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ABSTRACT
Paragangliomas are rare, primarily slow-growing tumors for which
the underlying growth pattern is unknown. Therefore, determining
the best care for a patient is hard. Currently, if no significant tumor
growth is observed, treatment is often delayed, as treatment itself
is not without risk. However, by doing so, the risk of (irreversible)
adverse effects due to tumor growth may increase. Being able to
predict the growth accurately could assist in determining whether
a patient will need treatment during their lifetime and, if so, the
timing of this treatment. The aim of this work is to learn the gen-
eral underlying growth pattern of paragangliomas from multiple
tumor growth data sets, in which each data set contains a tumor’s
volume over time. To do so, we propose a novel approach based on
genetic programming to learn a function class, i.e., a parameterized
function that can be fit anew for each tumor. We do so in a unique,
multi-modal, multi-objective fashion to find multiple potentially in-
teresting function classes in a single run. We evaluate our approach
on a synthetic and a real-world data set. By analyzing the resulting
function classes, we can effectively explain the general patterns in
the data.
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Figure 1: Visualization of function class learning. The global
data set (black dots) consists of multiple local data sets (col-
ored dots). A function class 𝑓 (𝑥, 𝑐FC) = 𝑐FC · sin(𝑥) is learned
that fits well with each local data set using a different value
for function class constant 𝑐FC.

1 INTRODUCTION
Paraganglioma are a slow-growing type of tumor. Predicting the
growth of these tumors can be of great clinical help. They can
cause serious complications, such as cranial nerve dysfunction and
hearing loss. However, if the tumor stays small over the patient’s
lifetime, the likelihood of these complications is small. Therefore,
treatment is often delayed until significant growth is detected or un-
til the patient starts experiencing complaints. However, at that time,
these complications might have become irreversible while they may
have been avoided by treating the patient earlier. Therefore, accu-
rately predicting the growth of this type of tumor, possibly for the
rest of the patient’s lifetime, could be of great clinical value since
it could support the decision of whether or not, and when, to give
treatment. Previous work has fit known growth functions to tumor
growth data [12], but is limited in the number of functions consid-
ered. In this work,we provide a novel approach to learn an overall
growth function from multiple data sets that can be specialized to
each individual data set.

In machine learning, we often think of single data sets for which
to learn a single model. In practice, however, data may actually con-
sist of multiple data sets, for instance, separate patients for which
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multiple measurements exist, physics experiments from different
locations, or multiple measurements over time in general. Similar
mechanisms might underlie these different, yet related data sets. We
assume that this is also the case for the growth of paragangliomas:
tumors that differ in characteristics, such as size and location, are
assumed to exhibit a similar growth pattern or one of a limited
number of potential patterns. We refer to learning one or more
general pattern from the global data set, where the local data sets
have different constants pertaining to these patterns, as function
class learning. We visualize this concept in Figure 1.

When combined with explainable AI techniques, function class
learning can be considered a unique way of performing explainable
meta-learning. Understanding the overall patterns helps us under-
stand the underlying system, while specific constants for specific
scenarios, patients, or local data sets, help us make the actual pre-
dictions in general. We argue that function class learning is more
interpretable than creating a separate function for each local data
set and more effective than creating a single (unparameterized)
function for the global data set at once. When learning a separate
function for each local data set, we may find many (potentially
overfit) different functions, which makes it difficult to see a gen-
eral pattern. Additionally, when training a separate function for
each data set, there is no explicit drive to learn general overarching
patterns. When learning a single function for the global data set,
it is harder to interpret the function’s behavior per specific local
data set. Furthermore, this most likely compromises performance
on specific local data sets in favor of overall performance (imagine
fitting a single sine function to the global data set that joins all local
data sets).

In this work, we propose an algorithm for function class learning
based on model-based evolutionary algorithms. Specifically, we use
the Genetic Programming Gene-pool Optimal Mixing Evolutionary
Algorithm (GP-GOMEA) [30] to evolve the function class. Recent re-
search suggests it is currently Pareto non-dominated with respect to
alternative symbolic regression algorithms in the trade-off between
size and prediction accuracy of found expressions on the SR-Bench
benchmark [17], balancing between the most accurate algorithm
and the one that delivers the smallest expressions. Since smaller
functions are generally considered to have a higher chance of being
interpretable, this property of GP-GOMEA is also of interest in this
work. In GP-GOMEA, we introduce the Function Class Constant,
𝑐FC, as a new terminal type when performing symbolic regression.
This terminal is optimized for each local data set separately during
training, such that the function class is tuned to each local data
set. In order to tune these 𝑐FCs, we use Real-Valued GOMEA (RV-
GOMEA) [1] since it has been shown to be a powerful optimization
tool for real-valued variables that is less prone to getting stuck in a
local optimum than methods such as gradient descent. The general
training cycle of the proposed algorithm is visualized in Figure 2.

