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1 Introduction

A long-standing challenge in computer science is the formal specification and verification of pro-
grams, notably that of parallel programs supporting complex communication and synchronization
mechanisms. We can distinguish between logic- and semantics-based methods for establishing
program correctness. Methods that are based on logic use assertions to express behavioral
properties and generate proof conditions for their validation, which are usually discharged by
interactive theorem proving. These methods are applicable to infinite-state systems and to actual
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programs used in practice (see, for example [24] for the verification of a corrected version of the
TimSort sorting program of the Java Collections Framework). One of the main challenges for
the use of logic-based approaches stems from the complexity of the specification of invariant
properties and the interactive use of a theorem prover. However, semantics-based methods use
transition systems to model system behavior. Transitions may be small-step or big-step, finite
or infinite state, and support a range of verification methods, including inductive reasoning and
automated model checking (in the case of finite state models).

The main contribution of this article is a new semantics-based verification method for parallel
programs, exploiting the concurrency model of Actors [2] and active objects [23]. The method
is based on specifying an abstraction of the overall behavior of a parallel program in terms
of a transition system (TS) model. The TS model describes behavior by means of the local
transformation of states by application of symbolic transformation rules. Examples of formalisms
that can be used to specify such TS models include the Chemical Abstract Machine [7], the
rewriting system Maude [19], K [51], and Structural Operational Semantics [50]. Verifying that a
parallel program satisfies such a correctness specification then involves establishing a simulation

relation between the transition system describing the semantics of the parallel program and
the system described by the TS model (which may be infinite state). Although these systems
are at different levels of abstraction and use different mechanisms for communication and
synchronization, our proof method allows the simulation relation to be established by means of
syntax-directed local reasoning. In this article, the proposed proof method is justified in terms of
the semantic properties of our targeted implementation language, which is an actor language with
cooperative scheduling.

Our method supports a general two-step approach to proving the correctness of parallel
programs:

(1) Verify global behavioral properties using a high-level formal model that abstracts from the
complexity of the concurrency model of the target language to support inductive proofs of
global properties.

(2) Justify the correctness of the parallel implementation in the target language with respect to
the high-level model in terms of a simulation relation.

For the first step, a TS model allows for the formal description of overall system behavior in
a syntax-oriented, compositional way, using inference rules for local transitions and their com-
position. Process synchronization can be expressed abstractly using, e.g., conditions on system
states and reachability conditions over transition relations as premises and label synchronization
for parallel transitions. This high level of abstraction greatly simplifies the verification of system
properties. Although TS models are well suited for formalizing language semantics and for reason-
ing about language meta-theory, they are also well suited to describe specific systems to reason
about, e.g., reachability or state invariance.

For the second step, we need an implementation in an Actor language with a formal semantics
(e.g., formalized by a TS model), such that a simulation relation can be formally established. The
concurrency model of Actors then enables proving correctness in terms of syntax-directed sequen-
tial reasoning. In this article, we have opted for the active object language Abstract Behavioral

Specification (ABS) [30, 52]. The semantics of ABS is formally defined by a TS model [32] and im-
plemented by backends1 in Erlang, Haskell, and Java, all of which support parallel execution. It has
been developed and applied in the context of various EU projects, e.g., in the EU FP7 projects Highly

1https://abs-models.org/
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Adaptable and Trustworthy Software using Formal Models2 and Engineering Virtualized Services3.
In these projects, ABS has been extended and successfully applied to the formal modeling and anal-
ysis of software product families [21] and software services deployed on the Cloud [34]. The ABS
tool suite [3, 5, 8, 25, 26, 35, 37, 38, 53] has been further applied to case studies, targeting, e.g.,
cloud-based frameworks [4, 33, 42, 43, 59], railway operations [36], and computational biology.4

The parallel execution of active objects (for a survey of active object languages, see [23]) is a
direct consequence of decoupling method execution from method invocation by means of asyn-

chronous method invocations. ABS further integrates a strict encapsulation of the local state of an
active object with explicit language constructs for the cooperative scheduling of its method execu-
tions. Since ABS is tailored to the description of distributed systems, it abstracts from the order in
which method invocations are generated.

In the definition of the simulation relation, cooperative scheduling allows the interleaving of
methods in an active object to match the granularity of the transition rules of the corresponding
TS model. Moreover, the parallel execution of active objects in ABS satisfies a global confluence

property that allows us to express locally the proof conditions of the simulation relation in a syntax-
directed manner, abstracting from the fine-grained interleaving of the method executions.

As a proof of concept we introduce our method by application to a parallel simulator of multi-
core memory systems. These memory systems generally use caches to avoid bottlenecks in data
access from main memory, but caches introduce data duplication and require protocols to ensure
coherence. Although data duplication is usually not visible to the programmers, the way a pro-
gram interacts with these copies largely affects performance by moving data around to maintain
coherence. To develop, test, and optimize software for multicore architectures, we need correct,
executable models of the underlying memory systems. A TS model of multicore memory systems
with correctness proofs for cache coherency was described in [13, 14], together with a prototype
implementation in the rewriting logic system Maude [19]. However, this fairly direct implementa-
tion of the TS model is not well suited to simulate large systems. Therefore this article introduces
a parallel implementation based on the active object model of ABS; we apply our method to prove
its correctness.

This article extends [9], which describes a first version of the use case. The extension consists of
formalizing the novel idea of annotating ABS programs with the rule names of the TS model and
the use of a global confluence property of the ABS semantics in the formal semantics (and verifica-
tion) of these annotations. Because of the absence of this high-level specification of the simulation
relation between the ABS program and the TS model, the ABS implementation in [9] has been
developed largely independent of the TS model, which considerably complicated the correctness
proof. In contrast, the application of our new methodology led to a major refactoring of the ABS
implementation described in [9], reflecting a correctness-by-design development methodology.

In summary, the main contributions of this article are as follows:

— a novel semantics-based method for proving the correctness of parallel systems, based on
the Actor model of concurrency,

— a justification of the method in terms of the semantic properties of the Actor concurrency
model, and

— a proof-of-concept case study illustrating the application of the method to a parallel
simulator of a multicore memory system.

2https://cordis.europa.eu/project/id/231620
3https://cordis.europa.eu/project/id/610582
4https://www.compugene.tu-darmstadt.de
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Plan for the article. The next section introduces the main concepts of the ABS language and
Section 3 the use of transition rules as annotations of ABS programs. Section 4 explains the TS
model of multicore memory systems and Section 5 considers its ABS implementation and the asso-
ciated correctness proof. We discuss related work in Section 6, and draw some general conclusions
and discuss future work in Section 7. Appendices A, B, and C further detail the global confluence
property, the correctness proof and the multicore TS model of the case study, respectively.

2 ABS: Actors with Cooperative Concurrency

ABS is a modeling language for designing, verifying, and executing concurrent software [30, 52].
The core language combines the syntax and object-oriented style of Java with the Actor model
of concurrency [31], resulting in active objects that decouple communication and synchroniza-
tion using asynchronous method calls and cooperative scheduling [23]. In ABS communication
(sending a method call) and execution (scheduling an incoming method call) are decoupled via
asynchronous method calls that generate processes (which execute the called methods) within the
called (active) object and do not impose any synchronization between caller and callee. Thus, the
caller can continue execution until the result of a method call is needed, and the callee can sched-
ule method calls from multiple callers as needed. When synchronization between two objects is
needed (e.g., a process needs the result of a method call), it is realised by means of (implicit) futures
and cooperative scheduling. In ABS, objects have state (fields and object parameters) that is shared
between all its processes. However, only one process may execute at a time in any object (i.e., the
objects have a built-in mutex). Similarly, processes also have their own state (local variable and
parameters to the method calls). A process executing in one object can allow another process to be
scheduled in the same object by means of explicit suspension points. The active process suspends
itself when waiting for the result of another method call or waiting for a Boolean condition over
the actor state, using an await-statement. Rescheduling the process at the suspension point may
then depend on the resolution of a future or on a Boolean condition becoming true. This mecha-
nism of cooperative scheduling allows the interleaving of different processes to be captured very
precisely in ABS.

The imperative layer of synchronization and communication is complemented by a functional
layer, used for computations over the internal data of objects. The functional layer combines para-
metric algebraic datatypes (ADTs) and a simple functional language with case distinction and
pattern matching. ABS includes a library with predefined datatypes and operations (e.g., Int, Bool),
including a datatype Maybe that is used to store optional values,5 and parametric datatypes and
associated functions (e.g., lists,6 sets and maps). All other types and functions are user defined.

In the following, the basic ABS-related statements used in this article (and shown in Table 1)
are explained in terms of some general synchronization patterns (we omit well-known statements
such assignment, skip, if, foreach, return, etc.).7

2.1 Synchronization Patterns

In this section, we discuss encodings in ABS of a basic locking mechanism, atomic operations, and
a broadcast mechanism for global synchronization (using barriers).

5The Maybe datatype is used when the functional code that is assigned to a variable may not return a value in all cases.
If no value is returned, then the default value is Nothing; otherwise, the value is wrapped inside the Just construct, e.g.,
Just(True). Further details can be found in the ABS documentation https://abs-models.org/manual/#sec:builtin-types
6The parametric datatype List<A> is defined as Nil | Cons(A head, List<A> tail), where A is a datatype.
7For the full set of statements of ABS, we refer to the ABS documentation at https://abs-models.org/manual/#-statements.
In ABS, method calls are not guaranteed to terminate, since statements in the methods might include while-loops and
recursive calls.
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Table 1. Basic ABS Statements Used in This Article

Statement Meaning
new C Creation of an instance of class C
switch (e){e1=> s1· · · en=> sn } Pattern matching
await b Suspension on a Boolean condition
await e!m(e1, . . . , en ) Suspension on termination of a asynchronous call
e!m(e1, . . . , en ) Non-blocking asynchronous call
e.m(e1, . . . , en ) Blocking synchronous call
this.m(e1, . . . , en ) Inlined (recursive) self-call

Here, b is a Boolean expression, e and ei denote expressions.

class Lock {
Bool unlocked = True;

Unit take_lock {
await unlocked;
unlocked = False; }

Unit release_lock {
unlocked = True; }

}
{// using the lock

... lock = new Lock();
await lock!take_lock;
... // critical resource
lock.release_lock();

}

Fig. 1. Lock implementation in

ABS using await on Booleans.

Locks. The basic mechanism of asynchronous method calls
and cooperative scheduling in ABS can be explained by the
simple code example of a class Lock (Figure 1). It uses an
await-statement on a Boolean condition to model a binary
semaphore, which enforces exclusive access to a common re-
source “lock,” modeled as an instance of the class Lock (instances
are dynamically created by executing the expression new Lock).

The execution of the take_lock method will be suspended
by the await unlocked statement. This statement releases the

control, allowing the scheduling of other (enabled) processes
within the Lock object. When the local condition unlocked

inside the Lock object has become true, the generated take_lock

processes within the Lock object will compete for execution.
The scheduled process will then terminate and return by setting
unlocked to False.

In general, the suspension points defined by await-statements
define the granularity of interleaving of the processes of an ob-
ject. The ABS statement await lock!take_lock() will only suspend the process that issued the call
(and release control in the caller object) until take_lock has returned. In contrast, a synchronous

call lock.take_lock() will generate a process for the execution of the take_lock() method by the
lock object and block (all the processes of) the caller object until the method returns.

Bool TestandSet (/∗input∗/) {
Bool fail = False;
switch /∗test(input)∗/ {

True => /∗set∗/;
False => fail = True;

}
return fail;

}

Fig. 2. Test-and-set pattern in

ABS.

Atomic operations. The interleaving model of concurrency
of ABS allows for a simple and high-level implementation of
atomic operations. For example, Figure 2 shows a general ABS
implementation of test-and-set instructions [6], where the
concurrency model guarantees that the local /∗test(input)∗/ and
/∗set∗/ statements, assuming that they do not involve suspension
points, are not interleaved and thus can be thought of as exe-
cuted in a single atomic operation. An instance of this atomic op-
eration can be observed in the method remove_inv in Figure 11.

In ABS test instructions can be implemented using the
switch-statement, which evaluates an expression that matches the resulting value against a
pattern ei

8 in the different branches. This statement has mainly been used to pattern match the

8A pattern ei in the switch-statement can be an expression that includes a datatype constructor e.g., the list constructor
Cons(h,t), in which case the local variables h and t are bound by the pattern matching and available in the statement si

associated to ei . Underscore _ matches any pattern.
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Fig. 3. Broadcast synchronisation patterns in TS model and ABS.

ADTs used in the ABS program discussed in this article. In the simplest case, this pattern can be
replaced by an if-statement.

Broadcast synchronization. Figure 3(a) shows how broadcast synchronization in a labelled TS
model can be enforced by simply matching labels (where exclamation marks and question mark
denote sending and receiving a signal, respectively. An example is detailed in Section 4), thus
abstracting from the implementation details of the implicit multi-party synchronizer. However, in
programming languages for distributed systems like ABS the multi-party synchronization needs
to be programmed explicitly; Figure 3(b) illustrates the architecture of the ABS implementation
shown in Figure 4.

The class Broadcast serves as a template (or design pattern) for the implementation of a broad-
cast mechanism between objects that are specified by the interface IBroadcast. The broadcastSync

method encapsulates a synchronisation protocol between Broadcast instances that uses the addi-
tional classes Synchronizer and Barrier. This protocol consists of a synchronous call to the method
sendSync of an instance of the class Synchronizer (denoted by sync), which in turn asynchronously
calls the method receiveSync of the objects stored in the set network of Broadcast instances, ex-
cluding the caller object executing the broadcastSync method. We abstract from whether the sync

object is passed as a parameter of the broadcastSync method or is part of the local state of any
Broadcast instance. The local computation specified by the receiveSync method by the objects in
receivers is synchronized by calls of the method synchronize of the new instances start and end of
class Barrier. That is, the execution of this method by the start and end barriers synchronize the
start and the termination of the execution of the method receiveSync by the objects in receivers

and the termination of the sendSync method itself. This is achieved by a “countdown” of the num-
ber of objects in receivers that have called the synchronize method plus one, in case of the end

barrier. The synchronize method of the start barrier is called asynchronously (Line 16) and intro-
duces a release point to avoid a deadlock that may arise when an object that has not yet called
the synchronize method of the start barrier is blocked on a synchronous method call to an object
that has already invoked (synchronously) the synchronize method of the start barrier. However,
the corresponding call to the end barrier is synchronous to ensure that all the objects in receivers

have completed their local computations. The additional synchronisation of the synchronizer ob-
ject on the end barrier ensures that also the caller of the sendSync method is blocked until all the
local computations specified by the receiveSync method have been completed.

Objects in ABS are input enabled, so it is always possible to call a method on an object. In
our implementation, this scheme could give rise to inconsistent states if several objects start the

ACM Trans. Program. Lang. Syst., Vol. 46, No. 3, Article 9. Publication date: September 2024.
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1 interface IBroadcast {

2 Bool broadcastSync(...);

3 Unit receiveSync (IBarrier start, IBarrier end, ...)

4 }

5

6 class Broadcast implements IBroadcast, ... {

7 Bool broadcastSync(...) {

8 Bool signal=False;

9 await sync!lock();

10 if /∗test∗/ { sync.sendSync(this,...); /∗set∗/; signal=True; }

11 sync.release();

12 return signal

13 }

14

15 Unit receiveSync(IBarrier start, IBarrier end, ...) {

16 await start!synchronize();

17 /∗some local computation∗/;

18 end.synchronize();

19 }

20 ...

21 }

22

23 class Synchronizer (Set<IBroadcast> network) implements ISynchronizer {

24 Bool unlocked = True;

25 Unit lock() { await unlocked; unlocked = False; }

26 Unit release() { unlocked = True; }

27 Unit sendSync(IBroadcast caller,...) {

28 Set<IBroadcast> receivers = remove(network,caller);

29 Int nrrecs= size(receivers);

30 IBarrier start = new Barrier(nrrecs);

31 IBarrier end = new Barrier(nrrecs+1);

32 foreach (receiver in receivers) { receiver!receiveSync(start,end,...); }

33 end.synchronize();

34 }

35 }

36

37 class Barrier(Int participants) implements IBarrier {

38 Unit synchronize() { participants = participants − 1; await (participants == 0); }

39 }

Fig. 4. Global synchronisation pattern in ABS.

protocol in parallel. To ensure exclusive access to the synchronizer at the start of the protocol,
we add a lock to the synchronizer protocol, such that the caller must take the lock before calling
sendSync and release the lock upon completion of the call. The resulting exclusive access to the
synchronizer guarantees that its message pool contains at most one call to the method sendSync.

2.2 Semantics

ABS is a formally defined language [32]; in fact, its (operational) semantics is defined by a TS
model that allows us to reason formally about the execution of ABS programs. The semantics
of an ABS model can be described by a transition relation between global configurations. A

ACM Trans. Program. Lang. Syst., Vol. 46, No. 3, Article 9. Publication date: September 2024.



9:8 F. de Boer et al.

global configuration is a (finite) set of object configurations. An object configuration is a tuple
of the form 〈oid,σ ,p,Q〉, where oid denotes the unique identity of the object, σ assigns values
to the instance variables (fields) of the object, p denotes the currently executing process, and
Q denotes a set of (suspended) processes (the object’s “queue”). A process is a closure (τ , S)
consisting of an assignment τ of values to the local variables of the statement S . We refer to [32]
for the details of the TS model for deriving transitions G → G ′ between global configurations
in ABS.

