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ABSTRACT
Many real-world problems have expensive-to-compute tness func-
tions and are multi-objective in nature. Surrogate-assisted evolu-
tionary algorithms are often used to tackle such problems. De-
spite this, literature about analysing the tness landscapes induced
by surrogate models is limited, and even non-existent for multi-
objective problems. This study addresses this critical gap by compar-
ing landscapes of the true tness function with those of surrogate
models for multi-objective functions. Moreover, it does so tempo-
rally by examining landscape features at dierent points in time
during optimisation, in the vicinity of the population at that point
in time. We consider the BBOB bi-objective benchmark functions
in our experiments. The results of the tness landscape analysis re-
veals signicant dierences between true and surrogate features at
dierent time points during optimisation. Despite these dierences,
the true and surrogate landscape features still show high correla-
tions between each other. Furthermore, this study identies which
landscape features are related to search and demonstrates that both
surrogate and true landscape features are capable of predicting
algorithm performance. These ndings indicate that temporal anal-
ysis of the landscape features may help to facilitate the design of
surrogate switching approaches to improve performance in multi-
objective optimisation.
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1 INTRODUCTION
In real-world optimisation problems, tness evaluations can be
computationally expensive — ranging from minutes to hours [27]
— and multi-objective (MO) in nature. This greatly limits the total
amount of possible tness evaluations to typically a few hundred
or thousand. For such expensive-to-evaluate problems, surrogate-
assisted evolutionary algorithms (SA-EAs) have been introduced
[17]. SA-EAs reduce the required (true) expensive problem evalua-
tions by substituting the true tness function during parts of the
search, with a quick-to-evaluate model (surrogate) of the problem
built on a set of true evaluated solutions. In one scenario that is akin
to Bayesion optimisation, the SA-EA iteratively optimises the sur-
rogate function, selects one or more surrogate optimised solutions
and evaluates using the true function, and updates the surrogate
model based on the new set of true evaluated solutions. Because this
surrogate is built on a very limited number of solutions, there are
likely discrepancies between the true tness landscape and the sur-
rogate tness landscape. Therefore, the performance of the SA-EAs
is not only dependent on the true tness function but also on the
surrogate tness function. In this work, we analyse these potential
discrepancies between the true and surrogate landscape to better
understand the relation between the optimisation performance, the
surrogate, and the true tness landscape during the optimisation.

To properly study potential discrepancies between the true and
surrogate tness landscapes, we need to characterise tness land-
scapes during dierent points of the optimisation because the surro-
gate landscape may constantly shift due to the surrogate model be-
ing updated. Fitness landscape analysis (FLA) can do that, providing
insight about the interplay between optimisation algorithms and dif-
ferent tness landscape. The nature of FLA depends on whether the
search space is discrete or continuous, and on how many objectives
are formulated. We consider in this work continuous bi-objective
problems, and compute features of the true tness landscape and
also surrogate landscapes. In the continuous optimisation domain,
many FLA works have focused on algorithm-agnostic (static) ap-
proaches, such as Latin hypercube sampling (LHS) [4, 29, 31, 32] and
random walks [18, 23, 24]. The nature of the sampling means that
the computed landscape metrics may not be closely related to the
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landscape that is observed through tness evaluations performed
during an actual optimisation run. In a survey on landscape analy-
sis, Malan and Engelbrecht referred to this as search independence
[30]. There are also several works which use search-dependent ap-
proaches: one of these is continuous-space local optima networks
(LONs) [1, 38]. LONs, although valuable, amalgamate information
from across the evolutionary timespan into a single mathemati-
cal object (the LON). There is also the multi-objective equivalent,
Pareto LONs (PLONs) [28]. PLONs have several associated features
which have been linked to search performance; however, we do not
use them here because they do not fully describe the landscape as
observed by an algorithm during optimisation.

Dierent to the static FLAs, Jankovic and Doerr considered the
evolution of exploratory landscape analysis features in a single-
objective context [19], nding that static and temporal landscapes
do not match. Several works have studied the notion of trajectory
features (for single-objective problems): these allow an algorithm
to begin optimising while logging its trajectory, then computing
features from it to understand the problem or make algorithmic
decisions [6, 20–22, 40]. These contributions are related to ours
because they leverage intermediate landscape information yet fo-
cus on single-objective problems. We agree with the view that
studying temporal features associated with using an optimisation
algorithm, or considering the evolution of them over time may
be valuable. Very recently, Alsouly et al. studied the evolution of
landscape features over time for a set of constrained multi-objective
problems [2], nding that the landscape shifts across the course of
evolution, and that predicting algorithm performance is possible
with temporal features. In that work, several of the features related
to the constrained nature of the problems. Two previous studies
[33, 34] have computed metrics at dierent points in evolution for
a surrogate-guided evolutionary algorithm, but these were joined
together for analysis and the change over time was not separated
out and studied. In that case, the sample points used for landscape
analysis were based on the true tness function, and the problems
were single-objective; the authors found that several metrics are
linked to surrogate-assisted algorithm performance.

