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We present Caos: a programming framework for computer-aided design of structural operational 
semantics for formal models. This framework includes a set of Scala libraries and a workflow to 
produce visual and interactive diagrams that animate and provide insights over the structure and 
the semantics of a given abstract model with operational rules.
Caos follows an approach where theoretical foundations and a practical tool are built together, as 
an alternative to foundations-first design (“tool justifies theory”) or tool-first design (“foundations 
justify practice”). The advantage of Caos is that the tool-under-development can immediately be 
used to automatically run numerous and sizeable examples in order to identify subtle mistakes, 
unexpected outcomes, and unforeseen limitations in the foundations-under-development, as early 
as possible.
More concretely, Caos supports the quick creation of interactive websites that help the end-users 
better understand a new language, structure, or analysis. End-users can be research colleagues 
trying to understand a companion paper or students learning about a new simple language or 
operational semantics. We include a list of open-source projects with a web frontend supported 
by Caos that are used both in research and teaching contexts.

Code metadata

Nr. Code metadata description Please fill in this column

C1 Current code version v1.0.0
C2 Permanent link to code/repository used for this code version https://github.com/arcalab/CAOS/releases/tag/v1.0.0
C3 Permanent link to Reproducible Capsule https://github.com/arcalab/ccs-caos/releases/tag/v1.0.0
C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and services used Scala & JavaScript
C7 Compilation requirements, operating environments and dependencies Scala building tools (sbt) & Java Runtime Environment (JRE) ≥ 1.8
C8 If available, link to developer documentation/manual https://arxiv.org/abs/2304.14901 https://youtu.be/Xcfn3zqpubw
C9 Support email for questions jose@proenca.org
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Fig. 1. Screenshot of a generated web-frontend by CAOS for a concurrent calculus.

1. Motivation and significance

Designing and explaining formal methods can be hard. Typical challenges of formal-methods-related research include identifying 
and dealing with corner cases, discovering missing assumptions, finding the right abstraction level, and proving theorems (and 
adequately decomposing them into lemmas). Curiously, and unlike other scientific disciplines, we find that a large majority of papers 
written in our community primarily focuses on research results instead of methods. By contrast, this tool – Caos (computer-aided design 
of SOS for formal methods) – supports the methodology of designing and explaining formal methods, with special emphasis on Structural 
Operational Semantics (SOS). Caos combines, simplifies, extends, and bundles in a single software artefact a collection of functions 
that we have been using in the context of several research projects; therefore allowing other researchers and teachers to re-use and 
adapt functionalities that we have found useful in our own work. Source code, links to documentation, and a compilation of examples 
can be found at https://github .com /arcalab /caos.

Caos has been introduced in a companion conference paper [1], allowing users to produce interactive websites by providing an 
implementation in Scala of (1) a data structure with an associated parser, and (2) a set of analyses, some parameterised by a next

function that describes state reductions. It further provides support for the Mermaid language (a popular Markdown-like language 
for diagrams)1 to generate visual diagrams, and extra functions to compute equivalences of labelled transition systems. Related tools 
include Maude [2], Racket [3], and Pyret [4], as explained in the tutorial [5] and companion paper [1]. To the best of our knowledge, 
Caos is the first framework that provides support to design models and operational semantics using a general programming language 
such as Scala.

This paper includes a new example of a web frontend produced by Caos to analyse a simple variation of Milner’s CCS [6] in 
Section 2. Other motivating examples of Caos used in the context of teaching (for a simple while-language) and research (to provide 
insights over the semantics of a choreographic language) have been described in the companion paper [1], and a step-by-step tutorial 
using a lambda-calculus has been included in the extended technical report [5]. The improvements of the toolset since the companion 
paper are described in Section 4.

2. Illustrative examples

Fig. 1 presents a screenshot of a ccs project that analyses a simple variant of Milner’s CCS language [6], accessible at https://
lmf .di .uminho .pt /ccs -caos, developed for illustrative purposes. This screenshot includes an input widget in the upper-left 
corner, a widget with examples immediately below, and six other widgets customised for CCS, most of them collapsed except for
“Build LTS”:
2

1 See https://mermaid .js .org.
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Fig. 2. Architecture of a Scala project that uses Caos.

• “View pretty data” produces a re-indented version of the formula;
• “Run semantics” interactively asks which SOS rule should be applied;
• “Build LTS (explore)” builds the same LTS as “Build LTS”, now interactively, initially presenting only the initial state and its successors 

– clicking any of these successors adds its own successors; and
• the last two widgets search for bisimulations whenever the input term is written as a pair of terms separated by ~, providing an 

explanation whenever the search fails.

The source code of this and many other examples can be found at CAOS’ website https://github .com /arcalab /CAOS. These 
examples include:

• projects used to produce didactic content to teach university students, by analysing and animating semantics for languages such 
as CCS [6], a simple while-language, a lambda-calculus with integers [5], and a pseudo-assembly language Apoo [7].

