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“You can’t connect the dots looking forward; you can only connect them looking
backwards. So you have to trust that the dots will somehow connect in your fu-
ture. You have to trust in something - your gut, destiny, life, karma, whatever.
This approach has never let me down, and it has made all the dierence in my
life.”

— Steve Jobs

ii



Abstract

Recent advancements in Augmented Reality (AR) and Vision-Language Modelss (VLMs)
have signicantly improved interactive user experiences, particularly in training and
educational environments. However, when it comes to precise tasks such as manual
assembly instruction, these technologies still face inherent limitations in understanding
ne-grained details. Specically, existing VLMs often struggle to accurately compre-
hend complex scenes and precisely position objects, limiting their full potential in
AR-based training environments.

To address this challenge, we introduce a novel dataset specically developed for AR
training tasks, sourced from a diverse collection of multimodal data, including LEGO
instruction manuals. This dataset serves as a foundation for a series of vision-language
tasks, simulating real-life AR training scenarios such as scene understanding, object
detection, and state detection. These tasks are designed to push the boundaries of cur-
rent VLMs, oering a rigorous benchmark for evaluating their capabilities in handling
ne-grained assembly instructions within AR environments.

Our ndings demonstrate that even leading VLMs struggle with the challenges posed by
our dataset. For instance, GPT-4V, a state-of-the-art commercial model, achieves an
F1-score of only 40.54% on state detection tasks, underscoring the need for continued
research and dataset development. These results reveal critical gaps in current models’
ability to handle detailed vision-language tasks, suggesting the importance of creating
more robust datasets and benchmarks to guide future advancements.

Ultimately, this work lays the foundation for future research in integrating VLMs into
AR environments, highlighting areas where improvements are necessary and proposing
new strategies for overcoming these limitations. By pushing the current boundaries
of multimodal learning systems, this research opens the door to more eective and
intelligent AR training assistants, driving progress in industrial assembly and beyond.
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1

Introduction

Figure 1.1: Demonstrating the limitations of GPT-4V(2024.2.10) in recognizing errors during LEGO
assembly tasks. This gure illustrates an instance where the model incorrectly validates an incorrect
step as correct despite having access to previous block selections and detailed step instructions. This
example highlights the challenges of ne-grained detail recognition in AI-driven task execution.2

VLMs are crucial in integrating visual and textual data, signicantly enhancing multimodal un-
derstanding. The development of encoder-decoder and transformer-based frameworks has greatly
improved VLMs’ abilities, particularly evident in their success in tasks like image captioning and
visual question answering [51][33]. This advancement has contributed to the creation of robust mul-
timodal representations, essential for the development of innovative assistive technologies[13][6]. In
parallel, AR has emerged as a powerful tool for aiding individuals with visual impairments. Re-
search indicates that AR can provide essential visual cues that substantially assist people with
visual impairments in educational and navigational contexts[3].

Moreover, AR has proven invaluable in enhancing spatial awareness and improving educational
outcomes for students with limited vision[21].In AR applications, VLMs are expected to compre-
hend and execute ne-grained tasks accurately. The inherent exibility of VLMs allows for targeted
ne-tuning with minimal adjustments, demonstrating their potential for broad applicability across
diverse functions[40]. Similar works have also shown possibilities of applying large multi-media
models into XR assisting framework.[31]

Eective incorporation of ne-grained visual nuances and robust VL correlations is essential,
especially in complex tasks like image dierence captioning, which suer from sparse manual an-
notations [46]. Furthermore, the development of ne-grained visual-textual representations within
VLMs aims to enhance the models’ ability to discern intricate relationships between visual and

2https://openai.com/index/gpt-4v-system-card/
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textual information, emphasizing the need for granularity in improving performance [19]. Addition-
ally, employing deep learning for detailed image analysis addresses critical challenges in computer
vision, proving vital for applications that demand precise classication and recognition of complex
visual data [44][45].

In a specic scenario, we challenged the capabilities of the latest visual version of OpenAI’s
GPT-4 (GPT-4V) by presenting the correct answer for a step in a LEGO assembly manual (see
Figure 1.1). Subsequently, we showed GPT-4V an image of our assembly attempt, which was
intentionally incorrect. Despite the discrepancies between the provided correct answer and our
erroneous assembly, GPT-4V validated the incorrect assembly as correct [15]. This incident not
only underscores the existing limitations in VLMs’ ability to interpret and verify visual tasks
against given instructions accurately but also highlights the urgent need for advancements in
understanding and validation mechanisms within such models, particularly in precision-critical
and correctness-verication applications.

To this end, we have developed a specialized dataset from the Ocial LEGO dataset3, specically
designed to enhance the capabilities of VLMs as AI assistants in AR systems. Additionally, we
formulated VLM tasks that mirror the challenges found in assistant applications, thus fostering
the integration of AR and VLM technologies. These tasks, illustrated in Figure 3.2, emphasize
scene understanding, object detection, and state detection, which are crucial for equipping VLMs to
manage real-world scenarios adeptly. Moreover, our architecture, shown in Figure 5.1, is crafted for
compatibility and extensibility, facilitating the incorporation of advanced VLMs into AR systems.

In summary, our contributions are:
• We introduce ne-grained tasks for evaluating VLMs within AR training environments. These

tasks have been applied to infer the performance of multiple state-of-the-art VLMs, promoting
advanced instructional design in AR.

• We have developed an instructional multimodal dataset from complex LEGO manuals, estab-
lishing a new benchmark for multimodal data application in AR settings. This also includes a
structured framework for both inference and ne-tuning of existing benchmark models on our
dataset, enabling a thorough assessment of model capabilities and enhancements.

• Our tailored query architecture facilitates VLM application in AR training through comprehen-
sive data preprocessing, feature adaptation, and model tuning. This query setting framework is
also the result of an extensive query study, ensuring the settings are optimized based on empirical
results and are highly eective in real-world applications.

3https://legoaudioinstructions.com/instructions
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2

Background

2.1 Application-Specic VLMs

Recent advanced models that understand both vision and language have opened up many possibil-
ities in dierent areas [12, 16, 48]. They can describe visual content in words and generate captions
for images [20, 52]. This helps in various ways, like providing descriptions for visually impaired
people or helping search engines index visual content. These models can also answer questions
about images [4], making it easier for users to interact with visual content, especially for people
with disabilities. They can understand phrases like “the red car” to identify objects in images,
which is useful for tasks like image retrieval or content recommendation [37]. Additionally, these
models enable conversational interactions about visual content [7], making it possible for virtual
assistants to understand questions or requests related to images and videos. They can even trans-
late between dierent types of information [18], like turning text descriptions into images or vice
versa, which is helpful for language learning or creating multilingual content. Furthermore, they’ve
led to innovative applications like personalized educational platforms [9] and assistive technologies
[39] for visually impaired individuals.

While VLMs can be integrated into educational platforms and interactive learning environments
to provide personalized feedback, generate educational content, and help learners understand visual
concepts, including systems that describe visual scenes, identify objects, or provide navigation
assistance based on visual input, but unfortunately the ne-grained VL modeling has not yet been
captured by most applications.

2.2 Fine-Grained VL Modeling

The proliferation of VLMs underscores their signicance in merging visual and textual information,
presenting various possibilities across various applications. Yet, a noticeable gap emerges when
modeling VLMs for ne-grained tasks. This gap delineates the dierence between the competencies
of current models and the anticipated capabilities necessary for comprehensive scene understanding,
precise object recognition, or accurate identication of correctness in assembly tasks. Such a
discrepancy underscores the challenges faced by existing models in meeting the intricate demands
of tasks that require an advanced level of visual and linguistic synthesis, highlighting an essential
area for further inquiry and enhancement within the VLM domain.

