
Science of Computer Programming 240 (2025) 103222

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Original Software Publication

The CAOS framework for Scala: Computer-aided design of SOS
José Proença a,∗, Luc Edixhoven b

a CISTER and Faculty of Sciences of the University of Porto, Portugal
b Open University (Heerlen) and CWI (Amsterdam), Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Visualisation
Structural operational semantics
Formal methods
Web-frontend
Pedagogical tools

We present Caos: a programming framework for computer-aided design of structural operational 
semantics for formal models. This framework includes a set of Scala libraries and a workflow to 
produce visual and interactive diagrams that animate and provide insights over the structure and 
the semantics of a given abstract model with operational rules.
Caos follows an approach where theoretical foundations and a practical tool are built together, as 
an alternative to foundations-first design (“tool justifies theory”) or tool-first design (“foundations 
justify practice”). The advantage of Caos is that the tool-under-development can immediately be 
used to automatically run numerous and sizeable examples in order to identify subtle mistakes, 
unexpected outcomes, and unforeseen limitations in the foundations-under-development, as early 
as possible.
More concretely, Caos supports the quick creation of interactive websites that help the end-users 
better understand a new language, structure, or analysis. End-users can be research colleagues 
trying to understand a companion paper or students learning about a new simple language or 
operational semantics. We include a list of open-source projects with a web frontend supported 
by Caos that are used both in research and teaching contexts.

Code metadata

Nr. Code metadata description Please fill in this column

C1 Current code version v1.0.0
C2 Permanent link to code/repository used for this code version https://github.com/arcalab/CAOS/releases/tag/v1.0.0
C3 Permanent link to Reproducible Capsule https://github.com/arcalab/ccs-caos/releases/tag/v1.0.0
C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and services used Scala & JavaScript
C7 Compilation requirements, operating environments and dependencies Scala building tools (sbt) & Java Runtime Environment (JRE) ≥ 1.8
C8 If available, link to developer documentation/manual https://arxiv.org/abs/2304.14901 https://youtu.be/Xcfn3zqpubw
C9 Support email for questions jose@proenca.org

* Corresponding author.
Available online 18 October 2024
0167-6423/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: jose.proenca@fc.up.pt (J. Proença), led@ou.nl (L. Edixhoven).

https://doi.org/10.1016/j.scico.2024.103222
Received 18 December 2023; Received in revised form 19 August 2024; Accepted 14 October 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
https://github.com/arcalab/CAOS/releases/tag/v1.0.0
https://github.com/arcalab/ccs-caos/releases/tag/v1.0.0
https://arxiv.org/abs/2304.14901
https://youtu.be/Xcfn3zqpubw
mailto:jose.proenca@fc.up.pt
mailto:led@ou.nl
https://doi.org/10.1016/j.scico.2024.103222
https://doi.org/10.1016/j.scico.2024.103222
http://creativecommons.org/licenses/by/4.0/


Science of Computer Programming 240 (2025) 103222J. Proença and L. Edixhoven

Fig. 1. Screenshot of a generated web-frontend by CAOS for a concurrent calculus.

1. Motivation and significance

Designing and explaining formal methods can be hard. Typical challenges of formal-methods-related research include identifying 
and dealing with corner cases, discovering missing assumptions, finding the right abstraction level, and proving theorems (and 
adequately decomposing them into lemmas). Curiously, and unlike other scientific disciplines, we find that a large majority of papers 
written in our community primarily focuses on research results instead of methods. By contrast, this tool – Caos (computer-aided design 
of SOS for formal methods) – supports the methodology of designing and explaining formal methods, with special emphasis on Structural 
Operational Semantics (SOS). Caos combines, simplifies, extends, and bundles in a single software artefact a collection of functions 
that we have been using in the context of several research projects; therefore allowing other researchers and teachers to re-use and 
adapt functionalities that we have found useful in our own work. Source code, links to documentation, and a compilation of examples 
can be found at https://github .com /arcalab /caos.

