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Abstract. We investigate three proof rules for proving termination of
while programs and show their proof-theoretic equivalence. This involves
a proof-theoretic analysis of various auxiliary proof rules in Hoare’s logic.
By discussing representations of proofs in the form of proof outlines,
we reveal differences between these equivalent proof rules when used in
practice. We also address applications in the context of the paradigm of
design by contract.

1 Introduction

In his seminal paper [12], Hoare introduced an axiomatic method of reasoning
about correctness of while programs, now called Hoare’s logic. It is based on
correctness formulas {p} S {q}, where S is a program and p and q are assertions
(logical formulas), with the interpretation

“If the assertion p is true before initiation of a program S, then the asser-
tion q will be true on its completion.”

In this context p is referred to as a precondition and q as a postcondition of S.
However, in contrast to Floyd’s earlier paper [11] that dealt with correctness

of flowchart programs, program termination was not addressed. To stress this
difference one distinguishes now between partial correctness that only focuses on
the delivery of correct results, and total correctness, that in addition stipulates
that the program terminates. So the original proposal of Hoare dealt with partial
correctness.

All approaches to proving program termination within Hoare’s logic formalize
Floyd’s [11] observation that

“Proofs of termination are dealt with by showing that each step of a pro-
gram decreases some entity which cannot decrease indefinitely.”

The first extension of Hoare’s logic to deal with total correctness is due to [14].
Since then substantially simpler proof rules were proposed. In these proof rules
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variables that range over natural numbers are used. An appropriate relative
completeness result, see for example [4], shows that variables ranging over more
general well-founded orderings are not needed.

Termination continues to be a relevant and vibrant topic in program analysis,
see for example [7] and the Annual International Termination Competition1. The
latter comprises various competition categories, for instance proving termination
of C programs, Java bytecode programs, logic programs, functional programs,
and term rewriting systems. Here we focus on the shape of termination proofs
in the context of Hoare’s logic. To this end, we investigate three natural proof
rules from the proof-theoretic point of view. More specifically, we study while
programs with Hoare’s original proof system for program correctness, in which
the well-known proof rule for partial correctness of the while loops, which we
call the LOOP I rule, is replaced by a suitable proof rule for establishing total
correctness. We analyze three versions of such a proof rule:

– The LOOP II rule achieves a separation of the reasoning about the invariant
and the bound function.

– The LOOP III rule allows us to document proofs as proof outlines, which is in
particular useful when arguing about the interference freedom of component
proofs in the context of parallel programs.

– The LOOP IV rule is particularly well-suited when dealing with nested loops
because it modularizes the correctness proof of the outer loop from the ones
of the inner loops. It is a hybrid proof rule with premises referring to proof
systems for both partial and total correctness.

Depending on the choice of the loop rule, we obtain proof systems that we
refer to by II, III, and IV, respectively. We show that these three proof systems
are equivalent in the sense that every proof of a correctness formula {p} S {q}
carried out in one of these systems can be effectively transformed into a cor-
rectness proof in any other of these proof systems. This result is obtained by a
detailed proof-theoretic analysis of the three loop rules in the context of these
proof systems. To structure the proof well, we make use of auxiliary proof rules,
which we show to be admissible in the proof systems.

Even though Hoare’s logic has been extensively studied (see for example our
survey [5]), little work has been done on the analysis of proofs in Hoare’s logic. We
are familiar with only three references, [2,8], and [18], in which transformations
of proofs in a Hoare logic are discussed.

While these proof rules are equivalent, their use and representation in the
form of proof outlines, which are programs annotated by assertions, differs. We
illustrate this by analyzing a termination proof of a program with nested loops.
We also address applications in the context of assertions used as annotations in
the design by contract paradigm.

Dedication. We dedicate our paper to Tiziana Margaria on the occasion of her
60th birthday given that her interest in software engineering includes also meth-
1 https://termination-portal.org/wiki/Termination Competition.
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ods for verification of software. The third author recalls various pleasant meetings
at conferences and in Bremen, Passau, and Dortmund.

2 Preliminaries

Assume a given language that is determined by its set of formulas. In what
follows we assume that all considered axioms, proof rules, and proof systems are
concerned with the same language.

Given a proof system PR and two sequences of formulas φ1, . . ., φm and
ϕ1, . . ., ϕn we write

φ1, . . ., φm �PR ϕ1, . . ., ϕn

to denote the fact that each formula ϕi can be proved in PR using as additional
axioms the formulas φ1, . . ., φm. We also use this notation when the sequence
φ1, . . ., φm is empty and when PR is a set of proof rules.

A proof rule
(R)

ϕ1, . . ., ϕk

ϕ

is called admissible in PR if

�PR ϕ1, . . .,�PR ϕk implies �PR ϕ.

Intuitively, if a rule is admissible in PR it does not increase the power of the
proof system PR [18], but it serves as a lemma that simplifies proofs in PR by
condensing a detailed proof argument into one application of (R).

We say that two proof systems PR1 and PR2 are equivalent if for all for-
mulas ϕ

�PR1 ϕ iff �PR2 ϕ.

