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Abstract

Using recent developments on the theory of locally decodable codes, we prove
that the critical size for Szemerédi’s theorem with random differences is bounded
from above by N1− 2

k
+o(1) for length-k progressions. This improves the previous best

bounds of N
1− 1

dk/2e+o(1) for all odd k.

Mathematics Subject Classifications: 11B30, 05D40

1 Introduction

Szemerédi [20] proved that dense sets of integers contain arbitrarily long arithmetic pro-
gressions, a result which has become a hallmark of additive combinatorics. Multiple proofs
of this result were found over the years, using ideas from combinatorics, ergodic theory
and Fourier analysis over finite abelian groups.

Furstenberg’s ergodic theoretic proof [14] opened the floodgates to a series of powerful
generalizations. In particular, it led to versions of Szemerédi’s theorem where the common
differences for the arithmetic progressions are restricted to very sparse sets. We say that
a set D ⊆ [N ] is t-intersective if any positive-density set A ⊆ [N ] contains an (t+1)-term
arithmetic progression with common difference in D. Szemerédi’s theorem implies that for
large enough N0, the set {0, 1, . . . , N0} is t-intersective for N > N0. Non-trivial examples
include a result of Bergelson and Leibman [3] showing that the perfect squares (and more
generally, images of integer polynomials with zero constant term) are t-intersective for
every t, and a special case of a result of Wooley and Ziegler [23] showing the same for the
prime numbers minus one.

The existence of such sparse intersective sets motivated the problem of showing
whether, in fact, random sparse sets are typically intersective. The task of making this
quantitative falls within the scope of research on threshold phenomena. We say that
a property of subsets of [N ], given by a family F ⊆ 2[N ], is monotone if A ∈ F and
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A ⊆ B ⊆ [N ] imply B ∈ F . The critical size m∗ = m∗(N) of a property is the least m
such that a uniformly random m-element subset of [N ] has the property with probability
at least 1/2. (This value exists if F is non-empty and monotone, as this probability then
increases monotonically with m). A famous result of Bollobás and Thomason [4] asserts
that every monotone property has a threshold function; this is to say that the probability

p(m) = Pr
A∈([N ]

m )[A ∈ F ]

spikes from o(1) to 1 − o(1) when m increases from o(m∗) to ω(m∗). In general, it is
notoriously hard to determine the critical size of a monotone property.

This problem is also wide open for the property of being t-intersective, which is clearly
monotone, and for which we denote the critical size by m∗t (N). Bourgain [5] showed that
the critical size for 1-intersective sets is given by m∗1(N) � logN ; at present, this is the
only case where precise bounds are known. It has been conjectured [13] that logN is the
correct bound for all fixed t, and indeed no better lower bounds are known for t > 2. It
was shown by Frantzikinakis, Lesigne and Wierdl [12] and independently by Christ [11]
that

m∗2(N)� N
1
2
+o(1). (1)

The same upper bound was later shown to hold for m∗3(N) by the first author, Dvir and
Gopi [7]. More generally, they showed that

m∗t (N)� N1− 1
d(t+1)/2e+o(1), (2)

which improved on prior known bounds for all t > 3. The appearance of the ceiling
function in these bounds is due to a reduction for even t to the case t+ 1. The reason for
this reduction originates from work on locally decodable error correcting codes [16]. It
was shown in [7] that lower bounds on the block length of (t+ 1)-query locally decodable
codes (LDCs) imply upper bounds on m∗t . The bounds (2) then followed directly from
the best known LDC bounds; see [8] for a direct proof of (2), however.

For the same reason, a recent breakthrough of Alrabiah et al. [1] on 3-query LDCs
immediately implies an improvement of (1) to

m∗2(N)� N
1
3
+o(1).

For technical reasons, their techniques do not directly generalize to improve the bounds
for q-query LDCs with q > 4. Here, we use the ideas of [1] to directly prove upper bounds
on m∗t . Due to the additional arithmetic structure in our problem, it is possible to simplify
the exposition and, more importantly, apply the techniques to improve the previous best
known bounds for all even t > 2.

Theorem 1. For every integer t > 2, we have that

m∗t (N)� N1− 2
t+1

+o(1).
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The arguments presented here in fact work in greater generality, and hold for any
finite additive group G whose size is coprime to t! (so as not to incur in divisibility issues
when considering (t+ 1)-term arithmetic progressions).