Caos has been introduced in a companion conference paper [1], allowing users to produce interactive websites by providing an 
implementation in Scala of (1) a data structure with an associated parser, and (2) a set of analyses, some parameterised by a next

function that describes state reductions. It further provides support for the Mermaid language (a popular Markdown-like language 
for diagrams)1 to generate visual diagrams, and extra functions to compute equivalences of labelled transition systems. Related tools 
include Maude [2], Racket [3], and Pyret [4], as explained in the tutorial [5] and companion paper [1]. To the best of our knowledge, 
Caos is the first framework that provides support to design models and operational semantics using a general programming language 
such as Scala.

This paper includes a new example of a web frontend produced by Caos to analyse a simple variation of Milner’s CCS [6] in 
Section 2. Other motivating examples of Caos used in the context of teaching (for a simple while-language) and research (to provide 
insights over the semantics of a choreographic language) have been described in the companion paper [1], and a step-by-step tutorial 
using a lambda-calculus has been included in the extended technical report [5]. The improvements of the toolset since the companion 
paper are described in Section 4.

2. Illustrative examples

Fig. 1 presents a screenshot of a ccs project that analyses a simple variant of Milner’s CCS language [6], accessible at https://
lmf .di .uminho .pt /ccs -caos, developed for illustrative purposes. This screenshot includes an input widget in the upper-left 
corner, a widget with examples immediately below, and six other widgets customised for CCS, most of them collapsed except for
“Build LTS”:
2

1 See https://mermaid .js .org.

https://github.com/arcalab/caos
https://lmf.di.uminho.pt/ccs-caos
https://lmf.di.uminho.pt/ccs-caos
https://mermaid.js.org


Science of Computer Programming 240 (2025) 103222J. Proença and L. Edixhoven

Fig. 2. Architecture of a Scala project that uses Caos.

• “View pretty data” produces a re-indented version of the formula;
• “Run semantics” interactively asks which SOS rule should be applied;
• “Build LTS (explore)” builds the same LTS as “Build LTS”, now interactively, initially presenting only the initial state and its successors 

– clicking any of these successors adds its own successors; and
• the last two widgets search for bisimulations whenever the input term is written as a pair of terms separated by ~, providing an 

explanation whenever the search fails.

The source code of this and many other examples can be found at CAOS’ website https://github .com /arcalab /CAOS. These 
examples include:

• projects used to produce didactic content to teach university students, by analysing and animating semantics for languages such 
as CCS [6], a simple while-language, a lambda-calculus with integers [5], and a pseudo-assembly language Apoo [7].

• projects used as tool-companions of research papers, including analysis of multi-party session types [8], choreographic languages [9], 
variations of pomsets [10–12], and team automata [13].

3. Software framework

This section describes the Caos architecture and its functionality.

3.1. Software architecture

Fig. 2 depicts the structure of a typical Scala project that uses Caos. Projects using Caos require a Java Virtual Machine and SBT 
(Scala Builder Tool) to compile, and a web browser to execute. The user provides the highlighted documents: data structures for 
the input language with functions to parse this language and to compute analyses (Analysis.scala), and a description of the desired 
widgets that use these functions using special constructors (Configuration.scala). More specifically, the Configuration is an object 
that extends an associated class in Caos and holds: the name of the language and the website; the parser for the language; a list of
examples, each as a triple (name, program, description); and a list of widgets using the provided constructors [5]. This configuration 
file is a plain Scala file that can import any function in its scope, such as a parsing function defined within the Scala project. Compiling 
it yields a JavaScript (JS) file used by an HTML file included in the Caos library.

3.2. Widgets provided by CAOS

The web frontend produced by Caos always includes an input widget, where the user can provide programs to be analysed; and a 
widget with a list of examples, each as a button that triggers the analysis of a pre-defined program. The rest of the frontend consists 
of a list of custom widgets, defined using the provided constructors, which can be categorised as follows. The full list of widgets and 
constructors can be found online [5].