From now on we shall be concerned with the language, the formulas of which
are either first-order formulas, called assertions, or correctness formulas,
which are constructs of the form {p} S {q}, where p and q are assertions and S
is a while program. Below we denote by free(p) the set of free variables of the
assertion p and by var(t), var(B), and var(S) the set of variables that appear
in the expression t, the Boolean expression B, and the program S, respectively.

We shall consider four proof systems concerned with the correctness formulas.
They only differ in the used LOOP rule.

Proof system I denotes the customary proof system allowing us to prove
partial correctness of while programs. Its axioms and proof rules, taken from
our book [4], are listed in the Appendix. Its LOOP rule has the following form:

RULE LOOP I {p ∧ B} S {p}
{p} while B do S od {p ∧ ¬B}

In the proof system II this rule is replaced by
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RULE LOOP II

{p ∧ B} S {p},
{p ∧ B ∧ t = z} S {t < z},
p → t ≥ 0
{p} while B do S od {p ∧ ¬ B}

where t is an integer expression such that var(t) ⊆ var(B) ∪ var(S) and z is an
integer variable that does not appear in p,B, t or S.

In the context of the LOOP rules discussed here, the assertion p is called the
loop invariant and the expression t is called the bound function . It provides
an estimate how many iterations the loop will still perform before termination.
The restriction var(t) ⊆ var(B) ∪ var(S) is added to simplify the subsequent
proofs.

In the proof system III the LOOP I rule is replaced by

RULE LOOP III

{p ∧ B ∧ t = z} S {p ∧ t < z},
p → t ≥ 0
{p} while B do S od {p ∧ ¬ B}

where t and z are as above.

Finally, we shall consider the following hybrid rule that combines provability
in two proof systems.

RULE LOOP IV

�I {p ∧ B} S {p},
�I {p ∧ B ∧ t = z} S {t < z},
{p ∧ B} S {true},
p → t ≥ 0
{p} while B do S od {p ∧ ¬ B}

where t and z are as above.

Proof system IV is obtained from proof system I by replacing the LOOP I
rule by the LOOP IV rule. The use of two forms of provability in the premises
of this rule can be circumvented by the following modification of the notation.
Denote the correctness formulas in the sense of partial correctness by {p} S {q}
and in the sense of total correctness by [p] S [q]. Then combine the proof system I
with the proof system in which the axioms and proof rules of I except the LOOP
I rule are rewritten using the [p] S [q] syntax. Finally, add to this proof system
the LOOP IV rewritten as follows:
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{p ∧ B} S {p},
{p ∧ B ∧ t = z} S {t < z},
[p ∧ B] S [true],
p → t ≥ 0
[p] while B do S od [p ∧ ¬ B]

where t and z are as above.

In what follows we use the original formulation of this rule, as it will not lead
to any ambiguities.

The LOOP II rule was introduced in [16]. It corresponds to Dijkstra’s mod-
ification of his weakest precondition semantics proposed in [9] and reproduced
as [10]. It is difficult to determine where the LOOP III rule was introduced first.
We mentioned it in [3]. It also appears in [17] on page 64 and in [1] on page 151.

The LOOP IV rule is new. It formalizes the following intuition. In order to
prove the termination of a while loop it suffices to find a loop invariant and a
bound function such that

(i) the loop invariant is maintained by each loop body execution, in the sense
of partial correctness,

(ii) each loop body execution decreases the bound function, also in the sense of
partial correctness,

(iii) the loop body terminates, and
(iv) the loop invariant implies that the bound function remains non-negative.

This rule supports modular reasoning about program correctness by sepa-
rating the premises into partial correctness and termination properties. This is
of particular relevance in the presence of nested loops, i.e., when the loop body
contains inner loops. Then (i) establishes only the partial correctness of the loop
body, whereas its termination is relegated to (iii). That the loop body can be
iterated only finitely often is established in (ii) in combination with (iv). Note
that for loop bodies without inner loops, partial and total correctness coincide.
In this case the third premise, {p ∧ B} S {true}, can then be dropped, and we
arrive at the LOOP II rule. So the hybrid form of this rule arises only for nested
loops.

Note that the LOOP III rule resulted from combining the first two premises
of the LOOP II into one. An analogous modification can be carried out in the
case of the LOOP IV rule. In what follows we disregard this possibility, given
that the resulting analysis is analogous to the one concerning the LOOP II and
LOOP III rules.

In the proof-theoretic analysis of the LOOP II and III rules, we make use of
the following two auxiliary rules, see also [4].

RULE CONJUNCTION

{p1} S {q1}, {p2} S {q2}
{p1 ∧ p2} S {q1 ∧ q2}
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RULE ∃-INTRODUCTION

{p} S {q}
{∃x : p} S {q}

where x does not occur in S or in free(q).
To reason about the LOOP IV rule we shall consider the following auxiliary

rule that combines provability in two proof systems.

RULE HYBRID CONJUNCTION

�I {p1} S {q1},
{p2} S {q2}
{p1 ∧ p2} S {q1 ∧ q2}

A special case of this rule is the following rule from [4].

RULE DECOMPOSITION

�I {p} S {q},
{p} S {true}
{p} S {q}

3 Admissible Rules

The LOOP II and LOOP III rules look very much the same and it is obvi-
ous that they are in some sense equivalent. The following main theorem, that
also discusses the LOOP IV rule, states this claim in the strongest way.