Although only one thread of control can execute in an active object at any time (taken by the
active process), cooperative scheduling allows different processes to interleave by releasing the
thread of control (allowing another suspended process to become active) at explicitly declared
points in the code, i.e., the await-statements. When the currently executing process is suspended
by an await-statement, another (enabled) process is scheduled. Access to an object’s fields is
protected: Any non-local (outside of the object) read or write to fields happens via method calls,
mitigating race-conditions or the need for extensive use of explicit mutual exclusion mechanisms
(locks).

Since active objects only interact via method calls and processes are scheduled non-
deterministically, which provides an abstraction from the order in which the processes are
generated by method calls, the ABS semantics satisfies the following global confluence property
(see also [9, 60]) that allows commuting consecutive local computations steps of processes that
belong to different objects.

Theorem 1 (Global Confluence). For any two transitionsG1 → G2 andG1 → G3 that describe

execution steps of processes of different objects, there exists a global configuration G4 such that G2 →

G4 and G3 → G4.

It is worthwhile to observe that this global confluence property follows from the following basic
principles underlying actor-based languages:

— encapsulation of the local state,
— monotonicity of the local transitions that are not affected by adding messages and
— the basic algebraic laws of adding and deleting elements from a multiset (of messages).

In fact, global confluence can be proven in an abstract setting that captures the general seman-
tics of actor languages, see Appendix A. Theorem 1 then follows by embedding the semantics of
ABS into this abstract setting. The details of this embedding for the communication and synchro-
nization mechanisms of ABS (method calls, await-statements and futures) are discussed in the
appendix.

An important consequence of Theorem 1, which underlies the main results of this article, is that
we can restrict the global interleaving between processes by reordering the execution steps in an
ABS computation. In particular, we can restrict the interleaving semantics of the ABS model taking
into account general semantic properties of synchronous communication, and the implementation
of locks and broadcast synchronization in ABS, as explained next.

Since a synchronous call to a method of another object in ABS, blocks all processes of the caller
(object), the global confluence property allows further restricting the interleaving of the ABS pro-
cesses so that the caller process is resumed immediately after the synchronous method invocation
has terminated.

It is worthwhile to note that in general we cannot assume that a method that is called syn-
chronously in ABS is also scheduled immediately for execution, because this would discard the
possible execution of other processes by the callee.

The global confluence property also allows for abstracting from the internal computation steps
of the above ABS implementation of the global (broadcast) synchronization pattern, because it

ACM Trans. Program. Lang. Syst., Vol. 46, No. 3, Article 9. Publication date: September 2024.
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allows scheduling the processes generated by the broadcast method such that the execution of this
method is not interleaved with any other processes.

We can formalize the above in terms of the following notion of stable object configurations. An
object configuration is stable if the statement to be executed denotes the termination of an asyn-

chronously called method (we let idle denote the terminated process), or it starts with a (blocking)
synchronous call or an await-statement.

Definition 1 (Stable Configurations). Let S and S ′ be statements and τ a local variable assignment.
An object configuration 〈oid,σ ,p,Q〉 is stable if p denotes the terminated process idle or p denotes
a process (τ , S ′), where S ′ denotes one of the statements

— e .m(e); S ,
— await b;S or
— await e!m(e);S .

A global ABS configuration is stable if all its object configurations are stable.

Since synchronous self-calls are executed by inlining, they do not represent interleaving points.
In the sequel G ⇒ G ′ denotes the transition relation that describes execution starting from a

global stable configurationG to a next global stable configurationG ′ (without passing intermediate
global stable configurations). We distinguish the following three cases:

(1) The transition G ⇒ G ′ describes the local execution of a method by a single object.
(2) The transitionG ⇒ G ′ describes the rendez-vous between the caller and callee of a synchro-

nous method call in terms of the terminating execution of the called method, followed by the
resumption of the suspended call.

(3) The transition G ⇒ G ′ describes the effect of executing the broadcast method, which thus
describes the global synchronization of different objects.

This coarse-grained interleaving semantics of ABS forms the basis for the general methodology
to prove correctness of ABS implementations of TS models, described next.

3 The General Methodology

3.1 Annotating ABS Methods with Rules from the TS Model

For an introduction to TS models, see, e.g., [49]. The general methodology for developing ABS im-
plementations of abstract TS models exploits the coarse-grained interleaving described in Section 2
(denoted by the transition relation ⇒). This course-grained interleaving allows us to focus on the
design of local, sequential code that implements the individual transition rules. This is reflected
by the use of transition rules as a specification formalism for ABS code. A conditional transition

rule b : R consists of a local Boolean condition b in ABS and the name R of a transition rule. We
use sequences b1 : R1; . . . ;bn : Rn of conditional transition rules to annotate stable points in ABS
method definitions. A stable point in a method definition denotes either its body or a statement
of its body that starts with an external synchronous call or an await-statement. The idea is that
each bi is evaluated as a condition that identifies a path leading from the annotated stable point
to a next one or to termination. The execution of this path should correspond to the application
of the associated transition rule Ri . This correspondence involves a simulation relation, described
below.

A sequence b1 : R1; . . . ;bn : Rn of conditional transition rules is evaluated from left to right,
that is, the first transition rule from the left, the Boolean condition of which evaluates to true, is
applicable. The case that all Boolean conditions are false means that there does not exist a transition
rule for any path from the annotated stable point to a next one or to termination (in the simulation
relation, all these paths would correspond to a “silent” transition). As a special case, we stipulate

ACM Trans. Program. Lang. Syst., Vol. 46, No. 3, Article 9. Publication date: September 2024.



9:10 F. de Boer et al.

that for any path leading from a stable point that has no associated annotation to a next stable point
(or to termination), there does not exist a corresponding transition rule. The use of annotations in
the ABS code of the multicore memory system is shown in Section 5.2.1.

3.2 Correctness of the Implementation

The correctness of the ABS implementation with respect to a given TS model can be established by
means of a simulation relation between the transition system describing the semantics of the ABS
implementation and the transition system describing the TS model. The annotation of ABS code
with (conditional) rules from the TS model provides a high-level description of the simulation re-
lation, describing which rule(s) correspond to the execution of the ABS code from one stable point
to a next one (or to termination). Underlying this high-level description, we define a simulation
relation between ABS configurations and the runtime states of the TS model. This simulation re-
lation is defined as an abstraction function α that maps every stable global ABS configuration G
to a behaviorally equivalent configuration α(G) of the TS model. The abstraction function for the
ABS code of the multicore memory system is shown in Section 5.2.2.

We restrict the simulation relation to reachable ABS configurations. A configuration G of an
ABS program is reachable ifG0 ⇒

∗ G, for some initial configurationG0. In an initial configuration
of the ABS multicore program, all process queues are empty and the only active processes are
those about to execute the run methods of the cores. This restriction allows us to use some general
properties of the ABS semantics; e.g., upon return of a synchronous call, the local state of the
calling object has not changed.

We can now express that an ABS program is a correct implementation of a TS model by proving
that the following theorem holds:

Definition 2 (Correctness). Given an ABS program and a TS model, let α be an abstraction func-
tion from configurations of the ABS program to configurations of the TS model. The ABS program
is a correct implementation of the TS model, if for any reachable configuration G and transition
G ⇒ G ′ of the ABS program we have that α(G) = α(G ′) or α(G) → α(G ′).

Because of the general confluence property of the ABS semantics, it suffices to verify the anno-
tations of methods in terms of the abstraction function α to prove that α is a simulation relation.
The general idea is that for each transitionG ⇒ G ′ that results from the execution from one stable
point to a next one (or to termination), we have to show that α(G ′) results from α(G) by applying
the enabled rule from the TS model associated with the initial stable point. In case no rule from
the TS model is enabled, we have a “silent” step, that is, α(G) = α(G ′).

4 A TS Model for Multicore Memory Systems

Design decisions for programs running on top of a multicore memory system can be explored
using simulators (e.g., [15, 18, 44, 47]). Bijo et al. developed a TS model for multicore memory
systems [13, 14]. Taking this TS model as a starting point, we will study how a parallel simula-
tor can be developed in ABS, which implements the TS model and use this development to dis-
cuss the details of our proof methodology for program correctness. We first introduce the main
concepts of multicore memory systems and then look at their formalization in terms of a TS
model.

4.1 A Short Overview of Multicore Memory Systems

A multicore memory system consists of cores that contain tasks to be executed, the data layout in
main memory (indicating where data are allocated), and a system architecture consisting of cores
with private multi-level caches and shared memory (see Figure 5). Such a system is parametric
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in the number of cores, the number and size of caches, and the associativity and replacement
policy. Data are organized in blocks that move between the caches and the main memory. For
simplicity, we abstract from the data content of the memory blocks, assume that the size of cache
lines and memory blocks in main memory coincide and that a local reference to a memory block is
represented directly by the corresponding memory address, and transfer memory blocks from the
caches of one core to the caches of another core via the main memory. As a consequence, the tasks
executed in the cores are represented as data access patterns, abstracting from their computational
content.

Fig. 5. Abstract model of a multicore memory system.

Task execution on a core
requires memory blocks to be
transferred from the main mem-
ory to the closest cache. Each
cache has a pool of instructions
to move memory blocks among
caches and between caches and
main memory. Memory blocks
may exist in multiple copies in
the memory system. Consistency
between different copies of a
memory block is ensured using
the standard cache coherence pro-
tocol MSI (e.g., [57]), with which a
cache line can be modified, shared,
or invalid. A modified cache line
has the most recent value of the
memory block; therefore all other copies are invalid (including the one in main memory). A
shared cache line indicates that all copies of the block are consistent. The protocol’s messages are
broadcast to the cores. The details of the broadcast (e.g., on a mesh or a ring) can be abstracted
into an abstract communication medium. Following standard nomenclature, Rd messages request
read access and RdX messages read exclusive access to a memory block. The latter invalidates
copies of the block in other caches, to provide write access.

We summarize the operational aspects of cache coherency with the MSI protocol. To access data
from a memory block n, a core looks for n in its local caches. If n is not found in shared or modified
state, then a read request !Rd(n) is broadcast to the other cores and to main memory. The cache can
fetch the block when it is available in main memory. Eviction is needed if the cache is full, removing
some memory block to free space. Writing to block n requires n to be in shared or modified state
in the local cache; if it is in shared state, then an invalidation request !RdX (n) is broadcast to obtain
exclusive access. If a cache with block n in modified state receives a read request ?Rd(n), then it
flushes the block to main memory; if a cache with block n in shared state receives an invalidation
request ?RdX (n), then it invalidates the cache line; the requests are discarded otherwise. Read and
invalidation requests are broadcast instantaneously in the abstract model, reflecting that signalling
on the communication medium is orders of magnitude faster than moving data to or from main
memory.

4.2 A TS Model of Multicore Memory Systems

The multicore TS model describes the interactions between a core, caches, and the main memory
in the multicore memory system. It further includes labeled transitions to model instantaneous
broadcast. The multicore TS model is parametric in the number of cores and caches. The multicore
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Syntactic

categories.

cid ∈ CoreId

caid ∈ CacheId

n ∈ Address

Definitions.

cf ∈ Config ::= 〈CR,Ca,M〉

CR∈ Core ::= cid • rst

Ca∈ Cache ::= caid •M • dst

st ∈ Status ::= {mo, sh, inv}

dap∈ AccessPtns ::= ε | dap; dap | read(n) | write(n)
rst ∈ RunLang ::= dap | rst; rst | readBl(n) | writeBl(n)
dst ∈ DataLang ::= ε | dst + dst | fetch(n) | fetchBl(n)

| fetchW(n,n′) | flush(n)

Fig. 6. Syntax of runtime configurations, where over-bar denotes sets (e.g., CR).

TS model [13, 14] is shown to guarantee correctness properties for data consistency and cache
coherence (see, e.g., [20, 58]), including the preservation of program order in each core, the absence
of data races, and that stale data are never accessed.

In this article, we present a simplified version of the multicore TS model that, in its original and
more complex form, was introduced in [13, 14] and implemented as a correct distributed system
in [9]. This simplified version allows us to focus on the main challenges of a correct distributed
implementation. The runtime syntax is given in Figure 6. A configuration cf is a tuple consisting
of a main memory M , cores CR, and caches Ca (we abstract from the task queue, which contains all
tasks waiting to be scheduled). A core (cid • rst) with identifier cid executes runtime statements rst.
A cache (caid •M • dst) with identifier caid has a local cache memory M and data instructions dst.
We assume that the cache identifier caid encodes the cid of the core to which the cache belongs and
its level in the cache hierarchy. We use Status⊥ to denote the extension of the set {mo, sh, inv} of
status tags with the undefined value ⊥. Thus, a memory M : Address → Status⊥ maps addresses n
to either a status tag st or to ⊥ if the memory block with address n is not found in M .

Data access patterns dap model tasks consisting of finite sequences of read(n) and write(n) op-
erations to address n (that is, we abstract from control flow operations for sequential composition,
non-deterministic choice, repetition, and task creation). The empty access pattern is denoted ε .
Cores execute runtime statements rst, which extend dap with readBl(n) and writeBl(n) to block
execution while waiting for data. Caches execute data instructions from a multiset dst to fetch or
flush a memory block with address n; here, fetch(n) fetches a block with address n, fetchBl(n)
blocks execution while waiting for data, fetchW(n,n′) waits for a memory block n′ to be flushed
before fetching n (this is needed when the cache is full), and flush(n) flushes a memory block.

The connection between the main memory and the caches of the different cores is modelled by
an abstract communication medium that allows messages from one cache to be transmitted to the
other caches and to main memory in a parallel instantaneous broadcast. Communication in the
abstract communication medium is captured in the TS model by label matching on transitions. For
any address n, an output of the form !Rd(n) or !RdX (n) is broadcast and matched by its dual of the
form ?Rd(n) or ?RdX (n). The syntax of the model is further detailed in [13, 14].

In the next section, we will introduce the rules that describe the interaction between core and
cache incrementally when discussing their ABS implementation. (For a complete overview of
the transition rules, we refer to Appendix C.) The following auxiliary functions are used in the
transition rules:

— next(caid) for a cache identifier caid (respectively, next(cid) for a core identifier cid) gives
the next-level cache, if it exists, and otherwise returns ⊥, representing ‘undefined’;
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Fig. 7. Class diagram of the ABS model.

1 data Rst = Read(Address) | ReadBl(Address) | Write(Address) | WriteBl(Address);

2 data Status = Sh | Mo | In;

3 type RstList = List<Rst>;

4 type Address = Int;

5 type MemMap = Map<Address,Status>;

Fig. 8. Abstract datatypes of the model of the multicore memory system.

— status(M,n) returns the status of block n in memory M or ⊥ if the block is not found in M ;
and

— select(M,n) determines the address where a block n should be placed in the cache mem-
ory M , based on a cache associativity (e.g., random, set associativity or direct map) and a
replacement policy (e.g., random or LRU—Least Recently Used).

The function next is assumed to be injective.

5 The ABS Model of the Multicore Memory System

This section describes the implementation of the multicore TS model by a model in ABS.9 We
explain the structural and behavioural correspondence between these two models.

5.1 The Structural Correspondence

The runtime syntax of the multicore TS model is represented in ABS by classes, user-defined
datatypes, and type synonyms, outlined in Figures 7 and 8. An ABS configuration consists of class
instances to reflect the cores with their corresponding cache hierarchies and the main memory.
Object identifiers guarantee unique names and object references are used to capture how cores
and caches are related. These references are encoded in a one-to-one correspondence with the
naming scheme of the multicore TS model (and reflecting the implementation of the function
next).

9The ABS model for the multicore memory system can be found at https://abs-models.org/documentation/examples/
multicore_memory/
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Fig. 9. Object diagram of an initial configuration.

A core (cid • rst) in the multicore TS model corresponds to an instance of the class Core in
ABS, where a field currentTask of type RstList (as defined in Figure 8) represents the current list
of runtime statements. Each instance of the class Core further holds a reference to the first-level
cache. An important design decision we made is to represent the runtime statements rst (of a core
in the multicore TS model) as an ADT (see Figure 8). A core in ABS then drives the simulation
by processing these runtime statements that in general require information about the first-level
cache. Alternatively, a core in ABS could delegate the processing of each runtime statement by
calling corresponding methods of the first-level cache. However, this latter approach complicates
the required callbacks.

A cache (caid • M • dst) in the multicore TS model corresponds to an instance of class Cache

with a class parameter nextLevel, which holds a reference to the next-level cache and a field
cacheMemory, which models the cache’s memory M (of type MemMap, Figure 8). The multiset
dst of a cache’s data instructions (see Figure 6) is represented by corresponding processes in the
message pool of the cache object in ABS. If the value of nextLevel is Nothing, then the object rep-
resents the last-level cache (in the multicore TS model, the function next returns ⊥ in the case of
the last-level cache.

In addition, the ABS implementation of the global synchronization with labels !Rd(n)

and !RdX (n) used in the multicore TS model is based on the global synchronization pattern
as described in Figure 4. However, instead of distinguishing between these two labels by
means of an additional parameter, we introduce the following two corresponding broadcast
interfaces:

1 interface IBroadcast {

2 Bool broadcast(...);

3 Unit receiveRd (IBarrier start, IBarrier end, ...)}

4

5 interface IBroadcastX {

6 Bool broadcastX(...);

7 Unit receiveRdX (IBarrier start, IBarrier end, ...)}

The class Cache then provides an implementation of both interfaces following the template
of the class Broadcast in Figure 4. The ABS class Bus, however, follows the template of the
Synchronizer class with the two versions sendRd and sendRdX of the method sendSync.