Let G be a finite additive group, t > 1 be an integer and ε ∈ (0, 1). We say that
a set S ⊆ G is (t, ε)-intersective if every subset A ⊆ G of size |A| > ε|G| contains an
(t+ 1)-term arithmetic progression with common difference in D. We denote the critical
size for the property of being (t, ε)-intersective in G by m∗t,ε(G). Our main result is the
following:

Theorem 2. For every t > 2 and ε ∈ (0, 1), there exists C(t, ε) > 0 such that

m∗t,ε(G) 6 C(t, ε)(log |G|)2t+3|G|1−
2

t+1

for every additive group G whose size is coprime to t!.

Note that Theorem 1 follows easily from this last result by embedding [N ] into a
group of the form Z/pZ, where p is a prime between (t + 1)N and 2(t + 1)N . We omit
the standard details.

2 Preliminaries

2.1 Notation

We write
⊎

for a disjoint union. Our (standard) asymptotic notation is defined as follows.
Given a parameter n which grows without bounds and a function f : R+ → R+, we write:
g(n) = o(f(n)) to mean g(n)/f(n) → 0; g(n) = ω(f(n)) to mean g(n)/f(n) → ∞;
g(n) � f(n) to mean that g(n) 6 Cf(n) holds for some constant C > 0 and all n; and
g(n) � f(n) to mean both g(n) � f(n) and f(n) � g(n). When the implied constant
in the asymptotics depends on some parameter (say ε), we indicate this by adding said
parameter as a subscript in the asymptotic notation (replacing � by �ε, say).

2.2 Matrix norms and inequalities

Our arguments will rely heavily on the analysis of high-dimensional matrices. Here we
recall the matrix inequalities which will be needed.

If M ∈ Rd×d is a matrix, we define its operator norms

‖M‖2 = max
{
uTMv : ‖u‖2 = ‖v‖2 = 1

}
‖M‖∞→1 = max

{
uTMv : ‖u‖∞ = ‖v‖∞ = 1

}
‖M‖1→1 = max

{
uTMv : ‖u‖∞ = ‖v‖1 = 1

}
.

We will make use of the following simple inequalities:

‖M‖∞→1 6 d‖M‖2, ‖M‖∞→1 6
d∑
i=1

‖M(i, ·)‖1
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and, when M is symmetric,
‖M‖2 6 ‖M‖1→1.

We will also use the following noncommutative version of Khintchine’s inequality, which
can be extracted from a result of Tomczak-Jaegermann [21]:

Theorem 3. Let n, d > 1 be integers, and let A1, . . . , An be any sequence of d × d real
matrices. Then

Eσ∈{−1,1}n
∥∥∥∥ n∑
i=1

σiAi

∥∥∥∥
2

6 10
√

log d

( n∑
i=1

‖Ai‖22
)1/2

.

2.3 Polynomial concentration bounds

We will need a well-known concentration inequality for polynomials due to Kim and
Vu [17], which requires the introduction of some extra notation. Let H = (V,E) be
a hypergraph, where we allow for repeated edges (so E may be a multiset), and let
f : {0, 1}V → R be the polynomial given by

f(x) =
∑
e∈E

∏
v∈e

xv. (3)

For a set A ⊆ V , define

fA(x) =
∑

e∈E:A⊆e

∏
v∈e\A

xv,

where the monomial corresponding to the empty set is defined to be 1. For p ∈ (0, 1),
we say that X is a p-Bernoulli random variable on {0, 1}V , denoted X ∼ Bern(p)V , if its
coordinates are all independent and each equals 1 with probability p (and equals 0 with
probability 1− p). For each i ∈ {0, 1, . . . , |V |}, define

µi = max
A∈(V

i )
EX∼Bern(p)V fA(X).

Note that µ0 is just the expectation of f(X). Define also the quantities

µ = max
i∈{0,1,...,|V |}

µi and µ′ = max
i∈{1,2,...,|V |}

µi.

The polynomial concentration inequality of Kim and Vu is given as follows:

Theorem 4. For every k ∈ N, there exist constants C,C ′ > 0 such that the following
holds. Let H = (V,E) be an n-vertex hypergraph whose edges have size at most k, and
let f be given by (3). Then, for any λ > 1, we have

Pr
[
|f(X)− µ0| > Cλk−

1
2

√
µµ′] 6 C ′ exp

(
− λ+ (k − 1) log n

)
.

