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ABSTRACT
Deploying machine learning models into sensitive domains in our
society requires these models to be explainable. Genetic Program-
ming (GP) can oer a way to evolve inherently interpretable expres-
sions. GP-GOMEA is a form of GP that has been found particularly
eective at evolving expressions that are accurate yet of limited
size and, thus, promote interpretability. Despite this strength, a
limitation of GP-GOMEA is template-based. This negatively af-
fects its scalability regarding the arity of operators that can be
used, since with increasing operator arity, an increasingly large
part of the template tends to go unused. In this paper, we therefore
propose two enhancements to GP-GOMEA: (i) semantic subtree
inheritance, which performs additional variation steps that consider
the semantic context of a subtree, and (ii) greedy child selection,
which explicitly considers parts of the template that in standard
GP-GOMEA remain unused. We compare dierent versions of GP-
GOMEA regarding search enhancements on a set of continuous and
discontinuous regression problems, with varying tree depths and
operator sets. Experimental results show that both proposed search
enhancements have a generally positive impact on the performance
of GP-GOMEA, especially when the set of operators to choose from
is large and contains higher-arity operators.
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1 INTRODUCTION
Over the last decades, machine learning models have continuously
improved, many of which now achieve (beyond) human-level per-
formance on a broad array of tasks. As a result, these models are
embedded in an increasing number of areas in society. However,
especially in sensitive domains such as medicine or judiciary, their
application and deployment require trust. To ensure fairness and
equality, models need to be interpretable and accountable, not only
by preference but increasingly by law [8, 12, 22].

Interpretability is, however, challenging for many black-box
machine-learning models used today. Due to this, explainable arti-
cial intelligence (XAI) is increasingly gaining attention. In this eld,
inherently interpretable machine learning models are of special
interest, as they do not attempt to explain a black box, but instead
are white box models by design.

One such inherently interpretable model is a mathematical ex-
pression (of comprehensible size and complexity) that describes the
relationship between a given set of data points and their respective
target values. The task of nding the best-tting expression is called
symbolic regression. Often, a predened set of operators, variables,
and constants is dened that may then be used in the expression.
A popular search strategy is to evolve the expression via genetic
programming (GP).

Many classic GP approaches are prone to nd accurate but large
expressions, threatening their interpretability [24]. To combat the
continuous growth of expressions, which is also known as bloating,
a xed solution size can be used. GP-GOMEA [23, 24], derived from
the model-based Gene-pool Optimal Mixing Evolutionary Algo-
rithm (GOMEA) for discrete optimization [2], uses a tree-based
representation of xed size (i.e., a tree template) to enforce nding
smaller expressions with high accuracy. In GOMEA, dependencies
between genes are modelled, so that genes that have some depen-
dency between them, are varied together. In GOMEA’s GP variant,
these genes are the template nodes. In each generation, this linkage
between genes is modelled anew. GP-GOMEA has been found to be
state-of-the-art with regards to its accuracy and model complexity
trade-o on the Semantic Regression benchmark set, SRBench [11].

In general, interpretability is promoted by shallow trees [13]. To
this end, higher-level operators can also aid in abstracting subtrees
into a more shallow version. Take, for instance, the Gaussian prob-
ability density function: with limited operators a tree modelling
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(a) (b)

Figure 1: Two trees, each describing the Gaussian probability
density function. 1b makes use of a high-level operator.

the Gaussian function can be seen in Figure 1a. However, when the
Gaussian operator is available in the operator set, the large tree in
Figure 1a can be abstracted into the tree shown in Figure 1b. With a
mathematical background, the shallower tree is easier to interpret
and preferred.

That being said, the use of higher-arity operators, such as the
Gaussian function in the example above, has substantial impact on
the eciency and eectivity of GP-GOMEA. The reason for this is
that the tree template needs to support the highest arity operator,
creating very large templates of which potentially a large part is
not used (if higher-arity operators are not frequently used). These
unused parts are also known as introns: nodes that are present in
the template, but are not used. For instance, a parent node may
represent an operator of arity 1 and, thus, may only require 1 child
node. However, a xed tree template with a branching factor of 2
will include a further (irrelevant) child by default. A tree may be
shorter than the template, but the tree must still be padded with
introns to t the template. As the branching factor of a template
increases, the number of potential introns increases exponentially.