Aside from the mentioned works, there are very few articles con-
sidering surrogate tness landscapes. Werth et al. explore this di-
rection [41], comparing surrogate landscapes with those of the true
tness function for a small number of single-objective problems.
Harrison et al. analyse the surrogate landscape for single-objective
parameter conguration [16], but do not compare with the true
landscape. Generally, there is a lack of literature analysing surro-
gate landscapes. In the context of multi-objective optimisation, the
literature for this is — to the best of our knowledge — non-existent.

The presentwork is the rst to conduct analysis ofmulti-objective
surrogate landscapes. Additionally, we compare temporal landscape
features of the true tness landscape and the constantly-shifting
surrogate tness landscape, emphasizing the locally encountered
landscape and how it changes over time. Although there has been
an initial work studying multi-objective features across evolution
[2], this was for constrained problems and did not consider surro-
gates. Additionally, we consider here a dierent set of functions and
features and argue that this is an under-explored avenue. Another
contribution is that we demonstrate the potential associated with
building algorithm performance prediction models using features

of both the surrogate and true landscape. The rest of this paper is
structured as follows: Section 2 will introduce the surrogate models,
EAs, and FLA methods, and dimensionality reduction methods that
will be considered in this work. Sections 3 and 4 will describe our
main methodology and experimental setup, respectively. In Sec-
tion 5, the experimental results will be presented. Finally, Section 6
consists of the conclusions of the work.

2 BACKGROUND
2.1 MO Surrogate-assisted EA
Figure 1(a), describes the main process of the type of MO SA-EA that
we consider in this work. During the initialization phase, the SA-EA
samples a set of solutions using LHS, evaluates them using the true
tness function, and builds the initial surrogate model. After the
initialization, the SA-EA is composed of an inner cycle and an outer
cycle. The inner cycle consists of typical generational processes
of an EA. This cycle initializes with a population containing all
previously evaluated solutions using the true tness function. After
the application of the selection and variational operator, ospring
solutions are evaluated using the quick-to-evaluate surrogate model
instead of the expensive-to-evaluate problem. The cycle terminates
as soon as the maximum number of surrogate evaluations have
been performed. After the termination of the generational cycle,
the surrogate optimisation cycle starts. All surrogate-evaluated
solutions are then considered as potential candidate solutions for
evaluation with the true tness function. In the multi-objective
context considered for this work, the selection process consists of
calculating the domination ranks for all solutions based on their
surrogate tness values. A pre-selection is made by excluding 50%
of the solutions with the largest ranks. Thereafter, a set of solutions
is randomly selected from the pre-selection for the true evaluation.
The true evaluated solutions are then logged and, subsequently, a
surrogate model is updated based on this new set of solutions. This
SA-EA is described more formally in Algorithm 1.

Algorithm 1 MO SA-EA
Input:  = Number of initial solutions;  = maximum

number of true tness evaluations;  = maximum
number of surrogate evaluations in each surrogate optimisation
cycle;  = number of new selected solutions after each surrogate
optimisation cycle;

Output:  = Archive of all non-dominated solutions
1: Start rst surrogate optimisation cycle and set true function

evaluation  to 0
2: Initialize population  of size  using random sampling and

evaluate solutions using the true tness function
3: Add initial population  to archive 
4: while  <  do
5: Build surrogate model  based on 

6: Optimize  using EA with 



7: Select  solutions from all surrogate evaluated solutions to
evaluate with true tness function ( =  + )

8: Add solutions to the archive
9: end while
10: Return 
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2.2 Surrogate models
2.2.1 Exact interpolators. In previous expensive multi-objective
optimisation algorithms, several point interpolation methods have
been considered, such as inverse distance weighting (IDW) [36].
IDW is one of the most straightforward and widely adopted [26]
point interpolation methods, dened as follows:

̂idw () =
∑
=1

 () (1)

where ̂idw is the surrogate tness value of a solution with an
unknown true tness value,  is the true tness value of the ℎ
solution in an archive  containing  solutions, and

 () =  (, )−1
Σ=1 (,  )−1

(2)

where  is the Euclidean distance and  the unknown solution
and the ℎ solution. A downside of using IDW is that all surrogate
values of the solutions outside the parameter bounds of the known
solutions approach the average tness of the known solutions. To
overcome this limitation, inverse distance weighting regression
(IDWR) has recently been developed [12] where the surrogate t-
ness values of solutions outside the parameter bounds follow the
trend line of the tness value of all known solutions. The surrogate
value using the IDWR interpolation method is computed as follows

̂idwr () = ̂idw () +  Σ=1 − ̂idw ()
2 − Σ=1 (, )Σ=1 (, )−1

(3)

2.2.2 Linear regression. Another surrogate model is linear regres-
sion. To preserve the local structure of the tness landscape, the
surrogate is built on the k-nearest neighbours (KNN) of the solution
with unknown true tness value. Linear regression is dened as:

̂lr-knn () = 0 +
∑
=1

 (4)

where ̂lr-knn () is the surrogate tness value,  are the coe-
cient (slope) in each problem dimension, is the number of problem
dimensions and  are the decision variables.