To suit our needs, we will use a slight variant of this result, which follows easily from
it and the following basic proposition.
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Proposition 5. Let f : {0, 1}n → R+ be a monotone increasing function and p ∈ (16
n
, 1).

Then, for any integer 0 6 t 6 pn/2,

E
S∈([n]

t )f(1S) 6
1

2
EX∼Bern(p)nf(X).

Proof. By direct calculation,

EX∼Bern(p)nf(X) =
n∑
i=0

pi(1− p)n−i
∑

S∈([n]
i )

f(1S)

=
n∑
i=0

(
n

i

)
pi(1− p)n−i E

S∈([n]
i )f(1S)

>
∑
i>t

(
n

i

)
pi(1− p)n−i E

S∈([n]
t )f(1S)

>
1

2
E
S∈([n]

t )f(1S),

where in the third line we used monotonicity of f and the fourth line follows from the
Chernoff bound.

Corollary 6. For every k ∈ N, there exist constants C,C ′ > 0 such that the following
holds. Let H = (V,E) be an n-vertex hypergraph whose edges have size at most k, let f
be given as in (3) and let p ∈ (16

n
, 1). Then, for any integer 0 6 t 6 pn/2, we have

PrS∈(V
t )
[
f(1S) > C(log n)k−

1
2µ] 6

C ′

n4
.

Proof. For a sufficiently large constant C = C(k) > 0, let g : {0, 1}n → {0, 1} be the
indicator function

g(1S) = 1
[
f(1S) > C(log n)k−

1
2µ].

Since f is monotone, so is g. Setting λ = (3 + k) log n, it follows from Theorem 4 that

EX∼Bern(p)n g(X) 6
C ′

n4
.

The result now follows from Proposition 5.

3 The main argument

In this section we will prove Theorem 2, our main result. It will be more convenient to
shift attention from the degree t of intersectivity to the length k := t+ 1 of the associated
arithmetic progressions.

Fix then an integer k > 3 for the length of the progressions and a positive parameter
ε > 0. Let G be an additive group with N elements, where N is coprime to (k − 1)! and
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is assumed to be sufficiently large relative to k and ε for our arguments to hold. Recall
that we wish to show that m∗k−1,ε(G)�k,ε (logN)2k+1N1− 2

k .
Instead of considering random intersective sets, it will be simpler to consider random

intersective sequences, where a sequence in Gm is (k − 1, ε)-intersective if the set of its
distinct elements is. Clearly, the probability that a uniformly random m-element sequence
is (k− 1, ε)-intersective is at most the probability that a uniform m-element set is. Since
we are interested in proving upper bounds on the critical size, it suffices to bound the
minimal m such that a random sequence in Gm is (k − 1, ε)-intersective with probability
at least 1/2.

3.1 Reducing to an inequality about sign averages

Given a sequence of differences D = (d1, . . . , dm) ∈ Gm and some set A ⊆ G, let ΛD(A)
be the normalized count of k-APs with common difference in D which are contained in A:

ΛD(A) = Ei∈[m]Ex∈G
k−1∏
`=0

A(x+ `di).

Similarly, we denote by ΛG(A) the proportion of all k-APs which are contained in A:

ΛG(A) = Ed∈GEx∈G
k−1∏
`=0

A(x+ `d).

By a suitable generalization of Szemerédi’s theorem, we know that

ΛG(A)�k,ε 1 for all A ⊆ G with |A| > εN . (4)

This can be proven, for instance, by using the hypergraph removal lemma of Gowers [15]
and Nagle, Rödl, Schacht and Skokan [19, 18].

Now suppose m ∈ [N ] is an integer for which

PrD∈Gm

(
∃A ⊆ G : |A| > εN, ΛD(A) = 0

)
> 1/2. (5)

Noting that ED′∈GmΛD′(A) = ΛG(A), by combining inequalities (5) and (4) we conclude
that

ED∈Gm max
A⊆G: |A|>εN

∣∣ΛD(A)− ED′∈GmΛD′(A)
∣∣�k,ε 1.

Below, we will no longer need the condition that |A| > εN in maxima over A ⊆ G. This
positive density assumption is only used through (4).

