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ABSTRACT
For many real-world optimization problems it is possible to per-
form partial evaluations, meaning that the impact of changing a few
variables on a solution’s tness can be computed very eciently.
It has been shown that such partial evaluations can be excellently
leveraged by the Real-Valued Gene-pool Optimal Mixing Evolution-
ary Algorithm (RV-GOMEA) that uses a linkage model to capture
dependencies between problem variables. Recently, conditional
linkage models were introduced for RV-GOMEA, expanding its
state-of-the-art performance even to problems with overlapping
dependencies. However, that work assumed that the dependency
structure is known a priori. Fitness-based linkage learning tech-
niques have previously been used to detect dependencies during
optimization, but only for non-conditional linkage models. In this
work, we combine tness-based linkage learning and conditional
linkage modelling in RV-GOMEA. In addition, we propose a new
way to model overlapping dependencies in conditional linkage mod-
els to maximize the joint sampling of fully interdependent groups
of variables. We compare the resulting novel variant of RV-GOMEA
to other variants of RV-GOMEA and VkD-CMA on 12 problems
with varying degree of overlapping dependencies. We nd that the
new RV-GOMEA not only performs best on most problems, also
the overhead of learning the conditional linkage models during
optimization is often negligible.
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1 INTRODUCTION
Optimizing real-world problems using a Black-Box Optimization
(BBO) perspective is generally applicable, but this perspective ig-
nores problem-specic knowledge, despite it being available in
many real-world optimization settings [5, 13, 14]. In a Gray-Box
Optimization (GBO) setting, any such knowledge is provided to
the optimization method, which can take many forms. It has been
demonstrated that Evolutionary Algorithms (EAs) can be adjusted
to exploit such knowledge to improve performance, using tech-
niques such as partition crossover operators [24], problem-specic
variation operators [13], and partial evaluations [12]. The latter
assumes that it is possible to eciently recalculate the objective
value of a solution when a subset of its variables is modied.

For various real-world optimization problems, such as medical
deformable image registration [5] and internal radiation treatment
planning for cancer [14], the evaluation of solutions can be decom-
posed into such partial evaluations. Despite their decomposability,
however, these problems remain dicult to solve, often having char-
acteristics such as non-smoothness, non-separability, and multi-
modality. The Real-Valued Gene-pool Optimal Mixing Evolutionary
Algorithm (RV-GOMEA) has shown excellent performance on these
real-world GBO problems [5, 14], as well as on benchmark GBO
problems [10, 12]. On optimization problems with strong overlap-
ping dependencies, the recent introduction of conditional linkage
models in RV-GOMEA has proven to be crucial to maintaining this
performance improvement over a black-box approach [11].

These conditional linkage models currently require the Variable
Interaction Graph (VIG) to be provided, as dependencies between
variables are core to conditional distribution sampling. However,
the interactions between problem variables may not be fully known
in advance. Even if a generic VIG formulation can be made, not
all edges of this VIG may materialize as (strong) tness dependen-
cies during optimization, and tness dependency structures may
change over time. In these cases, it may prove benecial to empiri-
cally learn the VIG of a problem during optimization, as has been
proposed in discrete optimization [23]. On top of potentially speed-
ing up optimization, this could unlock problem-specic, structural
insights, which could be transferred to other problem instances.
For these instances, linkage then no longer needs to be detected
during optimization, resulting in further speed-ups.

In this work, we bring the performance benets of conditional
linkage-models in RV-GOMEA [11] to GBO problemswhere the VIG
is not known a priori. To this end, we explore the use of tness-based
dependency tests to incrementally build a Dependency StrengthMa-
trix (DSM), describing pairwise variable interactions. These tests
have recently shown promise within RV-GOMEA on separable
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(a) Dependency strength matrix: Learned
strengths of pair-wise tness dependencies

between variables.

0 1 2

3 4 5

6 7 8

(b) Variable interaction graph:
Edges represent variables
interacting, (c) is overlaid.
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(d) Linkage tree model:
Learned pruned linkage tree,

based on dependency strengths.
Figure 1: A case study of tness-based linkage learning: the REBGrid problem described in Section 5.1, with ℓ = 9.

problems [20], but have not yet been combined with conditional
models. Furthermore, we introduce a novel linkage model that mod-
els fully interdependent groups of variables jointly, maximizing the
exploitation of sub-functions in the variation operator of GOMEA.
In experiments, we compare the performance of RV-GOMEA us-
ing these models to VkD-CMA [2, 3], which is a state-of-the-art
optimization method for problems with overlapping dependencies.
Although VkD-CMA is not able to leverage partial evaluations,
it has a dimensionality-reduction mechanism capable of tackling
high-dimensional problems with overlapping dependencies.