Notwithstanding the current state-of-the-art performance of
GP-GOMEA, we would still like to enhance its capabilities and
performance with a focus on application in XAI. This includes the
ability to abstract into shallower trees (for instance, like in Figure
1). For this, we consider operators that are not only of higher arity
but also take dierent data types as their arguments.

In particular, to model discontinuities in our target space we look
to include higher-order cardinality operators, specically: arith-
metic Boolean logic as well as an if-then-else operator. These
additions are aimed at modelling discontinuous relationships in
data, whilst remaining interpretable. The if-then-else statement
could then help express relationships dependent on certain con-
ditions. For instance, when modelling developments in patients,
a dierent model could be used dependent on a certain patient
characteristic - simply expressed via an if-then-else statement
in the nal expression.

We investigate the possibility to improve the search performed
by GP-GOMEA to be better suited when dealing with higher-arity
operators by threefold additions. First, we enlarge the operator
set and include constraints that ensure correct expression types

within operators. Secondly, we consider utilising the introns by
optimising which children to use for an operator of lower arity than
the template branching factor. Thirdly, when performing variation
on an individual, we propose additionally inheriting entire subtrees
from a dierent individual, provided both subtrees have the same
parent operator. With this, we hope to share good building blocks
that have evolved under a certain operator with individuals that
have the same operator and increase the potential value of introns.

In summary, in this work we explore the following adaptations
to GP-GOMEA:

• An enlarged operator set, that involves arithmetic, Boolean
logic and ternary operators.

• A semantic variation operation, that inherits subtrees from
another solution in the population by considering subtrees
located at a common parent operator.

• A child selection strategy that greedily selects the most suit-
able subtree (combination) for a parent within a current
solution.

Finally, we investigate our adaptations through experiments on
continuous and discontinuous expressions based on the Feynman
equations.

2 BACKGROUND
In this section, the background of the search enhancements made
and their context in literature is given.

GP-GOMEA. GOMEA was rst introduced for optimisation with
xed-length binary strings as representation [2]. GOMEA was then
adapted for GP by representing individuals with a tree template
of a xed size [23, 24]. The actual GP trees are built by sampling
operators and terminals from their given respective sets as long
as the trees t within the template. The individuals, which are
essentially still xed-length strings, are then subject to the same
notion of variation as in GOMEA.

For variation, GP-GOMEA builds a linkage model in each gen-
eration. With this, dependencies are modelled between genes of
a genotype, such that genes that are dependent on each other are
varied together. By considering the linkage between genes in vari-
ation, GP-GOMEA aims to sustain and recombine good building
blocks within individuals.

The dependency model in (GP-)GOMEA takes the form of a
family of subsets (FOS), which consists of subsets of indices that
indicate a position in the tree. To ensure that these positions are
identied uniquely, they refer to indices in a tree’s pre-order tra-
versal [23]. Most often, the FOS is a linkage tree (LT), which is a
hierarchical representation containing subsets of indices, i.e., for
each subset  in the LT with more than one gene, there also exists
subsets  and   , such that  ∪   =  and  ∩   = ∅. Moreover,
the set of all genes is included in the LT. To nd which subsets
of indices have some dependence between them and should thus
be included in the FOS of a generation, pairwise mutual informa-
tion is commonly used as a proxy. To build the LTs, a hierarchical
agglomerative clustering procedure is used.

Once the FOS has been established, gene-pool optimal mixing
(GOM) is performed on each solution in the population, which acts
as a variation and selection procedure. The FOS is iterated through
in a random order. For each element, a random donor individual
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from the population is selected. The values at the positions in the
template indicated by the subset are then changed with the values
at the same positions of the donor tree. If the result does not lead to
a worse tness, the change is accepted. Otherwise it is disregarded.

Our work presents two additions to this procedure, which are
performed after the GOM phase. Specically, we introduce semantic
subtree inheritance and intron handling in the form of greedy child
selection. While we describe these additions in section 3, here we
describe their context and related literature.

