold
value. The leaf node represents the final decision for the subset of the data that
corresponds to that node. In classification problems, a leaf node gets a class label,
in regression problems, the leaf node gets a prediction value. The construction
of a tree is done by recursively splitting the dataset based on some features such
that a splitting criterion is maximized until a stopping criterion is met.

In the algorithm for training random forests, the concept of bootstrapping is
used. Suppose a dataset D = [X,y] consists of n samples. Then bootstrapping, or
bagging, means to take a subset of the dataset, with replacement. I.e., a bootstrap
sample of the given dataset also consists of n samples, but some of the samples
of the original dataset might be repeated and others might be left out.

The algorithm for training a random forest is given in Algorithm 2. In the
algorithm, a decision tree is created for each of the T bootstrap samples. The
decision trees created for a random forest often use random feature selection, i.e.,
a randomly chosen subset of the features is used to decide how to split the data
in the creation of the decision tree. The resulting forest consists of a collection of
the created trees.

When a random forest is used to create a prediction for a feature vector xi, the
predictions made at the leaf nodes of the T decision trees need to be aggregated
into a single prediction. For classification, this final prediction is computed by
majority voting, i.e., the final prediction is the class predicted by most of the
decision trees. For regression, the final prediction is the average of the predictions
of the separate decision trees.

Compared to a single decision tree, random forests reduce the risk of over-
fitting since each tree in the forest is based on only a subset of the data. For
the same reason, random forests are more robust to noise and are better able to
handle large amounts of data.
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Chapter 3

Dijkstra’s Algorithm with
Predictions for the Single-Source

Many-Targets Shortest-Path
Problem

3.1 Introduction

In recent years, techniques from machine learning (ML) have proven extremely
powerful to tackle problems that were considered to be very difficult or even
unsolvable. Success stories include, as mentioned in the introduction of this the-
sis, contributions to health care, natural language processing, image recognition,
board games, etc. (see, e.g., [Chugh et al., 2021, Lu and Weng, 2007, Otter et al.,
2020, Qayyum et al., 2020, Silver et al., 2018, 2017]). As such, machine learning
is intimately connected with optimization because many learning algorithms are
based on the optimisation of some loss function over a large set of training sam-
ples. Even though optimization techniques play a vital role in the design of ML
approaches, the reverse direction of using ML techniques to improve optimization
algorithms is much less explored.

In this chapter, we investigate the use of predictions in the context of a funda-
mental shortest-path problem, which is known as the single-source many-targets
shortest-path problem (SSMTSP). Given a directed graph G = (V,E) with non-
negative edge weights w : E → R≥0, a source node s ∈ V and a subset T ⊆ V
of designated target nodes, the goal is to compute a shortest path from s to
one of the target nodes in T . Note that the SSMTSP problem generalizes the
single-source single-target shortest-path problem (for which T = {t} for a given
target node t ∈ V ) and the single-source all-targets shortest-path problem (for
which T = V ). The attentive reader will have noted that the SSMTSP problem

29
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can be reduced to a single-source single-target shortest-path problem simply by
adding a new target node t and connecting each node in T to t with a zero-weight
edge. Unless stated otherwise, we adopt the viewpoint of having a set of tar-
get nodes throughout the chapter. These shortest-path problems are among the
most fundamental optimization problems with various applications in practice.
Further, both the assignment problem and the maximum weight matching prob-
lem in bipartite graphs can be reduced to the solving of n SSMTSP problems,
where n is the maximum number of nodes on each side of the bipartition (see,
e.g., [Bast et al., 2003] for details). Clearly, this emphasizes the importance of
deriving efficient algorithms for this problem.

The SSMTSP problem can be solved exactly in (strongly) polynomial time by
using a slight adaption of the well-known shortest path algorithm due to Dijkstra
[1959], referred to as Dijkstra in the remainder of this chapter. Basically,
Dijkstra grows a shortest path tree rooted at the source node s by iteratively
adding new nodes to the tree by increasing distances, until the first target node
from T is included. Dijkstra guarantees a worst-case running time of O(m +
n log n), where n and m denote the number of nodes and edges, respectively.
In order to achieve this running time, crucially the underlying priority queue
data structure must be implemented through Fibonacci heaps (see [Fredman and
Tarjan, 1987]). In terms of worst-case running time, Dijkstra is the best-known
algorithm that runs in strongly polynomial time for the shortest-path problem
with arbitrary non-negative edge weights (see, e.g., [Cormen et al., 2022]). If the
edge weights are known to be non-negative integers from a restricted range, there
are better algorithms (see also the related work section).

Given that the SSMTSP problem can be solved very efficiently by Dijkstra’s
algorithm, it is unclear how predictions can help to further improve the running
time of the algorithm. Reading the input instance alone takes time Θ(m + n),
thus, the best we can hope for is to reduce the O(n log(n)) term in the running
time of Dijkstra to O(n). In this chapter, we focus on exact algorithms for the
SSMTSP problem. More specifically, we require that the algorithm computes a
shortest path together with a certificate that proves optimality, even if the pre-
dictions are arbitrarily bad. A common approach to exhibit such a certificate is
by means of a corresponding dual solution to the linear programming formulation
of the problem. The single-source single-target shortest-path problem has a nat-
ural (flow-based) linear programming formulation (see, e.g., [Papadimitriou and
Steiglitz, 1998]). The dual of this linear program associates a dual variable π(u)
with every node u ∈ V and reads as follows:1

maximize π(t)− π(s)

subject to π(v) ≤ π(u) + w(u, v) ∀(u, v) ∈ E.
(3.1)

1Here, for the sake of conciseness, we state the dual linear program adopting the (equivalent)
viewpoint of having a single target node.
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In this formulation, we can fix π(s) = 0 without loss of generality. The respective
dual values then have a natural interpretation as shortest path distances. By
applying the complementary slackness condition, a dual feasible solution π =
(πu)u∈V proves the optimality of an s, t-path if and only if every edge e = (u, v) on
that path is tight, i.e., π(v) = π(u)+w(u, v). Most exact shortest path algorithms
known in the literature provide a certificate of optimality by constructing such
an optimal dual solution (or, equivalently, shortest path distances).

Chen et al. [2022] recently studied algorithms with predictions for the single-
source shortest-path problem with arbitrary edge weights under the assumption
that a (possibly infeasible) dual solution π̂ = (π̂(u))u∈V is available as a prediction.
Note that this prediction consists of n = |V | dual values. Building on earlier
work by Dinitz et al. [2021], they show that such predictions can be used to
obtain an algorithm to solve this problem in time O(mmin{‖π̂ − π∗‖1 · ‖π̂ −
π∗‖∞,

√
n log(‖π̂−π∗‖∞)}), where π∗ is an optimal dual solution to the problem.

In particular, the worst-case running time improves as the difference (evaluated
with respect to the L1- and L∞-norm) between the predicted duals π̂ and the
optimal duals π∗ decreases. Clearly, such results are appealing as they provide
a fine-grained running time guarantee depending on the (cumulative) additive
error of the predictions. On the negative side, however, assuming that one has
access to the entire dual solution π̂ might be a rather strong assumption in certain
settings—especially because the number of nodes (and thus the number of values
to predict) can be very large in practice.

In this chapter, we therefore consider the other end of the spectrum: We
assume that our algorithm has access to a single predicted value only, namely the
shortest path distance of a target node. Said differently, we assume that we have
access to a prediction of the objective function value π̂t of (3.1) (which might not
necessarily coincide with the optimal objective function value π∗t ). The question
that we address here is whether such a ‘minimalistic prediction’ suffices to still
achieve a running time improvement of Dijkstra’s algorithm.

Clearly, exploiting a prediction of the shortest path distance only is much
more restrictive than assuming that one has access to an entire dual solution—
in fact, the latter can be used to derive the former. Intuitively, it is clear that
it is more challenging to improve Dijkstra’s algorithm using such an (inferior)
prediction. The following observation lends further support to this intuition.
Recall that we require that our algorithm provides a certificate of optimality. If
the entire dual solution is predicted perfectly, this becomes trivial: the dual itself
provides such a certificate and is readily available in this case. On the other hand,
this remains a challenging task in our setting: even if the correct shortest path
distance is known, it is non-trivial (in terms of computational work) to compute
a corresponding dual solution that proves optimality. This latter observation will
be made more rigorous in Section 3.6.

Our algorithm is based on a heuristic improvement of Dijkstra’s algorithm
proposed by Bast et al. [2003] (referred to as Dijkstra-Pruning). The key
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idea of their algorithm is to exploit that Dijkstra’s algorithm might encounter
many target nodes in T before the actual target node (defining the shortest path
distance) is added to the tree: Dijkstra-Pruning simply keeps track of the
smallest distance B to a node in T that was encountered so far. The algorithm
then prunes each edge that leads to a node whose distance exceeds B—clearly,
these edges are irrelevant for the final shortest path. A more detailed description
of this algorithm will be given in Section 3.2. Although the pruning idea is very
simple, it can significantly improve the running time of the algorithm. In the worst
case, however, Dijkstra-Pruning has the same running time as Dijkstra.
Therefore, Bast et al. [2003] investigate the effectiveness of Dijkstra-Pruning
on random instances, both analytically and experimentally. They show that the
pruning of irrelevant edges significantly reduces the number of executed priority
queue operations on these instances.

3.1.1 Our Contributions

The main contributions presented in this chapter are as follows:

1. We combine an ML approach with the pruning idea above to obtain a new
algorithm for the SSMTSP problem. Basically, our algorithm (referred to
as Dijkstra-Prediction) computes a prediction P of the final shortest
path distance after a few iterations, and then uses this prediction P together
with the pruning trick of Bast et al. [2003] to further reduce the search space
it explores. On the ML side, one of the challenges is to define features
capturing the essence of the Dijkstra run which can be used to arrive at
a good prediction. On the algorithm-design side, we need to tackle the
problem that the prediction might be an underestimation of the actual
shortest path distance. We note that our algorithm works independently of
the specific method that is used to arrive at the prediction P .

2. We prove that our new algorithm Dijkstra-Prediction always computes
an exact solution and has a worst-case running time of O(m+ n log n) (in-
dependent of the prediction error). In particular, Dijkstra-Prediction
retains the best worst-case running time and always provides a certificate
of optimality. That is, while our algorithm will never use more priority
queue operations than the adapted Dijkstra algorithm, it can potentially
save many queue operations additionally.

3. We report on our extensive experimental studies that compare our new al-
gorithm Dijkstra-Prediction to the existing ones and evaluate different
prediction algorithms. Our experiments show that Dijkstra-Prediction,
which combines a neural network ML approach to compute the prediction
with an Update-Prediction procedure to handle possible underestima-
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tions, significantly outperforms all other algorithms (i.e., combinations of
different prediction algorithms).

4. We establish a lower bound (both in expectation and with high proba-
bility) on the number of edges pruned by our new algorithm Dijkstra-
Prediction. Our bound depends on the number of relevant edges (leading
to nodes whose distances exceed the shortest path distance) and increases
as the prediction error decreases. Our bound applies to arbitrary instances
as long the weights of the relevant edges are chosen at random—we refer to
this setting as the partial random model. Further, we show that no improve-
ment is possible in the worst case, even if the prediction is perfect—this also
justifies the use of our partial random model.

5. We then derive a bound on the expected number of queue operations saved
by Dijkstra-Prediction in comparison to Dijkstra-Pruning and
Dijkstra on random instances. While Dijkstra-Pruning already sig-
nificantly improves over Dijkstra, we show that Dijkstra-Prediction
further reduces the number of nodes which are inserted but never removed
from the queue. More specifically, we consider Erdös-Rényi random graphs
with average degree c and uniform edge weights in [0, 1], where the source
node is chosen uniformly at random and each node is selected as a target
node with probability q (formal definitions are given below). If D denotes
the shortest path distance and ε denotes the (additive) error of the predic-
tion with D < 1− ε, we show that the number of nodes inserted but never
removed from the priority queue by Dijkstra-Prediction, Dijkstra-
Pruning and Dijkstra, respectively, is at most

1

q

(
1 + ln(c− 1)− ln

(
1−D

ε

))
,

1

q
(1 + ln(c− 1)) and

c− 1

q
.

Here the latter two bounds were established by Bast et al. [2003]. Techni-
cally, this is the most challenging part of our analysis as we need to estimate
the savings incurred by the pruning bound B as well as the prediction bound
P in one probabilistic argument.

3.1.2 Related Work

Algorithms with predictions. Using ML techniques in combinatorial algo-
rithms has been studied intensively recently. As also mentioned in the introduc-
tion of this thesis, Bengio et al. [2021] give an overview of leveraging ML to solve
combinatorial optimization problems. In this survey, three different approaches
of using ML components in combinatorial optimization algorithms are given. Our
approach falls into the second of the three approaches, in which meaningful prop-
erties of the optimization problem are learned and used to augment the algorithm.
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The line of research known as Algorithms with Predictions falls into this second
approach and aims to achieve near-optimal algorithms when the predictions are
good, while falling back to the worst-case behavior if the prediction error is large
(see, e.g., [Mitzenmacher and Vassilvitskii, 2022, Lattanzi et al., 2020] and the
references provided above). This idea is applied to optimization problems like the
ski rental problem, caching problem, and bipartite matching.

Dinitz et al. [2021] use predictions to improve the worst-case running time
to solve the bipartite matching problem. Their main idea is to use predictions
for the dual values as a warm start of the primal-dual algorithm. Since the
predicted duals might not be feasible, they propose a rounding procedure to
compute a feasible dual, close to the predicted one. Moreover, they prove that
the prediction of the duals that they require for the algorithm can actually be
learned, by showing that this prediction problem has low sample complexity.

Chen et al. [2022] builds further upon the results of Dinitz et al. [2021]. First,
they give an improvement of the algorithm for bipartite matching, which reduces
the worst-case running time even more. Secondly, they extend the idea of using
predictions for primal-dual algorithms and apply it to a shortest-path problem.
When the predictions are accurate enough, they achieve an almost linear running
time. Further, they propose a general reduction-based framework for learning-
based algorithms and extend the PAC-learnability results of Dinitz et al. [2021]
beyond the bipartite matching problem.

The analysis in this chapter differs from the results of Chen et al. [2022] since
our algorithm only requires a single prediction for the shortest path value, instead
of a learned dual for each node. That is, our algorithm requires less in terms of
prediction, on the other hand, our algorithm does not improve the worst-case
running time. Instead, we can prove a lower bound on the number of expensive
priority queue operations that are saved.

Classical shortest path algorithms. An extensive survey of combinatorial al-
gorithms to solve the shortest-path problem is given by Madkour et al. [2017]. We
give a short summary of their extensive report, touching upon different shortest-
path techniques by grouping the methods into four categories.

As explained above, Fredman and Tarjan [1987] improve Dijkstra by introduc-
ing Fibonacci heaps. Alternative heap structures that gave further improvements
are AF-heaps [Fredman and Willard, 1990a,b, 1993] and relaxed Fibonacci heaps
[Driscoll et al., 1988]. An implementation based on stratified binary trees is intro-
duced by Emde Boas [1975]. Thorup [1999] indicates there is an analogy between
sorting and single-source shortest path, claiming that SSSP is no harder than
sorting the edge weights. Han [2001] improves on these results. Thorup [1999]
builds hierarchical bucketing structure, which is improved by Hagerup [2000].

The second category contains the distance oracle algorithms, introduced by
Thorup and Zwick [2005], which consist of a pre-processing phase and a query
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phase. In the pre-processing phase, an auxiliary data structure is constructed,
which is queried in the query phase to compute the shortest path. Distance
oracle algorithms can be both exact, like in [Fakcharoenphol and Rao, 2006], or
approximate, like in [Elkin and Peleg, 2004]. Some methods approximate distance
using a spanner, a subgraph that maintains the locality aspects of the original
graph. Other methods approximate distances using a landmark approach (see
[Sommer, 2014]), where each vertex stores distances to a set of chosen landmarks.
All distance oracle algorithms deal with a trade-off between space complexity and
query time.

Goal-directed shortest path algorithms fall in the third category. These algo-
rithms add annotations to vertices or edges with additional information. This
allows the algorithm to determine which part of the graph to search in the search
phase, and which parts to prune. A well-known algorithm in this category is
A∗, which, unlike Dijkstra, is an informed algorithm, since it searches the route
which leads to the goal. If an admissible heuristic is used, A∗ will return the
optimal shortest path, but it might fail if the heuristic does not work well. Sev-
eral variants and improvements to A∗ have been proposed, which include land-
mark approaches (see [Goldberg and Werneck, 2005]) or the concept of reach (see
[Gutman, 2004]). Intuitively, the reach of a vertex encodes the lengths of short-
est paths on which this vertex lies. Other goal-directed methods include edge
labels (see [Köhler et al., 2005, Schulz et al., 2000, Lauther, 2006]), the arc-flag
approach (see [Möhring et al., 2007, Hilger et al., 2009, Bauer and Delling, 2010]),
or pre-computed cluster distances (see [Maue et al., 2010]). In this last method,
the graph is partitioned in clusters, after which the shortest connection between
clusters is stored. Interestingly, also for A∗, recent research shows an interest in
replacing heuristics with machine learning. In [Eden et al., 2022], estimates in A∗

that were formerly done with heuristics are executed with learning techniques,
based on features of the nodes. They find there is a trade-off between the amount
of information used to describe a node and the improvement in the running time
of the algorithm.

The last category in this non-extensive list of shortest path methods is the
hierarchical shortest path methods. These methods are prominent for problems
which naturally exhibit a hierarchical structure, like road networks. An example
of a hierarchical method is the highway hierarchies, which label an edge on a
shortest path as a highway if it is not in the proximity of the source or target,
as done by Sanders and Schultes [2005, 2006]. Other hierarchical methods are
contraction hierarchies (see [Geisberger et al., 2008, 2012]) and hub labelling (see
[Gavoille et al., 2004, Thorup and Zwick, 2005]).

Approximating shortest paths using ML. Next to classical combinatorial
approaches, there has also been great interest from the field of ML in finding
approximates for the shortest path distance, using an ML perspective. For ex-
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ample, Bagheri et al. [2008] compute shortest paths by using a genetic algorithm.
Their algorithm works faster than Dijkstra, but they only test on small graphs
with at most 80 nodes. Also, more recently, using ML techniques to approximate
shortest path distances has led to interesting results. For example, Rizi et al.
[2018] create an estimate for the shortest path distance between two nodes in a
two-step procedure: first a deep learning vector embedding is applied and then a
well-known landmark procedure afterwards (see, e.g., [Zhao et al., 2010, 2011]).
Rizi et al. [2018] show results on large-scale real-world social networks with more
than one million nodes. Their method differs from our approach in the sense that
an algorithm is created to approximate shortest path distances in one specific
large-scale real-world graph, opposed to an algorithm that can be used for any
graph from a set of random graphs with similar properties.

3.1.3 Organization of Chapter

The chapter is organized as follows: In Section 3.2, we formally define the prob-
lem, describe the adapted Dijkstra algorithm on which our algorithms are based
on, and introduce the random graph model that we use in this chapter. In Section
3.3, we introduce our new algorithm that combines the edge pruning idea imple-
mented by the adapted Dijkstra algorithm with shortest path predictions and
prove its correctness. We also give an Update-Prediction procedure to handle
underestimations of the shortest path distance. In Section 3.4, we elaborate on
different prediction methods (both ML-based and based on breadth-first search);
we remark that our algorithm can be used with arbitrary prediction algorithms.
In Section 3.5 we describe our experimental setup and report on the respective
findings. The code that we used to obtain the experimental results reported in
Section 3.5 is available at2

https://github.com/w-feijen/dijkstra-predictions-for-SSMTSP.

In Section 3.6, we prove a lower bound on the number of saved queue operations
if the edge weights are chosen at random. We apply this bound to estimate the
savings on sparse random graphs.

3.2 Preliminaries

The SSMTSP has been defined in the introduction of the chapter. We use n and m
to refer to the number of nodes and edges of the underlying graph G, respectively.
For every node v ∈ V , we use δ(v) to denote the total weight of a shortest path
(with respect to w) from s to v; if v cannot be reached from s we adopt the
convention that δ(v) = ∞. Given that all edge weights are non-negative, we thus

2We are grateful to Ruben Brokkelkamp for creating an initial implementation of our algo-
rithm in C++, which we used as a starting point to build the rest of our code around.
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have δ(v) ∈ R≥0∪{∞}. Note that to solve the SSMTSP problem it is sufficient to
compute the shortest path distances of all nodes v ∈ V satisfying δ(v) ≤ D, where
D is the minimum shortest path distance of a target node, i.e., D = mint∈T δ(t).
Once these distances are computed, the actual shortest path can be extracted in
linear time O(n +m) by computing the shortest path tree rooted at s (see, e.g.,
[Cormen et al., 2022] for more details). Throughout this chapter, we assume that
there is at least one target node in T that is reachable from s, which can be easily
checked in linear time O(n+m), simply by running a breadth-first search (BFS)
[Cormen et al., 2022].

3.2.1 Dijkstra-Pruning Algorithm

As mentioned in the introduction of this chapter, our algorithm combines an
adaptation of Dijkstra’s algorithm by Bast et al. [2003] (referred to as Dijkstra-
Pruning) with an ML-prediction. We briefly review Dijkstra-Pruning here.

We first describe the standard Dijkstra algorithm (referred to as Dijkstra),
adapted to many targets. Dijkstra associates a tentative distance d(v) with
every node v ∈ V and maintains the invariant that d(v) ≥ δ(v) for every v ∈ V .
Initially, d(s) = 0 and d(v) = ∞ for all v ∈ V . The set of nodes is partitioned
into the set of settled and unsettled nodes. Initially, all nodes are unsettled, and
whenever the algorithm declares a node v to be settled, its tentative distance
is exact, i.e., d(v) = δ(v). The algorithm maintains a priority queue PQ to
keep track of the distance labels of the unsettled nodes v ∈ V with d(v) �=
∞. Initially, only the source node s is contained in PQ. In each iteration, the
algorithm removes from PQ an unsettled node u of minimum tentative distance,
declares it to be settled and scans each outgoing edge (u, v) ∈ E to check whether
d(v) needs to be updated; we also say that edge (u, v) is relaxed (pseudocode in
Algorithm 4). The algorithm terminates when a node u ∈ T becomes settled.
Dijkstra performs at most n Remove-Min, n Insert and m Decrease-Prio
operations. Its running time crucially depends on how efficiently these operations
are supported by the underlying priority queue data structure. In this context,
Fibonacci heaps introduced by Fredman and Tarjan [1987] are the (theoretically)
most efficient data structure, supporting all these operations in (amortized) time
O(m+ n log n). It is important to realize though that the actual time needed by
the queue operations depends on the size (i.e., number of elements) of the priority
queue. In general, a smaller queue size results in a better overall running time of
the algorithm.

An example of a directed graph G = (V,E) for V = {s, a, b, c, t1, t2} is given in
Figure 3.1, in which s is the given source node and t1 and t2 are two target nodes.
The weights of the edges are indicated in the figure. After the first iteration of
Dijkstra, the source node s is settled with δ(s) = 0. The priority queue is as
follows: ((a, 1), (c, 2), (t1, 4)), where an entry in the priority queue is denoted by
(v, δ(v)) for v ∈ V . At the end of the second iteration, node a is settled with
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Figure 3.1: Example of a weighted directed graph with start node s and two
target nodes t1 and t2.

δ(a) = 1. The priority queue is as follows: ((c, 2), (t1, 4), (b, 5), (t2, 6)). At the
end of the third iteration, node c is settled with δ(c) = 2. The priority queue
is as follows ((t2, 3), (t1, 4), (b, 5)). In the fourth iteration, the target node t2 is
removed from the priority queue and the algorithm terminates.

Dijkstra-Pruning works the same way as Dijkstra, but additionally
keeps track of an upper bound B on the shortest path distance to a node in T .
Initially, B = ∞ and the algorithm lowers this bound whenever a shorter path to
a node in T is encountered. Crucially, B ≥ D always, and as a consequence, each
edge (u, v) ∈ E that leads to a finite tentative distance d(v) with d(v) ≥ B can
be discarded from further considerations; we also say that edge (u, v) is pruned.
The pseudocode of Dijkstra-Pruning is given in Algorithm 3. Clearly, in the
worst case, Dijkstra-Pruning does not prune any edges. In particular, the
worst-case running time of Dijkstra-Pruning remains O(m+ n log n).

For the example in Figure 3.1, Dijkstra-Pruning would update B to 4
in the first iteration during the scanning of edge (s, t1). Bound B causes the
edges (a, b) and (a, t2) to be pruned in the second iteration. Subsequently, the
nodes b and t2 are therefore not inserted in the priority queue in that iteration,
and instead the priority queue is as follows at the end of the second iteration:
((c, 2), (t1, 4)). At the end of the third iteration the priority queue is also smaller,
namely: ((t2, 3), (t1, 4)). Like Dijkstra, also Dijkstra-Pruning terminates in
the fourth iteration.

3.2.2 Random Model

Bast et al. [2003] use the following random model to analyze the improved per-
formance of Dijkstra-Pruning and show that the expected savings for these
instances are significant, both analytically and empirically. The directed random
graph instances are constructed using the Erdös-Rényi random graph model by
Gilbert [1959], also known as G(n, p): there are n nodes and each of the n(n− 1)
possible (directed) edges is present independently with probability p = c/n, where
c is (roughly) the average degree of a node. Further, each node u ∈ V is chosen
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Algorithm 3 Dijkstra-Pruning(G,w, s, T )

1: d(s) = 0, d(v) = ∞ for all v ∈ V \ {s} � tentative distances
2: B = ∞ � pruning bound
3: PQ.Insert(s, d(s)) � priority queue
4: while not PQ.Empty() do
5: u = PQ.Remove-Min() � u becomes settled
6: if u ∈ T then STOP � stop when u is target
7: for (u, v) ∈ E do
8: tent = d(u) + w(u, v) � tentative distance of v
9: if tent > B then continue � prune edge (u, v)

10: if v ∈ T then B = min{tent, B} � update B

11: Relax(u, v, tent)

Algorithm 4 Relax(u, v, tent)

1: if d(v) > tent then � lower tentative distance
2: if d(v) = ∞ then
3: PQ.Insert(v, tent) � add v to PQ
4: else
5: PQ.Decrease-Prio(v, tent) � decrease priority of v
6: d(v) = tent � update distance of v

independently with probability q = f/n to belong to the target set T , where f
is the expected number of target nodes in T . The weight w(e) of each edge e is
chosen independently uniformly at random from the range [0, 1].

3.3 Dijkstra’s Algorithm with Predictions

Our basic idea is to further amplify the effect of the edge prunings by using a
machine learning approach to obtain a prediction of the shortest path distance
at an early stage. More concretely, suppose we have a Prediction algorithm
which, based on the execution of the algorithm so far, computes an estimate of the
shortest path distance D. We can then call this algorithm after a few iterations
to obtain a prediction P of D and use it to prune all edges that lead to a tentative
distance larger than P .

Suppose in the example given in Figure 3.1 there is a prediction P = 3.5
available from the start of the algorithm. This does not only prune the edges
(a, b) and (a, t2) like Dijkstra-Pruning, but also edges (s, t1) and (a, c) would
be pruned because of the prediction.

There are three main advantages from which our approach can (potentially)
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Algorithm 5 Dijkstra-Prediction(G,w, s, T, i0, α, β)

1: d(s) = 0, d(v) = ∞ for all v ∈ V \ {s} � tentative distances
2: B = ∞, P = ∞, i = 0 � pruning bound, prediction and iteration
3: PQ.Insert(s, d(s)), R = ∅ � PQ and reserve set R
4: while (not PQ.Empty()) and PQ.min-prio() ≤ P do
5: u = PQ.Remove-Min() � u becomes settled
6: if u ∈ T then STOP � stop when u is target
7: i = i+ 1
8: if i ≤ i0 then x2i−1 = d(u), x2i = B � extend trace
9: if i = i0 then P = α · Prediction(x) � get prediction

10: for (u, v) ∈ E do
11: tent = d(u) + w(u, v) � tentative distance of v
12: if tent > B then continue � prune (u, v)

13: if v ∈ T then B = min{tent, B} � update B

14: Relax-Prediction�(u, v, tent, P ) � call relax routine
15: Update-Prediction � call update prediction routine
16: continue with while-loop

benefit when compared to the algorithms Dijkstra and Dijkstra-Pruning.
Firstly, fewer queue operations may be performed because of the edges being
pruned. Secondly, edge pruning might start after a few iterations only, potentially
before having found any path to a target node and finally, queue operations may
take less time because the size of the priority queue remains smaller.

3.3.1 Detailed Description of Dijkstra-Prediction

We elaborate on our algorithm Dijkstra-Prediction (Algorithm 5) in more
detail. The algorithm builds upon Dijkstra-Pruning, see Section 3.2. The
three new input parameters i0, α and β will become clear below. During the first
i0 iterations, a vector x = (x1, x2, . . . , x2i0) is maintained for storing the trace
(as we term it) of the algorithm. In iteration i0, the constructed trace x is then
used to compute an initial prediction by calling the Prediction procedure, for
which several alternatives are given in Section 3.4. The algorithm keeps track
of both the bound B on the smallest distance to a node in T encountered so
far and the current prediction P . A scanned edge (u, v) is not inserted into the
priority queue, we call this pruning, whenever its tentative distance d(u)+w(u, v)
exceeds B or P . There is a somewhat subtle point in the algorithm: Note that
during the first i0 iterations the prediction P remains at ∞ as the trace is just
being built. As a consequence, throughout this stage it could happen that nodes
are inserted into the priority queue PQ, whose tentative distances are larger
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than the first prediction P (determined in iteration i0). After this stage, this is
impossible due to the pruning. It is because of these nodes that we have to add the
second condition to the while loop, which checks whether the minimum distance
of a node in PQ is less than the current prediction P . If not, the while loop
has terminated without encountering a target node. In that case, the Update-
Prediction procedure has to be initiated to increase the prediction and add all
newly relevant nodes to PQ, as explained below.

Ideally, we would like to come up with a Prediction procedure that provides
a prediction P which comes close to the actual shortest path distance D. In fact,
both over- and underestimations of D can be harmful, though in different ways:
If P overestimates D then edges that are irrelevant for the shortest path might
not be pruned and the algorithm might perform redundant operations—which
is undesirable. If P underestimates D then edges which are essential for the
shortest path might be pruned and an incorrect solution might be returned—
which is unacceptable. To remedy the latter, we equip our algorithm with an
Update-Prediction procedure (Algorithm 7): If the prediction P turns out to
be too small, it is increased by a factor β > 1 and the algorithm continues. Clearly,
such Update-Prediction procedures should not happen too often as this might
reduce the efficiency of the approach, therefore, the initial prediction is slightly
inflated by a factor α ≥ 1. By inflating the prediction in an Update-Prediction
routine, nodes that were previously considered irrelevant could potentially become
relevant. Here a node is considered relevant if its tentative distance is smaller than
the updated prediction. We need to insert the nodes that have become relevant
during the Update-Prediction routine into the priority queue, we call this a
batch insertion. During a batch insertion, we only insert a node if its tentative
distance does not exceed the current upper bound B.

We are able to efficiently execute a batch insertion by maintaining a set of
reserve nodes, R, during the algorithm. R will contain all nodes that have a finite
tentative distance, but have not been added to the priority queue because their
tentative distance exceeds the prediction in the current trial. Maintaining set
R is done by using a different relax routine than Dijkstra-Pruning, namely
Relax-Prediction and by using a hand-tailored data structure, both on which
we elaborate below.

The Relax-Prediction routine is similar to the standard Relax routine
(see Algorithm 6 and Algorithm 4). The main difference is that the node v is
only inserted into the priority queue if its tentative distance is smaller than the
prediction; otherwise, it is inserted into the reserve set R.

By using a tailored data structure for the reserve set, we can quickly execute
the batch insertions. In this data structure, we store nodes based on their tenta-
tive distance, like in the priority queue. However, unlike in the priority queue, the
nodes are not sorted based on this tentative distance. Instead, nodes are stored
in several (doubly) linked lists, which we call buckets. Each bucket has a bucket
number j ∈ N, and a node will be stored in bucket j = 1, 2, . . . if and only if it
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Algorithm 6 Relax-Prediction(u, v, tent, P )

1: if d(v) > tent then � lower tentative distance
2: if d(v) = ∞ then � v reached for the first time
3: if tent ≤ P then PQ.Insert(v, tent) � add v to PQ
4: else R.Insert(v, tent) � add v to R

5: else
6: if v �∈ R then PQ.Decrease-Prio(v, tent)
7: else � v is in R already
8: if tent > P then � v remains in R

9: R.Decrease-Prio(v, tent)
10: continue
11: R.Remove(v) � move v from R to PQ
12: PQ.Insert(v, tent)
13: d(v) = tent � update distance of v

Algorithm 7 Update-Prediction
1: P = β · P � inflate prediction
2: for each v ∈ R do � iterate over all relevant nodes in R and do batch insertion
3: if d(v) ≤ B then
4: R.Remove(v) � move v from R to PQ
5: PQ.Insert(v, d(v))

has a tentative distance tent such that βj−1P < tent ≤ βjP . Then, during the
j’th batch insertion, all the nodes from bucket j can simply be moved from R
into PQ.

3.3.2 Correctness Proof

As mentioned above, we insist that our algorithm is correct in the sense that it

1. terminates in polynomial time, and

2. computes an optimal solution to the SSMTSP problem.

The following theorem is proven by relating the two algorithms of Dijkstra-
Prediction and Dijkstra-Pruning to each other.

Theorem 3.3.1. Dijkstra-Prediction is correct.

The proof of Theorem 3.3.1 follows directly from the following invariant,
which establishes a connection between Dijkstra-Prediction with Update-
Prediction and Dijkstra-Pruning, and from Lemma 3.3.3, which establishes
that the reserve set operations do not increase the worst-case running time.
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Invariant 3.3.2. Consider the runs of Dijkstra-Prediction and Dijkstra-
Pruning on the same input instance. We use d, PQ and R to refer to the
respective data structures in Dijkstra-Prediction, and d′, PQ′ to refer to the
respective data structures in Dijkstra-Pruning. The following properties are
satisfied in each iteration:

(P1) Both algorithms remove the same node u from PQ and PQ′, respectively.

(P2) The set of nodes in PQ′ can be partitioned into the set of nodes in PQ and
the set of nodes in R with d(v) > P for all v ∈ R.

(P3) The tentative distances are equal in both algorithms, i.e., d(v) = d′(v) for
all v ∈ V .

Proof:
We assume that both algorithms employ a consistent tie-breaking rule for nodes
with similar distances. It is easy to see that the invariant holds for the first
iteration: the prediction is initialized to P = ∞ and thus the algorithms do
exactly the same, and R remains empty. Now, suppose by induction that the
invariant holds at the beginning of iteration i ≥ 1. We argue that the invariant
holds at the end of iteration i:

(P1) Suppose that node u is deleted from PQ in iteration i. By the condition in
the while-loop in Algorithm 5 it holds that d(u) ≤ P , which together with
(P2) gives that d(u) < d(v) for all v ∈ R. By the Remove-Min operation,
d(u) < d(v) for all v ∈ PQ, so d(u) < d(v) for all v ∈ PQ ∪ R. Since
PQ ∪ R = PQ′ (because of (P2)), we have d(u) < d(v) for all v ∈ PQ′.
From (P3), it follows that d′(u) < d′(v) for all v ∈ PQ′, which proves that
the same node is deleted in Dijkstra-Pruning.

(P2) We consider each queue operation executed by the algorithms in this it-
eration separately and argue that the claim remains true. Firstly, if the
claim holds at the beginning of an iteration, then it still holds after the
Remove-Min operation because the same node u is deleted from PQ and
PQ′. Secondly, suppose that in iteration i node v is inserted into PQ′ be-
cause edge (u, v) is relaxed. Then, before the insertion, d′(v) = ∞ and
d′(u) + w(u, v) < ∞. Edge (u, v) will also be relaxed in the Dijkstra-
Prediction algorithm. By (P3), we have d(v) = ∞ and d(u) + w(u, v) <
∞. This means that node v is either inserted into PQ or R. A node v
is only added to R if d(u) + w(u, v) > P . So the claim still holds after
an insertion when d(v) is set to d(u) + w(u, v). Thirdly, suppose that in
iteration i the tentative distance of node v in PQ′ is decreased because edge
(u, v) is relaxed. Then, before the tentative distance is decreased, d′(v) < ∞
and d′(u) + w(u, v) < d′(v). Again, edge (u, v) will also be relaxed in the
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Dijkstra-Prediction algorithm, and by (P3) we have d(v) < ∞ and
d(u) + w(u, v) < d(v). This means that node v will remain in PQ if it was
already there, and will be moved from R to PQ if d(u) + w(u, v) ≤ P . In
both cases, the claim will remain true after the Decrease-Prio operation
when d(v) is set to d(u) + w(u, v). Lastly, the property also remains true
when P is inflated in the Update-Prediction, procedure, since all v ∈ R
with d(v) ≤ P are moved to PQ and removed from R.

(P3) Both algorithms remove the same node u, update the tentative distance of
u’s neighbors based on the same condition and update it to the same value.
So if the claim holds before the iteration, it will also hold at the end of the
iteration.

�

The following lemma proves that the worst-case running time of our imple-
mentation of the reserve set is polynomial, but dependent on the weight of the
edges in the graph. We want to emphasize that the dependence on the weight of
the egdes in the graph is not necessary, but is merely a consequence of our choice
of implementation, chosen for simplicity. After the proof, we elaborate more on
the simple changes necessary to have a worst-case running time of all operations
on the reserve set that is O(m+ n).

Lemma 3.3.3. The worst-case running time of all operations on the reserve set,
for our chosen implementation, R is O(m+ n+ log(wmax/wmin)), where wmax =
maxe w(e) and wmin = mine w(e).

Proof:
Since D ≥ wmin, we can safely assume that P ≥ wmin, if this is not the case,
simply set P = wmin. The maximum number of buckets we need is then at most:

logβ

(nwmax

P

)
= log

(nwmax

P

)
/ log(β) ≤ log

(
nwmax

wmin

)
/ log(β).

We conclude that the Update-Prediction procedure is called at most
log((nwmax)/wmin)/ log(β) many times.

We analyze the complexity of three operations on the reserve set. Firstly, we
can insert a node into the reserve set in constant time by calculating the bucket
number with the given tentative distance, after which we can insert it into the
correct linked list. Secondly, a decrease priority operation is done by deleting
the node first, after which it is inserted with the updated priority. A decrease
priority can therefore also be performed in constant time. Lastly, in the j’th
Update-Prediction procedure, all the nodes of the j’th bucket are deleted
from the reserve list and inserted into the standard priority queue. Furthermore,
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we note that the number of insertions into R is bounded by the number of nodes,
and the total number of decrease priorities is bounded by the number of edges
in the graph. This proves that all operations on the reserve set can be done in
O(m+ n+ log(wmax/wmin)) time. �

As mentioned above, the implementation of the reserve list can be easily
improved to discard the dependency on the edge weights in the worst-case running
time. To accomplish this, we need to keep a list of used buckets. When the
prediction is obtained in iteration i0, the bucket corresponding to each node u
in the priority queue such that d(u) > P is added to the list of used buckets.
Moreover, whenever a node is inserted into the reserve list or when a decrease
priority happens for a node in the reserve list, the corresponding bucket is added
to the list of used buckets, if it was not already there. The length of the list of
used buckets is upper bounded by the number of insertions and the number of
decrease priority operations, and therefore at most O(n). Storing the list of used
buckets allows us in Algorithm 7 to directly jump to the next used bucket, which
decreases the number of times that the Update-Prediction procedure is called
to at most O(m+ n).

3.4 Prediction Methods

The Prediction algorithm used in our algorithm Dijkstra-Prediction can
be obtained in numerous ways. Below, we explain how we obtain a prediction
algorithm based on a machine learning approach. We elaborate on two different
machine learning models and compare them to a benchmark prediction. More-
over, two alternative prediction methods based on breadth-first search (BFS) are
given.