• projects used as tool-companions of research papers, including analysis of multi-party session types [8], choreographic languages [9], 
variations of pomsets [10–12], and team automata [13].

3. Software framework

This section describes the Caos architecture and its functionality.

3.1. Software architecture

Fig. 2 depicts the structure of a typical Scala project that uses Caos. Projects using Caos require a Java Virtual Machine and SBT 
(Scala Builder Tool) to compile, and a web browser to execute. The user provides the highlighted documents: data structures for 
the input language with functions to parse this language and to compute analyses (Analysis.scala), and a description of the desired 
widgets that use these functions using special constructors (Configuration.scala). More specifically, the Configuration is an object 
that extends an associated class in Caos and holds: the name of the language and the website; the parser for the language; a list of
examples, each as a triple (name, program, description); and a list of widgets using the provided constructors [5]. This configuration 
file is a plain Scala file that can import any function in its scope, such as a parsing function defined within the Scala project. Compiling 
it yields a JavaScript (JS) file used by an HTML file included in the Caos library.

3.2. Widgets provided by CAOS

The web frontend produced by Caos always includes an input widget, where the user can provide programs to be analysed; and a 
widget with a list of examples, each as a button that triggers the analysis of a pre-defined program. The rest of the frontend consists 
of a list of custom widgets, defined using the provided constructors, which can be categorised as follows. The full list of widgets and 
constructors can be found online [5].

• Visualisation of a string produced from the program, representing plain text, code, or a mermaid diagram;
• Execution of a model of the program, given a next function that evolves the program, presented to the user either in a step-wise 

manner (interactive) or as a single state diagram with all reachable states;
• Equivalence of two programs using bisimilarity or trace equivalence;
• Check for errors or warnings in a program, aborting all analysis when errors are found.

Every widget can be either collapsed or expanded; clicking on the widget title alternates between these states. A widget reloads its 
analysis when it is expanded, and re-evaluating the input reloads all expanded widgets.

3.3. Sample code snippets analysis

Fig. 3 presents three snippets from our ccs project that analyses a simple variant of Milner’s CCS language [6]. Program.scala
defines the internal data structure, which represents the CCS terms produced by our parser in ccs/syntax/Parser, and Se-

mantics.scala exemplifies the definition of an SOS semantics. Config.scala provides the Configuration object with the con-
crete layout of the webpage, cf. Section 3.1. SOS semantics are specified by extending a SOS[Act,State] class. In this case 
the type variable Act is unified with Action and State with System, which are our concrete data types for actions and states 
3

of our semantics. These instances can be animated, compared, or combined using provided widget constructors. For example, 

https://github.com/arcalab/CAOS
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Fig. 3. Snippets of code and configurations used in the ccs project.

lts(e⇒e,Semantics,Show.justTerm,Show(_)) builds the Labelled Transition System (LTS), where e=>e states that the initial state is 
the original CCS term, Semantics defines the semantics, and Show.justTerm and Show(_) convert states (CCS terms) and actions to a 
string representation, respectively.

4. Impact

Caos has been used to produce several companion tools of scientific publications and to produce didactic content to teach univer-
sity students, as explained in the previous section. Since the publication of the companion conference paper, Caos has been extended 
to support the inclusion of documentation in the generated frontends. This includes new buttons ? and explanatory messages that 
guide the final user of the generated websites. Furthermore, we introduced a new widget to iteratively unfold the state-space of a 
given set of SOS rules (as suggested at the companion conference), created the new example based on Milner’s CCS [6] used in this 
paper, provided a new approach based on giter8 templates2 to bootstrap a project that uses Caos, thus reducing the effort for new 
users, and extended the online documentation in Caos’ GitHub repository.

We are currently collaborating with researchers involved in the MSc supervision of projects that plan to use Caos, and have been 
contacted by university teachers who have used instances of Caos to illustrate concepts in their lessons. Furthermore, all tools are 
available as open-source, and we welcome any feedback, contribution, or sharing of experiences.

5. Conclusions

This paper presents Caos, a Scala framework that supports a computer-aided design approach for formal methods, introducing its 
toolset and sharing its applications in the context of companion prototype research tools and of teaching in higher education. During 
the development of new structures and operational semantics, the Caos toolset provided us support to quickly view, simulate, and 
compare different design choices. More recently, we made an explicit effort to open and facilitate the usage of Caos by others, both 
researchers and teachers, receiving positive and constructive feedback. New additions include the preparation of richer documen-
tation, and support to attach explanations to the generated frontends. We further claim that the Caos toolset is reusable, provides 
intuitive outputs, and is expressive by using Scala – a general programming language. By using standard HTML and CSS, the resulting 
websites can be easily customised.

6. Future plans

Currently, we consider two possible improvements. On one hand, to support a lightweight server (inspired in ReoLive [14] but 
using, e.g., https://http4s .org) that could be used to delegate heavier tasks, such as the usage of a model-checker. On the other 
hand, to support the parser development with tools such as https://antlr .org instead of using parser combinators.
4

2 See https://www .foundweekends .org /giter8/.
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