We next apply a simple symmetrization argument given in [8, page 8690] to write this
in a more convenient form:

Lemma 7 (Symmetrization). Let c > 0, and suppose that

ED∈Gm max
A⊆G

∣∣ΛD(A)− ED′∈GmΛD′(A)
∣∣ > c.

Then

ED∈GmEσ∈{−1,1}m max
A⊆G

∣∣∣∣Ei∈[m]Ex∈G σi
k−1∏
`=0

A(x+ `di)

∣∣∣∣ > c

2
.
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Proof. With slight abuse of notation, for each d ∈ G and A ⊆ G, denote

Λd(A) = Ex∈G
k−1∏
`=0

A(x+ `d).

Then, by the triangle inequality, the first expression in Lemma 7 is bounded from above
by

ED,D′∈Gm max
A⊆G

∣∣∣ 1

m

m∑
i=1

(
Λdi(A)− Λd′i

(A)
)∣∣∣,

where D and D′ are independent and uniformly distributed. Since the terms Λdi(A) −
Λd′i

(A) are independent and symmetrically distributed, this expectation is unchanged if
each of these terms is multiplied by an arbitrary sign. In particular, this expectation
equals

ED,D′∈GmEσ∈{−1,1}m max
A⊆G

∣∣∣ 1

m

m∑
i=1

σi
(
Λdi(A)− Λd′i

(A)
)∣∣∣.

Using the triangle inequality again, and the fact that D and D′ have the same distribution,
we get that this is bounded from above by

2ED∈GmEσ∈{−1,1}m max
A⊆G

∣∣∣ 1

m

m∑
i=1

σiΛdi(A)
∣∣∣.

This proves the result.

The appearance of the expectation over signs σ ∈ {−1, 1}m is crucial to our arguments.
By an easy multilinearity argument, we can replace the set A ⊆ G (which can be seen as
a vector in {0, 1}G) by a vector Z ∈ {−1, 1}G. In combination with (5) and Lemma 7,
this gives

ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

∣∣∣∣Ei∈[m]Ex∈G σi
k−1∏
`=0

Z(x+ `di)

∣∣∣∣�k,ε 1. (6)

The change from {0, 1}G to {−1, 1}G is a convenient technicality so that we can ignore
terms which get squared in a product.

3.2 Dealing with an odd number of terms

The last inequality (6) is what we need to prove the result for even values of k using the
arguments we will outline below. For odd values of k, however, this inequality is unsuited
due to the odd number of factors inside the product. The main idea from [1] to deal with
this case is to apply a “Cauchy-Schwarz trick” to obtain a better suited inequality:

the electronic journal of combinatorics 31(4) (2024), #P4.8 7



Lemma 8 (Cauchy-Schwarz trick). Let c > 0, and suppose m > 2/c2 is an integer for
which

ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

∣∣∣∣Ei∈[m]Ex∈G σi
k−1∏
`=0

Z(x+ `di)

∣∣∣∣ > c.

Then there exists a partition [m] = L ] R such that

ED∈GmEσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
i∈L
j∈R

∑
x∈G

σiτj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj) >
c2m2N

8
.

Proof. By Cauchy-Schwarz, for any Z ∈ {−1, 1}G we have∣∣∣∣Ei∈[m]Ex∈G σi
k−1∏
`=0

Z(x+ `di)

∣∣∣∣2 =

∣∣∣∣Ex∈G Z(x) ·
(
Ei∈[m]σi

k−1∏
`=1

Z(x+ `di)

)∣∣∣∣2
6
(
Ex∈G Z(x)2

)
Ex∈G

(
Ei∈[m]σi

k−1∏
`=1

Z(x+ `di)

)2

= Ex∈GEi,j∈[m] σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj).

Applying Cauchy-Schwarz again, we conclude from our assumption that

c2 6 ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

∣∣∣∣Ei∈[m]Ex∈G σi
k−1∏
`=0

Z(x+ `di)

∣∣∣∣2
6 ED∈GmEσ∈{−1,1}m max

Z∈{−1,1}G
Ex∈GEi,j∈[m] σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj).

Now consider a uniformly random partition [m] = L ] R, so that for any i, j ∈ [m]
with i 6= j we have PrL,R(i ∈ L, j ∈ R) = 1/4; then

Ei,j∈[m] σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj)

=
1

m2

m∑
i,j=1
i 6=j

σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj) +
1

m2

m∑
i=1

σ2
i

k−1∏
`=1

Z(x+ `di)
2

=
4

m2
EL,R

∑
i∈L,j∈R

σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj) +
1

m
.