While modeling VLMs, the progression and diversication of models underscore their pivotal
role in amalgamating visual and textual data. This landscape is signicantly enriched by models
such as CLIP, which heralds a novel paradigm with its broad-spectrum generalization capabilities
across a diversity of tasks, demonstrating a formidable aptitude in zero-shot learning environments
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2.3 VL Datasets in AR

and multilingual adaptability.[32]While models like CLIP excel in broad generalization, they may
lack the depth of specialization needed for tasks requiring intricate detail and nuanced understand-
ing. EcientVLM is a signicant open-source model characterized by its size, speed, and accu-
racy optimization through innovative approaches like knowledge distillation and modal-adaptive
pruning.[41]But it may not fully address specic complexities of ne-grained visual tasks that de-
mand precise and nuanced interpretation. Adding to this diversity, MiniGPT-v2 is a versatile
platform for multi-task learning, eectively bridging large language models with VL tasks. Still, it
might not provide the depth of insight and specicity required for complex, ne-grained tasks.[8]
Meanwhile, Qwen-VL excels in ne-grained visual comprehension, extending the applications of
VLMs beyond traditional boundaries, but it may still struggle with the extreme specicity and con-
textual understanding required in certain specialized tasks.[2] OSCAR, with its object-semantics
aligned pre-training, renes image-text representations, enhancing both understanding and gener-
ation tasks and reecting the increasing sophistication of pre-training techniques. [25] VisionLLM
explores the potential of large language models for decoding vision-centric tasks, promoting a
versatile approach to task management through linguistic cues.[42] However, These models’ adapt-
ability to highly detailed and context-specic tasks remains challenging. The Otter model, while
advancing the handling of complex sequential tasks, exhibits limitations in detailed analysis and
description. It understands and guides various scenarios using the MIMIC-IT dataset but falls
short in ne-grained modeling. This deciency points to a broader need within the eld for Vision-
Language Models (VLMs) that can match human visual assistants’ detailed comprehension and
interaction capabilities in real-world settings [23].

The eld’s progression is notably driven by introducing VLMs capable of sophisticated task nav-
igation and understanding, oering unprecedented adaptability. This advancement is particularly
evidenced in the works of Zhong et al. [50] on procedure-aware video representation from instruc-
tional content and Ashutosh et al. [1] on generating task graphs for essential step recognition in
instructional videos. These contributions herald a future where VLMs are seamlessly integrated
into human-centric environments, demonstrating the capability of AI to undertake complex visual
tasks with enhanced clarity and eciency. However, despite the ability to locate and predict steps
in procedural tasks, these models lack the capacity for error correction, underscoring an area ripe
for further research and development.

In this work, we design text-image pairs that allow most models to receive data for the ne-
grained tasks we create, which can be helpful for testing or training these benchmark models.

2.3 VL Datasets in AR

Many datasets tailored for guided tasks lack detailed task labeling, potentially limiting their eec-
tiveness for training AR-guided assistants.

While rich in scene and state annotations, several datasets lack detailed object labeling, impact-
ing their utility for specic augmented reality applications. The COIN dataset is a comprehensive
resource for instructional video analysis, oering rich annotations that facilitate research in sequen-
tial task understanding and multimodal learning [38]. Similarly, the HoloAssist dataset by Wang et
al. provides 166 hours of egocentric data from mixed-reality headsets, capturing detailed human-AI
interaction dynamics for real-world tasks [43]. The HowTo100M dataset, comprising 136 million
video clips with automatically transcribed narrations, excels in text-to-video retrieval and action
localization but falls short in object-specic annotations [28]. Lastly, the TEACh dataset’s 3,000+
interactive dialogues enhance understanding of dialogue dynamics and task execution within do-
mestic settings but do not focus on ne-grained object detection [30].

4



2.3 VL Datasets in AR

Dataset Scenes Objects States VL pairs

HoloAssist[43] ! % ! 350
Assembly101[34] % ! ! 4,321
COIN[38] ! % ! 11,827
RareAct[29] % ! ! 7,607
HowTo100M[28] ! % ! 23,611
TEACh[30] ! % ! 3,215
Cross-task[54] % ! ! 4,713
EPIC-KITCHENS[11] % ! ! 89,977
MIMIC-IT[22] ! % % 2.8M

Our dataset ! ! ! 35,612

Table 2.1: Comparison between dierent instructional datasets. A large checkmark (!) indicates
that the dataset includes the task, while a cross (%) indicates that the dataset does not include the
task.

Still, several datasets notably enrich research in action recognition and learning eciency but
often lack detailed descriptions of procedural steps. The Assembly101 dataset, with over 4,000
videos of assembling and disassembling toys, oers multi-view recordings and detailed actions
but does not focus on step-by-step procedural guidance [34]. Similarly, the CrossTask dataset
employs narrations and step lists to facilitate weakly supervised learning, yet it lacks temporal
annotations that detail the sequence of actions within tasks [54]. The EPIC-KITCHENS dataset
provides an extensive collection of unscripted kitchen activities with rich annotations on actions
and objects but falls short in narrating detailed procedural steps [11]. Lastly, the RareAct dataset
captures unconventional interactions, challenging models to interpret complex actions without
oering explicit step-by-step guidance [29].

The ‘State-Aware Conguration Detection for Augmented Reality Step-by-Step Tutorials’ intro-
duces an innovative AR tutorial method that uses a ’consecutive state prior’ for object detection
to dierentiate between similar assembly congurations. This method signicantly enhances de-
tection accuracy across various assembly tasks, such as furniture, Lego, and Origami, but it lacks
textual descriptions of states and does not address object detection [36]. Meanwhile, the MIMIC-IT
dataset provides a rich source of instruction-response pairs for training VLMs in interactive tasks,
featuring 2.8 million multimodal pairs. However, while it excels in providing detailed conversa-
tional contexts and enhancing VLM functionalities for perception and planning, it falls short in
step detection. It lacks scenario-specic descriptions that would provide more direct task guidance
[22].

To address the gaps in current instructional datasets, we constructed a table to evaluate whether
datasets eectively cover the three components of objects, states, and scenes. This analysis high-
lights each dataset’s capacity to handle these elements, which is crucial for developing comprehen-
sive AR-guided assistants. Additionally, our work introduces a simulated image dataset featuring
nearly 400 objects. This dataset is designed for ne-grained tasks, systematically alternating be-
tween object detection and assembly functions at each step, optimizing the training and testing of
advanced visual language models as detailed in Table 2.1.
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3

Fine-grained Vision-Language
Modeling

3.1 Query Architecture

To optimize the use of VLMs for intricate tasks, our research focuses on a specic conguration of
VLMs that integrates both a visual encoder and a large language model. This setup is depicted in
Figure 3.1. Such an architecture is pivotal as it facilitates the eective melding of visual and textual
data, thus heightening the accuracy and contextual understanding of the model’s responses. Our
query design aims specically to enhance the model’s comprehension of our dened tasks. During
the inference phase, the visual encoder interprets image data while the text encoder of the Large
Language Models (LLM) processes structured queries, collectively producing contextually relevant
textual outcomes. This dual-encoder approach ensures that our VLMs are not only ecient in
data processing but also precise in executing task-specic directives.

The architecture is designed to deliver precise and context-aware responses, enhancing the
model’s understanding of complex tasks through several integrated components:

• Task Tokens: We introduce specialized tokens such as [grounding], [object], and [state] to
specify tasks related to scene understanding, object positioning, and state detection. These
tokens enhance the model’s focus and accuracy.

• Instructions: Incorporating relevant manual instructions or task directives provides the
model with a contextual framework, ensuring responses align with task requirements.

• Form Directives: These directives clarify the expected output format, ensuring outputs
are precise and directly applicable.

• Image Input: Images, either from manuals or real-world scenes, provide essential visual
context, crucial for tasks that involve interpreting current states or identifying objects.

• Context Examples: Providing typical Visual Question Answering (VQA) pairs as con-
text examples help the model understand the task and the expected output format more
eectively.

3.2 Denition of Fine-Grained Instruction Tasks

Fine-grained task denition in computer vision entails categorizing images into specic sub-categories
distinguished by subtle visual dierences within the same super-class [35]. This classication is
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3.2 Denition of Fine-Grained Instruction Tasks

Figure 3.1: Query architecture for AR systems.

challenging due to minor visual variances between subcategories and signicant intra-class varia-
tions [5]. Fine-grained image analysis, fundamental to computer vision and pattern recognition,
supports a variety of real-world applications [44]. Fine-grained visual classication (FGVC) has
emerged as a critical research area, focusing on distinguishing subtle dierences between visually
similar sub-categories [17].