2 RELATED WORK
Most prior work acknowledges the slow-growing nature of para-
gangliomas but does not describe the underlying growth pattern [2,
18, 21, 22]. Other work about paragangliomas in the head and neck
area does hint somewhat at a certain growth pattern, but presents
limited evidence [12–14]. In [14], a higher percentage of tumors
were observed to be growing when the tumor was of a size in

Figure 2: The Function Class GOMEA learning cycle. First,
we initialize the population of function classes. Then, we
calculate the fitness for each individual by tuning the func-
tion class constants (in orange) to each data subset by using
RV-GOMEA. Next, we perform variation and selection in the
typical optimal mixing way of GOMEA (illustrated in blue),
and calculate the fitness again to test whether changes should
be accepted.

the mid-range (0.8 − 4.5cc). These observations could suggest a
biphasic growth pattern, where the tumor growth first increases
and later on decreases. However, they do not report about taking
into account a possible selection bias that could be at play here
since larger tumors are more likely to be treated. In [13], a model
is introduced to estimate the chance of growth. However, in this
work the model’s predictive abilities are not tested. More closely to
the work presented here, in [12], known growth expressions are
fitted to tumor growth data sets. They conclude that s-shaped func-
tions better fit the growth data. However, given their low number
of measurements per tumor (three to fit the expression and none
for validation or testing), a bias towards functions with a higher
degree of freedom of the expression could be at play. From this,
we conclude that more research is needed to determine the under-
lying growth pattern of paragangliomas. We propose to do so by
leveraging function class learning.

In function class learning, a functional is learned, which is a
function that returns a function. Most work on functionals in ma-
chine learning focuses on deriving functions from known function-
als [3, 6, 23]. Recent work on evolving symbolic density functionals,
SyFes, uses a Genetic Algorithm (GA) to evolve functionals utilizing
regularized evolution [20]. The mechanisms in SyFes work similarly
to those in our approach; symbolic expressions are evolved with
evolutionary algorithms, and the parameters in these expressions
are fitted to related data sets. However, SyFes learns separate ex-
pressions for each of the related data sets. Interestingly, although
they find functions of a known functional, their work does not
focus on finding or analyzing new functionals. As a result, the
better-performing functions presented in their work are studied
separately and are not paired with a functional form, which we
argue could hold unique overarching insight.

Meta-learning is a term regularly used in machine learning [26,
29, 31], and although it commonly refers to other types of methods
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than proposed in this work, there are some parallels. Meta-learning
in machine learning often refers to learning how to learn, such as
learning how to learn to set the hyper-parameters or extract fea-
tures. Hyper-parameter learning, for example, includes Neural Ar-
chitecture Search (NAS) [7]. NAS aims to optimize the structure of
the neural network (e.g., with Evolutionary Algorithms (EAs)) and
another optimizer to optimize the actual parameters of the network
(e.g., gradient descent). The main difference between these methods
and our method is that we aim to learn meta-knowledge over re-
lated data sets, while meta-learning in learning hyper-parameters
(or meta-parameters) aims to learn how to learn the model.

In recent years, a connection between eXplainable Artificial
Intelligence (XAI) and Symbolic Regression (SR) has been made
in multiple works [8, 9]. The main reason for this connection is
that it is possible to evolve small expressions with SR, which may
improve interpretability or knowledge discovery. In this paper, we
propose a way to perform SR to learn over multiple related data
sets rather than learning one model per data set. We do so utilizing
GP-GOMEA, which, according to SR Bench, proved to be able to
find relatively compact, yet accurate solutions. Additionally, we
argue that function class learning can improve interpretability for
related data sets, as it does not require interpreting one expression
per local data set, but rather one function class per global data set.

Multiple works combine GP with real-valued optimization to
find constants [5, 15, 16, 28]. The method presented in this paper
performs constant optimization as well. A key difference, however,
is that we optimize a single SR expression, while we optimize con-
stants anew for each local data set, using a novel fitness function.
This enables us to learn overarching function classes over the global
data set, while also yielding solutions optimized for the local data
sets.

3 THE GOMEA FAMILY OF EAS
In this section, GOMEA, a family of model-based evolutionary algo-
rithms is discussed. First, we explain the concept behind GOMEA.
Then, we explain the specific variants of GOMEA that we use in
Function Class GOMEA.

3.1 Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA)

GOMEA is a model-based EA that is effective in many domains such
as discrete optimization, real-valued optimization, and GP [1, 19, 27,
30]. GOMEA differs from classic EAs in that it uses a linkage model
that aims to capture the interdependencies within the genotype
for a specific problem. This information is used during variation to
prevent building blocks (or partial solutions) from being disrupted
and to mix these blocks to create better solutions effectively.