It follows that

c2 6
1

m
+

4

m2
EL,RED∈GmEσ∈{−1,1}m max

Z∈{−1,1}G
Ex∈G

∑
i∈L,j∈R

σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj).
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Using that m > 2/c2, we conclude there exists a choice of partition [m] = L ] R satisfying
the conclusion of the lemma.

From now on we assume that k is odd, and write k = 2r + 1.1 For i, j ∈ [m],
denote Pi(x) = {x+ di, x+ 2di, . . . , x+ 2rdi} and Pij(x) = Pi(x) ∪ Pj(x), where we hide
the dependence on the difference set D for ease of notation. From inequality (6) and
Lemma 8 we conclude that

ED∈GmEσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
i∈L
j∈R

∑
x∈G

σiτj
∏

y∈Pij(x)

Z(y)�k,ε m
2N, (7)

where (L,R) is a suitable partition of the index set [m] and we assume (without loss of
generality) that m is sufficiently large depending on ε and k.

From inequality (7) it follows that we can fix a “good” set D ∈ Gm satisfying

Eσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
i∈L
j∈R

σiτj
∑
x∈G

∏
y∈Pij(x)

Z(y)�k,ε m
2N (8)

and for which we have the technical conditions∣∣{i ∈ L, j ∈ R : |Pij(0)| 6= 4r
}∣∣�k,ε m

2/N and (9)

max
x 6=0

m∑
i=1

2r∑
`=−2r

1{`di = x} � logN, (10)

which are needed to bound the probability of certain bad events later on. Indeed:

• Denote by X(D) the expression on the left-hand side of (8) for a given sequence
D ∈ Gm. Then X(D) 6 m2N always holds, while by equation (7) we have
ED∈GmX(D) > ck,εm

2N for some constant ck,ε > 0. It follows that

Pr
[
X(D) > ck,εm

2N/2
]
> ck,ε/2.

• For `, `′ ∈ [2r] and independent uniform di, dj ∈ G, we have that

Pr[`di = `′dj] = 1/N.

The expectation of the left-hand side of (9) (taken with respect to D ∈ Gm) is then

∑
i∈L
j∈R

Pr
[
|Pij(0)| 6= 4r

]
6
∑
i∈L
j∈R

2r∑
`,`′=1

Pr[`di = `′dj] 6
r2m2

N
,

and thus by Markov’s inequality

Pr

[∣∣{i ∈ L, j ∈ R : |Pij(0)| 6= 4r
}∣∣ 6 4

ck,ε

r2m2

N

]
> 1− ck,ε

4
.

1The even case is similar but simpler. We focus on the odd case here because this is where we get new
bounds.
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• For a fixed x 6= 0, the inner sum in (10) is an indicator random variable that
equals 1 with probability 4r/N . Since these random variables are independent for
different i ∈ [m], the Chernoff bound implies that

Pr

[ m∑
i=1

2r∑
`=−2r

1{`di = x} > (1 + δ)
4rm

N

]
6

(
eδ

(1 + δ)1+δ

)4rm/N

.

Setting 1 + δ = N logN/(rm), the union bound over all x 6= 0 gives that

Pr

[
max
x 6=0

m∑
i=1

2r∑
`=−2r

1{`di = x} 6 4 logN

]
> 1− 1

N3
> 1− ck,ε

4
.

By the union bound, all three conditions above will hold simultaneously with positive
probability, as wished.

3.3 Reducing to a matrix inequality problem

The next key idea is to construct matrices Mij for which the quantity

Eσ∈{−1,1}L
τ∈{−1,1}R

∥∥∥∥ ∑
i∈L,j∈R

σiτjMij

∥∥∥∥
∞→1

(11)

is related to the expression on the left-hand side of inequality (8). The reason for doing
so is that this allows us to use strong matrix concentration inequalities, which can be used
to obtain a good upper bound on the expectation (11); this in turn translates to an upper
bound on m as a function of N , which is our goal. Such uses of matrix inequalities go
back to work of Ben-Aroya, Regev and de Wolf [2], in turn inspired by work of Kerenidis
and de Wolf [16] (see also [10]).