3.4.1 ML-Based Predictions

In order to make a prediction after i0 iterations, we need to be able to describe
the current optimization run by means of some characteristic features. One of
the challenges here is to come up with features that capture the essence of the
current run such that they can be used by the machine learning model to make
a good prediction of the shortest path distance. We do this by keeping track
of a lower and upper bound on the shortest path distance in each iteration.
More precisely, in iteration i ≤ i0, the distance d(u) of the node u extracted
from the priority queue serves as the lower bound di and the current value of
the pruning bound B is used as the upper bound Bi. The resulting sequence
x = (d1, B1, d2, B2, . . . , di0 , Bi0) of these lower and upper bounds for the first i0
iterations then constitutes what we call the trace of the algorithm.

A training sample and target for the machine learning algorithm then consists
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of the trace x and the corresponding shortest path distance D, respectively. The
set of samples for the machine learning models can be created by executing a run
of Dijkstra-Pruning on each problem instance of the training set. During this
run, both the trace x and the final shortest path distance D need to be stored.
Before the traces are used to train the machine learning models, we normalize
each feature by subtracting the mean and dividing by the standard deviation. To
prevent blowing up the mean value of the upper bound feature, all bounds Bi

which are equal to the initial value of B = ∞ are set to 0.
We implemented and compared two standard machine learning models,

namely a neural network model and a linear regression model, see Section 2.3
for a brief explanation of these models. The neural network model that we use is
a straightforward multilayer perceptron network consisting of two hidden layers,
for which we optimize the number of nodes per layer by a k-fold cross validation
(see, e.g., [Refaeilzadeh et al., 2009] for more details). To verify whether anything
has been learned by these models at all, the results for these models are compared
with a straightforward benchmark prediction. This benchmark prediction, which
is independent of the instance, is computed by taking the average of the shortest
path distance for each instance in the training set. The results for this validation
can be found in Section 3.5.2.

3.4.2 BFS-Based Predictions

As an alternative to the machine learning models given in Section 3.4, we imple-
ment two prediction methods that are based on breadth-first search (BFS). For
each instance, we can simply run a BFS from the source node s to determine
a path PBFS to any of the target nodes having the smallest number of edges.
We also call PBFS a BFS-path and use LBFS to denote its length (i.e., number
of edges). Note that, equivalently, LBFS is the shortest path distance to any of
the target nodes if all edge weights are set to 1. We use this BFS-path to derive
two different predictions of the actual shortest path distance D: (i) bfs: We
define the prediction P as LBFS · μw, where μw is the expected edge weight. (ii)
w-bfs: We define the prediction P as the sum of the actual weights on PBFS,
i.e., P =

∑
e∈PBFS w(e). Note that the latter prediction might overestimate but

never underestimate the actual distance D.

3.5 Experimental Findings

In this section, we present our experimental findings. We first introduce our
experimental setup and then discuss the results and insights we obtained from
the experiments.
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weights edges mean min max w-mean
random 4.363 0.553 0.065 1.848 0.127
unit 2.225 1.154 0.129 3.217 1.000

Table 3.1: Statistics on different shortest path parameters for 20,000 instances
(validation and test set).

3.5.1 Experimental Setup

We generated 100,000 instances of the SSMTSP problem using the random model
described in Section 3.2 with n = 1000 nodes, edge probability p = c/n with
c = 8, and target probability q = f/n with f = 20. The edge weights were
chosen independently uniformly at random from [0, 1]. Further, we fixed the
length of the constructed traces to i0 = 10. We only accepted an instance if
Dijkstra-Pruning executed more than i0 iterations to ensure that Dijkstra-
Prediction reaches the point where a prediction is made. This set of 100,000
instances was split into a training set of 80,000 instances used for building the
machine learning models, a validation set of 10,000 instances used for parameter
tuning and a test set of 10,000 instances used for the final experiments.

To get an idea of a few parameters related to the shortest path distance in the
generated instances, we provide some statistical data for the validation and test
set in Table 3.1. We computed the average number of edges on a shortest path, the
average, minimum and maximum cost of a shortest path, and the average weight
of an edge on a shortest path. Note that the first row refers to these parameters
with respect to the actual random weights, while the second row refers to the
case when all edge weights are set to 1.

3.5.2 Machine Learning Results

For each of the 80,000 graphs in the training set, we executed a run of Dijkstra-
Pruning, during which we stored both the features x and the final returned
shortest path distance y. This process yielded a training set of 80,000 samples,
where each sample was of shape (x, y). We used these 80,000 samples to built
both a neural network and a linear regression model.

The number of nodes in the two hidden layers of the neural network was opti-
mized by minimizing the mean absolute error (MAE) in a k-fold cross-validation
with k = 4 and a batch size of 256. We tested layer sizes 8, 16, 32, 64 and 128; the
results for the smoothed validation Mean Absolute Error can be found in Figure
3.2. We decided to use 16 nodes per layer and train for 47 epochs. We did not
use the validation set of 10,000 instances in the k-fold cross-validation, since it
was used to tune parameters α and β. We also tested a linear regression model
and the averaging benchmark prediction, but the neural network performed best
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Figure 3.2: Normalised smoothed mean absolute error of the validation set for
different hidden layer sizes.

Algorithm NN LR AB
Train MAE 0.0619 0.0883 0.1469
Train MAPE 0.1228 0.1844 0.3150
Test MAE 0.0617 0.0880 0.1477
Test MAPE 0.1217 0.1837 0.3160

Table 3.2: Mean absolute error (MAE) and mean absolute percentage error
(MAPE) for neural network (NN), linear regression (LR) and averaging bench-
mark (AB).

in both the training and the test set.
The results for the performance of the neural network, linear regression and the

benchmark are given in Table 3.2. Both machine learning models perform better
than the benchmark prediction, in both the training and test set. Moreover, the
neural network outperforms the linear regression model on both the training and
the test set.

3.5.3 Benchmark Algorithm Oracle

In order to assess the performance of the different algorithms, we decided to
use the following (idealized) benchmark algorithm to compare against: We run
Dijkstra-Pruning with the pruning bound B being initialized with the actual
shortest path distance D. We refer to this algorithm as Oracle.

Note that this algorithm only inserts nodes into the priority queue which are
necessary for finding the shortest path distance D. Said differently, the algorithm
spends the minimum possible amount of work to provide a certificate of optimality
for the shortest path distance D; no other algorithm could spend less work (as
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Figure 3.3: The queue size for fixed β = 1.3 and varying α (left) and fixed
α = 1.3 and varying β (right) for Dijkstra-Prediction. The x-axis refers to
the number of iterations.

long as we insist that the shortest path distance is always computed correctly).
We want to stress that the Oracle algorithm is a hypothetical algorithm, in

the sense that it uses information, namely the shortest path distance, that would
usually be unknown during solving the SSMTSP. The oracle can therefore only
be used to test the potential of the Dijkstra-Pruning, but it should not be
considered a fair competitor of the algorithms that use actual predictions.

3.5.4 Parameter Tuning

There are two parameters in the Update-Prediction procedure that decide how
to handle the machine learning prediction. The first one is α, which specifies the
amount by which the initial prediction is inflated. The second one is β, the amount
by which the prediction is inflated in the Update-Prediction algorithm. We
analyzed the impact of these parameters on the queue size; see Figure 3.3. Both
figures depict the queue size for the same instance, but with different values for α
and β. On the left, we fixed β = 1.3 and varied α; on the right, we fixed α = 1.3
and varied β. As is visible from these plots, a larger α means that the first call
of Update-Prediction occurs later. Also, a larger β leads to a larger number
of nodes inserted during Update-Prediction.

In the results for parameter tuning, and also in the next results section, we
have used the cumulative queue size to compare the outcomes of different algo-
rithms. It is defined as the sum of the number of elements in the queue over all
the iterations and denoted with C. Pruning more edges will result in fewer nodes
in the queue, resulting in a smaller queue size.

We tested several configurations for α and β on the instances in the validation
set. Tables 3.3 and 3.4 state the respective number of queue operations Q and
the cumulative queue size C for various choices. As it turns out, for both these
performance indicators it is best to choose α and β small.
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α\β 1.05 1.10 1.20 1.50 2.00
1.00 153.08 153.59 154.90 158.55 160.20
1.05 154.37 154.80 155.83 158.08 158.84
1.10 156.06 156.37 157.06 158.39 158.74
1.20 160.38 160.50 160.82 161.20 161.30
1.50 172.57 172.58 172.58 172.61 172.61
2.00 182.27 182.27 182.27 182.27 182.27

Table 3.3: Average number of queue operations (Q) for Dijkstra-Prediction
for different values of α and β on the validation set.

α\β 1.05 1.10 1.20 1.50 2.00

1.00 2446.0 2561.9 2740.4 3115.7 3274.6
1.05 2573.5 2669.2 2815.5 3067.5 3150.1
1.10 2732.6 2805.3 2914.2 3065.1 3104.4
1.20 3112.6 3148.4 3197.7 3251.9 3266.3
1.50 4104.3 4106.6 4109.5 4114.2 4114.2
2.00 4809.9 4809.9 4809.9 4809.9 4809.9

Table 3.4: Average cumulative queue size (C) for Dijkstra-Prediction for
different values of α and β on the validation set.

3.5.5 Discussion of Results

After tuning the parameters α and β, we ran our algorithms on the generated
instances. For four of these instances, the size of the queue throughout the algo-
rithm is illustrated in Figure 3.4. We start by considering how the queue sizes
differ for the different algorithms; see the top two rows in Figure 3.4. As to
be expected, the queue size of Dijkstra-Prediction never exceeds the one
of Dijkstra-Pruning and is closer to the one of Oracle. The improvement
of our Dijkstra-Prediction with respect to Dijkstra-Pruning varies and
depends on the instance. The top-left figure shows that Dijkstra-Pruning
was a great improvement compared to Dijkstra, but Dijkstra-Prediction,
did not decrease the queue size much more. This figure shows that there was
an Update-Prediction around iteration 42 and around iteration 55, which
can be seen from the sudden increase in the queue size. In the top-right fig-
ure, the benefit of Dijkstra-Prediction is much larger, and the queue size
of Dijkstra-Prediction comes close to the oracle. Next, we comment on the
Update-Prediction procedure; see the bottom row of Figure 3.4. On the left,
no restart was necessary since the prediction was not an overestimation of D.
This plot also indicates the interplay of the prediction P and the pruning bound
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B; first the former (iterations 10 to 14) and later the latter (iterations 15 and
onwards) providing the smaller upper bound. On the right, we needed to do
several Update-Prediction because the initial prediction turned out to be too
small. Update-Prediction adds some nodes from the reserve list to the pri-
ority queue (queue size increases) and continues. After several inflations of the
prediction with β, the prediction was sufficiently large to find the shortest path
distance.

If we zoom in to obtain a more fine-grained picture of the different queue
operations executed by the algorithms, the results are as specified in Table 3.5.
The respective rows state the number of Remove-Min (RM), Insert (IS) and
Decrease-Prio (DP) operations, the total number of queue operations (Q),
the number of trials (T ), the cumulative queue size C (over all iterations), and
the cumulative queue size relative to the Oracle C̄. The cumulative queue size
relative to the Oracle gives a quick overview on how the algorithm performs in
relation to the Oracle i.e., the algorithm in which the predictions are perfect.
The table shows the averages for all 10,000 graphs in the test set.

As to be expected, Oracle inserts and removes the minimum possible number
of nodes only. As can also be inferred from Invariant 3.3.2, Dijkstra, Dijkstra-
Pruning and Dijkstra-Prediction have the same number of Remove-
Min operations. Observe that the results show that our algorithm Dijkstra-
Prediction outperforms all other algorithms, both in terms of the total number
of queue operations and cumulative queue size. Dijkstra-Prediction outper-
forms Dijkstra-Pruning mostly on the number of insertions, as expected from
the analysis in Section 3.6. In terms of cumulative queue size, our algorithm
Dijkstra-Prediction even comes close to the benchmark Oracle, the aver-
age cumulative queue size being only 1.7 times larger than the one of Oracle;
Dijkstra-Pruning perform much worse, being off by a factor 3.6.

Next to counting the queue operations, which is a reliable measure in the sense
that it is machine-independent, we also measured the run time of the different
algorithms. The sum of the run times for the graphs in the test set can be seen in
Table 3.6. The Dijkstra-Prediction outperforms Dijkstra-Pruning, which
on itself is already a great improvement over Dijkstra. As expected, the hy-
pothetical Oracle algorithm beats them all, and shows the queue size required
in the case of perfect predictions. Even though the Dijkstra-Prediction al-
gorithm needs time to store the trace, make the prediction and keep track of
the reserve set, the benefit that the prediction provides is sufficient to improve
Dijkstra-Pruning.

3.5.6 Results for Different Graph Parameters

In all results so far in this chapter, we used a fixed set of parameters for the
random graph model, namely an average degree c of 8, and a target probability
q of 0.02. A natural question that might arise is how our algorithm performs on
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Figure 3.4: Top two rows (four distinctive instances): queue size of the algorithms.
Bottom row (same instances as in the second row): distance d(u) together with
B and P for the Dijkstra-Prediction. In all plots the x-axis refers to the
number of iterations.

a less specific random graph structure. To answer this question, we built a new
ML model, which is based on graphs with various random graph parameters, as
opposed to the single setting it relied on before. This new ML model showed us
that, even though it is based on graphs with various input parameters, Dijkstra-
Prediction is still able to reduce the cumulative queue size.

By taking c from {2, 5, 8, 16, 32} and q from {0.02, 0.06, 0.18}, we created
15 pairs of random graph parameters. For each of these pairs, we constructed
80,000 graphs, which together formed a large training set of 1.2 million instances.
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Oracle Dijks Prune Prediction bfs w-bfs

RM 59.39 59.39 59.39 59.39 59.39 59.39
IS 59.39 335.50 122.91 91.73 117.66 118.86
DP 0.78 43.96 5.87 2.89 5.29 5.46
Q 119.55 438.85 188.17 154.01 182.33 183.70

T 1.00 1.00 1.00 2.28 1.23 1.00
C 1456.16 13949.37 5245.96 2476.35 4825.09 4980.69
C̄ 1.00 9.58 3.60 1.70 3.31 3.42

Table 3.5: Number of Remove-Min (RM), Insert (IS) and Decrease-Prio
(DP) operations, the total number of queue operations (Q), the number of trials
(T ), the cumulative queue size C (over all iterations), and the cumulative queue
size relative to the Oracle C̄ for Dijkstra, Dijkstra-Pruning, Dijkstra-
Prediction and the oracle algorithm. Averaged over all graphs in the test set.

Oracle Dijks Prune Prediction

Run Time 2.91 14.51 5.29 4.80

Table 3.6: Run time in seconds for 10.000 graphs in test set for Dijk-
stra, Dijkstra-Pruning, Dijkstra-Prediction and the oracle algorithm.
Summed over all graphs in test set.

We created a machine learning prediction model based on this training set, as
explained before in Section 3.5.2.

For each of the pairs of random graph parameters, we performed the Or-
acle, Dijkstra, Dijkstra-Pruning and Dijkstra-Prediction algorithm
and compared the cumulative queue size of each algorithm to that of the Or-
acle. Table 3.7 shows the average relative cumulative queue size of 1, 000 in-
stances. These results reveal two things. Firstly and crucially, for each pair of
random graph parameters, Dijkstra-Prediction is able to reduce the cumu-
lative queue size compared to Dijkstra-Pruning. This means that our algo-
rithm does not lose its power to decrease the cumulative queue size, even when
it is used on less specific random graph structures. For lower values of q, which
means there are fewer target nodes in the instances, Dijkstra-Prediction has
a larger improvement over Dijkstra-Pruning than for larger values of q. A
second observation is that the relative cumulative queue size can be lower than
1.0. For example, when c = 2 and q = 0.02, Dijkstra-Prediction has a
smaller cumulative queue size than Oracle. This seems unexpected at first, but
can be explained by the fact that on average 4.83 Update-Prediction routines
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q = 0.02 q = 0.06 q = 0.18
c Dijk Prun Pred Dijk Prun Pred Dijk Prun Pred

2 2.20 1.57 0.40 2.55 1.61 0.90 2.84 1.66 1.49
5 6.10 2.62 1.01 7.71 2.92 2.19 8.86 2.95 2.82
8 9.58 3.60 1.82 12.97 4.13 3.35 15.02 3.64 3.50
16 16.04 4.76 2.84 24.78 5.26 4.51 31.20 5.07 4.92
32 22.55 6.05 4.15 43.21 6.76 5.95 57.54 6.03 5.89

Table 3.7: Cumulative queue sizes relative to the the cumulative queue size of
Oracle (C̄) for Dijkstra, Dijkstra-Pruning and Dijkstra-Prediction
algorithm, for different random graph parameters c and q.

are executed for these graphs. This fairly large number of Update-Prediction
routines shows that the prediction was significantly too low and had to be in-
creased several times. The low prediction caused the queue size to be low as well,
which explains the small C̄.

3.6 Lower Bounds on Savings

In this section, we derive our lower bounds on the savings of Dijkstra-
Prediction. We assume without loss of generality that all edge weights are
normalized such that w(u, v) ∈ [0, 1] for all (u, v) ∈ E. Further, for the sake
of the analysis, we assume that Dijkstra-Prediction starts with a prediction
P = D + ε, where ε ≥ 0 is the additive error of the prediction. In particu-
lar, we assume that the algorithm starts with this prediction from the beginning
(while it actually only becomes available after i0 many iterations); but given
that i0 is small, this assumption is negligible. Note that this clearly captures
the case when P is an overestimation of the actual distance D. However, our
analysis also provides bounds on the number of priority queue operations when
P is an underestimation of D. Let Punder be such an underestimation. Running
Dijkstra-Prediction with i0 = 0 and P = Punder will result in consecutive
calls of Update-Prediction until P exceeds D for the first time. Let Pover be
the value of P at this point in the algorithm. Now, we can compare the number
of queue operations between a run of Dijkstra-Prediction that makes a pre-
diction P = Punder and a run of Dijkstra-Prediction that makes a prediction
P = Pover. It holds that in the run with P = Punder each node can only be
inserted at a later stage into the priority queue than in the run with P = Pover.
It follows that the number of queue operations in the run starting with the un-
derestimation is at most the number of queue operations in the run starting with
the overestimation.
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3.6.1 Worst-Case Instances

We first show that Dijkstra-Prediction might not prune a single edge, even
if the prediction is perfect (i.e., ε = 0). To see this, suppose that an adversary
can fix the entire input instance. Consider the instance depicted in Figure 3.5
(t being the only target node), parameterized by ε > 0. A moment of thought
reveals that, in the general case, a necessary condition for an edge (u1, vi) ∈ E to
be pruned is that it belongs to the set L, defined as:

L := {(u, v) ∈ E : d(u) ≤ D and d(u) + w(u, v) > D}.

In Figure 3.5, L is indicated in grey. However, none of these edges will be pruned,
neither because of B nor P , since the tentative distance of each vi is 1 + ε/2,
B = ∞ and P = 1 + ε. This holds even if the prediction is perfect (i.e., ε = 0).
The point here is that the distance d(u1) = ε of the start node u1 is small, and
thus the tentative distance of vi cannot exceed P .

With this insight, we can strengthen the necessary condition for an (u, v) ∈ E
to be pruned. Not only must (u, v) be in L, it must also hold that d(u) > D−1+ε.
Based on a fixed threshold for d(u), namely θ ∈ (D− 1 + ε,D], we define the set
of relevant edges as the set for which this necessary condition holds:

Lθ := {(u, v) ∈ E : θ ≤ d(u) ≤ D and d(u) + w(u, v) > D}. (3.2)

Suppose that an adversary can fix the instance as before, but now we enforce it
to have many relevant edges. Even then, none of these relevant edges might be
pruned. To see this, consider the partial instance depicted in Figure 3.6. Here,
the nodes ui removed from the priority queue are sorted by increasing distances
d(ui) (from left to right); only the ui’s are shown for which d(ui) > D − 1 + ε.
Also, only the relevant edges in Lθ are shown (indicated in grey). Without further
restrictions, the adversary can still fix the weights of the relevant edges in Lθ to
be D + ε/2 − d(ui). Like in the previous example, none of these edges will be
pruned, neither because of B nor P , since d(vi) = D + ε/2, B can be as large as
∞ and P = D + ε. Note that this holds even for perfect predictions and θ being
arbitrarily close to D (i.e., ε = 0 and θ → D).

The conclusion to draw from these examples is that our algorithm might not
save on priority queue operations at all in the worst case. In essence, the crux here
is that even though we have perfect information about the shortest path distance,
this is not enough to speed-up the construction of the optimality certificate. Note
that for both instances the distances of all nodes need to be determined correctly
to obtain such a certificate. Given that Dijkstra already uses the minimum
number of priority queue operations to compute such a certificate, we cannot
hope to improve on this.
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Figure 3.5: Instance in which no savings can be expected from our algorithm.
There is no pruning, even if predictions are perfect (ε = 0).

· · · · · · · · ·
θ d(t) = D

ui

vi

w(ui, vi) = D + ε
2 − d(ui)

d(vi) = D + ε
2

D − 1 + ε

Lθ

Figure 3.6: Instance in which no savings can be expected from our algorithm.
There is no pruning, even if many relevant edges (ui, vi) ∈ Lθ.

3.6.2 Partial Random Instances

Based on these examples, it is clear that we need to further restrict the power of
the adversary. We therefore introduce randomness in the instances to obtain a
more fine-grained understanding of the savings achieved by our algorithm. Gen-
erally speaking, we will do this by enforcing randomness on some of the edges,
while allowing the adversary to still control the rest of the input instance.

The setup is as follows: We suppose that the adversary can fix the set Q =
{u1, . . . , ul} of nodes that are removed from the priority queue, where ui is the
node removed in iteration i, and the corresponding distances d(u1) ≤ · · · ≤ d(ul)
of these nodes. Specifically, since D = d(ul), this means that the adversary can fix
the value of D. Further, the adversary can fix all outgoing edges of the nodes in Q.
Note that by doing so we implicitly allow that the adversary can fix the weights
of certain edges to enforce this configuration (because these weights determine
the order in which the nodes are removed from the priority queue). Crucially,
however, we do not allow the adversary to fix the weights of the relevant edges
in Lθ: the weight of each relevant edge in Lθ is random. In particular, in this
partially random setting, we assume that the weights for all edges (u, v) ∈ Lθ are
independent and the distance labels d(u) + w(u, v) are uniform on [D, d(u) + 1].

Given this partially random adversarial setting, we can lower bound the prob-
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ability of pruning an edge in Lθ. Like in the instances in Figure 3.5 and Figure
3.6, the adversary still has enough power to set the instance such that none of
the edges in Lθ are pruned based on the bound B. In contrast, each of the edges
in Lθ is pruned with positive probability due to the prediction P , due to the
randomness assumption. By definition of Lθ and θ, we know that for the edges
in Lθ the necessary condition for pruning, d(u) > D + 1− ε, holds.

Lemma 3.6.1. Suppose Lθ is defined as above, with θ = D + γε − 1, for some
γ ∈ (1, 1

ε
]. Let Xe be a random variable which equals 1 if edge e ∈ Lθ is pruned

and zero otherwise. Then P(Xe = 1) ≥ 1− 1
γ
.

Proof:
Let e = (u, v) ∈ Lθ be a relevant edge and let d(v) be the distance of v at
the end of the algorithm. Then e is pruned whenever the tentative distance
tent := d(u)+w(u, v) exceeds the prediction P . As argued before, e ∈ Lθ implies
that d(u) + w(u, v) is uniformly distributed on [D, d(u) + 1]. Furthermore, note
that 1− (D − d(u)) ≥ γε follows from d(u) ≥ θ and the definition of θ and note
that D + ε is contained in the interval [D, d(u) + 1], since D + ε ≤ D + γε ≤
d(u)+1. We can simply apply the cumulative distribution function for the uniform
distribution:

P(Xe = 1 | e ∈ Lθ) ≥ P(tent ≥ P | d(v) ≥ D)

= P(d(ui) + w(e) ≥ D + ε | d(v) ≥ D)

= P(w(e) ≥ D − d(ui) + ε | w(e) ≥ D − d(ui))

=
1− (D − d(ui) + ε)

1− (D − d(ui))
= 1− ε

1− (D − d(ui))

≥ 1− ε

γε
= 1− 1

γ
.

P(Xe = 1) = P(tent ≥ P ) = P(d(u) + w(u, v) ≥ D + ε)

=
d(u) + 1− (D + ε)

d(u) + 1−D
≥ 1− ε

γε
= 1− 1

γ
.

�

We give some intuition for the lemma: the number of edges in Lθ is largest when
γ is close to 1, and the lemma shows there is a small positive probability for
each of those to be pruned by the prediction. As γ increases to 1

ε
, the threshold

θ approaches D and the size of Lθ decreases. So the number of relevant edges
decreases, while the probability that each such edge is pruned increases.

Define X as the total number of pruned edges in Lθ, i.e., X =
∑

e∈Lθ
Xe. We

can lower bound both the expectation of X and X with high probability, which
is formalized in the following theorem.
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Theorem 3.6.2. Suppose Lθ is defined as above, with θ = D + γε− 1, for some
γ ∈ (1, 1

ε
]. Then the expected number of pruned edges in Lθ is

E[X] ≥
(
1− 1

γ

)
|Lθ|.

Further, if (1− 1
γ
)|Lθ| ≥ 8 lnn, then

X ≥ 1

2
(1− 1

γ
)|Lθ|

with high probability, i.e.,

P

(
X ≥ 1

2

(
1− 1

γ

)
|Lθ|

)
≥ 1− 1

n
.

Proof:
By linearity of expectation, it follows from Lemma 3.6.1 that:

E[X] = E

[∑
e∈Lθ

Xe

]
=

∑
e∈Lθ

E[Xe] =
∑
e∈Lθ

P(Xe = 1).

Note that X =
∑

e∈Lθ
Xe is a sum of |Lθ| independent random variables. Let

μ := E[X] be the expected value of X. The following (standard) Chernoff bound
holds for every δ ∈ (0, 1):

P(X ≤ (1− δ)μ) ≤ e−μδ
2/2.

By choosing δ = 1
2
, we obtain

P

(
X ≤ 1

2
μ

)
≤ e−μ/8 ≤ 1

n
,

where the second inequality holds because μ = E[X] ≥ (1 − 1
γ
)|Lθ| ≥ 8 lnn by

our assumption. Using this, we conclude that

P

(
X ≥ 1

2

(
1− 1

γ

)
|Lθ|

)
≥ P

(
X ≥ 1

2
μ

)
≥ 1− 1

n
.

�
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3.6.3 Random Model

We consider random instances constructed according to the model introduced
in Section 3.2. For these instances, we show that our Dijkstra-Prediction
algorithm saves a significant number of queue operations compared to Dijkstra-
Pruning.

In the random model, it is not straightforward to compute the size of Lθ.
Therefore, we will consider a specific subset of Lθ for which we are able to compute
the size. More specifically, we only consider the edges (u, v) from Lθ for which
the final distance d(v) is larger than D, i.e., edges from Lθ that lead to a node v
which is not in Q. Note that Lθ may contain edges (u, v) with tentative distance
d(u) +w(u, v) > D, but whose final distance d(v) ≤ D. These are relevant edges
having both endpoints in Q that might be pruned. However, we do not account
for these savings in our analysis here. Also, note that there could be multiple
edges in Lθ that lead to such a node v �∈ Q. In that case, we only consider the
(unique) edge in Lθ which has led to an insertion of v into the priority queue in
the standard Dijkstra algorithm (disregarding edges that have led to a decrease
priority operation). We use L′θ to denote this subset of Lθ:

L′θ := {(u, v) ∈ Lθ : v �∈ Q, (u, v) leads to insertion of v in PQ of Dijkstra}.

In the Dijkstra algorithm, all the end nodes of edges in L′θ are inserted in the
priority queue, but they are never removed. Dijkstra-Prediction can actu-
ally save a number of these insert operations by pruning the edges in L′θ. We will
lower bound these savings by computing an upper bound for the number of these
nodes which are still inserted in our Dijkstra-Prediction algorithm. Conse-
quently, all the edges which lead to nodes which are not inserted in Dijkstra-
Prediction are pruned.

First, we will prove the following Key Lemma which will help us to upper
bound the probability of inserting an endpoint of an edge in L′θ below. The
intuition of the lemma is as follows. E1 corresponds to the event that an edge in
L′θ is pruned because of the bound B and E2 corresponds to the event that en
edge in L′θ is pruned because of the prediction P . The lemma clearly shows the
impact of pruning based on the prediction, since P(E1) is shown to be at most
1/(k + 1) by Bast et al. [2003].

Lemma 3.6.3: (Key Lemma). Let Xj, j = 1, . . . , k+1, be k+1 uniform random
variables, with Xj uniform on [a, bj] and b1 ≤ · · · ≤ bk+1. Let P > 0 be a real
number, which is contained in all intervals, i.e., a < P < b1. Let E1 be the event
{Xk+1 ≤ Xj, ∀j ∈ [k]} and let E2 be the event {Xk+1 ≤ P}. Then:

P(E1 ∧ E2) ≤ 1

k + 1

(
1−

(
1− P − a

bk − a

)k+1
)
.
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Proof:
We will upper bound the probability by conditioning on values of Xk+1, using the
law of total probability and applying the density function of Xk+1: fXk+1

(s) =
1

bk+1−a .

P(E1 ∧ E2) =
∫ bk+1

a

P(E1 ∧ E2 | Xk+1 = x)fXk+1
(x)dx

=
1

bk+1 − a

∫ bk+1

a

P(E1 ∧ E2 | Xk+1 = x)dx

Since P(E1 ∧ E2 | Xk+1 = x) = 0 if x > P , we can write:

P(E1 ∧ E2 | Xk+1 = x) = P(E1 ∧ E2 | {Xk+1 = x} ∧ {x ≤ P})
= P({Xk+1 ≤ Xj, ∀j} ∧ {Xk+1 ≤ P} |

{Xk+1 = x} ∧ {x ≤ P})
= P(x ≤ Xj, j = 1, . . . , k | {Xk+1 = x} ∧ {x ≤ P})
= P(x ≤ Xj, j = 1, . . . , k | x ≤ P )

=
k∏

j=1

P(x ≤ Xj | x ≤ P )

=
k∏

j=1

(
1− x− a

bj − a

)
≤

(
1− x− a

bk − a

)k

.

The third equality holds because the conditioning already implies that Xk+1 ≤ P .
The fourth equality holds since the value of Xj, j = 1, . . . , k is independent of the
value of Xk+1. Thereafter we use that all the Xj’s are identically distributed, and
we use the cumulative distribution function of the uniform distribution. In the
last inequality, we exploit that bj − a ≤ bk − a for all j. We can use this, together
with bk−a

bk+1−a ≤ 1, to upper bound the expectation of E1 ∧ E2:

P(E1 ∧ E2) ≤ 1

bk+1 − a

∫ P

a

(
1− x− a

bk − a

)k

dx

=
1

bk+1 − a

[
−bk − a

k + 1

(
1− x− a

bk − a

)k+1
]P

a

=
1

bk+1 − a

[
−bk − a

k + 1

(
1− P − a

bk − a

)k+1

+
bk − a

k + 1

]

=
bk − a

bk+1 − a

1

k + 1

[
1−

(
1− P − a

bk − a

)k+1
]

≤ 1

k + 1

[
1−

(
1− P − a

bk − a

)k+1
]
.
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We will continue to lower bound the expected number of end nodes of edges
in L′θ which are inserted in the Dijkstra-Prediction algorithm, despite the
prunings. We call this quantity INRPθ. We condition on the event El. Similar to
the adversarial setting, the event El fixes the set Q of nodes that are removed from
the priority queue and the corresponding distances of these nodes (and therefore
also D). Further, El fixes all outgoing edges of the nodes in Q, and it fixes the
number of edges in L′θ, which is denoted with l. Again, we do not allow the
conditioning to fix the weights of the relevant edges in Lθ (and therefore L′θ): the
weight of each relevant edge in Lθ remains random.

It holds that the weights for all edges (u, v) ∈ L′θ are independent and the
distance labels d(u) + w(u, v) are uniform on [D, d(u) + 1]. This follows from
the random model, and because (u, v) ∈ L′θ implies d(u) + w(u, v) ≥ D and
d(u) + w(u, v) ≤ d(u) + 1, but nothing else. Note that the distribution of the
distance labels is the same as in the partial random instances that we considered
in Section 3.6.2, however, in that section, it was an assumption, while here it
follows from the random model in combination with the conditioning on El.

Theorem 3.6.4. Suppose L′θ is defined as above, with θ = D + γε− 1, for some
γ ∈ (1, 1

ε
]. Let INRPθ be the number of end nodes of edges in L′θ which are

inserted but never removed in the Dijkstra-Prediction algorithm. Under the
conditioning of the event El, i.e., |L′θ| = l and the adversarial setting, we have
that:

E[INRPθ | El] ≤
{

1
q

(
1 + ln

(
lq
γ

))
if l ≥ γ

q
,

l
γ

if l < γ
q
.

Proof:
Let l be the size of L′θ and let e1 = (u1, v1), e2 = (u2, v2), . . . , el = (ul, vl) be all
the edges in L′θ. Note that there might be repetitions in the ui’s, but all the vi’s
are distinct. For i = 1, . . . , l, define Xi = d(ui) + w(ei). We observed in the
previous section that for all edges ei in L′θ it holds that Xi is randomly uniform
on [D, d(ui) + 1].

In Dijkstra-Pruning ei leads to an insertion only if Xi is smaller than Xj

for every free vj, with j < i. Suppose that there are k of these free vj’s preceding
vi in the endpoints of L′θ. In Dijkstra-Prediction, an extra condition must
be met, namely that Xi does not exceed the prediction. To lower bound the
expectation of INRPθ, we partition over k, the number of free vj preceding vi:

E[INRPθ | El] ≤∑
1≤i≤l

∑
0≤k<i

(
i− 1

k

)
qk(1− q)i−1−kP({Xi ≤ Xj, ∀j ∈ [k]} ∧ {Xi ≤ P})
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To be able to apply our Key Lemma (Lemma 3.6.3), we need the variables Xj to
be randomly uniform. We have already shown that they are randomly uniform
on [D, d(uj) + 1], for which the upper bounds increase as j increases. Moreover,
we need that P < d(u1) + 1, which holds since for all edges (ui, v) in L′θ we have
d(ui) > D − 1 + ε and thus d(ui) + 1 > P . Therefore, we can apply our Key
Lemma to upper bound the probability in the sum above by

1

k + 1

[
1−

(
1− P −D

d(uk) + 1−D

)k+1
]
≤ 1

k + 1

[
1−

(
1− 1

γ

)k+1
]
,

which gives

E[INRPθ | El] ≤
∑
1≤i≤l

∑
0≤k<i

(
i− 1

k

)
qk(1− q)i−1−k

1

k + 1
(3.3)

−
∑
1≤i≤l

∑
0≤k<i

(
i− 1

k

)
qk(1− q)i−1−k

1

k + 1

(
1− 1

γ

)k+1

. (3.4)

From Bast et al. [2003] it follows that (3.3) is equal to
∑

1≤i≤l
1
iq
(1 − (1 − q)i).

We will use similar techniques to obtain such an expression for (3.4). We use(
i−1
k

)
1

k+1
= 1

i

(
i

k+1

)
, and then use the binomial theorem of Newton to rewrite the

sum:

(3.4) =
∑
1≤i≤l

1

iq

∑
0≤k<i

(
i

k + 1

)(
q

(
1− 1

γ

))k+1

(1− q)i−(k+1)

=
∑
1≤i≤l

1

iq

[ ∑
0≤k≤i

(
i

k

)
qk

(
1− 1

γ

)k

(1− q)i−k − (1− q)i

]

=
∑
1≤i≤l

1

iq

[(
1− q

γ

)i

− (1− q)i

]
.

Combining these two bounds, we obtain

E[INRPθ | El] ≤
∑
1≤i≤l

1

iq

[
1− (1− q)i −

(
1− q

γ

)i

+ (1− q)i

]

=
∑
1≤i≤l

1

iq

[
1−

(
1− q

γ

)i
]
.

For each i such that 1 ≤ i ≤ l holds that (1− (1− q
γ
)i) ≤ iq

γ
. Moreover, for each i

such that γ
q
≤ i ≤ l we can use the stronger bound (1− (1− q

γ
)i) ≤ 1. Note that

we do not use the latter bound in case γ
q
> l. This gives:

E[INRPθ | El] ≤
{

1
q
+ 1

q

∑
� γ

q �≤i≤l
1
i

if l ≥ γ
q
,

l
γ

if l < γ
q
.
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If l ≥ γ/q, it holds that
∑
� γ
q
	≤i≤l

1
i
≈ ln(l/�γ/q�) ≤ ln(lq/γ), and therefore:

E[INRPθ | El] ≤
{

1
q

(
1 + ln

(
lq
γ

))
if l ≥ γ

q
,

l
γ

if l < γ
q
.

�

The upper bound on the number of insertions is, among other variables, con-
ditioned on l: the number of edges in L′θ. Consequently, the bound is therefore
dependent on θ, which is controlled by γ. To loose this dependency, we will as-
sume that D ∈ [0, 1 − ε), allowing us to choose γ in such a way that θ = 0. 3

We can do this since the event El fixes the distances of all of the nodes that are
removed from the priority queue, including the last node. It follows that D is
fixed by the event El, which enables us to condition on the value of D as shown
below. For the assumed value of D and the corresponding choice of γ resulting
in θ = 0, it follows that all the edges that lead to nodes that are inserted but
not removed by Dijkstra are in the set L′θ. Said differently, the size of |L′θ| is
equal to the number of nodes that are inserted but never removed in the priority
queue by the Dijkstra algorithm. Bast et al. [2003] estimate the expected value
of this quantity, conditional on that many nodes are reachable from s, which is
denoted with “R is large” and explained in more detail below.

The number of nodes reachable from s is studied in Section 10.5 of Alon and
Spencer [2016]. Let α > 0 be such that α = 1 − exp(−cα), and let R be the
number of nodes reachable from s. Intuitively, R is either bounded by a constant
with probability about 1 − α, or it is approximately αn with probability about
α. Formally, for every ε > 0 and δ > 0, there is a t0 such that for all sufficiently
large n, it holds that

1− α− ε ≤ P(R ≤ t0) ≤ 1− α + ε,

and
α− ε ≤ P((1− δ)αn < R < (1 + δ)αn) ≤ α + ε.

Like in Bast et al. [2003], we set δ = 0.01 and we restrict ourselves to the set of
graphs with more than (1− δ)αn nodes reachable from s.

We want the probability of a target node being reachable from s to be large,
which we accomplish by upper bounding the probability that all reachable nodes
are not target nodes. This probability is

(1− q)αn ≤ exp(−αnq) = exp(−αf).

3To illustrate: in the random graphs that we consider in Section 3.5, q = 0.02 and c = 8,
the distance D has an average value of 0.55.
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This probability is at most 1/n2 whenever c ≥ 2 and f ≥ 4 lnn, since c ≥ 2
implies α > 1

2
. We therefore require that c ≥ 2, f ≥ 4 lnn and assume that

R > (1− δ)αn. We refer to this assumption as “R is large”.
Bast et al. [2003] denote the number of nodes reachable from s by INRS

and estimate its expected value. We summarize their findings in the following
proposition.

Proposition 3.6.5: (Bast et al. [2003]). Consider an instance from the random
model introduced in Section 3.2. Let R be the number of reachable nodes from s
in the random graph. Then the expected number of nodes that are inserted but
never removed in the priority queue by the Dijkstra algorithm, given that R is
large, is approximately:

E[INRS | R is large ] ≈ c− 1

q
.

Bast et al. [2003] show that the expected number of deletions from the queue is
approximately 1/q, and that for Dijkstra, the expected number of insertions
into the queue is approximately c/q. These results are solely based on the struc-
ture of the random graph, and no assumptions about the edge weights are made
in the analysis of these expectations. This implies that conditioning on D does
not change the expectation of INRS, i.e.:

E[INRS | R is large and D = d ] = E[INRS | R is large ] ≈ c− 1

q
.

By exploiting this proposition, we can drop the dependency on the size of L′θ and
we obtain the following theorem.

Theorem 3.6.6. Let INRP be the number of nodes that are inserted but never
removed by Dijkstra-Prediction. Then it holds that:

E[INRP | R is large and D = d ]

≤
{

1
q

(
1 + ln(c− 1)− ln

(
1−d
ε

))
if d ≥ 1− (c− 1)ε,

(c−1)ε
q(1−d) if d < 1− (c− 1)ε.