GOMEA uses a fixed-length string to represent the genotype
such that a specific location in the string always refers to the same
variable in the problem. In a so-called Family Of Subsets (FOS)
knowledge model linkage information is captured, in the form of
subsets of genes (string indices) that are assumed to be linked.

If the user knows linkage information a priori, they can provide
it to GOMEA. Otherwise, it is learned from the population dur-
ing evolution. To this end, Mutual Information (MI) is often used
to measure linkage among gene pairs. A so-called Linkage Tree

(LT) is built to represent variable dependence relations hierarchi-
cally. Computing the joint MI is costly. Therefore, GOMEA uses an
algorithm to approximate joint MI called UPGMA [10].

In GOMEA, every individual in the population undergoes varia-
tion every generation through Gene-pool Optimal Mixing (GOM)
as described in Algorithm 1. GOM uses the information in the FOS
to replace linked genes at the same time. Suppose individual P𝑖
undergoes GOM. First, P𝑖 is cloned into offspring O𝑖 (line 3). Then,
each of the subsets in the FOS is considered in a random order
(line 4). For each FOS subset, a donor is randomly selected (line 5).
This selection can either be directly from the population, as with
GP-GOMEA, or by sampling from a distribution learned from the
population, as with RV-GOMEA. GOM replaces the values of the
genes in O𝑖 with the donor’s genes, but only at the positions speci-
fied by the FOS subset (line 6). The change is kept if a replacement
does not result in a worse fitness (lines 7-13).

Algorithm 1 : GOM(Individual P𝑖 , Population P, FOS F )
1: B𝑖 ← P𝑖 ⊲ where B𝑖 is a backup.
2: 𝑓B𝑖 ← 𝑓P𝑖
3: O𝑖 ← P𝑖
4: for F𝑗 ∈ F do
5: D ← RandomDonor(P)
6: O𝑖 ← ReplaceAtIndices(O𝑖 ,D, F𝑗 )
7: 𝑓O𝑖 ← ComputeFitness(O𝑖 )
8: if 𝑓O𝑖 ≤ 𝑓B𝑖 then ⊲ minimization is assumed here.
9: B𝑖 ← O𝑖
10: 𝑓B𝑖 ← 𝑓O𝑖
11: else
12: O𝑖 ← B𝑖
13: 𝑓O𝑖 ← 𝑓B𝑖

After processing all FOS elements, O𝑖 is added to the offspring
set, and the subsequent population member is considered for GOM.
After processing the entire population, the population is replaced
by the offspring.

3.2 GP-GOMEA
GP-GOMEA [30] is a variant of GOMEA used for genetic program-
ming. In GP-GOMEA, individuals are trees that adhere to a tem-
plate with fixed node positions mapped to a fixed-length string.
These trees contain operators and terminals, such as variables and
Ephemeral Random Constants (ERCs). Thereby, the tree represents
a symbolic expression. Applying GOM and learning the FOS can
be done straightforwardly because fixed node positions are used.

3.3 RV-GOMEA
RV-GOMEA [1] is a variant of GOMEA used for real-valued opti-
mization. In RV-GOMEA, each gene represents a real-valued vari-
able of the problem. Again, a FOS is built to learn the linkage of
these genes. For each FOS element containing 𝑘 indices, a 𝑘-variate
normal distribution is estimated using maximum likelihood (which
only considers the best 35% of the population). For the variation of
an individual, the basic principle is to draw new elements from the
previously learned normal distribution.
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Additionally, Forced Improvements (FI), Adaptive Variance Scal-
ing (AVS), and Anticipated Mean Shift (AMS) are applied when
generating new solutions. FI moves solutions out of a local mini-
mum, AVS counterbalances the vanishing of variance as a result of
selection, and AMS speeds up optimization on slope-like regions in
the search space. More details can be found in [1].

Additionally, in RV-GOMEA constraints can be defined which
are prioritized over the fitness value. This allows to search constants
for the local data set such that the constraints are not violated.

3.4 Multi-Modal GP-GOMEA
Multi-Modal GP-GOMEA (MM-GP-GOMEA) [25] is a variant of GP-
GOMEA. In practice, when given the choice, a domain expert may
prefer a model other than the one with the lowest training error for
various reasons. Therefore, MM-GP-GOMEA explicitly searches
for multiple, diverse, models that trade-off different meanings of
accuracy.

Learning a diverse set of solutions is achieved by implementing
a multi-objective, multi-tree approach, i.e., each individual encodes
not one but multiple trees. The two objectives in MM-GP-GOMEA
are 1) the sum of each tree’s Mean Squared Error (MSE) in a multi-
tree and, 2) the diversified error, which is defined as the mean of
the minimum squared errors of the trees in a multi-tree. This multi-
objective optimization approach finds an approximation front of
models with low MSE’s, yet increasingly, as the diversified error
improves, with a different error distribution over the data points.