The matrices we will construct are indexed by sets of a given size s, where (with
hindsight) we choose s = bN1−2/kc. Recall that k = 2r + 1. For i ∈ L, j ∈ R, define the

matrix Mij ∈ R(G
s)×(G

s) by

Mij(S, T ) =
∑
x∈G

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r, S4T = Pij(x)

}
if |Pij(0)| = 4r, and Mij(S, T ) = 0 if |Pij(0)| 6= 4r; note that, despite the asymme-
try in their definition, these matrices are in fact symmetric. We will next deduce from
inequality (8) a lower bound on the expectation (11).

For a vector Z ∈ {−1, 1}G, denote by Z�s ∈ {−1, 1}(
G
s) the “lifted” vector given by

Z�s(S) =
∏
y∈S

Z(y) for all S ∈
(
G

s

)
.
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If |Pij(0)| = 4r, then for all Z ∈ {−1, 1}G we have∑
S,T∈(G

s)

Mij(S, T )Z�s(S)Z�s(T ) =
∑

S,T∈(G
s)

Mij(S, T )
∏

y∈S4T

Z(y)

=
∑
x∈G

∑
S∈(G

s)

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r

} ∏
y∈Pij(x)

Z(y)

=

(
2r

r

)2(
N − 4r

s− 2r

)∑
x∈G

∏
y∈Pij(x)

Z(y), (12)

since there are
(
2r
r

)2(N−4r
s−2r

)
ways of choosing a set S ∈

(
G
s

)
satisfying |S ∩ Pi(x)| =

|S ∩ Pj(x)| = r and, once such a set S is chosen, there is only one set T ∈
(
G
s

)
for which

S4T = Pij(x). It follows that

Eσ∈{−1,1}L
τ∈{−1,1}R

∥∥∥∥ ∑
i∈L,j∈R

σiτjMij

∥∥∥∥
∞→1

> Eσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
S,T∈(G

s)

∑
i∈L,j∈R

σiτjMij(S, T )Z�s(S)Z�s(T )

= Eσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

(
2r

r

)2(
N − 4r

s− 2r

) ∑
i∈L,j∈R
|Pij(0)|=4r

σiτj
∑
x∈G

∏
y∈Pij(x)

Z(y);

combining this with inequalities (8) and (9), we conclude the lower bound

Eσ∈{−1,1}L
τ∈{−1,1}R

∥∥∥∥ ∑
i∈L,j∈R

σiτjMij

∥∥∥∥
∞→1

�k,ε

(
N − 4r

s− 2r

)
m2N. (13)

3.4 Applying a Khintchine-type inequality

Now we need to compute an upper bound for the expectation above. The main idea here
is to use the non-commutative version of Khintchine’s inequality given in Theorem 3.
Intuitively, this inequality shows that the sum in the last expression incurs many can-
cellations due to the presence of the random signs σi, and thus the expectation on the
left-hand side of (13) is much smaller than one might expect.

To apply Theorem 3, it is better to collect the matrices Mij into groups and use only
one half of the random signs σi (another idea from [1]). For i ∈ L, τ ∈ {−1, 1}R, we
define the matrix

M τ
i =

∑
j∈R

τjMij.

We will then provide an upper bound for the expression

max
τ∈{−1,1}R

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM
τ
i

∥∥∥∥
∞→1
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which is itself an upper bound for the expectation in (13).
Towards this goal, we will prune the matrices M τ

i by removing all rows and columns
whose `1-weight significantly exceeds the average. By symmetry and non-negativity of
these matrices, the `1-weight of a row or column indexed by a set S ∈

(
G
s

)
is bounded by∑

T∈(G
s)

∣∣∣∣∑
j∈R

τjMij(S, T )

∣∣∣∣ 6 ∑
T∈(G

s)

∑
j∈R

Mij(S, T )

=
∑
j∈R

|Pij(0)|=4r

∑
x∈G

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r

}
.

To show that pruning makes little difference to the final bounds, we show that only a
small proportion of the rows and columns have large `1-weight. To this end, let U be a
uniformly distributed

(
G
s

)
-valued random variable and, for each i ∈ L, define the random

variable corresponding to the last expression above,

Xi :=
∑
j∈R

|Pij(0)|=4r

∑
x∈G

1
{
|U ∩ Pi(x)| = |U ∩ Pj(x)| = r

}
.