Theorem 1. The loop rules are admissible in the other proof systems as follows:

(i) The LOOP II rule is a admissible rule in the proof system III.
(ii) The LOOP III rule is a admissible rule in the proof system II.
(iii) The LOOP IV rule is a admissible rule in the proof system II.
(iv) The LOOP II rule is a admissible rule in the proof system IV.

The next lemma refers to the premises of the LOOP II and LOOP III rules.
The names of the rules are abbreviated in the obvious way.

Lemma 1. Suppose that z is an integer variable that does not appear in p,B, t
or S. Then

(i) {p ∧ B} S {p}, {p ∧ B ∧ t = z} S {t < z}
�{CONJ,CONS}
{p ∧ B ∧ t = z} S {p ∧ t < z}.

(ii) {p ∧ B ∧ t = z} S {p ∧ t < z}
�{∃−INTRO,CONS}
{p ∧ B} S {p}, {p ∧ B ∧ t = z} S {t < z}.
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Proof. (i) Immediate.

(ii) First note that by the CONSEQUENCE rule we can derive from

{p ∧ B ∧ t = z} S {p ∧ t < z}
both

{p ∧ B ∧ t = z} S {p}
and

{p ∧ B ∧ t = z} S {t < z}.

Next, by the ∃-INTRODUCTION rule, we derive from
{p ∧ B ∧ t = z} S {p}

{∃z : p ∧ B ∧ t = z} S {p}.

By the assumption about the variable z,

p ∧ B → (p ∧ B ∧ ∃z : t = z) → (∃z : p ∧ B ∧ t = z),

so by the CONSEQUENCE rule, we derive {p ∧ B} S {p}, as desired. 	

Next, we show how to dispense with the auxiliary rules. We shall need the

following result, the proof of which we delay until Sect. 4.

Theorem 2. The auxiliary rules are admissible in the following proof systems:

(i) The ∃-INTRODUCTION rule is admissible in the proof system II.
(ii) The ∃-INTRODUCTION rule is admissible in the proof system III.
(iii) The CONJUNCTION rule is admissible in the proof system III.
(iv) The HYBRID CONJUNCTION rule is admissible in the proof system II,

that is,
if �I {p1} S {q1} and �II {p2} S {q2}, then �II {p1 ∧ p2} S {q1 ∧ q2}.

We are now prepared for the proof of our main result.

Proof of Theorem 1.

(i) Suppose
�III {p ∧ B} S {p},

�III {p ∧ B ∧ t = z} S {t < z},

and that p → t ≥ 0 holds. By Lemma 1(i),

�III ∪ {CONJ,CONS} {p ∧ B ∧ t = z} S {p ∧ t < z}.

By Theorem 2(iii) �III {p ∧ B ∧ t = z} S {p ∧ t < z}, so by the LOOP III rule
�III {p} while B do S od {p ∧ ¬B}.



Three Ways of Proving Termination of Loops 287

(ii) Suppose
�II {p ∧ B ∧ t = z} S {p ∧ t < z}

and that p → t ≥ 0 holds. By Lemma 1(ii),

�II ∪ {∃−INTRO, CONS} {p ∧ B} S {p}
and

�II ∪ {∃−INTRO, CONS} {p ∧ B ∧ t = z} S {t < z}.

By Theorem 2(i) �II {p ∧ B} S {p} and �II {p ∧ B ∧ t = z} S {t < z}, so by
the LOOP II rule �II {p} while B do S od {p ∧ ¬B}.

(iii) Suppose
�I {p ∧ B} S {p},

�I {p ∧ B ∧ t = z} S {t < z},

�II {p ∧ B} S {true},

and that p → t ≥ 0 holds. By Theorem 2(iv) applied twice �II {p ∧ B} S {p}
and �II {p ∧ B ∧ t = z} S {t < z}.
So by the LOOP II rule �II {p} while B do S od {p ∧ ¬B}.

(iv) Suppose
�II {p ∧ B} S {p},

�II {p ∧ B ∧ t = z} S {t < z},

and that p → t ≥ 0 holds. By omitting everywhere in these two proofs the
second premise of the LOOP II rule whenever this rule is applied, we get
�I {p ∧ B} S {p} and �I {p ∧ B ∧ t = z} S {t < z}. Further, by the CON-
SEQUENCE rule �II {p ∧ B} S {true}.
So by the LOOP IV rule �IV {p} while B do S od {p ∧ ¬B}. 	

Corollary 1. The proof systems II, III, and IV are equivalent.

Assume now that some notion of semantics of programs and assertions is given
that includes the concept of a state, execution of a program, the notion of a state
satisfying an assertion, and the truth of an assertion. We write then |= {p} S {q}
to denote the fact that every execution of S that starts in a state satisfying p
terminates in a state satisfying q and say then that {p} S {q} is true . (Thus we
are referring to total correctness.) Next, we say then that a proof rule

ϕ1, . . ., ϕk

ϕ

is sound if |= ϕ1, . . ., |= ϕk implies |= ϕ.
In [4] we proved that the LOOP II rule is sound, while in [17] it was proved

that the LOOP III is sound. A natural question arises whether soundness of one
of these rules can be directly deduced from the soundness of the other rule. This
can be accomplished by modifying the claims of Lemma 1 as follows.
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Lemma 2. Suppose that z is an integer variable that does not appear in p,B, t
or S. Then

(i) If |= {p ∧ B} S {p} and |= {p ∧ B ∧ t = z} S {t < z},
then |= {p ∧ B ∧ t = z} S {p ∧ t < z}.