This paper is structured as follows: First, we introduce the prob-
lem setting in Section 2 and RV-GOMEA in Section 3. In Section 4,
we describe how linkage models can be learned using tness-based
dependency tests. We evaluate and compare the proposed linkage
models in RV-GOMEA to existing linkage models and VkD-CMA,
in Sections 5 and 6. Finally, we discuss our results in Section 7 and
conclude in Section 8.

2 GRAY-BOX OPTIMIZATION
We consider an objective function  () : Rℓ → R which is to
be minimized. We refer to the variables of the problem as  =
{0, . . . ,ℓ−1}, indexed by the set of indices I = [0, . . . , ℓ − 1]. A
realization of  , i.e., a solution, is denoted by  = {0, . . . , ℓ−1}.

The GBO problems considered in this work allow for partial eval-
uations, which is the ecient computation of the objective value
of a solution after a subset of its variables has been modied [8].
Let  ⊆ I denote the indices of this subset of variables, and 
the corresponding variables. The objective function  () is then
composed of  sub-functions  = {0, . . . , −1}. Each sub-function
 (I ) ∈  takes variables  with  ∈ I ⊆ I, where sub-function
index sets I = {I0, . . . , I−1} are given by the problem denition and
can overlap. These sub-functions are considered not to be separable
themselves, and are therefore treated as a black box.

As such, a GBO objective function can be expressed as follows:

 () = 0 (I0 ) ⊕ 1 (I1 ) ⊕ · · · ⊕ −1 (I−1 ), (1)

with ⊕ denoting a binary operator with a known inverse operator ⊖
(such as addition or multiplication).

When one variable  is changed, all sub-functions  (I ) for
which  ∈ I holds, need to be evaluated. We consider the com-
putational complexity of a sub-function  to be approximately
proportional to the number of involved variables |I |. Therefore,

the cost of a partial evaluation for  is calculated as |I |/|I| in this
setting. This deviates from a previous denition [11] which does
not take sub-function size into account. The denition used in this
work portrays problems with heterogeneous sub-function index
set sizes and strongly overlapping dependencies more accurately.

In this gray-box structure, we consider two dierent variables
 and  with indices ,  ∈ I to be directly dependent when
there exists a sub-function  with {, } ⊆ I . This dependency is
denoted by  ↔  . Variables  and  are considered indirectly
dependent when there exists a set {, . . . , } ⊆ I for which  ↔
· · · ↔  holds, but not  ↔  . Given the dependencies in a
problem, a so-called Variable Interaction Graph (VIG) [29] can be
constructed. The VIG of a problem is an undirected graph  =
( ,  ), with each vertex  ∈  corresponding to the variable 
and an edge (, ) ∈  exists for every pair of directly dependent
variables  and  . Indirect dependencies can be translated to
this graph representation as follows: if  and  are indirectly
independent, there exists a path between  and  , but not an edge
(, ). As illustration, the VIG of the REBGrid problem (dened in
Section 5.1) is depicted in Figure 1b.

3 REAL-VALUED GENE-POOL OPTIMAL
MIXING EVOLUTIONARY ALGORITHM

In this section, we present an overview of RV-GOMEA. The algo-
rithm is described in more detail in [12].

3.1 Family of Subsets
The dependencies between variables  are modelled explicitly by
a linkage model in RV-GOMEA. This linkage model is described
by a Family of Subsets (FOS) F = {F0, F1, . . . , F−1}, with F ⊆ I.
The elements F of this FOS each represent a group of variables
which are deemed to be jointly dependent.

Two generic FOS linkage models can be dened regardless of
the problem structure: a univariate FOS F = {{0}, {1}, . . . , {ℓ −
1}}, which models all variables to be independent, and a full FOS
F = {{0, . . . , ℓ − 1}}, which models all variables as jointly depen-
dent. More generally, we can dene a marginal product FOS model,
as a set of disjoint sets of dependent variables, i.e., F ∩ F = ∅ for
all F , F ∈ F where  ≠  . An example is visualized in Figure 1c.

As a generic solution that can capture dierent orders of de-
pendency at once, the linkage tree FOS model has been intro-
duced [12, 28]. To construct such an FOS, all singleton elements are

648



Fitness-based Linkage Learning and Maximum-Clique Conditional Linkage Modelling for GBO with RV-GOMEA GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

rst included. Then, elements are recursively merged into larger ele-
mentsF , for which the following holds:F , F ∈ F exist ( ≠  ≠ )
such that F ∩ F = ∅ and F ∪ F = F . To decide which F , F

to merge, the Unweighted Pair Grouping Method with Arithmetic-
mean (UPGMA) [16] is commonly used. This method is supplied
with dependency strength information, which can be provided a
priori or can be discovered during optimization, for instance by
measuringmutual information in the population, although this tech-
nique has proven to be ineective in continuous optimization [20].