Semantic Variation. There has been substantial research into
semantics in GP that has criticised many GP variants that solely
consider syntax information in their genetic operators [21]. The
denition of the semantics of an individual refers to its output
vector, given a certain input. This denition, for instance, gives way
to variation operators that use semantic distances between two
individuals to create an ospring, e.g., in [1, 16]. For the semantic
subtree inheritance in this work, we consider semantics within an
individual.

Intron Handling. In literature (e.g. in [3, 20]), introns refer to
nodes whose execution do not aect a tree’s output. Semantic in-
trons are expressions that appear in the phenotype of an individual
but do not inuence the semantics of an individual. Semantic in-
trons contribute to the bloating of individuals, which makes them
less interpretable. In this work, we solely refer to syntactic introns:
introns that do not appear in the phenotype of an individual and
are only present in its genotype - specically, in GP-GOMEA, this
refers to completing a tree syntactically in a xed-size tree template.

Since the emergence of GP, there has been a debate on the im-
pact of semantic introns. Some researchers believe introns protect
building blocks of an individual, whereas others believe introns
hamper the search [3, 20]. As such, there have been dierent ap-
proaches to dealing with semantic introns. In variable length GP,
the eect of adding explicitly dened introns, i.e., non-mutatable in-
tron blocks whose purpose is to weight crossover behaviours [3, 17],
have been investigated. These explicitly dened introns were found
to show slightly positive eects on the convergence behaviours [10].
A further approach to introns is their deletion after every tness
evaluation, although the eects of this are still inconclusive and
the deletion produces overhead [4]. To counteract bloating, GP-
GOMEA limits the occurrence of semantic introns by limiting the
solution size. This still allows for semantic introns but ensures that
their number is limited.

In this work, the focus is henceforth only on syntactic introns.
The handling of syntactic introns that appear in template-based GP
has to the best of our knowledge not been extensively investigated.

3 METHODOLOGY
In this section, we elaborate on the details of our additions to GP-
GOMEA. We rst address the technical implications of modelling
discontinuities, before both search extensions - semantic subtree
inheritance and greedy child selection - are explained in depth.

3.1 Modelling Clusters and Discontinuities
Often it can be eective to decompose the complexity of a prob-
lem by splitting the problem into clusters. In each cluster, we can

then describe dierent behaviours, which can lead to a more in-
terpretable solution. Similarly, being able to model discontinuities
directly in a regression could be easier to interpret than articially
approximating these.

To enhance the original GP-GOMEA to be able to model these
clusters and discontinuities, arithmetic, Boolean logic, and the
if-then-else operators are combined in an operator set. Boolean
logic operators include but are not limited to, >, <, ==, AND, OR,
and NOT. Although this increases the branching factor of the tree
from 2 to 3, the resulting piece-wise relationships are often more
understandable.

To ensure that the if-then-else operator, Boolean logic, and
arithmetic operators are combined in a meaningful way, two syn-
tactical constraints are imposed on the candidate solutions similar
to how strongly typed GP works [14]. Both constraints are obeyed
during population initialisation. During every change of an indi-
vidual, it is checked whether a change has broken a constraint and,
if so, the change is rejected. The rst constraint ensures that the
rst input to the if-then-else operator represents a Boolean. The
second constraint species that an arithmetic operator requires
numeric input. To protect interpretability, this means that Boolean
outputs cannot be used in operators such as addition or multiplica-
tion. As combining Boolean output via arithmetic operators allows
to model discontinuities without using an if-then-else operator,
this constraint can be deselected.

3.1.1 Ternary Operators. Since the inclusion of the if-then-else
operator increases the branching factor of the tree template to 3,
we also consider other operators that can be adapted to be of arity
3. Specically, subtraction, addition, multiplication, as well as the
Boolean logic operators AND and OR can all be used as operators of
arity 2 as well as 3.