The object diagram in Figure 9 shows an initial configuration corresponding to the multicore
memory system depicted in Figure 5.
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1 Unit run() {

2 if (currentTask!=Nil) {

3 switch (currentTask) {

4 Cons(rst, rest) =>

5 switch (rst) {

6 Read(n) => {

7 Bool removed = l1.remove_inv(n); // removed==True: PrRd2; removed==False: PrRd1

8 if (removed) {

9 l1!fetch(n);

10 currentTask = Cons(ReadBl(n),rest); }

11 else {currentTask = rest; }

12 }

13 ReadBl(n) => {

14 Maybe<Status> status = l1.getStatus(n); // status!=Nothing: PrRd3

15 if (status != Nothing) { currentTask = Cons(Read(n),rest); }

16 }

17 Write(n) => {

18 Maybe<Status> status = l1.getStatus(n); // status==Just(Mo): PrWr1
19 switch (status) {

20 Just(Mo) => { currentTask = rest; }

21 Just(Sh) => {

22 Bool res = l1.broadcastX(n); // res==True: SynchX

23 if (res) { currentTask = rest; }

24 }

25 _ => {

26 Bool removed = l1.remove_inv(n); // removed==True: PrWr3

27 if (removed) { l1!fetch(n); currentTask = Cons(WriteBl(n),rest); }

28 } }

29 }

30 WriteBl(n) => {

31 Maybe<Status> status = l1.getStatus(n); // status!=Nothing: PrWr4

32 if (status != Nothing) { currentTask = Cons(Write(n),rest); }

33 }

34 }

35 } }

36 this ! run();

37 }

Fig. 10. Annotated run method of class Core.

5.2 The Behavioural Correspondence

We next discuss the ABS implementation of the transition rules of the multicore TS model, and
the ABS synchronization patterns described in Section 2. We observe that the combination of
asynchronous method calls and cooperative scheduling in ABS is crucial because of the interleaving

inherent to the multicore TS model, which requires that objects are able to process other requests
while executing a method in a controlled way; e.g., caches need to flush memory blocks while
waiting for a fetch to succeed.

5.2.1 The Annotated ABS Multicore Implementation. The classes Core and Cache pose the main
implementation challenges. Here we explain the implementation of the run method (Figure 10) of
the class Core (which is its only method) informally, in terms of its annotations (see Section 3.1).
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1 Maybe<Status> getStatus(Address n) { return lookup(cacheMemory,n); }

1 Bool remove_inv(Address n) {

2 Bool answer = False;

3 switch (lookup(cacheMemory,n)) {

4 Nothing => { answer = True; }

5 Just(In) =>{ cacheMemory = removeKey(cacheMemory,n); answer = True; }

6 _ => skip;

7 }

8 return answer;

9 }

1 Bool broadcastX(Address n) {

2 Bool res = False;

3 await bus!lock(); //(lookup(cacheMemory,n) ==Just(Sh)): PrWr2
4 if (lookup(cacheMemory,n) ==Just(Sh)) {

5 mainMemory.setStatus(n,In);

6 bus.sendRdX(this, n);

7 cacheMemory = put(cacheMemory,n,Mo);

8 res = True;

9 }

10 bus.release();

11 return res;

12 }

Fig. 11. Methods getStatus, remove_inv, and broadcastX of class Cache.

1 Unit receiveRdX(Address n, IBarrier start, IBarrier end) {

2 // lookup(cacheMemory,n))==Just(Sh): Invalidate-One-Line;

3 // lookup(cacheMemory,n))!=Just(Sh): Ignore-Invalidate-One-Line

4 await start!synchronize();

5 switch (lookup(cacheMemory,n)) {

6 Just(Sh) => { cacheMemory = put(cacheMemory,n,In); }

7 _ => skip;

8 }

9 end.synchronize();

10 }

Fig. 12. Annotated receiveRdX method of class Cache.

In Section 5.2.2, we introduce a formal semantics of these annotations as a high-level description
of a simulation relation, which we use to prove the correctness of the ABS implementation.

The run method in the class Core may generate synchronous calls to the auxiliary methods in
the class Cache, given in Figure 11. The method remove_inv instantiates the test-and-set pattern
of Figure 2. The method broadcastX is an instance of the global synchronization pattern described
in Section 2, Figure 4. The method sendRdX, of the global synchronizer bus, asynchronously calls
the method receiveRdX (see Figure 12) of all caches (except for the calling cache), using the barrier
synchronization described in Section 2.

Since the stable point at the beginning of the run method has no associated annotation, by
definition (see Section 3.1), for any path from the beginning of the method to a next stable point
(or to termination) there is no corresponding transition rule (of the multicore TS model). For
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example, there is no transition rule corresponding to the case that the run method terminates
when currentTask==Nil (note that because of the structural correspondence, the corresponding
core has no runtime statements rst to execute). Similarly, there are no transition rules correspond-
ing to the execution of the code from the beginning of the method to the synchronous calls to the
auxiliary methods remove_inv (Figure 10, Line 7) and getStatus (Figure 10, Lines 14, 18, and 31)
of the first-level cache that, besides the pattern matching, only consists of the call itself.

The condition of the annotation removed==True : PrRd2 (Figure 10, Line 7) associated with the
synchronous call to the remove_inv method describes the path that leads from its execution and
returns via the then-branch of the subsequent if-statement to the termination of the run method
(after it has called itself again asynchronously). According to the annotation, the execution of this
path corresponds to the following PrRd2 transition rule:

(PrRd2)
next(cid) = caid status(M,n) ∈ {inv,⊥}

(cid • read(n); rst ), (caid • M • dst ) →

(cid • readBl(n); rst ), (caid • M[n 
→⊥] • dst + fetch(n) )

This rule handles the case when a core intends to read a memory block with address n, which
is not found in the first-level cache. The core will then be blocked (by adding a ReadBl(n) to the
currentTask, using the list constructor Cons) while waiting for the memory block to be fetched,
either from the lower-level caches or main memory. The condition as returned by the remove_inv

method signals that the status of the address of the first-level cache is undefined or invalid.
However, the condition removed==False describes the path that leads from its execution and

return via the else-branch (Figure 10, Line 11), which also leads to the termination of this invoca-
tion of the run method. According to the annotation, the execution of this path corresponds to the
following PrRd1 transition rule:

(PrRd1)
next(cid) = caid status(M,n) ∈ {sh,mo}

(cid • read(n); rst ), (caid •M • dst) → (cid • rst ), (caid •M • dst)

.

This rule covers the case when the memory block to be read by a core is found in its first-level
cache. Note that the condition as returned by the remove_inv method implies that the status of the
address of the first-level cache is either shared or modified.

Next, we consider the annotation status!=Nothing : PrRd3 of the synchronous call to the
getStatus method (Figure 10, Line 14).10 Its condition describes the execution path that leads from
the execution and return of the called getStatus method to termination of the run method via the
then-branch of the subsequent if-statement (Line 15). According to the annotation, the execution
of this path corresponds to the following PrRd3 transition rule:

(PrRd3)
next(cid) = caid n ∈ dom(M)

(cid • readBl(n); rst ), (caid •M • dst) → (cid • read(n); rst ), (caid •M • dst)

This rule unblocks the core from waiting when n (i.e., the block to be read) is found in the first-
level cache. However, there does not exist a transition rule that corresponds to the execution path

10Observe that the local variable status is of type Maybe, which means that the return value is Nothing or a value of type
Status wrapped around the construct Just.
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described by the condition status==Nothing. This path leads from the execution of the called
getStatus method directly to the termination of the run method without an update of the (local)
state, e.g., currentTask is not updated. In other words, the evaluation of the statement readBl(n)

in ABS involves busy waiting until the status returned by the first-level cache is defined. Alterna-
tively, this could be implemented by calling a method of the first-level cache synchronously, which
simply executes the statement await lookup(cacheMemory,n)!=Nothing.

The annotation of the synchronous call to method getStatus (Figure 10, Line 31) involves the
following transition rule:

(PrWr4)
next(cid) = caid n ∈ dom(M)

(cid • writeBl(n); rst ), (caid •M • dst) → (cid • write(n); rst ), (caid •M • dst)

.

This annotation is explained in a similar manner as the annotation of the synchronous call to the
getStatus method on Line 14. This rule unblocks the core from waiting when n (i.e., the block to
be written) is found in the first-level cache.

We now consider the annotation status==Just(Mo) : PrWr1 of the synchronous call to the
method getStatus (Figure 10, Line 18). Its condition describes the execution path that leads from
the execution of the called getStatus method and subsequent execution of the switch-statement
to termination of the run method. According to the annotation, the execution of this path corre-
sponds to the following PrWr1 transition rule:

(PrWr1)
next(cid) = caid status(M,n) = mo

(cid • write(n); rst ), (caid •M • dst) → (cid • rst ), (caid •M • dst)

.

This rule allows a core to write to memory block n if the block is found in a modified state in
the first-level cache. However, in case the condition does not hold, according to the annotation
no transition rules correspond to the execution paths that lead from the execution of the called
getStatus method to the next stable points, i.e., the synchronous calls to the methods broadcastX

and remove_inv (Lines 22 and 26, respectively).
The condition of the annotation res==True : SynchX of the synchronous call to the broadcastX

method (Figure 10, Line 22) of the first-level cache describes the path that leads from the exe-
cution of the broadcastX method, followed by the execution of the subsequent if-statement to
termination of the run method (after an update of currentTask and calling the run method again
asynchronously). According to the annotation, this path corresponds to the global synchronization
rule

(SynchX)

CR � CR1 CR,Ca,M
!RdX (n)
−−−−−→ CR′,Ca′,M ′

〈CR1 ∪ {CR}, Ca, M〉 → 〈CR1 ∪ {CR′}, Ca′, M ′〉

,

where the second premise is generated by successive applications of the rule

(Synch-DistX)

Ca1 � Ca CR,Ca,M
!RdX (n)
−−−−−→ CR′,Ca′,M ′ Ca1

?RdX (n)
−−−−−−→ Ca2

CR,Ca ∪ {Ca1},M
!RdX (n)
−−−−−→ CR′,Ca′ ∪ {Ca2},M

′

.
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This latter rule itself is triggered by the following rules:

(PrWr2)
next(cid) = caid status(M ′,n) = sh

(cid • write(n); rst ), (caid • M ′ • dst), M
!RdX (n)
−−−−−→ (cid • rst ), (caid • M ′[n 
→mo] • dst), M[n 
→ inv]

(Invalidate-One-Line)
status(M,n) = sh

caid • M • dst
?RdX (n)
−−−−−−→ caid • M[n 
→ inv] • dst

(Ignore-Invalidate-One-Line)
status(M,n) ∈ {inv,⊥}

caid •M • dst
?RdX (n)
−−−−−−→ caid •M • dst

.

Together, these rules capture the broadcast mechanism for invalidation in the multicore mem-
ory system. Rule PrWr2 corresponds to the case where a core writes to a memory block n that
is marked as shared in its first-level cache, which requires broadcasting an invalidation mes-
sage, !RdX (n), to all the other caches. This is achieved by triggering the global synchronization
rules SynchX and Synch-DistX. While the former identifies the core CR that broadcasts the in-
validation message, the latter recursively propagates the message, ?RdX (n), to the other caches.
Depending on the local status of memory block n in the recipient cache, the recipient cache
will either invalidate the local copy of the block (Invalidate-One-Line), or ignore the message
(Ignore-Invalidate-One-Line).

To explain this application of the SynchX rule, we have a closer look at the definition of the
broadcastX method. Its body involves an instance of the global synchronization pattern (Figure 4).
As discussed in Section 2, because of the global confluence property, we may assume that its
execution is atomic; i.e., its execution is not interleaved with any process that it has not gener-
ated. The synchronous call to the sendRdX method of the bus generates asynchronous calls to the
receiveRdX method (Figure 12) of all caches except the one that initiated the global bus synchro-
nization. Following the general global synchronization pattern (Figure 4), these method calls are
synchronized by a start and an end barrier. The two conditions of the annotation at the begin-
ning of the receiveRdX method describe the two possible execution paths and their corresponding
transition rules Invalidate-One-Line and Ignore-Invalidate-One-Line.

If the condition res==True does not hold, then according to the annotation no transition rule
corresponds to the execution of broadcastX. In this case, the bus synchronization, as invoked
by the broadcastX method (Figure 11), failed, because the status of the address of the first-level
cache is not shared anymore (as required by the PrWr2 rule). Consequently, the processing of
the statement write(n) fails and it will be processed again by the asynchronous self-call to the run

method.
We conclude the informal explanation of the annotated run method with the annotation

removed==True : PrWr3 of the synchronous call to the method remove_inv (Figure 10, Line 26).
Its condition describes the path that corresponds to the following transition rule:

(PrWr3)
next(cid) = caid status(M,n) ∈ {inv,⊥}

(cid • write(n); rst ), (caid • M • dst ) →

(cid • writeBl(n); rst ), (caid • M[n 
→⊥] • dst + fetch(n) )

.

This rule handles the case when a core tries to write to a memory block with address n, which is
either invalid or not found in the first-level cache. The core will then be blocked while the memory
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block is fetched from the lower-level caches or from the main memory. However, according to
the annotation, no transition rule corresponds to the execution path that is described by the
negation of the condition (removed==False). As above, the run method terminates without having
successfully processed the write(n) task, which will be evaluated again by the next asynchronous
invocation of the run method. Note that this covers the case when the status returned by
getStatus (Line 18) has changed; i.e., the status of the memory block is no longer undefined or
invalid.

5.2.2 Correctness of the Annotated Multicore Implementation. We now consider the formaliza-
tion of the correctness argument for the ABS implementation of the multicore system. First, we
detail the construction of the abstraction function α , which maps an ABS runtime configuration
to the corresponding configuration of the TS model (see Figure 6). Recall that objects in the ABS
semantics take the form 〈oid,σ ,p,Q〉, where oid is the object identifier, σ assigns values to the
object’s field, p refers to the active process (either a closure (τ , s) or the idle process), and Q the
process queue (see Section 2.2). With no loss of generality, we use cid ∈ CoreId and caid ∈ CacheId

to symbolically reference cores and caches in ABS runtime configurations and identify the ABS
data structures defined in Figure 8 with the corresponding TS data structures and their syntax as
defined in Figure 6. To reduce notational overhead, we represent the ABS constructs, including the
names of fields and local variables in italics to match the syntax of the TS model, e.g., WriteBl(n)

is parsed to writeBl(n), Sh to sh, and so on.

Class Fields

Core l1, currentTask

Cache nextLevel, mainMemory,
bus, cacheMemory

Memory mainMemory

Fig. 13. Domain of the field-assignment σ for

the main ABS classes.

We explain the representation of the classes Core,
Cache and Memory in the runtime configurations
of the ABS semantics. The fields declared in these
classes are summarised in Figure 13. An instance of
the class Core is then represented by a runtime object
〈cid,σ ,p,Q〉, where cid is the identifier of the core,
and σ assigns to the field l1 the object identifier caid

for the core’s first-level cache and currentTask to the
task’s runtime statements rst, p is the active process
andQ the process queue. Note that for this class, the active process p will either be an activation of
run or the idle process, and the process queueQ will only consist of the next call to run just before
the current call to run terminates (since the interface of the class does not provide methods). An
instance of class Cache is represented by a runtime object 〈caid,σ ,p,Q〉, where caid is the object
identifier and σ binds bus to the reference for the (single) instance of class Bus, mainMemory to the
reference for the (single) instance of class Memory, which represents the main memory, nextLevel

to an identifier caid ′ for another instance of class Cache, and cacheMemory to a data structure
M of type MemMap. The unique instance of class Memory is represented by a runtime object
〈main,σ ,p,Q〉 where main is the object identifier and σ binds mainMemory to a data structure M
of type MemMap.

The abstraction function α is now defined for instances of Core, Cache and Memory as follows:

α(〈cid,σ ,p,Q〉) = cid • σ (currentTask) Core

α(〈caid,σ ,p,Q〉) = caid • σ (cacheMemory) • α(Q) + α(p) Cache

α(〈main,σ ,p,Q〉) = σ (mainMemory) Main memory

Note that for objects of classes Main and Core, α abstracts from the process of the objects, while
for objects of class Cache the processes of the queue Q that are generated by (asynchronous)
calls to the methods fetch, fetchB, fetchW, and flush are abstracted into the corresponding dst

instructions in the TS model, capturing the method name and actual parameter of the processes;
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e.g., a process, generated by an asynchronous call to fetch(n), denoted by fetch(n), is abstracted into
the corresponding fetch(n) instruction. This way, α abstracts from the actual process executing
the call. Further, α abstracts from all the other processes. Instances of the ABS classes Barrier and
Bus do not have a direct representation in the TS model.

For an ABS runtime configuration, which consists of a set of objects, the abstraction function
returns the union of the abstraction of each of the objects. Given a runtime configuration G of
the ABS multicore program such that every Core instance is associated with a singly-linked list
of Cache instances (note that such a linked list is represented in the TS model by the auxiliary
function next), we denote by α(G) the result of the above translation to its cores and caches, and
its single main memory.