In this paper, we extend function class learning with this idea,
as further elaborated in Section 4.

4 FUNCTION CLASS GOMEA
In this section, we present our approach to function class learning,
called Function Class GOMEA (FC-GOMEA). We use a variant
of GP-GOMEA to optimize the general structure of a function
class. To specialize a GP-GOMEA solution in our framework (i.e., a
function class) for each local data set separately, we introduce the
function class constant, 𝑐FC, as a possible terminal in the symbolic
expressions. An 𝑐FC operates similarly to an ERC. However, an
𝑐FC does not have a specific value. Instead, it is optimized for each
local data set separately with RV-GOMEA. A function class solution
could for example be 𝑐FC1 × x1 + 𝑐

FC
2 .

To enable learning diverse sets of function classes, we use a
specific variant of GP-GOMEA: MM-GP-GOMEA. This allows us to
learn a Pareto approximation front of sets of function classes that
have different error distributions over the local data sets, optimizing
for the error (MSEglobal) and diversified error (DMSEglobal). We
visualize this concept in Figure 3.With this method, we recover both
function classes that are equally plausible (lowestMSEglobal), as well
as function classes that specialize more towards a subset of local
data sets (lowest DMSEglobal), and options in between. This way
the function classes in the multi-tree individual can, for example,
depending on their objective values, be used independently, where
the user or domain expert chooses the function class from a set of
equally plausible function classes. Or, together, where each function
class is used for a specific local data sets. Additionally, a subset
or the set of the multi-trees (and their function classes) can be
used together as a way to express uncertainty about the actual
underlying class. Here, one may take into account per local data

set which of the function classes should be used per multi-tree. A
similar approach to expressing uncertainty by means of multiple
models is, for example, taken in weather forecasting.

Algorithm 2 : FC-GOMEA(population size 𝑁 )

1: for 𝑖 ∈ {1, . . . , 𝑁 } do
2: P𝑖 ← CreateRandomSolution()
3: EvaluateFCFitness(P𝑖 )
4: while ¬TerminationCriteriaSatisfied do
5: F ← LearnLinkageModel(P)
6: for 𝑖 ∈ {1, . . . , 𝑁 } do
7: O𝑖 ← GOM(P𝑖 ,P, F )
8: P ← O = {O1, . . . ,O𝑁 }

Algorithm 2 shows the outline of the proposed method, which
essentially follows the standard GOMEA outline but with a special-
ized fitness evaluation (see Algorithm 3). We start by initializing
the population, where each tree is built using variables, operators,
and 𝑐FCs (line 2). After initialization, we calculate the fitness for
each solution in the population (line 3). We perform generations
until one of the termination criteria is met (line 4). During each
generation, we learn the FOS (line 5) and perform variation on
each solution with GOM (lines 6 and 7). Finally, we replace the
population with the offspring (line 8).

4.1 Function Class Fitness
Algorithm 3 shows how we calculate the function class fitness of
an individual.

Algorithm 3 : EvaluateFCFitness(Individual O,
Train input variables Xtrain, Validation input variables Xval, Train
outcome variables𝑌train, Validation outcome variables𝑌val, Number
of local data sets𝑀)

1: 𝑌 ← Initialize(Size(𝑌 ))
2: for𝑚 ∈ {1, . . . , 𝑀} do
3: if 𝑐FCCount(O) = 0 then ⊲ if no 𝑐FC nodes
4: 𝑌m ← Predict(O,X(val,m))
5: else
6: O ← RV-GOMEA(O,X(train,m), 𝑌(train,m))
7: 𝑌m ← Predict(O,X(val,m))
8: return MSEglobal (𝑌,𝑌 )

We first initialize the array of prediction values 𝑌 (line 1). Then,
we loop over the M local data sets (line 2). If the individual O
does not have any 𝑐FCs, we can immediately get its predictions
𝑌𝑚 on local data set𝑚 (line 3-4). Otherwise, we use RV-GOMEA
to optimize the 𝑐FCs on the train data and get the predictions on
the validation data 𝑌𝑚 for local data set𝑚 (lines 6-7). Finally, we
compute the fitness using MSEglobal (line 8).
We define the MSEglobal as follows,

MSEglobal (𝑌,𝑌 ) =
1
𝑀

𝑀∑︁
𝑚=1

MSElocal (𝑌𝑚, 𝑌𝑚),
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where,

MSElocal (𝑌𝑚, 𝑌𝑚) =
1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1
(𝑌𝑖 − 𝑌𝑖 )2,

where 𝑁𝑚 defines the number of records for local validation data
set𝑚. In FC-GOMEA, we take the sum of MSEglobal over the trees
as error objective, such that,

MSEglobal (𝑌, [𝑌 1, . . . , 𝑌𝑇 ]) =
𝑇∑︁
𝑡=1

MSEglobal (𝑌,𝑌 𝑡 ),

where 𝑇 is the number of trees and 𝑌 𝑡 the predictions of tree 𝑡 . For
the diversified error, we take the mean over the minimum MSE for
each local data set of the trees, such that,

DMSEglobal (𝑌, [𝑌 1, . . . , 𝑌𝑇 ]) =

1
𝑀

𝑀∑︁
𝑚=1

min(MSElocal (𝑌𝑚, 𝑌 1
𝑚), . . . ,MSElocal (𝑌𝑚, 𝑌𝑇𝑚)) .