In the context of AR and VLMs, we have dened tasks that address the detailed challenges of
ne-grained visual and linguistic comprehension. These tasks aim to assess and enhance VLMs’
abilities to interpret complex visual and linguistic cues within AR scenarios. We have introduced
three core tasks: Scene Understanding, Object Detection, and State Detection, each targeting
essential aspects of visual and linguistic analysis vital for AR applications. Detailed in Figure
3.2 and supported by symbols in Table 3.1, these tasks underpin our research framework and are
designed to advance VLM capabilities in educational and training contexts.

To ensure our dataset reects real-world complexities, we have closely aligned task progression
with ocial manuals, typically alternating between object identication and assembly actions.
We structured task pairs as (t − 1, t), where step (t − 1) involves identifying the required object,
and step t involves assembling using this object. This methodology mirrors the procedural ow
found in manuals and challenges VLMs to understand and execute a coherent sequence of actions,
improving their utility in practical AR-based educational and training settings.

3.2.1 Scene Understanding (T1)

In the context of LEGO assembly, Scene Understanding evaluates the model’s ability to interpret
and describe a scenario as illustrated in a manual, particularly after obtaining the required items
in step T −1. The task involves querying the model about step T , where it simulates observing the
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3.2 Denition of Fine-Grained Instruction Tasks

Figure 3.2: This gure illustrates the three core capabilities required by our model within a con-
tinuous LEGO assembly manual. The tasks are formulated as VL Pairs derived from specic sections
of the manual, requiring the model to (1) understand the scene and identify relevant objects (Scene
Understanding), (2) accurately determine the positioning of LEGO pieces based on the assembly step
(Object Detection), and (3) detect the current state of assembly to provide context-specic guidance
(State Detection). Each of these tasks challenges the model’s ability to interpret detailed visual cues
and linguistic instructions, demonstrating the need for ne-grained Vision-Language Modeling in cre-
ating eective multimodal training assistants for augmented reality environments.2

Symbol Description
St The current assembly step T .
St−1 The previous object nding step t− 1.
It Instruction from step T .
It−1 Instruction from step t− 1.
Pt−1 Coordinates of identied object locations from step t− 1.
Pt−1 Adjusted coordinates after collaging additional images.
Qt Query for step T .
Qt−1 Query for step t− 1.
Vt−1 Instruction image for step t− 1.
Vt Instruction image for step T .
Vt−1 Object image for step t− 1 combined with three other objects.
Vt Negative examples for step T
At Proposed answer from the stepT .
At−1 Proposed answer from the stept− 1.

Table 3.1: Description of Symbols Used in the Dataset.

correct scene from the manual. The model must integrate visual cues with contextual knowledge
to generate a description closely matching the intended assembly step, It. This task assesses the
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3.2 Denition of Fine-Grained Instruction Tasks

model’s object recognition abilities and capacity to grasp the narrative or functional signicance
of the scene, which is crucial for delivering precise instructional guidance in AR applications.

Composition: Utilizes I(t−1), Q(t), and V(t) to evaluate the model’s ability to integrate visual
and textual information, identifying both the objects and their required assembly actions within
the scene. The output texts are proposed to evaluate with I(t).

3.2.2 Object Detection (T2)

Object Detection in this framework specically addresses step T−1 in the LEGO assembly process,
where the model’s task is to ascertain the location of specic objects required for the following
assembly action. This involves identifying various object categories and precisely determining their
positions within the visual input. The model’s challenge is to output location information that
closely matches the proposed positions P̃(t−1), essential for accurately guiding the assembly steps.
This task is foundational for tasks requiring interaction with or manipulation of objects, impacting
the model’s ecacy in applications from AR-based educational tools to precise manufacturing
automation.

Composition: Leverages I(t−1), Q(t), and V(t−1) to challenge the model’s prociency in pin-
pointing the precise location of specic, potentially unseen, objects based on prior instructions and
visual cues. The output texts are proposed to evaluate with P(T−1).

3.2.3 State Detection (T3)

State Detection in our context is designed to evaluate the model’s capability to determine the
accuracy of assembly steps within the LEGO building process. Specically, the user inputs It
and It−1, and the model’s task is to detect whether the assembly action at step T has been
correctly executed based on the progression from It−1 to It. This task extends beyond simple object
recognition to assess the correctness of the assembly steps, crucial for applications where precise,
real-time feedback on task execution is necessary. State detection thus plays a vital role in ensuring
that interactive systems can accurately interpret and respond to complex assembly sequences,
enhancing the model’s utility in educational and detailed task-oriented AR environments.

Composition: Utilizes images from the previous step I(t−1), the query for the current step
Q(t), and the visual outputs V (t) or V(t) to assess the model’s accuracy in recognizing the state
of assembly steps. The evaluation focuses on validating assembly progression. Responses are
compared against visual standards; a match with V(t) signies a correct assembly, while alignment
with V(t) suggests an error. This method ensures a meticulous verication of the model’s ability
to dierentiate between correctly and incorrectly executed assembly steps, which is crucial for
precision in AR-based instructional applications.
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4

Dataset Creation

In this section, we will specically describe how we create the dataset for all the ne-grained tasks
that we dened.

Figure 4.1: An example of LEGO instruction manual. It consists of a summary section at the
beginning, followed by three sequential instruction steps. Each step includes textual instructions
paired with corresponding images to guide the assembly process.
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4.1 Instruction Manual Crawling

4.1 Instruction Manual Crawling

Our data collection initiative involved acquiring 65 instruction manuals from the ocial LEGO
website1, chosen specically to aid blind and visually impaired users in assembling LEGO sets
accurately. Figure4.1 shows an example of the manual. The dataset comprises several essential
elements: (i) step-by-step instructions, (ii) corresponding images for each step, and (iii) tags
ocially provided by LEGO. Instruction tags, extracted from HTML les, categorize each word
into classes such as “theme”, “verb”, “colorinfo”, and “target”, while image tags, derived from le
names, include labels like “start”, “eop” (end of part), and “step”. The example for transferring the
HTML les into JSON les can be seen in Section4.5

4.2 Scene Understanding Dataset Creation

The dataset construction process for scene understanding involves identifying assembly steps la-
beled as "step" in images, which correspond to a specic assembly step T . To create a contextual
scene understanding dataset, we select pairs of images where step T is preceded by an "eop" step,
designated as T − 1. This pairing of It and It−1 images forms the basis of our scene understanding
data, facilitating the study of sequential task comprehension and execution. We iterated over all
manuals to generate the requisite data for this task, ensuring comprehensive coverage and rele-
vance. For this task, we only consider the objects found during the Object-nding step in the
assembly process, determining how these objects should be assembled. The answer we seek under
this task is the instruction for the assembly step.

Figure 4.2: Flowchart of object detection dataset creation.

4.3 Object Detection Dataset Creation

The construction of this part of the dataset begins with the formulation of queries from step
instructions. Each query is crafted to include a unique token, namely “[detection]”, designated for
the object detection task. Additionally, each query incorporates a single instruction derived from
a step.

1https://legoaudioinstructions.com/instructions
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4.4 State Detection Dataset Creation

In the subsequent stage, these queries and their corresponding images are fed into MiniGPT-
v2[8]. This process utilizes MiniGPT-v2 to generate inference outputs, which serve as query re-
sponses. The format for these responses is structured as "<Object> <Xleft> <Ytop> <Xright>
<Ybottom>".

The next step involves iterating through all instruction steps labeled as "eop" in the dataset,
representing points where users are prompted to nd specic objects. During each iteration,
we employ the MINIGPTv2 model to perform inference on these identied steps, systematically
generating results.

After obtaining the coordinate information for a single image, we then randomly select three
dierent objects from the same manual, arranging them in a 2x2 grid in a random order. Using
these four dierent positions, we can map the original coordinates of the single object to the
coordinates in the four composite images, thus generating data for the object detection task.