We now consider the execution of the ABS multicore program. Recall from Section 2.2 that the
transition relation ⇒ is between stable configurations in ABS. The following theorem states that
the ABS multicore program is a correct implementation of the multicore TS model:

Theorem 2. Let G be a reachable stable global configuration of the ABS multicore program. If

G ⇒ G ′, then α(G) = α(G ′) or α(G) → α(G ′).

For the proof, we need to reason about arbitrary ABS runtime configurations of the multicore
program, e.g., abstracting from the number of cores and caches, we reason in terms of the symbolic

execution of the ABS multicore program. We show by static analysis of the ABS program that
the TS model provides a high-level description of the symbolic execution of the ABS multicore
model, under the abstraction function α . This static analysis relies on the fact that only a finite
number of paths are possible from one stable point to another in the ABS multicore model. In fact,
there are no while-statements or synchronous self-calls between two stable points in the ABS
multicore program. Further, the Boolean conditions associated with the rule annotations can be
used to statically identify the corresponding paths.

The overall idea of the symbolic execution of ABS programs is based on the distinction between
local program variables (and fields) and global logical variables, which do not appear in programs
but are used to describe symbolically the values of the program variables. Logical expressions (to
be distinguished from the programming expressions) are constructed from these logical variables,
using the built-in and user-defined data structures. We give ABS runtime objects 〈oid,σ ,p,Q〉 a
symbolic interpretation, where oid is a logical variable (representing the symbolic value of this), σ
binds fields to logical expressions, p is a symbolic process and Q is a logical expression denoting
the process queue. A process is described symbolically by the pair (τ , S), where τ binds the local
variables to logical expressions and S is a symbolic representation of a statement. The abstraction
function α is then extended to the symbolic representation of the instances of the classes Core,
Cache and Memory. Note that α(〈oid,σ ,p,Q〉), where 〈oid,σ ,p,Q〉 denotes a symbolic represen-
tation of such an instance, is itself a symbolic representation of a concrete instance of a core, cache
or memory object in the TS multicore model.

LetC,D, . . . denote symbolic states that consist of symbolic instances of the classes Core, Cache

and Memory. As above, we denote by α(C) the result of the abstraction α to its (symbolic) cores,
caches, and its single (symbolic) main memory in the TS multicore model. A symbolic configuration

C | ϕ additionally specifies a path condition by a logical expression ϕ (which, as explained above,
does not contain program variables). For a symbolic execution path from one stable point of the
ABS multicore program to a next one, we show that the associated rule of the TS multicore model
can be obtained as α(C) → α(D) (modulo renaming of the logical variables), where C | true ⇒

D | ϕ denotes a symbolic execution of this path, starting from the symbolic state C and resulting
in symbolic state D. The path condition ϕ generated by the symbolic execution corresponds to the
enabling conditions of the corresponding rule in the TS model.
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We briefly explain the symbolic execution of the relevant rules of the ABS semantics. Assign-
ment to an instance variable (a field) is described symbolically by the transition

〈oid,σ , (τ ,x := e;S),Q〉,C | ϕ → 〈oid,σ [x := θ (e)], (τ , S),Q〉,C | ϕ,

where θ = σ ∪ τ (i.e., θ denotes the union of the substitutions σ and τ ), θ (e) denotes the result of
replacing every program variable x in e by θ (x) and σ [x := θ (e)] denotes the corresponding update
of σ . We omit the similar rule for an assignment to a local variable (which will instead update τ ).

The symbolic execution of Boolean conditions extends the path condition to capture an assump-
tion about validity of the condition. In ABS, Boolean conditions can occur in if-, await-, and
switch-statements. The symbolic execution of an if-statement that assumes that the Boolean con-
dition holds, is captured by

〈oid,σ , (τ , if b {S0}{S1};S),Q〉,C | ϕ → 〈oid,σ , (τ , S0; S),Q〉,C | ϕ ∧ θ (b),

where θ = σ ∪ τ . Assuming that the Boolean condition does not hold, the symbolic execution of
the else-branch is similar. The symbolic execution of an await-statement is captured by

〈oid,σ , (τ , await b;S),Q〉,C | ϕ → 〈oid,σ , (τ , S),Q〉,C | ϕ ∧ θ (b),

where θ = σ ∪ τ . The symbolic execution of a switch-statement is captured by

〈oid,σ , (τ , switch e{. . . ei ⇒ Si . . .};S),Q〉,C | ϕ → 〈oid,σ , (τ ′, Si ;S),Q〉,C | ϕ ∧ θ (e = ei ),

where τ ′ extends τ by binding the fresh (local) variables appearing in ei to the corresponding
subterms of e , and θ = σ ∪ τ ′.

The symbolic execution of method calls extends the path condition to capture the assumption
about the identity of the callee. The symbolic execution of an asynchronous call to a method m
with body S0 and formal parameters x1, . . . ,xn , is captured by

〈oid,σ , (τ , e0!m(ē);S),Q〉, 〈oid ′,σ ′,p,Q ′〉,C | ϕ → 〈oid,σ , (τ , S),Q〉, 〈oid ′,σ ′,p,Q ′′〉,C | ϕ ′,

where θ = σ ∪ τ and ϕ ′ denotes the updated path condition ϕ ∧ θ (e0) = oid ′. Here, Q ′′ is obtained
from Q ′ by adding the symbolic process (τ0, S0), where S0 denotes the body of the method m and
τ0 binds every formal parameter xi (for i = 1, . . . ,n) to the logical expression θ (ei ) (where ē =
e1, . . . , en ).

The symbolic execution of a synchronous call is obtained by method inlining. Let →∗ denote
the transitive closure of →; as before, idle denotes the terminated process (see in Section 2.2). The
symbolic execution of a methodm with body S0 and formal parameters x1, . . . ,xn is captured by

〈oid ′,σ ′, (τ0, S0),Q
′〉,C | ϕ →∗ 〈oid ′,σ ′′, (τ ′, return e),Q ′′〉,C ′ | ϕ ′

〈oid,σ , (τ ,x := e0.m(ē);S),Q〉, 〈oid ′,σ ′, idle,Q ′〉,C | ϕ
→ 〈oid,σ [x := θ ′(e)], (τ , S),Q〉, 〈oid ′,σ ′′, idle,Q ′′〉,C ′ | ϕ ′ ∧ θ (e0) = oid ′,

assuming that x is a field (the case of a local variable is treated similarly). Here, θ ′ = σ ′′ ∪ τ ′ and,
for every formal parameter xi (for i = 1, . . . ,n), τ0 binds xi to the logical expression θ (ei ) (where
ē = e1, . . . , en ). As before, θ = σ ∪ τ .

The correspondence between the concrete and symbolic semantics of ABS can now be formally
expressed, following [22]. Let C | true ⇒ D | ϕ denote the symbolic execution from one stable
point to a next one, and let γ assign values to the logical variables. For any logical expression e we
denote byγ (e) its value with respect toγ , defined inductively in the standard manner. For any sym-
bolic representation 〈oid,σ ,p,Q〉 of an ABS object, we defineγ (〈oid,σ ,p,Q〉) = 〈γ (oid),σ ′,p ′,Q ′〉,
where σ ′(x) = γ (σ (x)) and {p ′} ∪ Q ′ is obtained from {p} ∪ Q by replacing (τ , S) ∈ {p} ∪ Q by
(τ ′, S), where, as above, τ ′(x) = γ (τ (x)). Further, for any symbolic state C we denote by γ (C) the
pointwise extension of γ .
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Theorem 3. Let G and G ′ be stable configurations of the ABS multicore program. For every tran-

sition G ⇒ G ′, there exists an assignment γ and a symbolic transition C | true ⇒ D | ϕ such that

α(γ (C)) = α(G), α(γ (D)) = α(G ′), and γ (ϕ) = true.

Let us now consider the general broadcast patterns implemented by the ABS methods broadcast

and broadcastX. Assuming the correctness of the ABS implementation scheme of these patterns
(which can be established by the standard proof techniques as, for example, described in [26]),
for the symbolic execution we break down these patterns into, on the one hand, the symbolic
execution of the methods broadcast and broadcastX, and, on the other hand, the symbolic
execution of the corresponding receiveRd and receiveRdX methods, abstracting from the synchro-
nization on the bus, the synchronous calls of the methods sendRd and sendRdX, and the barrier
synchronization. Note that abstracting from the synchronization on the bus and the synchronous
calls of the methods sendRd and sendRdX, the methods broadcast, broadcastX, receiveRd, and
receiveRdX all reduce to simple TestandSet methods (which are called synchronously as explained
above). For example, abstracting from the synchronization on the bus and the synchronous call
of the method sendRd, the broadcast method simply reduces to a skip-statement. However, the
synchronous call to the setStatus method of the main memory corresponds directly to a (remote)
field assignment (which requires to symbolically execute the abstracted broadcastX method by
the first-level cache in the context of the symbolic representation of the main memory). It remains
to show that, abstracting from the barrier synchronization constructs, the symbolic execution of,
e.g., the broadcastX method matches the triggering rule PrWr2, and the symbolic execution of the
receiverRdX method matches the rules Invalidate-One-Line and Ignore-Invalidate-One-Line
of the TS model.

Proof of Theorem 2. The proof consists of symbolically executing all paths from one stable point
to the next of the asynchronously called ABS methods run, fetch, fetchB, flush, and flushW. All
other methods are called synchronously, and thus inlined in the execution of these methods. By
the definition of the ABS multicore program, it suffices to restrict the symbolic execution of

— a local computation of a single instance of the classes Core and Cache;
— the execution of a TestandSet method of a Cache instance called synchronously by an in-

stance of the classes Core or Cache, followed by a local computation of the caller;
— the execution of a method of the main memory called synchronously by an instance of the

class Cache, followed by a local computation of the caller;
— a synchronous call of the methods broadcast, broadcastX.

To showcase the proof method, we here consider three characteristic cases (for the remaining
cases of the proof, we refer to Appendix B). Each case is described by the relevant code segment
in terms of a reference to figure and line numbers, and the corresponding rule of the TS model. In
some cases, the execution from one stable point to the next in ABS results in the same state of the
TS model, we refer to the execution in these cases as a “silent step.”

Case: Figure 10, Lines 1–7, silent step. Consider the path starting from the initial stable point
of the run method of a Core object and leading to the synchronous call to the remove_inv method.
Let 〈cid,σ , (τ , S),Q〉 be a symbolic instance of class Core, where σ (currentTask) = � for some fresh
logical variable �, and Q is a logical variable representing the initial process queue. The process
(τ , S) results from the activation of the run method, where S denotes the body of the run method.
We specify here only the initial symbolic value of the relevant field currentTask, note that for
example the local variables rst and rest are initialized by the switch-statement. It follows from the
above symbolic transitions of the if- and switch-statements that

〈cid,σ , (τ , S),Q〉 | true ⇒ 〈cid,σ , ((τ [rst 
→ first(�), rest 
→ tail(�)], S ′),Q〉 | ϕ,
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where S ′ denotes the remaining statement to be executed andϕ denotes the path condition �!=Nil∧
� = first(�); tail(�)∧first(�) = read(n), where the first conjunct is generated by the if-statement, the
second conjunct is generated by the first switch-statement on the field currentTask, and the last
conjunct by the switch-statement on the local variable rst. Applying the abstraction function α to
both configurations of the above symbolic transition gives cid • �, thus this transition corresponds
to a “silent step” in the TS model (note that no rule is associated with the initial stable point of
run).

Case: Figure 10, Lines 7–37, PrRd2. The annotation removed==True :PrRd2 is associated with
the synchronous call to method remove_inv on Line 7. Consider the initial symbolic configuration

〈cid,σ , (τ , S),Q〉, 〈caid,σ ′, idle,Q ′〉 | true,

where (τ , S) is the process about to synchronously call the remove_inv method. Note that the
initial symbolic state 〈cid,σ , (τ , S),Q〉 of the core coincides with the symbolic state resulting from
the symbolic execution of the path discussed above. Therefore, we may assume that τ (rest) = �
and σ (currentTask) = read(n); �, for some logical variable �. Further, let σ ′(cacheMemory) = M ,
for some fresh logical variable M (note that we can abstract from the local variable rst, since it
is not used anymore). Further, note that for any symbolic representation of a Core instance, the
singly linked list structure is modeled by σ (l1) = next(cid). The condition removed==True allows
us to statically identify the path that consists of first applying the transition rule for the symbolic
execution of the synchronous call. This gives rise to the symbolic configuration

〈cid,σ , (τ [removed 
→ True], S ′),Q〉,
〈caid,σ ′[cacheMemory 
→ M[n 
→ ⊥]], idle,Q ′〉

| next(cid) = caid ∧ status(M,n) ∈ {inv,⊥},

where S ′ denotes the remaining statement to be executed. Applying the symbolic execution rules
for assignments, if-statements and asynchronous calls to S ′, we obtain the symbolic configuration

〈cid,σ [currentTask 
→ readBl(n); �], idle,Q+run〉,
〈caid,σ ′[cacheMemory 
→ M[n 
→ ⊥]], idle,Q ′+fetch(n)〉
| next(cid) = caid ∧ status(M,n) ∈ {inv,⊥}.

For notational convenience, we represent by fetch(n) the process resulting from the call of the
fetch method with argument n (similarly, run represents above the corresponding run-process),
which is added to the set of pending processes Q ′ (respectively, Q) via the + operator. Applying α
to the above initial and final symbolic configurations, we obtain

(cid • read(n); �), (caid •M •Q ′)

and
(cid • readBl(n); �), (caid •M[n 
→ ⊥] •Q ′+fetch(n)),

which correspond to the configurations of the transition rule PrRd2 (modulo renaming of the
logical variables). The path condition corresponds to the premises of the rule.

Case: Figure 10, Lines 22–37, SynchX. We abstract from the bus and barrier synchronization
as explained above. This case reduces to the following symbolic executions. First, we have the
symbolic execution of the abstracted broadcastX method, following the path uniquely identified
by the condition res==True, which starts with the initial symbolic configuration,

〈cid, (τ , S),Q〉, 〈caid,σ ′, idle,Q ′〉, 〈main,σ ′′, idle,Q ′′〉 | true,

where (τ , S) is the process about to call the (abstracted) broadcastX method. The initial symbolic
configuration of the core instance coincides with the symbolic configuration that results from the
symbolic execution of the path leading to the call of the broadcastX method on Line 22, so we
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may assume that τ (rest) = � and σ (currentTask) = write(n); �. Further, let σ ′(cacheMemory) = M
and σ ′′(mainMemory) = M ′ for fresh logical variables M and M ′. The symbolic execution of S
following the path determined by the condition res==True then leads to

〈cid,σ [currentTask 
→ �], idle,Q+run〉,
〈caid,σ ′[cachMemory 
→ M[n 
→ mo]], idle,Q ′〉,
〈main,σ ′′[mainMemory 
→ M ′[n 
→ inv]], idle,Q ′′〉

| next(cid) = caid ∧ status(M,n) = sh,

omitting the trivial conjunct main = main in the path condition, generated by the synchronous
call to the method setStatus of the class Memory (which we simply model symbolically by a
remote field update), assuming that σ ′(mainMemory) = main. It is straightforward to check
that applying α (modulo renaming of the logical variables) to the these initial and final sym-
bolic configurations, we obtain the rule PrWr2, where the premises coincide with the path
condition.

Next, let 〈caid,σ , (τ , S),Q〉 | true be a symbolic configuration, where S denotes the (abstracted)
body of the receiveRdX method. the symbolic execution of the switch-statement in S leads to
either

〈caid,σ [cachMemory 
→ M[n 
→ inv]], idle,Q〉 | status(M,n) = sh

or
〈caid,σ , idle,Q〉 | status(M,n) � sh.

Applying the abstraction function α in the first case gives the Invalidate-One-Line rule and in
the second case the Ignore-Invalidate-One-Line rule.

To conclude this case, we observe that the symbolic execution of the path identified by the
condition res!=True does not affect the above initial symbolic configuration and corresponds to a
silent step in the TS multicore model.

6 Related Work

There is in general a significant gap between a TS model and its implementation in a (high-level)
parallel programming language [54]. TS models (e.g., SOS [50]) succinctly formalize operational
models and are well suited for proofs, but direct implementations of such models quickly lead to
very inefficient implementations. Executable semantic frameworks such as Redex [29], rewriting
logic [45, 46], and K [51] reduce this gap and have been used to develop executable formal models
of complex languages like C [28] and Java [17]. The relationship between TS models and rewriting
logic semantics has been studied [55] without proposing a general solution for synchronization by
label matching. Bijo et al. implemented their multicore memory model [12] in the rewriting logic
system Maude [19] using an orchestrator for label matching but do not provide a correctness proof
wrt. the TS model. Different semantic styles can be modeled and related inside one framework; for
example, the correctness of distributed implementations of KLAIM systems in terms of simulation
relations have been studied in rewriting logic [27]. Compared to these works on semantics, we
developed a general methodology for proving the correctness of parallel implementations of TS
models in the active object language ABS. Our methodology features a new integration of these
two formalisms that consists of a formal scheme for annotating ABS programs with transition rules.
These annotations provide a high-level specification of the proof obligations for establishing the
simulation relation between a TS model and its ABS implementation.