A linkage tree FOS can be restricted in size from two directions.
From the root of the tree, its elements can be bounded to amaximum
element size, which is then referred to as a bounded linkage tree [12].
From the leaves of the tree upward, the model can exclude smaller
elements which are better solely modelled jointly, referred to as a
pruned linkage tree [20]. This pruning is iteratively performed until
there exist no F , F , F ( ≠  ≠ ) for which the following two
conditions hold: F ∪ F = F , and all variables in F are jointly
dependent. If a group of elements exists for which this holds, only
the largest element F is preserved, since this element is considered
tomodel the joint dependencies suciently. An example of a pruned
linkage tree FOS is visualized in Figure 1d.

Algorithm 1 RV-GOMEA
1: procedure RV-GOMEA( ,, )
2: P ← InitializeAndEvaluatePopulation(  ,)
3: F ← InitializeLinkageModel(  )
4: while ¬TerminationCriterionSatisfied( ) do
5: P0 ← elitist

6: for F ∈ F do ⊲ In random order
7: S ← ⌊⌋ best in P
8:  ({ :  ∈ F } ) ← MaxLikelihoodEstimate(S)
9: for  ∈ P1...−1 do
10: GenepoolOptimalMixing(  , , F )
11: AdaptiveVarianceScaling(F )
12: for  ∈ P1...AMS do
13: AnticipatedMeanShift( )
14: for  ∈ P1...−1 do
15: if NIS( ) > NISMAX then
16: ForcedImprovement( )

Algorithm 2 Gene-pool Optimal Mixing
1: procedure GenepoolOptimalMixing( , , F )
2:  ← F ⊲ Retain original
3: F ←  ({ :  ∈ F } )
4:  ′ ← Evaluate(,  , F ) ⊲ Partially evaluate, if possible
5: if  ′ <  or U < accept then  ←  ′
6: else F ← 

3.2 Gene-pool Optimal Mixing
The variation operator of RV-GOMEA is a mechanism called Gene-
pool Optimal Mixing (GOM). In GOM, variation is applied to solu-
tions based on the dependencies encoded in the linkage model F .
GOM is applied at each generation, to each solution in the popu-
lation, and for each FOS element F . At each application of GOM,
new values are sampled for the variables contained in F , inserted
into a parent solution, and evaluated (by partial evaluation). If this

modication improves the parent solution’s objective value, it is ac-
cepted. Otherwise, it may still be accepted with probability accept,
or else be rejected, in which case the parent’s genotype is restored.

The GOM operator uses a sampling model to sample new vari-
ables. This work uses both the AMaLGaM sampling model [6] and
the conditional RV-GOMEA sampling model [11] (described in Sec-
tion 3.3). Previous work has shown that also models from other
EAs, such as CMA-ES [17], can be integrated in GOM [9].

The AMalGaM-based sampling model is based on a Gaussian
distribution that is estimated using maximum likelihood based
on selected solutions S and is adapted to prevent premature con-
vergence as well as better alignment with the direction of largest
improvement in the landscape. These adaptation details are ex-
plained in further detail in [12]. Here, we include pseudocode of
RV-GOMEA, in Algorithm 1, and the GOM operator in particular,
in Algorithm 2. This denition of RV-GOMEA follows the deni-
tion in [11] by performing GOM at each FOS element iteration, as
opposed to each generation [12].

3.3 Conditional Gene-pool Optimal Mixing
The above described marginal product and linkage tree FOS mod-
els have shown to lead to good performance of RV-GOMEA on
problems without overlapping dependencies [12]. However, many
real-world GBO problems have overlapping dependency structures.
Previous work has indicated that problems with increasing de-
pendency strength are increasingly dicult to optimize with such
linkage models [11], as local GOM steps on certain structures can
break linkage with other, overlapping structures. Directly modeling
the network of dependencies between variables may be key to more
eciently optimizing such overlapping structures.

3.3.1 Bayesian andMarkov network models. Dependency networks
such as Bayesian networks have been included in Estimation of Dis-
tribution Algorithms (EDAs) before, for both discrete [15, 21, 22]
and real-valued problems [1, 7]. Bayesian network-based EDAs
such as the Bayesian Optimization Algorithm (BOA) [21, 22] learn
a network from a selected set of solutions, using a quality met-
ric such as Bayesian Information Criterion (BIC) score. Similarly,
Markov networks have also been used in EDAs [27]. Examples for
discrete optimization include the Distribution Estimation Using
Markov networks (DEUM) algorithm [25], the Markovianity-based
Optimization Algorithm (MOA) [26], and the Markovian Learning
Estimation of Distribution Algorithm (MARLEDA) [4]. The Gauss-
ian Markov Random Field EDA (GMRF-EDA) [18] is an example of
a real-valued EDA using a factorized Gaussian Markov network.
However, it is focused on modeling disjoint dependency structures.