2.3 Reference vector guided EA
The optimizer for the SA-EA in this work is a reference vector
guided evolutionary algorithm (RVEA) [7]. The initial population
is generated by uniformly sampling solutions in the initialization
range of the multi-objective problem. As long as the maximum
number of function evaluations is not exceeded, simulated binary
crossover [9] followed by polynomial mutation [10] is carried out
for generating an ospring population from the parent population.
This method for generating ospring solutions is equivalent to other
multi-objective EAs such as NSGA-III [11]. After combining the
parent and ospring population, the parent population for the next
generation is selected using a reference vector guided procedure
called the angle penalized distance.

2.3.1 Selection using angle penalized distance. Angle penalized
distance [7] consists of four mechanisms: generation of reference
vectors, assignment of each solution to one of the reference vectors,
selection of a solution per reference vector, and the adaption of
reference vectors. With RVEA, the objective space is divided into

discrete partitions using reference vectors. The initial generation
of these uniform reference vectors is done by rstly generating a
set of uniformly distributed reference points. In the next step, each
solution in the population is assigned to the reference vector with
the smallest angle between the objective vector (the vector between
the objective values and the origin) and the reference vector. This
partitions the population into several subpopulations, where each
subpopulation is associated with a particular reference vector. In
the third step, one solution is selected per subpopulation. The se-
lection criterion consists of two subcriteria. The rst subcriterion
(convergence) is measuring the magnitude of the objective vector,
where a smaller objective vector means a better solution. The sec-
ond subcriterion (divergence) is the angle between the objective
vector and the reference vector, where a larger angle means more
divergence. These two subcriteria are combined into a single crite-
rion: the angle penalized distance, where the parameter  species
the balance between the subcriteria.

3 METHODOLOGY
The main processes in the methodology are presented in Figure 1(b).
The methodology is composed of a static FLA and a temporal FLA.
For the static FLA, 200 solutions are sampled using LHS, where
 is the number of problem dimensions. These solutions are used
to extract the true tness landscape features. In the temporal FLA,
for every problem and surrogate model pair, we independently run
an optimisation process using an SA-EA. Independent optimisation
runs driven by each surrogate model are required because dierent
models might guide the EA to dierent parts of the search space
and encounter dierent tness landscapes. During each optimisa-
tion, solutions are logged alongside both the surrogate tness and
also the true tness. From these samples, landscape features and
optimisation metrics are extracted for the nal analyses.

3.1 Sampling during optimisation
During 15 repeats of the optimisation, the locally encountered true
and surrogate tness landscape is sampled at each time point in the
following way: from the current population, we repeatedly apply
the selection and variational operators until 2000 evaluations have
been reached; we thereby sample the vicinity around the population.
From this sample, duplicates are removed, meaning that the sample
can be slightly less than 2000. Two dierent sets of solutions are
thus logged after every surrogate optimisation cycle:

(1) Sample of solutions that have been evaluated by the SA-
EA within the current surrogate optimisation cycle. The
solutions are also evaluated using the true tness function
to acquire the true tness values.

(2) The true evaluated solutions for the optimisation.

3.2 Feature extraction process
In the feature extraction process, the true and surrogate landscape
features are extracted using the FLA method from Liefooghe et
al. [29] designed for continuous multi-objective problems. From
the 49 features, we removed any features which displayed missing
values in any of the samples. Missing values can occur for some of
the features depending on the nature of the sample; for example,
if there is only one non-dominated point in a sample, then there
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Figure 1: A) Visualisation of the main process of the type of SA-EA that we consider in this work where the (orange) inner
cycle represents a generational cycle of an EA with a selection and variational operator. Within this cycle, the solutions are
evaluated using a surrogate model. After termination of the generational cycles, the (blue) outer cycle starts, where potentially
good surrogate evaluated solutions are selected and evaluated with the true tness function. B) The general methodology is
composed of a static FLA and a temporal FLA where the static FLA utilizes a static sampling strategy while the temporal FLA
logs the solutions during the optimisation. A feature extraction process then extracts the true and surrogate landscape features.
Furthermore, the performance metric is calculated, which is used for algorithm performance prediction.