Our approach enables the syntax-directed verification of infinite-state ABS implementations by
means of inductive reasoning. In contrast, actor models in Rebeca [56] can be verified by model-
checking techniques, which involve exhaustive state-space exploration. These techniques are re-
stricted to finite-state systems, with statically bounded queues, loops, and data types. To tackle
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the state-space explosion problem, the model-checking of closed actor systems can make use of a
compositional verification technique that relies on a user-defined system decomposition into suit-
able component abstractions. These component abstractions, which allow internal messages to be
ignored, are proven sound by means of a weak simulation relation. This use of weak simulation
differs from our work, in which the correctness of an ABS implementation itself is defined in terms
of a simulation relation between the program’s semantics and a TS model describing its overall
behavior. Apart from the high-level TS model, no further abstractions are required.

Correctness-preserving compilation and refinement is related to correctness proofs for imple-
mentations, and ensures that the low-level representation of a program preserves the properties
of the high-level model. Examples of this line of work include the B-method [1], which is based
on refinement between abstract state machines, type-preserving translations into typed assembly
languages [48], and formally verified compilers [39, 40], which proves the semantic preservation
of a compiler from C to assembler code, but leaves shared-variable concurrency for future work.
In contrast to these works our work specifically targets the correctness of parallel systems.

Simulation tools for cache coherence protocols can evaluate performance and efficiency on dif-
ferent architectures (e.g., gems [44] and gem5 [15]). These tools perform evaluations of, e.g., the
cache hit/miss ratio and response time, by running benchmark programs written as low-level read
and write instructions to memory. Advanced simulators such as Graphite [47] and Sniper [18] run
programs on distributed clusters to simulate executions on multicore architectures with thousands
of cores. Unlike our work, these simulators are not based on a formal semantics and correctness
proofs. Our work complements these simulators by supporting the executable exploration of de-
sign choices from a programmer perspective rather from hardware design. Compared to worst-case
response time analysis for concurrent programs on multicore architectures [41], our focus is on
the underlying data movement rather than the response time.

7 Conclusion

We have introduced in this article a methodology for proving the correctness of parallel implemen-
tations of high-level transition system specifications in the active object language ABS. The proof
method consists of establishing a simulation relation between the transition system describing the
semantics of the ABS program and the transition system described by the high-level specification.
The proof method exploits a general global confluence property of the ABS semantics that allows
us to abstract from the interleaving of parallel processes and focus on the analysis of sequential
code in the simulation proof. We introduced a new symbolic transition system for the ABS lan-
guage to formalize this analysis.

As a proof of concept we applied our methodology to the ABS implementation of a transition sys-
tem specification of a multicore memory system. Here we additionally exploited that the analysis of
the sequential code of this implementation reduces to the symbolic execution of a finite number of
(finite) control-flow paths. This holds for a wide class of ABS programs without affecting the com-
putational power, because the general requirement that there exist only finite executions from one
stable point to another, which enables a static, automated analysis, still allows for non-terminating
behavior. In fact the multicore memory system of our case study allows non-terminating behavior
as two cores might compete for the same memory address, leading to a ping-pong effect of fetching
and flushing the memory block from the respective caches. In future work, we plan to implement
the symbolic transition system that can generate the derivations needed for correctness arguments
such as for Theorem 2 in this article.

The ABS implementation of the high-level specification of a multicore memory system allows for
the parallel simulation of such systems. In this article we focussed on its correctness. An orthogonal
concern however that often arises in parallel execution of, for example, discrete-event simulation
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models, is fairness: the degree of variability when distributing the computing resources among
different parallel components—here the simulated cores. Fairness of parallel execution can affect
a simulation’s to in approximating the intended (or idealized) manycore hardware. For example,
as stated in [10, 11], Maude treats the whole configuration as a single term with a fixed normal
form where pattern matching for rule application goes from left to right; thus, the leftmost core
will always be selected as long as there exists an applicable rule for the core. Such unfair selection
of cores may lead to skewed simulations. To remedy this situation and to allow exploring different
execution paths, additional equations and rewrite rules are defined in Maude to randomly select a
core in the configuration. In general, to obtain a faithful parallel simulation, low-level control of
the underlying computing resources is required. In contrast, to ensure fairness of the simulation
of the ABS multicore program, we can exploit the high-level maximal progress timed semantics
[16] of ABS to ensure that cores execute at the same speed. Resource models in ABS introduce
deployment components (DC) [34] as locations for execution that provide virtual resources (e.g.,
execution capacity, memory availability, network bandwidth), which are shared among the objects
at this location. Any annotated statement [Cost: x] S decrements by x the available resources of its
DC. Computation will stall if there are currently not enough resources available; the statement S
may continue on the next passage of the global symbolic time where all the resources of the DCs
have been renewed, and will eventually complete when its Cost has reached zero. We use these
resource models to assign equal (fair) resources of virtual execution speed to the simulated cores
of the system. The Core objects are deployed onto separate DCs, all with the same execution
capacity. The processing of each instruction has the same cost (e.g., [Cost: 1])—a generalization,
since common processor architectures execute different instructions in different speeds (cycles per
instruction); e.g., JUMP is faster than LOAD. As a result, all Cores can execute up to the same number
of instructions in every time interval of the global symbolic clock, and thus no Core can get too
far ahead with processing its own instructions—a problem that manifests itself upon the parallel
simulation of N cores using a physical machine with M cores, where N is vastly greater than M .

We plan further development of this extension of the ABS multicore model with deployment
components for simulating the execution of (object-oriented) programs on multicore architectures.
A first such development concerns an extension of the abstract memory model with data. In par-
ticular, having the addresses of the memory locations themselves as data allows us to model and
simulate different data layouts of the dynamically generated object structures.

Appendices

A Global Confluence

We prove confluence in an abstract setting that captures the general semantics of actor languages
and discuss how to embed the semantics of ABS into the setting of abstract actor semantics.

Definition 3 (Abstract Actors). For n ∈ N, we let An = (Σn ,Mn ,Tn) denote an actor, where Σn is
a set of local states and Mn a multiset of local messages. Each message m ∈ Mn denotes a partial
function Σn → Σn that describes its activation. We assume that the multisets Mn are mutually
disjoint and let M =

⋃
n Mn . The local transition function Tn is a partial function Σn → (Σn ×M).

Assuming an infinite number of actors allows us to model dynamic actor creation by activation:
an actor Ai is ‘dormant’ if its message queue is empty and its current local state does not enable
its transition relation Ti . Thus we can model the creation of an actor by sending a dormant actor
a message to activate it. For a multiset q, we denote by add(m,q) and delete(m,q) the operations
that add and remove an element m from the multiset q, respectively.
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Definition 4 (Abstract Actor Semantics). Given a set of actors An = (Σn ,Mn ,Tn) (for n ∈ N), a
local configuration of actor An is a pair (σ ,q), where σ ∈ Σn and q ∈ Mn → N is a multiset of
messages in Mn . The set of global configurations of the actors An (for n ∈ N) is specified by the
Cartesian product C = Πω

n=1(Σn × (Mn → N)). For C ∈ C, let C(i) denote its ith component, so
C(i) = (σi ,qi ). The global transition relation C →i C

′ is defined as follows:

• Ti (σi ) = (σ ′
i ,m), withm ∈ Mj , and

—C(n) = C ′(n), for n � {i, j},
—C ′(i) = (σ ′

i ,qi ) and C ′(j) = (σj , add(m,qj )), if i � j,
—C ′(i) = (σ ′

i , add(m,qi )), if i = j.
• Ti (σi ) is undefined and there exists a messagem ∈ qi such that

—C(n) = C ′(n), for n � i ,
—C ′(i) = (m(σi ), delete(m,qi )).

Note that in the second clause we (implicitly) assume that m(σi ) is defined (that is, a message
can only be activated when it is enabled).

We observe that abstract actor semantics have the following properties:

• Encapsulation the local state: only local transitions affect local state;
• Monotonicity of local transitions, which are not affected by adding messages: only local

transitions remove a message from a queue; and
• The queues obey the basic algebraic laws of adding and deleting elements from a multiset:

— add(m, add(m′,M)) = add(m′, add(m,M))

— add(m, delete(m′,M)) = delete(m′, add(m,M)), form′ ∈ M (that is, M(m′) > 0).

These observations allow us to prove the following confluence property for abstract actor
semantics:

Lemma 1 (Abstract actor confluence). Let C , C1 and C2 be global configurations of actors

An (for n ∈ N). If C →i C1 and C →j C2, for i � j, then there exists a configuration C ′ such that

C1 →j C
′ and C2 →i C

′.

Proof. To prove the lemma, we provide the construction ofC ′. LetC(n) = (σn ,qn), for every n,
and C1(i) = (σ ′

i ,q
′
i ) and C2(j) = (σ ′

j ,q
′
j ). Then, for every n � {i, j}, C ′(n) = (σn ,q

′
n) where q′n

results from qn by adding the messagem ∈ Mn for whichTk (σk ) = (σ ′
k
,m), k ∈ {i, j}. For n ∈ {i, j},

we define C ′(n) = (σ ′
n ,q

′), where q′ results from q′n by adding the message m ∈ Mn for which
Tk (σk ) = (σ ′

k
,m), k ∈ {i, j} and k � n. It is straightforward to check that C ′ satisfies the above

confluence property. �

To conclude this section, we discuss how to embed the semantics of ABS into the setting of
abstract actors. The local state σn of an instance n of an ABS class specifies the statement to be
executed as well as the values of the instance variables and the local variables. As described above,
global transitions are generated from local transitions Tn(σn) = (σ ′

n ,m), where m denotes a mes-
sage that consists of a method name and an assignment of values to the local variables (including
the actual parameters). These local transitions define the usual small-step semantics of the speci-
fied statement in the local state. For example, to describe a basic assignment, we assume an empty
message ϵ so that if Ti (σi ) = (σ ′

i , ϵ), then C →i C
′, where C(i) = (σi ,qi ), C(n) = C ′(n), for n � i ,

and C ′(i) = (σ ′
i ,qi ).

Of particular interest is the embedding of method calls, await-statements and futures. An (asyn-
chronous) method call can simply be modeled by a message that specifies the method (name) and
the actual parameters (the sets of messages for different actors can be made disjoint by assuming
that the actor identity is among the actual parameters).
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We can model await-statements by sending a message to the actor itself. To this end, we wrap
the continuation of each await-statement in a corresponding, auxiliary method. Calling such a
method generates a messagem that can only be activated in a local state that satisfies the Boolean
guard of the await-statement, that is, m(σ ) is defined only if the local state satisfies the Boolean
guard. In general, the activation of a message updates the statement to be executed (as specified
by the corresponding method) and the local variables.

Futures can be represented by auxiliary actors that provide two methods Set and Get. The future
generated by an asynchronous method call is passed as an actual parameter of the corresponding
message. The return value can then be transmitted by calling the Set method of the future. This
value can be retrieved by calling the Get method with the calling actor as actual parameter. This
allows for a callback of a special auxiliary method that finally stores the returned value, assuming
a suitable additional data structure as part of the local state (e.g., a set of pairs of a completed future
and its value). An await-statement on a future then can be modeled by an invocation of the Get

method of the future and a message that wraps the continuation of the await statement and that
can only be activated in a local state that stores the return value (obtained by the callback described
above). A get-operation on a future can be modeled by a semaphore that blocks the actor until the
future has been completed. More specifically, this semaphore holds the future uniquely associated
with the method invocation that is executing the get-operation. In general, the activation of any
message of a user-defined ABS actor, different from the above callback, requires that the semaphore
is ‘free’ or that the corresponding method invocation holds the semaphore.

Observe that the stable points of an ABS object (Definition 1) precisely characterize the states in
which the local transition function of the corresponding abstract actor is undefined, so the further
execution of the actor depends on its queue.

B Correctness

Section 5.2.2 has given the general explanation of the proof method and the analysis of three rep-
resentative cases of the proof. We here consider the remaining cases of the proof. Recall that the
confluence property of ABS (Theorem 1) allows us to reason about the parallel execution of ob-
jects in terms of the sequential execution between stable points in each object separately. The
symbolic execution can then follow standard syntax-driven symbolic transition steps for sequen-
tial program statements, as described in Section 5.2.2. Therefore, we do not detail the individual
steps but describe the initial and final symbolic configurations of the symbolic execution between
stable points in the ABS program.

Proof of Theorem 2. It suffices to verify the annotations of the run method of class Core and
the methods of the Cache class that correspond to the dst instructions in terms of the simulation
relation α . These methods are fetch, fetchB, flush, and flushW. For each of these methods, we
perform a syntax-directed analysis of all paths from one stable point to the next, which amounts
to reasoning about the symbolic execution of sequential fragments of code. For each method
and each case, we specify the corresponding figure with the ABS code, and line numbers for the
sequential segment between the stable points considered, and the corresponding rule in the TS
model (see Appendix C). In the symbolic execution of the code fragments of the ABS program we
assume that the data structures of ABS coincide with those of the TS model, e.g., the ABS lookup

function coincides with the status function of the TS model. Further, we abstract from the low-
level symbolic transitions that are straightforward instances of the general rules, but tedious to
detail.

Method run, Figure 10. For the run method, we need to distinguish the different cases of the
switch-statement on Line 3: Read(n), ReadBl(n), Write(n), and WriteBl(n). For each of these, there
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are stable points associated with the synchronous calls to the first-level cache (Lines 7, 14, 18, 22,
26, and 31) and there are if- and switch-statements that introduce further branching.

Case: Figure 10, Lines 1–7, silent step. Covered in Section 5.2.2.
Case: Figure 10, Lines 7–37, PrRd2. Covered in Section 5.2.2.
Case: Figure 10, Lines 7–37, PrRd1. The annotation removed==False : PrRd1 is associated with

the synchronous call to method remove_inv on Line 7. Consider the initial symbolic configuration

〈cid,σ1, (τ , S),Q1〉, 〈caid,σ2, idle,Q2〉 | true,

where (τ , S) is the process about to synchronously call the remove_inv method. Note that the initial
symbolic state 〈cid,σ1, (τ , S),Q1〉 of the core coincides with the symbolic state resulting from the
symbolic execution of the path discussed in the case right above. Therefore, we may assume that
τ (rest) = � andσ1(currentTask) = read(n); �, for some logical variable �. Letσ2(cacheMemory) = M ,
for some fresh logical variable M (note that we can abstract from the local variable rst, since it
is not used anymore). Note that for any symbolic representation of a Core instance, the singly
linked list structure is modeled by σ1(l1) = next(cid). The condition removed==False allows us
to statically identify the path that consists of first applying the transition rule for the symbolic
execution of the synchronous call. This gives rise to the symbolic configuration

〈cid,σ1, (τ [removed 
→ False], S ′),Q1〉, 〈caid,σ2, idle,Q2〉

| next(cid) = caid ∧ status(M,n) ∈ {sh,mo},

where S ′ denotes the remaining statement to be executed. Applying symbolic execution rules for
assignments, if-statements and asynchronous calls to S ′, we obtain the symbolic configuration

〈cid,σ1[currentTask 
→ �], idle,Q1+run〉, 〈caid,σ2, idle,Q2〉

| next(cid) = caid ∧ status(M,n) ∈ {sh,mo}.

Let run denote the corresponding run-process, which is added to the set of pending processes Q1

via the + operator. Applying α to the above initial and final symbolic configurations, we obtain

(cid • read(n); �), (caid •M •Q2)

and

(cid • �), (caid •M •Q2),

which correspond to the configurations of the transition of rule PrRd1 (modulo renaming of the
logical variables). The path condition corresponds to the premises of the rule.

Case: Figure 10, Lines 1–14, silent step. This case is the same as the case for the silent step
captured by Lines 1–7 proven in Section 5.2.2. Consider the path starting from the initial stable
point of the run method of a Core object and leading to the synchronous call to the getStatus

method. Let 〈cid,σ , (τ , S),Q〉 be a symbolic instance of class Core, where σ (currentTask) = � for
some fresh logical variable �, andQ is a logical variable representing the initial process queue. The
process (τ , S) results from the activation of the run method, where S denotes the body of the run

method. We specify here only the initial symbolic value of the relevant field currentTask, note that
for example the local variables rst and rest are initialized by the switch-statement. It follows from
the above symbolic transitions of the if- and switch-statements that

〈cid,σ , (τ , S),Q〉 | true ⇒ 〈cid,σ , (τ [rst 
→ first(�), rest 
→ tail(�)], S ′),Q〉 | ϕ,

where S ′ denotes the remaining statement to be executed and ϕ the path condition �!=Nil ∧ � =
first(�); tail(�) ∧ first(�) = readBl(n), where the first conjunct is generated by the if-statement,
the second conjunct by the first switch-statement on the field currentTask, and the last conjunct
by the switch-statement on the local variable rst. Applying the abstraction function α to both
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configurations of this symbolic transition gives cid • �, thus this transition corresponds to a silent
step in the TS model (note that no rule is associated with the initial stable point of the run method).