4.2 Reducing Computational Cost
The computational cost of a naive implementation of FC-GOMEA
algorithm can be significantly reduced. We implement six strategies
to this end.

First, we implement a batching scheme to reduce the number
of real-valued optimizations for evaluating the fitness. For each
generation, we pick a different subset of local data sets that is used
to evaluate for calculating the fitness. We keep track of the non-
dominated solutions in an archive. This archive is emptied after each
generation. Before emptying the archive, the solutions are evaluated
on all local data sets, and the non-dominated solutions hereof are
then stored in a second archive if they are non-dominated in that
archive. Any solution in this second archive that is dominated by
any newly added solution is deleted. This second archive is never
emptied, and we output this archive to the user.

Second, we implement a solution cache, which caches the fitness
of expressions that have already been evaluated in the current gen-
eration. To identify equal expressions, we convert each expression
to a string using infix notation and use it as the lookup key to the
cache. If the key exists in the cache, we retrieve the already com-
puted errors for that expression. Notice that we always calculate
the MSEglobal before the DMSEglobal, such that the errors can be
re-used to calculate the DMSEglobal. We use a hash map as the data
structure for our solution cache. Since we use batching, the solution
cache is emptied after each generation.

Third, we implement caching for the output of sub-trees that do
not contain 𝑐FCs. Therefore, when fitting the 𝑐FCs to a local data
set, we do not need to recompute parts independent of the 𝑐FCs.

Fourth, we identify sub-trees containing only terminals of the
type 𝑐FC and replace them with a single 𝑐FC when optimizing con-
stants. This is semantically equivalent and simplifies the expression,
making the final expressions more readable. Furthermore, simplify-
ing the expression increases the chances of finding an equivalent
expression in the solution cache.

Fifth, we parallelize Algorithm 1. We balance the workload to
achieve a higher degree of parallelism by creating a priority queue
such that expressions containing more 𝑐FCs (which are assumed to

Figure 3: Visualisation of FC-GOMEA. Each local data set is
either exponential or linear. The top scatter plot shows the
approximation front with the trade-offs of the MSEglobal and
the DMSEglobal. Individual I has the lowestMSEglobal and thus
the individual function classes fit the best on all local data
sets, but there is no gain in using the classes together, because
they are the same. Individual III has the lowest DMSEglobal
and thus there is the most gain in using the function classes
together. Individual II is somewhere in the middle: there is
merit to using the function classes together, but at the same
time, they fit relatively well on all local data sets. By utilizing
multi-class learning we recover both function classes.

take longer to optimize) are evaluated first. Threads are dynamically
assigned work from the queue.

Sixth, we add a termination criteria to RV-GOMEA such that
the algorithm is terminated once there has not been a significant
improvement (at least 1% decrease in fitness value) over the last
four generations.

Together, these optimizations significantly reduce the computa-
tional cost of our method, allowing many more generations to be
evaluated within the allocated time.

5 EVALUATION: TUMOR GROWTH
FUNCTION CLASS

In this section the results of applying FC-GOMEA to the paragan-
glioma data are presented. We have a real-world data set consisting
of 226 tumors with 𝑛 volume measurements per tumor (with 𝑛 ≥ 4)
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based on auto-segmentation as described in [24]. This data set
contains 163 tumors with 𝑛 ≥ 5.

We first apply FC-GOMEA to a synthetic data set that is based on
the real-world data set, to confirm thecapabilities of FC-GOMEA to
find ground-truth function classes. We then apply the FC-GOMEA
to the real-world data set and analyze the results.

5.1 Generating Synthetic Data
In order to test the multi-class learning abilities of FC-GOMEA, we
assume that there are not one but two different function classes
representing the underlying growth function. The first is the logistic
function class:

Vlogistic (𝑡, 𝑐1, 𝑐2, 𝑐3) = 𝑐1
1+𝑒−𝑐2 · (𝑡−𝑐3 ) .

In this equation, 𝑐1 determines the maximum outcome of the
function, 𝑐2 determines the growth rate, 𝑐3 is the inflection point,𝑉
is the volume, and 𝑡 is the age. The second is the Gompertz function
class:

VGompertz (𝑡, 𝑐1, 𝑐2, 𝑐3) = 𝑐1 · 𝑒−𝑐2 ·𝑒
−𝑐3 ·𝑡

.