Proof:
Since the upper bound for the expectation of INRPθ only depends on l and γ
(where we choose γ based on d as described above) the following holds:

E[INRP | INRS = l, R is large, D = d ] ≤
{

1
q

(
1 + ln

(
lq

γ(d)

))
if l ≥ γ(d)

q
,

l
γ(d)

if l < γ(d)
q
.

Note that this expectation is differentiable in l, and also concave in l since the
derivative is monotonically non-increasing. The concavity allows us to drop the
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conditioning on l, and we can replace l with the expectation of INRS given that
R is large (using Proposition 3.6.5) and D = d. As described above, we choose
γ(d) = (1− d)/ε.

E[INRP | R is large and D = d ]

≤
{

1
q

(
1 + ln

(
(c−1)qε
q(1−d)

))
if c− 1 ≥ 1−d

ε
,

(c−1)ε
q(1−d) if c− 1 < 1−d

ε

≤
{

1
q

(
1 + ln(c− 1)− ln

(
1−d
ε

))
if d ≥ 1− (c− 1)ε,

(c−1)ε
q(1−d) if d < 1− (c− 1)ε.

�

Let INRR denote the number of nodes that are inserted but never removed by
Dijkstra-Pruning. It is shown by Bast et al. [2003] that:

E[INRR | R is large ] ≤ 1

q
(1 + ln(c− 1)) .

A moment of thought reveals that this upper bound remains the same if also
conditioned on D, i.e.:

E[INRR | R is large and D = d ] ≤ 1

q
(1 + ln(c− 1)) .

That is, our Dijkstra-Prediction algorithm either saves ln((1 − d)/ε)/q (in
case that d ≥ 1 − (c − 1)ε), or 1/q(ln(c − 1) − (c − 1)ε/(1 − d) (in case that
d < 1− (c− 1)ε) insertions of such nodes compared to the Dijkstra-Pruning
algorithm. So even though Dijkstra-Pruning already saves a significant num-
ber of insertions, Dijkstra-Prediction is able to further improve on this. Nat-
urally, these savings grow whenever the prediction becomes more accurate and ε
decreases.

In the experiments in the previous section, we considered random instances
with n = 1000, c = 8 and q = 0.02. For these instances, D is approximately
0.55 (see Table 3.1). With a prediction P = D + ε which overestimates D by
at most ε = 0.1 (which seems reasonable from the experiments), we are in the
case that d ≥ 1 − (c − 1)ε, and the expected number of INRP of Dijkstra-
Prediction is at most 63. In comparison, the expected number of INRS of
Dijkstra is 350; so our algorithm saves at least 287 of these insertions. The
expected number of INRR of Dijkstra-Pruning is at most 137; our algorithm
significantly improves upon this by exploiting the prediction.
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3.7 Conclusion and Discussion

The goal of the research in this chapter was to investigate whether Dijkstra’s
algorithm for the SSMTSP problem can be improved by using a single prediction
value while insisting on a certificate of optimality even if the prediction is arbitrar-
ily bad. Our experiments show that our algorithm provides a clear improvement
in terms of the number of queue operations compared to the (already sophisti-
cated) Dijkstra-Pruning algorithm. Also, the running time of our algorithm
improves over Dijkstra-Pruning.

From a practical point of view, there is a straightforward way to improve the
running time of our algorithm further: The bottleneck of our implementation is
that we insist on constructing a certificate of optimality even if the prediction is
arbitrarily bad. This forces us to maintain a partition of all visited nodes into the
priority queue and the reserve list. The latter is used to store all nodes that could
potentially become relevant at a later stage, which might cause an overhead. If,
however, we had some confidence that the predicted shortest path distance P
is not too far from the actual shortest path distance D (e.g., say that we need
to inflate P at most z times), then we could prune many more edges from the
beginning (e.g., by setting B = βzP ).

We conducted empirical experiments on random graphs. A natural follow-
up study would be to test the workings of Dijkstra-Pruning on real-world
networks. Especially real-world networks with a known well-working distance
approximation algorithm would be interesting candidates, like in Rizi et al. [2018].
The distance approximation algorithm predicts the distance between two given
nodes in the network, and can be consulted for the source node together with
each of the target nodes. The minimum of these predictions can then serve as
prediction P in Dijkstra-Pruning from the first iteration. We expect that
having such a prediction from the start can significantly reduce the algorithm’s
running time.



Chapter 4

Solving the Casting Problem

4.1 Introduction

The Generalized Assignment Problem (GAP) is a well-known and well-studied
problem (see e.g. [Ross and Soland, 1975, Fisher et al., 1986, Savelsbergh, 1997,
Martello and Toth, 1990, Cattrysse and Van Wassenhove, 1992, Yagiura and
Ibaraki, 2007, Öncan, 2007, Maniezzo et al., 2021]). An instance of GAP consists
of a tuple (M,N, (bi)i∈M , (wij)i∈M,j∈N , (vij)i∈M,j∈N) where M is a set of m knap-
sacks and N is a set of n items. Each knapsack i ∈ M has a capacity bi > 0, and
for each item j and knapsack i, a weight wij > 0 and a value vij > 0 are given. A
feasible solution for GAP is an assignment of all items to knapsacks such that the
total weight of items assigned to a knapsack is at most the knapsack’s capacity.
The goal of GAP is to find a feasible solution that maximizes the value.

We consider a special case of GAP, referred to as the Casting Problem,
in which each weight wij for an item j equals wj, independently of the knap-
sack i, and each value vij equals wj/bi. An instance of the casting problem is
denoted with (M,N, (bi)i∈M , (wj)j∈N), but for the sake of brevity we sometimes
use (M,N). The Casting Problem can naturally be formulated as an integer
linear program (ILP).To this aim, we introduce a decision variable xij ∈ {0, 1}
that indicates if item j ∈ N is packed in knapsack i ∈ M or not. The following
ILP describes our Casting Problem; subsequently, we use (CP) to refer to this
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formulation:

maximize c (x) =
∑
i∈M

1

bi

∑
j∈N

wjxij (4.1a)

subject to
∑
j∈N

wjxij ≤ bi ∀i ∈ M (4.1b)∑
i∈M

xij = 1 ∀j ∈ N (4.1c)

xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ N. (4.1d)

The Casting Problem was introduced by Deb and Myburgh [2017] and is
inspired by a practical problem present in metal foundries. In a foundry, heats
of metal are molten and cast into objects of different sizes. The sizes of the
objects that are cast from one heat may not add up to the size of the heat, and
some molten metal remains. The ratio of used metal to the total size of the
heat is called the metal utilization ratio. Formally, the utilization ratio of a heat
is defined as the total weight of objects that are cast from the heat divided by
the size of the heat. The goal of this practical problem is to create a casting
assignment of products over heats such that the utilization ratio, averaged over
the heats, is maximized. By regarding the heats as knapsacks, the Casting
Problem exactly solves this problem. To be precise, the goal of the Casting
Problem is to find an assignment that maximizes the sum of utilization ratios
over the heats, which is equivalent to finding an assignment that maximizes the
average utilization ratio.

It is not hard to see that the casting problem is closely related to the related
machine scheduling problem (also referred to as the uniform machine scheduling
problem) [Hochbaum and Shmoys, 1988]. In related machine scheduling, a set
of jobs with processing time pj for job j needs to be planned on machines with
speed si for machine i. Executing a job j on machine i takes pj/si time units.
In the decision version of related machine scheduling, the goal is to decide if a
schedule exists that plans each job on a machine and finishes within a given time
limit. A moment of thought reveals that the problem of finding a feasible solution
to the casting problem is equivalent to the decision version of related machine
scheduling with a time limit of 1, see also Section 4.2. The decision version of
related machine scheduling is NP-complete [Garey and Johnson, 1979, Hochbaum
and Shmoys, 1988]. By exploiting this equivalence, we conclude that the problem
of finding a feasible solution to the casting problem is NP-complete as well. In
particular, this means that we cannot expect to find an algorithm that finds an
optimal solution to the casting problem in polynomial time; in fact, this even
rules out that a polynomial-time approximation algorithm exists, unless P = NP.

Even though the Casting Problem is NP-complete, the aim of this chapter
is to find efficient methods of solving a specific set of instances. We focus on
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the instances given in the paper that introduces the Casting Problem, Deb
and Myburgh [2017]. A straightforward way to solve the given instances would
be to input the CPformulation to a mathematical programming solver like the
Gurobi optimizer [Gurobi Optimization, LLC, 2023]. However, as also pointed
out in Deb and Myburgh [2017], these mathematical programming solvers are not
capable of solving the larger instances in the instance set, i.e., with more than
10.000 variables, within a time limit of an hour.

The first method that we study is based on an alternative formulation of the
Casting Problem in which the assignment Constraint (4.1c) is relaxed and
lifted to the objective function. In this alternative formulation, a solution where
not every item is assigned to a knapsack becomes feasible, allowing mathematical
programming solvers to more easily find feasible solutions. A penalty in the ob-
jective function ensures that solutions in which every item is assigned are favored
over other solutions.

The second method that we propose in this chapter is based on a disaggregated
formulation for the Casting Problem, inspired by a branch-and-price method
used for solving the GAP by Savelsbergh [1997]. We present a disaggregated ILP
formulation of the Casting Problem, with an exponential number of variables.
Savelsbergh [1997] solve the GAP by considering the disaggregated formulation
with a restricted set of variables, where the variables are created using itera-
tive column generation techniques. We present an alternative for using column
generation by exploiting the small number of distinct item sizes and knapsack ca-
pacities in the given instances. By doing so, we create a set of variables for which
we can prove that any feasible solution of the disaggregated ILP formulation with
these variables is optimal. This allows us to solve all the instances introduced in
Deb and Myburgh [2017], also the larger ones, to optimality, taking at most ∼75
minutes. As a comparison, the algorithm in Deb and Myburgh [2017] needs more
than 6 days to solve the largest instance, with no optimality guarantee.

4.1.1 Contributions

• We show that the problem of finding a feasible solution to the casting prob-
lem is equivalent to the decision version of related machine scheduling and
therefore NP-complete. Therefore, we cannot expect to find a polynomial-
time approximation algorithm for the casting problem.

• We present a new formulation of the Casting Problem in which we re-
lax the item assignment constraint and lift it to the objective. This aids
mathematical programming solvers since it becomes easier to find feasible
solutions. We show empirically that the optimization time decreases by
using the alternative formulation.

• We present a disaggregated ILP formulation for the Casting Problem
with an exponential number of varbiables. We prove that it suffices to con-
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sider a specific subset of these variables, and show that any feasible solution
with these variables is an optimal solution for the Casting Problem. We
solve all considered instances to optimality within ∼75 minutes.

4.1.2 Related Work

The casting problem was introduced by Deb and Myburgh [2017]. The formula-
tion of the casting problem in that paper differs slightly from our definition: the
objective is scaled with the constant 1/m and an extra integer dj is introduced
for each item j, which indicates how many times item j needs to be assigned.
Integer variables are used instead of binary variables, which indicate how many
copies of item j are assigned to heat i. A moment of thought reveals that the two
formulations are equivalent, since the demand dj is bounded by 1/wj

∑
i∈M bi in

every instance that has a feasible solution.
In [Deb and Myburgh, 2017], the set of knapsacks and their capacities is not

given, but it is computed based on a given shortlist of knapsack capacities of
length k, denoted with l0, l1, . . . , lk−1. The computed set of knapsacks consists
of a certain number of repetitions of this shortlist. The number of repetitions,
denoted with r, is computed based on a given parameter η, for which holds that
0 ≤ η ≤ 1. η is the desired utilization ratio. Then the total number of repetitions
is computed as follows: it is the largest integer such that the sum of all item
weights divided by the total knapsack capacity exceeds η, i.e., the largest r ∈ N

such that ∑
j∈N wj

r
∑k−1

i=0 li
≤ η.

It follows that m equals the number of repetitions times the number of knapsacks
in the shortlist, i.e., m = r · k. Moreover, it follows that bi = li′ for i′ = i mod k.

After computing m based on η, a genetic algorithm is used to search for a
solution with a score that is at least η. In most experiments, η is set to 0.997.
It is claimed in the paper that it suffices to stop searching for a better solution
whenever a solution is found with score η, since it is implied that no solution can
exist with a score that exceeds η. We believe otherwise for general η. For η = 2/3,
we give a counterexample in Figure 4.1, where a feasible solution is given with a
score strictly larger than η. The counterexample in Figure 4.1 generalizes to more
values of η, by adding extra knapsacks with capacity 1 and the same number of
items with weight 1.

Since it holds that solutions might exist that have a solution value that exceeds
η, the genetic algorithm produces an approximate solution without any proof of
optimality. Deb and Myburgh [2017] show that this genetic algorithm is able to
find these approximate solutions for very large instances, up to 100.000 knapsacks,
on a specially equipped computer. Since a straightforward implementation of
the MIP formulation into CPLEX is not able to find solutions for these large
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b1 = 3 b2 = 6

(a) Solution 1

b1 = 3 b2 = 6

(b) Solution 2

Figure 4.1: Two possible solutions for an instance with two knapsacks and six
items, each with weight 1, for η = 2/3. The left solution has an average utilization
ratio of 2/3, exactly equal to η. The right solution has an average utilization ratio
of 3/4 and therefore shows that an average utilization ratio strictly larger than η
is possible.

instances, they claim that their study ‘directly compares with state-of-the-art
popular commercial and public-domain software in establishing the superiority
of population-based methods in solving large-scale problems’. However, we show
in our empirical results section that using a disaggregated formulation and a
predefined computation of specific variables solves even the large instances in
reasonable computing time, with a certificate of optimality.

Moreover, they claim that their study ‘clearly portrays the fact that if a near-
optimal solution is desired, it is possible to develop a polynomial-time algorithm
for addressing NP-hard problems’. We show that even without considering the
objective, the problem of finding a feasible solution to the casting problem remains
NP-complete. Stating that it is possible to develop a polynomial-time algorithm
would imply that P = NP. Lastly, Deb and Myburgh [2017] draw a parallel
between the casting problem and the multiple knapsack problem. We want to
point out the important difference that in the multiple knapsack problem it is not
necessary to assign all items to knapsacks, while this is required in the casting
problem.

4.1.3 Organization of Chapter

In the next section, we show that the Casting Problem is NP-complete and
elaborate more on the column generation approach for GAP. We present the
auxiliary variable formulation in Section 4.3, after which we give the disaggregated
formulation in Section 4.4. The results for running the different solving methods
on the empirical instances are reported in Section 4.5.
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4.2 Preliminaries

4.2.1 Casting Problem is NP-Complete

As explained in the introduction of this chapter, the Casting Problem problem
is closely related to the related machine scheduling problem. The decision version
of the related machine scheduling problem is defined by a set of jobs J , a set of
machines I, and a time limit T > 0. Each job j ∈ J has a given processing time
pj > 0 and each machine i ∈ I has a given speed si > 0. Executing a job j on
machine i takes pj/si time units. The goal of the problem is to decide if there
exists an assignment of jobs to machines such that all jobs are executed within
the time limit T .

By exploiting the relation with the related machine scheduling problem, it is
not hard to prove that the Casting Problem is an NP-complete problem. In
fact, the feasibility problem is already NP-complete.

Theorem 4.2.1. The problem of finding a feasible solution to the Casting
Problem is strongly NP-complete.

Proof:
We will prove that the feasibility problem of the Casting Problem is equivalent
to the decision version of related machine scheduling. Garey and Johnson [1979]
show that the decision version of related machine scheduling is strongly NP-
complete, even if all machines are identical.1 Given an instance of the related
machine scheduling problem (I, J, (si)i∈I , (pj)j∈J) we define an instance of the
Casting Problem, (M,N, (bi)i∈M , (wj)j∈N), as follows. Let M = I,N = J, bi =
si for i ∈ M and wj = pj/T for j ∈ N . Let xij denote a feasible solution of
the related machine scheduling problem, where xij = 1 if and only if job j is
assigned to machine i. We can compute a solution to the Casting Problem
by assigning item j to knapsack i if job j was assigned to machine i. Since each
feasible solution of the related machine scheduling problem assigns each job to
exactly one machine, it holds that each item is assigned to exactly one knapsack
in the casting solution. Moreover, for each feasible solution xij of the related
machine scheduling problem it holds that for every i ∈ I:∑

j

pj
si
xij ≤ T,

which is equivalent to, for every i ∈ M :∑
j

wjxij ≤ bi.

1If the number of machines is bounded, the problem is no longer strongly NP-complete and
can be solved in pseudo-polynomial time.
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This proves that the capacity constraint for the Casting Problem holds. This
proves that finding a feasible solution to the Casting Problem in the new
instance is equivalent to deciding if an assignment of jobs to machines exists that
can be executed within time limit T . �

4.2.2 Column Generation for GAP

In Savelsbergh [1997], a formulation with an exponential number of variables is
presented for the GAP. The linear relaxation of this problem can be solved with
column generation, while an integer solution is found using a branch-and-price
framework. Later in this chapter, we present a formulation for the Casting
Problem with an exponential number of variables, inspired by the formulation
by Savelsbergh [1997]. Therefore we elaborate on this column generation approach
for GAP here.

Let (M,N, (bi)i∈M , (wij)i∈M,j∈N , (vij)i∈M,j∈N) be an instance of GAP, as ex-
plained in the introduction of this chapter. Let Pi = {xi

1,x
i
2, . . . ,x

i
pi
} be the

set of all feasible assignments of items in N to a knapsack i ∈ M , i.e., each
xi
p = (xi

1p, x
i
2p, . . . , x

i
np), for i ∈ M and p ∈ {1, . . . , pi}, is a feasible solution to

the following set of constraints:∑
j∈N

wijx
i
jp ≤ bi

xi
jp ∈ {0, 1} j ∈ N.

For each i ∈ M , this set of constraints is equivalent to the feasibility problem of
a knapsack problem with capacity bi.

For i ∈ M and p ∈ {1, . . . , pi}, introduce binary variable yip, which indicates if
i gets assigned the items specified by the feasible assignment xi

p. The formulation
for GAP with an exponential number of variables, referred to as the disaggregated
formulation for GAP is then as follows:

maximize
∑
i∈M

pi∑
p=1

(∑
j∈N

vijx
i
jp

)
yip (4.2a)

subject to
∑
i∈M

pi∑
p=1

xi
jpy

i
p = 1 ∀j ∈ N (4.2b)

pi∑
p=1

yip ≤ 1 ∀i ∈ M (4.2c)

yip ∈ {0, 1} ∀i ∈ M, p = 1, . . . , pi. (4.2d)

The first constraint ensures that each item is assigned exactly once over all knap-
sacks. The second constraint ensures that at most one feasible assignment of
items is selected for each knapsack.
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Savelsbergh [1997] observe that the disaggregated formulation for GAP is
essentially obtained by applying Dantzig-Wolfe decomposition to the standard
formulation of GAP, where the knapsack constraints have been placed in the
subproblem. We refer to Bertsimas and Tsitsiklis [1997] for a detailed explanation
of Dantzig-Wolfe decompositions.

We refer to the linear relaxation of the aggregated formulation of GAP as the
master problem (MP). It is not possible to solve the MP directly since it contains
an exponential number of variables. Instead, we consider the restricted master
problem (RMP), which only considers a subset of the variables. We will add
the necessary variables to the RMP using a technique called column generation.
Column generation is a pricing scheme in which a column is created with the
largest reduced cost. Note that a column in the matrix form corresponds with
a variable in the disaggregated formulation, that is why the terms column and
variable are used interchangeably in the column generation context. The tech-
nique is introduced by Gilmore and Gomory [1961] in the context of cutting stock
problems.

We elaborate more on the workings of column generation for the GAP. The
RMP can be solved with a standard technique like the simplex method. Suppose
we have found an optimal solution to the RMP, then let (πi, λj) be an optimal
solution to the dual problem, where πi is the dual variable belonging to Constraint
(4.2b) and λj is the dual variable belonging to Constraint (4.2c). Additional
columns to the RMP can then be generated by solving the following pricing
problem:

max
i∈M

{z(KPi)− πi} , (4.3)

where for each i ∈ M , z(KPi) is the value of the optimal solution to the following
knapsack problem:

z(KPi) = maximize
∑
j∈N

(vij − λj) x
i
j

subject to
∑
j∈N

wijx
i
j ≤ bi

xi
j ∈ {0, 1} ∀j ∈ N.

(4.4)

If the solution to the pricing problem (4.3) is positive, a column is found with
positive reduced cost and it can be added to the RMP. If the solution to the
pricing problem is less than or equal to zero, it follows that the reduced cost is
less than or equal to zero for all i ∈ M . This must mean that the optimal solution
for the RMP is also optimal for the MP, and we no longer need to search for new
columns.

The column generation approach described above solves the MP, i.e., the
linear relaxation of the disaggregated formulation for GAP. To solve the original,
integer, disaggregated formulation for GAP, column generation must be applied
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in a so-called branch-and-price framework. Since we do not use this branch-and-
price framework for the Casting Problem, we omit the details here and refer
to Savelsbergh [1997] for the framework and compatible branching rules.

4.3 Auxiliary Variable Formulation

In this section, we introduce an alternative formulation of the Casting Prob-
lem, in which we allow that an item is not assigned to a knapsack, at the cost
of a penalty. We accomplish this by lifting Constraint (4.1c) to the objective
function, i.e., we deal with it in a soft manner. By doing so, we increase the num-
ber of feasible solutions and therefore make it easier to find a feasible solution,
which can aid mathematical programming solvers and potentially speed-up the
optimization time.

To accomplish this, we introduce decision variable zj for each item j ∈ N ,
which equals 1 if an item is not assigned to any knapsack, and 0 otherwise.
We can then update Constraint (4.1c) and introduce a penalty in the objective
function for any positive zj. In order to prioritize decreasing the penalty over
increasing the original objective value, we divide the original objective by m,
similarly as in the original paper by Deb and Myburgh [2017] (see Section 4.1.2).
The formulation, which we refer to as the Auxiliary Variable Formulation
(AVF), is then as follows:

maximize
1

m

∑
i∈M

1

bi

∑
j∈N

wjxij −
∑
j∈N

zj

subject to
∑
j∈N

wjxij ≤ bi, i ∈ M∑
i∈M

xij + zj = 1, j ∈ N

xij ∈ {0, 1}
zj ≥ 0.

(4.5)

Note that it is not necessary to enforce variable zj to be binary, this is implied
by the constraints and integrality of xij. We prove that this formulation indeed
solves feasible instances of the Casting Problem:

Theorem 4.3.1. If the Casting Problem has a feasible solution, then the
optimal solution value of the Casting Problem is equal to the optimal solution
value of (4.5).

Proof:
We assume that the Casting Problem has a feasible solution. It is easy to see
that x is a feasible solution to the Casting Problem if and only if (x, z = 0)
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is a feasible solution to (4.5). Moreover, the objective value of x in the Casting
Problem equals the objective value of (x,0) in (4.5), multiplied with m. This
means that (4.5) has a feasible solution with a positive objective value. Any
solution for (4.5) for which z is unequal to 0 has a negative solution value, there-
fore, z equals 0 in the optimal solution for (4.5), and it is therefore equal to the
solution value of the Casting Problem. �

4.4 Disaggregated Formulation

In this section we present a disaggregated formulation of the Casting Problem,
based on the disaggregated formulation of the GAP as presented by Savelsbergh
[1997] (see Section 4.2). Before giving the formulation, we introduce an item
aggregation that is also mentioned in Section 4.1.2, and a knapsack aggregation,
both are explained below. We also give assumptions on the instances that we
solve with the disaggregated formulation and present a general theorem which is
essentially an optimality condition for the Casting Problem.

Item Aggregation

Let N̄ be the original item set. Then the aggregated item set, for the remainder
of this section denoted with N , is the largest subset of N̄ , such that no two
items have the same weight. Intuitively, N is obtained from N̄ by traversing
through the items and deleting each item that has a weight that has already been
encountered. For each j ∈ N , let integer dj indicate the number of times an item
with weight wj appears in the original item set N̄ . We refer to dj as the demand
of item j. The item constraint (4.1c) needs to be adjusted to the new demand
parameter dj as follows: ∑

i∈M
xij = dj j ∈ N. (4.6)

For the creation of columns, explained later in this section, we make the following
assumption. Whenever the instances grow in size, we assume that the number of
unique item weights in N remains constant.

Knapsack Aggregation

We assume without loss of generality that the knapsacks are ordered based on
non-decreasing capacity, so b1 ≤ . . . ≤ bm. Suppose there are m̂ distinct knapsack
capacities. We partition the knapsacks into sets M(1), . . . ,M(m̂), such that all
knapsacks in a set have the same capacity, i.e., i, i′ ∈ M(k) ⇐⇒ bi = bi′ . The
partition preserves the order in the knapsacks, i.e., if i ∈ M(k) and i′ ∈ M(k′),
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then k ≤ k′ ⇐⇒ bi ≤ bi′ . By this notation, M(m̂) contains all knapsacks that
have the largest knapsack capacity, bm.

For the creation of columns, explained later in this section, we make an as-
sumption again. Namely, we assume that the number of unique knapsack capac-
ities, m̂, is at most 2.

Problem analysis

The aggregation of knapsacks and items allows us to prove the following theorem
about the optimality of a solution to the Casting Problem.

Theorem 4.4.1. Any feasible solution to the Casting Problem which maxi-
mizes ĉ is optimal, where ĉ equals:

ĉ =
∑

i∈M\M(m̂)

(
1

bi
− 1

bm

)∑
j∈N

wjxij.

Proof:
It suffices to prove that ĉ equals the objective function of the Casting Problem
minus a constant value λ, defined as:

λ =
1

bm

∑
j∈N

wjdj.

The objective function of the Casting Problem minus λ is equal to:

c (x)− λ =
∑
i∈M

1

bi

∑
j∈N

wjxij − 1

bm

∑
j∈N

wjdj

=
∑
i∈M

1

bi

∑
j∈N

wjxij −
∑
i∈M

1

bm

∑
j∈N

wjxij

=
∑
i∈M

(
1

bi
− 1

bm

)∑
j∈N

wjxij

=
∑

i∈M\M(m̂)

(
1

bi
− 1

bm

)∑
j∈N

wjxij = ĉ.

The second equality holds by (4.6) and the last equality holds since bi = bm for
all i ∈ M(m̂).

�

If there are only one or two different knapsack capacities, as we assume, The-
orem 4.4.1 can be simplified to one of the following corollaries.

Corollary 4.4.2. If all knapsacks have equal capacity, any feasible solution is
optimal.
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Proof:
Follows directly from Theorem 4.4.1 with m̂ = 1. Then M = M(m̂) and ĉ = 0,
so any feasible solution is optimal. �

Corollary 4.4.3. If there are two distinct knapsack capacities, any feasible solu-
tion that maximizes the total weight assigned to knapsacks in M(1) is optimal.

Proof:
Follows directly from Theorem 4.4.1 with m̂ = 2. Then M = M(1) ∪M(2) and
also M \M(m̂) = M(1), and therefore ĉ equals:

ĉ =
∑

i∈M(1)

(
1

b1
− 1

bm

)∑
j∈N

wjxij.

It follows that maximizing the weight on knapsacks in M(1) is equivalent to
maximizing c̄. �

Disaggregated Formulation for Casting Problem

For the remainder of this section, we allow a slight abuse of notation and write
bk if we mean bi for an i ∈ M(k), this is possible since all the knapsacks in M(k)
have the same capacity, by definition. For each of these subsets of knapsacks,
we will define an exponential number (denoted by pk) of decision variables. We
do this as follows: for k = 1, . . . , m̂, let Pk = {xk

1,x
k
2, . . . ,x

k
pk
} be the set of

all feasible assignments of items in N to a knapsack with capacity bk, i.e., each
xk
p = (xk

1p, x
k
2p, . . . , x

k
np) is a feasible solution to the following set of constraints:

∑
j∈N

wjx
k
jp ≤ bk

xk
jp ≤ dj

xk
jp ∈ N0, j ∈ N.

This set of constraints can be regarded as finding a feasible solution to a knapsack
problem in which at most dj copies of item j can be assigned to a knapsack with
capacity bk.

For k = 1, . . . , m̂ and p ∈ {1, . . . , pk}, we introduce integer variable ykp , which
indicates the number of knapsacks of M(k) that get assigned the items specified
by the feasible assignment xk

p. This allows us to give the following ILP, which we
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refer to as the disaggregated formulation of the Casting Problem.

maximize
m̂∑
k=1

1

bk

pk∑
p=1

(∑
j∈N

wjx
k
jp

)
ykp

subject to
m̂∑
k=1

pk∑
p=1

xk
jpy

k
p = dj ∀j ∈ N

pk∑
p=1

ykp = |M(k)| k = 1, . . . , m̂

ykp ∈ N0 k = 1, . . . , m̂, p = 1, . . . , pk.

(4.7)

The first constraint ensures that over all knapsacks, enough items are assigned.
The second constraint ensures that exactly enough assignments for knapsacks in
each M(k) are chosen.

The disaggregated formulation of the Casting Problem has an exponential
number of variables. Therefore, we will consider a so-called restricted master
problem (RMP) that considers only a subset of these variables. Usually, in column
generation approaches, new variables for the RMP are computed using column
generation repeatedly until an optimal solution has been found, as explained in
Section 4.2. The assumptions that we made on the instances that we consider
allow us to circumvent the process of column generation. We assumed that the
number of unique knapsack capacities and the number of unique item weights
are constant. This allows us to solve the RMP using a pre-computed set of high-
quality variables. The meaning of ‘high quality’ will be clarified below.

In fact, the quality of these pre-computed variables is as good as possible,
meaning that if we can find any feasible solution to the master problem with
these variables, it is automatically optimal. By Corollary 4.4.3, we know that for
instances with only two unique knapsack capacities, a feasible solution is optimal
if the total weight assigned to knapsacks with the small capacity is maximized.
Therefore, for the small knapsacks M(1), we let P1 be the set of all assignments
that consume all capacity on the knapsacks, i.e., variables x1

p such that∑
j∈N

wjx
1
jp = b1.

The utilization ratio for these variables is exactly equal to one. For the larger
knapsacks, we let P2 be the set of all variables that have a utilization ratio that is
at least a predetermined threshold. We are able to create these sets of variables
in tractable time since the number of unique item weights remains constant. By
constructing P1 and P2 as explained, it follows by Corollary 4.4.3 that any feasible
solution of the RMP with these variables is automatically optimal.

However, it is not guaranteed that a feasible solution with variables from P1

and P2 exists. Suppose there is an instance with two distinct knapsack capacities,
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for which all feasible solutions have some remaining capacity in a small knapsack.
I.e., there does not exist a feasible solution for which all of the capacity on small
knapsacks is assigned to items. Then, our method will not be able to find a feasible
solution, since P1 does not contain the right variables for finding a feasible solution
to RMP. There are two options to remedy this problem. The first would be to
increase the size of P1 and P2 by adding columns that correspond to knapsacks
with a smaller utilization ratio. A second approach would be to fall back to
standard column generation to generate new columns for the linear relaxation
and use a branch-and-price framework to obtain an integral solution.

4.5 Emprical Results

Deb and Myburgh [2017] give practical instances of the Casting Problem. In
this section, we elaborate on the various methods that we used for solving these
instances and also give the running times for each of these, which we compare
with the running times reported in the original paper.

Using various solving methods, we attempted to solve the given instances
to optimality. First, we simply fed the formulation of the Casting Problem
into a mathematical programming solver. We fed both the CP formulation (see
Section 4.1) and the formulation using auxiliary variables (AVF) (see Section
4.3). The next two methods are based on the disaggregated formulation of the
Casting Problem (see Section 4.4). The first of these methods is an off-
the-shelf programming package specifically aimed at solving column-generation
problems. The other method involves the disaggregated formulation and the
specific set of variables as explained at the end of Section 4.4. We give more
details about the instances that we use in Section 4.5.1 and finally present the
running times in Section 4.5.2.

4.5.1 Datasets

We consider three different sets of instances, originally presented by Deb and
Myburgh [2017], for which the numbers and sizes are given in Table 4.1, Table
4.2 and Table 4.3. All instances contain only 10 unique item weights, the number
of items per weight differs per instance. The first set contains 3 small instances, in
which the number of knapsacks ranges from 31 to 200, and all the knapsacks have
the same capacity. The second set contains only one instance which is significantly
larger and contains 100,000 knapsacks, with only 2 different knapsack capacities.
The last set contains 10 instances, in which the number of knapsacks ranges
from 5,000 to 100,000,000. As for the second instance set, the number of unique
knapsack capacities in each of these instances is only 2.
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1 2 3 4 5 6 7 8 9 10 # knapsacks

wj 175 145 65 55 95 75 195 20 125 50 b1 = 650

dj for 1a 20 20 20 20 20 20 20 20 20 20 31
dj for 1b 63 65 65 65 65 65 65 65 65 65 100
dj for 1c 127 130 130 130 130 130 130 130 130 130 200

Table 4.1: Instance 1a, 1b and 1c.

1 2 3 4 5 6 7 8 9 10 # knapsacks # knapsacks

wj 175 145 65 55 95 75 195 20 125 50 b1 = 650 b2 = 500

dj for 2 59227 58329 53327 53229 53429 53526 57022 52322 58229 52026 43480 56520

Table 4.2: Instance 2.

wj 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j

1 79 6240 12560 62000 125600 620025 1255980 6200270 12559745 61649750 123649750
2 66 6262 12562 62545 125620 625450 1256200 6254500 12562000 61706480 122647195
3 31 6217 12517 62517 125170 625170 1251700 6251700 12517000 61609500 123609500
4 26 6267 12567 62567 125670 625670 1256700 6256700 12567000 61752675 123752675
5 44 6262 12562 62562 125620 625620 1256200 6256200 12562000 61654900 123654900
6 35 6172 12172 62172 121720 621720 1217200 6217200 12172000 61680400 123680400
7 88 6076 12076 60576 120760 605760 1207600 6057600 12076000 61621160 122621160
8 9 6052 12052 60552 120520 605520 1205200 6055200 12052000 61621600 123621600
9 57 6017 12017 60517 120170 605170 1201700 6051700 12017000 61621600 123621600
10 22 6012 12012 60512 120120 605120 1201200 6051200 12012000 61652160 123652160

|M(2)| b1 = 650 2174 4348 21740 43480 217400 434800 2174000 4348000 21740000 43480000
|M(1)| b2 = 500 2826 5652 28260 56520 282600 565200 2826000 5652000 28260000 56520000

Table 4.3: Instance 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i and 3j. Note that compared
to Table 4.1 and Table 4.2, this table is transposed to optimize space.

4.5.2 Running Times

The first two methods involved solving the CP formulation and the Auxiliary
Variable Formulation (see Section 4.3) with Gurobi, respectively, using version
10.0.3 [Gurobi Optimization, LLC, 2023]. As mentioned in Section 4.1.2, Deb and
Myburgh [2017] terminate the optimization whenever a solution is found with a
utilization ratio of η = 0.997. To be able to compare with the results by Deb
and Myburgh [2017], we have also solved the AVF with this termination criterion
and refer to it as the objective limit (OL) method. We show in section 4.4 that
the casting problem is easily decomposed into smaller knapsack problems and
can be solved with column generation. Therefore the fourth solving technique
used the GCG (Generic Column Generation) package (PyGCGOpt version 0.1.4)
[Gamrath and Lübbecke, 2010], which is part of the SCIP Optimization Suite
(PySCIPOpt version 4.2.0) [Bestuzheva et al., 2021] and is specifically aimed at
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solving problems with column generation. For the fifth solving technique, we used
the RMP of the disaggregated formulation, as explained in Section 4.4, we let P1

be the set of all assignments that consume all capacity on the small knapsack,
and we let P2 be the set of all variables that have a utilization ratio larger than a
threshold of 0.98. When solving the instances with this method, we have always
been able to find a feasible solution with the created variables in P1 and P2, which,
as explained in Section 4.4, means we always found an optimal solution.

The optimization running times for all solving techniques can be seen in Ta-
ble 4.4. We compare our running times with the results reported by Deb and
Myburgh [2017], denoted with DM. For the first four solving methods, we termi-
nated the optimization run after 1 hour, and did not try to solve the instances
with more than 50.000 knapsacks. Both the CP and the AVF formulation solved
with Gurobi do not terminate within this hour for the instances with more than
200 knapsacks. For the instance 1b and 1c, we observe that adding the auxil-
iary variables significantly decreases the optimization time. The objective limit
method shows that it is possible to find a solution for the larger instances 3a and
3b within an hour if we settle for a solution that has a score above the objective
limit of 0.997. Note that the times reported by Deb and Myburgh [2017] also have
this objective limit, but their running times are much smaller for these instances.
Even though GCG is built specifically to solve problems with column generation,
this method was not able to beat any of the other methods in running time. For
the instances with more than 200 knapsacks, GCG did not terminate since it ran
into memory issues (MI). From the table, we can see that whenever the instances
grow in size, the optimization time reported by Deb and Myburgh [2017] grows
accordingly. In contrast, the optimization time for solving the RMP does not
increase with the problem size, which is probably caused by the aggregation of
both the items and the knapsacks in this formulation. For the five largest in-
stances, this means we have a significantly smaller optimization time than the
times reported by Deb and Myburgh [2017], even though our method guarantees
that the returned solution is optimal, while the original paper does not have this
guarantee.

4.6 Conclusion and Discussion

In this chapter, we proposed two new formulations for the Casting Problem
problem. The aim was to solve given instances of the problem to optimality. We
found that the auxiliary variable formulation succeeded in solving the smaller
instances faster than the standard formulation. However, just like the standard
formulation, no solutions were found for the larger instances.

The second formulation that we used was the disaggregated formulation, for
which we created specific columns, guaranteeing that any feasible solution with
these columns is optimal. We achieved this by exploiting the characteristics of the
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Technique CP AVF OL GCG RMP DM
Optimal? Yes Yes No Yes Yes No

Inst. m time (s) time (s) time(s) time (s) time (s) time (s)

1a 31 0.01 0.06 0.06 22.29 0.23 0.04
1b 100 1.50 0.75 0.75 2.60 0.22 0.05
1c 200 6.65 1.28 1.28 34.31 0.11 0.19

2 100k >3,600 >3,600 >3,600 MI 0.09 250

3a 5k >3,600 >3,600 350 MI 88 7
3b 10k >3,600 >3,600 1,213 MI 83 26
3c 50k >3,600 >3,600 >3,600 MI 119 143
3d 100k - - - 122 308
3e 500k - - - 4,404 1,749
3f 1M - - - 3,656 4,207
3g 5M - - - 3,503 24,000
3h 10M - - - 584 47,593
3i 50M - - - 1,151 261,951
3j 100M - - - 139 535,503

Table 4.4: Running time in seconds for the given instances for solving CP and
AVF with Gurobi, solving AVF with Gurobi with an objective limit, using GCG,
solving the RMP with P1 and P2 as indicated and the running times reported by
Deb and Myburgh [2017]. Moreover, the table indicates which solving method
guarantees that the solution it returns is optimal.

instances, namely a small number of unique item weights and knapsack capacities.
With this method, we found optimal solutions within ∼75 minutes, even for the
largest instance containing 100 million knapsacks. This contrasts with earlier
known methods, which only found approximate solutions in more than 6 days on
specially equipped computers.

We acknowledge that our method of solving the disaggregated formulation also
has limitations. We assume that the number of unique item weights and unique
knapsack capacities remains constant. However, as we also explain at the end of
Section 4.4, this assumption does not guarantee that our proposed method will
find a feasible solution. If no feasible solution is found, one could either increase
the number of columns in P1 and P2, or use standard column generation, together
with a branch-and-price framework as explained in Section 4.2. Fortunately, we
found feasible, and therefore optimal, solutions for all considered instances within
reasonable time.
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Chapter 5

Polynomial Time Bicriteria
Approximation Scheme for Casting

Problem

5.1 Introduction

In this chapter, we consider the Casting Problem again, as defined in Section
4.1 of the previous chapter. In Section 4.2 of the previous chapter, we have
shown that the Casting Problem is NP-complete. This means that we cannot
expect to find a polynomial-time algorithm that finds an optimal solution for the
casting problem; in fact, this even rules out that a polynomial-time approximation
algorithm exists, unless P = NP. In light of such intractability results, a common
approach used in the literature is to consider bicriteria approximation algorithms
instead [Lin and Vitter, 1992, Shmoys and Tardos, 1993]. Informally, an (α, β)-
bicriteria approximation algorithm is an algorithm that finds a solution with an
objective value of at least α times the value of an optimal feasible solution, with
0 ≤ α ≤ 1, and violates the knapsack capacities by at most a factor β ≥ 1. The
formal definition follows in Section 5.2.