In RV-GOMEA, a conditional linkage model has been recently
introduced which derives a Gaussian Markov Field (GMF) from the
VIG of a problem and estimates a conditional distribution based on
a GMF traversal and factorization. This strategy has proven to be
eective when optimizing problems with overlapping dependency
structures [11]. Multiple variants of this model exist, featuring
dierent factorizations of the GMF and being applied at dierent
levels of GOM optimization. These variants are described below.

3.3.2 GMF factorization methods. Two factorization methods have
been proposed within RV-GOMEA. Both conduct a breadth-rst
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traversal of the GMF to obtain a factorized conditional distribu-
tion. The rst, UCond, eectively translates the GMF directly to a
Bayesian network, modelling ℓ factors that represent a conditional
density function of one variable, given a set of parent variables
it depends on. Dependent variables encountered during traversal
are recorded for later conditional sampling, in the direction that
traversal occurred. The second, MCond, conducts a clique search
during traversal, merging groups of unvisited variables which are
all connected by edges in the VIG and all depend on the same set
of dependent variables into clique elements [11]. This clique search
eectively nds a marginal product partitioning of the VIG, with
each found clique being modelled jointly afterward. These cliques
are often not maximal, since their members need to be fully con-
nected and conditioned on the same dependent variables. Of note:
the conditional distributions dened by the MCond and UCond
factorizations are probabilistically identical, i.e., they encode the
same conditional distribution over all variables, but dierent FOS
elements are identied for GOM.

An example MCond factorization is visualized in Figure 2a, next
to the derived factorized conditional distribution, in Figure 2b. This
factorization encodes the following probability distribution:

 ( ) = 

 {0,1,2,4}


∗ 


 {3}

  {0,1,4}


∗ 

 {5}

  {1,2,3,4}

∗ 


 {6}

  {0,3,4,7}


∗ 

 {7}

  {1,3,4,5}

∗ 


 {8}

  {2,4,5,6,7}


3.3.3 GOM optimization levels. The derived factorized conditional
distribution can be leveraged at dierent levels. At the Factorized
GOM (FG) level, both conditional FOS elements and non-conditional
FOS elements, pertaining to respectively conditional dependencies
and joint dependencies are identied. In the factorized distribution
above, each factor corresponds to an FOS element. This results
in ℓ conditional FOS elements in the UCond factorization, and at
most ℓ elements in the MCond factorization. GOM is applied to
each FOS element separately. For a non-conditional FOS element,
GOM is equivalent to standard GOM as outlined in Section 3.2. For
a conditional element (i.e., conditional GOM), GOM is essentially
the same, but samples from the conditional distribution where the
values for the variables being conditioned on are taken from the
solution that is undergoing GOM.

At the Generational GOM (GG) level, the entire factorized con-
ditional distribution, consisting of all variables, is modelled as one
conditional FOS element, and sampled in one forward sampling step.
Although this requires a full solution evaluation, this step can repair
linkages that GOM steps on smaller FOS elements may have broken,
because each GOM step ends with a separate selection step. For
this reason, a Hybrid GOM (HG) mode has been proposed, which
combines both levels. This performed best on various optimization
problems [11].

In previous work, the order in which FOS elements of the FG and
GG levels are optimized within one generation of HG was random.
In this work, we have adapted this order to always perform GOM at
the GG level rst, followed by GOM on all smaller FG elements, in
random order. This is based on preliminary experiments, showing a
slight improvement in performance across the problems considered
in this paper if the full GG element is used rst.

0 1 2

3 4 5

6 7 8

(a) Original MCond
factorization

0 1 2

3 4 5

6 7 8

(b) Derived conditional
distribution

Conditional dependencies
are indicated by arrows,
and the joint dependencies
of group{0,1,2,4} in green

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

(c) Clique seeding factorization (split in
two, for legibility)

0 1 2

3 4 5

6 7 8

(d) One derived local
conditional distribution

Figure 2: VIG factorizations and derived conditional distribu-
tions, on the REBGrid problem (ℓ = 9). Shown are the original
MCond partitioning technique (starting from randomly se-
lected vertex 8), in (a) and (b), and the proposed clique seeding
technique, in (c) and (d).

4 LEARNING THE PROBLEM STRUCTURE
In some real-world problems, the VIG of a problem may not be
known. Even if it is, not all direct dependencies encoded by a generic
sub-function denition I may actually be of sucient importance
during optimization, making it desirable to learn the VIG during
optimization. In this section, we describe how variable dependencies
can be learned within RV-GOMEA, and can then be used to learn
a VIG and an FOS linkage model. Finally, a new linkage model is
proposed to better reect overlapping dependency cliques.