(ii) If |= {p ∧ B ∧ t = z} S {p ∧ t < z},
then |= {p ∧ B} S {p} and |= {p ∧ B ∧ t = z} S {t < z}.

Proof. It is a direct consequence of the fact that the proof rules used in Lemma 1
are sound. Thus each time one of these rules is applied, truth of the correctness
formulas is preserved. 	


Suppose now that the LOOP II rule is sound. To prove the soundness of
the LOOP III rule assume that its premises are true. Then by Lemma 2(ii) the
premises of the LOOP II rule are true, so by its soundness the conclusion of
both rules is true. The same argument shows that soundness of the LOOP III
rule implies soundness of the LOOP II rule.

We conclude this discussion by two remarks. First, notice that the last
premise of each of the LOOP rules II, III and IV can also be modified, by
considering in each case the implication p ∧ B → t ≥ 0 instead of p → t ≥ 0. It
is easy to see that such a modification does not affect provability in the con-
sidered proof systems II, III, and IV. Indeed, an application of the original rule
with a bound function t is also a valid application of the modified rule and an
application of the modified rule with a bound function t can be replaced by an
application of the original rule with the bound function if B then t else 0 fi.

Finally, for the rules LOOP II–IV we assumed that the bound function t
satisfies the restriction var(t) ⊆ var(B) ∪ var(S). This allows for the proof
of admissibility of the ∃-INTRODUCTION rule in Theorem 2, which in turn
is used via Lemma 1 in the proof of Theorem 1 and thus in the proof of the
equivalence result stated in Corollary 1. In future we will investigate how to
avoid this restriction. We see that the equivalence of the different proof systems
for total correctness depends very subtly on the intricate interplay of the loop
rules with the admissibility of standard auxiliary rules of Hoare’s logic, which
requires further investigation.

4 Proof of Theorem 2

To prove this theorem we first establish two lemmas that provide additional
information about the proofs in the considered proof systems.

Lemma 3. Let PR be one of the proof systems I, II, III, or IV. If PR � ϕ,
there exists a proof of ϕ in PR with exactly one final application of the CON-
SEQUENCE rule.

Proof. Since implication → is reflexive, we can always add to a given proof
in PR one final application of the CONSEQUENCE rule. Since implication is
transitive, successive applications of the CONSEQUENCE rule in a proof in PR
can be condensed into one application. 	
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Lemma 4. Let PR be one of the proof systems I, II, III, or IV.

(i) Suppose that �PR {p} S1; S2 {q}. Then for some assertion r

�PR {p} S1 {r} and �PR {r} S2 {q}.

(ii) Suppose that �PR {p} if B then S1 else S2 fi {q}. Then

�PR {p ∧ B} S1 {q} and �PR {p ∧ ¬B} S2 {q}.

Proof. (i) By Lemma 3, the considered correctness formula was proved using the
COMPOSITION rule followed by a single application of the CONSEQUENCE
rule. So for some assertions p1, r, q1, we have

�PR {p1} S1 {r} and �PR {r} S2 {q1}

and the implications p → p1 and q1 → q hold. We now get the claim by the
CONSEQUENCE rule.

(ii) The argument is analogous as in (ii). 	

We now turn to the proof of Theorem 2, repeating the four statements at the

beginning of each proof part.

Proof. (i) The ∃-INTRODUCTION rule is admissible in the proof system II.
We proceed by induction on the structure of S and consider a proof of

{p} S {q} in the proof system II, where the last two steps involve an axiom or a
rule of the proof system II for the top-level operator of the program S, followed
by one final application of the CONSEQUENCE rule according to Lemma 3. In
all cases we assume that x �∈ var(S) ∪ free(q).

• Case S ≡ u := t. Thus suppose �II {p} S {q}. Then for some assertion q1,

�II {q1[u := t]} S {q1}

by the ASSIGNMENT axiom, and the implications p → q1[u := t] and q1 → q
hold. We assumed that x �∈ var(S), so x �≡ u. By the assignment axiom, also

{(∃x : q1)[u := t]} S {∃x : q1}.

Note that the implications ∃x : p → ∃x : (q1[u := t]) and ∃x : q1 → ∃x : q
hold. Since x �≡ u and x �∈ free(q), also the implications

∃x : (q1[u := t]) → (∃x : q1)[u := t] and (∃x : q) → q

hold. So the CONSEQUENCE rule yields �II {∃x : p} S {q}, as desired.
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• Case S ≡ S1; S2. Thus suppose �II {p} S {q}. By Lemma 4(i) for some
assertion r,

�II {p} S1 {r} and �II {r} S2 {q}.