3.2 Semantic Subtree Inheritance
During GOM, (combinations of) an individual’s nodes, that have
some linkage between them, are changed with the same (combi-
nations of) nodes from another individual from the population.
Hence, this inheritance operation solely considers the positions of
nodes within an individual. We propose to not only consider the
position of a node within a tree, but also to consider its semantic
context within the individual. After the GOM procedure has been
performed, semantic subtree inheritance can be employed, as seen
in Figure 2. Here, we dene subtrees with similar semantic contexts
to be subtrees whose roots represent the same operator.

During the semantic subtree inheritance phase, all non-leaf, non-
intron nodes of an individual are iterated through in random order.
For each node, we search the population for a donor subtree that
has at its root the same operator. We do this by randomly iterating
through the population and stopping once a donor individual that
uses the same operator somewhere is found. The only requirement
in nding a suitable donor subtree is that the subtree may not
exceed the original subtree’s height. It is important to note that
besides this requirement the position of the node within the tree is
irrelevant, providing more exibility to the variation operator in
GP-GOMEA. Assuming a subtree has been found, the individual
inherits the donor’s subtree. Whenever this change results in better
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Figure 2: Semantic Subtree Inheritance: For each non-leaf,
non-intron node, the node and its subtree are inherited based
on its operator from a random donor individual from the
population that includes the same operator somewhere in
its tree. The ticks and crosses indicate that a change was ac-
cepted or rejected, respectively. The faint grey nodes indicate
a subtree lled with syntactic introns.

or equal tness, the change is kept; it is otherwise reverted. No
operation is performed in the case that no suitable donor is found.

To ensure that a given donor subtree may t into the xed tree
template of an individual, a semantically similar donor tree may
only be selected given that said subtree is smaller or of equal depth
to the current subtree. A subtree that is smaller than the current
subtree can still be inherited. The missing nodes are then lled
with syntactic introns - specically, with the nodes that held those
positions before the change.

3.3 Greedy Child Selection
The second search enhancement addresses the many syntactic in-
trons that can occur in GP-GOMEA, especially once the operator
set size and maximum operator arity are increased. Whenever the
parent operator has an arity less than the template-arity, it will
have at least one intron child. In the original GP-GOMEA, the

Figure 3: Greedy Child Selection: Nodes are visited in a depth-
rst traversal through the tree to select the child(ren) and
their order with the best t for the visited non-leaf, non-
intron node. An optional step is to also visit a subtree that
was previously unvisited as its root was an intron, which
has now been selected to be used for its parent node. The
gure shows this process for a tree with a branching factor of
three. Thick lines indicate selected children, whereas dotted
lines refer to intron children. The nodes show the following
arities: 13, 4, and 12 are of arity 2, whereas 8 is of arity 1.

left-most children are always selected. We propose introducing a
greedy child selection strategy, as illustrated in Figure 3, to utilise
the template’s parts that typically stay unused, which is expected
to increase especially when the template arity increases.

To utilise these introns, we propose to select the best (combina-
tion of) child(ren) for each parent in terms of tness. Not only is it
important to select which child(ren) to use, but for many operators,
the order of the children plays a vital role and should be considered
additionally. Further, it is important to note that each child selected
impacts many other child selection decisions in the tree. Finding
an optimal combination of the best (combination of) child(ren) for
each parent in the tree simultaneously is an optimisation problem
itself, for which exhaustive enumeration quickly becomes infeasi-
ble. Hence, we propose the selection in an iterative greedy manner.
As the order in which nodes are visited is important, we iterate
through the tree in a depth-rst manner to visit every non-leaf,
non-intron node and select its best children.

Selecting the best child(ren) is done by iterating over all child
selection options and recording their tness. Finally, the child (com-
bination) with the best tness is accepted. The child selection at
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each node diers depending on a node’s operator - specically,
an operator’s arity and whether it is commutative. For instance,
consider a ternary tree template, in which a node’s children are
referred to as A, B, and C. Here, a unary operator will have 3 op-
tions for its child (A,B,C), as does a commutative operator of arity
2 (AB,AC,BC). A binary operator which is not commutative has 6
combinations to choose from (AB,AC,BA,BC,CA,CB). As previously
mentioned in Section 3.1.1, we have introduced the possibility for
some binary operators to become ternary operators and select all
three children. In the context of child selection, we, thus, also test
whether a ternary operator would perform better than its binary
version. As such, ternary operators that are commutative have one
option (ABC), whereas non-commutative ternary operators have 6
options (ABC,BCA,CAB,BAC,ACB,CBA).