will be missing values for the metrics relating to distances between
non-dominated points. Additionally, we remove a group of features
which are associated with hypervolume; because hypervolume is
the measurement we will be predicting, it seemed appropriate to
exclude them. The resulting set of 28 features is provided in Table 1
of the supplemental material. The surrogate features are expected
to change temporally as the surrogate model is updated after every
surrogate optimisation cycle — and indeed, the population is un-
dergoing evolution and the algorithm is moving through dierent
search space regions. Next to the surrogate landscape features, the
true landscape features are extracted after every surrogate optimi-
sation cycle. Subsequently, all solutions evaluated with the true
tness function, up to the current surrogate optimisation cycle, are
used to quantify the optimisation convergence of the optimisation
run. Optimisation convergence is evaluated by rst normalising
the objectives using the ideal and Nadir points, as recommended in
the literature [5]. The Nadir point then corresponds to [1, 1]. In the
context of multi-objective optimisation, we are only interested in
regions where there is a trade-o between objectives, which are the
solutions between the ideal and Nadir point. The median landscape
feature and performance metric is calculated over 15 repeats.

3.3 Data representation for analyses
For every problem and surrogate model pair, data is composed
of median surrogate landscape features, true landscape features,
and a performance metric as a time-series. For computational ex-
pense purposes, only the data at the time instances (true function
evaluations) 256, 1280, 1792, and 8192 are considered.

4 EXPERIMENTAL SETUP
4.1 Benchmark problems
The bi-objective BBOB functions (bbob-biobj) [5] with continuous
problem variables from the COCO framework [14] are considered.
The 55 problems are a pair-wise combination of 10 well-understood
single objective BBOB functions. In this work, we are only consid-
ering the rst instance of each of the 55 bbob-biobj problems. We
focus on the 20-dimensional instances only. All algorithms have
their populations initialized in the default COCO ranges: −100 to

100. The benchmark problems are simulated to be computationally
expensive by setting the maximum number of true function evalua-
tions to 8192. The maximum runtime of each optimisation is set to
24 hours. The resulting output data1 and scripts2 can be found in
public repositories.

4.2 SA-EA Algorithms
SA-EA variants and the settings. For this work, we are considering

six dierent surrogates. We are considering IDW, IDWR, and LR-
KNN as described in Section 2.2. IDW and IDWR do not require
any settings, and are implemented as described in Section 2.2. For
LR-KNN, the  is set to 32 to capture the local slope of the tness
landscape. In this work, we also consider simply using k-nearest
neighbours (KNN ), where the surrogate tness is equivalent to the
nearest solution in the set of solutions evaluated using the true
tness function. This surrogate is interesting to consider because
this surrogate is fast to evaluate and does not interpolate between
true evaluated solutions. Furthermore, many state-of-the-art SA-EA
use Kriging. Therefore, this work also uses the Kriging surrogate
(Kriging) from the well-known K-RVEA [8] as implemented in the
PlatEMO [37]. Finally, a surrogate named No structure is included.
This surrogate randomly selects a solution from the true evaluated
solutions and returns the tness values for both objectives. This
surrogate functions as a baseline since it returns tness values in the
ranges of previous evaluated solutions, but there is no correlation
between the true and surrogate tness values.

All SA-EA variants are initialized with 32 solutions which are
sampled using LHS. For all variants, the number of selected so-
lutions per surrogate optimisation cycle, , is set to 1 so that the
surrogate is updated as frequently as possible (every new true eval-
uation). In this work, the MATLAB/Octave code implementation
of RVEA from PlatEMO is utilized [37]. RVEA is initialized with a
population size of 32 which is sampled using LHS. Furthermore, 
is set to 1 · 106; this is intended to maximize convergence due to
the low number of evaluations.

1https://zenodo.org/records/10575290
2https://zenodo.org/records/10496995
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4.3 Dimensionality reduction
We seek to compare vectors of landscape features between true and
surrogate tness functions, and also between dierent surrogates.
To this end, we use t-distributed stochastic neighbour embedding (t-
SNE); this is a dimensionality reduction technique widely employed
to visualize high-dimensional data in a lower-dimensional space
while preserving the pairwise similarities between data points [39].
Employing dimensionality reduction individually for each sample
within a time-series sequence (such as the dierent points in evo-
lution which we track in this study) could introduce unwarranted
variability in the consecutive projections. This complicates the pro-
cess of tracking the optimisation. Therefore, also, a dynamic t-SNE
[35] has been used in this work. For the experiments, we use a
perplexity of 50, sigma optimisation iterations of 50, epoch count
of 10000, and we set the random seed to 1. In the case of a dynamic
t-SNE, the movement penality is set to 0.001.