As a warm-up, we derive a (1, 3/2)-bicriteria approximation algorithm for the
casting problem. The underlying idea of our bicriteria approximation algorithm
is as follows: for each knapsack, we define which items are large and small with
respect to this knapsack. We create a solution by first greedily adding large
items to the knapsacks; these items are assigned integrally. We then extend this
solution by greedily adding small items to the knapsacks, which can be assigned
fractionally. Finally, we round the obtained fractional solution to an integral one
by using a procedure by Shmoys and Tardos [1993]. We prove that the obtained
solution has a value greater than or equal to the optimal objective value (i.e.,
α = 1) and violates each capacity constraint by at most a factor 3/2 (i.e., β = 3/2).

85
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We use a novel technique to compute both bicriteria approximation algorithms
presented in this chapter. The basis of this technique is a partial relaxation of
(CP), which we refer to as the Small Item Relaxation. The Small Item
Relaxation is a mixed integer program (MIP) in which the integrality constraint
(4.1d) for the decision variables of a predefined set of small items is relaxed.
By finding an optimal solution to the Small Item Relaxation and rounding
it to an integral solution, we obtain an approximate solution to the Casting
Problem.

Before presenting the main result of this chapter, we want to highlight that if
we generalize the Casting Problem problem only slightly, we cannot expect to
find anything better than the warm-up algorithm. We exploit an inapproxima-
bility result on the unrelated machine scheduling problem, of which the related
machine scheduling problem is a special case. Unrelated machine scheduling is
like related machine scheduling, except for each job j and each machine i, a pro-
cessing time pij is given. Lenstra et al. [1990] show that for unrelated machine
scheduling no polynomial-time algorithm exists that finds a solution within β
times the deadline, for β < 3/2, unless P = NP. This means that if we would gen-
eralize the Casting Problem to a problem in which the weights are defined as
(wij)i∈Mj∈N , no (1, β)-bicriteria approximation algorithm could exist for β < 3/2,
unless P = NP.

As the main result of this chapter, we derive a (1/(1 + ε), (1 + ε)(1 + ε+ ε3))-
bicriteria approximation algorithm for any 0 < ε ≤ 1 in Section 5.5. Here, we
define for each knapsack which items are large, medium or small. Similarly to the
warm-up algorithm, we compute a partially integral solution to the Small Item
Relaxation such that all large and medium items are assigned integrally, while
the small items can be assigned fractionally. To obtain this partially integral
solution, we construct a weighted and directed acyclic graph with a start node
s and an end node t. By construction of our graph, each path from s to t
corresponds to a fractional packing whose length is equal to the value of the
packing. We can efficiently find a maximum-length path as the underlying graph
is directed acyclic. In short, this works by relaxing the outgoing arcs of the vertices
in topological order, we refer to Cormen et al. [2022] for a detailed explanation.
We show that a maximum-length path corresponds to a partially integral solution
of the largest value. We use the same rounding procedure as in the warm-up
algorithm to obtain an integer solution. We prove that the obtained solution has
an objective value that is at least 1/(1 + ε) times the optimal value (i.e., α =
1/(1+ε)) and violates each capacity constraint by at most a factor (1+ε)(1+ε+ε3)
(i.e., β = (1 + ε)(1 + ε+ ε3)).

5.1.1 Our Contributions

• We define a relaxation of the Casting Problem referred to as the Small
Item Relaxation, which relaxes some of the integrality constraints in
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CP. We present a rounding procedure to obtain an integral solution for
the Casting Problem from a, possibly fractional, solution to the Small
Item Relaxation. Finding a solution to the Small Item Relaxation
is the main component of the two bicriteria approximation algorithms that
we propose in this chapter.

• First, we give a (1, 3/2)-bicriteria approximation algorithm. This algorithm
computes a solution that violates the capacity constraint with at most a
factor 3/2 and has a value at least as large as the optimal feasible solution.

• Our main result is a (1/(1 + ε), (1 + ε) (1 + ε+ ε3))-bicriteria approximation
algorithm. This algorithm builds a layered directed acyclic graph, in which
the path with maximum length corresponds to an optimal solution to a
relaxation of the casting problem. Applying a rounding procedure yields an
integer solution that has a value that is at least 1/(1+ ε) times the optimal
solution value and violates the capacity constraints with a factor of at most
(1 + ε) (1 + ε+ ε3). This algorithm can be extended to a polynomial-time
bicriteria approximation scheme (PTBAS) for the casting problem, which
is a family of algorithms that produces an (α, β)-bicriteria approximation
algorithm for the casting problem for every value of α and β such that
0 ≤ α ≤ 1 and β ≥ 1.

5.1.2 Related Work

As explained in the previous chapter, the casting problem is a special case of GAP.
GAP was first introduced by Ross and Soland [1975]. After that, many variants
of GAP appeared in the literature, of which we name a few (see e.g. [Ross and
Soland, 1975, Martello and Toth, 1990, Wolsey, 2020]). A first variation to GAP
is when the problem is defined as a minimization problem, with costs instead of
profits. This variation is equivalent to the maximization version of GAP, a proof
for the equivalence is given in the chapter about GAP by Martello and Toth
[1990]. Another variation, one that is not equivalent, but also appears under the
name GAP in the literature, is when the packing may consist of a subset of the
items, i.e., it is not required to assign all items to knapsacks. The assignment
constraint (4.1c) in the MIP for that formulation is then as follows:∑

i∈M
xij ≤ 1 j ∈ N.

By allowing only a subset of the items being assigned, the feasibility problem is no
longer an NP-complete problem, which makes it possible to derive approximation
algorithms for this variation of GAP. To distinguish it from GAP in which all
items need to be assigned, we denote this variation of GAP as subset-GAP. Subset-
GAP is mentioned in [Martello and Toth, 1990, Kellerer et al., 2004, Chekuri and
Khanna, 2005, Nutov et al., 2006, Wolsey, 2020].
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GAP is NP-hard. In fact, as for the Casting Problem, even the problem of
finding a feasible solution for GAP is already NP-complete, see e.g. [Chekuri and
Khanna, 2005]. This has motivated the study of bicriteria approximations. A
(1+ ε, 2+1/ε)-bicriteria approximation algorithm for GAP was given by Lin and
Vitter [1992]. A rounding procedure introduced by Shmoys and Tardos [1993]
yields a (1, 2)-bicriteria approximation. The same rounding procedure is used
in the bicriteria algorithms presented in this chapter. Moreover, the result by
Lenstra et al. [1990] implies that for GAP, no polynomial-time (1, β)-bicriteria
approximation can exist for β ≤ 3/2, unless P = NP. As opposed to the feasibility
problem of GAP, the feasibility problem of subset-GAP is not NP-complete. The
(1, 2)-bicriteria approximation by Shmoys and Tardos [1993] is used by Chekuri
and Khanna [2005] to give a 2 approximation for subset-GAP. For knapsack-
independent profits, an improvement for subset-GAP is given by Nutov et al.
[2006], who present a (1− 1/ε)-approximation algorithm.

As mentioned in the previous chapter, the problem of finding a feasible solution
to the casting problem is equivalent to the decision version of related machine
scheduling. In the decision version of related machine scheduling, the question is
if it is possible to schedule all jobs before some given timeline T . Hochbaum and
Shmoys [1988] give an algorithm that produces a machine schedule that violates
the timeline constraint by a factor at most β (we call this β-feasible), if it exists.
The algorithm works by constructing a large layered graph based on the instance
including a source and a sink node. They show that any path leading from
the source to the end node corresponds to a β-feasible solution for the uniform
machine scheduling problem, and any feasible solution has a corresponding path
in the graph. The decision problem of related machine scheduling is therefore
equivalent to the problem of finding any path from the source to the sink node
in the constructed graph.

We exploit the relation between the casting problem and the uniform schedul-
ing problem to create our bicriteria approximation algorithm. Like in Hochbaum
and Shmoys [1988], we construct a large layered graph to construct solutions that
are almost feasible. This graph has the property that each s, t-path through it
corresponds with a casting solution in which each knapsack has almost enough
capacity for items planned on it. However, the challenge in our case is to create an
almost feasible solution with a large objective value. We deal with the objective
function of the casting problem by not just considering any path in the graph
like in Hochbaum and Shmoys [1988], but instead finding the path of maximum
length. We need to define the edge lengths in such a way that the length of the
path exactly corresponds with the objective value of the corresponding casting
solution. It is challenging to define these edge lengths, since, even though a path
in the graph by Hochbaum and Shmoys [1988] ensures that all items assigned to a
knapsack fit on that knapsack, the path does not specify the total weight of items
assigned to the knapsack. The total weight of items assigned to a knapsack is
exactly what we need to compute the edge lengths; therefore we need to increase
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the complexity of the graph such that a path does specify the total weight of
items assigned to a knapsack.

A generalization of Hochbaum and Shmoys [1988] is given in Epstein and
Sgall [2004], where a PTAS is given for related machine scheduling problems
with several very general objective functions. This generalization seems not to
be useful for the casting problem, since it does not give the possibility to limit
the makespan to some time limit and deal with the casting objective function
simultaneously.

5.1.3 Organization of Chapter

In the next section, we present definitions that we use throughout this chapter,
namely of the bicriteria approximation algorithm and of the polynomial-time bi-
criteria approximation scheme. After that, we present the Small Item Relax-
ation in Section 5.5.2. The following two sections both introduce a bicriteria ap-
proximation algorithm: the (1, 3/2)-bicriteria approximation algorithm in Section
5.4 and the (1/(1 + ε), (1 + ε) (1 + ε+ ε3))-bicriteria approximation algorithm in
Section 5.5.

5.2 Preliminaries

Since the feasibility problem of the Casting Problem is NP-complete, we can-
not expect to find a polynomial-time approximation algorithm. Therefore, we
will consider bicriteria approximation algorithms, which allow a violation of the
capacity constraints by a (small) multiplicative factor.

Definition 5.2.1. For a given instance (M,N, (bi)i∈M , (wj)j∈N) of the Casting
Problem, a solution x is β-feasible for β ≥ 1 if Constraints (4.1c) and (4.1d)
hold for x and ∑

j∈N
wjxij ≤ β · bi ∀i ∈ M.

Let x∗ denote the optimal solution for the Casting Problem. This allows us
to define a bicriteria approximation algorithm as follows.

Definition 5.2.2. An algorithm is an (α, β)-bicriteria approximation algorithm
for the Casting Problem with 0 ≤ α ≤ 1 and β ≥ 1 if for every in-
stance (M,N, (bi)i∈M , (wj)j∈N) it computes a β-feasible solution x of cost c (x) ≥
α · c (x∗) in time that is polynomially bounded in the input size of the cast-
ing instance. An (α, 1)-bicriteria approximation is also simply called an α-
approximation algorithm.

The input size of an instance of the Casting Problem is O(n log(maxj wj)
+m log(maxi bi)). If we can find an (α, β)-bicriteria approximation algorithm
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for every possible value of α and β, we have found a polynimal-time bicriteria
approximation scheme (PTBAS).

Definition 5.2.3. A polynomial-time bicriteria approximation scheme (PTBAS)
for the Casting Problem is an algorithm that, for any given constants α and
β with 0 ≤ α ≤ 1 and β ≥ 1, produces a β-feasible solution x of cost c (s) ≥
α · c (x∗). The running time of a PTBAS must be polynomial in the input size
of the casting instance for any fixed α and β, but may depend exponentially on
1/α and 1/β.

In the proof of Lemma 5.3.2 about the rounding procedure, the notion of
totally unimodularity is used. A matrix A is called totally unimodular if each
square submatrix of A has determinant equal to 0,+1, or −1 (see, e.g., [Schrijver
et al., 2003]). The following lemma directly follows from the definition of totally
unimodularity:

Lemma 5.2.4. If a matrix A is totally unimodular, any matrix B defined by a
subset of the rows of A is also totally unimodular.

Proof:
Every square submatrix of B is also a square submatrix of A. Since A is totally
unimodular, the square submatrix has determinant equal to 0,+1 or − 1. �

5.3 Small Item Relaxation

5.3.1 Mixed Integer Program

In this section, we define a relaxation of the Casting Problem, which we term
the Small Item Relaxation, which relaxes some of the integrality constraints
based on a given knapsack-dependent classification of small and large items. By
finding an optimal solution to this relaxation and rounding it to an integral so-
lution, we obtain an approximate solution to the Casting Problem. In the
next two sections, we will give two different bicriteria approximation algorithms
for the Casting Problem. For both of them, we define a knapsack-dependent
item classification and give an algorithm that solves the Small Item Relax-
ation.

We say that an item j ∈ N fits on a knapsack i ∈ M if wj ≤ bi. This allows
us to define the notion of a small item collection, which we will use to define the
Small Item Relaxation.

Definition 5.3.1. For each knapsack i ∈ M , let NS(i) ⊆ N be a subset of items.
We say that the collection of {NS(i)} for i ∈ M is a small item collection if for
each i ∈ M such that NS(i) �= ∅ it holds that there is a so-called split item
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j(i) ∈ N that fits on i such that NS(i) contains exactly those items with weight
at most wj(i), i.e., NS(i) = {j ∈ M : wj ≤ wj(i)}.

Observe that each j(i) splits N into a set of items NS(i) with a weight smaller
than or equal to j(i), and a set of items N \NS(i) with a weight larger than j(i).

We can now introduce the following mixed integer program, referred to as the
Small Item Relaxation (SIR). SIR relaxes the ILP (CP) in two ways: (1)
it allows each small item j ∈ NS(i) to be assigned fractionally to i, and (2) it
increases the capacity constraint for each knapsack i ∈ M to a value b̂i ≥ bi, but
the extra capacity b̂i − bi may only be used by items in NS(i). Formally, given
any small item collection NS(i) and an inflated capacity b̂i ≥ bi for each i ∈ M ,
the Small Item Relaxation is defined as follows:

maximize c(x) =
∑
i∈M

1

bi

∑
j∈N

wjxij (5.1a)

subject to
∑

j∈N\NS(i)

wjxij ≤ bi ∀i ∈ M (5.1b)

∑
j∈N

wjxij ≤ b̂i ∀i ∈ M (5.1c)∑
i∈M

xij = 1 ∀j ∈ N (5.1d)

xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ N \NS(i) (5.1e)
xij ≥ 0 ∀i ∈ M, ∀j ∈ NS(i). (5.1f)

Note that N \NS(i) might contain items that do not fit on knapsack i. However,
Constraints (5.1b) and (5.1e) ensure that for each item j that does not fit into
i, xij is set to zero. We give some intuition on the effect of NS(i). As NS(i)
varies from all items (NS(i) = N) to nothing (NS(i) = ∅), the Small Item
Relaxation interpolates between the LP relaxation of (CP) with respect to the
inflated capacities b̂i and the ILP (CP). If the integrality constraint is relaxed for
many items, it becomes easier to find an optimal solution to the relaxation, but
the resulting approximation guarantees for the bicriteria approximation algorithm
become worse. This is also what our two applications in Section 5.4 and Section
5.5 demonstrate: In Section 5.4, the small item collection contains many items
and we derive a simple algorithm to compute an optimal solution to the Small
Item Relaxation. This yields a (1, 3/2)-bicriteria approximation algorithm. On
the other hand, in Section 5.5, the small item collection contains fewer items and
we need to develop a more involved algorithm to compute an optimal solution to
the respective Small Item Relaxation. In return, we can use this algorithm
to obtain a polynomial-time bicriteria approximation scheme for the Casting
Problem.



663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen
Processed on: 29-10-2024Processed on: 29-10-2024Processed on: 29-10-2024Processed on: 29-10-2024

92 Chapter 5. PTBAS for Casting Problem

... ...

...
...

i(1)

i(ki)

j = 1

j = 2

j = li

j = li + 1

xi1 = 1

xi2 = 0

xili = 1

xili+1 = 1
2

j = li + 2 xili+1 = 1
4

j = li + 3 xili+1 = 1
2

j = li + 4 xili+1 = 5
6

NL(i)

NS(i)

j = j′

j = j′ + 1

...

...
xih = 1

2

xih+1 = 1
4

Figure 5.1: Example of graph G in LP-rounding procedure.

5.3.2 LP-Rounding Procedure

A crucial procedure in our bicriteria approximation algorithms is to round an
optimal solution to SIR to an integral solution in order to obtain an approximate
solution to the Casting Problem. To accomplish this, we apply a procedure
introduced by Shmoys and Tardos [1993].

Let x be a feasible solution to SIR. In the rounding procedure, a bipartite
graph G = (L∪R,E) is created based on x where the set of items N corresponds
to the set R, i.e., R = N , and each knapsack i ∈ M has ki = �∑j∈N xij� slots
i(1), . . . , i(ki) in L. We assume without loss of generality that the items are
ordered by non-increasing weights, i.e., w1 ≥ w2 ≥ · · · ≥ wn.

We construct the bipartite graph G by iteratively adding edges for each knap-
sack i ∈ M as explained below. See Figure 5.1 for an example of such a graph G.
Simultaneously, we define a fractional matching y ∈ R

E of G. The construction
proceeds as follows:

1. If
∑

j∈N xij ≤ 1, then ki is 1 and there is only one slot for knapsack i. In
that case we add an edge (i(1), j) to E for each item j with xij > 0, and
for each of these edges we set y(i(1),j) = xij.

2. Otherwise, we find the minimum index h such that
∑h

j=1 xij ≥ 1. We add
an edge (i(1), j) to E for each item j = 1, . . . , h − 1 with xij > 0, and for
each of these edges we set y(i(1),j) = xij. Furthermore, we add the edge
(i(1), h) to E and set y(i(1),h) = 1−∑h−1

j=1 xij. This ensures that the sum of
ye for all edges e adjacent to i(1) is exactly 1.

3. If
∑h

j=1 xij > 1, a fraction of h is still unassigned, and we add an edge
(i(2), h) to E and set y(i(2),h) = xih − y(i(1),h) =

∑h
j=1 xij − 1. Likewise, if
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ki > 2, we continue adding edges between item j > h and slot i(2) until the
sum of ye for all edges e adjacent to i(2) is exactly 1.

4. We repeat this for each slot up to and including slot i(ki − 1). Now, let
j′ be the last (smallest) item that is assigned to i(ki − 1) (and possibly to
i(ki)). We add an edge (i(ki), j) to E for each j > j′ that has xij > 0 and
set y(i(ki),j) = xij.

By proceeding in this way, there will be exactly one or two edges in G for each
positive coordinate of x. We set the weight of each edge (i(s), j) in G equal to
wj/bi.

We say that a (possibly fractional) matching y of G is R-perfect if the sum of
the fractional values of the edges in the matching that are incident to each item
j ∈ R equals one, i.e., ∑

i:{i,j}∈G
y(i,j) = 1.

By construction, it follows that the constructed y indeed defines a fractional
matching in G with weight exactly equal to c (x) that is R-perfect.

Finally, the LP-rounding procedure is then as follows:

1. Based on a feasible, possibly fractional, solution x for SIR, create G as
described above.

2. Out of all the integral matchings in G that are R-perfect, let ȳ be the
one with maximum weight. This can be computed in polynomial time in
bipartite graphs.1

3. Let xround be the assignment of items to knapsacks that we obtain from ȳ
by assigning item j to knapsack i if and only if there is a slot i(s) such that
ȳ(i(s),j) = 1.

In the following lemma, we show that ȳ always exists, since y is an R-perfect
fractional matching.

Lemma 5.3.2. Let y be an R-perfect fractional matching in a bipartite weighted
graph G = (L ∪R,E). Then there exists an R-perfect integer matching ȳ, with a
weight at least as large as the weight of y.

1The Hungarian method (as explained in Section 17.2 by Schrijver et al. [2003], but intro-
duced by Kuhn [1955], and improvements given by Munkres [1957], Iri [1960], Edmonds and
Karp [1972], Tomizawa [1971] ) can be used to find an integral R-perfect matching in the graph
G. Theorem 17.2 in [Schrijver et al., 2003] proves that this matching is the integral R-perfect
matching with maximum weight.
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Proof:
Since the graph G is bipartite, by Corollary 18.1 in [Schrijver et al., 2003], the
perfect matching polytope of G (defined as the convex hull of the incidence vectors
of perfect matchings in G) is equal to the vectors z ∈ R

E for which it holds that
z ≥ 0 and ∑

e
v
ze = 1 ∀v ∈ L ∪R.

These constraints can be split into the following equivalent inequalities:∑
e
v

ze ≤ 1 ∀v ∈ L ∪R, −
∑
e
v

ze ≤ −1 ∀v ∈ L ∪R.

Since G is bipartite, it follows from Theorem 18.2 in [Schrijver et al., 2003] that the
matrix corresponding to these constraints is totally unimodular. Then by Lemma
5.2.4, the matrix corresponding to the following subset of these constraints is also
totally unimodular:∑

e
v
ze ≤ 1 ∀v ∈ L ∪R, −

∑
e
v

ze ≤ −1 ∀v ∈ R.

This set of constraints is equivalent to the following set of constraints, for which
the corresponding matrix is therefore also totally unimodular:∑

e
v
ze ≤ 1 ∀v ∈ L,

∑
e
v

ze = 1 ∀v ∈ R.

These constraints precisely describe an R-perfect matching. Since the corre-
sponding matrix is totally unimodular, it follows that the extreme points of the
corresponding polytope are integral, by Theorem 5.20 in [Schrijver et al., 2003].
This must mean that ȳ exists and has weight at least as large as the weight of y.
�

In Theorem 5.3.3, we present the result of applying the rounding procedure to
solutions of SIR. Let w(i,x) denote the total weight that is assigned to knapsack
i with respect to x, i.e.,

w(i,x) =
∑
j∈N

wjxij.

Theorem 5.3.3. Let x be a solution to SIR. Let xround be the result of apply-
ing the above LP-rounding procedure to x. Then it holds that xround satisfies
Constraint (4.1c) and for each i ∈ M :

w(i,xround) ≤ w(i,x) + max
j∈NS(i)

wj.

Moreover, it holds that c(xround) ≥ c(x).
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Proof:
As shown above, the fractional matching created in the rounding procedure, y,
is R-perfect. By Lemma 5.3.2, this proves the existence of ȳ, where ȳ is also
R-perfect. This proves that xround assigns each item to a knapsack, and therefore
Constraint (4.1c) holds.

To prove the second part of the theorem, fix knapsack i. Let m(i(s)) be the
maximum weight of an item j having an edge to i(s) in G. We use NL(i), referred
to as the large items, to denote all the items that are not small for knapsack i,
i.e.: NL(i) := N \NS(i). Let li be the number of items from NL(i) assigned to i.
Since xij ∈ {0, 1} for these large items, and since these large items are connected
to slots before small items, it must hold that each slot i(s) for s = 1, . . . , li is
connected to exactly one large item in G, and we have that

li∑
s=1

m(i(s)) =
∑

j∈NL(i)

wjxij. (5.2)

If
∑

j∈NS(i) xij ≤ 1, at most one item of NS(i) is assigned to i in xround and the
second part of the theorem holds. Otherwise ki ≥ li +2 and the slots i(li +1) up
to i(ki) are all connected to items in NS(i) only. It holds that:

w(i,xround) =
∑
j∈N

wjx
round
ij ≤

ki∑
s=1

m(i(s))

=

li∑
s=1

m(i(s)) +m(i(li + 1)) +

ki∑
s=li+2

m(i(s))

≤
∑

j∈NL(i)

wjxij + max
j∈NS(i)

wj +

ki∑
s=li+2

m(i(s)).

The first inequality holds by definition of m(i(s)). The second inequality holds
by (5.2) and since slot li + 1 is connected to items in NS(i) only. We focus on
the third term and rewrite it as follows:

ki∑
s=li+2

m(i(s)) =

ki−1∑
s=li+1

m(i(s+ 1)).

For s = li+1, . . . , ki−1 it holds that
∑

j∈NS(i) xi(s)j = 1 and therefore m(i(s+1)) =∑
j∈NS(i) m(i(s + 1))xi(s)j ≤ ∑

j∈NS(i) wijxi(s)j. Here, the last inequality holds
since m(i(s + 1)) ≤ wij for all items j that have an edge to i(s), since the items
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are added to slots in decreasing order. Therefore it holds that
ki−1∑

s=li+1

m(i(s+ 1)) ≤
ki−1∑

s=li+1

∑
j∈NS(i)

wijxi(s)j

≤
∑

j∈NS(i)

ki∑
s=li+1

wijxi(s)j

=
∑

j∈NS(i)

wijxij.

The last equality holds by construction of the bipartite graph. Together, this
proves the second part of the theorem:

w(i,xround) ≤
∑

j∈NL(i)

wjxij + max
j∈NS(i)

wj +
∑

j∈NS(i)

wijxij = w(i,x) + max
j∈NS(i)

wj.

Lemma 5.3.2 shows that the weight of ȳ is at least the weight of y, which proves
the last part of the theorem:

c (x) =
∑
i∈M

∑
j∈N

wj

bi
y(i,j) ≤

∑
i∈M

∑
j∈N

wj

bi
ȳ(i,j) = c

(
xround) .

�

5.4 Warm-up: (1, 3/2)-Bicriteria Approximation

In this section, we derive a bicriteria approximation algorithm for the Casting
Problem. The main result of this section is given in the following theorem:

Theorem 5.4.1. There exists a (1, 3/2)-bicriteria approximation algorithm for
the Casting Problem.

To prove the theorem, we first define a small item collection to obtain a Small
Item Relaxation that we use in this section. After that, we show that a simple
greedy algorithm produces an optimal solution to this relaxation. Combining this
algorithm with the rounding scheme described in the previous section yields the
respective bicriteria approximation algorithm.

Throughout this section, we assume without loss of generality that the knap-
sacks are ordered by non-decreasing capacities, i.e., b1 ≤ b2 ≤ · · · ≤ bm. To define
the small item collection used in this section, we partition the set of items that
fit into knapsack i ∈ M into a set of small items NS(i) and a set of large items
NL(i) as follows:

NS(i) =

{
j ∈ N

∣∣∣∣ wj ≤ 1

2
bi

}
and NL(i) =

{
j ∈ N

∣∣∣∣ 1

2
bi < wj ≤ bi

}
. (5.3)
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Algorithm 8 LargeItemsFirst(M,N)

1: Order the knapsacks such that b1 ≤ b2 ≤ · · · ≤ bm
2: xMIP

ij = 0 ∀i ∈ M, ∀j ∈ N � Initialize all xMIP
ij ’s to zero

3: for i = 1, . . . ,m do � In order of non-decreasing capacities
4: if

{
j ∈ NL(i)

∣∣ xMIP
ij = 0

} �= ∅ then
5: j = argmax

{
wj

∣∣ j ∈ NL(i), xMIP
ij = 0

}
6: xMIP

ij = 1 � Assign max-weight unassigned item of NL(i) to i

7: R =
{
j ∈ NS(i)

∣∣ ∑
i′∈M xMIP

i′j < 1
}

� R is the set of remaining small items
8: while

∑
j′∈N wj′x

MIP
ij′ < bi and R �= ∅ do � i not full and small item remains

9: j = argmin {wj | j ∈ R} � j is the min-weight item in R

10: xMIP
ij = 1−∑

i′∈M xMIP
i′j � Assign j possibly fractionally, while ...

11: xMIP
ij = min

{
xMIP
ij , 1

wj

(
bi −

∑
j′∈N wj′x

MIP
ij′

)}
� ... adhering capacity

12: R = R \ {j}
13: return xMIP

Note that {NS(i)} for i ∈ M is indeed a small item collection according to
Definition 5.3.1, and that NS(·) is monotone: NS(1) ⊆ · · · ⊆ NS(m), while
NL(·) is not. For SIR considered in this section, we set b̂i = bi for all knapsacks
i ∈ M . Note that by Constraints (5.1b) and (5.1e) in SIR, xij is forced to be zero
for each knapsack i and item j ∈ N \ (

NS(i) ∪NL(i)
)
; in particular, these are

exactly the items that do not fit on knapsack i.
As we will show below, the following simple greedy algorithm, referred to as

LargeItemsFirst, computes an optimal solution to SIR. LargeItemsFirst
greedily constructs a solution xMIP to SIR by iterating over the knapsacks in
non-decreasing order of their capacities. For each knapsack i, the algorithm first
integrally assigns an unassigned large item (if any) of maximum weight to i.
Crucially, at most one such item fits on knapsack i, by definition of NL(i). Then,
it greedily assigns small items (possibly fractionally) to knapsack i until either
its capacity is reached or no small unassigned items remain. A more detailed
description LargeItemsFirst is given in Algorithm 8.

We show that the algorithm can be used to compute an optimal solution to
SIR.

Theorem 5.4.2. LargeItemsFirst computes an optimal solution to SIR with
NS(i) as defined in (5.3) and b̂i = bi in running time O(mn+ n log(n)).

In the remainder of this section, when we refer to SIR, we mean SIR with NS(i)
as defined in (5.3) and b̂i = bi. We first prove an auxiliary lemma that will turn
out to be useful for the proof of Theorem 5.4.2 below.

As defined in the previous section, we let w(i,x) denote the total weight that
is assigned to knapsack i with respect to x. Given a feasible solution xMIP of
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SIR, we say that xMIP maximizes the weight on the small knapsacks if for every
feasible solution x′ of SIR it holds that for every i ∈ [m]:

i∑
k=1

w(k,xMIP) ≥
i∑

k=1

w(k,x′).

Lemma 5.4.3. Let xMIP be a feasible solution for SIR that maximizes the total
weight on the small knapsacks. Then xMIP is an optimal solution for SIR.

Proof:
The solution value of xMIP can be written as follows:

c(xMIP) =
∑
i∈M

1

bi

∑
j∈N

wjx
MIP
ij =

∑
i∈M

1

bi
w(i,xMIP).

Let x′ be any feasible solution for SIR. We will prove that the solution value of
xMIP is at least as large as the solution value of x′.

For each i ∈ M , divide w(i,xMIP) into two parts, w1(i,x
MIP) and w2(i,x

MIP),
defined as follows:

w1(i,x
MIP) :=

i∑
k=1

w(k,x′)−
i−1∑
k=1

w(k,xMIP)

w2(i,x
MIP) :=

i∑
k=1

w(k,xMIP)−
i∑

k=1

w(k,x′).

Then the following properties hold:

1. w(i,xMIP) = w1(i,x
MIP) + w2(i,x

MIP).

2. w(i,x′) = w1(i,x
MIP) + w2(i− 1,xMIP), where w2(0,x

MIP) is defined as 0.

3. w2(i,x
MIP) ≥ 0, since xMIP maximizes the weight on the small knapsacks.
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By using these properties, we obtain:

c(xMIP) =
m∑
i=1

1

bi
w(i,xMIP) =

m∑
i=1

1

bi
w1(i,x

MIP) +
m∑
i=1

1

bi
w2(i,x

MIP)

≥
m∑
i=1

1

bi
w1(i,x

MIP) +
m−1∑
i=1

1

bi
w2(i,x

MIP)

≥
m∑
i=1

1

bi
w1(i,x

MIP) +
m−1∑
i=1

1

bi+1

w2(i,x
MIP)

=
m∑
i=1

1

bi
w1(i,x

MIP) +
m∑
i=2

1

bi
w2(i− 1,xMIP)

=
m∑
i=1

1

bi
w1(i,x

MIP) +
m∑
i=1

1

bi
w2(i− 1,xMIP)

=
m∑
i=1

1

bi
w(i,x′) = c(x′).

The first inequality holds by the third property. The second inequality holds by
both the third property and since knapsacks are sorted in non-decreasing order
of capacities. Moreover, we use for the third last equality that w2(0,x

MIP) = 0
by definition. The second last equality holds by the second property again. This
concludes the proof. �

Proof of Theorem 5.4.2:
Let xMIP be a solution returned by Algorithm 8. We prove that xMIP maximizes
the weight on the small knapsacks. By Lemma 5.4.3, xMIP is then an optimal
solution.

Suppose for contradiction, that there is a feasible solution x′ for SIR such that
for some knapsack i it holds that

i∑
k=1

w(k,x′) >
i∑

k=1

w(k,xMIP). (5.4)

Without loss of generality, let i be the knapsack with smallest index for which this
holds. Consider the number of items from NL(i) that x′ assigned to knapsacks
1, . . . , i.

We prove the intermediate claim that xMIP assigned at least as many items
from NL(i) to knapsacks 1, . . . , i as x′. Note that at most one item from NL(i)
fits on each knapsack 1, . . . , i. Now, suppose for contradiction of the intermediate
claim, that there is a knapsack i′ ≤ i such that x′ assigned more items from
NL(i) to 1, . . . , i′ than xMIP did, and suppose w.l.o.g. that i′ is the first knapsack
for which this holds. This means xMIP did not assign any item from NL(i) to
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Algorithm 9 LargeItemsRounded(M,N)

1: xMIP = LargeItemsFirst(M,N) � Compute optimal solution to SIR
2: Apply LP-rounding procedure to xMIP to obtain xround

3: return xround

i′, but only items from NS(i), even though there is an unassigned item from
NL(i) that fits on i′. This contradicts Line 6 in Algorithm 8 and therefore proves
the intermediate claim that xMIP assigned at least as many items from NL(i) to
knapsacks 1, . . . , i.

Moreover, xMIP always assigned the maximum-weight unassigned item of
NL(i), which together proves that

i∑
k=1

∑
j∈NL(i)

wjx
MIP
kj ≥

i∑
k=1

∑
j∈NL(i)

wjx
′
kj.

Since i is the first knapsack for which (5.4) holds, it must hold that w(i,x′) >
w(i,xMIP). This must mean that w(i,xMIP) < bi, so the while loop for knapsack
i in Line 8 in Algorithm 8 terminated because R was empty, from which it follows
that xMIP assigned all items from NS(i) to knapsacks 1, . . . , i. We can conclude
that

i∑
k=1

w(k,xMIP) =
i∑

k=1

∑
j∈NS(i)

wjx
MIP
kj +

i∑
k=1

∑
j∈NL(i)

wjx
MIP
kj

≥
i∑

k=1

∑
j∈NS(i)

wjx
′
kj +

i∑
k=1

∑
j∈NL(i)

wjx
′
kj =

i∑
k=1

w(k,x′),

which is the contradiction that proves the theorem. The running time follows
since after sorting both the knapsacks and the items, each item is considered at
most once for each knapsack. �

The LargeItemsRounded algorithm, for which the pseudocode is in Algo-
rithm 9 combines the LargeItemsFirst algorithm and the rounding procedure
explained in the previous section. This algorithm is used in the proof of the main
result of this section, Theorem 5.4.1.

Proof of Theorem 5.4.1:
Consider an instance of the Casting Problem. Let xround be the output of the
LargeItemsRounded algorithm and let x∗ be an optimal solution. Since x∗

is feasible for SIR, but xMIP is optimal for SIR, it holds that c
(
xMIP

) ≥ c (x∗).
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Moreover, Theorem 5.3.3 gives that c
(
xround

) ≥ c
(
xMIP

)
. Together this gives

that
c
(
xround) ≥ c (x∗) ,

which proves that α = 1. Moreover, Theorem 5.3.3 shows that the weight assigned
to a knapsack i is upper bounded by w(i,xMIP) + maxj∈NS(i) wj. For the NS(i)
defined in this section, it holds that

w(i,xMIP) + max
j∈NS(i)

wj ≤ bi +
1

2
bi,

by the knapsack constraint in SIR and the definition of NS(i). This proves that
xround is β-feasible for β = 3/2. �

5.5 PTBAS

In this section, we present a second bicriteria approximation, which will be used
to prove the main result of this chapter, as given in the following theorem:

Theorem 5.5.1. There exists a polynomial-time bicriteria approximation scheme
for the Casting Problem.

To prove this theorem, we first define a small item collection and b̂i for i ∈ M
to obtain a second version of SIR. In order to solve this SIR to optimality, we
need an involved algorithm that boils down to finding a path in a large directed
acyclic graph. In Section 5.5.1, we introduce the necessary notation that is used
in the PTBAS. In Section 5.5.2, we give the algorithm that takes the path in
the graph, converts it to an optimal solution of SIR and rounds it, to eventually
obtain a solution to the Casting Problem. We then prove that this algorithm
is a bicriteria approximation algorithm and prove Theorem 5.5.1. In Section 5.5.3,
we show how to construct the directed acyclic graph and prove that a path of
maximum length corresponds to an optimal solution of SIR.

5.5.1 Rounding and Classification

We start by making the following assumptions. We can assume without loss of
generality that 1/ε is a positive integer.2 Throughout this section, we assume
without loss of generality that the knapsacks are ordered by non-increasing ca-
pacities, i.e., b1 ≥ b2 ≥ · · · ≥ bm, note that this differs from the previous section.

2We can do this without loss of generality, since we can replace ε with an ε̄ < ε such that
1/ε̄ is integer (for example, choosing ε̄ = 1/�1/ε�). The resulting bicriteria approximation for ε̄
then implies a bicriteria approximation for ε.
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Without loss of generality, we assume that bm ≥ minj wj and b1 ≥ maxj wj. Also
without loss of generality, we assume that bi ∈ (0, 1] for all i ∈ M and wj ∈ (0, 1]
for all j ∈ N . If this is not the case, this can be easily accomplished by dividing
the capacities and weights with the largest knapsack capacity b1.

We split the interval (0, 1] into segments based on ε as follows: for k = 0, 1, . . . ,
segment k is defined as the interval (εk+1, εk]. These segments will be used to
partition both the items and the knapsacks. After that, we use these partitions
to classify the items from a knapsack perspective and to classify the knapsacks
from an item perspective.

Item Partitioning and Rounding. First, we partition the items in N ac-
cording to the segment k in which an item weight lies:

N(k) :=
{
j ∈ N

∣∣ wj ∈ (εk+1, εk]
}
, k = 0, 1, . . . , n̂,

where n̂ is such that εn̂+1 < minj wj ≤ εn̂. See also Figure 5.2 for an illustration.
Now, for each k = 0, . . . , n̂ we partition the k-th segment further into ω := 1−ε

ε2

subsegments of size εk+2, see the zoomed-in part of Figure 5.2. Note that the
number of subsegments per segment is equal for each k, since both the segment
size and the subsegment size decrease in size for larger k. For each item falling
into a subsegment, we round the item weight down to the smaller endpoint of the
subsegment, i.e., to the nearest multiple of εk+2; more formally:

w̄j = �wj/ε
k+2�εk+2, j ∈ N(k), k = 0, 1, . . . , n̂. (5.5)

To distinguish what weights we use, from now on we will write c (x,w) for the
original objective function and c (x, w̄) for the objective function with rounded
weights. We denote the lower end of the j-th subsegment of segment k by w̄

(k)
j ,

or formally:
w̄

(k)
j := εk+1 + (j − 1)εk+2, j = 1, . . . , ω.

We denote the number of items with weight w̄(k)
j with y

(k)
j , and use y(k) to denote

(y
(k)
1 , . . . , y

(k)
ω ).

The following property holds by the rounding:

Property 5.5.2. By rounding, it holds for each j ∈ N that wj ≤ (1 + ε)w̄j.

Proof:
For every j ∈ N(k) it holds that wj is rounded down to the nearest multiple of
εk+2 and therefore:

wj ≤ w̄j + εk+2 ≤ w̄j + εw̄j = (1 + ε)w̄j.

�
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0 εk+1 εk ε2 ε 1

· · · · · ·
01ksegment:

interval (0, 1]:

w̄
(k)
ω−1

interval (εk+1, εk]:

subsegment weight:
· · ·

εk+1 εk

w̄
(k)
ωw̄

(k)
3w̄

(k)
2w̄

(k)
1

w̄j1 wj1 w̄j3

w̄j2
wj2 wj3item weights:

item partition: · · · ∪ N(k) ∪ · · · ∪ N(1) ∪ N(0)

zoom: segment k

εk+1 + εk+2

Figure 5.2: The top figure depicts the interval (0, 1], split into segments based
on ε and the items partitioned accordingly. The bottom figure is a zoomed-in
figure of segment k which depicts the (rounded) item weights. An item j ∈ N(k)
is rounded down to the nearest multiple of εk+2. So for j1, j2, j3 ∈ N(k) it holds
that: w̄j1 = w̄

(k)
2 and w̄j2 = w̄j3 = w̄

(k)
ω−1.