4.4 State Detection Dataset Creation

Figure 4.3: Negative sample synthesization for state detection task.

In constructing our dataset, we primarily utilized manuals highlighting the components to be
assembled, encompassing 42 manuals. Each assembly session’s image was tagged with the names
of the items being assembled, revealing that the highlighted colors of the target items varied across
dierent sessions.

Utilizing the K-means clustering algorithm, we initially identied the ve predominant colors
within each session, providing a broad overview of the color distribution. This step facilitated more
focused analyses, where HUE ltering was applied across the session to isolate colors exhibiting
higher saturation and frequent occurrence across steps. However, nearly 20 sessions required man-
ual color extraction due to the target colors closely resembling the background hues. These colors
were then designated as the boundary colors for target parts, essential for accurately delineating
target boundaries.

Our methodology combined broad clustering with targeted HUE ltering to eectively pinpoint
target boundary colors, crucial for the negative example generation process (refer to Figure 4.3).
For each ’step’ labeled image at step T , we took the image from two steps prior, also labeled as
’step’ at T − 2, and performed segmentation of the assembly item by color. We then automatically
identied the bounding boxes for the background in steps T and T − 2. The assembly item was
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4.5 JSON Schema for Dataset Construction

randomly pasted within the background box, ensuring it moved by at least 5%. For each step, we
generated three dierent negative examples. Subsequently, these generated examples underwent a
manual screening process, removing any that were unsuitable as negative examples.

In contrast, positive examples were directly derived from the current step’s original imagery,
ensuring authenticity in representation.

4.5 JSON Schema for Dataset Construction

This section delineates the preliminary JSON data structure utilized in the initial stages of dataset
preparation. The described JSON schema encapsulates the vital components necessary for stream-
lining the data preparation process before nal dataset compilation. The structure is especially
designed to support the integration of visual and textual data for enhanced model training and
application.

{
"instruction_id": 95,
"text": [ "Find 2 transparent red flat tiles 1x2." ],
"VLM": {
"img_path": "...",
"parts_img_path": "None",
"id_sign": "Car",
"step_num": 28,
"step_class": "eop",
"other_sign": "AG",
"background_rect": "None",
"color_list": [],
"bound_color": [],
"task_label": "object",
"query": "Find 2 transparent red flat tiles 1x2.",
"MiniGPTv2_output": "<p>2 transparent red flat tiles</p> {<28><17><73><50>}"
},
"img": "...",
"entities": [
{ "this_line": "Find 2 transparent red flat tiles 1x2." },
{ "verb": "Find" },
{ "det": "2" },
{ "colorinfo": "transparent red" },
{ "theme": "flat tiles 1x2" },
{ "suffix": "." }
]
}

Table 4.1: Detailed JSON structure for VLM conguration

• img_path: Stores the local path of images that are downloaded through web scraping. This
path points to the original image les saved after being fetched from the web.

• id_sign: Extracted from the image lename, this eld denotes the name of the sub-assembly
session, such as "CAR" in this example. It uniquely identies each session within the dataset.
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4.5 JSON Schema for Dataset Construction

• step_num: Indicates the sequence number of the assembly step, which is step 28 in this
example. This helps in tracking the progression of assembly steps in the session.

• step_class: A classication tag provided ocially, such as "eop" in this example, which
stands for "end of part" and signies an object nding step within the assembly process.

• MiniGPTv2_output: This eld holds the processed output from MiniGPTv2, specically
tailored for the step described. It contains annotations or modications done post-initial
processing, which are crucial for generating new coordinates in subsequent object dataset
creation.

• parts_img_path, bound_color, color_list: These elds are reserved for steps classied
under "step" in the assembly process. They are critical for the state detection dataset
generation:

– color_list: Accumulates all possible boundary colors used throughout the assembly
session.

– bound_color: Via a voting mechanism among all steps, this eld consolidates the
most probable boundary colors, ensuring consistency and accuracy across the dataset.

After establishing the initial JSON le, we selectively extract data corresponding to three distinct
tasks and save them into separate JSON les for training and testing purposes. This allows us
to tailor the data processing to the specic requirements of dierent machine learning models.
To meet the ne-tuning needs of most models, our default JSON setting is based on the ne-
tuning settings of the Llava model. This setup ensures that the JSON structure is optimized for
general use cases and provides a good baseline for performance. Below is an example of the JSON
structure used: Additionally, the entire dataset, consisting of JSON and PNG les, amounts to
approximately 11.8 GB.

{
"id": "lego-60263-ocean-mini-submarine-readscr-12",
"image": "sm01-island-0_step_Step%20%23%23E.png",
"conversations": [
{
"from": "human",
"value": "[grounding] After I find 1 reddish brown chest bottom 2x4.
Tell me what to do for the current situation. "
},
{
"from": "gpt",
"value": "Put it horizontally on the table."
} ]
}

Table 4.2: Example JSON structure in dataset

For more specialized requirements, such as those needed by the Otter model, we convert all text
and image data into Parquet les. This conversion facilitates large-scale distributed training and
inference, making it possible to handle vast amounts of data eciently.
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4.6 Dataset Statistics

Category Item Count

Overall Statistics

Manuals 65
ObjectndingStep 4,814
AssemblyStep 5,614
AssemblySessions 397
VQA-Pairs 35612

Scene Understanding Scene 5,612
Avg Scenes/Session 14.1
VQA-Pairs 5,612

Object Detection Objects 4,784
Avg Objects/Session 12.1
VQA-Pairs 19136

State Detection
States 2,716
Avg States/Session 12.2
VQA-Pairs 10,864

Table 4.3: Statistics of instruction manuals in the LEGO-ARTA dataset.

4.6 Dataset Statistics

The entire dataset, which includes JSON and PNG les, amounts to approximately 11.8 GB. This
size reects the comprehensive nature of the dataset, encompassing a wide range of data types and
formats to support diverse research and application needs.

We summarize the key statistics of our dataset in Table 4.3, which includes detailed metrics
across various dimensions essential for evaluating Vision-Language Models in AR settings:

• Scene Understanding: Includes 5,614 steps for scene analysis, with an average of 14.1
scenes per sub-object.

• Object Detection: Comprises 4,814 steps dedicated to identifying objects, with an average
of 12.1 objects per sub-object.

• State Detection: Encompasses 2,716 states with 222 distinct boundary colors, averaging
12.2 states per sub-object.

In contrast to other instructional datasets, our dataset uniquely integrates data required for
Object Detection, State Detection, and Scene Understanding tasks within the same sub-object,
enhancing its utility for comprehensive multimodal research and application in AR contexts.
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5

Dataset Quality Assurance

5.1 Dataset Quality Assurance Design

In this project, rigorous quality assurance protocols were employed to ensure the high quality and
utility of our dataset. The key steps taken in our quality assurance process are outlined below:

1. Comprehensive Documentation and Code Transparency: We provided complete
documentation of the data processing methodologies and all associated code utilized during the
production phase. This ensures traceability and transparency, allowing for a detailed understanding
of the data’s origin and handling. Such transparency is crucial for user comprehension of our
documentation and scoring guidelines, highlighting the signicance of this work.

2. User Scoring: Users were tasked with evaluating the dataset by scoring the generated
coordinates, extracted entities, and the quality of negative examples in two main tasks: object
detection and state detection. This manual scoring process ensures that each aspect of the dataset
is meticulously assessed for quality and relevance.

3. Quality Assurance Metrics: The scores provided by users were used to calculate the
Kappa score to measure inter-rater agreement. A Kappa score above 0.6 was ensured to conrm
the reliability of the evaluations. The overall quality of the dataset was classied as "acceptable"
or higher based on these evaluations.

These measures arm our commitment to maintaining stringent data quality and underscore
the importance of reliable user feedback. Through this comprehensive quality assurance strategy,
we provide a precise and practical resource that signicantly contributes to advancing research and
development within the eld.