4.4 Performance Modelling
The modelling is conducted with random forest regression as the
learning algorithm; it is used with its default hyperparameters,
namely: 500 trees, with 1

3 features included per split (where
 is the number of features); sampling with replacement; the
sample size is the same as the number of observations. The 28
features are computed using both the true tness landscape and the
surrogate, which leads to 56 features in the candidate pool. Four
points in evolution are considered for the temporal approach: after
256 evaluations; after 1280; after 1782; and 8192.

For the static analysis, all features are based on the true tness
function and there is a single snapshot of the 28 features. The
sample size for the temporal and static analysis is the same: 2000
(100) points. The response variable is the median (normalised
using the ideal and Nadir points) nal hypervolume obtained by
the surrogate-assisted RVEA variants. The IDW-assisted RVEA
is excluded from the algorithm performance analysis: it achieved
non-zero hypervolume on only one out of 55 functions, making it
impossible to build a meaningful model.

We carry out recursive feature elimination (RFE)3, bootstrapped
for 1000 iterations. In accordance with the one-in-ten guideline [15]
for the ratio between features and observations, we limit the number
of selected features to a maximum of ve (there are 55 benchmark
problems under study). Models are built using the features which
were identied during RFE. To try and account for the potential
eect of having a limited number of observations (the model could
be susceptible to randomness in the data split), we bootstrap the
models for 1000 iterations using a 80-20 training-validation split on
the dataset. To quantify model performance, we consider the pseudo
2; this is computed as 1− 

 ( ) where is the target variable
(normalised nal hypervolume achieved by the surrogate-assisted
RVEA). If a model is very poor, the pseudo 2 can sometimes be
less than zero; to preserve its meaning as the proportion of variance
explained, we replace any negative values with zero. We report the
bootstrap mean, median, and standard error of the model 2 on
validation data.

3https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/rfe

Figure 2: t-SNE plot comparing the true features resulting
from the temporal FLA to the static FLA. Each marker rep-
resents the median tness landscape feature of a particular
bbob-biobj problem. The colour of the point indicates in
what phase of the evolution the landscape feature is calcu-
lated, as indicated with the colour bar.

5 RESULTS
5.1 Static compared to temporal FLA
To ascertain whether the temporal FLA yields distinct features
in comparison to a static FLA, we compared the true landscape
features for both analyses in a t-SNE plot. The results are depicted in
Figure 2. When using the Kriging surrogate, only 33 out of 55 bbob-
biobj surpassed 256 function evaluations before the optimisation
runtime limit, see Table 1 in the supplementary material. Only
these 33 problems are included in the further analysis. Each marker,
in Figure 2, represents true tness landscape features of one of
the bbob-biobj problems. The black markers denote the features
resulting from the static FLA, while the coloured markers indicate
the phase of the evolution in the temporal FLA.

The most signicant nding here is the distinct discrepancy be-
tween markers derived from static and temporal FLA, indicating
that the two types of analysis exhibit divergent feature distributions.
Moreover, the feature similarity between the dierent bbob-biobj
problems appears to be larger than the similarity between the fea-
tures at dierent stages of evolution (in particular, notice the red
cluster in the top-left of the plot containing the majority of the
late-in-evolution samples), emphasizing the need to perform t-
ness landscape analyses temporally. We have also evaluated, per
feature, whether there is a statistical dierence between the static
and temporal analysis (see supplementary material).

5.2 True compared to surrogate landscapes
We also compare the true landscape features and the surrogate
landscape features during dierent phases of evolution, see Figure
3. The top-left plot represents the features at the beginning of the
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Figure 3: Dynamic t-SNE plot comparing tness landscape
features for the true to the surrogate tness evaluations ac-
quired in the temporal FLA. Each marker in the scatter plot
represents the median tness landscape feature of a particu-
lar bbob-biobj problem

optimisation (256 function evaluations). Following the plots clock-
wise, there are dierent phases in evolution, as indicated with the
annotated text. In the plots, each marker represents tness land-
scape features of one of the bbob-biobj problems. The colours now
describe whether the features are based on the true or surrogate
landscape. The surrogate (indicated using the marker shapes) is also
relevant for the true landscape features, since dierent surrogates
can lead the optimisation to dierent regions of the true tness
landscape. Kriging has been excluded for the analyses because we
only have the data until 256 function evaluations. After 256 function
evaluations, it is interesting that all true-landscape tness features
cluster together (notice the pink markers) while the surrogate fea-
tures (these are coloured purple) disperse into the peripheral regions
of the plot; this suggests a large dierence between the true and
the surrogate features. At the same time, the surrogate model data
points are locally clustered together (into their surrogate types),
suggesting there is also a clear dierence between the features
of dierent surrogates. To investigate the similarity between the
surrogate and the underlying true landscape, we compare the corre-
sponding feature distributions with a statistical test. Since in Figure
3, the dierent surrogates form individual clusters throughout the
evolution, the statistical comparison is performed per surrogate —
resulting in 588 tests. Because the surrogate landscape features are
calculated on the same solutions as the true landscape features, a
Wilcoxon test is used; we consider statistical signicance to be  ≤
0.05 (corrected using the Bonferroni correction).