4.1 Learning Variable Dependencies
To construct a VIG during optimization, information about direct de-
pendencies between variables is needed. Previous work has shown
that this information can be collected in a Dependency Strength
Matrix (DSM) of size ℓ × ℓ , using tness dependency strength tests
between variables [20]. A DSM is constructed by taking each pos-
sible pair of variables ,  ∈ I and testing the strength of their
dependency. A dependency is present when |Δ − Δ,  | ≥  for
some small  , with Δ and Δ,  being dened as:

Δ = ( () | =  ,   =   ) (2)
− ( () | =  +  ,   =   ),

Δ,  = ( () | =  ,   =   +   ) (3)
− ( () | =  +  ,   =   +   ),

where  and are chosen randomly such that  and   stay within
function bounds. The dependency strength is then dened as:

,  =


1 − Δ,

Δ
, if Δ ≥ Δ, 

1 − Δ
Δ,

, otherwise.
(4)

Although the strengths in a DSM are not subject to an absolute
order, relative dierences between ,  and , can be compared.
Dependencies with a strength below a cut-o value of  = 10−6 are
considered negligible and assigned a strength of 0.
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Figure 3: Required corrected number of evaluations for dif-
ferent linkage models on   (, ,  , = 2,  = 1) with ℓ = 20,
as determined by bisection. Themedian of 5 repeats is shown.

Constructing a complete DSM requires (ℓ ∗ (ℓ − 1))/2 tness
dependency tests. In the absence of partial evaluations, this requires
a quadratic overhead of function evaluations to perform, as each test
consists of four evaluations. Partial evaluations can make it possible
to decrease this overhead to a linear order [20], depending on the
size of sub-functions. These tness dependency test evaluations
could all be performed at the start, but as many real-world GBO
problems can be assumed to have sparse DSMs, it is desirable to
spread this computational load across time, thereby biasing this
method slightly towards problems which are not fully dependent.
Moreover, dependency strengths may change during optimization,
further motivating an incremental dependency learning method.
Such a method has been proven eective at discovering DSMs
within RV-GOMEA during optimization [20]. Within this method, a
scheduling mechanism is used to limit the number of simultaneous
checks and to pause temporarily if no dependencies are found. An
example of a DSM constructed from tness dependency tests, using
this method in RV-GOMEA, can be seen in Figure 1a.

In this work, we remove one of the pause conditions of the
scheduling mechanism. In the previously proposed method, if no
dependencies are found in one test iteration (consisting of ℓ depen-
dency tests), an exponentially sized dependency searching pause is
added to the schedule. Preliminary experiments have indicated that
this can lead to premature pauses on problems with very sparse
DSMs and weak dependencies, as an unfortunate random draw of
tested variable pairs can result in zero dependencies being found
and the discovery being paused. Removing this condition prevents
these premature pauses while not signicantly increasing the learn-
ing overhead for problems without dependencies. The other pause
condition, which tests overall dependency discovery performance
across a longer interval, is kept in place.

4.2 Learning a VIG from a DSM
We assume that each non-zero dependency strength in the learned
DSM represents a direct dependency. The direct dependencies de-
rived in this way encode a VIG, which can then be used to build
conditional models such as the MCond-HG model described in Sec-
tion 3.3. In this work, we rebuild the VIG in every generation in
which the DSM has changed, meaning that the VIG improves in
quality along with the DSM, as the optimization progresses.

A preliminary experiment is performed to explore the eec-
tivity of this method on problems with variable dependencies of
increasing strength. We consider the Rotated Ellipsoid Block (REB)
problem function, which is dened in Equation 8. This problem is

dened using blocks of the well-known rotated ellipsoid problem, in
which every variable is a dependent on every other variable. These
sub-functions then may overlap, depending on the parameters of
the problem. As the rotation angles and condition numbers of the
ellipsoidal sub-functions increase, the strength of dependencies
between variables, and thereby the problem diculty, increases. In
Figure 3, we show the required number of evaluations to solve this
problem to a value of 10−10 with ℓ = 20, using a bisection process
described in Section 5.2. The gure compares a tness-based linkage
tree FOS model [20], a tness-based conditional MCond-HG model
(this work), and a full FOS model as baseline. Both the linkage tree
and conditional model can successfully be constructed from an
incrementally constructed DSM, but it is clear that the conditional
model scales far better than the linkage tree model. The full model
requires a stable number of required evaluations, regardless of the
dependency strengths. However, this model is known not to scale
well to higher dimensions, as well as not to exploit the GBO nature
of the problem at all.