The calculation done in (12), with Z the all-ones vector, shows that

E[Xi] =
1(
N
s

) ∑
j∈R

|Pij(0)|=4r

(
2r

r

)2(
N − 4r

s− 2r

)
N �k

1(
N
s

)(N − 4r

s− 2r

)
mN.

Since s = bN1−2/kc, we have that
(
N−4r
s−2r

)
/
(
N
s

)
�k (s/N)2r � N−(2−2/k) and thus

E[Xi]�k
m

N1−2/k . (14)

The following lemma gives an upper-tail estimate on Xi, provided m is sufficiently large.

Lemma 9. Suppose that m > N1−2/k. Then, for every i ∈ L, we have that

Pr
[
Xi > (logN)k

m

N1−2/k

]
6

1

N4
.

Proof. Fix an i ∈ L. Consider the hypergraph Hi on vertex set G and with edge set

E(Hi) =
⊎
j∈R

|Pij(0)|=4r

⊎
x∈G

(
Pi(x)

r

)
×
(
Pj(x)

r

)
,

and let f : RG → R be the polynomial associated with Hi as in (3),

f(t) =
∑

e∈E(Hi)

∏
v∈e

tv.
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Note that Xi = f(1U), where U is uniformly distributed over
(
G
s

)
and 1U ∈ RG denotes

its (random) indicator vector.
For each 0 6 ` 6 2r, we wish to bound the quantity

µ` := max
A∈(G

`)
Et∼Bern(s/N)GfA(t).

(Recall the notation introduced in Section 2.) By (14), we have that µ0 �k mN
−(1−2/k).

For a set A ∈
(
G
`

)
, define its degree in Hi by

deg(A) = |{e ∈ E(Hi) : e ⊇ A}|,

where we count multiplicities of repeated edges. Note that for any B ⊆ A, we have that
deg(A) 6 deg(B). Then,

µ` = max
A∈(G

`)

( s
N

)2r−`
deg(A).

For any v ∈ G, we have that deg(v) �k m, since v is contained in Ok(1) arithmetic
progressions of length k with a fixed common difference. It follows that for ` ∈ [r], we
have that

µ` 6
( s
N

)2r−`
max
v∈G

deg(v) �k mN−2r/(2r+1) =
m

N1−1/k .

Let A ⊆ G be a set of size ` ∈ {r + 1, . . . , 2r} and

e ∈
(
Pi(x)

r

)
×
(
Pj(x)

r

)
be an edge of E(Hi) that contains A. By the Pigeonhole principle, A contains an ele-
ment a ∈ Pi(x) and an element b ∈ Pj(x). Knowing a limits x to a set of size at most 2r.
Moreover, it follows from (10) that for each x, there are at most Ok(logN) possible values
of j ∈ R such that b ∈ Pj(x). Therefore,

µ` �k

( s
N

)2r−`
logN 6 logN.

Using our assumption on m, it follows that for each ` ∈ {0, . . . , 2r}, we have that
µ` �k mN

−(1−2/k) logN . The result now follows directly from Corollary 6.

Lemma 9 shows that for each matrix M τ
i , at most an N−4 fraction of all rows and

columns have `1-weight exceeding (logN)kmN−(1−2/k). Now define M̃ τ
i as the ‘pruned’

matrix obtained from M τ
i by zeroing out all such heavy rows and columns. Note that M̃ τ

i

is symmetric, and so

‖M̃ τ
i ‖2 6 ‖M̃ τ

i ‖1→1 = max
S∈(G

s)
‖M̃ τ

i (S, ·)‖1 6 (logN)k
m

N1−2/k ;

this bound on the operator norm is what makes the pruned matrices more convenient for
us to work with.
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We first show that replacing the original matrices by their pruned versions has neg-
ligible effect on our bounds. Indeed, from the definition of Xi we see that its maximum
value is bounded by mN , and so∥∥M τ

i − M̃ τ
i

∥∥
∞→1

6
∑
S∈(G

s)

∥∥M τ
i (S, ·)− M̃ τ

i (S, ·)
∥∥
1

6 2

(
N

s

)
· E
[
Xi 1

{
Xi > (logN)kmN−(1−2/k)

}]
6 2

(
N

s

)
·mNPr

[
Xi > (logN)kmN−(1−2/k)

]
.