Figure 4(a) summarises the results, where the black squares rep-
resent a signicant dierence in distributions. For KNN, 17 of the 28
surrogate features are signicantly dierent from the true features
throughout the evolution; for IDWR,No structure, LR-KNN, and IDW
this is: 14, 10, 8, and 8 features respectively. Furthermore, LR-KNN
seems to capture the true landscape from 1280 function evaluations:

this can be observed in the increase in light-grey squares when
going up the vertical axis towards 8192 evaluations. This does not
occur for IDWR and KNN. Interestingly, despite these discrepan-
cies, when we consider the Spearman correlations between the
true and surrogate landscape feature distributions, the features do
seem to correlate with each other: see Figure 4(b). Overall, indi-
cated by the number of blue squares, No structure, LR-KNN, and
KNN seem to have higher feature correlation than IDWR and IDW.
Note that, for KNN, there are many features whose distributions
showed signicant dierence in 4(a) while simultaneously having
high correlations. We also notice that several features appear to
have perfect correlations between the true and surrogate distribu-
tions. In the case of dist-x-avg, dist-x-avg-neig, and dist-x-max —
this is because these relate to distance in the variable space. For the
others (dist-f-avg, dist-f-max, and dist-f-avg-neig): these three have
highly skewed distributions for both true and surrogate landscapes,
with the vast majority of values being low but with a few very large
outliers. These distributions likely occurred due to the dierence
in tness ranges across functions, and the nature of the distribu-
tions is probably the reason for the strong correlations. This raises
the thought about whether this specic subset of features should
perhaps be revisited or further developed in future research.

To understand the distributions further we also visualise the
dierence between the true-landscape median and the surrogate-
landscape median of the (normalised) feature distributions: see
Figure 4(c). For some features, particularly for KNN and IDWR,
there is a large dierence in the median of the feature distributions,
explaining the signicant dierences seen in Figure 4(a).

5.3 Algorithm performance prediction
Table 1 presents a summary of the algorithm performance predic-
tion models. Each row relates to a specic type of surrogate, and
contains information about ve models (one per column), where the
response variable is the nal hypervolume associated with using
that surrogate. For example, the rst row represents: four models
using temporal features from sampling during runs using the KNN-
surrogate, and one model utilising static features extracted from a
latin hypercube sample. The type of sampling is indicated in the
header row; for each row below that, selected reports the features
included in the model (these were selected by RFE) — features of
the surrogate landscape are in blue text and features of the true
landscape are in black text; and beside the name of the surrogate
we present the bootstrap mean, median, and standard error for the
model pseudo 2 on validation data. The 2 values should not be
taken as an indication of the performance of the surrogates, but as
an indicator of howwell landscape features can predict the outcome
of optimisation.

Looking at the 2 values in Table 1 we can consider the values
for the models built using a static landscape sample as the baseline
for interpretation. For the KNN and LRKNN surrogates, three of
the four temporal models are better than the static equivalent; the
remaining one is the rst in the time series (256 evaluations). For
IDW, there are two superior temporal models, one which is roughly
equal to the static equivalent, and one which is lower quality than
the static counterpart (this is again the earliest temporal sample,
at 256 evaluations). Finally, for the No structure surrogate, it is not
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Figure 4: A) Comparing the true and surrogate landscape feature distributions yielded during dierent phases of evolution,
where black refers to statistically signicant ( ≤ 0.05) dierences according to aWilcoxon test. B) Correlations between the true
and surrogate landscape feature distributions yielded during dierent phases of evolution. C) Dierence in median between
the true and surrogate landscape feature distributions yielded during dierent phases of evolution.

Table 1: Algorithm performance prediction models. The predictors are true (black text) and surrogate (blue text) landscape
features sampled temporally at four points in evolution (and a static sample) chosen by feature selection; the response variable
is nal (normalised) hypervolume achieved by the surrogate-assisted RVEA variant indicated in the rst column. Predictors
and the response are the median over 15 runs. The model quality metric is pseudo 2. Each model is bootstrapped for 1000
iterations and the reported values are bootstrap mean | bootstrap median (bootstrap standard error) for the metric on validation
data.

sampling → temporal (256 evals) temporal (1280) temporal (1792) temporal (8192) static

selected →
[dist-f-max, dist-f-avg,

dist-f-max, dist-f-avg-neig,
di-f-avg-neig]