In this equation, 𝑐1 determines the maximum outcome of the func-
tion, 𝑐2 translates the curve in the direction of time, 𝑐3 determines
the growth rate, 𝑉 is the volume, and 𝑡 is the age.

Both the logistic and Gompertz functions belong to the class
of sigmoidal functions. Additionally, their constants serve similar
purposes, despite their distinct equations. However, they differ in
growth pattern since the logistic function class is symmetric and
its inflection point occurs at half of the maximum (𝑐1), whereas the
Gompertz is not symmetric, with an inflection point at 1

𝑒 · 𝑐1.
To generate the synthetic data set, we first fit the logistic and the

Gompertz function class to the real-world data using RV-GOMEA
for each of the 226 tumors. Notice that while we use RV-GOMEA
both for generating the data as well as for fitting the function classes
later on in FC-GOMEA, the input data is different each time (real-
world data and synthetic data, respectively), such that this does not
result in an unfair advantage. We fit the function class to the data
using constraints formulated in consultation with a medical expert,
such that the volume at birth is between 0 and 0.01 cc, and the
volume at age 100 is less than 1500 cc, utilizing RV-GOMEA’s built-
in capabilities to define constraints. Functions that do not adhere to
these constraints are considered to be unrealistic [11]. We sample
the fitted functions at the ages of the original data to represent the
original data as closely as possible. In this, we alternate between
the logistic function class and the Gompertz such that they are both
equally represented in the final synthetic data set. We now have a
data set that perfectly represents the two function classes. In order
to test the effect of volume measurement variability on finding the
ground-truth growth function classes, we construct two additional
data sets, adding different degrees of noise to the synthetic data
set. We add the noise such that bigger volumes also have a higher
absolute level of noise, since this is more realistic. In Experiment
I, we use GN(0, 0.05), i.e., Gaussian noise with a mean of 0, and a
standard deviation of 0.05, and multiply it by the volume, as well
as noise of GN(0, 0.15), again multiplied by the volume.

5.2 Algorithm Parameters and Settings
We apply FC-GOMEA to both the synthetic and real-world tumor
growth data set and use the settings in Table 1. In this, nRV is the

number of data points used for learning the 𝑐FC𝑠 . Three data points
are minimally needed for doing so, as a straight line can fit any two
data points perfectly. We use points nRV +1, . . . , n−1 for validation,
or in case nRV + 1 = n, we use the nth point for validation (see
Figure 6 for an illustration). Lastly, if n > nRV + 1, we use the nth
point for testing. We only include local data sets (i.e., tumors) with
at least nRV + 1 data points. So for example, if nRV = 4 and n = 5
then the first 4 data points are used for fitting the function class,
and the fifth data point is used for validation. But if nRV = 4 and
n = 6 then the first 4 data points are used for fitting the function
class, the fifth data point is used for validation and the sixth data
point is used for testing.

Additionally, we define three constraints: 1) the predicted volume
at birth can not be significant (i.e., 0 cc ≥ 𝑉 ≤ 0.01 cc), 2) the
predicted volume must be smaller than 1500𝑐𝑐 at the age of 100
(we know the tumor will not grow infinitely), and 3) the function
must be monotonically increasing. In the algorithm, functions that
violate fewer constraints are favored, even if they have a worse
fitness, i.e. constrainted domination is used [4].

We have studied the known growth functions in [12] and con-
verted them into tree shapes, and identified that none are full trees
and that they all use a left-deep template, meaning each function
always has a terminal as its right child. We have chosen to also use
a left-deep tree template. Although this limits the search space and
biases our search towards the known growth functions, we are still
able to research the concept of function class learning within our
computational budget. The left-deep template allows us to use a
fairly large tree height while at the same time limiting the number
of nodes per tree. In doing so, we can greatly reduce the time it
takes to perform one generation for a specified tree height. Running
FC-GOMEA with a full tree template of 32 nodes, and a real-valued
evaluation budget of half a million, makes doing any relevant num-
ber of generations on the data sets in 120 hours infeasible. At the
same time, using this left-deep template we are still able to ex-
press functions of a relevant intricateness (in terms of tree height).
Future work could focus on further reducing computational cost.
This, possibly combined with a higher budget, could enable more
generations with a full-template.

Since we are using a left-deep tree template, we include mirrored
operators for the asymmetric operators (i.e., ÷ and pow), denoted
here by ÷𝑚 and pow𝑚 . Notice that, for example, it is impossible

to express the function 𝑐FC1
𝑥 ·𝑐FC2

otherwise, because the left-deep tem-
plate combined with the standard implementation of division would
not let us express the non-terminal tree 𝑥 · 𝑐FC2 in the denominator.
Furthermore, the combination of operators e(𝑡𝑙 ·𝑡𝑟 ) , where the expo-
nent of the left tree multiplied by the right tree (in our case, because
of the left-deep template, always a terminal) is taken, commonly
occurs in the known growth function classes. Therefore, we include
this combined operator in our operator set as well. Notice that this
can coincide with the pow operator when either 𝑡𝑙 or 𝑡𝑟 is of the
type 𝑐FC since 𝑎𝑥 = (𝑒𝑙𝑛 (𝑎) )𝑥 = 𝑒𝑙𝑛 (𝑎) ·𝑥 for 𝑙𝑛(𝑎) > 0.