5.1.1 Evaluating the Boundary Precision and Entity Disambiguity of
the Detected Objects

In our study, we conducted a thorough quality assurance process for the user-generated dataset to
evaluate the precision and accuracy of the detected objects. This evaluation focused on two main
criteria: boundary precision and entity disambiguity.

Task Description: Given an image and the corresponding reference text, the task was to assess
the detected objects highlighted by bounding boxes based on the following criteria:

Boundary Precision (C1): This criterion evaluates the extent to which a bounding box is well-
aligned with the object in the image. The precision of the boundary is crucial for ensuring that
the object is correctly and completely enclosed without unnecessary space or signicant parts of
the object being excluded. Scoring: Inaccurate: Assign 1 point if the bounding box does not
contain the object it is supposed to enclose, or if the object is entirely missing from the box.
Partially Correct: Award 2 points if the bounding box includes the object but the center of the
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5.1 Dataset Quality Assurance Design

Figure 5.1: Detailed scoring rules for Task 2.

box signicantly deviates from the center of the object. The object is mostly within the box but
not ideally centered. Precise: Grant 3 points if the bounding box accurately and precisely encloses
the object, aligning closely with the object’s shape and position.

Entity Disambiguity (C2): This criterion assesses how well the text within the bounding box
aligns with the reference text. It is essential that the detected text accurately represents the
intended entity without ambiguity, ensuring clarity and correctness in the context of the reference
text. Scoring: Irrelevant: Award 1 point to an entity that does not pertain to or contribute
meaningfully to the context or goal of the dataset. Ambiguous: Grant 2 points to an entity whose
description could apply to multiple blocks in the image, leading to potential confusion or multiple
interpretations. Clear: Assign 3 points to an entity that is straightforward and unambiguously
relevant to the context or purpose of the dataset. By adhering to these criteria, we ensured that
the dataset maintained high standards of quality, crucial for the reliability and validity of our
subsequent analyses and model training.

5.1.2 Evaluating the Relevance and Similarity Between the Evaluating
Image and the Reference Image

Figure 5.2: Detailed scoring rules for Task 3.

For state detection task, we assessed the dataset quality by evaluating the relevance and similarity
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5.2 Quality Assurance Examples

between the evaluating image and the reference image. This process ensures that the selected
images are both contextually appropriate and visually consistent.

Task Description: Given an evaluating image and a reference image, the task was to assess the
relevance and similarity based on the following criteria:

Relevance (C1): This criterion involves evaluating how relevant the evaluating image is to the
reference image. It requires an assessment of whether the content or context of the evaluating
image directly pertains to the reference image, ensuring that the selected images are contextually
appropriate and meaningful. Scoring: Low: The evaluating image (left) has no clear relevance to
the reference image (right), appearing completely unrelated. High: The evaluating image (left) is
directly related to and clearly related to the reference image (right). Similarity (C2): This criterion
involves assessing how similar the evaluating image is to the reference image. The evaluation
considers visual and thematic elements that align or correspond between the two images, ensuring
consistency and coherence in the dataset. Scoring: Low: The evaluating image (left) appears
almost identical to the reference image (right), with minimal dierences. High: The evaluating
image (left) appears almost identical to the reference image (right), with minimal dierences. By
following these guidelines, we ensured that the images in the dataset were not only contextually
relevant but also visually similar, enhancing the quality and usability of the dataset for our research
purposes.

5.2 Quality Assurance Examples

In this section, we will provide detailed examples of quality assurance scoring.

5.2.1 Boundary Precision Examples

As shown in Figure 5.3, the red box diers signicantly from the target object, with almost no
overlap; this is considered Inaccurate. The orange box partially overlaps with the target object,
which is deemed Partially correct. The green box almost perfectly overlaps with the target object,
making it Precise.

Figure 5.3: Examples for scoring boundaries in Task 2.
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5.2.2 Entity Disambiguity Examples

In this section, we present examples of Entity Disambiguity.
The rst type is irrelevant, as shown in Figure 5.4. In this example, the entity name "ImageCon-

tent" does not match the object within the box, indicating a signicant disparity and irrelevance.

Figure 5.4: Object examples type 1: Irrelevant.

The second type is ambiguous, as shown in Figure 5.5. In this example, there are two entity
names that are swapped, causing confusion. Additionally, the entity details are not specied clearly.

Figure 5.5: Object examples type 2: Ambiguous.

The third type is clear, as shown in Figure 5.6. In this example, the entity name perfectly matches
the object, making it very clear.
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Figure 5.6: Object examples type 3: Clear.

5.2.3 Relevance and Similarity Examples

In this section, we present examples of Relevance and Similarity. On the right side is the correct
(golden) example, and on the left side is the simulated example. Note that a category with high
similarity and low relevance does not actually exist in this context, because in a manual, two
images that look very similar under the same assembly part cannot be entirely unrelated in theme
or image.

The rst type is high relevance and high similarity, as shown in Figure 5.7. In this example, the
evaluated image is both highly relevant and visually similar to the reference image. The dierences
are minimal, but details such as the addition or displacement of LEGO blocks can be observed.

Figure 5.7: State examples type 1: High Relevance and High Similarity.

The second type is high relevance and low similarity, as shown in Figure 5.8. In this example,
the evaluated image is relevant to the reference image in context but lacks visual similarity.
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5.2 Quality Assurance Examples

Figure 5.8: State examples type 2: High Relevance and Low Similarity.

The third type is low relevance and low similarity, as shown in Figure 5.9. In this example, the
evaluated image is neither relevant nor visually similar to the reference image.

Figure 5.9: State examples type 3: Low Relevance and Low Similarity.
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6

Implementation

6.1 Dataset Quality and Usage Assurance

This section discusses the quality control experiments for data generated by our automated data
generation process and its validation for scientic usability.

6.1.1 User Study for Dataset Quality Assurance

We enlisted ve individuals for this experiment to participate in our Dataset Quality Assurance
experiment. Each participant assessed the quality of VLpairs generated for Task 2 (Object Detec-
tion) and Task 3 (State Detection). The quality assurance materials consisted of scripts randomly
selecting 100 VL pairs for each task and automatically generating HTML les containing the data.
Task 2 and Task 3 included three and ve sample questions, respectively. The correctness of these
sample questions ensured that participants fully reviewed our tutorial section. In addition to the
automatically generated questions, the HTML les included a comprehensive scoring tutorial. The
entire experiment lasted approximately 20-30 minutes. Upon completion of the data scoring, a
JSON le with the results was automatically generated. The tutorial section can be found in the
Appendix 11.1.

6.1.2 Copyright for LEGO data usage

The data used in our research consists of publicly available LEGO manuals. Our usage is strictly for
research purposes and is non-commercial. We have adhered to LEGO’s ocial copyright policies1,2.

Our research contributes to the broader scientic community by enhancing the understanding
of scene recognition and sequential task execution. By leveraging LEGO manuals, we can create a
comprehensive and relevant dataset that aids in developing advanced models for object detection
and scene understanding.

Upon acceptance of our paper, we will publish our dataset on HuggingFace, similar to the LEGO
Set dataset3. This will ensure that other researchers can access and utilize the dataset for further
studies, promoting open science and collaboration.

The code used in this study will also be available on GitHub. Doing so aims to facilitate
reproducibility and transparency in our research. Sharing our code will enable other researchers
to replicate our ndings, build upon our work, and contribute to the ongoing advancements in the
eld of computer vision and scene understanding.

GitHub link: https://github.com/peterhuang-coding/VLM_ARTA
1https://www.lego.com/en-us/legal/notices-and-policies/open-source/
2https://www.lego.com/en-nl/legal/notices-and-policies/fair-play/?locale=en-nl
3https://huggingface.co/datasets/merve/lego_sets_latest
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6.2 Hardware and Computational Resources

6.2 Hardware and Computational Resources

In this study, we utilized the Snellius computational platform1 to execute inference tasks on state-
of-the-art models sourced from the Hugging Face repository2. Our dataset was randomized, with
25% reserved for testing to ensure a comprehensive evaluation of model performance. Training
and inference phases were conducted using NVIDIA A100 SXM4 40GB GPUs, which signicantly
enhanced computational eciency. This framework rigorously tested the model’s ability to process
complex multimodal data, laying the groundwork for future research in this eld.