Since the non-leaf, non-intron nodes are visited in a depth-rst
manner, a node’s non-intron children (and their subtrees) have
already been optimised. If an intron node is selected during this
decision, its subtree has not yet been optimised and would typically
not be visited in the context of a depth-rst traversal. For this,
an optional backtracking step is proposed, in which selected non-
optimised introns are optimised before continuing the depth-rst
traversal to other nodes.

As child selection uses function evaluations to assess the best
child combination, there is a trade-o between child selection ben-
ets and function evaluations used. Therefore, we consider greedy
child selection in dierent congurations, specically: chosen in-
tron subtrees can optionally be added to the tree traversal. In addi-
tion to this, there is the option to only consider nodes of arity 1, up
to arity 2, or to consider all arities, including their ternary variants.

4 EXPERIMENTAL SET-UP
First, we present the implementation used for GP-GOMEA in gen-
eral, after which we elaborate on the various congurations of the
introduced enhancements. We then introduce the symbolic regres-
sion problems, performance metrics, and experimental settings.

4.1 GP-GOMEA Conguration
In this section, the implementation and congurations of GP-GOMEA
used for our experiments are given.

4.1.1 Implementation of GP-GOMEA. Since the introduction of
GP-GOMEA [23, 24], a new implementation has been made using
the Eigen [7] package, as well as some additional minor adaptations,
which are outlined in this section.

The rst adaptation refers to the usage of constants within link-
age learning. For this, GP-GOMEA groups constants into bins, such
that all constants within one bin are considered as a single sym-
bol [24]. To improve time eciency, the new implementation places
constants into 25 instead of 100 bins. Another adaptation addresses
the situation that an individual is not improved after GOM (as
well as semantic subtree inheritance and greedy child selection,
if applicable). Previously, the individual would go through a new
iteration of GOM, whereas the new implementation selects the
individual into a tournament selection procedure of size 4, along
with 3 random individuals from the population.

The new implementation uses an Interleaved Multistart Scheme
(IMS) as proposed in [24]. IMS runs multiple evolutionary processes

of increasing resources concurrently and advances these in an inter-
leaved way. A further adaptation concerns the convergence criteria:
for this, the population is sorted by tness. A population is then
considered converged once the tness of 90% of the least t individ-
uals is equal (given an error margin). This results in a convergence
criterion that is met more quickly. Hence, populations that are not
promising are aborted and restarted more often. Additionally, when
restarting the population, the new implementation reinjects a ran-
domly selected elite - this ensures that good building blocks already
found are present in a new population.

4.1.2 Search Extensions. In total 14 congurations are tested: the
original GP-GOMEA without search extensions, the greedy child
selection (GCS) for (1) up to unary operators, (2) up to binary opera-
tors, and (3) all arities, including ternary variants. Further, the back-
tracking versions’ of these three variants are considered, denoted by:
(1+),(2+), and (3+). The (3(+)) congurations, which consider ternary
operators additionally, are only applicable when the template arity
is bigger than 2. As such, we do not test these congurations on
Binary templates. These 7 (for Binary trees, 5) congurations (the
original GP-GOMEA and 6 variants of the greedy child selection,
denoted as GCS+variant ID) are tested with and without the se-
mantic subtree inheritance (SSI) (denoted as SSI ), respectively. This
gives way to 14 (for binary trees, 10) congurations.

4.2 Feynman Equations
To evaluate the performances of dierent congurations in a con-
trolled setting, ground truth symbolic regression problems are taken.
We use the Feynman equations from SRBench [11] via the Penn
Machine Learning Benchmark [18]. To reduce overhead due to
dataset size, the retrieved datasets were randomly downsampled
from 100,000 data points to include 10,000 data points. For all Feyn-
man equations, we calculated a feasible solution tree depth by hand.
We use all Feynman equations that involve 4 variables and have
feasible solutions at depths 3,4, and 5. This results in 22 problems:
9, 7, and 6 equations for depths, 3, 4, and 5 respectively.