Knapsack Partitioning. As for the items, we partition the knapsacks based
on the segments as follows:

M(k) :=
{
i ∈ M

∣∣ bi ∈ (εk+1, εk]
}
, k = 0, 1, . . . , m̂,

where m̂ is such that εm̂+1 < bm ≤ εm̂.3 Note that the assumption bm ≥ minj wj

implies that m̂ ≤ n̂.

Items from Knapsack Perspective. Like in the warm-up algorithm, we de-
fine for each knapsack i which set of items is large with respect to i, denoted
as NL(i), and a set of items that is small with respect to i, denoted as NS(i).
Moreover, we define a set of items that is medium to i, denoted as NM(i). See
also Figure 5.3 for an illustration. For i ∈ M(k) it holds that:

NL(i) := N(k)

NM(i) := N(k + 1)

NS(i) := N(k + 2) ∪ · · · ∪N(n̂). (5.6)

For a given segment k, the sets NL(i) are equal for all i ∈ M(k). The intuition
here is that the classification into large items is not based on the knapsack capacity
directly, but solely on the segment in which the knapsack falls. This allows us to

3Note that we use a different definition of m̂ in this chapter as in Chapter 4.
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· · · · · ·

NS(i) NM (i) NL(i)

segment:

interval (0, 1]:

k

0 εk+3 εk+2 εk+1 εk εk−1 εk−2

k + 2 k + 1 k − 1 k − 2

1

items w.r.t. i ∈ M(k):

ME(j)MH(j)ML(j)knapsacks w.r.t. j ∈ N(k):

wj bii ∈ M(k), j ∈ N(k) :

Figure 5.3: Knapsack i is in M(k) since bi lies in the k-th segment. The items
that fit on i are partitioned into NS(i), NM(i) and NL(i). Item j is in N(k) since
wj lies in the k-th segment. The knapsacks on which j fits are partitioned into
ML(j), MH(j) and ME(j).4

slightly abuse notation and use NL(k) to refer to NL(i) for an i ∈ M(k). The
same holds for medium and small items. Items from N(0) to N(k− 1) do not fit
on a knapsack i ∈ M(k) and are therefore not classified. Note that {NS(i)} for
i ∈ M , is a small item collection, see Definition 5.3.1. This small item collection
will be used for SIR considered in this section.

The following property of small items directly follows from the definitions:

Property 5.5.3. For every knapsack i ∈ M and every item j ∈ NS(i) it holds
that w̄j ≤ wj ≤ εbi.

Knapsacks from Item Perspective. Lastly, we will classify knapsacks from
the item perspective. We denote the set of knapsacks that is large with respect
to an item j by ML(j), the set of knapsacks that is huge with respect to an item
j by MH(j) and the set of knapsacks that is enormous with respect to an item j
by ME(j). See also Figure 5.3 for an illustration. For j ∈ N(k) it holds that:

ML(j) := M(k)

MH(j) := M(k − 1)

ME(j) := M(0) ∪ · · · ∪M(k − 2).

An item j ∈ N(k) does not fit on knapsacks from M(k + 1) to M(m̂), and these
knapsacks are therefore not classified with respect to j. As for the items, we
sometimes abuse notation slightly by denoting MH(k) if we mean MH(j) for a
j ∈ N(k). The same holds for large and enormous knapsacks. Lastly, we want
to notice that an item j ∈ N(k) does not necessarily fit on a knapsack i ∈ M(k),
e.g. if bi < wj < εk.

4Actually, since NL(i) contains all items in N(k), it can be that there is an item j′ ∈ NL(i)
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Algorithm 10 RoundedLongestPath(ε)

1: Construct weighted directed acyclic graph based on ε � Explained in next section
2: Let P be a path in G of maximum length from start node s to end node t
3: Construct optimal solution xMIP to SIR based on P
4: Apply LP-rounding procedure to xMIP to obtain xround

5: return xround

5.5.2 Small Item Relaxation

The SIR that is used to obtain the PTBAS in this section is based on a different
small item collection and different b̂i’s than the SIR in Section 5.4. The small
item collection {NS(i)} for i ∈ M that we use for the PTBAS is defined in (5.6).
Furthermore, we round up bi to obtain the values of b̂i as follows: for i ∈ M(k),
for k = 1, . . . , m̂:

b̂i := �bi/εk+4�εk+4. (5.7)

We consider the instance of SIR with rounded weights w̄j instead of wj, as defined
in (5.5). To summarize, whenever we refer to SIR in the remainder of this section,
we mean SIR with NS(i) as in (5.6), b̂i as in (5.7) and weights wj = w̄j as in
(5.5). In the next section, we will describe how to obtain an optimal solution
for SIR. As for the warm-up algorithm, a solution for the Casting Problem is
found by rounding the solution of SIR. Algorithm 10 summarizes this procedure.

The next theorem shows that Algorithm 10 is a bicriteria approximation algo-
rithm for the Casting Problem. This algorithm forms the basis for the PTBAS
of the Casting Problem.

Theorem 5.5.4. Algorithm RoundedLongestPath is a (1/(1+ε), (1+ε)(1+
ε+ ε3))-bicriteria approximation algorithm to the Casting Problem.

We first give a corollary and prove two auxiliary lemmas that will turn out to
be useful for the proof of Theorem 5.5.4 below. The following corollary shows that
LP-rounding does not decrease the objective value and might cause a bounded
increase of used capacity in a knapsack. It follows directly from Theorem 5.3.3
and Property 5.5.3.

Corollary 5.5.5. Let xMIP be a solution to SIR, and let xround be the result of
applying the LP-rounding procedure to xMIP. Then it holds that c

(
xround, w̄

) ≥
c
(
xMIP, w̄

)
and for every knapsack i ∈ M it holds that∑

j∈N
w̄jx

round
ij ≤

∑
j∈N

w̄jx
MIP
ij + max

j∈NS(i)
w̄j ≤

∑
j∈N

w̄jx
MIP
ij + εbi.

with weight bi < wj′ < εk that does not fit on bi. Moreover, since ML(j) contains all knapsacks
in M(k), it can be that there is a knapsack i′ ∈ ML(j) with capacity εk+1 < bi′ < wj on which
j does not fit.
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The following lemma shows that the violation of Constraint (4.1b) by xMIP be-
cause of the relaxation of the right-hand side of Constraint (5.1c) from bi to b̂i is
bounded.

Lemma 5.5.6. Let xMIP be any feasible solution to SIR. Then for every knapsack
i it holds that: ∑

j∈N
w̄jx

MIP
ij ≤ (1 + ε3)bi.

Proof:
Suppose i falls in segment k, then by Constraint (5.1c), we have:∑

j∈N
w̄jx

MIP
ij ≤ �bi/εk+4�εk+4 ≤ bi + εk+4.

Since i falls in segment k, we know that εk+1 < bi and therefore:

bi + εk+4 ≤ bi + ε3bi = (1 + ε3)bi.

�

The following lemma shows that objective value of SIR with rounded weights is
at least a factor 1/(1 + ε) times the objective value of the CP with the original
weights.

Lemma 5.5.7. Let x∗ and xMIP be the optimal solutions to CP and SIR respec-
tively. Then:

c
(
xMIP, w̄

) ≥ 1

1 + ε
c (x∗,w) .

Proof:
It holds that:

c (x∗,w) =
∑
i∈M

1

bi

∑
j∈N

wjx
∗
ij ≤ (1 + ε)

∑
i∈M

1

bi

∑
j∈N

w̄jx
∗
ij

≤ (1 + ε)
∑
i∈M

1

bi

∑
j∈N

w̄jx
MIP
ij

= (1 + ε)c
(
xMIP, w̄

)
.

where the first inequality holds because of Property 5.5.2 and the second inequal-
ity holds because xMIP and x∗ are both feasible solutions to SIR but xMIP is the
optimal one. �

Proof of Theorem 5.5.4:
We start by showing that xround is β-feasible, for β = (1 + ε)(1 + ε + ε3). xround

satisfies Constraint (4.1c) (every item is packed), by Theorem 5.3.3. Secondly,
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the LP-rounding ensures that each variable in xround becomes binary. So, to
show that xround is β-feasible, we only need to check that it satisfies the capacity
constraints: ∑

j∈N
wjx

round
ij ≤ (1 + ε)

∑
j∈N

w̄jx
round
ij

≤ (1 + ε)

[∑
j∈N

w̄jx
MIP
ij + εbi

]
≤ (1 + ε)

[(
1 + ε3

)
bi + εbi

]
= β · bi,

where the first inequality holds by Property 5.5.2, the second by Corollary 5.5.5
and the third by Lemma 5.5.6. This proves the required feasibility of the solution.
The required objective value follows from Property 5.5.2, Corollary 5.5.5 and
Lemma 5.5.7:

c
(
xround,w

) ≥ c
(
xround, w̄

) ≥ c
(
xMIP, w̄

) ≥ 1

1 + ε
c (x∗,w) .

�

We can extend the result of Theorem 5.5.4 further to obtain a PTBAS and hence
prove the main result of this section, Theorem 5.5.1:

Proof of Theorem 5.5.1:
For any α and β such that 0 ≤ α ≤ 1 and β ≥ 1, it is always possible to choose
an ε such that 1/(1 + ε) ≥ α and (1 + ε) (1 + ε+ ε3) ≤ β. Then it follows from
Theorem 5.5.4 that RoundedLongestPath(ε) is an (α, β)-bicriteria approxi-
mation algorithm. �

5.5.3 Solution to SIR

We will reduce the problem of computing the solution to SIR to the problem
of computing a maximum-length s-t-path in a specifically constructed directed
acyclic graph, in which each arc has an associated length.

General Graph Structure. The graph is a directed graph consisting of m̂+1
stages. Each stage consists of multiple layers, and each layer consists of multiple
nodes. Stage k corresponds to a segment k. Let mk be the number of knapsacks
in the k-th segment, i.e., mk = |M(k)|. Then for every stage k there will be
mk + 1 layers in the graph. Figure 5.4 shows an example of the structure of
the graph. The knapsacks within a stage are sorted by non-increasing capacities.
Since each stage corresponds to a segment, the stages are automatically sorted by
order of non-increasing capacities as well. For a segment k that does not contain
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...

l = 1

...

l = 2

...

l = 3

...

l = mk + 1

· · ·

stage k

s t

Figure 5.4: General graph structure.

any knapsack, i.e., mk = 0, the stage will consist of one so-called dummy layer.
For the other stages, an arc between layer l and layer l+1 in stage k corresponds
to packing the l-th knapsack in stage k. The packing of a knapsack i in stage
k exactly specifies the configuration of large (in NL(k)) and medium items (in
NM(k)) that will be assigned to i. The configuration is a vector of length 2ω that
specifies how many items of each subsegment of segment k and k+1 are planned
on knapsack i. The packing also specifies what remaining part of the capacity
will be reserved for small items (in NS(k)). When making such a reservation, it
is uncertain which small items will make use of the reserved capacity. Crucially,
for a solution to be feasible, the total reserved capacity must correspond with the
total weight of all items that are planned as small, which will become clear below.

Consider all the items in N(k). In stage k − 1, some of these items might be
assigned to knapsacks in M(k− 1), as medium items. In the next stage, stage k,
another subset of N(k) might be assigned to knapsacks in M(k), as large items.
The remaining items in N(k) are still unassigned at the end of stage k. We call
those items the remaining unassigned items of stage k. These are exactly the
items that must be assigned to knapsacks in ME(k), as small items. This means
that at the end of stage k, we need to check if enough reservations for small items
were made on knapsacks in ME(k).

To summarize, for each stage k = 0, 1, . . . , m̂:

Step 1. For each knapsack i in stage k (in order of non-increasing capacities):

• Specify the configuration of large items in NL(k) and medium items
in NM(k) that is assigned to knapsack i.

• Specify how much remaining capacity of knapsack i is reserved for
small items in NS(k).

Step 2. After executing step 1 for each knapsack i ∈ M(k), the remaining unas-
signed items of stage k still need to be assigned. These are exactly the
items that are not assigned as medium items to knapsacks in MH(k) or as
large items to knapsacks in ML(k). They must be assigned as small items
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to knapsacks in ME(k). We need to check if enough capacity was reserved
on the knapsacks in ME(k). If yes, then the reservations on the knapsacks
in ME(k) are reduced accordingly by the total weight of the remaining
unassigned items of stage k.

State Vectors and Layers. In order to execute these steps, each node in
the graph is labeled with a state vector. A state vector contains the necessary
information about unassigned items. More specifically: in stage k, the state vector
indicates how many of each large and medium item (NL(k) and NM(k)) still
need to be assigned. Additionally, the state vector indicates how much capacity
is reserved for small items (NS(k)).

A state vector is of the form (yL,yM , ρE, ρH , ρL, ι). For a node in stage k, the
elements in the state vector are as follows:

• yL is a vector of length ω: (yL1 , . . . , y
L
ω ), in which an entry yLj is an integer

indicating how many items with weight w̄
(k)
j from NL(k) still need to be

assigned. Recall that for knapsacks in M(k), large items (NL(k)) are items
from the k-th segment and are therefore multiples of εk+2. Recall that ω is
the number of subsegments in each segment.

• yM is a vector of length ω: (yM1 , . . . , yMω ), in which an entry yMj is an integer
indicating how many items with weight w̄(k+1)

j from NM(k) still need to be
assigned. Recall that for knapsacks in M(k), medium items (NM(k)) are
items from the (k + 1)-th segment and are therefore multiples of εk+3.

• ρE indicates how much of the reserved capacity on enormous knapsacks,
ME(k), remains for items in N(k)∪· · ·∪N(n̂). The quantity ρE is used, as
explained in Step 2 above, to check if the remaining items at the end of stage
k fit on enormous knapsacks ME(k). Formally, ρE is defined as the sum of
the reservations made on knapsacks in M(0) to M(k − 2), subtracted by
the weight of all remaining unassigned items of previous stages 0, . . . , k−1.
Since the items in stage k are of granularity εk+2, it suffices to store ρE in
granularity εk+2.

• ρH indicates the reserved capacity on knapsacks in MH(k) for items in
N(k + 1) ∪ · · · ∪ N(n̂). ρH is stored in order to be able to compute ρE in
later stages. I.e., when going from stage k to stage k+1, the huge knapsacks
become enormous, and ρH is added to ρE. Since the items in stage k + 1
are of granularity εk+3, it suffices to store ρH in granularity εk+3.

• ρL indicates the reserved capacity on knapsacks in ML(k) for items in N(k+
2) ∪ · · · ∪ N(n̂). Like ρH , it is stored in order to be able to compute ρE
in later stages. I.e., when going from stage k to stage k + 1, the large
knapsacks become huge, and ρL is added to ρH , which in turn will be added
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(yL1 , . . . , y
L
ω ;

yM1 , . . . , yMω ;
ρE , ρH , ρL, ι) ...

layer l layer l + 1

ri = rmax

(yL1 − xL
1 , . . . , y

L
ω − xL

ω ;
yM1 − xM

1 , . . . , yMω − xM
ω ;

ρE , ρH , ρL + r , i)ri

(yL1 − xL
1 , . . . , y

L
ω − xL

ω ;

yM1 − xM
1 , . . . , yMω − xM

ω ;
ρE , ρH , ρL + r , ι)

ri = 1

ri = 0

rmax

...

(¯̄xL
1 , . . . , ¯̄x

L
ω ;

¯̄xM
1 , . . . , ¯̄xM

ω )

(x̄L
1 , . . . , x̄

L
ω ;

x̄M
1 , . . . , x̄M

ω )

(xL
1 , . . . , x

L
ω ;

xM
1 , . . . , xM

ω )

Figure 5.5: Outgoing arcs for a node in layer l of stage k.

to ρE at the end of the next stage, as explained above. During stage k, ρL
is incremented with the reservations made on the knapsacks in M(k). Since
the items in stage k + 2 are of granularity εk+4, it suffices to store ρL in
granularity εk+4. Next to the reserved capacity in stage k, ρL might contain
a refined reservation, which we will explain below.

• ι indicates the index of the knapsack with the smallest capacity encountered
so far for which the second capacity constraint (5.1c) is not tight. Intuitively,
ι is the smallest knapsack encountered that has some residual capacity. It
is used for calculating the length of update arcs, which is explained later.
ι is initialized to a value ‘init’, indicating that no knapsack with residual
capacity has been encountered yet.

The first 2ω entries in a state vector, in yL and yM , are non-negative integers of
value at most n. The next three values, ρE, ρL and ρH , are non-negative integers
of size at most n/ε2; we show in the proof of Lemma 5.5.8 why it suffices to store
at most n/ε2 values for each reservation. The last entry in a state vector is either
‘init’, or a positive integer of size at most m. Each layer in the graph, also the
dummy layers, consists of all possible state vectors with a structure as described
above.

Arcs Within a Stage. Next, we define what the graph looks like within a
stage k, if mk > 0. Recall, if there are mk knapsacks in segment k, then there
will be mk + 1 layers in stage k, from layer 1 to layer mk + 1. If mk = 0, there is
only a dummy layer in stage k and there are no arcs within this stage. Otherwise,
there can be arcs between different layers in a stage. An arc between the l-th and
(l + 1)-th layer of stage k indicates the packing of the l-th knapsack in stage k,
or equivalently, of the i-th knapsack overall, where i =

∑k−1
k′=0 mk′ + l. See Figure

5.5 for an example of the arcs between layer l and layer l + 1 in stage k. There
is an arc between node (yL1 , . . . , y

L
ω ; y

M
1 , . . . , yMω ; ρE, ρH , ρL, ι) in the l-th layer of

stage k and node (ŷL1 , . . . , ŷ
L
ω ; ŷ

M
1 , . . . , ŷMω ; ρE, ρH , ρ̂L, ι̂) in the l + 1 layer of stage

k if:
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• There is a configuration (xL
1 , . . . , x

L
ω ; x

M
1 , . . . , xM

ω ) such that for j = 1, . . . , ω :
xL
j ≥ 0, xM

j ≥ 0, ŷLj = yLj −xL
j and ŷMj = yMj −xM

j . Note that since both ŷLj
and yLj are non-negative integers, it follows that xL

j is an integer for which
holds that xL

j ≤ yLj . The same holds for the medium items.

• The configuration is feasible with respect to bi, i.e.,

ω∑
j=1

w̄
(k)
j xL

j +
ω∑

j=1

w̄
(k+1)
j xM

j ≤ bi.

• There is a non-negative integer reservation ri such that ρ̂L = ρL + ri. The
reservation is at most rmax, which is defined as:

rmax = �bi/εk+4� −
(

ω∑
j=1

w̄
(k)
j xL

j +
ω∑

j=1

w̄
(k+1)
j xM

j

)
/εk+4.

• The pointer to the last knapsack that has free capacity, ι̂, remains ι if the
reservation ri is equal to rmax. Otherwise, ι̂ is updated to i: the index of
the knapsack corresponding to the l-th layer of stage k.

The reservation ri is a reservation of capacity on knapsack i for small items in
NS(k). We make a reservation on knapsack i in granularity εk+4 of every multiple
from 0 to rmax. A reservation of 0 means that the knapsack will only contain large
items (in NL(k)) and medium items (in NM(k)) and no small items (in NS(k)).
A reservation equal to rmax means that all the remaining capacity (after assigning
large and medium items) will contain small items.

The length of such an arc is precisely the weight that is assigned to the arc
(coming from both large items in NL(k), medium items in NM(k) and the reser-
vation for small items in NS(k)), divided by the knapsack capacity. So again, let
i be the index of the l-th knapsack in stage k, then the length of an arc between
layer l and layer l + 1 in stage k is

1

bi

[
ω∑

j=1

w̄
(k)
j xL

j +
ω∑

j=1

w̄
(k+1)
j xM

j + riε
k+4

]
.

In the first layer of stage 0, there is only the initial node s, labeled with the
state vector corresponding to the number of large and medium items of stage 0.
ρL, ρE and ρH are initialized to zero and ι is set to an initialization value ‘init’,
indicating that there was no knapsack with spare capacity yet.

The intuition of the graph for stage k is as follows: a node v in layer l + 1
of stage k is reachable from a node v0 in the first layer of stage k if there is a
packing of large items (in NL(k)) and medium items (in NM(k)) on the first l
knapsacks in M(k) using feasible configurations, where the remaining unassigned



663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen
Processed on: 29-10-2024Processed on: 29-10-2024Processed on: 29-10-2024Processed on: 29-10-2024

112 Chapter 5. PTBAS for Casting Problem

large and medium items are exactly indicated by yL and yM in the state vector
of node v, and the total reservation for small items (in NS(k)) on the first l
knapsacks of stage k is given by the difference in ρL for v and v0, in granularity
εk+4. The length of this path is exactly the objective that is gained on the first
l knapsacks of stage k, coming from assigned large and medium items and the
capacity reserved for small items.

Arcs Between Stages. The state vectors in the last (possibly dummy) layer of
a stage k need to be connected to the state vectors in the first (possibly dummy)
layer of the next stage k + 1. We do this with so-called update arcs. Intuitively
the following happens at such an update arc: (see also Step 2 in the general graph
structure)

• The remaining unassigned items of stage k will be assigned to enormous
knapsacks (ME(k)). We thus check if ρE, i.e., the total amount of reser-
vations on ME(k), is large enough to accommodate all the items and then
subtract the total weight of the remaining unassigned items of stage k from
ρE. Recall that we store ρE in granularity εk+2, so before subtracting the
weight of unassigned items, we multiply ρE with εk+2 to obtain the actual
size of the reservation. No update arc will be created if ρE is not large
enough to accommodate the remaining items, intuitively this means that
not enough capacity was reserved.

• We update the reservations for the next stage, k + 1. This means we need
to express ρE in granularity εk+3, which we do by dividing it by εk+3. The
multiplication of ρE with εk+2 in the previous step possibly caused ρE to
be non-integer, but the division with εk+3 in this step restores this property
again.

Moreover, we need to add ρH to ρE since the knapsacks that are huge in
stage k will become enormous in stage k + 1. Similarly, ρH is updated to
the value of ρL.

• If at least one knapsack has been encountered with some residual capacity,
i.e., if ι is not ‘init’ anymore, we are going to introduce the possibility
of making a refined reservation, denoted with u. We need these refined
reservations because the reservations that are made on the arcs within a
stage k are made in granularity εk+4. However, we want to accommodate
the possibility of making a more fine-grained reservation, in granularity εk+5.
We make a refined reservation for every size u, such that u is a multiple of
εk+5, and smaller than εk+4. Since the granularity of the refined reservation
is εk+5, this means we make a refined reservation for every positive integer
u that is smaller than 1/ε.
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(yL1 , . . . , y
L
ω ;

yM1 , . . . , yMω ;
ρE , ρH , ρL, ι)

...

layer mk + 1 layer 1

u = 1
ε − 1

u = 1

u = 0

...

stage k stage k + 1

(yM1 , . . . , yMω ;

y
(k+2)
1 , . . . , y

(k+2)
ω ;

ρ
(1)
E /εk+3 + ρH , ρL, u, ι)ρ

(1)
E ≥ 0

ρ
(1)
E < 0

Figure 5.6: Outgoing arcs for two nodes in the last layer of stage k to the first
layer of stage k + 1. The upper node has no outgoing arcs since ρ

(1)
E < 0: the

made reservations are not large enough to accommodate the remaining items in
stage k.

Since the granularity of ρL in the next stage k + 1 is also εk+5, we can add
the refined reservation to ρL. This means that in stage k + 1, ρL does not
only contain the reservations made on knapsacks in stage k + 1, but also a
refined reservation on ι.

In Property 5.5.12 we prove that for the optimal solution xMIP there is at
most one knapsack in M(0)∪· · ·∪M(k) that has such a fine-grained weight,
namely ι. Therefore it suffices to create the possibility to make a refined
reservation in each granularity once.

Algorithm 11 defines which update arcs will be created. The input to the
algorithm consists of the stage k and a state vector in the last layer of stage k.
Whenever the last stage is reached, i.e., k = m̂, we need to check if there is an
arc to the target node t. For the nodes in the last layer of stage k, we therefore
do not use Algorithm 11 to compute the outgoing arcs, but Algorithm 12, which
is elaborated on below. An example for the update arcs between the last layer in
stage k and the first layer in stage k + 1 is given in Figure 5.6.

We elaborate on Algorithm 11 in more detail. The algorithm starts with de-
creasing the reservation for small items, ρE, with the total weight of all remaining
items in N(k) in Line 1, after which the algorithm checks if enough reservations
were made to accommodate these items in Line 2, otherwise it returns ‘failure’.
In Lines 3 and 4, the algorithm initializes ρE and ρH for the next stage. The
output of Algorithm 11 is a set of nodes in the first layer of stage k + 1. An
update arc will be created from the input node to all of these nodes in the output
set. Recall that we use y

(k)
j to denote the number of items with weight w̄(k)

j . If a
knapsack with free capacity exists, an arc is created with every possible refined
reservation value. The value of the refined reservation is a non-negative integer
strictly smaller than 1/ε. Otherwise, no refined reservation is made and only one
arc will be created.
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Algorithm 11 Update
(
k,

(
yL1 , . . . , y

L
ω ; y

M
1 , . . . , yMω ; ρE, ρH , ρL, ι

))
1: ρ

(1)
E = ρEε

k+2 −∑ω
j=1 w̄

(k)
j yLj � Remaining items of N(k) are assigned as small

2: if ρ
(1)
E < 0 then return failure � Check if enough reservations are made

3: ρE = ρ
(1)
E /εk+3 + ρH � Update values for next stage

4: ρH = ρL
5: if ι �=‘init’ then
6: return

{(
yM1 , ..., yMω ; y

(k+2)
1 , ..., y

(k+2)
ω ; ρE, ρH , u, ι

)∣∣∣u = 0, 1, ..., 1/ε− 1
}

7: else
8: return

{(
yM1 , ..., yMω ; y

(k+2)
1 , ..., y

(k+2)
ω ; ρE, ρH , 0, ι

)}

The length of an update arc originating in the last layer of k to the first layer
of stage k + 1 is the value of the refined reservation divided by the capacity of ι,
defined as follows:

1

bι
uεk+5.

It follows that the length of an update arc on which no refined reservation was
made because ι was equal to ‘init’ is 0.

Arcs to the Target Node. As we explained above, for the nodes in the last
layer of the last stage, i.e., when k = m̂, we need an algorithm to check if there is
an arc to the target node t. Algorithm 12 does exactly this; the input is a node
in the last layer of stage m̂ and the output is either t or ‘failure’. Intuitively,
the algorithm checks if the made reservations are enough to accommodate the
remaining items in stage m̂ and all subsequent stages (recall that possibly, m̂ ≤ n̂).
Conversely, the algorithm also checks if not too much capacity was reserved, i.e.,
it checks if all reservations are justified. If this is the case, the algorithm returns
the target node t and an arc to t is created, otherwise, the algorithm returns
‘failure’, and no outgoing arc is created.

We elaborate on Algorithm 12 in more detail. At the end of stage m̂, it can be
that there are items in N(m̂) that were not assigned to knapsacks in ML(m̂) or
MH(m̂) and therefore must be assigned as small items to knapsacks in ME(m̂),
these are exactly the remaining unassigned items of stage m̂. Consequently,
in the first line of the algorithm, we assign these remaining items of N(m̂) to
ME(m̂), and check if enough capacity was reserved to assign them in Line 2.
We continue with the remaining unassigned items in stage m̂+ 1. Some items in
N(m̂+1) might have been assigned as medium items to knapsacks in MH(m̂+1) =
M(m̂), but the remaining remaining items of N(m̂ + 1) need to be assigned to
knapsacks in ME(m̂ + 1). In Line 4, the algorithm checks if enough capacity
was reserved to do so. The algorithm then computes ρ(3)E , which is the remaining
reserved capacity in all knapsacks. Moreover, it computes θ: the total weight
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Algorithm 12 reservationValidation
(
yL1 , . . . , y

L
ω ; y

M
1 , . . . , yMω ; ρE, ρH , ρL, ι

)
1: ρ

(1)
E = ρEε

m̂+2 −∑ω
j=1 w̄

(m̂)
j yLj � Remaining items of N(m̂) are assigned as small

2: if ρ
(1)
E < 0 then return failure � Check if enough reservations are made

3: ρ
(2)
E = ρ

(1)
E + ρHε

m̂+3 −∑ω
j=1 w̄

(m̂+1)
j yMj � Rem. items of N(m̂+1) assigned as small

4: if ρ
(2)
E < 0 then return failure � Check if enough reservations are made

5: ρ
(3)
E = ρ

(2)
E + ρLε

m̂+4
� All remaining unused reservations

6: θ =
∑n̂

q=m̂+2

∑ω
j=1 w̄

(q)
j y

(q)
j � Total weight of unassigned items

7: if ρ
(3)
E ≤ θ < ρ

(3)
E + εm̂+4 and ι �=‘init’ then

8: return t
9: else if ρ

(3)
E = θ then

10: return t
11: else
12: return failure

of all remaining unassigned items, which is equal to the total weight from all
items in N(m̂ + 2) ∪ · · · ∪ N(n̂) since none of the items in these segments were
assigned yet. Since the reservations were made as a multiple of εm̂+4 at the finest,
the algorithm allows that the remaining weight exceeds the remaining reserved
capacity with strictly less than εm̂+4. This difference is the last refined reservation
that must be made on ι. If ι is ‘init’, no refined reservation can be made and the
remaining reserved capacity must be equal to the remaining weight.

The length of an update arc from the last layer to t is equal to the difference
between the remaining weight and the remaining reserved capacity, divided by
the capacity of ι (if ι is ‘init’, the length is 0):

1

bι

(
θ − ρ

(3)
E

)
.

Proofs. In the remainder of this section, we prove three lemmas that together
show that an optimal solution to SIR can be found by finding a maximum-length
path in the created graph. First, we will prove that the size of the graph is
polynomial in Lemma 5.5.8. After that, Lemma 5.5.9 and Lemma 5.5.10 show
the correspondence between a maximum-length path in the graph and the optimal
solution to SIR.

Lemma 5.5.8. The number of nodes in the graph is polynomial.

Proof:
There are exactly m̂+ 1 stages in the graph. Since bm ≤ εm̂, it follows that

m̂ ≤ log bm
log ε

.
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Each stage has at least one layer and there is an extra layer in a stage k for each
knapsack in M(k). This means there are exactly m̂+ 1 +m layers in the graph.
A layer may contain all possible state vectors. The first two entries of the state
vectors represent the number of large and medium items that need to be assigned.
They are vectors of length ω = (1 − ε)/ε2, where each entry is at most n. Since
2ω ≤ 2/ε2, this gives at most n2/ε2 possible vectors. Next, we derive an upper
bound on the weight that ρE must be able to represent. During a stage k, ρE
needs to represent the weight of at most n items. A small item to an enormous
knapsack comes from stage k (or higher), so is at most of size εk. Therefore, nεk
is an upper bound on the weight that ρE might represent. Since ρE is represented
in granularity εk+2, there only need to be n/ε2 different values for ρE in the state
vector. Similarly, we only need n/ε2 different values for ρH and ρL. Together
with m values for ι, this gives that the number of nodes in the graph is

O
(
1

ε6

(
log bm
log ε

+m

)
n2/ε2+3

)
.

�

Lemma 5.5.9. If there is a path in the graph from s to t with a total length of
c, then there is a feasible solution to SIR with value c.

Proof:
We can construct a feasible solution to SIR denoted by x, by tracing the given
path in the graph. For each stage k and each knapsack i ∈ M(k), there is an
arc along the path that specifies: (1) the feasible configuration, i.e., how many
large items of each size w̄

(k)
j , j = 1, . . . , ω and how many medium items of each

size w̄
(k+1)
j , j = 1, . . . , ω must be assigned to knapsack i and (2) ri: the remaining

capacity in i that will contain small items in granularity εk+4. Since the arc
indicates ri in granularity εk+4, we multiply them to ensure we have the actual
reservation: r̄i = riε

k+4. Since the configuration only specifies the number of
large (medium) items of each size according to the rounded weight, w̄, it remains
to choose which exact items we assign to i. Any subset of unassigned items with
rounded weights specified by the configuration suffices and we can set xij = 1 for
the items j in this subset.

After traversing the path through the layers of stage k, and assigning large
and medium items to knapsacks accordingly, we end up at an update arc at the
end of stage k. We still need to assign the remaining unassigned items in stage k.
While there remains an item j ∈ N(k) for which

∑
i∈M xij < 1, assign it, possibly

fractionally, on the largest encountered knapsack i′ for which the reservation r̄i′
is positive: let i′ = argmax {bi | i ∈ M(0) ∪ · · ·M(k), r̄i > 0}, set

xi′j = min

{
r̄i′

w̄j

, 1−
∑
i∈M

xij

}
,
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and decrease r̄i′ with w̄jxi′j. We know that we can always find such an i′ since
Algorithm 11 only outputs outgoing arcs if sufficient reservations are made for
these remaining items. The update arc also specifies the so-called refined reserva-
tion, u on ι in granularity εk+5. We increase the reservation r̄ι of knapsack ι with
this amount: r̄ι = r̄ι + uεk+5. We continue traversing the path and constructing
x until a node in the last layer of stage m̂ is reached.

Similarly as to an update arc, we assign the remaining unassigned items of
stage m̂, possibly fractionally, to knapsacks in ME(m̂), and subsequently we plan
the remaining unassigned items of stage m̂+1, possibly fractionally, to knapsacks
in MH(m̂). Before we plan the remaining items of stage m̂ + 2, we increase r̄ι
with the value of the last refined reservation, i.e., r̄ι = r̄ι + θ − ρ

(3)
E , in the case

that ι does not equal ‘init’.
By construction, x satisfies integrality Constraints (5.1e) and non-negativity

Constraints (5.1f). The first capacity constraint (5.1b) holds by the feasibility of
the large and medium configuration, checked during construction of the graph.
Constraint (5.1d) holds since the construction of x ensures that every item is
assigned to a knapsack. In case the item is assigned fractionally, the construction
ensures that the values for the item add up to one. In order to show that x
is a feasible solution to SIR, we only need to show that x satisfies the second
capacity constraint (5.1c). Observe that (5.1c) holds by construction of the graph
if the refined reservations are not taken into account. We need to prove that the
constraint is still satisfied after adding the value of refined reservations. When
an arc is encountered that specifies the large and medium items that must be
assigned to a knapsack i, we either have that Constraint (5.1c) is tight, which
means that ri = rmax = 0 and by construction of the graph, ι is not updated
in that case. Subsequently, no refined reservation will be made on this knapsack
and it holds that Constraint (5.1c) remains valid. Otherwise, it holds that (5.1c)
is not tight, and the arc leads to a node where ι is updated to i. We prove that
Constraint (5.1c) remains valid for ι after a refined reservation, by proving the
following invariant: at each point of the path in stage k, the slack for Constraint
(5.1c) of knapsack ι is at least εk+4. After updating ι to i in stage k, the invariant
holds by construction of the graph, since ι is only updated if there is slack and
the slack cannot be smaller than εk+4. We prove that the invariant remains true
after encountering an update arc between stage k and stage k + 1. The refined
reservation is maximum whenever u = 1/ε − 1. Since the refined reservation is
stored in granularity εk+5, we multiply them to get:

u = (1/ε− 1)εk+5 = εk+4 − εk+5.

This means that the refined reservation fits on ι, since there is εk+4 slack in the
constraint. For the next stage, k + 1, the slack in the constraint for ι is at least
εk+4 − (εk+4 − εk+5) = εk+5. This proves the invariant and therefore proves that
Constraint (5.1c) also holds for ι.
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Lastly, it holds that the path’s length is equal to the value of c(x) since each
arc has a length that corresponds exactly with the total assigned weight induced
by following that arc, divided by the size of the associated knapsack. To see this,
observe that only an arc to t is created if all reservations are justified. �

Lemma 5.5.10. If SIR has a feasible solution and xMIP is the optimal solution
with value c

(
xMIP, w̄

)
, then there is a path in the graph from s to t with a total

length of c
(
xMIP, w̄

)
.

Before we prove the lemma, we introduce some extra notation and prove two
properties that hold for the solution xMIP. Let zkl be the vector of length ω
indicating the number of items from each subsegment of stage l that xMIP has
assigned to knapsacks in M(k), or formally,

zkl = (z1kl, z2kl, . . . , zωkl), where zjkl =
∑

i∈M(k)

∑
j′:w̄j′=w̄

(l)
j

xMIP
ij′ .

Furthermore, let w(k, l,xMIP) denote the total weight of items in N(l) that are
assigned to knapsacks in M(k) with respect to xMIP, i.e.:

w(k, l,xMIP) =
∑

i∈M(k)

∑
j∈N(l)

w̄jx
MIP
ij .

For simplicity of notation, we will often write wkl, and sometimes wk,l to dis-
tinguish what belongs to the first and the second subscript, when we mean
w(k, l,xMIP).

In the construction of the s-t-path, we will need to choose one of the update
arcs, based on the refined reservation. For the update arc between stage k − 1
and stage k, we choose the following quantity for the refined reservations:

ûk :=

⌊(
k−1∑
k′=0

∑
l′≥0

wk′l′

)
/εk+4

⌋
−

⌊(
k−1∑
k′=0

∑
l′≥0

wk′l′

)
/εk+3

⌋
1

ε
.

Intuitively, ûkε
k+4 is the difference between rounding down the total weight on

knapsacks of the first k − 1 stages to the nearest multiple of εk+4 and εk+3. For
every k it holds that 0 ≤ ûk < 1/ε and ûk ∈ N0. Moreover, the following property
holds for ûk:

Property 5.5.11.

ûk =

⌊(
k−1∑
k′=0

∑
l′≥k+2

wk′l′

)
/εk+4

⌋
−

⌊(
k−1∑
k′=0

∑
l′≥k+2

wk′l′

)
/εk+3

⌋
1

ε
.
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Proof:
The property holds since both wkl/ε and wkl are multiples of εk+3 for every l :
0 ≤ l ≤ k + 1. �

To deal with knapsacks that have the same size, we make the following tie-
breaking assumption for xMIP without loss of generality: if ∃i, i′ ∈ M such that
i ≤ i′ and bi = bi′ , and if Constraint (5.1c) is not tight for i′, then xMIP

ij = 0 for
every j ∈ NS(i). Intuitively, this means that xMIP is the solution such that if
there are multiple knapsacks with equal size, small items are always assigned to
the knapsack with the larger index first. This assumption about xMIP is used to
prove the following property for xMIP.

Property 5.5.12. For every k, there is at most one knapsack in M(0) ∪ · · · ∪
M(k) in the optimal solution to SIR, xMIP, that has a total weight assigned to it
with granularity εk+5 or smaller. This knapsack is exactly the smallest knapsack,
i.e., the knapsack with the largest index, in stages 0 to k for which (5.1c) is not
tight. The rest of the knapsacks in M(0) ∪ · · · ∪ M(k) have a weight that is a
multiple of εk+4.

Proof:
Fix a k. Suppose that in xMIP, there are two knapsacks in M(0)∪· · ·∪M(k) that
have a total weight assigned to them which has granularity εk+5 or smaller. That
must mean that both knapsacks have items in N(k + 3) ∪ · · · ∪ N(n̂) assigned
to them, i.e., both knapsacks have items assigned to them that are small for
them. Moreover, it must hold that Constraint (5.1c) is not tight for both of these
knapsacks. By our tie-breaking assumption, the knapsacks cannot be of the same
size. However, this means xMIP can be improved by moving weight (coming from
small items) from the larger to the smaller knapsack. This can be done until at
most one knapsack has granularity εk+5. By moving weight from a larger to a
smaller knapsack, the objective value of xMIP improves, which is a contradiction.
This proves that there is at most one knapsack in stages 0 to k with granularity
εk+5 or smaller.

Now suppose that in xMIP there is a knapsack with granularity εk+5 and there
is another knapsack, with a larger index, for which Constraint (5.1c) in SIR is not
tight. By the tie-breaking assumptions, these knapsacks cannot be of the same
size. Then again, by moving the weight coming from small items to the smaller
knapsack, we can improve the solution. This gives a contradiction that proves
the latter part of the property. �

Proof of Lemma 5.5.10:
We assume that SIR has a feasible solution, and therefore an optimal solution,
which we denote by xMIP. We first prove by induction that a path from s to t
exists, without regarding the length of the path. Recall that we use y(k) to denote
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(y
(k)
1 , . . . , y

(k)
ω ), where y(k)j indicates the total number of items with rounded weight

w̄
(k)
j .