The number of real-valued evaluations per run of RV-GOMEA
on a single local data set in FC-GOMEA is based on experiments
with the synthetic data underlying different growth function classes
(logistic and Gompertz), number of training data points and noise
levels (see Supplementary). These experiments showed that the
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Table 1: Algorithm parameter and experiment settings.

Parameter Experiment I Experiment II

Operators +,−,×,÷,÷𝑚, e(𝑡𝑙 ·𝑡𝑟 ) , 𝑒𝑡𝑙 , pow, pow𝑚 , log𝑝
Terminals variable, 𝑐FC
Population size 1,000
Tree height 4 (9 nodes)
Tree template left-deep
# trees 2
RV evaluations 500,000
# runs 10
# logical cores 32
Termination (hours) 120
Batch size {16,64} 16
nRV {3,4} 4
Data type synthetic real world
Gaussian noise % {0,5,15} not applicable
𝑐FC values range(-10,000, 10,000)
CPU architecture AMD EPYC 7H12
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Figure 4: Histogram for number of times the correct function
classes were found within any multi-tree of the full archive.

average MSE converged before one million evaluations. We notice
that for most of them, the gains in average MSE was neglible after
half a million evaluations. We thus set our evaluation limit to half
a million evaluations.

5.3 Experiment I: Synthetic Data
The results of Experiment I are shown in Figure 4 and Figure 5.
Figure 4 shows the number of runs (out of ten) in which the ground-
truth function classes are found among all function classes in the
elitist archive. Figure 5 shows the convergence of running FC-
GOMEA using different settings. The convergence is shown in
terms of the Hyper Volume (HV) [32]. The HV is a measure of
the volume covered by the approximation front w.r.t. a reference
point. This point is calculated by first combining the fronts of all
the runs with the same nRV and the same level of noise added to
the data (i.e., the runs based on the same data), and by then taking
the minimum and maximum values in each objective of the non-
dominated solutions of this front. These points are then used to
normalize the objective values in each front. Finally, we get the HV
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Figure 5: Convergence plots for optimization using FC-
GOMEA. Each color is a different run (different seed). It
shows theHV of the global data set as function of the number
of generations. Notice that if a line stops before 30 genera-
tions, it means run was terminated due to the time budget.
In each row, the convergence for a different global data set is
shown. The columns represent the different batchsizes and
number of data points used for learning the 𝑐FCs.

by computing the surface area covered by the front of a specific
run with respect to reference point [1.0, 1.0].

When comparing the different settings in Figure 4, results im-
prove when using nRV = 4 instead of nRV = 3, especially as the
level of noise increases. This makes sense, since if we only use
3 data points for fitting the function class, any noise will have a
major effect on the final fit. Furthermore, we see that for nRV = 4,
the results always improves when using a batch size of 16 com-
pared to the batch size of 64. Figure 5 indicates that a key reason
for this is the time limit: the algorithm is terminated before it has
converged. For a batch size of 16 however, we see that the runs
seem to have converged. Based on these experiments, we conclude
that FC-GOMEA is indeed able to recover the intended function
classes in many cases.

Especially for a batch size of 16 and nRV = 4, FC-GOMEA re-
covers the function classes in a significant number of cases for
0% and 5% noise. For 15% noise however, for none of the settings
both function classes could be recovered correctly. We argue that
these results can be anticipated, considering that 15% noise is quite
significant, and the logistic and Gompertz function class share a lot
of properties, since now the difference between the two function
classes might be smaller than the noise for many of the local data
sets. For both 5% and 15% noise the logistic and Gompertz function
class are not generally at one of the extremes of the Pareto approx-
imation front, and thus by performing function class learning in a
single-modal fashion (even using the diversified error objective),
would not be able to recover either of the function classes in most
cases. In contrast, due to our multi-class approach we are still able
to recover both of them a significant number of times.

We emphasise that the effect of the combination of measurement
error and low amount of data on recovering the function class can
be detrimental, but it can be mitigated by using the multi-class
approach (at least to some extent).
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Figure 6: Predictions with the three function classes for ac-
tual growth data. Each column shows two examples in which
that function class performed the best on the validation data
of the tumor. Notice that the function class was only fitted
to the train data.