• Visualisation of a string produced from the program, representing plain text, code, or a mermaid diagram;
• Execution of a model of the program, given a next function that evolves the program, presented to the user either in a step-wise 

manner (interactive) or as a single state diagram with all reachable states;
• Equivalence of two programs using bisimilarity or trace equivalence;
• Check for errors or warnings in a program, aborting all analysis when errors are found.

Every widget can be either collapsed or expanded; clicking on the widget title alternates between these states. A widget reloads its 
analysis when it is expanded, and re-evaluating the input reloads all expanded widgets.

3.3. Sample code snippets analysis

Fig. 3 presents three snippets from our ccs project that analyses a simple variant of Milner’s CCS language [6]. Program.scala
defines the internal data structure, which represents the CCS terms produced by our parser in ccs/syntax/Parser, and Se-

mantics.scala exemplifies the definition of an SOS semantics. Config.scala provides the Configuration object with the con-
crete layout of the webpage, cf. Section 3.1. SOS semantics are specified by extending a SOS[Act,State] class. In this case 
the type variable Act is unified with Action and State with System, which are our concrete data types for actions and states 
3

of our semantics. These instances can be animated, compared, or combined using provided widget constructors. For example, 

https://github.com/arcalab/CAOS


Science of Computer Programming 240 (2025) 103222J. Proença and L. Edixhoven

Fig. 3. Snippets of code and configurations used in the ccs project.

lts(e⇒e,Semantics,Show.justTerm,Show(_)) builds the Labelled Transition System (LTS), where e=>e states that the initial state is 
the original CCS term, Semantics defines the semantics, and Show.justTerm and Show(_) convert states (CCS terms) and actions to a 
string representation, respectively.

4. Impact

Caos has been used to produce several companion tools of scientific publications and to produce didactic content to teach univer-
sity students, as explained in the previous section. Since the publication of the companion conference paper, Caos has been extended 
to support the inclusion of documentation in the generated frontends. This includes new buttons ? and explanatory messages that 
guide the final user of the generated websites. Furthermore, we introduced a new widget to iteratively unfold the state-space of a 
given set of SOS rules (as suggested at the companion conference), created the new example based on Milner’s CCS [6] used in this 
paper, provided a new approach based on giter8 templates2 to bootstrap a project that uses Caos, thus reducing the effort for new 
users, and extended the online documentation in Caos’ GitHub repository.

We are currently collaborating with researchers involved in the MSc supervision of projects that plan to use Caos, and have been 
contacted by university teachers who have used instances of Caos to illustrate concepts in their lessons. Furthermore, all tools are 
available as open-source, and we welcome any feedback, contribution, or sharing of experiences.

5. Conclusions

This paper presents Caos, a Scala framework that supports a computer-aided design approach for formal methods, introducing its 
toolset and sharing its applications in the context of companion prototype research tools and of teaching in higher education. During 
the development of new structures and operational semantics, the Caos toolset provided us support to quickly view, simulate, and 
compare different design choices. More recently, we made an explicit effort to open and facilitate the usage of Caos by others, both 
researchers and teachers, receiving positive and constructive feedback. New additions include the preparation of richer documen-
tation, and support to attach explanations to the generated frontends. We further claim that the Caos toolset is reusable, provides 
intuitive outputs, and is expressive by using Scala – a general programming language. By using standard HTML and CSS, the resulting 
websites can be easily customised.

6. Future plans

Currently, we consider two possible improvements. On one hand, to support a lightweight server (inspired in ReoLive [14] but 
using, e.g., https://http4s .org) that could be used to delegate heavier tasks, such as the usage of a model-checker. On the other 
hand, to support the parser development with tools such as https://antlr .org instead of using parser combinators.
4