4.3 Detecting Overlapping Structures
The MCond-HG linkage model is constructed using a breadth-rst
traversal partitioning strategy. If conditional dependencies are disre-
garded, this process produces a (non-overlapping) marginal product
FOS model, even if there are overlapping cliques of jointly depen-
dent variables. The disjoint nature of this model is needed for a valid
forward sampling process of the factorized conditional distribution,
but leads to a number of overlapping cliques not being directly
modelled. In GBO problems with sparse DSMs, it may be benecial
to model these overlapping cliques, independently, to treat all clique
sub-structures, equally. Of note: this is the case because the GOM
variation operator is used that tests for an improvement after each
sampling step, which can therefore break clique sub-structures not
modelled as such. At the GG optimization level, the MCond and
UCond factorizations are probabilistically equivalent.

We propose an amended version of the MCond-HG model by
replacing the FG step with a potentially overlapping clique FOS
model. This model is built using a technique we call clique seeding.
This technique starts with a set of breadth-rst clique searches,
with independent traversals started from each variable. For each of
these searches, the maximal candidate clique C′

 surrounding the
start-variable is kept. From all candidate cliques, any cliques C′


are removed for which C′

 = C′
 holds for another candidate clique

C′
 . The nal set of cliques is used as the conditional FOS model

for the FG step, with the parent variables of the clique being all
variables outside the clique that any variable inside the clique has a
dependency with. Each maximal clique with its dependencies eec-
tively forms a local conditional probability distribution. Although
this can result in more dependencies being modelled than strictly
necessary (there may be variables on which only some, but not all
clique members depend on), this technique ensures that all maximal
cliques are modelled. This eectively increases the probability that
all variables pertaining to a single sub-function are jointly sampled,
which may be very important to achieve improved eciency in
case of sub-functions with strongly dependent variables.

In Figure 2c, we show an example of themaximal cliques found by
the new clique seeding technique, and compare this to the disjoint
cliques found by the existing partitioning technique (see Figure 2a).
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Table 1: Overview of compared linkage models. Models
marked with an asterisk (∗) are proposed in this work.

Linkage model Description

Univariate Each variable modeled independently
Static-UCond-HG Pre-dened conditional univariate FOS with

a full forward sampling step [11]
Static-MCond-HG Pre-dened conditional marginal product

FOS with a full forward sampling step [11]
Static-MCond-HG-CS (∗) Static-MCond-HG with a clique-seeded FOS
FB-LT Fitness-based bounded, pruned linkage

tree [20]
FB-UCond-HG (∗) Fitness-based conditional univariate FOS

with a full forward sampling step
FB-MCond-HG (∗) Fitness-based conditional marginal product

FOS with a full forward sampling step
FB-MCond-HG-CS (∗) FB-MCond-HG with a clique-seeded FOS

The found maximal cliques are:
 {0,1,3,4} , {1,2,4,5} , {3,4,6,7} , {4,5,7,8} ,

 {0,1,2,4} , {2,4,5,8} , {4,6,7,8} , {0,3,4,6} , {1,3,4,5,7} .

The derived local conditional distribution of one maximal clique is
shown in Figure 2d. In RV-GOMEA, we use the new clique seeding
method alongside the existing partitioning technique. The GG step,
which samples from the factorized conditional distribution, still
uses the original MCond factorization, as this is guaranteed to be
consistent across all variables. This global sampling step can serve
to restore lost linkage where overlaps exist.

5 EXPERIMENTS
In this section, we evaluate and compare the performance of RV-
GOMEA with the proposed learned conditional linkage models
to RV-GOMEA with previously proposed models. Table 1 lists all
linkage models, which include generic models, static (pre-dened)
models, and tness-based (learned) models. We use the UCond-HG
and MCond-HG variants as representatives of static conditional
linkage models [11] and the pruned linkage tree as a representative
of tness-based non-conditional models [20].

We also compare the performance of RV-GOMEA to VkD-
CMA [2, 3], which is a state-of-the-art optimization method for
continuous optimization problems. VkD-CMA is also suited for
problems with a sparse DSM, but cannot leverage partial problem
evaluations due to its design.

5.1 Benchmark Problems
We conduct this comparison on a set of benchmark problems that
allow for partial evaluations. Both separable and non-separable
problems are included, to verify if the tness dependency detection
mechanism included in several linkage models is robust to both the
absence and presence of separable sub-structures.