For model inference and ne-tuning on the Snellius server, we typically allocate GPUs from the
"GPU" partition. Detailed computing resource allocation scripts are provided in the Appendix.

6.3 Inference Details

We applied a single GPU for the models’ inference sessions in this experiment. Once the test
set was fully processed, the results were analyzed separately and saved in JSON les. Detailed
inference scripts can be seen in the Appendix11.3.

6.3.1 Query Setting

In this paper, we investigate three unique inference tasks and have devised specic query templates
for each, as demonstrated in Table 6.1. We employ three distinct tokens to distinguish these
tasks, ensuring that the selection rules and format directives align with the requirements of the
respective inference tasks. These tokens enhance system identication and operation execution,
thus improving precision and eciency.

Each query template contains detailed selection rules and format directives that facilitate ex-
tracting and utilizing information from inputs for tasks such as scene understanding, object detec-
tion, and state detection. For instance, we precisely outline the requirement to locate and mark
object positions with detailed coordinates and bounding box specications in object detection.
This specicity guarantees high-quality outputs, enabling accurate system responses to complex
scenarios.

Moreover, these rened query templates aimed to enhance the VLM’s adaptability to various
scenarios, improving its ability to execute tasks accurately across dierent environments.

6.3.2 In-context Examples

To enhance the models’ understanding of the desired outputs for our tasks, we provided two typical
examples for each task in this experiment. For InstructBLIP and BLIP2, only text context was
given as they do not support image context. For other models, all relevant images and information
were provided. Detailed examples can be found in the Appendix11.2.

6.3.3 Query Study

We conducted a series of reduction tests to elucidate the practical eects of each component within
our designed queries. These tests involved removing individual components from the queries and
performing inference with the best-performing model under our initially designed settings for each
task. The components examined in these discussions included the instructions and our in-context
examples. This approach allowed us to assess whether the model’s understanding of the tasks
improved or deteriorated without certain elements of the queries.

1https://www.surf.nl/en/services/snellius-the-national-supercomputer
2https://huggingface.co/models
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6.4 Fine-tune Details

Task - Token - Selection Rule for Instruction - Format-Directive

Task: Scene Understanding
Token: [grounding]
Selection Rule for Instruction: <step_symbol> with <step>. Instruction from this step.
Format-Directive: "Tell me what to do for the current situation."

Task: Object Detection
Token: [object]
Selection Rule for Instruction: <step_symbol> with <eop>, Word start with "Find" or "col-
lect". Instruction from this step.
Format-Directive: "Providing the positions in the format: <p>object</p>
{<Xleft><Ytop><Xright><Ybottom>}, with X and Y coordinates normalized to [0,100].
Xleft and Ytop for the top-left corner. Xright and Ybottom for the bottom-right corner."

Task: State Detection
Token: [state]
Selection Rule for Instruction: <step_symbol> with <step>. Previous <step_symbol> is
<eop>. Instruction from this step and previous step.
Format-Directive: "Just tell me Yes or No."

Table 6.1: Query templates for ne-grained tasks.

6.3.4 GPT-4o Setting

To further validate the challenges posed by the state-of-the-art models, we also conducted inference
using OpenAI’s new model GPT-4o (released June 2, 2024). By applying the API keys, we ran
the entire test set using the best settings (in-context learning) to address the research questions.

6.4 Fine-tune Details

For the ne-tuning process, we merged the data from the three tasks into a single JSON le and
applied Low Rank Adaptation (LoRA) techniques for training. All models, except BLIP2 and
InstructBLIP, were ne-tuned using DeepSpeed techniques. The average ne-tuning time was 2
hours on 2 GPUs from the Snellius.

It is important to note that MiniGPT-4 does not support VQA ne-tuning, and Otter does not
support LoRA for the 7B model, so these two models were not ne-tuned. Additionally, GPT-4 is
a closed-source model and cannot be ne-tuned.

Training records were logged in Weights and Biases (wandb). Detailed ne-tuning training
settings on Snellius for all models can be found in Appendix11.3.
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7

Evaluation

7.1 Benchmarks

The research community has established benchmarks such as MME[14], MMBench[27], and VLMBench[49]
to systematically structure and assess complex multimodal tasks. For equitable comparisons, we
selected models with comparable language model capacities, around 7B parameters, which have
demonstrated strong performance across various competencies, and detailed the dierences in their
vision encoders.

• LLaVA[26]: Integrates a large language model with a CLIP vision encoder, excelling in
multimodal tasks through superior integration of visual and textual data, pre-trained on
diverse image-text pairs.

• Otter[22]: Specializes in few-shot learning using extensive web datasets containing mixed
media, enhancing performance in complex visual-textual tasks.

• Qwen-VL[2]: Leads in vision-language modeling with exceptional capabilities in text and
image comprehension, achieving standout zero-shot performance in key multimodal tasks.

• MiniGPT-4[53]: It integrates a frozen visual encoder and a large language model through
a single projection layer, enabling it to generate complex multi-modal outputs

• MiniGPT-v2[8]: Features a versatile platform tailored for vision-language tasks, using
task-specic identiers to rene task dierentiation and performance.

• BLIP2[24]: Employs a querying transformer and two-stage pre-training to eectively mini-
mize the vision-language modality gap, optimizing task performance eciently.

• mPLUG-OWL2[47]: Redenes performance benchmarks in multimodal AI with a stream-
lined vision backbone, demonstrating signicant eciency and perception accuracy.

• BLIPinstruct[10]: Innovates in vision-language AI with instruction tuning that transforms
diverse datasets, enhancing zero-shot task performance across multiple domains.

• GPT4o1: A cutting-edge model in the vision-language domain, leveraging an enhanced
transformer architecture to excel in generative tasks. GPT4o combines deep learning tech-
niques with a vast multimodal dataset, providing robust performance across a range of chal-
lenging visual and textual understanding tasks.

1https://platform.openai.com/docs/models/gpt-4o
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7.2 Evaluation Metric

7.2 Evaluation Metric

We consider multiple metrics for comprehensively evaluating specic tasks.

7.2.1 Scene Understanding Metrics

• Theme Accuracy (T_ACC): Measures the precision in identifying specic entities (’theme’,
’colorinfo’) within reference instructions.

• BLEU: Assesses grammatical and semantic accuracy in language generation, crucial for the
clarity and precision of short instructional texts.

• ROUGE-1: Evaluates the balance between recall and precision at the unigram level, essential
for ensuring completeness and relevance in succinctly generated content.

7.2.2 Object Detection Metrics

• Entity Detection Accuracy (E_ACC): Measures the model’s success in accurately identi-
fying critical keywords such as ’theme’ and ’colorinfo’ from the instructions.

• Intersection over Union (IoU): The overlap between the model’s predicted bounding box
and the true bounding box. This metric directly measures how well the predicted bounding box
matches the ground truth, considering both position and size.

7.2.3 State Detection Metrics

• F1 Score (F1): Measures the balance between precision and recall, providing a harmonic
mean that reects the accuracy and completeness of the model in identifying relevant instances
accurately.

• True Negative Rate (TNR): Quanties the model’s ability to correctly identify negatives for
a specic category, showcasing its precision in distinguishing non-relevant instances.

• False Positive Rate (FPR): Represents the proportion of false alarms, where the model
incorrectly classies negative instances as positive, indicating the misclassication rate among
non-relevant instances.
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8

Results

8.1 Benchmark Results

In this section, we discuss the performance of a series of open-source benchmark VLMs and a
proprietary, closed-source model on tasks specically designed for our dataset. These tasks have
been crafted to rigorously test and demonstrate the capabilities of VLMs in an AR setting, focusing
on their ability to understand and interpret complex multimodal inputs.