2 See https://www .foundweekends .org /giter8/.

https://http4s.org
https://antlr.org
https://www.foundweekends.org/giter8/


Science of Computer Programming 240 (2025) 103222J. Proença and L. Edixhoven

CRediT authorship contribution statement

José Proença: Writing – review & editing, Writing – original draft, Visualization, Supervision, Software, Methodology, Inves-
tigation, Formal analysis, Conceptualization. Luc Edixhoven: Writing – review & editing, Validation, Methodology, Investigation, 
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Jose Proenca reports financial support was provided by Portuguese Foundation for Science and Technology. Jose Proenca 
reports a relationship with Portuguese Foundation for Science and Technology that includes: funding grants and travel reimbursement. 
If there are other authors, they declare that they have no known competing financial interests or personal relationships that could 
have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the CISTER Research Unit (UIDP/UIDB/04234/2020), financed by National Funds through FCT/M-
CTES (Portuguese Foundation for Science and Technology) and by project Ibex (ref. PTDC/CCI-COM/4280/2021) financed by national 
funds through FCT. It is also a result of the work developed under project Route 25 (ref. TRB/2022/00061 - C645463824-00000063) 
funded by the Next Generation EU, within the Recovery and Resilience Plan (RRP).

References

[1] J. Proença, L. Edixhoven, Caos: a reusable scala web animator of operational semantics, in: S. Jongmans, A. Lopes (Eds.), Coordination Models and Languages 
- 25th IFIP WG 6.1 International Conference, COORDINATION 2023, Held as Part of the 18th International Federated Conference on Distributed Computing 
Techniques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings, in: Lecture Notes in Computer Science, vol. 13908, Springer, 2023, pp. 163–171.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C.L. Talcott, The maude 2.0 system, in: R. Nieuwenhuis (Ed.), Rewriting Techniques 
and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-11, 2003, Proceedings, in: Lecture Notes in Computer Science, vol. 2706, 
Springer, 2003, pp. 76–87.

[3] M. Flatt, Creating languages in racket, Commun. ACM 55 (1) (2012) 48–56, https://doi .org /10 .1145 /2063176 .2063195.
[4] J.G. Politz, B.S. Lerner, S. Porncharoenwase, S. Krishnamurthi, Event loops as first-class values: a case study in pedagogic language design, Art Sci. Eng. Program. 

3 (3) (2019) 11, https://doi .org /10 .22152 /programming -journal .org /2019 /3 /11.
[5] J. Proença, L. Edixhoven, Caos: a reusable scala web animator of operational semantics (extended with hands-on tutorial), CoRR, arXiv :2304 .14901, 2023, 

https://doi .org /10 .48550 /arXiv .2304 .14901.
[6] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.
[7] R. Reis, N. Moreira, Apoo: an environment for a first course in assembly language programming, ACM SIGCSE Bull. 33 (4) (2001) 43–47, https://doi .org /10 .

1145 /572139 .572168.
[8] S. Jongmans, J. Proença, ST4MP: a blueprint of multiparty session typing for multilingual programming, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications 

of Formal Methods, Verification and Validation. Verification Principles - 11th International Symposium, ISoLA 2022, Rhodes, Greece, October 22-30, 2022, 
Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 13701, Springer, 2022, pp. 460–478.

[9] G. Cledou, L. Edixhoven, S. Jongmans, J. Proença, API generation for multiparty session types, revisited and revised using scala 3, in: K. Ali, J. Vitek (Eds.), 36th 
European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany, in: LIPIcs, vol. 222, Schloss Dagstuhl - Leibniz-Zentrum 
für Informatik, 2022, pp. 27:1–27:28.

[10] L. Edixhoven, S.-S. Jongmans, J. Proença, G. Cledou, Branching pomsets for choreographies, in: C. Aubert, C.D. Giusto, L. Safina, A. Scalas (Eds.), Proceedings 
15th Interaction and Concurrency Experience, ICE 2022, Lucca, Italy, 17th June 2022, in: EPTCS, vol. 365, 2022, pp. 37–52.

[11] L. Edixhoven, S. Jongmans, Realisability of branching pomsets, in: S.L.T. Tarifa, J. Proença (Eds.), Formal Aspects of Component Software - 18th International 
Conference, FACS 2022, Virtual Event, November 10-11, 2022, Proceedings, in: Lecture Notes in Computer Science, vol. 13712, Springer, 2022, pp. 185–204.