The selected Feynman equations are used as the benchmark set
of continuous equations in our experiments. To create discontinu-
ous problems, two Feynman equations are combined by adding a
Boolean variable, which takes the value of 0 for the rst equation
and 1 for the second equation. Combining the equations per depth
and disregarding the order gives  (−1)

2 combinations, where  is
the number of datasets of a depth. This gives 36, 21, and 15 datasets
for combinations of depth 3, 4, and 5 respectively. The Feynman
equations and their discontinuous combinations give way to prob-
lems of varying diculty (see supplementary material for more
details). All datasets are randomly split into a training set of 75%
and a test set of 25%.

4.3 Performance Metrics
To evaluate the performance of dierent congurations of GP-
GOMEAwith our enhancements, the R2 Error and theMean Squared
Error (MSE) are calculated. In all the experiments the MSE loss func-
tion is minimised.

To analyze the results statistically, we follow the recommenda-
tion of [5], which is implemented via Autorank [9]. First, a Friedman
test [6] is performed to test whether the central tendencies in the
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Branch factor # Operators Operator Set
3 22 +, − , −, ∗, 1 , /,,, ,, ,2,3,4,

5,=,>,< IfThenElse, AND, OR, NOT

3 11 +, −, ∗, /,, , ,2,3,<, IfThenElse
2 15 +, − , −, ∗, 1 , /,,, ,, ,2,3,4,5

2 9 +, −, ∗, /,, , ,2,3

2 4 +, −, ∗, /

Table 1: The operator sets and their branching factor used in
the experiments: ordered by the complexity of their induced
search space (from most to least complex). The maximum
arity of the operator sets induces the template arity. The set
of 22 operators and 15 operators include the most common
operators in the Feynman equations and all operators needed
to solve the selected problems. − denotes the unary minus
operator.

population are equal to each other. We then employ the post hoc
Nemenyi test [15] for pairwise comparisons and calculate the crit-
ical distance, i.e., the minimum signicant dierence. For further
visualisation, we take inspiration from [11].

4.4 Experiments
It is important to note that in all our experiments, we ensure that
each conguration is tested with the same amount of resources.
Since the enhancements require more evaluations within one gener-
ation, the resources are measured in terms of function evaluations,
instead of generations. Additionally, we track the performances of
each conguration at multiple checkpoints, to investigate how the
congurations impact the optimisation process over time. Speci-
cally, we record the performance at checkpoints of 100, 500, 1,000,
5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, and 5,000,000 eval-
uations. As GP is a stochastic process, each experiment is repeated
20 times. For analysis, the median performance metrics across ran-
dom seeds are considered. Further, we avoid setting the population
size manually by employing IMS as proposed in [24] with a start-
ing population of 64 individuals and 10 intermediate generations
between evolutions.

4.4.1 Operators. The enhancements introduced in this work aim to
improve search eciency, especially when the operator set and the
template arity are increased. To investigate what eect the dierent
GP-GOMEA enhancements have for dierent search spaces, we test
dierent sets of operators (see Table 1). With the selected operator
sets, we vary the complexity of the search space in terms of the
operator set size and tree template size.

Depending on the operator set, dierent enhancement congura-
tions may not be applicable. Due to this, the greedy child selection
which considers ternary operators is not applied on the operator
sets with a branching factor of 2. Further, as the operator set with 4
operators only includes binary operators, the greedy child selection
conguration considering only unary operators is the same as not
applying greedy child selection.