[inf-avg-neig, slo-n,
di-f-avg-neig,

dist-f-avg-neig, dist-f-avg]

[inf-avg-neig, plo-dist-max,
dist-x-avg-neig, dist-x-avg-neig,

nd-n]

[di-f-cor-neig, dist-f-cor-neig,
lsupp-avg-neig,

di-f-cor-neig, rank-avg]

[dist-f-cor-neig, dist-f-avg-neig,
dist-f-max, dist-f-avg,

di-f-avg-neig]
KNN 2: [0.755 | 0.753 (0.236)] 2: [0.819 | 0.855 (0.176)] 2: [0.913 | 0.858 (0.174)] 2: [0.947 | 0.934 (0.096)] 2: [0.697 | 0.785 (0.209)]

selected →
[sup-avg-neig, eval-aws,

inc-avg-neig, dist-f-avg-neig,
di-f-avg-neig]

[di-f-cor-neig, length-aws,
sup-avg-neig, dist-x-cor-neig,

dist-x-cor-neig]

[di-f-cor-neig, sup-avg-neig,
dist-x-cor-neig,

dist-x-cor-neig, length-aws]

[slo-n, nd-n,
dist-f-cor-neig, supp-n,

di-f-cor-neig]

[dist-f-cor-neig, sup-cor-neig,
dist-f-avg, dist-f-avg-neig,

di-f-cor-neig]
IDW 2: [0.682 | 0.698 (0.223)] 2: [0.834 | 0.786 (0.201)] 2: [0.748 | 0.763 (0.204)] 2: [0.870 | 0.866 (0.181)] 2: [0.754 | 0.749 (0.192)]

selected → [plo-n, rank-ent,
plo-dist-max, plo-dist-max, dist-f-avg]

[plo-dist-max, slo-n,
plo-n, plo-dist-max, slo-n]

[slo-n, sup-avg-neig,
plo-dist-max, plo-n, slo-n]

[nd-n, plo-dist-max,
slo-n, inf-avg-neig,

slo-n]

[dist-f-cor-neig, dist-f-avg-neig,
dist-f-avg, di-f-avg-neig,

dist-f-max]
LR-KNN 2: [0.867 | 0.832 (0.163)] 2: [0.967 | 0.837 (0.181)] 2: [0.945 | 0.846 (0.180)] 2: [0.923 | 0.836 (0.185)] 2: [0.871 | 0.754 (0.213)]

selected →
[di-f-cor-neig, di-f-avg-neig,

dist-f-cor-neig,
dist-f-avg-neig, dist-f-avg]

[slo-n, dist-x-avg-neig,
dist-x-avg-neig,

rank-ent, dist-f-cor-neig]

[dist-x-avg-neig, dist-x-avg-neig,
dist-x-avg, dist-x-avg, slo-n]

[nd-n, nd-n,
supp-n, supp-n,

eval-aws]

[dist-f-cor-neig, dist-f-avg-neig,
sup-cor-neig,

dist-f-avg, di-f-avg-neig]
No structure 2: [0.686 | 0.730 (0.215)] 2: [0.815 | 0.786 (0.171)] 2: [0.778 | 0.754 (0.202)] 2: [0.618 | 0.838 (0.172)] 2: [0.728 | 0.701 (0.223)]

clear whether temporal or static analysis is the best approach: some
of the temporal models are better then the static model and some
are not. For both IDW and No structure surrogates, the models at
256 evaluations are worse than the static baseline. This is probably
because the sampling, which is steered by surrogate tnesses, is led
to less relevant regions: this behaviour could be due to the limited
archive of real-evaluated solutions at this point in the search and
the poor ability of these two surrogates (indeed, they exhibit lower
performance on the problems than KNN and LRKNN ).

Notice from Table 1 that for each of the 16 models built using
temporal features, a mixture of both surrogate and true landscape
features were selected by the RFE. This hints that it is important
to consider features of both the surrogate and the true landscape

when considering performance prediction for surrogate-assisted
optimisation; however, to test this thought, we also built models
using feature pools of 1) surrogate features only and 2) true features
only. This experiment showed that generally, the surrogate-only
and true-only models are of approximately equivalent performance
to those in Table 1. That nding implies that, rstly, the surrogate
models may be mimicking the true landscape well; and secondly,
that features of either can be used in performance prediction. The
results for these two setups can be found in Tables 2 and 3 of the
supplemental material. In Table 1, it can be seen that tness-based
features (those containing f in either blue or black text) appear to
play an integral role in many of the predictions: the majority of
models has at least one included.
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When it comes to these tness-based features, more from the
surrogate landscapes are selected when compared to the true land-
scapes. We notice that the type of feature which matters appears
to change over the phases of evolution: when the 1792 timepoint is
reached, there is a shift away from tness-based features towards
features which capture evolvability and ruggedness with respect to
variable-space distances (those ending with avg-neig and cor-neig).
Looking again at the temporal models overall, there is also a clear
trend of features relating to local optima — both single-objective
and Pareto — appearing in the models (for example: slo-n, plo-n,
and plo-dist-max). Notice that this is particularly evident in the case
of the LRKNN surrogate, and that these features seem to be impor-
tant regardless of whether they are computed from the surrogate
landscape or the true landscape. The prevalence of local optima
features in the LRKNN models implies that the performance of this
type of surrogate may be particularly aected by local optima.