As a decomposable baseline problem, we consider the well-
known Sphere function. This problem is dened as:

 Sphere () =
ℓ−1∑
=0


2


. (5)

The second problem we consider is the Rosenbrock function:

 Rosenbrock () =
ℓ−2∑
=0


100(+1 − 2 )2 + (1 −  )2


. (6)

The remaining problems are all derived from rotated ellipsoid
block (REB) functions, dened as:

 Ellipsoid (, ) =
| |−1∑
=0


10∗/( | |−1)2


, (7)

 REB (, ,  ,, ) =
⌈ | |−

 ⌉−1∑
=0

 Ellipsoid ( ( [ :+−1] ), ), (8)

where  denes the condition number of the REBs,  the rotation
angle with which they are rotated,  their size, and  the stride 1 ≤ 

with which they are spaced. The rotation function  () rotates 
by  degrees around the origin, counter-clockwise.

REB functions provide us with ne-grained control over the
degree of overlap and diculty of optimization problems. Large
condition numbers  and rotation angles  induce strong dependen-
cies between variables grouped together by blocks.

We derive the following problem functions from   :

 REB2Weak () =  REB (,  = 1,  = 5, = 2,  = 1), (9)

 REB2Strong () =  REB (,  = 6,  = 45, = 2,  = 1), (10)

 REB5NoOverlap () =  REB (,  = 6,  = 45, = 5,  = 5), (11)

 REB5SmallOverlap () =  REB (,  = 6,  = 45, = 5,  = 4), (12)

 REB5LargeOverlap () =  REB (,  = 6,  = 45, = 5,  = 1) . (13)
The OSoREB problem, which previous work has optimized using

the FB-LT linkage model [20], is also included:

 OSoREB () =  REB (,  = 6,  = 45, = 5,  = 4)
+  REB ( [4: | |−1] ,  = 6,  = 45, = 2,  = 5) .

(14)

To test heterogeneous block strengths, we also dene:

 REB2Alternating () =  REB (,  ,  , = 2,  = 1), (15)

 REB5Alternating () =  REB (,  ,  , = 5,  = 4), (16)
with  = 1,  = 5 if  is even, otherwise  = 6,  = 45,

 REB5DisjointPairs () =  REB (,  = 6,  = 45, = 5,  ), (17)
with  = 4 if  is even, otherwise  = 5.

Finally, we consider a more tightly connected REB function,
where variables are arranged as vertices  ∈  in a square grid
of size

√
ℓ × √

ℓ . Horizontally and vertically neighboring vertices
( ∈  ()) are connected by an edge. This problem is dened as:

 REBGrid () =
∑
∈

 Ellipsoid (45 ({}∪ () ), 6) . (18)

5.2 Experimental Setup
On all problems, the optimal solution is the origin. An initialization
range of [−115,−110] is used, as this range does not bracket the
optimum. We use an evaluation budget of 107 full evaluations and
a computation time budget of 3 hours. Whenever either of these
budgets is exhaustedwithout nding an individual with an objective
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Figure 4: Heatmaps depicting a part (I[0:19] × I[0:19] ) of the computed DSM for each tested problem at a dimensionality ℓ > 30.
Variable pairs which are deemed independent are depicted in white.

value smaller than or equal to the value-to-reach (10−10), the run is
considered failed. If premature convergence occurs within either of
these budgets, the population is restarted with the same size. In the
interest of reproducibility, all non-deterministic factors are seeded.
Source code of the modied RV-GOMEA version, implemented in
C++, is provided on GitHub1.

For each experimental conguration (consisting of a problem, a
linkage model, and a dimensionality) we conduct a bisection search
for the population size that yields the lowest expected number of
evaluations. During this search, each tested population size is re-
peated 30 times. As some of these repeats may fail, we use as a
metric the mean required number of evaluations of all successful
repeats, divided by the fraction of repeats that are successful. We
call this metric the corrected number of evaluations. The bisection
search is limited to population sizes between 8 and 2048, and starts
at a population size of 17 + 3 ∗ ℓ1.5, following a previously estab-
lished guideline for the full FOS linkage model [6]. The size is then
decreased exponentially while the required number of evaluations
also monotonically decreases, to form a bracket for bisection. We
repeat this bisection 5 times and report the median outcome.

We perform scalability experiments by testing four dimensional-
ities: 10, 20, 40, and 80. On problems with additional dimensionality
constraints (e.g., REBGrid), we choose a close compatible dimen-
sionality. As bisection on large-dimensional problems can require
large amounts of computation time, the population sizes for two
larger dimensionalities (160 and 320) are estimated after all bisec-
tions have completed. We use linear extrapolation on a log-log scale
to estimate the (non-decreasing) slope of required population sizes.
Using this slope, we estimate population sizes for the two larger
dimensionalities and execute 5 sets of 30 repeats for each.