Inductive Hypothesis 1. For k = 0, . . . , m̂, there is a path P from s to some
node in the first layer of stage k, where the state vector of that node has

• item distribution
(
y(k) − zk−1,k;y(k+1)

)
;

• ρE =
⌊(∑k−2

k′=0

∑
l′≥k wk′l′

)
/εk+2

⌋
;

• ρH = ûk−1 +
⌊(∑

l′≥k+1 wk−1,l′
)
/εk+3

⌋
;

• ρL = ûk;

• ι is the smallest knapsack of segment 0 to k − 1 for which (5.1c) in SIR is
not tight.

For k = 0, ρE = ρH = ρL = 0 and ι is ‘init’, and there is a trivial path from
s to itself. Inductively, we can now assume that at the beginning of stage k (so
that M(k) �= ∅) there is a path from s to a state vector in the first layer of k. We
need to prove that there is a path to a node in the first layer of stage k + 1.

To construct the path in stage k, we follow the optimal solution xMIP to decide
which large and medium items to pack on the knapsacks, and how much weight
we must reserve for small items. We can do this easily, since for every feasible
configuration of large and medium items and every possible reservation of small
items that is a multiple of εk+4, there is an arc. For each knapsack i, we take the
arc that has exactly the large and medium configuration as in xMIP, and which
reserves ri, where ri is as much as the weight from small items that xMIPassigns
to i, but rounded down:

ri =

⌊∑
j∈NS(i) w̄jx

MIP
ij

εk+4

⌋
.

As explained in the construction of the graph, this arc increases ρL with the
amount that we reserve, i.e., ρL = ρL + ri.

After following these arcs for every knapsack in stage k, we end up in the last
layer of stage k with item distribution

(
y(k) − zk−1,k − zk,k;y

(k+1) − zk,k+1

)
. ρE

and ρH have not changed since the beginning of the stage. ρL was updated every
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time a reservation was made and is therefore equal to:

ρL = ûk +
∑

i∈M(k)

⌊∑
j∈NS(i) w̄jx

MIP
ij

εk+4

⌋

= ûk +

⌊∑
i∈M(k)

∑
j∈NS(i) w̄jx

MIP
ij

εk+4

⌋

= ûk +

⌊∑
l′≥k+2 wkl′

εk+4

⌋
. (5.8)

The second equality holds by Property 5.5.12 and the third equality by the defi-
nition of wkl. To prove Inductive Hyothesis (IH) 1, we need to show there is an
update arc to a node in the first layer of the next stage for which IH 1 holds.

First, we check if the Update function, Algorithm 11, does not return failure,
by checking if ρ(1)E ≥ 0. The input of the algorithm, denoted with (k, (yL1 , . . . , y

L
ω ;

yM1 , . . . , yMω ; ρE, ρH , ρL, ι)), is given by (k, (y(k) − zk−1,k − zk,k;y
(k+1) − zk,k+1;

ρE, ρH , ρL, ι))), which gives:

ρ
(1)
E = ρEε

k+2 −
ω∑

j=1

w̄
(k)
j yLj

=

⌊(
k−2∑
k′=0

∑
l′≥k

wk′l′

)
/εk+2

⌋
εk+2 −

k−2∑
k′=0

wk′k

=

⌊(
k−2∑
k′=0

∑
l′≥k

wk′l′ −
k−2∑
k′=0

wk′k

)
/εk+2

⌋
εk+2

=

⌊(
k−2∑
k′=0

∑
l′≥k+1

wk′l′

)
/εk+2

⌋
εk+2 ≥ 0.

Here we use IH 1 for ρE and that
∑ω

j=1 w̄
(k)
j yLj is all the weight from items in

stage k that were not assigned as large or medium in xMIP, so therefore it is equal
to

∑k−2
k′=0 wk′k. We use that wk′k is a multiple of εk+2 for every k′ in the third

equality. It follows that ρ
(1)
E ≥ 0, so we know that the Update function does

not return ‘failure’. The Update function might return many nodes in the first
layer of stage k + 1, corresponding to different values for the refined reservations
u, from which we can choose a specific one. We choose the update arc which
makes a refined reservation u equal to ûk+1. Note that this arc exists because
0 ≤ ûk+1 < 1/ε.

We check if IH 1 holds for the node that this update arc points to. The
condition for the item distribution and ι are satisfied by construction of the graph,
in particular the output of the Update algorithm. We only need to check if IH
1 holds for the new ρL, ρH and ρE that are computed in the Update function,
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we denote them with ρ′L, ρ′H and ρ′E to distinguish them from the current values.
ρ′L is updated to u, for which we have chosen the value ûk+1. It follows that the
condition for ρL in IH 1 holds. ρ′H is updated to ρL. Recall that in the last layer
of stage k, ρL is equal to

ûk +

⌊∑
l′≥k+2 wkl′

εk+4

⌋
,

so the condition for ρ′H in IH 1 holds as well. To compute ρ′E, we can use IH 1
for ρH and the computation of ρ(1)E above:

ρ′E = ρ
(1)
E /εk+3 + ρH

=

⌊(
k−2∑
k′=0

∑
l′≥k+1

wk′l′

)
/εk+2

⌋
εk+2/εk+3 + ûk−1 +

⌊( ∑
l′≥k+1

wk−1,l′

)
/εk+3

⌋

=

⌊(
k−2∑
k′=0

∑
l′≥k+1

wk′l′

)
/εk+3

⌋
+

⌊( ∑
l′≥k+1

wk−1,l′

)
/εk+3

⌋

=

⌊(
k−1∑
k′=0

∑
l′≥k+1

wk′l′

)
/εk+3

⌋
. (5.9)

which is exactly what ρE should be according to IH 1 for stage k + 1. We used
Property 5.5.11 for the third equality and Property 5.5.12 for the last equality.
This proves that there is an update arc that leads to a state vector in the first
layer of stage k + 1 for which IH 1 holds. This proves IH 1.

It remains to show that there is a path from the first layer of stage m̂ to t.
We can follow the arcs in stage m̂ as described above for all the previous stages.
Similar arguments as described above can be used to prove that ρL gets updated
as in (5.8), that ρE ≥ 0 and that the input for Algorithm 12, denoted with
(yL1 , . . . , y

L
ω ; y

M
1 , . . . , yMω ; ρE, ρH , ρL, ι), is given by (y(m̂)−zm̂−1,m̂−zm̂,m̂;y

(m̂+1)−
zm̂,m̂+1; ρE, ρH , ρL, ι). Then, in Algorithm 12 it holds that ρ(1)E /εm̂+3+ρH = (5.9),
with k = m̂. It follows that Algorithm 12 does not return ‘failure’ in Line 2. We
will show that Algorithm 12 also does not return ‘failure’ in Line 4 by showing
that ρ

(2)
E ≥ 0.

ρ
(2)
E = ρ

(1)
E + ρHε

m̂+3 −
ω∑

j=1

w̄
(m̂+1)
j yMj

=

⌊(
m̂−1∑
k′=0

∑
l′≥m̂+1

wk′l′

)
/εm̂+3

⌋
εm̂+3 −

m̂−1∑
k′=0

wk′m̂+1

=

⌊(
m̂−1∑
k′=0

∑
l′≥m̂+2

wk′l′

)
/εm̂+3

⌋
εm̂+3 ≥ 0.
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Here we use that ρ
(1)
E /εm̂+3 + ρH = (5.9) and that

∑ω
j=1 w̄

(m̂+1)
j yMj is all the

weight from items in N(m̂+1) that are not assigned as medium to MH(m̂+1)(=
M(m̂)), so therefore it is equal to

∑m̂−1
k′=0 wk′m̂+1. The last equality holds since∑m̂−1

k′=0 wk′m̂+1 is a multiple of εm̂+3. Since ρ
(2)
E ≥ 0, Algorithm 12 does not return

‘failure’ in Line 4.
To compute the value of ρ(3)E , we use the computation of ρ(2)E and the updated

value of ρL:

ρ
(3)
E = ρ

(2)
E + ρLε

m̂+4

=

⌊(
m̂−1∑
k′=0

∑
l′≥m̂+2

wk′l′

)
/εm̂+3

⌋
εm̂+3 (5.10)

+ ûm̂ε
m̂+4 +

⌊( ∑
l′≥m̂+2

wm̂,l′

)
/εm̂+4

⌋
εm̂+4

=

⌊(
m̂∑

k′=0

∑
l′≥m̂+2

wk′l′

)
/εm̂+4

⌋
εm̂+4

=

⌊
θ

εm̂+4

⌋
εm̂+4. (5.11)

For the third equality, we used Properties 5.5.11 and 5.5.12, similarly as in the
computation of (5.9). The last equality holds by definition of θ in Algorithm 12.

This allows us to show that Algorithm 12 returns t. If ι equals ‘init’, it holds
that θ is a multiple of εm̂+4 and therefore ρ

(3)
E = θ, and an arc to t is created.

Otherwise, the difference between ρ
(3)
E and θ is at most εm̂+4 and an arc to t is

created as well.
It remains to prove the following inductive hypothesis about the length of the

path.

Inductive Hypothesis 2. For k = 0, . . . , m̂, let P be the path from s to a node
in the first layer of stage k, as constructed above. Then the length of path P
equals:

k−1∑
k′=0

∑
i∈M(k′)

1

bi

⌊(∑
j∈N

w̄jx
MIP
ij

)
/εk+4

⌋
εk+4

The length of the path from s to itself is 0, which proves the base case. Inductively,
we can assume that IH 2 holds for the length of the path up to the first layer of
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stage k. We can fill in the choice of ri into the length of an arc within a stage k:

1

bi

[
ω∑

j=1

w̄
(k)
j xL

j +
ω∑

j=1

w̄
(k+1)
j xM

j + riε
k+4

]

=
1

bi

⎡⎣ ω∑
j=1

w̄
(k)
j xL

j +
ω∑

j=1
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The second equality holds since we follow xMIP to choose the configuration for
the i’th knapsack. The last equality holds since all large and medium items with
respect to stage k are multiples of εk+4

Accumulating the length of the arcs during stage k, the length of the path has
increased as follows:
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The last equality is true since Property 5.5.12 proves that ι might be the only
knapsack that has a weight that is not a multiple of εk+4. We will add the length
of the chosen update arc and prove that the update arc points to a node for which
IH 2 holds. The length of the chosen update arc (with u = ûk+1) is as follows:
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(5.13)
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Here the last equality holds since by Property 5.5.12, ι is the only knapsack in
M(0) ∪ · · · ∪M(k) that might not be a multiple of εk+4.
So the total path length to the first layer of the next stage k+1 is then as follows:
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The second equality holds since
∑

j∈N w̄jx
MIP
ij is a multiple of εk+5 for every

knapsack except ι. This shows that IH 2 holds for the node in the first layer of
stage k + 1 that the chosen update arc points to, which proves that IH 2 is true.

Inductive Hypothesis 2 with k = m̂ gives the path length to the node in the
first layer of stage m̂. Following the same reasoning as for the earlier stages, we
get that the path length to a node in the last layer of stage m̂ equals:
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What remains to prove is that adding the length of the last arc to t ensures that
this path length adds up to c

(
xMIP, w̄

)
. The length of the last arc is defined as
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The third equality holds since wk′l′ is a multiple of εm̂+4 for every l′ ≤ m̂+1. For
the fourth equality we use the definition of wk′l′ . The fifth equality holds since
by Property 5.5.12, ι is the only knapsack for which the two terms differ.

Now we can add the length of the last arc to the length of the rest of the path
to obtain:
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5.6 Conclusion and Discussion

In this chapter, we presented two bicriteria approximation algorithms. In essence,
both algorithms are different methods for finding an optimal solution to the
Small Item Relaxation, after which the presented LP-rounding procedure
yields an approximate solution for the Casting Problem. In the first bicriteria
approximation algorithm that we present, a greedy algorithm suffices to find the
optimal solution. Even though the algorithm is fairly straightforward, it results
in a (1, 3/2)-bicriteria approximation algorithm.

For the second bicriteria approximation algorithm, it takes significantly more
work to find a feasible solution to the Small Item Relaxation. We acknowl-
edge that a complex and large, although polynomial, graph must be constructed.
Future research could explore to find out if the construction of the graph or the
analysis of the algorithm can be simplified. On the other hand, even though the
construction of the graph is complex, it pays off in the form of a PTBAS. Since
it is not possible to find an algorithm that computes a feasible solution for the
Casting Problem within polynomial time, unless P=NP, there is not much
more that we can expect than a PTBAS.



Chapter 6

Machine Learning in Large
Neighborhood Search for VRPTW:

Neighborhood Selection

6.1 Introduction

Efficiency in the planning of large logistics companies is of major importance,
both for reducing the environmental footprint and for reducing costs. To create
efficient schedules, planners at those companies need to be able to obtain high-
quality solutions quickly. In practice, such solutions are often computed by using
an iterative approach that proceeds along the following lines: (1) create an initial
feasible solution, (2) iteratively improve upon the current solution until a cer-
tain termination criterion is met (e.g., maximum number of iterations is reached,
sufficient solution quality is achieved). Large Neighborhood Search (LNS) is one
such approach that is broadly applicable and has proven to be highly efficient
in practice (see, e.g., the survey by Mara et al. [2022]). Each iteration of LNS
consists of two steps: the destroy method and the repair method. For the repair
method, often a general-purpose solver like a mixed integer programming (MIP)
solver or a constraint programming solver can be used [Pisinger and Ropke, 2010].
If available, one can also take advantage of heuristics that are known to be well-
performing and embed them as a repair method [Mara et al., 2022]. However, for
the destroy method the situation is different: often this asks for the development
of specialized algorithms tailored towards the specific scheduling problem, which
requires expert knowledge and needs time to be developed and implemented.

As also mentioned by Ropke and Pisinger [2006], LNS works particularly well
if the considered problem can be easily partitioned into a number of subproblems
where some constraints must be satisfied, covered by a master problem to control
how the subproblems are combined. Many routing and scheduling problems con-
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form to this structure and are therefore oftentimes successfully solved with LNS
in practice. A recent survey paper by Mara et al. [2022] on a specific type of LNS,
namely Adaptive Large Neighborhood Search (ALNS), categorized 252 scientific
publications. Most of these articles are on routing and scheduling, but there are
also applications in, e.g., manufacturing and agriculture. Below, we highlight a
few specific applications of LNS to showcase its broad applicability.

Rastani and Çatay [2021] use LNS to solve the Electric Vehicle Routing Prob-
lem with Time Windows, where a level of complexity is added to standard Ca-
pacitated Vehicle Routing Problem with Time Windows (CVRPTW) since vehicle
batteries need to be recharged during the day. Factors like temperature and speed
are taken into account to calculate a battery’s range, and in this paper specifically,
the carried load of a vehicle is taken into account. Chen et al. [2021] solve another
variant of CVRPTW, named Vehicle Routing Problem with Time Windows and
Delivery Robots. In this variant, vehicles can carry multiple robots which can take
over part of the deliveries. An LNS algorithm is used to solve this problem. In a
study by Kuhn et al. [2021], the Vehicle Routing Problem is intertwined with the
order batching problem, where multiple customers are grouped together. They
solve it using General Adaptive Large Neighborhood Search, a newly introduced
Adaptive LNS method inspired by General Variable Neighborhood Search (see
[Hansen et al., 2019]).

Recently, much research has been done on combining combinatorial algorithms
and Machine Learning (ML), classified into three paradigms by Bengio et al.
[2021] (see also the introduction of this thesis, Chapter 1). In the first paradigm,
combinatorial problems are solved with machine learning directly from the input
instance, like in Kool et al. [2019] for example. The second and third paradigms
use ML as a subroutine of a combinatorial solving method, either once (paradigm
2) or repetitively (paradigm 3). We believe that ML can be a great benefit as a
subroutine of already proven and widely used methods like LNS.

In this chapter, we propose to integrate ML into LNS to assist in deciding
which parts of the schedule should be destroyed and repaired in each iteration. In
particular, we investigate how to exploit machine learning techniques to amplify
the workings of any possible destroy algorithm. Conceptually, our new approach
can be applied to any LNS that makes some random choices (explained in more
detail below). We refer to our new approach as Learning-Enhanced Neighborhood
Selection (LENS for short).

This research was inspired by experimental findings that we obtained for a
real-world application solving large-scale routing problems on a daily basis. When
using our LENS approach to guide the destroy method of a (highly sophisticated)
LNS for this application we observed that this leads to a significant speed-up of
the optimization process. The LENS approach described in this chapter is based
on similar ideas. However, our approach is implemented for and tested on publicly
available and well-studied benchmark instances of the Capicitated Vehicle Routing
Problem with Time Windows (see also [Accorsi et al., 2022]). The algorithms and
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data sets that were used for the experiments reported in this chapter are publicly
available from the following repository:

https://github.com/w-feijen/ML4LNS

6.1.1 Our Contributions

The main contributions presented in this chapter are as follows:

1. We introduce a novel general Learning-Enhanced Neighborhood Selection
approach, referred to as LENS for short, that integrates ML in the destroy
method of an LNS algorithm. This approach is based on supervised learning
and can be used as an enhancement of the workings of any destroy method
using some form of randomization (as explained below).

2. We create an LNS algorithm for the Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW). The algorithm consists of (1) a destroy
heuristic that exploits a newly defined distance measure, based both on
distance and time windows, and (2) an existing repair heuristic.

3. We apply our LENS approach to the LNS algorithm of CVRPTW. For this
purpose, we first define features that describe the potential improvement
of a set of routes. We then collect data on these features and build an
ML model on top of it. Our ML model can predict whether or not an
improvement can be found in a given set of routes.

4. We provide general guidelines on how to collect the right data sets if su-
pervised learning-based ML is used in optimization algorithms. Based on
our experiments, it seems crucial to perform multiple iterations of data
collection, where a premature ML model is used to guide subsequent data
collection iterations. Eventually, the final ML model is trained on all the
collected data. By following these guidelines, we ensure that the relevant
information is gathered on runs in which the optimization is guided by the
ML approach.

5. We generate a training set of CVRPTW instances based on the R1 and R2
instances of Homberger and Gehring [2005] consisting of 1000 customers.
Our generated training instances can be used to collect data samples for
future supervised learning studies on the R1 and R2 instances.

6.1.2 Related Work

Combining machine learning with optimization is a hot topic. There is a survey
about reinforcement learning in combinatorial optimization by Mazyavkina et al.
[2021], about enhancing optimization algorithms with ML for Vehicle Routing
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Problems by Bai et al. [2023], about using ML techniques in meta-heuristics
(the class in which LNS falls as well) by Karimi-Mamaghan et al. [2022] and an
overview which distinguishes three different paradigms of combinations between
ML and combinatorial optimization by Bengio et al. [2021]. The first of these
paradigms is to leverage machine learning to solve combinatorial optimization
problems directly from the input instance. As opposed to this first paradigm, in
which the combinatorial algorithm is replaced by an ML algorithm, the second
and third paradigms use ML next to combinatorial methods, either in a single
place (paradigm 2), or repetitively (paradigm 3).

Accorsi et al. [2022] give very useful guidelines for testing ML approaches in
Vehicle Routing Problems (VRP). We highlight some of their advice: first, they
stress the importance of a clear problem description and the representativeness of
the test instances. In particular, for CVRPTW they advise using the instances by
Homberger and Gehring [2005]. Moreover, they stress including the best available
algorithms to benchmark against, and they give examples of how to visualize
comparisons between algorithms.

Moreover, Accorsi et al. [2022] and also Wu et al. [2022] state that most of
the proposed approaches consider construction heuristics, in which ML is used
to construct a feasible solution. An example of using ML to construct a feasible
solution is a study by Kool et al. [2019], in which a solution to the Travelling
Salesperson Problem (TSP) is constructed iteratively. A few others focus on
using ML in improvement heuristics, to guide the exploration of the search space
and iteratively improve an existing solution. We focus on these improvement
heuristics, which follow the third paradigm by Bengio et al. [2021] of combining
combinatorial optimization and ML and replacing some of the intermediate steps
in the larger improvement heuristic framework. Some related works in which ML
is used to enhance search heuristics are given by Wu et al. [2022], Hottung and
Tierney [2020], Li et al. [2021], Sonnerat et al. [2021]. We elaborate on these
examples below.

Wu et al. [2022] use reinforcement learning in a neighborhood search to solve
TSP and VRP without time windows. In particular, RL decides which pair of
nodes to feed to a pairwise improvement operator. Similarly to Wu et al. [2022],
we use ML to choose what to destroy in the solution. On the contrary, we choose
a substantially larger part to destroy. Hottung and Tierney [2020] augment an
LNS algorithm with a neural network to solve capacitated VRP without time
windows. However, the neural network model is not used in the destroy step but
in the repair step. Li et al. [2021] augment a local search algorithm for VRP
without time windows with a transformer network, that identifies which set of
routes needs to be optimized. A black box solver is used in the improvement
step. Finally, Sonnerat et al. [2021] use an LNS algorithm to solve Mixed Integer
Programs and ML is used to decide which of the variables to destroy.

Another line of research worth mentioning is ALNS, introduced by Ropke and
Pisinger [2006] which is an extension of LNS. In each iteration, ALNS makes a
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choice on which of several destroy or repair methods to use, based on weights that
are adapted during the run of the algorithm. A meta-analysis on the impact of the
additional adaptive layer is done by Turkeš et al. [2021]. It shows that the adaptive
layer improves the objective function value by 0.14%. Since the adaptive layer
does add extra complexity, they recommend it only in some specific situations. A
very related method is the Hyper-Heuristic (HH), which also chooses out of a set
of predetermined heuristics how to improve the solution in each iteration. Lagos
and Pereira [2024] present a HH based on a Markov model in which the weights
are trained with a Multi-Armed Bandit model.

Kerscher and Minner [2024] solve a VRP by using a decomposition technique
based on ML. They introduce spatial, temporal, and demand-based features for
the customers and cluster the customers based on these features. A separate
VRP is solved for each cluster, after which the solutions to the subproblems are
combined into a large solution. Local search techniques are used to improve the
aggregated solution. Even though this paper falls into the second paradigm of
Bengio et al. [2021], since ML is only used to determine the clustering of the
customers, the idea of clustering customers based on their spatial and temporal
properties is very much related to our algorithm. Our method differs crucially
though, since we create clusters of customers in each iteration, instead of only
once before optimization.

6.1.3 Organization of Chapter

In the next section, we give a brief overview of the LNS algorithm, which is
described in more detail in the preliminaries of this thesis. The main result of
this chapter, our novel destroy method, is presented in Section 6.3. How to apply
this method to the CVRPTW problem is described in Section 6.4, after which the
results for such an application are presented in Section 6.5. We end the chapter
with conclusions and a discussion of the results.

6.2 Preliminaries

Our algorithm is based on an iterative local search approach, known as Large
Neighborhood Search (LNS) (see, e.g., Pisinger and Ropke [2010] and Shaw [1998]).
LNS is a universal approach that can be applied to any generic combinatorial op-
timization problem. The approach is described in more detail in the preliminaries
of this thesis in Section 2.2. We give a concise overview of the algorithm here
again, and repeat the pseudocode in this Section in Algorithm 1 (repeated).

Let Π = (I, F, c) be the optimization problem under consideration, and let
I ∈ I be the considered instance. LNS starts with an arbitrary feasible initial
solution s ∈ F (I) as input. In the remainder of this chapter, for ease of notation,
we omit the problem instance when denoting the set of feasible solutions and
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Algorithm 1 Large Neighborhood Search (repeated)
1: Input: feasible solution s ∈ F
2: sbest = s
3: repeat
4: η = SelectNeighborhood(s)
5: stemp = Repair(Destroy(s, η))
6: if Accept(stemp, s) then s = stemp

7: if c(stemp) < c(sbest) then sbest = stemp

8: until StoppingCriterion is met
9: return sbest

write F if we mean F (I), and write c(s) if we mean c(I, s). In each iteration,
a (small) part of the solution s, called neighborhood, is selected, which is then
destroyed and repaired (or rebuilt) again, by a so-called destroy method and
repair method, respectively. Crucially, the repair method only rebuilds a small
part of the (potentially very large) solution, and might therefore outperform an
approach that re-optimizes the whole solution. The accept method is used to
determine whether the improvement of the newly created solution is significant
enough, the best-known solution sbest is updated if necessary, and the algorithm
terminates when a predefined stopping criterion is met.

As a key concept in this chapter, we elaborate more on our notion of a neigh-
borhood, denoted by η in Algorithm 1. Typically, a solution s is defined by a
(possibly ordered) set of solution elements. For a given solution, we define a
neighborhood as a subset of these elements that might be selected in order to
be destroyed.1 It remains problem-specific how these neighborhoods are defined
precisely. For example, for a routing problem like CVRPTW the neighborhood
could be a subset of routes or customers (see also below), and for a scheduling
problem, it could be a subset of machines or jobs.

As explained in the preliminaries, many advanced and well-working proce-
dures are used for the implementation of the repair method, e.g., integer linear
programming solvers or advanced path-building algorithms. For the neighbor-
hood selection method, however, often more hand-crafted solutions are required,
demanding time and expert knowledge. Therefore, we propose a novel neigh-
borhood selection subroutine in this chapter, leveraging the power of machine
learning, resulting in a subroutine that is application-independent.

1We remark that our notion of a neighborhood differs slightly from the one typically used
in the context of LNS, where it refers to the set of all solutions that can be obtained from a
given solution by applying the destroy and repair methods.
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Algorithm 13 Learning-Enhanced Neighborhood Select’n (LENS)

1: Input: feasible solution s ∈ F and integer n1

2: for j = 1, . . . , n1 do
3: ηj = CreateNeighborhood(s)
4: pj = PredictPotential(s, ηj)
5: j∗ = argmaxj pj
6: return ηj∗

6.3 LENS

6.3.1 Algorithm

Pisinger and Ropke [2010] observe that a destroy method typically uses random-
ization to ensure that different parts of the solution (i.e., neighborhoods) are
destroyed in each iteration. However, if neighborhoods are destroyed that were
already of high quality, it might be hard to find any improvement by repair-
ing the solution again subsequently. Instead, one would rather aim to destroy
neighborhoods in which much improvement can be found.

Based on this observation, we propose to use information from past iterations
to make a decision on which neighborhoods to destroy. We do this by using ML
techniques to predict the improvement gained after destroying and repairing a
certain neighborhood. Ideally, the prediction enables us to identify a low-quality
part of the solution such that the objective value improves significantly when this
part is destroyed and repaired. Algorithm 13 contains the pseudocode for our
proposed Learning-Enhanced Neighborhood Selection (LENS) method, which can
be used as a SelectNeighborhood routine in Line 4 of LNS (Algorithm 1).

LENS starts with creating n1 candidate neighborhoods to destroy. Specifi-
cally, the CreateNeighborhood method identifies a candidate neighborhood
ηj of the solution to destroy. After that, an ML procedure PredictPotential
predicts the potential pj (in terms of improvement) of each candidate neighbor-
hood ηj. The neighborhood with the highest potential is selected and returned.
Subsequently, the returned neighborhood will be destroyed and repaired in the
LNS algorithm.

Ideally, we would want to generate a diverse pool set of n candidate neighbor-
hoods to choose from. This will be guaranteed if the CreateNeighborhood
method uses randomization to create a new neighborhood. Generally, our ap-
proach applies whenever there is a meaningful way to generate such a pool set of
neighborhoods.
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Algorithm 14 Data Collection
1: Input: feasible solution s ∈ F and integer n1

2: i = 0
3: repeat
4: i = i+ 1
5: for j = 1, . . . , n1 do
6: ηj = CreateNeighborhood(s)
7: xij = ComputeFeatures(s, ηj)
8: stemp

j = Repair(Destroy(s, ηj))
9: yij = max(c(s)− c(stemp

j ), 0)
10: store (xij, yij)
11: if DCStrategy is random then
12: j∗ = RandomInteger(1, n1)
13: else � DCStrategy is ML
14: j∗ = argmaxj PredictPotential(s, ηj)
15: if Accept(stemp

j∗ , s) then s = stemp
j∗

16: until StoppingCriterion is met

6.3.2 Machine Learning Model

We describe the ML model that we use to predict the potential in our LENS
approach described above (see Algorithm 13). We propose to use a supervised
classification model. To train this supervised classification model, we will create
a history of previous iterations.

The first step for creating this history is to define features. These features
describe the neighborhood and are used by the ML model to make a prediction.
It is application-dependent what the right features are for describing a neighbor-
hood, an example of features for the application to CVRPTW is given in Section
6.4.2 and Appendix A.1.

In general, a sample in the history consists of (1) a set of features describing
the neighborhood, denoted by x, and (2) the improvement that this neighborhood
gives, denoted by y. In contrast with the notation in Section 2.3 in the preliminar-
ies of this thesis, we index the notation for the features and labels as follows: for
the i’th iteration, and the j’th neighborhood in that iteration (j ∈ {1, . . . , n1}),
the sample is denoted by (xij, yij).

Our algorithm Data Collection creates a history by collecting such samples
(see Algorithm 14). We elaborate on Algorithm 14 in more detail.

The CreateNeighborhood method creates n1 neighborhoods in each it-
eration of the Data Collection algorithm. As opposed to Algorithm 13, the
repair method is executed for all of these neighborhoods. However, none of the
updated solutions given by the repair method are directly accepted. Instead, in
the i’th iteration of the Data Collection algorithm, both the features that de-
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scribe the j’th neighborhood and the improvement that is gained after destroying
and repairing this neighborhood are stored in the sample (xij, yij). After storing
the n1 samples for iteration i, one neighborhood is selected. s is updated if the
repaired solution for this neighborhood is accepted and the data collection LNS
continues with the next iteration.

Which neighborhood is selected is based on the data collection strategy (de-
noted with DCStrategy in Algorithm 14). We have found, as is also elaborated
on in the results in Section 6.5.6, that it is crucial to have the right data collec-
tion strategy. We first give some intuition on what this means, after which we
summarize our advice in the guidelines below. The data collection strategy can
either be random or follow predictions from a given ML model. During the first
run of data collection, we use a random strategy, meaning one of the computed
neighborhoods will be chosen uniformly at random. For an ML model to gener-
alize well, it is crucial to learn from data that comes from the same distribution
as the data used for testing. An ML model based on the data from random data
collection only will probably not work well, since it guides the LNS to solutions
on which no samples were collected during data collection. Therefore, it is impor-
tant to collect data on the search space encountered when neighborhood selection
is guided by ML, as done in our LENS algorithm. This is done by executing
subsequent runs of data collection, this time guided by an ML strategy. After
each run of data collection, a new ML model is trained on all previously collected
data, which is then used to guide the subsequent run. By doing so, the idea is
that each new ML model is trained on data that has a better resemblance to the
data that will be encountered during testing.

To summarize, we give the following guidelines:

Guidelines 6.3.1. When using supervised learning for combinatorial algo-
rithms, the data collection should be executed as follows:

1. Perform data collection with random data collection strategy.

2. Based on the collected data, create an ML model, MLk with k = 1.

3. Given MLk for some k ≥ 1, perform another run of data collection
with MLk as the new data collection strategy.

4. Create a new ML model ML(k + 1), based on collected data in all pre-
vious runs of data collection.

5. Repeat steps 3 and 4 to create new ML models ML3, ML4 and ML5.

The result of collecting the data following these guidelines is a dataset of features
of the shape (xij, yij), where yij denotes the improvement that a neighborhood
gives. However, we use classification models to make predictions in the LENS
algorithm, and therefore the samples are labeled with a binary label before they
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are used for training. This is done by defining an improvement threshold, after
which each data sample (xij, yij) gets label 1 if its improvement yij is above the
threshold; otherwise, it gets label 0. When the classification model is used in
our LENS algorithm, neighborhoods are ranked based on the output of the ML
model. Therefore we need to choose an ML model that can output probabilities,
like a neural network or a random forest.

6.4 Application to CVRPTW

The inspiration for the LENS algorithm came from a proof-of-concept applied to
a real-world application. After finishing the proof-of-concept, we made the deci-
sion to further implement and test the LENS algorithm on synthetic CVRPTW
datasets. Doing so allowed us to elaborate in full detail on all the aspects of the
used LNS algorithm, which would not have been possible if we would have tested
on the real-world application, due to a non-disclosure agreement about parts of
the software. We elaborate more on the application to the CVRPTW in the
following sections.

6.4.1 CVRPTW Definition

The vehicle routing problem is defined on a complete (undirected) graph G =
(V,E) on n+2 nodes. Without loss of generality, we identify the node set V with
{0, 1, . . . , n+1}. There are two designated nodes, indicated by 0 and n+1, that
are called the starting and ending depot, respectively. We assume that the starting
and ending depot are the same (i.e., they are co-located), but conceptually it is
more convenient to distinguish between them in the formulation (as will become
clear below). The remaining nodes correspond to customers requiring service and
we use V CST = {1, . . . , n} to refer to this set (excluding the depots). Each edge
(i, j) ∈ E represents a possible trip between node i and j with associated travel
time dij. Oftentimes, as is also the case for the test instances that we consider in
this chapter, customer locations are defined by coordinates on a grid and travel
times are represented by the Euclidean distance between the respective locations.
Each customer needs to be visited by one of the m identical vehicles in the fleet.
The vehicles all start and end at the starting and ending depot, respectively.

In the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW),
extra capacity and time window constraints are imposed on the solution. More
specifically, each customer i has a non-negative demand qi which needs to be
fulfilled by the vehicle, whilst the maximum capacity of each vehicle is limited to
Q. For the time window constraints, each customer is associated with a service
duration τi and an interval [ei, li], called the time window, in which the service
must start. Note that an arrival at a customer before ei is allowed, but this will
force the vehicle to wait until ei before the customer can be served. Moreover,
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the end of the time window specifies the latest starting time of the service; in
particular, a service that starts before li but ends after li is allowed. For the
depots, we define q0 = qn+1 = 0 and τ0 = τn+1 = 0. The time window of the
depots, [e0, l0] = [en+1, ln+1], defines the entire time horizon of the problem during
which all customers have to be served.

There are different objective functions studied in the context of CVRPTW.
Here, we consider the case in which we want to minimize the total travel distance
of the vehicles over the set of all feasible solutions that satisfy all customer requests
(i.e., demand and time window) by using at most m vehicles of capacity Q.

The following is a Mixed Integer Programming (MIP) formulation of the prob-
lem (see, e.g., the formulation by Munari et al. [2016]).

minimize
∑
i∈V

∑
j∈V

dijxij (6.1a)

subject to∑
j∈V \{0}

xij = 1 ∀i ∈ V CST (6.1b)

∑
i∈V \{n+1}

xij = 1 ∀j ∈ V CST (6.1c)

∑
j∈V \{0}

x0j ≤ m (6.1d)

yi + qjxij −Q(1− xij) ≤ yj ∀i, j ∈ V (6.1e)
qi ≤ yi ≤ Q ∀i ∈ V (6.1f)
ti + (dij + τi)xij − (l0 − e0)(1− xij) ≤ tj ∀i, j ∈ V, i �= n+ 1, j �= 0 (6.1g)
ei ≤ ti ≤ li ∀i ∈ V (6.1h)
xij ∈ {0, 1} ∀i, j ∈ V (6.1i)
ti ≥ 0 ∀i ∈ V (6.1j)
yi ∈ R ∀i ∈ V (6.1k)

There are three types of decision variables in this MIP formulation:

• xij indicates if customer j is visited immediately after i.

• ti is the time that the service of customer i starts.

• yi is the cumulative demand on the route that visits customer i up to and
including this visit.

Constraints (6.1b) and (6.1c) make sure that each customer is visited exactly
once. Constraint (6.1d) ensures that at most m vehicles leave the depot. The
vehicle capacities are monitored by Constraints (6.1e) and (6.1f). Constraint
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(6.1e) ensures that the cumulative demand is increased from yi to yi + qj, if
customer j is visited immediately after i and Constraint (6.1f) makes sure that the
maximum capacity of a vehicle is not violated. Constraint (6.1g) and (6.1h) deal
with the time window restrictions. More specifically, Constraint (6.1g) ensures
that if customer j is served after i, then the service time of j is at least the
service time of i plus the distance from i to j plus the service duration at i. This
constraint also eliminates sub-tours. Constraint (6.1h) ensures that the start of
the service is within the time window.

Recall that for a given problem instance I ∈ I, we denote the set of feasible
solutions with F and the cost of a solution s ∈ F with c(s). For CVRPTW,
we adopt the convention that a feasible solution is represented by a set s :=
{r1, r2, . . . , rm} of at most m routes, where each ri is an ordered set of customers
from V CST . The cost c(s) then simply refers to the total distance of all routes in
s.

6.4.2 Large Neighborhood Search for CVRPTW

In order to solve the CVRPTW problem with LNS we need to define the necessary
subroutines. More specifically, we need to define how to obtain an initial feasible
solution, the Destroy, Repair and Accept methods, and a StoppingCri-
terion. Below, we elaborate in more detail on our Destroy method (Section
6.4.2) and Repair method (Section 6.4.2). To obtain an initial solution, we use
an open-source optimization engine for vehicle routing problems called VROOM
(see [Coupey et al., 2023]). That is, we simply call VROOM to compute an ini-
tial solution for each of our CVRPTW test instances. For the Accept method,
we use a simple hill-climbing procedure, i.e., we only accept a new solution if its
distance is smaller than the current one. Our StoppingCriterion is such that
the LNS algorithm stops after a fixed number of iterations.

Destroy Method

To use the LENS method, (see Algorithm 13 in Section 6.3) we need to define a
CreateNeighborhood method and define features that will be used to make
an ML prediction.

Our CreateNeighborhood method is given in Algorithm 15. First, we
choose a so-called anchor route ra by choosing one route uniformly at random
from the set of routes s in the current solution. Then, the neighborhood will be
created around this anchor route as follows. Let so = s \ {ra} denote the set of
remaining routes. We sort the routes in so based on a specific distance measure
d̃(·, ·) between routes (defined below). We relabel the routes in so such that after
the sorting it holds that for ri, rj ∈ so:

i ≤ j ⇐⇒ d̃(ra, ri) ≤ d̃(ra, rj).
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Algorithm 15 CreateNeighborhood
1: Input: set of routes S and integers n2, n3

2: j = 0
3: repeat
4: Let ra = RandomRoute(s) � Choose anchor route uniformly at random
5: so = s \ ra � All other routes
6: relabel(so, ra) � Sort so according to distance to ra

7: p = (p1, . . . pm−1) = RBP(so, D) � Compute rank-based probabilities
8: η = ra ∪ Sample(so, n2, p) � Sample n2 routes using p

9: j = j + 1
10: until (j = n3) or (i(η) not in TabuList)
11: return η

Based on this ordering, we define rank-based probabilities RBP(·, D), depending
on a fixed parameter D, that ensure that routes with a smaller distance to the
anchor route ra have a higher probability to being added to the neighborhood.
More specifically, RBP(so, D) defines a probability pi for each route ri in the
ordered set so as follows:

pi =
p̄i∑

i:ri∈so p̄i
, where p̄i = (|so| − i)D.

Here D > 1 is a parameter that controls how much the probabilities differ from
each other. A large D results in probabilities that are far apart and, consequently,
the random sample drawn in Line 8 of Algorithm 15 will almost surely return the
first n2 available routes. On the contrary, a small value for D will result in
probabilities that are closer together, and therefore cause more variety in the
outcome of the random sample.

We use this probability distribution p = (p1, . . . , pm−1) over the routes in so

to sample n2 additional routes without replacement. Those n2 routes then form
the neighborhood together with the anchor route.

We elaborate in more detail on the definition of our distance measure d̃(ri, rj)
used above. Ideally, the distance measure is not based on customer locations
only but also takes differences in time windows into account. Especially tight
time windows impact how interchangeable the customers are between routes.
The distance from route ri to rj is defined as follows:

d̃(ri, rj) := min
u∈ri

{dist(u, rj)},

where dist(u, rj) is a distance measure between location u and route rj. The
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distance dist(u, rj) is calculated based on the tightness of the time window of u:

dist(u, rj) =

{
du,suc(rj ,u) if time window of u is tight,
du,cent(rj) else.