Case: Figure 10, Lines 14–37, PrRd3. The annotation status!=Nothing: PrRd3 is associated with
the synchronous call to method getStatus on Line 14. Consider the initial symbolic configuration

〈cid,σ1, (τ , S),Q1〉, 〈caid,σ2, idle,Q2〉 | true,

where (τ , S) is the process about to synchronously call the getStatus method. Note that the initial
symbolic state 〈cid,σ1, (τ , S),Q1〉 of the core coincides with the symbolic state resulting from the
symbolic execution of the path discussed above in the case right above. Therefore, we may assume
that τ (rest) = � and σ1(currentTask) = readBl(n); �, for some logical variable �. In addition, let
σ2(cacheMemory) = M , for some fresh logical variable M (note that we can abstract from the local
variable rst, since it is not used anymore). Note further that for any symbolic representation of
a Core instance, the singly linked list structure is modeled by σ1(l1) = next(cid). The condition
status!=Nothing allows us to statically identify the path that first applies the transition rule for
the symbolic execution of the synchronous call. This gives rise to the symbolic configuration

〈cid,σ1, (τ
′, S ′),Q1〉, 〈caid,σ2, idle,Q2〉 | next(cid) = caid ∧ n ∈ dom(M),

where τ ′ extends τ by binding status to some logical variable that does not equal ⊥, indicating that
the given addressn can be found inM , and S ′ is the remaining statement of the method. Proceeding
with the symbolic execution of the statement S , we obtain (by applying the rules for if-statements,
assignments and asynchronous calls)

〈cid,σ1[currentTask 
→ read(n); �], idle,Q1+run〉, 〈caid,σ2, idle,Q2〉

| next(cid) = caid ∧ n ∈ dom(M).

Applying α to the above initial and final symbolic configurations, we obtain

(cid • readBl(n); �), (caid •M •Q2)

and
(cid • read(n); �), (caid •M •Q2),

which correspond to the configurations of the transition of rule PrRd3 (modulo renaming of the
logical variables). The path condition corresponds to the premises of the rule.

To conclude this case, we observe that the symbolic execution of the path identified by the con-
dition status==Nothing does not affect the above initial symbolic configuration and corresponds
to a silent step in the TS multicore model.

Case: Figure 10, Lines 1–18, silent step . This case is the same as the case for the silent
step captured by Lines 1–14 above. Consider the path starting from the initial stable point of the
run method of a Core object and leading to the synchronous call to the getStatus method. Let
〈cid,σ , (τ , S),Q〉 be a symbolic instance of class Core, where σ (currentTask) = � for some fresh
logical variable �, and Q is a logical variable representing the initial process queue. The process
(τ , S) results from the activation of the run method, where S denotes the body of the run method.
We specify here only the initial symbolic value of the relevant field currentTask, note that for
example the local variables rst and rest are initialized by the switch-statement. It follows from the
above symbolic transitions of the if- and switch-statements that

〈cid,σ , (τ , S),Q〉 | true ⇒ 〈cid,σ , (τ [rst 
→ first(�), rest 
→ tail(�)], S ′),Q〉 | ϕ,

where S ′ denotes the remaining statement to be executed and ϕ the path condition �!=Nil ∧ � =
first(�); tail(�) ∧ first(�) = write(n), where the first conjunct is generated by the if-statement, the
second conjunct is generated by the first switch-statement on the field currentTask, and the last
conjunct by the switch-statement on the local variable rst. Applying the abstraction function α to
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both configurations of the above symbolic transition gives cid • �, thus this transition corresponds
to a silent step in the TS model. (No rule is associated with the initial stable point of the run

method.)
Case: Figure 10, Lines 18–37, PrWr1. The annotation status==Just(Mo):PrWr1 is associated

with the synchronous call to getStatus on Line 18. Consider the initial symbolic configuration

〈cid,σ1, (τ , S),Q1〉, 〈caid,σ2, idle,Q2〉 | true,

where (τ , S) is the process about to synchronously call the getStatus method. The initial symbolic
state 〈cid,σ1, (τ , S),Q1〉 of the core coincides with the symbolic state resulting from the symbolic
execution of the path discussed above in the case right above. Therefore, we may assume
that τ (rest) = � and σ1(currentTask) = write(n); �, for some logical variable �. In addition, let
σ2(cacheMemory) = M , for some fresh logical variable M (note that we can abstract from the
local variable rst, since it is not used anymore). Further, for any symbolic representation of a
Core instance, the singly linked list structure is modeled by σ1(l1) = next(cid). The condition
status==Just(Mo):PrWr1 allows us to statically identify the path that first applies the transi-
tion rule for the symbolic execution of the synchronous call. This gives rise to the symbolic
configuration

〈cid,σ1, (τ
′, S ′),Q1〉, 〈caid,σ2, idle,Q2〉 | next(cid) = caid ∧ status(M,n) = mo,

where τ ′ extends τ by binding status to some logical variable that equals Just(Mo), indicating that
the given address n can be found modified in M , and S ′ is the remaining statement of the method.
Proceeding with the symbolic execution of the statement S ′, we obtain (by applying the rules for
assignments, switch-statements and asynchronous calls)

〈cid,σ1[currentTask 
→ �], idle,Q1+run〉, 〈caid,σ2, idle,Q2〉

| next(cid) = caid ∧ status(M,n) = mo.

Let run represent the corresponding run-process, which is added to the set of pending processesQ1

via the + operator. Applying α to the above initial and final symbolic configurations, we obtain

(cid • write(n); �), (caid •M •Q2)

and

(cid • �), (caid •M •Q2),

which correspond to the configurations of the transition of rule PrWr1 (modulo renaming of the
logical variables). The path condition corresponds to the premises of the rule.

Case: Figure 10, Lines 18–22, silent step . We start with the initial symbolic configuration

〈cid,σ, (τ , S),Q〉, 〈caid,σ ′, idle,Q ′〉 | true,

where (τ , S) is the process about to synchronously call the getStatus method. Note that the initial
symbolic state 〈cid,σ , (τ , S),Q〉 of the core coincides with the symbolic state resulting from the
symbolic execution of the path discussed above in the case right above. Therefore, we may assume
that τ (rest) = � and σ (currentTask) = write(n); �, for some logical variable �. In addition, let
σ ′(cacheMemory) = M , for some fresh logical variable M (note that we can abstract from the
local variable rst, since it is not used anymore). As observed above, we have that for any symbolic
representation of a Core instance, the singly linked list structure is modeled by σ (l1) = next(cid).
Applying the symbolic transition for the switch-statement, we obtain the symbolic configuration

〈cid,σ , (τ ′, S ′),Q〉, 〈caid,σ ′, idle,Q ′〉 | next(cid) = caid ∧ status(M,n) = sh},
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where τ ′ extends τ by binding status to some logical variable and S ′ is the remaining statement of
the method. Applying the abstraction function α , we obtain

α(〈cid,σ , (τ , S),Q〉) = cid • write(n); �
α(〈caid,σ ′, idle,Q ′〉) = caid •M •Q ′

α(〈cid,σ , (τ ′, S ′),Q〉) = cid • write(n); �.

This transition corresponds to a silent step in the TS model.
Case: Figure 10, Lines 22–37, SynchX. Covered in Section 5.2.2, SynchX subsumes PrWr2.
Case: Figure 10, Lines 18–26, silent step. We start with the initial symbolic configuration

〈cid,σ1, (τ , S),Q1〉, 〈caid,σ2, idle,Q2〉 | true,

where σ1(currentTask) = write(n); � and σ2(cacheMemory) = M for logical variables � and M , Q1

andQ2 are symbolic representations of the process queues, and (τ , S) is the symbolic representation
of the activation of the run method. Applying the symbolic transition for the switch-statement,
we obtain the following symbolic configuration:

〈cid,σ1, (τ
′, S ′),Q1〉, 〈caid,σ2, idle,Q2〉 | next(cid) = caid ∧ status(M,n) ∈ {inv,⊥},

where τ ′ extends τ by binding status to some logical variable and S ′ is the remaining statement of
the method. Applying the abstraction function α , we obtain

α(〈cid,σ1, (τ , S),Q1〉) = cid • write(n); �
α(〈caid,σ2, idle,Q2〉) = caid •M •Q2

α(〈cid,σ1, (τ
′, S ′),Q1〉) = cid • write(n); �.

This transition corresponds to a silent step in the TS model.
Case: Figure 10, Lines 26–37, PrWr3. The annotation removed==True : PrWr3 is associated

with the synchronous call to method remove_inv on Line 26. Consider the initial symbolic
configuration

〈cid,σ1, (τ , S),Q1〉, 〈caid,σ2, idle,Q2〉 | true,

where σ1(currentTask) = write(n); � and σ2(cacheMemory) = M for logical variables � and M ,
Q1 and Q2 are symbolic representations of the process queues, and (τ , S) is the process about to
synchronously call the remove_inv method. The symbolic transition for the if-statement and the
asynchronous call then gives us the following symbolic configuration:

〈cid,σ ′
1, idle,Q1〉, 〈caid,σ ′

2, idle,Q2 + fetch(n)〉 | next(cid) = caid ∧ status(M,n) � {⊥, in},

where σ ′
1(currentTask) = writeBl(n); � and σ ′

2 = σ2[cacheMemory 
→ M[n 
→⊥]]. Applying the
abstraction function α , we obtain

α(〈cid,σ1, (τ , S),Q1〉) = cid • write(n); �
α(〈caid,σ2, idle,Q2〉) = caid •M •Q2

α(〈cid,σ ′
1, idle,Q1〉) = cid • writeBl(n); �

α(〈caid,σ2, idle,Q2 + fetch(n)〉) = caid •M[n 
→⊥] •Q2 + fetch(n).

Consequently, the symbolic transition corresponds to the transition of PrWr3 in the TS model.
To conclude this case, we observe that the symbolic execution of the path identified by the con-

dition removed==False does not affect the above initial symbolic configuration, and corresponds
to a silent step in the TS multicore model.

Case: Figure 10, Lines 1–31, silent step. Consider the path starting from the initial stable
point of the run method of a Core object and leading to the synchronous call to the getStatus

method. Let 〈cid,σ , (τ , S),Q〉 be a symbolic instance of class Core, where σ (currentTask) = � for
some fresh logical variable �, andQ is a logical variable representing the initial process queue. The
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process (τ , S) results from the activation of the run method, where S denotes the body of the run

method. We specify here only the initial symbolic value of the relevant field currentTask, note that
for example the local variables rst and rest are initialized by the switch-statement. It follows from
the above symbolic transitions of the if- and switch-statements that

〈cid,σ , (τ , S),Q〉 | true ⇒ 〈cid,σ , ((τ [rst 
→ first(�), rest 
→ tail(�)], S ′),Q〉 | ϕ,

where S ′ denotes the remaining statement to be executed and ϕ the path condition �!=Nil ∧ � =
first(�); tail(�)∧first(�) = writeBl(n), where the first conjunct is generated by the if-statement, the
second conjunct is generated by the first switch-statement on the field currentTask, and the last
conjunct by the switch-statement on the local variable rst. Applying the abstraction function α to
both configurations of the above symbolic transition gives cid • �, thus this transition corresponds
to a silent step in the TS model. (No rule is associated with the initial stable point of the run

method.)
Case: Figure 10, Lines 31–37, PrWr4. The annotation status!=Nothing:PrWr4 is associated

with the synchronous call to method getStatus on Line 31. Consider the initial symbolic configu-
ration

〈cid,σ1, (τ , S),Q1〉, 〈caid,σ2, idle,Q2〉 | true,

where (τ , S) is the process about to synchronously call the getStatus method. Note that the initial
symbolic state 〈cid,σ1, (τ , S),Q1〉 of the core coincides with the symbolic state resulting from the
symbolic execution of the path discussed above. Therefore, we may assume that τ (rest) = � and
σ1(currentTask) = writeBl(n); �, for some logical variable �. Further, let σ2(cacheMemory) = M ,
for some fresh logical variable M (note that we can abstract from the local variable rst, since it
is not used anymore). Further, note that for any symbolic representation of a Core instance, the
singly linked list structure is modeled by σ1(l1) = next(cid). The condition status!=Nothing allows
us to statically identify the path that consists of first applying the transition rule for the symbolic
execution of the synchronous call. Proceeding with the symbolic execution of the statement S , we
obtain (by applying the rules for if-statement and assignment)

〈cid,σ1[currentTask 
→ write(n); �], idle,Q1+run〉, 〈caid,σ2, idle,Q2〉

| next(cid) = caid ∧ n ∈ dom(M).

Applying α to the above initial and final symbolic configurations, we obtain

(cid • writeBl(n); �), (caid •M •Q2)

and
(cid • write(n); �), (caid •M •Q2),

which correspond to the configurations of the transition of rule PrWr4 (modulo renaming of the
logical variables). The path condition corresponds to the premises of the rule.

To conclude this case, we observe that the symbolic execution of the path identified by the con-
dition status==Nothing does not affect the above initial symbolic configuration and corresponds
to a silent step in the TS multicore model.

Method fetch, Figure 14. This method involves synchronous calls to the auxiliary methods
broadcast (Figure 14) and swap (Figure 15). The method broadcast describes an instance of the
global synchronization pattern (Figure 4). The method sendRd of the bus asynchronously calls the
method receiveRd, see Figure 16, of all caches (except for the calling cache), using the barrier syn-
chronization (again, see Figure 4, Section 2). The swap method is an instance of the test-and-set
pattern, shown in Figure 2.

Case: Figure 14, Lines 1–4, silent step. Consider the path starting from the initial stable point
of the fetch method for a symbolic parameter value n, and leading to the synchronous call to the
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1 Unit fetch(Address n){

2 switch (nextLevel) {

3 Just(nextCache) => {

4 removed = nextCache.remove_inv(n); // removed==True: LC-Miss

5 if (removed) {

6 nextCache!fetch(n);

7 this!fetchBl(n);

8 }

9 else {

10 Pair<Address,Status> selected = cacheline(cacheMemory, n);

11 Maybe<Status> s = nextCache.swap(n,selected);

12 // s!=Nothing & fst(selected)==n: LC-Hit2;

13 // s!=Nothing & fst(selected)!=n: LC-Hit1
14 if (s != Nothing) {

15 if (fst(selected)!=n) { cacheMemory = removeKey(cacheMemory,fst(selected)); }

16 cacheMemory = put(cacheMemory, n, fromJust(s));

17 }

18 else this!fetch(n);

19 }

20 }

21 _ => {

22 this.broadcast(n); // Synch

23 this!fetchBl(n);

24 } }

25 }

26

27 Unit broadcast(Address n) {

28 await bus!lock();

29 bus.sendRd(this, n);

30 bus.release();

31 }

Fig. 14. The annotated fetch method.

1 Maybe<Status> swap(Address n_out, Pair<Address,Status> n_in) {

2 Maybe<Status> tmp = Nothing;

3 switch (lookup(cacheMemory,n_out)) {

4 Nothing => skip;

5 Just(In) => skip;

6 _ => {

7 tmp = lookup(cacheMemory,n_out);

8 cacheMemory = removeKey(cacheMemory,n_out);

9 if (fst(n_in)!=n_out) {

10 cacheMemory = put(cacheMemory, fst(n_in), snd(n_in));

11 }

12 } }

13 return tmp;

14 }

Fig. 15. The swap method.
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1 Unit receiveRd(Address n,IBarrier start,IBarrier end) {

2 // lookup(cacheMemory,n))==Just(Mo): Flush-One-Line;

3 // lookup(cacheMemory,n))!=Just(Mo): Ignore-Flush-One-Line

4 await start!synchronize();

5 switch (lookup(cacheMemory,n)) {

6 Just(Mo) => this!flush(n);

7 _ => skip;

8 }

9 end!synchronize();

10 }

Fig. 16. The annotated receiveRd method.

remove_inv method on Line 4. Let 〈cid,σ , (τ , S),Q〉 be a symbolic instance of class Cache, where
σ (cacheMemory) = M for some fresh logical variables caid ′ and M , and Q is a logical variable rep-
resenting symbolically the process queue. The process (τ , S) results from the activation of the fetch

method, where S denotes the body of the fetch method. It follows from the symbolic execution of
the switch-statement that

〈caid,σ , (τ , S),Q〉 | true ⇒ 〈caid,σ , (τ [nextCache 
→ next(caid)], S ′),Q〉 | next(caid)] � ⊥,

where S ′ denotes the remaining statement to be executed and σ (nextLevel) = next(caid) (which
models the singly-linked list structure). Applying the abstraction function α to both configurations
of the above symbolic transition gives caid •M •Q + fetch(n) (note that the active process is added
as a dst instruction), thus this transition corresponds to a silent step in the TS model.

Case: Figure 14, Lines 4–7, LC-Miss. The annotation removed==True : LC-Miss is associated
to the synchronous call to remove_inv on Line 4. We consider the initial symbolic configuration

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉 | true,

where the process (τ , S) is about to synchronously call the remove_inv method. Note that the initial
symbolic state of caid1 corresponds to the symbolic state resulting from the symbolic execution of
the path discussed for the previous case above, so we may assume that τ (nextCache) = next(caid1).
We let σ2(cacheMemory) = M1 and σ2(cacheMemory) = M2 for fresh logical variables M1 and M2.
The condition removed==True allows us to statically infer from the code of the remove_inv method
(Section 5, Figure 11) that the initial status of the given address in the next-level cache is either
Nothing or Just(In), which identifies the path leading to the following symbolic configuration by
the symbolic transition rules for if-statements and synchronous calls:

〈caid1,σ1, (τ [removed 
→ True], S ′),Q1+fetchBl(n)〉,
〈caid2,σ2[cacheMemory 
→ M2[n 
→ ⊥]], idle,Q2+fetch(n)〉

| next(caid1) = caid2 ∧ status(M2,n) ∈ {inv,⊥},

where S ′ is the remaining body of the fetch method. Note that the local variable removed is updated
in τ , while σ2 is updated by setting the status of the address n to ⊥ in M as a result of the synchro-
nous call to method remove_inv. Applying the abstraction function α to both configurations, we
get

α(〈caid1,σ1, (τ , S),Q1〉) = (caid1 •M1 •Q1 + fetch(n))
α(〈caid2,σ2, idle,Q2〉) = (caid2 •M2 •Q2)

α(〈caid1,σ1, (τ [removed 
→ True], S ′),Q1+fetchBl(n)〉
= (caid1 •M1 •Q1 + fetchBl(n))

α(〈caid2,σ2[cacheMemory 
→ M2[n 
→ ⊥], idle,Q2+fetch(n)〉)
= (caid2 •M2[n 
→ ⊥] •Q2 + fetch(n)).
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Thus this transition, modulo renaming of the logical variables, corresponds to the rule LC-Miss
(the above path condition corresponds with the premises of the rule).