5.4 Experiment II: Real-World Data
We compare the ten different runs of FC-GOMEA. We find that,
although most runs performed quite well, compared to it, some
runs underperformed (HV: 0.06, 0.08, 0.12, 0.19, 0.21, 0.22, 0.22,
0.22, 0.24, 0.24). We hypothesize that increasing the population size
could improve consistency. However, here, we are interested in
the best function classes for the paraganglioma use case and thus
highlight the results of the best run. In the Pareto approximation
front, we find four individuals containing altogether four distinct
expressions, which we call FC1, FC2, FC3, and FC4. In the front, FC1
is combined with either itself or FC2, FC3, or FC4 in the multi-tree
individuals. The four expressions are as follows:

FC1(𝑡, 𝑐FC1 , 𝑐FC2 , 𝑐FC3 ) =
𝑐FC1

𝑒𝑐
FC
2 ·𝑡

𝑐FC3

FC2(𝑡, 𝑐FC1 , 𝑐FC2 , 𝑐FC3 ) = 𝑐FC1 · 𝑒
𝑐FC2 ·𝑒

𝑡 · 𝑡

𝑐FC3

FC3(𝑡, 𝑐FC1 , 𝑐FC2 , 𝑐FC3 , 𝑐FC4 ) =
𝑐FC1

𝑒𝑐
FC
2 ·𝑒

𝑐FC3 ·
𝑡

𝑐FC4

FC4(𝑡, 𝑐FC1 , 𝑐FC2 , 𝑐FC3 , 𝑐FC4 ) = 𝑐FC1 · 𝑒
𝑐FC2 ·𝑒

𝑐FC3 ·
𝑡

𝑐FC4

FC3 and FC4 coincide since they are equivalent when flipping
the sign of 𝑐FC2 . The difference between these two functions in
objective space is less than 0.01 %. Thus, we only consider FC1,
FC2, and FC3 now. Notice that FC3 coincides with the Gompertz

function class, since 𝑐FC3 ·
𝑡

𝑐FC4
=

𝑐FC3
𝑐FC4
· 𝑡 = 𝑐FC5 · 𝑡 . Although FC1 is

similar to the Gompertz function class, it replaces 𝑒𝑐
FC
3 ·𝑡 by 𝑡𝑐

FC
3 . This

replacement changes that part of the function from an exponential
to a power component. We speculate that this function class might
better resemble the slow-growing nature of the paraganglioma.
FC2 shares many similarities with the Gompertz function class as
well, but replaces 𝑒𝑐

FC
3 ·𝑡 by 𝑒𝑐

FC
3 ·𝑡2 . We show predictions with these

function classes in Figure 6.

6 DISCUSSION
When the measurements are more accurate, recovering the correct
function class is more likely. This likelihood can be increased by
searching for multiple classes in a multi-objective, multi-modal way.
The resulting approximation front of classes provides options.

At least five volume measurements were needed to run FC-
GOMEA on the paraganglioma use case. By only selecting the
tumors with that amount of measurement and thus excluding tu-
mors treated before the fifth measurement, selection bias could
affect the results. Therefore, when using the function class, we
must assume that (early) treated tumors adhere to the same func-
tion class as untreated tumors. Furthermore, the number of available
volume measurements to fit the function class will impact the re-
liability of the found constants. Therefore, providing uncertainty
estimates could be helpful in practice, especially in the case of <
4 measurements. In general, further research and analysis on the
found function classes would be needed to explore a possible clini-
cal implication. Possibly, in practice, the different function classes
could be used as an ensemble representing not only a prediction
but also an uncertainty estimate for the tumor growth. However,
this again should be further researched.

In order to run FC-GOMEA, we have used specific settings and
parameters. These settings and parameters will affect the outcome
and, thus, the found function classes. Choosing the optimal settings
is a complex problem covering a whole field in itself. Consider-
ing that we recovered known function classes and new relevant
function classes, we conclude that we get relevant outputs to this
problem using these settings.

Although we present strategies to reduce the computational
cost of the method presented in this paper, it still has a high cost.
The cost grows, especially as the population size, tree height, and
the number of RV evaluations increase. In comparison, tuning the
constants of an already learned function class to a new data set takes
only a fraction of the time. Additionally, predicting the outcome
variables for data points with an instance of a function class is
cheap, as it only requires evaluating a simple expression. So, the
high costs apply primarily to the learning process and not the final
prediction. Further efficiency enhancements may be possible by
using less function evaluations for RV optimization.

7 CONCLUSION
This paper presented, for the first time, a method to learn multiple
function classes over multiple related data sets rather than a single
model per data set. This method was implemented as FC-GOMEA.
Our experimental results showed that our method could find rel-
evant solutions for real-world and synthetic tumor growth data
sets. The presented solutions identified the over-arching patterns
of the related data sets while fine-tuning predictions for each lo-
cal data set. The solutions presented are at least as explainable as
human-made growth functionals.
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