In the instances that we considered, some customers have very tight time windows
(∼ 2% of the length of the total planning horizon), and others have a time window
equal to the full planning horizon. If customer u has a tight time window, we
can make a well-educated guess before which customer it would be served in rj,
would it be added to rj. We denote this successor node of u in rj as suc(rj, u).
It is computed by taking the first customer in rj that has an arrival time that is
later than the midpoint of the time window of u. We set dist(u, rj) equal to the
distance from u to suc(rj, u). Otherwise, if u does not have a tight time window,
we simply take the Euclidean distance from u to the centroid of rj, denoted by
cent(rj). The centroid of a route is defined as the arithmetic mean of its customer
locations.

In the neighborhood creation method, we want to avoid creating neighbor-
hoods that we have created before. Therefore we keep track of a list of neighbor-
hoods that we created before, which we term the TabuList. We want to check
if a neighborhood is in the TabuList efficiently and therefore introduce a new
way of storing a neighborhood. If we assume that each vehicle in the solution
has an index between 1 and m, then instead of denoting a neighborhood as an
unordered set of ordered lists of customers (as η does), we use i(η) to denote a
neighborhood, where i(η) indicates the indices of the vehicles in the neighborhood
η. Note that referring to a neighborhood by the vehicle indices only works as long
as the routes of the indicated vehicles do not change.

In Algorithm 15, we continue creating neighborhoods until we find a neigh-
borhood for which the set of indices is not in the TabuList. To ensure that the
neighborhood creation terminates, we accept any neighborhood, even if it is in
the TabuList, after n3 tries.

We need to make sure that the neighborhood that is selected in each itera-
tion, say η, is added to the TabuList. Moreover, if destroying and repairing η
caused the solution to change, we need to delete every neighborhood from the
TabuList that has overlapping routes with η. We can adjust the hill-climbing
accept method slightly to perform these tasks for the TabuList. The accept
method presented in Algorithm 16 does exactly this. Each selected neighborhood
is added to the TabuList in Line 4. Before that, in Line 3, every neighborhood
η′ in the TabuList for which i(η)∩ i(η′) �= ∅ is deleted from the TabuList, if η
is an improving neighborhood.

Next to defining the CreateNeighborhood method, we need to define fea-
tures that describe the potential of improvement of a neighborhood, as explained
in Section 6.3. We define several properties that describe both the routes in the
neighborhood and the customers on these routes. To aggregate these features,
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Algorithm 16 TabuAccept

1: Input: neighborhood η, new solution stemp and current solution s
2: if c(stemp) < c(s) then
3: TabuList.DeleteRoutesFrom(i(η))
4: TabuList.Add(i(η))
5: return c(stemp) < c(s)

we take the average, maximum, minimum, sum and standard deviation over the
routes, for the route properties, and over the customers, for the customer proper-
ties. We elaborate on the type of features briefly, but give an extensive list in A.1.
The first feature is the number of customers in the neighborhood. Secondly, we
define properties that describe the customers in the neighborhood, like waiting
time, distance contribution and closeness to other routes in the neighborhood.
Thirdly, we define route properties like route distance, route duration and free
capacity. Lastly, we add the distance measure d̃(ri, rj) between all the routes in
the neighborhood.

Repair Method

The repair method considers the routes that are deleted by the destroy method
and tries to create a new solution for them. Many repair and improvement meth-
ods are known, such as 2-opt, 3-opt, LKH-3 or exact solvers.

In our application, a neighborhood is defined by a set of routes. A moment of
thought reveals that the sub-problem of finding an improvement in a neighbor-
hood is therefore a CVRPTW problem in itself. In fact, the number of customers
and routes in this sub-problem is much smaller than in the original CVRPTW.
Namely, the number of vehicles in this sub-problem is equal to the number of
routes that were destroyed, and the set of customers in the sub-problem is the
set of customers that was destroyed. The task of the repair method is then to
find a, hopefully improved, solution for this sub-problem. To speed up the repair
method, we can use the current solution for the destroyed routes as a warm start.

We have seen that in practice often black-box solvers are used to repair a
routing solution after it has been destroyed. Therefore, we have also chosen
to use an external CVRPTW solver to solve the sub-problem defined by the
deleted set of routes, namely VROOM [Coupey et al., 2023]. VROOM is an
open-source vehicle routing problem solver that is tailored towards getting high-
quality solutions quickly. By choosing such a black box solver as a repair method,
we can exploit the power that this solver has on smaller instances and leverage it
to solve larger instances.



142 Chapter 6. ML in LNS for VRPTW: Neighborhood Selection

6.5 Results

We tested our algorithm on the 20 R1 and R2 Homberger and Gehring [2005]
instances with 1000 customers. To build our ML models, we needed to collect
data on similar instances. Therefore we generated 200 training instances similar to
the test instances. Below, we elaborate on the creation of these training instances
(Section 6.5.1), the values used for the hyperparameters (Section 6.5.2), and the
subsequent data collection (Section 6.5.3). Based on the collected data, we trained
a random forest classification model which we validated on a validation dataset
(Section 6.5.5). We tested our model with the LNS algorithm. Our initial findings
revealed that we needed to change the data collection strategy in order for the ML
model to be based on the correct data (Section 6.5.6). This insight was formalized
in the guidelines presented above in Section 6.3.

6.5.1 Instance Generation

Following a recommendation by Accorsi et al. [2022], we used the R1 and R2
Homberger and Gehring [2005] instances for our experimental results. We call
these instances the test instances. There are 20 test instances, which contain 1000
customers each.

We want to train our ML models based on different instances from the ones we
test on. Therefore, we decided to generate new training instances. Following the
distribution of the original 20 test instances by Homberger and Gehring [2005],
we created 200 new training instances. For both test sets, these instances were
created in 10 batches of 10 instances each, where each original test instance forms
the basis for 10 new training instances. We call the 10 training instances that
belong to one test instance its similar training instances. Just as in the original
set of 20 test instances, for a given test set, the customer locations in all of the
created instances are exactly the same. In other words, for a given test set, the
only property that differs between the instances are the time windows.

For the first test set R1, the generation of the instances in a batch works as
follows. Once for each batch, we compute for each customer what the middle of its
time window will become. We do this by sampling uniformly at random over the
instance horizon (to ensure feasibility of the instance, we take into consideration
the time necessary to travel back from the customer to the depot when sampling
the middle of the time windows) . The 10 instances in each batch differ by the
number of customers that get a restrictive time window, and the length that this
restrictive time window will be. All customers with a non-restrictive time window
can be served during the whole horizon. The first 4 instances in a batch have a
time window length of 10, and the fraction of customers with a restrictive time
window is 100%, 75%, 50% and 25%, respectively. The same holds for the next
4 instances in the batch, but with a time window length of 30. In the last two
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Test Instance Name R1_10_1 R1_10_2 R1_10_3 R1_10_4 R1_10_5

TW Length 10 10 10 10 30
TW Fraction 100% 75% 50% 25% 100%

Test Instance Name R1_10_6 R1_10_7 R1_10_8 R1_10_9 R1_10_10

TW Length 30 30 30 N (60, 20) N (120, 30)
TW Fraction 75% 50% 25% 100% 100%

Table 6.1: Time window length (or distribution) and fraction of customers with
time window for 10 R1 test instances used during instance generation.

Test Instance Name R2_10_1 R2_10_2 R2_10_3 R2_10_4 R2_10_5

TW Length N (60, 20) N (60, 20) N (60, 20) N (60, 20) 240
TW Fraction 100% 75% 50% 25% 100%

Test Instance Name R2_10_6 R2_10_7 R2_10_8 R2_10_9 R2_10_10

TW Length 240 240 240 N (185, 84) N (240, 30)
TW Fraction 75% 50% 25% 100% 100%

Table 6.2: Time window length (or distribution) and fraction of customers with
time window for 10 R2 test instances used during instance generation.

instances of a batch, all customers have a restrictive time window, for which the
length is sampled from a normal distribution with a mean of 60 (120, resp.) and
standard deviation of 20 (30, resp.). The generation for the second test set R2
works similarly. The details of this instance generation for both test sets are
summarized in Tables 6.1 and 6.2.

6.5.2 Hyperparameters

Table 6.3 shows the values for the hyperparameters that we use in our algorithms.
The second and third column show the value for the randomness parameter D
in Algorithm 15, for which we used a different parameter during data collection.
The rest of the columns show the values for the parameters used in Algorithm
13, 14, and 15. For R1, n3 is equal to 1, since we did not use a TabuList there
and therefore returned the first created neighborhood in Algorithm 15.

For building the random forest models, we used the following hyperparame-
ters. We set the number of features to consider when looking for the best split
equal to the square root of the total number of features. We set the minimum
number of samples required to be at a leaf node equal to 0.1% of the total number
of samples and the minimum number of samples required to split an internal node
equal to 0.2% of the total number of samples.
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Instance Set D D for DC n1 n2 n3

R1 40 10 10 10 1
R2 5 10 10 2 5

Table 6.3: Hyperparameters used for two test sets.

6.5.3 Data Collection

In order to train an ML model, we collected data on the generated instances, as
explained in Section 6.3. For each of the 200 training instances, we did 10 runs
of data collection of 500 iterations each. We used the random data collection
strategy to build an ML model, ML1, and followed our Guidelines for building
the consecutive ML models, ML2, ML3, ML4 and ML5, based on more data. The
sample that we saved for each neighborhood in an iteration, defined by (xij, yij)
(Section 6.3) consists of xij, the features describing the neighborhood (Section
6.4.2), and yij, the improvement that VROOM is able to find for this neigh-
borhood. This improvement is defined as the difference in total travel distance
between the routes in the neighborhood before VROOM optimizes them and after
optimization.

There are 10 similar training instances for each test instance. We did 10
training runs of 500 iterations, during which 10 samples were stored in each
iteration. This gave 10 · 10 · 500 · 10 = 500, 000 samples for each test instance, on
which we based the random forest model for ML1. Each consecutive created ML
model (ML2, ML3, ML4 and ML5) was based on 500,000 more samples.

6.5.4 Benchmarking Algorithms

To test our ML models, we define two algorithms to compare with: the ora-
cle model and the random model. Both of these algorithms follow the Large
Neighborhood Search structure presented in Algorithm 1, and like LENS,
they create n1 neighborhoods in each iteration. However, the benchmarking
algorithms differ in how they select one of these neighborhoods, i.e., in their
SelectNeighborhood subroutine.

The random model selects one of the created n1 neighborhoods at random.
In fact, the random model mimics the situation in which only one neighborhood
is created per iteration, since the other nine neighborhoods may be regarded as
never created. We hope our ML algorithm will be able to beat this random model.

The second benchmark is the oracle model, which selects the neighborhood
that would yield the highest improvement if it was destroyed and repaired. The
oracle model can be seen as an ML model with perfect predictions; or, alterna-
tively, it represents the potential that the best, though fictitious, LENS algorithm
could give. To acquire this full knowledge the oracle needs to compute the de-
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stroy and repair step for each of the n1 neighborhoods. As a consequence, it is
a very slow and expensive procedure. In fact, for most practical applications it
is even infeasible to compute it. However, it provides an insightful and strong
benchmarking algorithm for our experiments.

6.5.5 Classification and Validation

The 500,000 collected samples per instance were partitioned into a training (60%)
and validation (40%) set. After the collection, we labeled the samples with an
improvement threshold of 0, meaning that a sample belongs to the positive class
if it has a positive improvement, and to the negative class otherwise, as explained
in Section 6.3. This resulted in a heavily unbalanced dataset with, e.g., only 11%
of training samples being positive (for the first test instance). Therefore, after
applying a standard scalar to normalize the data, we balanced the sample weights
and trained a random forest model. For each of the test instances, we created a
random forest like this. We call these models ML1.

For R1, we validated our ML1 model on two different sets of samples. The
first set is the validation samples, set apart earlier, based on the similar training
instances. Next to that, we created a set of samples, based on the test instance,
which we call the test samples. We created the test samples by running the
data collection with the random data collection strategy on the test instance and
obtained 50,000 samples coming from 5,000 iterations.

The validation of an Algorithm ALG works as follows. Recall that a sample is
denoted by (xij, yij), where i denotes the iteration and j ∈ {1, . . . , n1} is the index
for the neighborhood in iteration i. In each iteration i, we let ALG decide which
of the n1 neighborhoods is the best, and denote its index with jALG. Then for each
iteration i we save yi,jALG and compute the average over all iterations, this value
indicates the average improvement of the neighborhoods that are considered best
by ALG. Moreover, we check in how many of the iterations yi,jALG was a strictly
positive improvement. This value indicates the fraction of iterations in which
ALG would be able to find an improvement.

The results for the R1 validation samples are given in Table 6.4 and the results
for the test samples are given in Table 6.5. For the results in this table, we only
considered the iterations in which there was at least one improving neighborhood.
Tables 6.4 and 6.5 show the oracle model, the random model and the ML1 model.

For the validation samples, we see that the ML1 model is able to identify sig-
nificantly more improving neighborhoods than the random model (44% against
18%). Also, the average improvement is about three times higher for the ML
model. For the test samples, we see that the ML model is able to find an improve-
ment in 28% of the iterations, while the random model only finds an improvement
in 20% of the cases. Moreover, we see that the average improvement of the ML
model (4.7) is about 46% higher than that of the random model (3.2). Even
though we lose some prediction power if we start predicting for samples from the
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test set, we are still able to outperform random.

Neighborhood Selection Model Oracle Random ML1

Average true rank of best prediction 1 2.53 2.1
Average fraction of improving neighborhoods 100% 18% 44%
Average improvement 21.7 3.0 8.8

Table 6.4: Validation of ML1 for R1 on validation samples for three neighborhood
selection models

Neighborhood Selection Model Oracle Random ML1

Average true rank of best prediction 1 2.67 2.52
Average fraction of improving neighborhoods 100% 20% 28%
Average improvement 21.3 3.2 4.7

Table 6.5: Validation of ML1 for R1 on test samples for three neighborhood
selection models

6.5.6 Algorithm Results

After the validations, we checked how our ML1 performed in the LNS algorithm
introduced in Section 13. We tested this for the 20 test instances and started the
optimization with an initial feasible solution created by VROOM. All of the tests
ran for 500 iterations, and each test instance was run 10 times.

For two instances, Figure 6.1 shows the decrease of the total distance during
the optimization runs of LNS with the ML1 model compared to LNS with the
random model and LNS with the oracle model. Table 6.6 shows the average total
distance after 500 and 200 iterations, for the two sets of 10 test instances. The
extended results are given in A.3. Next to these average distances, the tables
show the average best-known solution for these instances, as recorded by Sintef
[2023]. We compare our ML algorithms with the oracle and the random model
by using a gap measure, which indicates how far off the results with ML are from
the best-case algorithm, which is the oracle. Let sO, sR, sALG be the (average)
solution found by the oracle model, random model, and another algorithm ALG.
Formally, the gap for the ALG solution is then defined as follows:

GAP(sALG) =
c(sALG)− c(sO)

c(sR)− c(sO)
.

A gap of 100% means the model is as bad as the random model, a gap of 0%
means the model is as good as the oracle model.
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Figure 6.1: Total distance for two test instances for the oracle model, the random
model, ML1 model, ML3 model and ML5 model

Figure 6.1 and Table 6.6 show that the quality of the solution increases during
optimization since the total distance of the solution decreases. The oracle (which
takes the most time and effort per iteration) has the lowest total distance after
500 iterations, as expected. For the R2 instances, we see that the ML1 model
has a GAP of 97.69% and is therefore an improvement as compared to random.
Unfortunately, we see for most of the R1 instances that the ML1 model is not
able to improve over the random model. This means that for those instances,
following the recommendation by the ML1 model is worse than following random
choices. The average gap of 108.51% for R1 also shows that ML1 is not able to
beat random for the R1 instances.

At first sight, this seems a contradiction to the validation that was shown
in the previous section. However, a more in-depth analysis of our experiments
reveals that, because we follow the choices based on ML, we enter a part of the
solution space that was not encountered during the data collection. Since the ML
model was not trained on this part of the solution space, it does not perform well
here.

Therefore we believe that it is crucial to do multiple runs of data collec-
tion, as stated in our Guidelines (Section 6.3). In the second (third/fourth/fifth)
run of data collection, instead of using the random data collection strategy, we
used the ML1 (ML2/ML3/ML4) model during data collection. That is, the
ML1 (ML2/ML3/ML4) model decides which of the neighborhoods suggested
by VROOM should be implemented. This resulted in an expanded dataset of
samples. On this expanded dataset, consisting of all data collected in previ-
ous training rounds, we trained a new random forest model, denoted as ML2
(ML3/ML4/ML5).

Table 6.6 shows the results for ML5. For the extended results, including ML3,
we refer to Table A.2 and Table A.1 in Section A.3 in the Appendix of this thesis.
For R1, the gap improved to 97.08% for ML5. This significant improvement com-
pared to ML1 for the R1 instances shows the importance of performing multiple
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Oracle Random ML1 ML5

Set Iteration BKS Avg Avg Avg Gap Avg Gap
R1 200 46901.3 48363.9 48880.2 48860.2 96.13% 48820.2 88.38%
R1 500 46901.3 48217.0 48641.0 48677.1 108.51% 48628.6 97.08%
R2 200 28842.2 30835.5 31043.4 31009.0 83.45% 31011.7 84.75%
R2 500 28842.2 30804.1 30912.3 30909.8 97.69% 30909.7 97.60%

Table 6.6: Total distance after 200 and 500 iterations of the oracle model, random
model, ML1 model and ML5 model. Also the total distance of the best-known
solution (BKS). Recall that the gaps of the oracle and random models are defined
as 0% and 100%, respectively.

rounds of data collection. For R2, the gap for ML5 was similar to the gap for
ML1. After 200 iterations, we see a larger improvement for R1 and R2 compared
to the random algorithm, with an average gap of 88.38% and 84.75%. This shows
that mainly in the first half of the run, we have learned to do better than random.

6.6 Conclusion and Discussion

This research was inspired by experimental results that we obtained for a real-
world application, where we used our LENS approach to enhance the neighbor-
hood selection of an LNS algorithm. The results described in this chapter were
obtained through a similar approach using publicly available synthetic CVRPTW
datasets. On the two sets of CVRPTW instances, our LENS technique gives a
solution with a cost that is 11.62% and 15.25% smaller after 200 iterations, respec-
tively, and 2.92% and 2.40% smaller after 500 iterations, respectively, compared
to a solution obtained with random neighborhood selection. The results that we
obtained on the real-world application were even more significant.

We believe that this is mainly caused by the underlying baseline algorithm to
which the new destroy method is added. In the real-world application, the base-
line algorithm is a sophisticated and very well-working algorithm, and there are
many neighborhoods in an iteration that yield an improvement. In our baseline
algorithm, however, this number is much lower. It seems that the destroy method
with learning benefits from a large number of improving neighborhoods since it is
easier to identify large improvements if there are many promising neighborhoods
available in the candidate set. In our baseline algorithm, however, the number
of promising neighborhoods per iteration is much smaller and therefore it is also
harder to select a good one. Nevertheless, we still obtain the earlier mentioned
improvements. Given that LNS is a universal approach that is broadly applicable
and easy to implement, we believe that our LENS approach is a promising way to
improve the quality of the computed solutions through the help of ML techniques.
The actual magnitude of improvement might be application-specific though and,
in particular, depends on the quality of the created neighborhoods.



Chapter 7

Machine Learning in Large
Neighborhood Search for VRPTW:

Neighborhood Creation

7.1 Introduction

In the previous chapter, we used supervised learning to select neighborhoods in
the destroy operator of a large neighborhood search algorithm. The neighbor-
hoods were selected from a given set of already constructed neighborhoods. In
this chapter, we consider the same large neighborhood search algorithm again,
but we propose a different method of applying learning techniques to the destroy
step. By doing so, we address two possible challenges that the neighborhood
selection in the previous chapter might face.

The first challenge in the previous chapter is the inability to self-adapt. In a
supervised learning setting, the distribution of the training data must be the same
as the distribution of the test data, otherwise the ML model does not generalize
well. The ML models need to be retrained if the problem structure changes, for
example when there is a shift in the service area of the delivery vehicles. If the ML
model is trained on instances with urban deliveries, it will probably not perform
well in rural instances.

The second challenge that the neighborhood selection method in the previous
chapter faces is the limited freedom that the ML model is given. The ML model
can only select a neighborhood based on a given set of created neighborhoods,
limiting its power to the given options. In this chapter, we increase the freedom
of the ML model by not only selecting neighborhoods but also creating them.

To summarize, to address the challenges that the method in the previous
chapter might face, the goal in this chapter is to create a self-adapting neighbor-
hood creation method that has the power to construct powerful neighborhoods.

149
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We achieve a self-adapting method by training the ML models with reinforce-
ment learning (RL), continuously during optimization. This results in robust ML
models that have the ability to adapt to a changing problem environment. Lift-
ing the selection of neighborhoods to the creation of neighborhoods is achieved
by constructing neighborhoods iteratively, route by route. To construct these
neighborhoods we adopt a graph-attention-based method for constructing com-
binatorial solutions.

The graph attention model that we adopt is introduced in Kool et al. [2019]. It
is a versatile method for constructing combinatorial solutions for several routing
problems. In order to use the method for an application, we need to define the
context, a mask and a stopping criterion. The context is used to store information
about the currently constructed solution necessary for making the next decision.
The mask identifies which solution elements cannot be chosen. The stopping
criterion defines when constructing the solution is finished.

The first application we consider is a pickup and delivery problem with time
windows (PDPTW) and additional compatibility constraints, coming from a real-
world instance (more details in Section 7.4.1). Instances of this problem are solved
daily for many logistics clients by an existing tool of DELMIA Quintiq, called the
Dassault Systèmes DELMIA Quintiq Logistics Planner (DSLP) [Dassault Sys-
temes, 2023]. DSLP uses an LNS algorithm to solve these problems. It uses a
proprietary solver as a repair step, which is expensive both in time and com-
puting power. Using DSLP as a starting point enables us to make use of the
existing routines necessary for LNS, while we replace the destroy operator with
our proposed RL-based destroy operator. Unfortunately, due to a non-disclosure
agreement, we are not able to share the code for the DSLP application. DSLP
is the application that also served as the proof-of-concept for the neighborhood
selection techniques that were studied in the previous chapter.

To showcase the versatility and applicability of our method, and to enhance
reproducibility, we have therefore also applied our method to a second application:
an LNS implementation for the classical Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW), like in the previous chapter. The algorithms
and data sets that were used for the experiments on the CVRPTW application
are publicly available from the following repository:

https://github.com/w-feijen/ML4NC .

7.1.1 Our Contributions

1. We define context, mask, and a stopping criterion to adapt the graph atten-
tion encoder-decoder model by Kool et al. [2019] to a smart neighborhood
creation (SNC) model. Given a set of routes to choose from and a given
starting route, this neighborhood creation model produces a probability dis-
tribution over possible neighborhoods that can be used in LNS to sample
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a neighborhood. This neighborhood creation model is a robust method of
creating high-quality neighborhoods that can subsequently be destroyed in
LNS.

2. We enhance two LNS implementations with our novel Smart Neighborhood
Creation: the DSLP algorithm that solves real-world instances and an LNS
implementation for a set of classical CVRPTW instances. In both appli-
cations, the high-quality neighborhoods produced by SNC help the LNS
algorithms to find more and better improvements. The neighborhood cre-
ation model is aided by a novel method to create a pre-selection of routes,
before giving the options to the RL model.

3. We propose a framework on how to simultaneously optimize the Vehicle
Routing Problem (VRP) and train the SNC with RL. Since the SNC model
influences the optimization of the VRP, standard learning methods for RL
do not suffice. We investigate two subroutines to enhance our framework:
experience replay to recycle samples from previous iterations and continuous
learning to deal with learning over multiple optimization runs.

4. We define three test phases in which we show our empirical results. In
the first phase, the neighborhood creation problem instance, i.e., the routes
to choose from and the starting route, remains equal. The second test
phase allows more variability in neighborhood creation problem instances
by allowing different starting routes and the third test phase is the actual
optimization problem. In the first two phases for the DSLP application,
our RL model finds higher improvements (3-4 times) and more frequent im-
provements (8-25% more) than the state-of-the-art optimizer used in daily
practice. In the third test phase, we show that our model requires around
9% fewer iterations to reach the same objective value as the random bench-
mark. We verify these results on the CVRPTW application, where we also
obtain results that clearly show that the SNC learns how to create high-
quality neighborhoods.

7.1.2 Related Work

There are several papers in which RL or ML is used in an LNS algorithm. In Li
et al. [2021], also briefly mentioned in the related work of the previous chapter,
RL is used in the destroy step of an LNS algorithm to solve the VRP. They create
a neighborhood for each route based on a k-nearest neighbors procedure. This
means the creation of neighborhoods is a deterministic routine only based on the
geographic locations of shipments in a route. RL is used after that to select one of
these created neighborhoods. We expect more of our RL algorithm in two ways:
instead of only choosing one neighborhood out of a set of created options, we
want RL to iteratively construct a neighborhood. Next to that, since we need to
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deal with time windows and other practical constraints, we cannot simply create
neighborhoods solely based on geographical locations.

Three other examples of LNS algorithms that use RL are given in Kerscher
and Minner [2024], Wu et al. [2022]. In Kerscher and Minner [2024], customers
are clustered using ML to decompose a VRP, after which the decomposed sub-
VRPs are solved independently. In Wu et al. [2022], also mentioned in the related
work of the previous chapter, RL decides which pair of nodes to improve with a
pairwise improvement operator for the Traveling Salesperson Problem (TSP) and
VRP. In the latter, RL is not used in the destroy step, but instead, it is used to
decide how a destroyed solution can be quickly repaired to solve the capacitated
VRP.

Adaptive Large Neighborhood Search is another method on which much re-
search has been conducted. It is an extension of LNS that adaptively decides
which subroutine to use based on weights [Ropke and Pisinger, 2006]. For exten-
sive lists of other combinations of ML and combinatorial algorithms for the VRP,
we refer to the surveys of Bai et al. [2023] and the section on hybrid method in
Bogyrbayeva et al. [2022]. Lastly, we refer to Santini et al. [2023], which stud-
ies multiple decomposition techniques for VRPs and concludes that route-based
decompositions work best.

7.1.3 Organization of Chapter

In the next section, we elaborate more on the original graph attention model
that forms the basis of the RL models in SNC. In Section 7.3, we give the SNC
algorithm, elaborate more on the underlying adapted graph attention model, and
explain how to train it with reinforcement learning. Section 7.4 gives the results
for the DSLP application and Section 7.5 gives the results for the CVRPTW
application.

7.2 Preliminaries

We elaborate more on the graph attention model in Kool et al. [2019], since
it is used as a basis for the RL model proposed in this chapter. In Kool et al.
[2019], a graph attention model is used to construct solutions for routing problems,
including TSP. The model is trained with REINFORCE and a greedy baseline
[Williams, 1992]. For TSP, the problem instance ITSP is defined as a graph with
n nodes, where node i ∈ [n] is represented by features xi. A solution sTSP is
defined as a permutation of the nodes: (π1, . . . , πn). An attention-based encoder-
decoder model defines a stochastic policy p(sTSP|ITSP) for selecting solution sTSP

given instance ITSP. This policy is parameterized by θ and is a factorization of
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intermediate probabilities:

pθ(s
TSP|ITSP) =

n∏
t=1

pθ(πt|ITSP, π1, . . . , πt−1).

The encoder follows the transformer architecture by Vaswani et al. [2017] and
produces embeddings hi ∈ R

dh for all nodes in the graph. It takes the features
of all nodes, x1, . . . ,xn, as input. For TSP these features are the coordinates
of the nodes in the grid. The embedding dimension is set to dh = 128. The
decoder takes these node embeddings as input, together with a problem-specific
mask and context, and produces sTSP incrementally. The mask ensures that
nodes are chosen only once. The context node contains information about the
currently constructed solution necessary for making the next decision. At time
step t ∈ [n] the decoder outputs πt, based on π1, . . . πt−1, the embeddings from
the encoder h1, . . . ,hn, the mask and the context node hc. For the TSP problem,
the context hc at time step t consists of the embedding of the first and last node
in the current sub-tour, hπ1 and hπt−1 and the graph embedding h̄. The graph
embedding is computed by taking the average over all node embeddings. So the
context node is as follows:

hc =
[
h̄,hπt−1 ,hπ1

]
, where h̄ =

1

n

n∑
i=1

hi.

7.3 Method

7.3.1 LNS with Smart Neighborhood Creation

As described in Section 2.2 in the preliminaries of this thesis, and also Section
6.2 of the previous chapter, the main components of the LNS algorithm are the
destroy and repair methods. The destroy method first creates a so-called neigh-
borhood, defining which part of the solution may be improved in this iteration,
after which this neighborhood is actually destroyed. In this chapter, we propose a
new Smart Neighborhood Creation (SNC) method based on Reinforcement Learn-
ing. Our algorithm iteratively improves itself during optimization of the routing
solution.

The pseudocode for our LNS algorithm with SNC is given in Algorithm 17.
The neighborhood creation method we propose is novel, but it functions within an
existing implementation of LNS. The existing routines are marked with an asterisk
(*). Like the standard LNS algorithm given in Algorithm 1, LNS-SNC starts with
the creation of a feasible solution, s. For the application in this chapter, a feasible
solution is defined by an ordered set of shipments, each of which we call a route.
Afterwards, s is iteratively improved by destroying and repairing a part of the
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solution. This part of the solution is what we call a neighborhood, denoted by η,
and is defined by a set of routes in s.

Since it is expensive to repair a neighborhood, it is important to consider
neighborhoods that have the potential to yield large improvements. Therefore, we
propose to use RL to create smart neighborhoods. The creation of a neighborhood
is given in Lines 3-6 in Algorithm 17 below, with the crucial step in Line 6. Our
RL model, on which we elaborate more later, outputs a probability over possible
neighborhoods: pθ(η|INC). This probability distribution is used to sample a
neighborhood, given a neighborhood creation problem instance INC . The problem
instance INC is defined by an anchor route, r1, and a set of routes from which the
RL model can choose, R. The creation starts with selecting this anchor route,
around which the neighborhood is built. Before letting RL decide which routes to
add to r1 to create a neighborhood, we make a quick pre-selection of routes which
we call the set of recommendations, R. We perform this pre-selection in order to
decrease the number of routes to choose from, which will speed up the training.
Intuitively, the pre-selection discards routes that do not have proximity to the
anchor roue, either in time or in location. We elaborate more on the computation
of R in Section 7.3.2.

After creating the neighborhood with our proposed RL method, we continue
with the routines that belong to the existing LNS implementation. This means we
destroy and repair the created neighborhood, hopefully improving the solution s.
After the repair step, the quantity c̄(η) = c(s)− c(stemp) can be computed, which
indicates how much improvement the destroy and repair of η yielded. It can be
considered as the quality of the neighborhood. Therefore we train the RL model
with this information, which we explain more in Section 7.3.3. Finally, we update
the solution if it improved, and we continue the algorithm until a time limit is
reached. Other examples of stop criteria are an iteration limit or an objective
value limit.

7.3.2 Recommendations

Since we want to learn fast what routes to add to the neighborhood, we make a
pre-selection of routes from which the RL model can choose. We do this by dis-
carding routes that are very different from the anchor route, either in geographical
location or in time window. Intuitively, more improvements can be found if the
routes in the neighborhood have high proximity, either in location or time. The
pseudocode for creating the set of recommendations is given in Algorithm 18.

We elaborate on Algorithm 18 in more detail. First, we sort the routes geo-
graphically by partitioning them into shells around the anchor route. The anchor
route is in the 0’th shell, the closest routes are in shell 1, et cetera. The width
of a shell w is based on the anchor route and is calculated by dividing the dis-
tance of the anchor route, d(r1), by the number of shipments in the anchor route
r1. The distance between the anchor route and another route is approximated
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Algorithm 17 LNS-SNC

1: s = FeasibleSolution* � Start with a feasible solution
2: repeat
3: r1 = SelectAnchor*(x)
4: R = Recommendations(s, r1) � Make pre-selection of routes
5: INC = (R, r1) � Define problem instance for neighborhood creation
6: sample η ∼ pθ(·|INC) � Use RL to sample a n’hood from the recommendations

7: stemp = Repair*(Destroy*(s, η)) � Improve by destroying and repairing η

8: c̄(η) = c(s)− c(stemp) � Compute the improvement of the neighborhood
9: θ = Train(η, c̄(η), θ) � Update the RL model with new improvement

10: if c(stemp) < c(s) then s = stemp � Update the solution if it improved
11: until StoppingCriterion is met
12: return s

by sampling k2 shipments from both routes, after which we take the minimum
distance of all (k2)2 pairs of shipments.

Second, we want to penalize routes that serve customers with very different
time windows than customers served in the anchor route. Therefore, we increase
the shell number of routes without any time window overlap with the anchor route
with probability δ. The size of the penalty, MaxShellNumber(s, r1), ensures
that any route without time window overlap is chosen after all routes with time
window overlap.

After partitioning all routes into shells based on their location and time win-
dow, we create the set of recommendations R. Iterating from the first to the last
shell, we add all routes from the shell to the R until |R| exceeds a predetermined
threshold k1.

7.3.3 Graph Attention Model

The model that we use to sample neighborhoods in Algorithm 17 is a graph
attention model based on Kool et al. [2019]. We use RL to train this model.
As explained in Section 7.3.1, the SNC problem instance INC is defined by the
anchor route r1 and the recommendations R. In order to use the model by Kool
et al. [2019], we need to define problem-specific input, mask, decoder context and
a stopping criterion, as explained in Section 7.1.

• The input to our model are the feature vectors x1, . . .xi, . . . that each de-
scribe one of the routes that can be added to the neighborhood. These
features can be application-specific, but in general, they need to describe
routes and their potential for improvement. The distance of a route, the
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Algorithm 18 Recommendations(s, r1)
1: input: minimum number of recommendations k1, number of shipments per

sample k2, time window penalty probability δ
2: S= SampleUniform(r1, k2) � Sample shipments from anchor route

3: w = d(r1)
|r1| � Shell width w is average distance for anchor route customers

4: for ri ∈ s do
5: So= SampleUniform(ri, k2) � Sample shipments from other route
6: shellNumberi = �minDistance(S,So)/w�
7: if NoOverlap(ri, r1) and Rand() < δ then
8: shellNumberi = shellNumberi + MaxShellNumber(s, r1)
9: R = ∅

10: for j = 0, . . . , 2 · MaxShellNumber(s, r1) do
11: R = R∪ {ri ∈ s|shellNumberi = j}
12: if |R| ≥ k1 then
13: break
14: return R

distance between shipments in a route, and capacity utilization are typi-
cal features that can be used. Examples of features for the application to
CVRPTW are given in Section 7.5.1 and Appendix A.2.

• The mask is used to ensure that chosen routes will not be chosen again.
For our problem, the mask is the same as for TSP, since we exactly need to
cancel out those routes that are already chosen in our neighborhood.

• The context node contains information about the currently constructed
neighborhood which is necessary for making the next decision. The context
for our problem, hc, consists of two elements: the graph embedding, h̄, and
the current neighborhood embedding, h̃. The graph embedding h̄ is the same
as for TSP as explained in Section 7.2. The current neighborhood embed-
ding h̃ contains cumulative information of all the routes chosen so far, and
is computed by taking the sum over the embeddings of the routes that are
chosen during decoding in previous time steps. Formally,

hc :=
[
h̄, h̃

]
, where h̄ =

1

n

n∑
i=1

hi and h̃ =
t−1∑
i=1

hri .

• As opposed to TSP, we want to stop adding routes before a full permutation
is constructed. Therefore we also need to define the stopping criterion, i.e.,
when the model is finished with adding routes to the neighborhood η. This
can for example be based on a minimum number of shipments or routes in
the neighborhood.
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7.3.4 Reinforcement Learning

As explained in the previous section, we use RL to train the proposed graph
attention model. To train the model, we update the model with the quality of
the neighborhood, c̄(η) The train call is given in Algorithm 19 and takes both η
and c̄(η) as input. We elaborate on the algorithm in more detail.

Even though a train call happens in each iteration, we only update the RL
model once every k3 iterations. Otherwise, we just save the neighborhood and
corresponding improvement for a later update in the memory of new neighbor-
hoods Mnew. We do not directly use the improvement to train our RL model,
because we might value two neighborhoods with the same improvement differ-
ently. For example, we want to differentiate between a neighborhood with a
small improvement in the beginning of the optimization run, and a neighborhood
with an equally small improvement in the end. The first is bad, since we expect to
find many good improvements in the beginning, while the latter is good, since it
is harder to find any improvements, even of small size, during the end. Therefore
we value a neighborhood by comparing it to a baseline B. The baseline B is de-
fined by an exponential moving average over the improvement of recent iterations,
parameterized by α. The RL model is trained with the negative improvement,
relative to this baseline, denoted by Cost(η,B). This cost is calculated once for
each new neighborhood, and is defined as follows:1

Cost(η, B) =

{
− c̄(η)+1

B+1
if c̄(η) > B

0 else.

We have found better results when we focus only on neighborhoods that had a
larger improvement than the baseline. We define the loss of the RL model as the
expectation of the costs:

L(θ|INC) = Epθ(η|INC) [cost(η)] .

We optimize L by using gradient descent and the REINFORCE gradient estimator
[Williams, 1992].

There are two optional procedures during the train call. The first option is
continuous learning (ContLearn), which we explain in Section 7.3.5. If continuous
learning is enabled, we store neighborhoods for later learning. The second option
is to use experience replay (ExpReplay), which enables to learn from all the
previous samples, which get stored in M , as opposed to only learning from the
recent samples in Mnew. The memory M has a maximum size, such that older
neighborhoods are removed to make place for newer ones if necessary.

1We added +1 both in nominator and denominator of the fraction to ensure the cost will
not blow up when the baseline happens to be close to zero.
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Algorithm 19 Train(η, c̄(η), θ)

1: input: baseline parameter α, recent sample memory Mnew, experience replay
memory M , train interval k3 and experience replay sample size k4.

2: Update Mnew with (η, c̄(η))
3: if Experience Replay then Update M with (η, c̄(η))
4: if |Mnew| ≥ k3 then
5: B = α ·

(
1

|Mnew|
∑

η∈Mnew c̄(η)
)
+ (1− α) · B � Update baseline

6: Compute Cost(η, B) for η ∈ Mnew
� Compute and store cost of n’hood

7: if ContLearn then StoreSamples(Mnew) � Store for later training
8: if ExpReplay then M train := SampleUniform({η ∈ M |c̄(η) > B}, k4)
9: else M train = Mnew

10: ∇L =
∑

η∈Mtrain Cost(η, B)∇θ log pθ(η) � Use stored cost to compute ∇L
11: θ = Adam(θ,∇L)
12: Mnew = ∅
13: return θ

7.3.5 Continuous Learning

If we start learning from scratch every time we start a new optimization run, it
is very hard to perform well, since all learned knowledge must be gained during
the current run. Instead, we propose to expose the model to the same instance
multiple times after each other, say n times. In each next run, we start with the
RL model that was trained in the previous runs.

We propose two methods for implementing this continuous learning, which are
schematically shown in Figure 7.1. The first method is naive continuous learning.
In naive continuous learning, we start the algorithm the (i+ 1)’th time with the
model as it was at the end of run i. However, if we start the next run with the
model that has just been adapted to the end of the previous optimization run,
we risk the model being tailored to the end of the run end too much. Therefore,
we introduce the complete run update (continuous learning). In the complete run
update, when we start run i+ 1, we take the model as it was at the beginning of
run i and before starting run i+1, we train the model with all the (shuffled) data
collected during run i. In this way, the model is less prone to being tailored to
the previous run’s end. Instead, the model should be able to capture the course
of the whole previous optimization run.

7.4 Application to DSLP

The first existing LNS algorithm that we applied our SNC to, DSLP, is an ap-
plication built with the DELMIA Quintiq system. It is used daily to solve many
last-mile routing problems for large logistics clients [Dassault Systemes, 2023]. We
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Run LNS

. . .θ1 θ2 θ2 θ3 θn−1 θn
Run LNS

. . .θ1 θ2 θ2 θ3 θn−1 θn

Complete Update

Figure 7.1: Two types of continuous learning. Left: naive continuous learning
where the previous model is taken as the starting input for the next optimization
run. Right: Complete model update continuous learning where we start with the
model from the start of the previous run, updated with all the samples from the
previous run.

describe the routing problems that DSLP solves below, after which we explain
how we implemented SNC. We conclude this section with the results of using SNC
in DSLP. Unfortunately, for this application, we are unable to share the detailed
workings of the subroutines denoted with an asterisk (*) in Algorithm 17.