Case: Figure 14, Lines 4–11, silent step. Now consider the path leading from the execution
of the remove_inv method via the else-branch of the subsequent if-statement to the evaluation
of the select function and then to the (synchronous) call of the swap method (Line 11). As in the
previous case, we consider the initial symbolic configuration

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉 | true,

where the process (τ , S) is about to synchronously call the remove_inv method. As in the pre-
vious case, we assume that τ (nextCache) = next(caid1). We let σ1(cacheMemory) = M1 and
σ2(cacheMemory) = M2 for fresh logical variables M1 and M2. The condition removed==False al-
lows us to statically deduce from the code of remove_inv that the initial status of the given address
in the next-level cache is neither Nothing nor Just(In), i.e., it is either Just(Sh) or Just(Mo), which
identifies the path leading to the following symbolic configuration by the symbolic transition rules
for if-statements and synchronous calls:

〈caid1,σ1, (τ
′, S ′),Q1〉, 〈caid2,σ2, idle,Q2〉 | next(caid1) = caid2 ∧ status(M2,n) ∈ {sh,mo},

where τ ′ = τ [removed 
→ False, selected 
→ cacheline(M1,n)], i.e., the local variable selected

is updated with the logical expression cacheline(M1,n), which we define by cacheline(M,n) =
(select(M,n), status(M, select(M,n))), and S ′ denotes the remaining method body. Applying the
abstraction function α , we obtain α(〈caid1,σ1, (τ

′, S ′),Q1〉) = caid1 • M1 • Q1 + fetch(n). Conse-
quently, this symbolic transition corresponds to a silent step in the TS model.

Case: Figure 14, Lines 11–26, LC-Hit1. The annotation s!=Nothing ∧ fst(selected)!=n : LC-Hit1

is associated to the synchronous call to swap on Line 11. Consider the initial symbolic configura-
tion

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉,

assuming that τ (nextCache) = next(caid1)), σ1(cacheMemory) = M1, and σ2(cacheMemory) = M2

for fresh logical variables M1 and M2 and that the process (τ , S) is about to synchronously call the
swap method. The conditions s!=Nothing and fst(selected)!=n allow us to statically deduce the path
taken by the symbolic execution of the swap method in the symbolic configuration of caid2 (see
Figure 15). The symbolic transition rules for assignment, switch- and if-statements then result
in the update of M2 to M2[select(M1,n) 
→ status(M1, select(M1,n)),n 
→ ⊥] by the call of the
swap method with the path conditions n!=select(M1,n) and status(M2,n) � {⊥, inv}; the latter is
equivalent to status(M2,n) ∈ {sh,mo}. The symbolic execution of the method swap returns the
logical expression status(M2,n), which is assigned to the local variable s , and ultimately bound to
n in M1. Thus, the symbolic execution of fetch then updates M1 to M1[select(M1,n) 
→ ⊥,n 
→

status(M2,n)], and we obtain the symbolic configuration

〈caid1,σ1[cacheMemory 
→ M1[select(M1,n) 
→ ⊥,n 
→ status(M2,n)]], idle,Q1〉,
〈caid2,σ2[cacheMemory 
→ M2[select(M1,n) 
→ status(M1, select(M1,n)),n 
→ ⊥]], idle,Q2〉

| next(caid1) = caid2 ∧ status(M2,n) ∈ {sh,mo} ∧ select(M1,n) � n.

Applying the abstraction function α , we obtain

α(〈caid1,σ1, (τ , S),Q1〉) = (caid1 •M1 •Q1 + fetch(n))
α(〈caid2,σ2, idle,Q2〉) = (caid2 •M2 •Q2)

α(〈caid1,σ1[cacheMemory 
→ M1[select(M1,n) 
→ ⊥,n 
→ status(M2,n)]], idle,Q1〉)

= (caid1 •M1[select(M1,n) 
→ ⊥,n 
→ status(M2,n)] •Q1)

α(〈caid2,σ2[cacheMemory 
→ M2[select(M1,n) 
→,n 
→ ⊥]], idle,Q2〉)

= (caid2 •M2[select(M1,n) 
→ status(M1, select(M1,n)),n 
→ ⊥] •Q2).
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It follows that the symbolic transition (and its path condition) corresponds to LC-Hit1.
Case: Figure 14, Lines 11–26, LC-Hit2. The annotation s!=Nothing∧ fst(selected)==n : LC-Hit2

is associated to the synchronous call to swap on Line 11. In contrast to the previous case, the if-
statement on Line 15 is not executed because of the condition fst(selected)==n. We consider the
initial symbolic configuration,

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉 | true,

assuming that τ (nextCache) = next(caid1), σ1(cacheMemory) = M1, and σ2(cacheMemory) = M2

for fresh logical variables M1 and M2 and that the process (τ , S) is about to synchronously call the
swap method. The condition s!=Nothing ∧ fst(selected)==n allows us to statically deduce the path
taken by the symbolic execution of the swap method in caid2 (see Figure 15). In particular, the
annotation fst(selected)==n corresponds to the path conditions select(M1,n) = n. When executing
swap, the symbolic transition rules for assignment, switch- and if-statements then result in the
update of M2 to M2[n 
→ ⊥]. The execution of the assignment (Line 16 of fetch) results in the
update of M1 to M1[n 
→ status(M2,n)], and we obtain the symbolic configuration

〈caid1,σ1[cacheMemory 
→ M1[n 
→ status(M2,n)]], idle,Q1〉,
〈caid2,σ2[cacheMemory 
→ M2[n 
→ ⊥]], idle,Q2〉

| next(caid1) = caid2 ∧ status(M2,n) ∈ {sh,mo} ∧ select(M1,n) = n.

Applying the abstraction function α , we obtain

α(〈caid1,σ1, (τ , S),Q1〉) = (caid1 •M1 •Q1 + fetch(n))
α(〈caid2,σ2, idle,Q2〉) = (caid2 •M2 •Q2)

α(〈caid1,σ1[cacheMemory 
→ M1[n 
→ status(M2,n)]], idle,Q1〉)

= (caid1 •M1[n 
→ status(M2,n)] •Q1)

α(〈caid2,σ2[cacheMemory 
→ M2[n 
→ ⊥]], idle,Q2〉) = (caid2 •M2[n 
→ ⊥] •Q2).

It follows that the symbolic transition (and its path condition) corresponds to rule LC-Hit2.
Case: Figure 14, Lines 11–26, silent step. This case corresponds to the execution path that

leads from the return of the swap method via the else-branch of the if-statement (so s==Nothing)
to the end of the fetch method. We consider the initial symbolic configuration

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉 | true,

assuming that τ (nextCache) = next(caid1), σ1(cacheMemory) = M1, and σ2(cacheMemory) = M2

for fresh logical variables M1 and M2 and that the process (τ , S) is about to synchronously call the
swap method. We infer statically from the code of the swap method in Figure 15 and the condition
of the else-branch on Line 18 that the given address n of the fetch method, in the next-level cache is
either Nothing or Just(In). Thus, this execution path leads to the following symbolic configuration:

〈caid1,σ1, idle,Q1+fetch(n)〉, 〈caid2,σ2, idle,Q2〉 | next(caid1) = caid2 ∧ status(M2,n) ∈ {inv,⊥}.

Applying the abstraction function α , we obtain

α(〈caid1,σ1, (τ , S),Q1〉) = (caid1 •M1 •Q1 + fetch(n))
α(〈caid2,σ2, idle,Q2〉) = (caid2 •M2 •Q2)

α(〈caid1,σ1, idle,Q1+fetch(n)〉) = (caid1 •M1 •Q1 + fetch(n)).

Clearly, this symbolic transition corresponds to a silent step in the TS model.
Case: Figure 14, Lines 21–23, Synch. This path corresponds to the execution of the synchonous

self-call of the broadcast method followed by the asynchonous self-call of the fetchBl method.
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Abstracting from implementation of the broadcast mechanism this method reduces to a skip-
statement. Thus the symbolic execution of this path is described by the following transition:

〈caid,σ , (τ , S),Q〉 | next(caid) = ⊥ ⇒ 〈caid,σ , (τ , S),Q+fetchBl(n)〉 | next(caid) = ⊥,

where σ (cacheMemory) = M , for some logical variable M and τ (nextCache) = next(caid) (note
that the path condition next(caid) = ⊥ follows from the execution path leading to the call of
the broadcast method, which consists of the execution of the switch-statement and as such cor-
responds to a silent step in the TS model). Applying the abstraction function α we obtain the
transition rule LLC-Miss

(caid •M •Q + fetch(n)) → (caid •M •Q + fetchBl(n))

of the TS model. It remains to check that applying the abstraction function α to the
symbolic execution of the receiveRd method corresponds to the rules Flush-One-Line and
Ignore-Flush-One-Line of the TS model. Let 〈caid,σ , (τ , S),Q〉 | true be a symbolic configu-
ration, where S is the (abstracted) body of receiveRd. Clearly, symbolic execution of S , i.e., its
switch-statement, leads to either

〈caid,σ , idle,Q + flush(n)〉 | status(M,n) = mo

or
〈caid,σ , idle,Q〉 | status(M,n) � mo.

Applying the abstraction function α to the first case gives the Flush-One-Line rule, and in the
second case the Ignore-Flush-One-Line rule.

Method fetchBl, Figure 17.

Case: Figure 17, Lines 1–7, silent step. Consider the path starting from initial stable point of
the fetchBl method and leading to the synchronous call to the getStatus method of another Cache

object on Line 7. We consider the initial symbolic configuration

〈caid,σ , (τ , S),Q〉 | true.

Here, Q is the symbolic representation of the process queue and the process (τ , S) is the method
activation of fetchBl, where S denotes the body of the fetch method. Assume that σ (nextLevel) =

next(caid) and σ (cacheMemory) = M for some fresh logical variable M . The symbolic transition
rule for the switch-statement results in the symbolic configuration,

〈caid,σ , (τ [nextCache 
→ next(caid)], S ′),Q〉 | next(caid) � ⊥,

where S ′ denotes the remaining statements to be executed. Applying the abstraction function α ,
we obtain

α(〈caid,σ , (τ , S),Q〉) = caid •M •Q + fetchBl(n)
α(〈caid,σ , (τ ′, S ′),Q〉) = caid •M •Q + fetchBl(n).

Clearly, the symbolic transition corresponds to a silent step in the TS model.
Case: Figure 17, Lines 7–9, silent step. Consider the execution path from the synchronous

call to the getStatus method to the asynchronous self-call to the fetchBl method (Line 9) in the
then-branch of the if-statement. Observe that the local variables of the active process correspond
to those of the final state of the previous case; we may assume that τ (nextCache) = next(caid1)

and consider the initial symbolic configuration,

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉 | true,

where additionally σ1(cacheMemory) = M1 and σ2(cacheMemory) = M2 for fresh logical vari-
ables M1 and M2, and the process (τ , S) is about to synchronously call getStatus with the symbolic
value n. The condition status==Nothing allows us to statically determine that status(M2,n) = ⊥
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1 Unit fetchBl(Address n) {

2 switch (nextLevel) {

3 // nextLevel==Nothing &

4 // select(cacheMemory, n) !=n &

5 // cacheline(cacheMemory, n)==Pair(_,Mo): FetchBl3;

6 Just(nextCache) => {

7 Maybe<Status> status = nextCache.getStatus(n);

8 // status!=Nothing: LC-Fetch-Unblock

9 if (status == Nothing){ this!fetchBl(n); }

10 else { this!fetch(n); }

11 }

12 _ => {

13 Pair<Address,Status> selected = cacheline(cacheMemory, n);

14 if (fst(selected)==n) {

15 Status status = mainMemory.getStatus(n);

16 // select(cacheMemory, n) ==n : FetchBl1
17 cacheMemory = put(cacheMemory,n,status);

18 }

19 else {

20 switch (selected) {

21 Pair(selected_n,Mo) => {

22 this!flush(selected_n);

23 this!fetchW(n,selected_n); }

24 Pair(selected_n,_) => {

25 Status status = mainMemory.getStatus(n);

26 // select(cacheMemory, n) !=n & select(cacheMemory, n)!=Pair(_,Mo) : FetchBL2

27 cacheMemory = removeKey(cacheMemory,selected_n);

28 cacheMemory = put(cacheMemory,n,status);

29 } }

30 } } }

31 }

Fig. 17. The annotated fetchBl method of class Cache.

from the symbolic execution of the synchronous call to getStatus, and identify the resulting
configuration

〈caid1,σ1, (τ [status 
→⊥], S ′),Q1+fetchBl(n)〉,
〈caid2,σ2, idle,Q2〉 | next(caid1) = caid2 ∧ status(M2,n) = ⊥,

where S ′ denotes the remaining statements to be executed. Applying the abstraction function α ,
we obtain

α(〈caid1,σ1, (τ , S),Q1〉) = caid1 •M1 •Q1 + fetchBl(n)
α(〈caid2,σ2, idle,Q2〉) = caid2 •M2 •Q2

α(〈caid1,σ1, (τ [status 
→⊥], S ′),Q1+fetchBl(n)〉) = caid1 •M1 •Q1 + fetchBl(n).

Thus, we obtain a silent step in the TS model.
Case: Figure 17, Lines 7–10, LC-Fetch-Unblock. The annotation status!=Nothing. corre-

sponds to the execution path from the getStatus method to the asynchronous self-call to the
fetch method (Line 10) in the else-branch of the if-statement. Again, we may assume that
τ (nextCache) = next(caid1) and consider the initial symbolic configuration

〈caid1,σ1, (τ , S),Q1〉, 〈caid2,σ2, idle,Q2〉 | true,

ACM Trans. Program. Lang. Syst., Vol. 46, No. 3, Article 9. Publication date: September 2024.



Proving Correctness of Parallel Implementations of Transition System Models 9:41

where additionally σ1(cacheMemory) = M1 and σ2(cacheMemory) = M2 for fresh logical vari-
ables M1 and M2, and the process (τ , S) is about to synchronously call getStatus with the symbolic
value n. The condition status!=Nothing allows us to statically determine that status(M2,n) � ⊥

from the symbolic execution of the synchronous call to getStatus, and identify the resulting
configuration

〈caid1,σ1, (τ [status 
→ s], S ′),Q1+fetch(n)〉,
〈caid2,σ2,p2,Q2〉 | next(caid1) = caid2 ∧ status(M2,n) � ⊥,

where S ′ denotes the remaining statements to be executed and s the symbolic return value from
the getStatus method. Applying the abstraction function α , we obtain

α(〈caid1,σ1, (τ , S),Q1〉) = caid1 •M1 •Q1 + fetchBl(n)
α(〈caid2,σ2, idle,Q2〉) = caid2 •M2 •Q2

α(〈caid1,σ1, (τ [status 
→ s], S ′1),Q1+fetch(n)〉) = caid1 •M1 •Q1 + fetch(n).

Consequently, we obtain rule LC-Fetch-Unblock in Figure 22.
Case: Figure 17, Lines 1–15, silent step. From the switch-statement on Line 2, we know that

caid is the last-level cache, so this path is associated to the annotation nextLevel==Nothing. It
starts from the initial stable point of fetchBl and leads via the execution of select (Line 13) to the
synchronous call to getStatus on an instance of Memory (Line 15). Assume (as in all the other
above cases) that σ (nextLevel) = next(caid) and σ (cacheMemory) = M for a fresh logical variable
M . We consider an initial symbolic configuration

〈caid,σ , (τ , S),Q〉 | true,

where the process (τ , S) is the activation of fetchBl(n) for a symbolic value n. The symbolic execu-
tion results in the following configuration:

〈caid,σ , (τ [selected 
→ cacheline(M, n)], S ′),Q〉 | next(caid) = ⊥ ∧select(M,n) = n,

where S ′ denotes the remaining statements to be executed. Applying the abstraction function α ,
we obtain

α(〈caid,σ , (τ , S),Q〉) = caid •M •Q + fetchBl(n)
α(〈caid,σ , (τ [selected 
→ cacheline(M, n)], S ′),Q〉) = caid •M •Q + fetchBl(n).