Since r → ∃x : r, the CONSEQUENCE rule yields �II {p} S1 {∃x : r}. Since
x �∈ free(∃x : r), the induction hypothesis yields �II {∃x : p} S1 {∃x : r}.
Since x �∈ free(q), by the induction hypothesis, also �II {∃x : r} S2 {q}. Thus
by the COMPOSITION rule, �II {∃x : p} S {q}, as desired.

• Case S ≡ if B then S1 else S2 fi. Thus suppose �II {p} S {q}. Then by
Lemma 4(ii),

�II {p ∧ B} S1 {q} and �II {p ∧ ¬B} S2 {q}.

By the induction hypothesis,

�II {∃x : (p ∧ B)} S1 {q} and �II {∃x : (p ∧ ¬B)} S2 {q}.

Since x �∈ var(B), the CONSEQUENCE rule yields

�II {(∃x : p) ∧ B} S1 {q} and �II {(∃x : p) ∧ ¬B} S2 {q}.

By the CONDITIONAL rule, �II {∃x : p} S {q}, as desired.

• Case S ≡ while B do S0 od . Thus suppose �II {p} S {q}. By the assump-
tion about t, we have x �∈ var(t) and without loss of generality we can assume
x �= z. Then for some assertion p0 and an appropriate bound function t and
variable z,

�II {p0 ∧ B} S0 {p0},

�II {p0 ∧ B ∧ t = z} S0 {t < z},

and the implications p → p0, p0 → t ≥ 0, (p0 ∧ ¬B) → q hold.
Since p0 → ∃x : p0, the CONSEQUENCE rule yields

�II {p0 ∧ B} S0 {∃x : p0}.

By the induction hypothesis, the assumption about x, and the CONSE-
QUENCE rule both

�II {(∃x : p0) ∧ B} S0 {∃x : p0}

and
�II {(∃x : p0) ∧ B ∧ t = z} S0 {t < z}.

So the LOOP II rule yields

�II {∃x : p0} S {(∃x : p0) ∧ ¬B}.
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Further, since (p0 ∧ ¬B) → q holds and x �∈ (free(q) ∪ var(B)), also the
implication ((∃x : p0) ∧ ¬B) → q holds. So a final application of the CON-
SEQUENCE rule yields �II {∃x : p} S {q}, as desired.

(ii) The ∃-INTRODUCTION rule is admissible in the proof system III.
Again, we proceed by induction on the structure of S, but now consider a
proof of {p} S {q} in the proof system III, where the last two steps involve
the axiom or rule of the proof system III for the top-level operator of the
program S, followed by one final application of the CONSEQUENCE rule
according to Lemma 3.
Except for the while statement, all cases are analogous, with �II replaced by
�III. The case of the while statement differs from (i) only in that one now
considers just one correctness formula in the premise of the LOOP III rule
instead of two. Since the details are the same, we omit them.

(iii) The CONJUNCTION rule is admissible in the proof system III.
We proceed by induction on the structure of S and for i = 1, 2 consider
proofs of {pi}S{qi} in the proof system III, where the last two steps involve
the axiom or rule of the proof system III for the top-level operator of the
program S, followed by one final application of the CONSEQUENCE rule
according to Lemma 3.

• Case S ≡ u := t. Thus suppose �III {p1} S {q1} and �III {p2} S {q2}. Then
for some assertions q01 and q02, by the ASSIGNMENT axiom, both

�III {q01[u := t]} S {q01} and �III {q02[u := t]} S {q02},

and the implications p1 → q01[u := t], q01 → q1 and p2 → q02[u := t], q02 → q2

hold. The ASSIGNMENT axiom also yields

{q01[u := t] ∧ q02[u := t]} S {q01 ∧ q02}.

By the implications (p1 ∧ p2) → (q01[u := t] ∧ q02[u := t]) and (q01 ∧ q02) →
(q1 ∧ q2), the CONSEQUENCE rule yields

�III {p1 ∧ p2} S {q1 ∧ q2},

as desired.

• Case S ≡ S1; S2. Thus suppose �III {p1} S {q1} and �III {p2} S {q2}. Then
by Lemma 4(i) for some assertions r1 and r2

�III {p1} S1 {r1} and �III {r1} S2 {q1},

�III {p2} S1 {r2} and �III {r2} S2 {q2}.

By the induction hypothesis,

�III {p1 ∧ p2} S1 {r1 ∧ r2} and �III {r1 ∧ r2} S1 {q1 ∧ q2},
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so by the COMPOSITION rule,

�III {p1 ∧ p2} S1; S2 {q1 ∧ q2},

as desired.

• Case S ≡ if B then S1 else S2 fi. Thus suppose �III {p1} S {q1} and �III

{p2} S {q2}. Then by Lemma 4(ii),

�III {p1 ∧ B} S1 {q1} and �III {p1 ∧ ¬B} S2 {q1},

�III {p2 ∧ B} S1 {q2} and �III {p2 ∧ ¬B} S2 {q2}.

By the induction hypothesis,

�III {p1 ∧ p2 ∧ B} S1 {q1 ∧ q2}
and

�III {p1 ∧ p2 ∧ ¬B} S2 {q1 ∧ q2}.

So by the CONDITIONAL rule,

�III {p1 ∧ p2} if B then S1 else S2 fi {q1 ∧ q2},

as desired.