The results of these evaluations are presented in a structured format across three tables, each
corresponding to dierent aspects of the VLM performance. Table 8.1 details the results for
the Scene Understanding task, Table 8.2 for the Object Detection task, and Table 8.3 for the
State Detection task. In these tables, a symbol ↑ indicates that higher values represent better
performance, whereas a symbol ↓ indicates that lower values are preferable. Additionally, any
values that are bolded within these tables indicate the best performance within that column,
highlighting the most eective results across dierent metrics. The symbol ‘-’ indicates that the
model is unable to perform VQA LoRA ne-tuning, and a backslash ‘\‘ signies that the value is
a meaningless zero, indicating incorrect format output.

These benchmarks not only illustrate the eectiveness of each model in handling specic tasks
but also provide insight into the practical applications of these technologies in enhancing AR
experiences. The varied performance across dierent tasks highlights the strengths and limitations
of each model, oering valuable insights into where further advancements are needed and how these
models can be ne-tuned for optimal functionality in real-world scenarios.

8.1.1 Scene Understanding

In the Scene Understanding task, signicant improvements were observed in the ROUGE and
BLEU metrics after ne-tuning. For instance, the LLaVA model’s ROUGE score increased from
13.63 to 42.97, and its BLEU score from 0.99 to 17.73. These enhancements suggest that the
majority of models have become more aligned with the golden labels in their output, indicating
better guidance in user language. However, there was no substantial improvement in Theme entity
recognition, suggesting that key technical terms have not been learned eectively.

Despite these improvements in general linguistic alignment, Theme accuracy (T_ACC), which is
crucial for the accurate recognition of specic LEGO block names and associated color information,
did not show signicant enhancement even after ne-tuning. This indicates that while the models
are becoming better at handling general language tasks, they still struggle to accurately handle
more specialized vocabulary associated with LEGO components. For example, after ne-tuning,
both miniGPTv2 and mPLUG-OWL2 exhibited a decrease in T_ACC of nearly 2%. This decline
further underscores the challenges faced when models are ne-tuned with a generalized approach
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8.1 Benchmark Results

Model T_ACC ↑ ROUGE ↑ BLEU ↑
PEFT (LoRA) w/o w/ w/o w/ w/o w/

MiniGPTv2[8] 12.94 10.98 34.72 32.56 9.81 10.28
LLaVA[26] 12.81 12.68 13.63 42.97 0.99 17.73
MiniGPT-4[53] 12.68 - 15.05 - 1.88 -
GPT4o1 12.50 - 18.67 - 2.00 -
QWENVL[2] 11.90 13.46 29.57 39.08 5.19 13.13
InstrcutBLIP[10] 9.28 10.07 29.20 36.87 4.91 11.52
mPLUG-OWL2[47] 9.28 6.93 25.23 32.75 3.04 8.46
BLIP2[24] 8.50 9.17 29.55 40.35 6.40 12.50
Otter[22] 3.79 - 12.12 - 1.28 -

Table 8.1: Performance of VLMs on Task 1: Scene Understanding. Symbols: ↑ indicates higher is
better, ↓ lower is better, bolded values signify top performance, ‘-’ means no VQA LoRA ne-tuning.

that may not adequately address the specic needs of more specialized tasks like identifying precise
LEGO parts. Such ndings highlight the necessity for more targeted improvements in model
training, particularly in developing strategies that enhance the model’s capability to comprehend
and utilize technical terms eectively. This gap illustrates the critical need for tailored training
approaches that can bridge the current deciencies, ensuring that advancements in general language
processing translate more eectively to specialized domains.

8.1.2 Object Detection

Model E_ACC ↑ IoU ↑
PEFT (LoRA) w/o w/ w/o w/

InstructBLIP[10] 86.66 69.71 / 47.20
BLIP2[24] 72.26 71.40 34.25 40.57
LLaVA[26] 14.03 81.10 / 60.98
mPLUG-OWL2[47] 55.98 71.70 14.23 34.88
MiniGPTv2[8] 57.02 54.68 26.98 25.94
MiniGPT-4[53] 45.34 - 30.20 -
Otter[22] 36.89 - / -
QWENVL[2] 32.41 57.91 25.60 30.08
GPT4o2 25.00 - 21.68 -

Table 8.2: Performance of VLMs on task 2: object detection. Symbols: ↑ indicates higher is better,
↓ lower is better, bolded values signify top performance, ‘-’ means no VQA LoRA ne-tuning, and ‘\‘
indicates that the model is not applicable for this task.

In Object Detection, entity accuracy (E_ACC) was generally high across models. Notably,
after ne-tuning, the QWENVL model showed a signicant improvement, with E_ACC rising
from 32.41% to 57.91%, and the LLaVA model from 14.03% to an impressive 81.1%. Similarly, the
mPLUG-OWL2 model increased from 55.98% to 71.1%. These enhancements indicate an enhanced
capability to recognize entities within queries. However, the BLIPins model experienced a slight
decline, with a 20% decrease in performance, illustrating that such improvements are not uniformly
experienced across all models.

However, the Intersection over Union (IoU) scores for the LLaVA, BLIPins, and Otter models
were near zero before ne-tuning, with no correct output format produced. Despite changes in

28



8.1 Benchmark Results

prompts, improvements in IoU remained minimal until after ne-tuning. For instance, the LLaVA
model, which initially could not address the task, now manages to produce the correct output
format and achieved an IoU of 60.98%. On the other hand, except for models like BLIPins that
already could generate the correct format, there were no signicant enhancements, indicating that
while the dataset enables models to learn how to correctly output the necessary formats, the
challenge of accurately identifying objects through textual information alone remains considerable.

8.1.3 State Detection

Model F1 ↑ TNR ↑ FPR ↓
PEFT (LoRA) w/o w/ w/o w/ w/o w/

GPT4o1 40.54 - 56.94 - 43.06 -
QWENVL[2] 39.77 39.53 2.01 3.18 97.99 96.82
MiniGPT-4[53] 37.19 - 32.63 - 67.37 -
MiniGPTv2[8] 36.76 38.64 39.58 19.28 60.42 80.72
mPLUG-OWL2[47] 36.82 15.00 36.59 25.00 63.41 35.00
Otter[22] 35.33 - 24.12 - 75.88 -
LLaVA[26] 25.04 30.00 0.00 20.00 99.41 50.00
BLIP2[24] 24.71 28.5 0.00 5.13 100.00 94.87
InstructBLIP[10] 0.00 0.02 98.78 100.00 1.22 0.00

Table 8.3: Performance of VLMs on task 3: state detection. Symbols: ↑ indicates higher is better,
↓ lower is better, bolded values signify top performance, ‘-’ means no VQA LoRA ne-tuning.

The State Detection task showcased the strongest performance from the latest model, GPT4o,
achieving an F1 score of 40.54. Despite this high F1 score, the actual accuracy rates hovered
around 30%, suggesting that while GPT4o is good at balancing precision and recall, it may still
be inaccurately classifying a signicant portion of instances.

After ne-tuning, the LLaVA and mPLUG-OWL2 models reached an astonishing 100% accu-
racy, demonstrating their exceptional capability for understanding the scene and context. This
remarkable achievement indicates that specic learning adaptations made during ne-tuning have
led to highly accurate predictions. However, other models that did not incorporate default le-
name inputs into their training regimes did not show signicant improvements, highlighting the
importance of tailored data handling and model training techniques.

From the True Negative Rate (TNR) metrics, it is evident that before ne-tuning, the LLaVA
and BLIP2 models were biased towards providing armative responses, with TNR close to 0
and False Positive Rate (FPR) near 100. This predisposition suggests a signicant overtting to
positive predictions or an inability to correctly identify negative cases, which could severely limit
their usability in practical applications.

Conversely, the InstructBLIP model, which had a TNR close to 100 and an FPR near 0, demon-
strated a strong tendency to deny, eectively identifying what it should not respond to. However,
its F1-score was almost zero, suggesting that while it is eective at rejecting incorrect inputs,
it fails almost entirely at providing correct armative responses. This signicant bias remained
unimproved even after ne-tuning, indicating that while the model is cautious in making false
alarms, it is overly conservative, missing opportunities to provide valuable information.