Thus, the symbolic execution corresponds to a silent step in the TS model.
Case: Figure 17, Lines 15–31, FetchBl1. Now consider the path starting from the synchronous

call to the getStatus method on Line 15 to the termination of the fetchBl method, with the annota-
tion select(cacheMemory,n) ==n. We know from the previous case that caid is the last-level cache
and consider the initial symbolic configuration

〈caid,σ1, (τ , S),Q1〉, 〈main,σ2, idle,Q2〉 | next(caid) = ⊥,

where σ1(cacheMemory) = M1 and σ2(mainMemory) = M2 for fresh logical variables M1 and
M2, such that the process (τ , S) is about make the synchronous call to the getStatus method. The
annotation select(cacheMemory,n)==n allows us to infer the following symbolic configuration:

〈caid,σ1[cacheMemory 
→ M1[n 
→ status(select(M2,n))]], idle,Q1〉, 〈main,σ2, idle,Q2〉

| next(caid) = ⊥ ∧select(M1,n) = n.

Applying the abstraction function α , we obtain

α(〈caid,σ1, (τ , S),Q1〉) = caid •M1 •Q1 + fetchBl(n)
α(〈main,σ2, idle,Q2〉) = M2

α(〈caid,σ1[cacheMemory 
→ M1[n 
→ status(select(M2,n))]], idle,Q1〉) =

caid •M1[n 
→ status(select(M2,n))] •Q1.
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We obtain rule FetchBl1 in Figure 22, where the premisses are given by the path condition of the
symbolic execution.

Case: Figure 17, Lines 1–31, FetchBl3. We consider the path starting from the initial stable
point of the fetchBl method, with the annotations nextLevel==Nothing, select(cacheMemory,n)!=n

and select(cacheMemory,n)==Pair(_,Mo). We consider the initial symbolic configuration

〈caid,σ1, (τ , S),Q1〉, 〈main,σ2, idle,Q2〉 | true,

where σ1(cacheMemory) = M1 and σ2(mainMemory) = M2 for fresh logical variables M1 and
M2 and the process (τ , S) is the instance of the fetch(n) method. This path goes via the else-
branch (Line 19) and the first case of the switch-statement (Line 21). As before, caid is the last-
level cache, and we derive (Line 12) that next(caid) = ⊥. The annotations nextLevel==Nothing,
select(cacheMemory,n)!=n and select(cacheMemory, n)==Pair(_,Mo) allow us to derive the fol-
lowing configuration:

〈caid,σ1, idle,Q1+flush(m)+fetchW(n,m)〉,
〈main,σ2, idle,Q2〉 | next(caid) = ⊥ ∧select(M1,n) � n ∧ status(M1, select(M1,n)) = mo.

Applying the abstraction function α , we obtain

α(〈caid,σ1, (τ , S),Q1〉) = caid •M1 •Q1 + fetchBl(n)
α(〈main,σ2, idle,Q2〉) = M2

α(〈caid,σ1, idle,Q1+flush(m)+fetchW(n,m)〉) = caid •M1 •Q1 + flush(m) + fetchW(n,m).

Consequently, we obtain rule FetchBl3.
Case: Figure 17, Lines 1–25, silent step. Now consider the path starting from the initial stable

point of the fetchBl method, which leads via the execution of the select function on Line 13 to the
synchronous call to the getStatus method of the main memory on Line 25. We consider the initial
symbolic configuration

〈caid,σ1, (τ , S),Q1〉, 〈main,σ2, idle,Q2〉 | true,

where σ1(cacheMemory) = M1 and σ2(mainMemory) = M2 for fresh logical variables M1 and M2,
and the process (τ , S) is the instance of the fetch(n) method. As before, caid is the last-level cache,
and we derive (Line 12) that next(caid) = ⊥. We obtain the following symbolic configuration:

〈caid,σ1, (τ [selected 
→ cacheline(M1, n)], S
′),Q〉,

〈main,σ2, idle,Q2〉 | next(caid) = ⊥ ∧select(M1,n) � n ∧ status(M1, select(M1,n)) � mo,

where m and st are symbolic values and S ′ denotes the remaining statements to be executed. Ap-
plying the abstraction function α , we obtain

α(〈caid,σ1, (τ , S),Q1〉) = caid •M1 •Q1 + fetchBl(n)
α(〈main,σ2, idle,Q2〉) = M2

α(〈caid,σ1, (τ [selected 
→ cacheline(M1, n)], S
′),Q〉) = caid •M1 •Q1 + fetchBl(n).

Thus, we here obtain a silent step in the TS model.
Case: Figure 17, Lines 25–31, FetchBl2. Now consider the path starting from the synchronous

call to getStatus on Line 25 to the termination of the fetchBl method. Note that the initial symbolic
state of the instance cache caid corresponds to the symbolic state resulting from the symbolic
execution of the path discussed for the previous case above, and we can use its path conditions.
Thus, we consider the initial symbolic configuration

〈caid,σ1, (τ , S),Q〉,
〈main,σ2, idle,Q2〉 | next(caid) = ⊥ ∧select(M1,n) � n ∧ status(M1, select(M1,n)) � mo,
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1 Unit fetchW(Address n,Address m){

2 await (lookupDefault(cacheMemory,m, In)!=Mo); // FetchW

3 this!fetchBl(n);

4 }

Fig. 18. The annotated fetchW method of class Cache.

with symbolic variables as above, and where the process (τ , S) is the instance of the fetch(n)
method. Applying symbolic execution, we obtain the following symbolic configuration:

〈caid,σ1[cacheMemory 
→ M1[m 
→ ⊥,n 
→ status(M2,n)]], idle,Q1〉,
〈main,σ2,p2,Q2〉 | next(caid) = ⊥ ∧select(M1,n) � n ∧ status(M1, select(M1,n)) � mo.

Applying the abstraction function α , we obtain

α(〈caid,σ1, (τ , S),Q〉) = caid •M1 •Q1 + fetchBl(n)
α(〈main,σ2, idle,Q2〉) = M2

α(〈caid,σ1[cacheMemory 
→ M1[select(M1,n) 
→ ⊥,n 
→ status(M2,n)]], idle,Q1〉) =

caid •M1[select(M1,n) 
→ ⊥,n 
→ status(M2,n)] •Q1.

Consequently, we obtain rule FetchBl2 in Figure 22, modulo renaming of logical variables.

Method fetchW, Figure 18.

Case: Figure 18, Lines 1 and 2, Silent Step. Consider the path starting from the initial stable
point of a method call to fetchW(n,m) and leading to the await-statement on Line 2. We consider
an initial symbolic configuration

〈caid,σ , (τ , S),Q〉 | true,

where σ (cacheMemory) = M for some fresh logical variable M , Q is a symbolic representation of
the process queue, and (τ , S) is the symbolic representation of the fetchW method. By symbolic
execution, we obtain the symbolic configuration

〈caid,σ , idle,Q+(τ , S)〉 | true.

Applying the abstraction function α , we obtain

α(〈caid,σ , (τ , S),Q〉) = caid •M •Q + fetchW(n,m)

α(〈caid,σ , idle,Q+(τ , S)〉) = caid •M •Q + fetchW(n,m).

Clearly, this symbolic execution step corresponds to a silent step in the TS model.
Case: Figure 18, Lines 2–4, FetchW. We consider a path in which the guard of the await-

statement on Line 2 holds and the initial symbolic configuration

〈caid,σ , (τ , S),Q〉 | true,

where σ (cacheMemory) = M for some fresh logical variable M , Q is a symbolic representation
of the process queue, and (τ , S) is the symbolic representation of the fetchW method. Symbolic
execution here gives us the path condition lookupDefault(M,m, in) � mo, which is equivalent to
status(M,m) � mo. By symbolic execution, we then derive the following symbolic configuration:

〈caid,σ , idle,Q+fetchBl(n)〉 | status(M,m) � mo.

Applying the abstraction function α , we obtain

α(〈caid,σ , (τ , S),Q〉) = caid •M •Q + fetchW(n,m)

α(〈caid,σ , idle,Q+fetchBl(n)〉) = caid •M •Q + fetchBl(n).

Consequently, we obtain rule FetchW in Figure 23 modulo renaming of logical variables.
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1 Unit flush(Address n) {

2 // lookup(cacheMemory,n)!=Just(Mo): Flush2;

3 switch (lookup(cacheMemory,n)) {

4 Just(Mo) => {

5 mainMemory.setStatus(n,Sh); // Flush1

6 cacheMemory = put(cacheMemory,n,Sh);

7 }

8 _ => skip;

9 } }

Fig. 19. The annotated flush method of class Cache.

Method flush, Figure 19.
Case Figure 19, Lines 1–9, Flush1. Consider a path starting with the initial stable point of the

method call to flush with the assumption lookup(cacheMemory,n)==Mo. We consider a symbolic
configuration

〈caid,σ1, (τ , S),Q1〉, 〈main,σ2, idle,Q2〉 | true,

where σ1(mainMemory) = main, σ1(cacheMemory) = M1, and σ2(mainMemory) = M2 for fresh
logical variables main, M1 and M2; Q1 and Q2 are symbolic representations of process queues;
and (τ , S) is the symbolic representation of the method activation of flush. Our assumption
lookup(cacheMemory,n)==Mo gives us the path condition lookup(M1,n) = mo, which is equiv-
alent to status(M1,n) = mo. We then obtain by symbolic execution the following symbolic config-
uration:

〈caid,σ ′
1, idle,Q1〉, 〈main,σ ′

2, idle,Q2〉 | status(M1,n) = mo,

where σ ′
1 = σ1[cacheMemory 
→ M1[n 
→ sh]] and σ ′

2 = σ2[mainMemory 
→ M2[n 
→ sh]].
Applying the abstraction function α , we obtain

α(〈caid,σ1, (τ , S),Q1〉) = caid •M1 •Q + flush(n)
α(〈main,σ2, idle,Q2〉) = M2

α(〈caid,σ ′
1, (τ , S),Q1〉) = caid •M1[n 
→ sh] •Q1

α(〈main,σ ′
2,p2,Q2〉) = M2[n 
→ sh].

Consequently, we obtain the rule Flush1 in Figure 24.
Case Figure 19, Lines 1–9, Flush2. For this case, we assume that lookup(cacheMemory,n)!=Mo.

We consider a symbolic configuration

〈caid,σ , (τ , S),Q〉 | true,

where σ (cacheMemory) = M for a fresh logical variable M , Q is a symbolic representation of a
process queue, and (τ , S) the symbolic representation of the method activation of flush. From
symbolic execution with the assumption lookup(cacheMemory,n)!=Mo, we derive the symbolic
configuration

〈caid,σ , idle,Q〉 | status(M,n) � mo.

Applying the abstraction function α , we obtain

α(〈caid,σ , (τ , S),Q〉) = caid •M •Q + flush(n)
α(〈caid,σ , idle,Q〉) = caid •M •Q .

Consequently, we obtain the rule Flush2 in Figure 24.
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C The Multicore TS Model

The multicore TS model is structured in terms of separate TS models for the cores, caches, and
global synchronization. In general, we assume that the unlabelled transitions that describe the
behavior of the individual cores and caches are applied in the context of a configuration cf, and
we omit the straightforward context rule here. However, for the labelled transitions we introduce
explicit synchronization rules for lifting them to a particular context. We here include the complete
TS multicore model, organized as follows:

— The transition rules for cores cover the basic instructions read(r ), readBl(r ), write(r ), and
writeBl(r ) in Figure 20.

— The rules for caches have been further structured in terms of separate TS models for the
individual dst instructions (Figures 21–24)

— The transition rules for global synchronization are structured in terms of a TS model for
labelled transitions (Figure 25) and a TS model of rules for matching these labelled transitions
(Figure 26).

(PrRd1)

next(cid) = caid status(M, n) ∈ {sh, mo}

(cid • read(n); rst ), (caid • M • dst) →

(cid • rst ), (caid • M • dst)

(PrRd2)

next(cid) = caid status(M, n) ∈ {inv, ⊥}

(cid • read(n); rst ), (caid • M • dst ) →

(cid • readBl(n); rst ), (caid • M [n 
→⊥] • dst + fetch(n) )

(PrRd3)

next(cid) = caid n ∈ dom(M )

(cid • readBl(n); rst ), (caid • M • dst) →

(cid • read(n); rst ), (caid • M • dst)

(PrWr1)

next(cid) = caid status(M, n) = mo

(cid • write(n); rst ), (caid • M • dst) →

(cid • rst ), (caid • M • dst)

(PrWr2)

first(caid) = true cid(caid) = c status(M ′, n) = sh

(cid • write(n); rst ), (caid • M ′ • dst), M
!RdX (n)
−−−−−−→

(cid • rst ), (caid • M ′[n 
→mo] • dst), M [n 
→ inv]

(PrWr4)

next(cid) = caid n ∈ dom(M )

(cid • writeBl(n); rst ), (caid • M • dst) →

(cid • write(n); rst ), (caid • M • dst)

(PrWr3)

next(cid) = caid status(M, n) ∈ {inv, ⊥}

(cid • write(n); rst ), (caid • M • dst ) →

(cid • writeBl(n); rst ), (caid • M [n 
→⊥] • dst + fetch(n) )

Fig. 20. Transition rules for read(r ), readBl(r ), write(r ), and writeBl(r ).
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(LC-Hit1)

next(caid) = caid ′ select(M,n) =m
n �m s = status(M,m) s ′ = status(M ′,n) s ′ ∈ {sh,mo}

(caid • M • dst + fetch(n)), (caid ′ • M ′ • dst ′) →

(caid • M[m 
→ ⊥,n 
→ s ′] • dst), (caid ′ • M ′[n 
→ ⊥,m 
→ s] • dst ′)

(LC-Hit2)

next(caid) = caid ′ select(M,n) = n
s ′ = status(M ′,n) s ′ ∈ {sh,mo}

(caid • M • dst + fetch(n)), (caid ′ • M ′ • dst ′) →

(caid • M[n 
→ s ′] • dst), (caid ′ • M ′[n 
→ ⊥] • dst ′)

(LC-Miss)

next(caid) = caid ′ status(M ′,n) ∈ {inv,⊥}

(caid •M • dst + fetch(n) ), (caid ′ • M ′ • dst ′ ) →

(caid •M • dst + fetchBl(n) ), (caid ′ • M ′[n 
→⊥] • dst ′ + fetch(n) )

(LLC-Miss)

next(caid) =⊥

(caid •M • dst + fetch(n) )
!Rd(n)
−−−−−→ (caid •M • dst + fetchBl(n) )

Fig. 21. Transition rules for fetch(n).

(FetchBl1)

next(caid) =⊥

select(M,n) = n s = status(M,n)

(caid • M • dst + fetchBl(n) ), M →

(caid • M[n 
→ s] • dst ), M

(FetchBl3)

next(caid) =⊥

select(M,n) = n′ n′ � n status(M,n′) = mo

(caid •M • dst + fetchBl(n) ) →

(caid •M • dst + flush(n′) + fetchW(n,n′) )

(FetchBl2)

next(caid) =⊥ select(M,n) = n′ n′ � n
status(M,n′) � mo s = status(M,n)

(caid • M • dst + fetchBl(n) ), M →

(caid • M[n′ 
→ ⊥,n 
→ s] • dst ), M

(LC-Fetch-Unblock)

next(caid) = caid ′ n ∈ dom(M ′)

(caid •M • dst + fetchBl(n) ), (caid ′ •M ′ • dst ′) →

(caid •M • dst + fetch(n) ), (caid ′ •M ′ • dst ′)

Fig. 22. Transition rules for fetchBl(n).

(FetchW)
status(M,n′) � mo

(caid •M • dst + fetchW(n,n′) ) → (caid •M • dst + fetchBl(n) )

Fig. 23. Transition rule for fetchW(n,n′).
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(Flush1)

status(M, n) = mo

(caid • M • dst + flush(n) ), M →

(caid • M [n 
→ sh] • dst ), M [n 
→ sh]

(Flush2)

status(M, n) � mo

(caid • M • dst + flush(n) ) →

(caid • M • dst )

Fig. 24. Transition rules for flush(n).

(Invalidate-One-Line)

status(M, n) = sh

caid • M • dst
?RdX (n)
−−−−−−→ caid • M [n 
→ inv] • dst

(Ignore-Invalidate-One-Line)

status(M, n) ∈ {inv, ⊥}

caid • M • dst
?RdX (n)
−−−−−−→ caid • M • dst

(Flush-One-Line)

status(M, n) = mo

caid • M • dst
?Rd(n)
−−−−−→ caid • M • dst + flush(n)

(Ignore-Flush-One-Line)

status(M, n) � mo

caid • M • dst
?Rd(n)
−−−−−→ caid • M • dst

Fig. 25. Labelled input transitions.

(Synch)

Ca
!Rd(n)
−−−−−→ Ca′

〈CR, Ca, M 〉 → 〈CR, Ca′, M 〉

(SynchX)

CR � CR1 CR, Ca, M
!RdX (n)
−−−−−−→ CR′, Ca′, M ′

〈CR1 ∪ {CR}, Ca, M 〉 → 〈CR1 ∪ {CR′ }, Ca′, M ′ 〉

(Synch-DistX)

Ca1 � Ca CR, Ca, M
!RdX (n)
−−−−−−→ CR′, Ca′, M ′ Ca1

?RdX (n)
−−−−−−→ Ca2

CR, Ca ∪ {Ca1 }, M
!RdX (n)
−−−−−−→ CR′, Ca′ ∪ {Ca2 }, M ′

(Synch-Dist)

Ca1 � Ca Ca
!Rd(n)
−−−−−→ Ca′ Ca1

?Rd(n)
−−−−−→ Ca′2

Ca ∪ {Ca1 }
!Rd(n)
−−−−−→ Ca′ ∪ {Ca2 }

Fig. 26. Transition rules for global synchronization/broadcast.
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