• Case S ≡ while B do S0 od . Suppose �III {p1} S {q1} and �III

{p2} S {q2}. Then for some assertions p01, p02, appropriate bound functions
t1, t2 and variables z1, z2,

�III {p01 ∧ B ∧ t1 = z1} S0 {p01 ∧ t1 < z1},

�III {p02 ∧ B ∧ t2 = z2} S0 {p02 ∧ t2 < z2},

the implications p01 → t1 ≥ 0, p1 → p01, (p01 ∧ ¬B) → q1 and p02 → t2 ≥ 0,
p2 → p02, (p02 ∧ ¬B) → q2 hold.
Without loss of generality we can assume that z2 �∈ {z1} ∪ free(p01). By the
induction hypothesis,

�III {p01 ∧ p02 ∧ B ∧ t1 = z1 ∧ t2 = z2} S0 {p01 ∧ p02 ∧ t1 < z1 ∧ t2 < z2}.

It suffices to consider one bound function, say t1. Formally, we show this as
follows. By the CONSEQUENCE rule,

�III {p01 ∧ p02 ∧ B ∧ t1 = z1 ∧ t2 = z2} S0 {p01 ∧ p02 ∧ t1 < z1}.

Now, an application of the ∃-INTRODUCTION rule, which is admissible in
the proof system III according to part (ii) of this theorem, followed by an
application of the CONSEQUENCE rule yields

�III {p01 ∧ p02 ∧ B ∧ t1 = z1 ∧ ∃z2 : t2 = z2} S0 {p01 ∧ p02 ∧ t1 < z1}.
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A further application of the CONSEQUENCE rule yields

�III {p01 ∧ p02 ∧ B ∧ t1 = z1} S0 {p01 ∧ p02 ∧ t1 < z1}.

Then by the LOOP III rule,

�III {p01 ∧ p02} while B do S0 od {p01 ∧ p02 ∧ ¬B}.

The implications above yield (p1 ∧ p2) → (p01 ∧ p02) and (p01 ∧ p02

∧ ¬B) → (q1 ∧ q2). Thus by the CONSEQUENCE rule,

�III {p1 ∧ p2} while B do S0 od {q1 ∧ q2},

as desired.

(iv) The HYBRID CONJUNCTION rule is admissible in the proof system II,
that is, if �I {p1} S {q1} and �II {p2} S {q2}, then �II {p1 ∧ p2} S {q1 ∧ q2}.
The proof is analogous to the proof of (iii). The only case that is somewhat
different is the one concerned with the while statement. So we only deal with

• Case S ≡ while B do S0 od . Suppose �I {p1} S {q1} and �II {p2} S {q2}.
Then for some assertions p01, p02 and an appropriate bound function t and
variable z,

�I {p01 ∧ B} S0 {p01},

�II {p02 ∧ B} S0 {p02},

�II {p02 ∧ B ∧ t = z} S0 {t < z},

and the implications

p1 → p01, (p01 ∧ ¬B) → q1, p02 → t ≥ 0, p2 → p02, (p02 ∧ ¬B) → q2

hold. By the induction hypothesis,

�II {p01 ∧ p02 ∧ B} S0 {p01 ∧ p02},

and by the induction hypothesis combined with the CONSEQUENCE rule,

�II {p01 ∧ p02 ∧ B ∧ t = z} S0 {t < z}.

So by the LOOP II rule,

�II {p01 ∧ p02} while B do S0 od {p01 ∧ p02 ∧ ¬B}.

The implications above yield (p1 ∧ p2) → (p01 ∧ p02) and (p01 ∧ p02

∧ ¬B) → (q1 ∧ q2). Thus by the CONSEQUENCE rule,

�II {p1 ∧ p2} while B do S0 od {q1 ∧ q2},

as desired.
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5 Representing Proofs

5.1 Proof Outlines

Even though the LOOP rules II, III, and IV are equivalent in the sense of
Theorem 1 or Corollary 1, they lead to different proofs of total correctness of
while programs. The idea behind the LOOP II rule is to establish that p is a loop
invariant and t is a bound function separately, while in the LOOP III rule both
facts are established simultaneously. So the LOOP II rule looks more convenient
when we want to strengthen a proof of partial correctness to a proof of total
correctness: it suffices to establish two new premises concerned with the bound
function t. In turn, the LOOP IV rule allows us to split the proof obligations even
further, by identifying the property actually needed to be proved in terms of
total correctness. This, as already mentioned, allows one to support modular
reasoning.

However, matters change when we want to represent the proofs in the result-
ing proof systems II, III, and IV in a convenient form. Given that these proofs
deal with structured programs, their most natural representation consists of so-
called proof outlines, a notion introduced in [16]. Informally, it is a proof repre-
sentation in the form of a program annotated by the assertions arising from the
appropriate rule applications. Such a representation is possible thanks to the
fact that the proof rules are syntax directed. Proof outlines were introduced in
[16] in order to reason about correctness of parallel programs, where they served
to establish so-called interference freedom among the proofs of the component
programs. However, they are also very useful as a representation of correctness
proofs of sequential programs and, when some obvious assertions are deleted, as
a program documentation.