6 RESULTS
We visualize the DSMs of all problems in Figure 4, as computed
during optimization. As tness dependency accuracy can deterio-
rate near convergence, the shown DSMs are automatically selected
from a generation before convergence. All shown dependencies are
consistently detected across 30 runs, albeit with dierent relative
strengths. While we only show DSMs of one run here, the DSMs
1https://github.com/gandreadis/conditional-rv-gomea

of another run and the average over 30 runs are included in the
supplementary material. We conclude from visual inspection that
the problem structure is successfully learned during optimization.

In Figure 5, we show the scalability of the corrected mean num-
ber of evaluations needed by VkD-CMA and the compared linkage
models in RV-GOMEA. The corresponding population sizes, and
the outcomes of statistical signicance tests, are included in the
supplementary material. We nd that the tness-based conditional
linkage models scale similarly to their static counterparts, with only
little overhead and with resilience against the absence of dependen-
cies. As expected, on separable problems such as REB5NoOverlap,
the MCond-HG models and their clique-seeding variants perform
equally well, as their models are equivalent. On multiple prob-
lems with overlapping structures and heterogeneous dependency
strengths, such as REB5Alternating and REB2Alternating, the pro-
posed static clique seeding model scales better than existing static
models ( < 0.01). On problems with less distinct structures, such
as REBGrid and REB5LargeOverlap, the dierent conditional models
scale similarly. Across the large majority of problems, conditional
linkage models outperform VkD-CMA at scale.

7 DISCUSSION
The results of this scalability analysis clearly show it is possible
to learn the structure of a GBO problem while optimizing it, with
little overhead. Moreover, RV-GOMEA with the newly introduced
clique seeding technique can scale better on several problems than
RV-GOMEA with the previously introduced conditional linkage
models. However, there does not appear to be one clearly superior
linkage model for all dierent dependency structures. This raises
the question of how to choose the appropriate linkage model for a
particular problem, especially if its structure is not known a priori.

One characteristic which may inform the choice of linkage
model could be the relative strengths of connected dependency
structures. Clear dierences can be observed on the three REB2
problems, which dier only in their dependency strengths:
On REB2Weak and REB2Strong, both featuring homogeneous
dependency strengths, scalability is similar for most linkage
models, while on REB2Alternating, where strong and weak blocks
are interleaved, clique seeding models outperform the other
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Figure 5: Results of scalability experiments for the tested benchmark problems and optimization approaches at dierent
dimensionalities, as determined by bisection. The mean over 5 repeated bisections is shown.

models. Similar observations can be made on REB5Alternating
and REB5SmallOverlap. These dierences could be explained by
the diering FOS models: whereas an MCond factorization may
capture only some strong blocks directly as FOS elements due to
unfortunate partitioning, the clique seeding technique models all
blocks separately. In future work, the distinctness of dependency
structures, i.e., the heterogeneity of their strengths, could therefore
be an indicator for automatic linkage model selection. Furthermore,
dependency strength could be modelled in a probabilistic fashion,
e.g., with a dynamic cut-o dependency strength value.

The experiments in this work are limited to articial bench-
mark problems. Although these allow for ne-grained control over
dependency structures, many real-world problems feature less ho-
mogeneous structures. One example is the medical deformable
image registration problem [5], which RV-GOMEA has shown to be
capable of eciently optimizing. Currently, the FOS model used in
that work is a generic, non-conditional model based on locality as
a heuristic for dependency strength. The tness dependency learn-
ing and conditional modelling techniques presented here therefore
would likely ensure a more tailored and ecient linkage model.

Finally, in this work we use an existing technique for tness
dependency learning, which is based on pairwise variable checks.
A promising direction of future research could be the incorporation
of more ecient, hierarchical tness-dependency learning tech-
niques [19], potentially further reducing the learning overhead.

8 CONCLUSIONS
In this paper, we set out to extend RV-GOMEA’s excellent perfor-
mance on GBO problems with strong overlapping dependencies,

to the case where the VIG is not known beforehand. This was ac-
complished by applying tness-based linkage learning techniques
to construct the VIG during optimization, and deriving conditional
linkage models from this VIG. Moreover, we proposed a new link-
age modeling technique for overlapping structures. The eciency
of these learned conditional linkage models was compared to static
linkage models and learned non-conditional linkage models in RV-
GOMEA, and to VkD-CMA, a state-of-the-art algorithm for contin-
uous optimization. This comparison was conducted on benchmark
GBO problems with varying dependency structures.

Results of this comparison showed that the learning of a condi-
tional linkage model can be done accurately and with negligible
overhead. On the majority of problems, learned conditional linkage
models scaled equally well as, or better than VkD-CMA. Further-
more, the newly introduced clique seeding technique demonstrated
superior performance to existing partitioning techniques on several
problems. The proposed linkagemodels can be applied to real-world
optimization problems where the VIG is not known beforehand.
This can also give valuable insights into problem structure, facili-
tating knowledge transfer between problem instances.
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