In terms of model quality over time, for the KNN surrogate there
is a trend over time: the model quality increases. There is no clear
trend for the other three surrogates. As mentioned, the last column
contains relating to the models using features of the static sample
as predictors. We observe that the majority of selected features for
these models relate to tness in some way. Comparing the static
models with the temporal equivalents, it can be seen that all four of
the temporal KNN models out-perform the static KNN model; and
three of the LR-KNN temporal models outperform the equivalent
static model.

Things are less clear with the IDW and No structure surrogates.
Taking into account the four temporal models, it could be said
that the equivalent static models perform similarly to them. It may
seem counter-intuitive that the No structure models have mean 2

values between 0.618 and 0.815. This surrogate simply assigns a
random true-evaluated tness to a solution. However, when we
consider the details of these models, things become clearer. For
example: in the case of the temporal (256 evaluations) model, the
surrogate does not have access to many true-evaluated solutions
yet so the sample for landscape analysis — and subsequently the
predictive model — resembles that of the static sample in column 5.
For the second and third temporal models, a lot of features based
on distance in the variable space are selected (these begin with
dist-x); this makes sense, because they are not directly related to
the surrogate tness function. The feature dist-f-cor-neig (surrogate)
is selected for the 1280-evaluations model. This is a tness-based
feature (and therefore highly linked to the surrogate), but the fact
it was selected for the models is understandable when we consider
that this feature showed moderate correlation with its equivalent
for the true landscape, as seen in Figure 4b). To conclude this section,
we note that feature importances were computed for all models,
and that generally, features within a model have similar importance
to one another. The associated data can be found in Tables 3, 5, and
7 of the supplemental material.

5.4 Limitations and Discussion
The performance prediction results indicate that temporal tness
landscape analysis potentially be used for online surrogate selec-
tion in multi-objective optimisation. This raties what has been
shown in a single-objective context [25]. We also found that while

many landscape features signicantly dier between the surro-
gate and true landscapes, they are often correlated. A previous
study [41] observed feature dierences for single-objective prob-
lems. Additionally, our results showed that using either or both
of the surrogate and true landscape features can be benecial in
performance prediction; to the best of our knowledge, this is a novel
approach: previous studies have focused on the evolvability of the
surrogate [25] or the tness approximation error [3].

There are limitations to the conducted study. The feature selec-
tion approach — recursive feature elimination — can be aected by
randomness in the data splits, and can sometimes fail to remove
redundant features. Even so, every feature selection method has its
own drawbacks: for example, evolutionary feature selection is com-
putationally intense and may require parameter tuning. We also
note that sampling strategies for conducting temporal landscape
analysis introduce additional computational expense. Future work
will consider how to best utilise the tness evaluations which have
already been carried out during optimisation. Another considera-
tion is that the included surrogate models were chosen due to their
straightforwardness; however, in future works, more Kriging mod-
els from other state-of-the-art SA-EAs such as in [8, 42] and other
types of surrogate models such as neural networks in [13] should be
considered. Finally, some of these models can become expensive to
build and evaluate when the archive of solutions becomes too large.
The impact of the tness landscapes when reducing the archive
size should also be considered.

6 CONCLUSIONS
Surrogate-assisted evolutionary algorithms can eectively exploit
problem structures by substituting expensive-to-evaluate tness
functions. Analysing the resemblance and discrepancies between
the surrogate landscape and the true landscape could provide a
better understanding how surrogates can assist EAs in performing
ecient optimisation by capturing various features of the true t-
ness landscape. In this work, we have investigated the dierence
between true and surrogate landscape features during evolution-
ary multi-objective optimisation. We consider several surrogate-
assisted versions of a reference-vector guided evolutionary algo-
rithm and use the well-known BBOB-BIOBJ suite of bi-objective
functions. Our results indicate that surrogate landscape features
dier signicantly from the true landscape features and that these
features vary during the course of a run. Despite these dierences,
the surrogate and true landscape often show a high correlation.
This work also evaluates how these dierent features impact the
actual search and identied key landscape features from both the
surrogate and the true landscape with the capability to predict
algorithm performance. This opens the door for online surrogate
switching in multi-objective optimisation in the future.
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