Now, given that the LOOP II and IV rules have more than one premise
consisting of a correctness formula, it is difficult to employ a single proof outline
to represent a proof involving any of these rules. This is not the case with the
LOOP III rule. To illustrate this point recall first that the proof outlines are
defined by induction on the program structure. We only focus on the crucial
formation rule concerned with the while statement. For the proof system I the
following formation rule was used in [4]:

{p ∧ B} S∗ {p}

{inv : p} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}
where S∗ is the program S annotated with some assertions.

For the proof system II we used in [4] the following formation rule:
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{p ∧ B} S∗ {p},
{p ∧ B ∧ t = z} S∗∗ {t < z},
p → t ≥ 0
{inv : p}{bd : t} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

where S∗ and S∗∗ are annotations of the program S with some assertions, t is
an integer expression and z is an integer variable not occurring in p, t, B or S∗.2

Finally, for the proof system III we introduce the following formation rule:

{p ∧ B ∧ t = z} S∗ {p ∧ t < z},
p → t ≥ 0
{inv : p}{bd : t} while B do {p ∧ B ∧ t = z} S∗ {p ∧ t < z} od {p ∧ ¬B}

where t and z are as above.

For a moment we defer the discussion of proof outlines for the proof sys-
tem IV. One can easily prove by induction that each proof outline for the proof
system I corresponds to a proof in this proof system. For example, if by the
induction hypothesis the proof outline {p ∧ B} S∗ {p} corresponds to a proof
of {p ∧ B} S {p} in I, then the proof outline

{inv : p} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}
corresponds to a proof of {p} while B do S od {p ∧ ¬B} in I, which is
obtained by applying to {p ∧ B} S {p} the LOOP I rule.

However, this property fails to hold for the proof outlines for the proof sys-
tem II, because the second proof outline used in the premise of the formation
rule is dropped. As a consequence, the proof outline for the while statement
does not allow one to reconstruct the proof of {p} while B do S od {p ∧ ¬B}
in the proof system II.

5.2 Proofs Using the LOOP III Rule

By contrast, each proof outline for the proof system III involving the
LOOP III rule does correspond to a proof in this proof system, because all
assertions used are retained. In other words, from each proof outline for the
proof system III a proof in this system can be extracted.

To illustrate this point consider the following program SN involving nested
loops, suggested to us by Tobias Nipkow (private communication):

SN ≡ while i < n do
j := i;
while 0 < j do

j := j − 1

2 In [4], in contrast to [3], there is a typo and S∗∗ is mentioned here instead of S∗.
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od ;
i := i + 1

od

where i, j, n are integer variables.

We would like to prove that it terminates for all initial states. To this end,
we prove the correctness formula {true} SN {true} in the proof system III.
In Fig. 1, we show the proof in the form of a proof outline, instantiating the
corresponding formation rule for the while statement in proof system III with
the following loop invariants and bound functions for the outer and the inner
loop, respectively:

p ≡ true and t ≡ max(n − i, 0) ,

p ≡ n − i = z1 ∧ z1 > 0 and t ≡ max(j, 0) .

Note that in a proof outline adjacent assertions stand for implications according
to an application of the CONSEQUENCE rule. For instance, the assertion in
line 3 implies that of line 4. Assignments are treated by backward substitution
according to the ASSIGNMENT axiom. For instance, the assignment i := i + 1
in line 18 is dealt with by substituting i by i + 1 in the assertion in line 19,
yielding the assertion in line 17.

Fig. 1. Proof outline for {true} SN {true} in the proof system III. The line numbers
have been added for reference only.
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5.3 Proofs Using the LOOP IV Rule

Let us now move on to a discussion of the proofs involving the LOOP IV rule.
This rule, just like the LOOP II rule, uses more than one correctness formula as
a premise. As a result, it shares with the LOOP II rule the problem that it is not
clear how to faithfully represent correctness proofs using a single proof outline.
Indeed, each of the first three premises calls for a separate proof outline.

But it is not difficult to see that this would give rise to largely overlapping
proof outlines. So, instead, we propose an alternative approach in which we
replace these overlapping proof outlines referring to the proof system IV by an
interrelated set of proof outlines in the sense of partial correctness, so referring
to the proof system I.

For a given correctness formula {p} S {q} to be proved in the proof system IV
this set is defined as follows. First, we have a proof outline {p} S∗ {q} that
employs the first formation rule given above and thus represents a proof of
partial correctness of {p} S {q} in I.

Next, for each occurrence of a loop while B do S0 od in S, we have a
proof outline {p0 ∧ B ∧ t = z} S∗

0 {t < z}, which represents a proof of partial
correctness of {p0 ∧ B ∧ t = z} S0 {t < z} in I. Here p0 is the invariant asso-
ciated with the occurrence of the loop while B do S0 od in the above proof
outline {p} S∗ {q} and t is some bound function t such that p0 → t ≥ 0. We
omit the proof that existence of such a set of proof outlines in the sense of partial
correctness ensures a proof of the corresponding correctness formula in the proof
system IV. Intuitively, the use of the above proof outlines for each loop occur-
rence in S ensures by structural induction the third premise of the LOOP IV
rule, so {p ∧ B} S {true} in the sense of total correctness.