[12] L. Edixhoven, S.-S. Jongmans, J. Proença, I. Castellani, Branching pomsets: design, expressiveness and applications to choreographies, J. Log. Algebraic Methods 
Program. 136 (2024) 100919, https://doi .org /10 .1016 /j .jlamp .2023 .100919.

[13] M.H. ter Beek, R. Hennicker, J. Proença, Realisability of global models of interaction, in: E. Ábrahám, C. Dubslaff, S.L.T. Tarifa (Eds.), Theoretical Aspects of 
Computing - ICTAC 2023 - 20th International Colloquium, Lima, Peru, December 4-8, 2023, Proceedings, in: Lecture Notes in Computer Science, vol. 14446, 
Springer, 2023, pp. 236–255.

[14] R. Cruz, J. Proença, Reolive: analysing connectors in your browser, in: M. Mazzara, I. Ober, G. Salaün (Eds.), Software Technologies: Applications and Foundations 
- STAF 2018 Collocated Workshops, Toulouse, France, June 25-29, 2018, Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 11176, Springer, 
5

2018, pp. 336–350.

http://refhub.elsevier.com/S0167-6423(24)00145-X/bibFFDC5CA4A7487EDFCDA2F9300EF44003s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibFFDC5CA4A7487EDFCDA2F9300EF44003s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibFFDC5CA4A7487EDFCDA2F9300EF44003s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib4A2778F04EF3614578DE404B959DF8C8s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib4A2778F04EF3614578DE404B959DF8C8s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib4A2778F04EF3614578DE404B959DF8C8s1
https://doi.org/10.1145/2063176.2063195
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib9A295087888AEF5CE0F6A8D615C4EA57s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib3388B4E71291213677B6DBC7ECFE5720s1
https://doi.org/10.22152/programming-journal.org/2019/3/11
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib3388B4E71291213677B6DBC7ECFE5720s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib8E7BA69F762BFA8B53B712C4B062BF50s1
https://doi.org/10.48550/arXiv.2304.14901
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib8E7BA69F762BFA8B53B712C4B062BF50s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib1537C7EBB7FF5E0C5BB5F436DF96F65As1
https://doi.org/10.1145/572139.572168
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibF9CB6C2930080B2401D4DB972F91A9FFs1
https://doi.org/10.1145/572139.572168
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibF9CB6C2930080B2401D4DB972F91A9FFs1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibFBF6443BBF73ACC6CCE95F7F2B49E01Es1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibFBF6443BBF73ACC6CCE95F7F2B49E01Es1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibFBF6443BBF73ACC6CCE95F7F2B49E01Es1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibEF3C757C60EC323A1531D20108AAF50Fs1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibEF3C757C60EC323A1531D20108AAF50Fs1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bibEF3C757C60EC323A1531D20108AAF50Fs1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib4EB024D91AB23E8F28487F56454D27B3s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib4EB024D91AB23E8F28487F56454D27B3s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib1EEFC3B3482D1DDAE9A62AD7FEB1EA52s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib1EEFC3B3482D1DDAE9A62AD7FEB1EA52s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib701144CDD8BC385E95733F67EBC19DA5s1
https://doi.org/10.1016/j.jlamp.2023.100919
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib701144CDD8BC385E95733F67EBC19DA5s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib6ACF926C9824C0791A5FD64F205DAEB0s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib6ACF926C9824C0791A5FD64F205DAEB0s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib6ACF926C9824C0791A5FD64F205DAEB0s1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib013421A246CCDCD49585FFDE18B2B6BBs1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib013421A246CCDCD49585FFDE18B2B6BBs1
http://refhub.elsevier.com/S0167-6423(24)00145-X/bib013421A246CCDCD49585FFDE18B2B6BBs1

	The CAOS framework for Scala: Computer-aided design of SOS
	1 Motivation and significance
	2 Illustrative examples
	3 Software framework
	3.1 Software architecture
	3.2 Widgets provided by CAOS
	3.3 Sample code snippets analysis

	4 Impact
	5 Conclusions
	6 Future plans
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