(The multiplication by 2 in the second inequality happens because we must take into
account both heavy rows and heavy columns.) By Lemma 9 we conclude that∥∥M τ

i − M̃ τ
i

∥∥
∞→1

6
2m

N3

(
N

s

)
for all i ∈ L, τ ∈ {0, 1}R. (15)

Next we apply the concentration inequality from Theorem 3 to the pruned matri-
ces M̃ τ

i ; we obtain

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM̃
τ
i

∥∥∥∥
∞→1

6

(
N

s

)
Eσ∈{−1,1}L

∥∥∥∥∑
i∈L

σiM̃
τ
i

∥∥∥∥
2

6 10

(
N

s

)√
log

(
N

s

)(∑
i∈L

‖M̃ τ
i ‖22
)1/2

6 10

(
N

s

)√
log

(
N

s

)(∑
i∈L

‖M̃ τ
i ‖21→1

)1/2

6 10

(
N

s

)√
s logN ·m1/2(logN)k

m

N1−2/k .

By the triangle inequality and our previous bounds, we conclude that

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM
τ
i

∥∥∥∥
∞→1

6 Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM̃
τ
i

∥∥∥∥
∞→1

+
∑
i∈L

∥∥M τ
i − M̃ τ

i

∥∥
∞→1

6 10

(
N

s

)√
s logN ·m1/2(logN)k

m

N1−2/k +
2m2

N3

(
N

s

)
.

3.5 Finishing the proof

We are now essentially done, and it only remains to combine the upper and lower bounds
obtained. Indeed, combining the last inequality with equation (13) gives(

N − 4r

s− 2r

)
m2N �k,ε

(
N

s

)√
ms logN(logN)k

m

N1−2/k .
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Rearranging and using that
(
N
s

)
/
(
N−4r
s−2r

)
�k (N/s)2r = N2−2/k, we conclude that

m�k,ε s(logN)2k+1 = N1−2/k(logN)2k+1.

As we started with the assumption (5), this shows that m∗k−1,ε(G)�k,ε N
1−2/k(logN)2k+1

as wished.

4 Discussion

Our bounds on m∗t (N) are far from the conjectured Θt(logN), and we do not believe
that they are best possible. We quickly mention a few avenues that could be explored to
obtain better bounds, focusing on the case m∗2(N) concerning 3-APs for clarity:

• A possible source of inefficiency in our arguments is that, after the symmetrization
step (Lemma 7), the fact that D ∈ Gm is a random sequence is not used in any
important way.2 An improvement on our bound for m∗2(N) might follow from a
possible discrepancy between the worst-case D considered in the present proof and
the average-case setting appearing in the problem.

• Another possibility is via a multilinear version of the non-commutative Khintchine
inequality to directly bound the final expression in Lemma 7 for a fixed sequence D.
Endow the space of trilinear forms (or tensors) RN ×RN ×RN → R with the norm

‖T‖ = sup
{
|T (x, y, z)| | ‖x‖3, ‖y‖3, ‖z‖3 6 1

}
.

For trilinear forms T1, . . . , Tm, a bound of the form

Eσ∈{−1,1}m
∥∥∥ m∑
i=1

σiTi

∥∥∥ 6 C(N)
( m∑
i=1

‖Ti‖2
) 1

2

would imply that m∗2(N)� C(N)2.

The techniques used in the present paper establish the best bounds currently known
for permutation tensors of the form

T (x, y, z) =
N∑
i=1

xiyπ1(i)zπ2(i),

where π1, π2 ∈ SN are permutations; this case is sufficient to deal with the forms ΛD

appearing in our proofs. We believe that the bound obtained this way for per-
mutation tensors is not best possible, and a sharper bound for this problem could
lead to improvements for m∗2(N). However, this avenue by itself does not suffice to
prove a statement of the form m∗2(N) 6 poly log(N), as there is a sequence of per-
mutation tensors (originating from LDC constructions) that imply that necessarily,
C(N) > (logN)ω(1) [9, 10].

2It is used in a weak way to obtain the technical conditions (9) and (10), but those are mostly techni-
calities inessential to the main argument.
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• The main technical tool used in the present paper is the non-commutative Khint-
chine inequality (Theorem 3). This inequality is sharp in general, but can be
improved when the collection of matrices considered is highly non-commutative;
see [22, Section 7] for a discussion on this point. Our matrices are quite close to
being commutative, however, and so a possible route for improvement could be to
find truly non-commutative matrix embeddings.
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