We illustrate how such a set of proof outlines can be used to establish the
proof of the correctness formula {true} SN {true} for Nipkow’s program SN in
the proof system IV. We skip the trivial proof outline {true} S∗

N {true}, which
corresponds to a proof of partial correctness of {true} SN {true}. Let S0 denote
the body of the outer loop of SN . Given the bound function max(n− i, 0), Fig. 2
shows the proof outline which corresponds to a proof of partial correctness of

{true ∧ i < n ∧ max(n − i, 0) = z} S0 {max(n − i, 0) < z},

assuming that the trivial invariant true is associated with this loop in the proof
outline {true} S∗

N {true}. Note that true → max(n − i, 0) ≥ 0.
Finally, the LOOP IV rule requires us to prove termination of S0. This boils

down to establish the termination of the inner loop. To this end, we introduce
the bound function max(j, 0). Note that true → max(j, 0) ≥ 0. Figure 3 shows
the proof outline which corresponds to a proof of partial correctness of

{true ∧ 0 < j ∧ max(j, 0) = z} j := j − 1 {max(j, 0) < z}.

6 Practical Applications

Research on program verification has entered practice most visibly by the use of
assertions as annotations of programs and program interfaces that remain to be
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Fig. 2. Proof outline for {true ∧ i < n ∧ max(n − i, 0) = z} S0 {max(n − i, 0) < z}
in the proof system I.

Fig. 3. Proof outline for {true ∧ 0 < j ∧ max(j, 0) = z} j := j − 1 {max(j, 0) < z} in
the proof system I.

implemented. This can be seen in the paradigm of design by contract introduced
by Bertrand Meyer for his object-oriented programming language Eiffel [15]:
program design starts with a specification in terms of assertions, the contract,
against which the program is to be checked either statically by means of a proof
or dynamically at runtime.

This paradigm has been adopted and extended to other programming lan-
guages, in particular to Java. The Java Modeling Language (JML) enriches Java
with facilities for writing assertions (pre- and postconditions as well as class
invariants) but also with a concept of abstract state space (using so-called model
variables) [13]3. For assertions, JML uses Java’s Boolean expressions extended by
universal and existential quantifiers. They are directly written into the Java
source code in the form of comments starting with the symbols //@ (so that the
annotated source code may be processed by both an ordinary Java compiler and
a specialized JML tool).

JML is designed to deal with the specification of Java classes, but here
we focus on loops. JML provides the designated keywords requires for spec-
ifying the precondition, ensures for the postcondition, loop invariant, and

3 See also https://www.cs.ucf.edu/$\sim$leavens/JML/index.shtml.

https://www.cs.ucf.edu/$sim $leavens/JML/index.shtml
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loop decreases for the bound function. To enhance readability, the pre- and
postcondition as well as the loop invariant may be split into several assertions,
each one stated after a separate repeated keyword4. An annotated Java program
corresponds to a proof outline as discussed here, but restricted to the essen-
tial assertions for each loop (pre- and postcondition, loop invariant and bound
function).

Also for the programming language C, a standardized specification language
for C programs, called ACSL and inspired by JML, has been designed, see for
instance [6]5.

In this paper, we have shown that the rules LOOP II-IV for proving termina-
tion of loops are equivalent. With respect to the number of premises LOOP III
is clearly the simplest rule for proving termination. However, a proof using this
rule in general requires more complex assertions because of the accumulation
of the specifications of the bound functions of inner loops. This can be seen in
the proof outline given in Fig. 1, in which the assertions inside the inner loop
refer to both z1 and z2, where z1 is the variable freezing the value of the bound
function max(n − i, 0) of the outer loop and z2 is the variable freezing the value
of the bound function max(j, 0) of the inner loop. The reason is that in this
proof outline we need to establish that the value of the bound function of the
outer loop is not affected by the inner loop and that the value of the other bound
function decreases.

The LOOP IV rule allows for a separate proof of termination of each loop,
which does not require the specification of bound functions for the inner loops.
Thus we have a trade off between a single complex proof and a number of simpler
proofs, where complexity is measured by the size of the assertions. What works
best in practice depends on the particular program structure.

Conflict of Interest. The author(s) has no competing interests to declare that are

relevant to the content of this manuscript.

Appendix

The proof system I consists of the following axioms and rules:

AXIOM SKIP
{p} skip {p}

AXIOM ASSIGNMENT

{p[u := t]} u := t {p}
RULE COMPOSITION

{p} S1 {r}, {r} S2 {q}
{p} S1; S2 {q}

4 For an example, see https://www.openjml.org/examples/binary-search.html.
5 See also https://frama-c.com/download/acsl-1.20.pdf.

https://www.openjml.org/examples/binary-search.html
https://frama-c.com/download/acsl-1.20.pdf
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RULE CONDITIONAL

{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}
{p} if B then S1 else S2 fi {q}

RULE LOOP I {p ∧ B} S {p}
{p} while B do S od {p ∧ ¬B}

RULE CONSEQUENCE

p → p1, {p1} S {q1}, q1 → q

{p} S {q}
Additionally, given an interpretation I for the underlying first-order lan-

guage, we use as axioms all assertions that are true in I. These assertions are
used as premises in the CONSEQUENCE rule.
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