4.4.2 Depth. The tree template does not only grow with opera-
tors of higher arity but also grows with increasing depth. Using
the calculated feasible depths for each problem respectively, we

12345678910

original
GCS2+
GCS2

SSI GCS2+
SSI original SSI GCS1+

SSI GCS2
GCS1
GCS1+
SSI GCS1

CD
Operator set size: 15, Template arity: Binary

1234567891011121314
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GCS1+
GCS1

SSI GCS1
SSI GCS1+
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GCS3+ GCS3
GCS2
GCS2+
SSI GCS3+
SSI GCS3
SSI GCS2
SSI GCS2+
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Operator set size: 11, Template arity: Ternary

1234567891011121314
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GCS1

GCS1+
GCS3+
GCS3
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SSI GCS1 SSI GCS1+

GCS2+
GCS2
SSI GCS3
SSI GCS3+
SSI GCS2+
SSI GCS2

CD
Operator set size: 22, Template arity: Ternary

Figure 4: Statistical signicant dierences between the mean
rank of GP-GOMEA congurations. Two congurations that
are connected by a bar are not signicantly dierent, whereas
congurations that are further apart than the critical dis-
tance (CD) are statistically signicantly dierent.

perform experiments across dierent depths. In addition to this, we
investigate the behaviour of the enhancements when the depth is
smaller than required. To investigate this, the maximum depth was
set to the calculated feasible solution depth minus 1.

5 RESULTS & DISCUSSION
This section presents the results of the experiments performed and
outlines insights that stem from them.

5.1 Performance across Search Complexities
Figure 5 summarises the performance of the dierent GP-GOMEA
congurations after 5,000,000 function evaluations using the dif-
ferent operator sets seen in Table 1. Further, the performance of
each conguration is shown across discontinuous and continuous
Feynman equations of dierent depths.

In general, Figure 5 shows a positive eect of the dierent en-
hancement congurations to the original GP-GOMEA once the
search space becomes more complex. The benet with added com-
plexity can be seen with regards to larger template arities and larger
operator sets (the rightmost columns), as well as with more complex
problems that are deeper and/or discontinuous (the lower rows).
In other situations, the search enhancements do not worsen the
performance of the original GP-GOMEA.

Since all congurations across all experiments were given the
same amount of resources, the congurations in dierent search
spaces are stopped in dierent phases of their evolutionary process.

This means that for search spaces with fewer available operators
and a smaller tree template, all variants have achieved more or less
the best they can. For the larger search spaces, we see dierences
because some congurations are more ecient than others. In par-
ticular, the proposed enhancements have a positive eect as can be
seen from Figure 4 and 5. Given sucient resources, we expect that
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Figure 5: The impact of varying the operators on the R2 metrics of dierent GP-GOMEA congurations on continuous and
discontinuous problems of dierent depths. The performances are measured after 5,000,000 function evaluations. A B indicates
a binary tree, whereas a T indicates a ternary tree. Points indicate the mean of the median R2 performances per dataset, whereas
the bars indicate the 95% condence interval. To ease comparison, the red vertical line shows the mean performance of the
original GP-GOMEA conguration in the respective setting.

the performances will be similar across congurations (comparable
to the less complex search spaces in Figure 5). Conversely, for these
less complex spaces, we expect to see dierences (albeit potentially
smaller) earlier during the search.

We briey investigate this in the supplementary material and
nd that the enhancements improve the performance at fewer func-
tion evaluations when applied with fewer operators and a smaller
template arity. Specically, across all problems, the enhancements
are signicantly better than the original GP-GOMEA after 500 and
1,000 function evaluations, which supports our hypothesis. Further,
we also observe an interplay between IMS and congurations.

5.1.1 Statistical Analysis. A statistical analysis veried the above-
mentioned notion that (after 5,000,000 function evaluations) con-
gurations using the search enhancements perform superior to the
original GP-GOMEA conguration, especially when the operator
set size is large and/or higher-order cardinality functions are used.
The dierences in performance are not statistically signicant be-
tween the congurations of GP-GOMEA for the operator sets of
size 4 and 9. In Figure 4, we show the statistical dierences found
for the operator sets of size 11, 15, and 22. It can be seen that with a
maximum arity of three the enhancements are more useful than for
a smaller template. That being said, the benet of the enhancements
also increases with the number of operators used.
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Figure 6: R2 metrics of dierent GP-GOMEA congurations
on continuous and discontinuous problemswith 22 operators.
The colours show whether a smaller tree depth was used.
Points indicate the mean of the median R2 performance on
all continuous and discontinuous problems, whereas the bars
indicate the 95% condence interval.