7.4.1 Problem Description

The problem we consider is based on a real-world last mile routing problem, and
can be regarded a PDPTW, with a heterogeneous fleet and extra compatibility
constraints [Dumas et al., 1991]. The input of the problem consists of a set of
shipments that need to be picked up and delivered, and a set of vehicles that are
used to perform these transportations. A solution to the problem, denoted by s, is
a partition of these shipments into routes. A route is defined as an ordered set of
pickups and deliveries, in which the delivery of a shipment must occur sometime
after the pick up in that route. A shipment is defined by its pickup and delivery
location, pickup and delivery time window and its capacity usage. A vehicle
is defined by its capacity, its maximum operating duration and the following
costs: one-time usage costs, mileage costs and an hourly cost for driving, waiting,
working (i.e., all jobs which are not driving or waiting) and working overtime.
Furthermore, compatibility matrices are given between shipments, indicating if
shipments can go on any vehicle together, and between shipments and vehicles,
indicating if shipments can go on a particular vehicle. The goal of the problem
is to minimize the so-called virtual costs of a solution s, denoted by c(s). The
virtual costs of a solution consist of two components: the actual costs and the
penalty costs. The actual costs are built up of the vehicles’ hourly, mileage and
usage costs. Penalty costs are incurred if any of the problem’s soft constraints
are violated. The only hard constraint in the problem is the feasibility of routes,
meaning that the delivery of a shipment must occur sometime after the pick up
in a route. All the other constraints in the problem, as stated below, are soft and
dealt with using varying penalty parameters.

• All the shipments must be planned.

• The total load of shipments on a vehicle cannot exceed the vehicle capacity.
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• A shipment must be picked up and delivered within its time window.

• The time of a route cannot exceed the maximum operating duration.

• The compatibilities between shipments (and vehicles) must be adhered to.

The instance used for the DSLP application is called ‘Retail_u20210412’, but
cannot be shared in detail because of the earlier mentioned non-disclosure agree-
ment.

7.4.2 SNC for DSLP

Algorithm 17 shows how we can solve the DSLP problem with smart neighborhood
creation. An existing, undisclosed, DSLP routine creates a feasible solution and
selects an anchor. As input of the RL model, we use an extensive list of features
that describe routes and their potential for improvement. The features for a
route are for example based on the actual costs and penalty costs for that route,
distances between its shipments, and its capacity utilization. There are also
shipment features, which are aggregated into route features, like location and
time window. The repair step consists of a proprietary solver that is used daily in
many DSLP applications and was formerly used to set several VRP world records
[Sintef, 2023]. We stop adding routes to the neighborhood if both the number of
shipments and the number of chosen routes exceed a certain threshold, which is
obtained from the existing DSLP implementation.

7.4.3 Benchmarks

We benchmark our algorithm against two algorithms: a random algorithm and
the existing DSLP neighborhood creation [Dassault Systemes, 2023], (the version
used is 2022 Refresh1). The DSLP algorithm is the state-of-the-art and used in
practice, in which handcrafted heuristics create smart neighborhoods that yield
much improvement. Years of time and effort have gone into improving these
heuristics, and we expect it is going to be hard to beat this tailor-made model.
Next to the DSLP, we compare to an algorithm with random neighborhood cre-
ation. Like our algorithm, the random algorithm uses the recommendations to
make a pre-selection of routes. However, instead of using RL to choose what
routes to add to the neighborhood, the random algorithm just chooses one of the
recommendations uniformly at random. In order to make a fair comparison with
the DSLP and random algorithm, it is crucial that our SNC algorithm creates
neighborhoods of similar sizes. This ensures that an improvement brought by the
SNC algorithm can not be caused by an increased size of created neighborhoods.
Therefore, all algorithms use the same stopping criterion in Algorithm 17.
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Figure 7.2: Top left: Virtual cost for random algorithm and random algorithm
with recommendations, lower is better. Top right: Zoomed in of left figure.
Bottom: Improvement found per iteration in the created neighborhood.

7.4.4 Recommendations Test

As explained in Section 7.3.1, we make a pre-selection of routes to make it easier
for the RL model to create good neighborhoods. We tested the pre-selection on
the random algorithm. In Figure 7.2 we show the virtual cost and the size of
the improvement for both the random model without recommendations and the
random model with recommendations. Even though the selection of routes is
random in both algorithms, the algorithm with recommendations finishes with
7.5% less virtual costs. We see in the bottom picture that this is mainly because
the size of the improvements that are found is larger in the beginning. How-
ever, it seems that from approximately 2500 iterations onwards, the algorithm
with recommendations finds smaller improvements. This is probably because
the better neighborhoods before that iteration have improved the solution more,
which makes it harder to find new improvements after this point. Altogether we
can conclude that limiting what routes we can add to our neighborhood by only



Processed on: 29-10-2024Processed on: 29-10-2024Processed on: 29-10-2024Processed on: 29-10-2024

162 Chapter 7. ML in LNS for VRPTW: Neighborhood Creation

considering the recommendations does not harm us. Furthermore, learning will
become easier because we reduce the number of routes that we can choose from.

7.4.5 Test Phases

After testing the recommendations, we defined three test phases to test if our
algorithm learns. The difference per test phase is caused by fixing some parts
of the neighborhood creation problem instance INC, defined as INC = (R, r1).
In the first test phase, we test if the RL model is able to learn how to create a
neighborhood if it is given the same input in each iteration. This means we fix
both the anchor route, r1, and the options to choose from, R, and let the RL
model create a neighborhood for the same problem instance INC in each iteration.
Since we want to solve the same neighborhood creation problem in each iteration,
we only save how much improvement the created neighborhood would give, but we
never implement the improvement in this neighborhood in our current solution.

In the second test phase, we maintain the fixed route options R, but we allow
variation in the anchor route r1. As in the first phase, we do not implement the
found improvement. In the last test phase we solve the real-world optimization
problem, which means we consider different iterations with different sets of R
and also implement the found improvement.

In phase 1 and phase 2, we test if our model learns by considering the average
improvement and the fraction of iterations in which an improving neighborhood
is found. In phase 3, we can no longer expect that the size of the improvement
will remain equal over the optimization run. Therefore, it is not informative
to consider the average improvement for this phase. Instead, we consider the
decrease in virtual costs and compare this to the DSLP and random algorithm.
All given results for DSLP are averages for 50 runs. The shaded areas in the plots
show the confidence intervals.

7.4.6 Phase 1

In Figure 7.3 we show the average improvement that a neighborhood gives and
the fraction of iterations in which a neighborhood is created that gives an im-
provement in phase 1. The figure shows that our model is able to beat the random
model and the DSLP model, starting from the early iterations. After about an
hour, our model is able to find an improvement in almost all iterations, and the
average improvement found is 4 times larger than for the DSLP.

The DSLP and the random algorithm do not learn during optimization, and
in phase 1, all models solve the exact same problem in each iteration. Therefore
we do not expect to observe a change in the found improvement and it suffices to
consider them for a shorter running time of 1 hour.
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Figure 7.3: Size of the improvement and fraction of iterations in which an im-
provement is found for phase 1, for the DSLP, random, and SNC algorithm. In
phase 1, both the iteration and the anchor route remain fixed.

7.4.7 Phase 2

Like in phase 1, we show in Figure 7.4 that in phase 2 we are able to beat the
random and DSLP algorithm fairly quickly: both the average improvement and
the fraction of improving neighborhoods quickly increase. If we compare the
results to phase 1 we can clearly see the impact of varying the anchor route.
Varying the anchor route causes the problem of creating a good neighborhood to
change slightly per iteration. This makes it harder to find a neighborhood with
an improvement, which can be seen in the fraction of improving neighborhoods,
which is around 32% to the end of the algorithm, while it was at 100% in phase 1.

7.4.8 Phase 3

In Figure 7.5 we show the virtual costs for several algorithms. Next to the DSLP
and random algorithm, there is the SNC algorithm and the SNC algorithm with
two versions of continuous learning, both with and without experience learning
(see Section 7.3.1). Note that iterations are on the x-axis, instead of time. We
think it suffices for now to consider virtual costs per iteration, since the expensive
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Figure 7.4: Size of the improvement and fraction of iterations in which an im-
provement is found for phase 2, for the DSLP, random and SNC algorithm. In
phase 2, the iteration remains fixed, but the anchor route varies.

repair operator will be accountable for most of the running time after optimizing
our code for efficiency.

The standard SNC model is not able to beat the random model. This is not
very surprising, since the model needs to learn everything in a single optimization
run. Therefore it is crucial in phase 3 to use the continuous learning methods. The
naive continuous learning method, without experience replay, does not perform
well. Like the model without continuous learning, it is not able to beat random,
and it performs even worse. This is probably because the model is only updated
with recent iterations, which causes the model to be tailored to these recent
iterations. Usually this is good, but when we take the model at the end of an
optimization run, and reuse it at the start of the second run, it will not make the
right choices at the start of this next run.

We tried to fix this in two different ways. The first method was to add
experience replay, which assures that the model is less tailored to the recent
iterations, but instead learns from less recent iterations. This model performed
much better than continuous learning without experience replay and this model is
able to beat the random model. This shows that naive continuous learning needs
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Figure 7.5: The virtual cost for phase 3, for the DSLP, random and multiple
versions of the SNC algorithm, including different continuous learning and expe-
rience replay settings. The bottom picture is equal to the top picture but zoomed
in on the end (legend remains the same). In phase 3 neither the iteration nor the
anchor route is fixed, i.e., phase 3 reflects the real-world problem.2

experience replay in order to work properly. Next to adding experience replay, we
also tried the complete run update way of continuous learning. This model fixes
the problem of naive continuous learning at the end and start of a run, but at
the same time it allows the model to be tailored to recent iterations. This model,
with the complete run update and without experience replay, therefore works
best. Adding experience replay to this model does not help this model, and
even makes iterations slightly slower. The complete run update model without
experience replay reached a virtual cost of 69768 after 2948 iterations, while the
random model needed 3250 iterations to get to the same virtual cost, meaning
that our model saves more than 9% of the iterations compared to the random
model. Unfortunately, SNC does not beat the state-of-the-art DSLP model in
the third test phase. DSLP is tailored to solving a specific problem structure,
in which it excels. Our model on the other hand, has the great benefit of being

2All optimization runs were executed for 120 minutes, which is why some algorithms per-
formed more iterations than others.
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more adaptive to changes in the problem structure, due to the reactive RL in the
neighborhood creation.

7.5 Application to CVRPTW

The second application that we tested our SNC algorithm on is the Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW). In the CVRPTW, a
given number of vehicles with a given capacity need to serve a set of customers
with given locations and demand from a depot. The customers have time windows
in which the service must happen. The goal of the problem is to find a solution
that serves all customers, satisfies the capacity constraints, uses a given maxi-
mum number of vehicles, and minimizes the total traveled distance. For a more
detailed explanation, we refer to Section 6.4 in the previous chapter. We tested
our algorithm on the ten R1 Homberger-Gehring instances with 1000 customers
[Homberger and Gehring, 2005].

7.5.1 SNC for CVRPTW

To test our SNC algorithm on the CVRPTW instances of Homberger-Gehring,
we need an implementation of LNS that solves CVRPTW, in which we can embed
our neighborhood creation, as explained in Algorithm 17. The implementation
of LNS needs to define (1) a routine to find a feasible solution and (2) a repair
method. Moreover, for the neighborhood creation, we need to define (3) how to
select an anchor, (4) which features to use and (5) when to stop the neighborhood
creation.

Since we also consider the CVRPTW application in the previous chapter, we
can re-use several subroutines from the LNS algorithm explained there. Like in
the previous chapter, we use VROOM in order to find a feasible solution (1)
[Coupey et al., 2023]. In each iteration, an anchor route is selected (3) uniformly
at random. Subsequently, an extensive list of features (4) that describe routes
and their potential for improvement is fed to the neighborhood creation model.
The features are similar to those of the previous chapter, but slightly different
since they need to describe a route instead of a neighborhood. The features of a
route are for example based on the route’s distance, how far the route is from the
anchor route, the distances between its shipments, and its capacity utilization.
There are also shipment features, which are aggregated into route features, which
describe the characteristics of the shipments, like location and time window. The
full list of features is given in Appendix A.2. The neighborhood creation stops (5)
after adding ten routes, which ensures that each created neighborhood contains
the same number of routes. After creating the neighborhood, the repair step (2)
is executed by VROOM again. Using VROOM as a repair operator is also done in
the LNS presented in the previous chapter. We can exploit that the sub-problem
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Table 7.1: Average improvement over 500 iterations for the random algorithm
without and with recommendations, for ten test instances and averaged over the
ten test instances.

R1_10_* 1 2 3 4 5 6 7 8 9 10 Avg.

No rec’s 0.49 1.15 1.82 1.52 0.62 1.47 1.65 1.05 1.16 0.93 1.19
Rec’s 0.85 1.48 2.02 1.71 1.01 1.84 2.08 1.30 1.75 1.48 1.55

defined by the deleted set of routes is a CVRPTW in itself, albeit much smaller
than the original. Therefore we can use VROOM’s power on smaller instances
and leverage the outcome to solve the large 1000 customer instances.

7.5.2 Benchmarks

As for the DSLP application, we compared our SNC algorithm with two other
neighborhood creation methods. The first is the random route selection, also
used as a benchmark in the DSLP application in Section 7.4.3. Moreover, we
compared SNC to a heuristic neighborhood creation method. This is the neigh-
borhood creation method presented in the previous chapter to create neighbor-
hoods, Algorithm 15 in Section 7.4. In this algorithm, denoted with Heuristic in
the rest of this chapter, routes are chosen based on a distance measure that also
considers how well the time windows of routes match.

7.5.3 Results

In the next sections the highlights of the results on the CVRPTW instances are
shown, the extensive results are given in Appendix A.4. All the results shown are
averages of 10 optimization runs.

7.5.4 Recommendations Test

As for the DSLP application, we tested what effect the pre-selection has on the
created neighborhoods, by testing the random neighborhood creation algorithm
with and without the recommendations. Table 7.1 shows the average improve-
ment over the 500 iterations for the test instances. From the table, we can
conclude that using the recommendations and thus limiting the options that the
neighborhood creation models can choose from, does not harm the optimization.
In fact, we even benefit from using the recommendations, since the average im-
provement is higher for all test instances.
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Figure 7.6: Improvement in phase 1
for instance R1_10_1 for the heuris-
tic, random and SNC algorithm.

Table 7.2: Average improvement after
500 iterations in phase 1 for the heuris-
tic, random and SNC algorithm.

Instance Heuristic Random SNC

R1_10_1 0.37 1.15 5.70
R1_10_2 41.25 2.46 22.82
R1_10_3 1.57 3.48 12.78
R1_10_4 72.56 7.82 15.75
R1_10_5 1.66 0.93 20.58
R1_10_6 50.01 6.64 44.91
R1_10_7 3.26 4.66 21.84
R1_10_8 25.89 5.50 22.61
R1_10_9 0.00 1.40 9.27
R1_10_10 0.28 4.19 38.26

Average 19.69 3.82 21.45

7.5.5 Phase 1

Figure 7.6 shows the improvement for the first test instance and Table 7.2 shows
the average improvement at the end of the optimization run. Figure 7.6 shows
that the size of the improvement increases for the SNC algorithm during the
optimization, which shows that the model benefits from the learning. Clearly,
the random and the heuristic algorithms do not show this behavior. In Table
7.2 we see that for phase 1, the heuristic algorithm performs really well for the
second, fourth, sixth and eighth instance. For the other instances, the heuristic
algorithm finds improvements that are almost always worse than the random
algorithm. It seems that the heuristic algorithm either finds good improvements
consistently or finds almost no improvements consistently. The SNC algorithm,
however, performs much better than random for all instances. It does not beat
the heuristic algorithm in the instances where the heuristic algorithm performs
well, but overall, the average improvement shows that SNC algorithm learns how
to create neighborhoods slightly better than the heuristic model. These results
clearly show the potential of the SNC algorithm in phase 1.

7.5.6 Phase 2

To improve results for phase 2 (and also for phase 3), we have found it was neces-
sary to start with a reinforcement learning model in the SNC algorithm that was
already slightly informed about the task it was going to face. Therefore, before
starting the first optimization run in which we use SNC, we trained the RL model
using a pre-collected set of samples consisting of 10.000 samples per instance. The
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Figure 7.7: Improvement in phase 2
for instance R1_10_1 for the heuris-
tic, random and SNC algorithm.

Table 7.3: Average improvement after
500 iterations in phase 2 for the heuris-
tic, random and SNC algorithm.

Instance Heuristic Random SNC

R1_10_1 8.64 1.11 11.21
R1_10_2 12.52 2.22 12.28
R1_10_3 35.58 6.66 33.70
R1_10_4 37.02 4.96 28.03
R1_10_5 17.31 1.81 13.37
R1_10_6 29.73 7.27 43.06
R1_10_7 39.20 5.48 31.25
R1_10_8 20.40 6.34 21.53
R1_10_9 19.65 3.65 26.68
R1_10_10 20.92 3.86 19.05

Average 24.10 4.34 24.01

samples are collected before the SNC run, using both the heuristic neighborhood
creation and the random neighborhood creation, resulting in heuristic samples
and random samples. A heuristic sample consists of the route features from a
certain iteration, the routes that the heuristic selected in that iteration, and the
improvement that this choice yielded. A random sample is created similarly but
with a random route selection instead. Now, before starting phase 2, we pre-
trained the SNC model with all the heuristic samples in the pre-collected set for
that instance which yielded an improvement. At the same time, we trained the
model with just as many random samples. By feeding these samples before the
optimization, we created an SNC model that is more informed, instead of having
a model that needs to learn how to do its job from scratch at the start of the
optimization.

Figure 7.7 shows the improvement for the first test instance and Table 7.3
shows the average improvement at the end of the optimization run for phase 2.
The results show that both the heuristic algorithm and the SNC algorithm are
able to outperform the random algorithm by far. The figures show that the SNC
algorithm clearly benefits from having a pre-trained model, since iterations with
sizes comparable to the heuristic are present from the start of the optimization.
Compared to phase 1, we see less growth in the improvements of the SNC algo-
rithm, it seems that less is learned during optimization than in phase 1. We can
conclude for phase 2 that the SNC algorithm is able to be competitive with the
heuristic algorithm but does not produce better solutions.
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Figure 7.8: Total distance in phase 3
for instance R1_10_1 for the heuris-
tic, random and SNC algorithm.

Table 7.4: Total distance after 500 itera-
tions in phase 3 for the heuristic, random
and SNC algorithm.

Instance Heuristic Random SNC

R1_10_1 55151.08 55554.44 55546.16
R1_10_2 50204.44 50708.50 50840.71
R1_10_3 46343.85 46657.50 46850.69
R1_10_4 43699.00 43990.69 43973.72
R1_10_5 52468.82 53270.78 53092.27
R1_10_6 49092.80 49618.58 49479.06
R1_10_7 45619.97 45894.39 46049.32
R1_10_8 43514.53 43747.86 43718.19
R1_10_9 51151.49 51835.34 51687.12
R1_10_10 49095.27 49679.34 49614.42

Average 48634.13 49095.74 49085.16

7.5.7 Phase 3

As for phase 2, we used an informed model at the start of the first optimization
run by learning from heuristic and random samples that we collected beforehand.
We used continuous learning with a complete run update and without experience
replay, as this worked best for the DSLP application in phase 3. Figure 7.8
(left) shows how the total distance decreases during optimization for the first test
instance and Table 7.4 shows the total distance of the solution after 500 iterations
for phase 3. As opposed to the previous phases where the figures showed the
improvement, here we show the total distance, and therefore a lower value means
that the algorithms perform better. Phase 3 can be regarded as the hardest test
phase, since the algorithms need to create neighborhoods in iterations where both
the anchor route and the recommendations, R, vary. The results reflect this: the
quality of SNC compared to the heuristic model is worse in phase 3 than in the
first two phases. The SNC algorithm still outperforms the random model slightly,
but it is not competitive with the heuristic algorithm.

7.6 Conclusion and Discussion

We have enhanced both DSLP, a widely used tool to solve large vehicle routing
problems, and an LNS implementation for CVRPTW with a destroy operator
based on RL. We have found it is crucial to create neighborhoods that are able
to yield large improvements. The first two test phases have shown that our RL
model was able to learn how to create good neighborhoods, and performed better
than or competitively with the state-of-the-art benchmark that we compared to.
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The results in test phase three also showed we can learn how to create good
neighborhoods, and that it is good to have a model that is tailored to the most
recent iterations. However, it is important to not simply use that model at the
start of a new optimization run. Instead, one must follow the complete run update
method for continuous learning. For both applications, we observed a drawback
in the third test phase in the performance of our smart neighborhood creation.
Phase 1 and 2 clearly show the potential of our SNC method, but it seems that
the SNC model has not learned enough to face the challenges of phase 3. The
running of the repair step imposes a serious limit on the amount of training data
we can generate for our algorithm. It would be very interesting to see how SNC
would behave in phase 3 if it was offered more training data.
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Chapter 8

Final Remarks

This thesis aimed to explore the workings of algorithms for practical combinatorial
optimization problems. We studied how we can improve algorithms in order to
perform their job right, well, and fast. We took both a practical and a theoretical
approach to addressing these questions.

We revise the main contributions presented in this thesis, following the three
problem areas that were introduced in the introduction. For the SSMTSP, we
implemented ML in an already well-working algorithm. Given a bounded additive
error, we were able to show a lower bound on the number of queue operations
saved. On random graph instances we demonstrated empirically that our method
saves optimization time. We solved practical instances for the casting problem
by using a disaggregated formulation for which we created high-quality variables.
Subsequently, we were able to find an algorithm for the casting problem that
finds solutions that are arbitrarily close to the optimal solution with constraint
violations that are arbitrarily small. Lastly, for the CVRPTW instances and also
the practical DSLP instances, we showed how we can use ML to improve the
destroy operator, ultimately leading to a speed-up in optimization time.

Below, we highlight the significance of the contributions presented in this
thesis. Following the relevant field of combining machine learning and combina-
torial optimization, this thesis provides several variants for employing algorithms
with learning techniques, following the second or third paradigm by Bengio et al.
[2021]. The examples illustrate the hypothesis that we can accomplish a well-
working interplay between ML and existing combinatorial algorithms. Secondly,
we have shown that it pays off to analyze combinatorial problems further than
determining the worst-case complexity. Even though we did not improve the
worst-case complexity for the SSMTSP in Chapter 3, we were able to provably
decrease the number of queue operations on the one hand and reduce the empiri-
cal optimization time on the other. For the casting problem, looking further than
the worst-case complexity meant that we considered slightly infeasible solutions,
which resulted in a polynomial-time bicriteria approximation scheme. Lastly,
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174 Chapter 8. Final Remarks

the significance in our research lies in the frameworks and guidelines that we
present for training machine learning models during optimization. In Chapter 6
we present guidelines for supervised learning, and in Chapter 7 we present options
for when reinforcement learning is used during optimization.

Despite these contributions, our research also has limitations. We mention
a few here and give recommendations for feature research to address these lim-
itations. The experiments presented in Chapter 3 were conducted on synthetic
random graphs only. It would be interesting to test if the methods have a similar
impact on real-world road networks. Second, the empirical results for the casting
problem are based on a method that relies on the structure of the instance. It
is not possible to construct every feasible casting solution with the variables that
are created for the disaggregated formulation. It would be interesting to see if the
creation of the variables can be adapted such that the space of feasible solutions
that can be constructed with them increases. Third, the PTBAS for the casting
problem requires the construction of a large and involved graph. Moreover, the
analysis of the algorithm contains many details. Future research would be nec-
essary to check if it is possible to simplify the algorithm and the corresponding
analysis. In the last two chapters, we have seen that it is hard to beat the exist-
ing state-of-the-art LNS algorithms for CVRPTW. Although we have been able
to show the potential of LENS and SNC, future research would be necessary to
come up with a method that is significantly stronger than the state-of-the-art in
all test phases.

In conclusion, this research has provided novel, both practical and theoreti-
cal, insights into the study of algorithms for combinatorial optimization problems.
We hope this work will inspire researchers to continue combining machine learn-
ing with combinatorial algorithms, to be curious about what is possible beyond
worst-case complexity, and to be interested in theoretically proving why practical
methods work.
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Appendix

A.1 Feature List for Chapter 6

The first feature is the number of customers in the neighborhood. The following
properties describe the customers in the neighborhood:

• Waiting time: The waiting time of a customer is zero if the arrival time
is after the start of the time window, otherwise it is the positive difference
between the arrival time and the start of the time window.

• Closeness: The closeness of customer c is the minimum of the distances
between c and all customers in routes in the neighborhood that do not
contain c.

• Temporal closeness: Defined exactly as the closeness, but defined with tem-
poral distance instead of the Euclidean distance. Temporal distance is de-
fined as the sum of the Euclidean distance and the time window difference.
The time window difference indicates how compatible the time windows
of two shipments are. The time window difference between two clients is
the minimum waiting time caused by serving the clients directly after each
other, in any order, if feasible. If the time windows make it infeasible to
serve the clients after each other, the time window difference is set to a
large penalty value.

• Centroid closeness: Given the distance between a customer c and the cen-
troid of each route in the neighborhood that does not contain c, the centroid
closeness is the minimum over these distances.

• Distance contribution: The difference between the length of the route in
which the customer is planned and the length of the route if the customer
would be removed from the route.
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• Time window length: The length of the time window of the customer.

• Distance to the depot: The distance from the customer to the depot.

• Load: The demand of the customer.

• Minimum greedy addition cost: Given a customer c, for each route in the
neighborhood that does not contain c, the greedy addition cost is how much
the distance increases if the customer c is added to this route. The minimum
greedy addition cost is the minimum of these increases over all the routes in
the neighborhood that do not contain c. The greedy addition is calculated
greedily, since only one possible location in the other route is tested: before
the first customer that has a time window that starts later.

• Maximum gain: For a customer c, for each route r in the neighborhood that
does not contain c, the gain is defined as the distance contribution of the
customer minus the greedy addiction cost of adding c to r. The maximum
gain is computed by taking the maximum of the gains over all the routes
that do not contain customer c.

• Possible delay: The difference between the end of the time window and the
current arrival time.

Moreover, we compute the following features which describe the routes in the
neighborhood:

• Route distance: The distance of the route.

• Average route distance: The distance of the route, divided by the number
of customers in the route.

• Empty distance: The distance between the last customer in the route and
the depot.

• Worst case distance fraction: The distance of the route divided by the dis-
tance of a so-called worst-case solution. The worst-case solution is computed
by traveling back to the depot after each customer in the route.

• Route duration: The travel time plus the waiting time plus the service time.

• Average route duration: The route duration divided by the number of cus-
tomers in the route.

• Idle time: The total time the vehicle is not traveling nor servicing.

• Free capacity: The free capacity in the vehicle when leaving from the depot.
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• Fitting candidates: The number of customers in the other routes in the
neighborhood that have a demand that is smaller than the free capacity of
the vehicle.

• Expected number fitting candidates: The free capacity of the vehicle di-
vided by the average demand of the customers on the other routes in the
neighborhood.

Lastly, we compute the following feature between each pair (ri, rj) of routes in
the neighborhood:

• Distance between routes: The handcrafted distance measure d̃(ri, rj), de-
fined in Section 6.4.2.

A.2 Feature List for Chapter 7

The following features are the route features. All but the last route feature are
also used in Chapter 6 and we refer to A.1 for the definition of the features.

• Distance.

• Average distance.

• Empty distance.

• Distance vs worst case fraction.

• Route duration.

• Average route duration.

• Free capacity.

• Approximate distance to anchor route.

The last feature is defined as the Euclidean distance between the centroid of the
route and the centroid of the anchor route. The centroid of a route is defined as
the element-wise mean of the location coordinates of the routes’ customers.

The following are the features per customer. They are aggregated into route
features by taking the maximum, minimum, average, standard deviation and sum
over all the customers in a route. We refer to A.1 for the definition of the last
two customer features.

• Time window start.

• Time window end.
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• Time window length. Time window end minus time window start.

• Demand. Size of the load that this customer demands.

• Location x. x coordinate of this customer.

• Location y. y coordinate of this customer.

• Depot distance. Distance from this customer to the depot.

• Waiting time. Time between arrival at customer and time window start.
Equals zero if arrival is after the start of the time window.

• Distance contribution.

• Possible delay.

A.3 Extended Results for Chapter 6

The extended results for Chapter 6 are given in Tables A.1 and A.2 and Figures
A.1 and A.2. Note that in Tables A.1 and A.2, the line with averages shows the
GAP of the average values and not the average of the GAP values.

A.4 Extended Results for Chapter 7

The extended results for the CVRPTW application in Chapter 7 are given in
Figures A.3, A.4, A.5 and A.6.
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Figure A.1: Total distance for ten R1 test instances for the oracle model, the
random model, ML1 model, ML3 model and ML5 model
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Figure A.2: Total distance for ten R2 test instances for the oracle model, the
random model, ML1 model, ML3 model and ML5 model



663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen663265-L-sub01-bw-Feijen

A.4. Extended Results for Chapter 7 183

Figure A.3: Average improvement for ten test instances for the random neighbor-
hood creation with and without recommendations.
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Figure A.4: Average improvement in phase 1 for ten test instances for the heuris-
tic, random and SNC algorithm.
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Figure A.5: Average improvement in phase 2 for ten test instances for the heuris-
tic, random and SNC algorithm.
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Figure A.6: Total distance in phase 3 for ten test instances for the heuristic,
random and SNC algorithm.
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Samenvatting

Goede algoritmen hebben drie eigenschappen, ze werken snel, produceren de juiste
oplossingen en ze streven ernaar oplossingen te vinden met de beste doelwaarde.
Wij onderzoeken de wisselwerking tussen deze criteria door optimalisatieproble-
men te bestuderen met een praktische toepassing. Dit hindert ons echter niet om
deze toepassingen te bekijken door een theoretische lens. Dat wil zeggen, naast
dat we goed werkende algoritmen voor praktische probleem instanties onderzoe-
ken, streven we ernaar om algoritmen te vinden met bewijsbare eigenschappen.
Bovendien geven we variërende voorbeelden over hoe de kracht van machinaal
leren (ML) en combinatorische optimalisatie gecombineerd kan worden, om zo
algoritmen te creëren die het beste uit beide vakgebieden halen.

In Hoofdstuk 3 onderzoeken we het enkele beginknoop, veel eindknopen kort-
ste pad probleem. Het doel van het probleem is om, gegeven een gerichte gewogen
graaf, een kortste pad van een gegeven beginknoop naar een van de aangegeven
eindknopen te vinden. Ons idee is om ML toe te voegen aan een aangepaste
versie van Dijkstra’s kortstepad-algoritme. We trainen een neuraal netwerk dat,
gebaseerd op het spoor van het algoritme, de afstand van het kortste pad kan voor-
spellen na een paar iteraties. De voorspelling wordt gebruikt om de zoekruimte
die Dijkstra’s algoritme bekijkt te verkleinen, wat het aantal operaties op de on-
derliggende prioriteitenwachtrij significant kan verminderen. We tonen aan dat
ons algoritme een minimale besparing garandeert op gedeeltelijk willekeurige in-
stanties. Een tegenstander kan deze instanties volledig bepalen, op de gewichten
van aantal relevante kanten, die willekeurig worden gekozen, na. Onze analyse
laat zien dat het aantal bespaarde kanten groeit als de fout van de voorspelling
daalt. Deze inzichten gebruiken we vervolgens om voor willekeurige instanties het
verwachte aantal bespaarde operaties op de wachtrij af te leiden. Hiernaast geven
we uitgebreide experimentele resultaten op willekeurige instanties die aantonen
dat de werkelijke besparingen vaak significant hoger zijn.

In de Hoofdstukken 4 en 5 bestuderen we het zogeheten gietprobleem, waarvoor
een instantie gedefinieerd wordt door een verzameling knapzakken, elk met een
niet-negatieve capaciteit en een verzameling objecten, elk met een niet-negatief
gewicht. Een toegestane oplossing voor het gietprobleem wijst elk object aan een
knapzak toe, zodat het totale gewicht dat aan een knapzak is toegewezen niet
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groter is dan de capaciteit van de knapzak. De gebruiksratio van een knapzak
wordt gedefinieerd als het totale gewicht van toegewezen objecten, gedeeld door
de capaciteit van de knapzak. Het doel van het gietprobleem is om een toegestane
oplossing te vinden die de som van de gebruiksratio’s over de knapzakken maxi-
maliseert. Wij tonen aan dat het vinden van een toegestane oplossing voor het
gietprobleem reeds NP-compleet is, waardoor we niet verwachten dat er een al-
goritme bestaat dat de optimale oplossing vindt binnen polynomiale tijd, of zelfs
een benaderingsalgoritme, tenzij P = NP. In plaats daarvan richten wij ons op
bicriteria benaderingsalgoritmen, die (informeel) als volgt gedefinieerd zijn: een
(α, β)-bicriteria benaderingsalgoritme is een algoritme dat een oplossing vindt
met een doelwaarde die ten minste α keer zo groot is als de waarde van een opti-
male oplossing terwijl de knapzak capaciteit ten hoogste met een factor β wordt
overschreden, voor 0 ≤ α ≤ 1 en β ≥ 1. We geven zowel een (1, 3/2)-bicriteria
benaderingsalgoritme als een (1/(1+ε), (1+ε)(1+ε+ε3))-bicriteria benaderingsal-
goritme voor iedere 0 < ε ≤ 1. In Hoofdstuk 4 geven we empirische resultaten
voor enkele instanties. We introduceren een uitgesplitste formulering van het
gietprobleem en tonen aan dat we variabelen voor deze formulering kunnen cre-
ëren zodat iedere toegestane oplossing met deze variabele automatisch optimaal
is, wat ons in staat stelt om alle bekeken instanties optimaal op te lossen.

De lokale omgevingszoekmethode (LOZ) is een universele aanpak die breed
toepasbaar is en in de praktijk is gebleken dat deze methode zeer efficiënt is in het
oplossen van optimalisatieproblemen. LOZ verbetert een oplossing iteratief door
het vernietigen en vervolgens repareren van een deel van de oplossing. Doorgaans
is de reparatieroutine een dure methode, wat het cruciaal maakt om slim te kie-
zen welke delen van de oplossing te vernietigen. Wij hebben twee verschillende
manieren onderzocht die ML integreren in LOZ en zo in iedere iteratie helpen
bij het kiezen welke deel van de oplossing, genaamd een omgeving, vernietigd
moet worden. De eerste manier, genaamd geleerde omgevingsselectie (GOS), be-
schouwt verschillende omgevingen in iedere iteratie en voorspelt met ML welke
omgeving de meeste potentie heeft om de oplossing te verbeteren. Deze omgeving
wordt vervolgens vernietigd en gerepareerd, waarna de oplossing mogelijk verbe-
terd is. Het idee is dat GOS slechts de groepen selecteert die het waard zijn om
de dure reparatieroutine op uit te voeren. We implementeren GOS in een LNS
algoritme voor het voertuigen routeringsprobleem met capaciteiten en tijdsframes
(VRPCTW). In de tweede manier, genaamd geleerde omgevingscreatie (GOC),
gebruiken we ook ML om te beslissen welke omgeving vernietigd moeten worden.
In plaats van het selecteren van een omgeving uit een lijst van opties, zoals GOS
doet, creëert GOC de groep door één voor één routes aan de groep toe te voegen.
We gebruiken versterkend leren om te bepalen welke route toegevoegd moet wor-
den aan de omgeving, waarvoor we een aangepaste versie van een bestaand graaf
aandachtsmodel toepassen. We implementeren GOC in zowel een geavanceerde
toepassing die dagelijks gebruikt wordt voor veel logistieke problemen als in een
implementatie van LOZ voor het VRPCTW.



Summary

Good algorithms have three qualities, they produce solutions fast, produce the
right solutions and they aim to produce solutions with the best objective value.
We study the interplay between these three criteria, by considering optimization
problems that are all motivated by practical applications. However, this does not
prevent us from considering these applications through a theoretical lens. I.e.,
next to studying well-working algorithms for practical problem instances, we aim
to find algorithms with provable properties. Moreover, we give various examples
of how the power of machine learning and combinatorial optimization can be
combined, to create algorithms that exploit the best of both worlds.

The first problem we consider is a fundamental shortest path problem, known
as the single-source many-targets shortest path problem (SSMTSP). Given a di-
rected weighted graph, the goal is to compute a shortest path from a given source
node to any of several designated target nodes. Basically, our idea is to equip an
adapted version of Dijkstra’s algorithm with machine learning predictions to solve
this problem: Based on the trace of the algorithm, we design a neural network
that predicts the shortest path distance after a few iterations. The prediction is
then used to prune the search space explored by Dijkstra’s algorithm, which may
significantly reduce the number of operations on the underlying priority queue.
We derive structural insights that allow us to lower bound the savings by our al-
gorithm on partial random instances. In these instances, an adversary can fix the
instance arbitrarily except for the weights of a subset of relevant edges, which are
chosen randomly. Our bound shows that the number of relevant edges which are
pruned increases as the prediction error decreases. We then use these insights to
derive closed-form expressions of the expected number of saved queue operations
on random instances. We also present extensive experimental results on random
instances showing that the actual savings are oftentimes significantly larger.

In Chapters 4 and 5, we study a special case of the generalized assignment
problem, the so-called casting problem. An instance of the casting problem is
given by a set of knapsacks, each with a non-negative capacity, and a set of
items, each with a non-negative weight. A feasible solution to the casting problem
assigns each item to a knapsack such that the total weight of items assigned to a
knapsack is at most the knapsack’s capacity. The utilization ratio of a knapsack
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is defined as the total weight of items assigned to the knapsack divided by the
knapsack’s capacity. The goal of the casting problem is to find a feasible solution
that maximizes the sum over the utilization ratios. We show that the feasibility
problem of the casting problem is NP-complete, and therefore we do not expect
to find a polynomial-time algorithm that finds an optimal solution, or even a
polynomial-time approximation algorithm, unless P = NP. We focus on bicriteria
approximation algorithms instead, which are (informally) defined as follows: an
(α, β)-bicriteria approximation algorithm is an algorithm that finds a solution
with objective value at least α times the cost of an optimal feasible solution with
0 ≤ α ≤ 1 such that the knapsack capacities are violated by at most a factor
β ≥ 1. In Chapter 5, we first present a (1, 3/2)-bicriteria approximation algorithm,
after which we present a (1/(1 + ε), (1 + ε)(1 + ε + ε3))-bicriteria approximation
algorithm for any 0 < ε ≤ 1. In Chapter 4, we show empirical results on some
instances of the casting problem. We introduce a disaggregated formulation of the
problem and show that we can create variables for the disaggregated formulation
in such a way that any feasible solution with them is automatically optimal. This
allows us to solve all the considered instances to optimality.

Large Neighborhood Search (LNS) is a universal approach that is broadly
applicable and has proven to be highly efficient in practice for solving optimization
problems. LNS iteratively improves a solution by destroying and repairing a part
of the solution. Since the repair routine of LNS is usually expensive, it is crucial
to destroy smartly. We have studied two different methods of how to integrate
machine learning into LNS to assist in deciding which parts of the solution should
be destroyed in each iteration.

The first approach, called Learning-Enhanced Neighborhood Selection (LENS),
considers multiple sets of routes in each iteration, and predicts with machine
learning which set of routes has the most potential to improve the solution. This
set of routes is then selected, destroyed, and repaired, after which the solution has
possibly improved. The idea is that LENS only selects sets of routes for which
it is worth executing the expensive repair routine. We implement LENS into an
LNS algorithm for the classical Capacitated Vehicle Routing Problem with Time
Windows (CVRPTW).

Also in the second approach, called Neighborhood Creation, we use learning to
decide what set of routes to destroy. However, instead of selecting the set of routes
from a list of options of sets as LENS does, the set is created by adding routes one
by one. Reinforcement learning is used to select the next route to add to the set,
by using an adaptation of an existing graph attention encoder-decoder model.
We implement our Neighborhood Creation approach into two applications: a
state-of-the-art application used daily to solve many logistic problems and an
implementation of LNS for the CVRPTW.
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