From this, the congurations including greedy child selection
that considers operators up to an arity of 2 are most successful
in ternary trees, whereas for binary trees the greedy child selec-
tion considering operators of arity of 1 are benecial. In all cases,
semantic subtree inheritance seems benecial.

5.2 Performance across forced smaller solution
sizes

In this section, we analyse the eect that a smaller solution size can
have on the dierent congurations. For this, results are obtained
using an operator set size of 22 with the correct depth (presented in
the previous section) and compared with the congurations using
a depth that is smaller by 1.

Figure 6 shows the performance of various congurations when
given less depth than the feasible solution size for each problem.
For all problems, one can see that the performance decreases when
using a smaller solution size than needed. For discontinuous prob-
lems, the performances of both the correct depth and the altered
depth lie closer to each other. For the altered depth, the congu-
rations that consider ternary operators, as well as use semantic
subtree inheriting perform the best.

For continuous problems, the benet of considering ternary op-
erators is highlighted, as all congurations that do so (regardless
of additional backtracking or semantic subtree inheritance) signi-
cantly outperform the congurations that do not. This is intuitive as
congurations that can exibly adapt the arity of some binary oper-
ators can model a problem in a smaller solution size. The addition of
ternary operators could become even more relevant when the depth
is unknown (as is common) or pressure is added to reduce complex-
ity in GP-GOMEA (e.g., through a second objective). From an XAI
perspective being able to increase performance whilst retaining a
less deep solution template is likely to aid interpretability.

6 LIMITATIONS AND FUTURE WORK
The semantic subtree inheritance could be adapted further, such that
partial subtrees, i.e., single arguments to a parent operator, could be
inherited as well as entire subtrees. For further exibility, the leaf
nodes could also be considered during semantic subtree inheritance,
such that variables and groups of constants could be inherited. This

would likely reduce the required population size because required
constant and/or input variable index values do not need to exist with
nonzero probability in each position upon initialisation anymore
(which is currently the case due to the variation performed in the
original GP-GOMEA).

Further, an explicit comparison between the congurations of
GP-GOMEA and traditional constrained (w.r.t. height) GP should
be made, specically with higher-order cardinalities. A previous
comparison of binary templates between GP-GOMEA and con-
strained GP found GP-GOMEA was more eective than GP [24].
Based on this, it can be expected that this tendency will hold for
higher cardinalities - nevertheless, this should be investigated.

Moreover, future work could test the dierent congurations
of GP-GOMEA with larger operator sets, including multiple op-
erators of higher arity, on a varying set of benchmark data, such
as SRBench [11] as well as real-world data. Designing additional
discontinuous benchmark problems would also be an important
avenue of future research that could benet the GP community.

7 CONCLUSION
In GP, high-level operators of higher cardinality can aid in creating
shallower, more interpretable solution trees. In our work, we aim to
improve the search eciency of GP-GOMEA, such that GP-GOMEA
can handle a more complex search space in terms of larger tree
templates and larger operator sets more eciently.

For this, we have proposed two novel enhancements to the search
in GP-GOMEA: semantic subtree inheritance and greedy child se-
lection. Semantic subtree inheritance performs additional variation
by inheriting subtrees that have a common parent operator. Further,
the greedy child selection utilises the potentially increasing number
of syntactic introns present with a larger tree template by greedily
selecting the best (combination) of child(ren).

We performed an in-depth experimental investigation of the two
proposed search enhancements on various tree templates, operator
sets, and depths. For this, a selection of the ground truth Feynmann
equations are used, which were extended to create discontinuous
problems.

We show that our proposed enhancements improve search e-
ciency in many cases, and do not decrease the search eciency in
all cases. The enhancements were shown to statistically improve
search, especially when increasing the operator set size and/or
including higher-order cardinality functions.

We believe that larger operator sets and/or more complex opera-
tors can allow GP-GOMEA to model complex functions more inter-
pretably. Hence, increasing the search eciency for GP-GOMEA
to handle this more complex search space is an important step for
its use in XAI.
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