These ndings underscore the need for a balanced approach in training models, ensuring they are
neither too aggressive nor too conservative in their output. Enhancing model performance in state
detection not only requires ne-tuning based on accuracy metrics but also careful consideration of
how models handle the balance between sensitivity and specicity.
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8.2 Query Setting Study Results

In order to identify the optimal query setting that yields the best results for our model, we con-
ducted experiments on various query settings to determine which components most signicantly
inuence the model’s inference results. We selected the QWEN-VL model for this experiment
due to its satisfactory performance under our base setting, which included both instructions and
in-context examples.

As shown in Table 8.4, we systematically removed these components and performed inference
experiments. The results indicate that in Task 1, the Theme accuracy is heavily inuenced by the
presence of prior instructions. Settings that included instructions consistently achieved accuracy
rates above 10%, whereas those without instructions fell below this threshold, highlighting the
importance of instructions in scene understanding for theme entity recognition. Furthermore, the
metrics ROUGE and BLEU, which assess the sequence and format of the output, show that either
metric alone can enhance the quality of the generated results. However, when both settings are
absent, the performance on these metrics deteriorates signicantly.

In Task 2, the Entity Accuracy (E_ACC) shows better results with the presence of instructions,
likely because these instructions contain relevant information about the entities, leading to more
accurate entity naming. When relying solely on in-context examples, the model tends to correctly
guess only the names of simpler entities. This also explains why there is nearly a ve-fold dierence
in this metric between settings with and without instructions. For the Intersection over Union
(IoU) metric, results are better when examples are provided, as they help the model output the
correct format more reliably. In settings where only instructions are provided without examples,
the QWEN-VL model is prone to generating incorrect formats or defaulting to its built-in output
patterns. Even with both settings enabling the correct output format, the actual accuracy achieved
is only about 25%, which is still far below our requirements.

In Task 3, despite the presence of both settings, the F1 scores remain low, and there is no
signicant change in the True Negative Rate (TNR) and False Positive Rate (FPR). This suggests
that even with extensive settings, the model tends to default to armative responses, as indicated
by the TNR not exceeding 5% and an FPR over 95%.

Setting Task 1 Task 2 Task 3

Instr. Ex. T_ACC ↑ ROUGE ↑ BLEU ↑ E_ACC ↑ IoU ↑ F1 ↑ TNR ↑ FPR ↓
! ! 11.90 29.57 5.19 32.41 25.60 39.77 2.01 97.99
% ! 6.84 24.63 4.58 5.56 22.01 34.00 4.15 97.50
! % 10.43 23.00 4.24 26.37 15.55 34.50 2.80 97.20
% % 5.27 11.02 1.30 3.70 0.10 25.50 1.58 98.40

Table 8.4: Query setting study results for the model QWENVL across dierent tasks and metrics
with Instruction directives only. Symbols: ↑ indicates higher is better, ↓ lower is better, bolded values
signify top performance, ‘-’ means no VQA LoRA ne-tuning.

8.3 Dataset Quality Assurance Results

After conducting dataset quality assurance with ve participants, we obtained the results as shown
in Figure 8.1. For Task 2 (Object Detection), the metrics for clarity and precision scored near
’Clear’ (averaging 1.62 on a scale from 0 to 2) and ’Precise’ (averaging 1.65 on the same scale),
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8.3 Dataset Quality Assurance Results

Figure 8.1: Statistic results for quality assurance.

respectively. These scores indicate that both the images generated and their corresponding annota-
tions in this task are quite satisfactory. In Task 3, the metrics for similarity and relevance reached
0.73 and 0.92, respectively, which also suggests acceptable performance in these categories. Addi-
tionally, the calculated Kappa scores for all participants were around 0.62, which corresponds to a
’substantial’ level of agreement according to the strength of agreement standards. This underlines
the reliability of our dataset evaluation process.
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9

Discussion

9.1 Task-Specic Examples and Model Performance

In this part, we will discuss the generated results for scene understanding and object detection
tasks. In Table 9.1, it is noticeable that the results from the LoRA models in the latter rows
predominantly begin with the word ”Put”, which aligns with the instructive sentences typically
found in LEGO manuals. However, regarding content, only the response from MiniGPTv2 closely
matches the assembly process. While LLaVA’s reaction has been shortened from a long paragraph
to a concise sentence, it lacks any meaningful content. Similarly, the models before ne-tuning
were generally unable to provide correct instructional phrases.

However, in Table 9.2, it can be seen that models such as LLaVA, Otter, and even MiniGPT-4
struggled to produce correct output formats before ne-tuning. While mPLUG-owl2 provided
the correct answer format, it did not fully understand its requirements; for example, it gave
an X coordinate of 125, which is incorrect as it exceeds 100. After ne-tuning, most models
could provide coordinates accurately, highlighting the challenge of producing acceptable coordinate
formats. Models like GPT-4o often attempted to write code for ltering rather than directly
understanding the scene. Even when instructed not to create code, it frequently resorted to using
Python’s PIL library for simple image processing but failed to provide precise coordinates. This
demonstrates that using external tools by such models can often lead to improper answers.

9.2 User-friendliness of Object Detection Instructions

In the object detection task, the outputs consist of coordinates the application uses to display a
box highlighting the detected objects. However, these coordinates are not intended to be directly
shown to users. The initial design aimed to help the model understand the given object in as much
detail as possible and provide exact location information. Nevertheless, in real-world interactions,
the latency of such multimodal models might render these high-precision outputs less suitable.

Additionally, in many cases, the output from most models regarding positional information is not
entirely satisfactory. Therefore, if such models are to be deployed directly for locating uncommon
objects, evaluating using lower-precision positional information may be necessary.

9.3 Multi-round Conversation

In the scene understanding task, we have observed cases where some models exhibit high theme
accuracy but low ROUGE and BLEU scores. For example, the LLaVA model demonstrates high

0https://pypi.org/project/pillow/
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9.3 Multi-round Conversation

Aspect Response Image

Query [grounding] After I nd 1 transparent mailbox
front 2x2. Tell me what to do for the current
situation.

LEGO Manual Insert the two tabs at the bottom of the mailbox
casing into the two small notches on the mailbox
front.

BLIP2 Put the mailbox front 2x2 horizontally on the ta-
ble, clasp to the back. Put the mailbox back 2x2
vertically on top, slope to the left.

InstructBlip Put it horizontally on the table, clasp to the back.

LLaVA In the image, there is a small Lego-like object with
a red liquid inside of it. The object is placed in
a blue sky, and it appears to be a 3D model. To
create a transparent mailbox, you need to nd
a transparent mailbox front that is 2x2 in size.
Once you nd it, you can use it as the base for
your transparent mailbox. You can then place
the small Lego-like object inside the mailbox to
complete the scene.

MiniGPT-4 Sure! Here’s what you need to do with the pieces
you have collected:1. Place the transparent mail-
box front 2x2 on top of the plate 1x2, aligned with
the short side of the plate.you have completed the
current situation. Let me know if you need help
with anything else!

Otter In view of the reasoning ’A mailbox is small and
square with a see through window.’, the optimal
answer should be: build structure.

mPLUG-OWL2 Place the mailbox front 2x2 next to the block on
the table.

QWEN-VL Put the transparent mailbox front 2x2 on the right
side of the white arch.

LLaVA(LoRA) Put it on the mailbox.

mPLUG-
OWL2(LoRA)

Put it on the rightmost edge of the high part of
the structure.

QWEN-
VL(LoRA)

Put it on the table.

MiniGPTv2(LoRA) Put the mailbox front 2x2 horizontally in front of
the previous piece.

Table 9.1: Scene understanding inference results.

T_ACC (theme accuracy) but low ROUGE and BLEU scores. Conversely, InstructBLIP has a
dierent performance pattern:

The core objective of this task is to assess the model’s ability to understand the scene and provide
accurate guidance to the user. The BLEU metric evaluates overall similarity to reference texts.
InstructBLIP tends to produce concise sentences, aligning with the manual’s instructive nature,
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9.3 Multi-round Conversation

Aspect Response Image

Query [detection]Please identify and highlight the po-
sitions of 1 light purple brick 2x6. Providing
the positions in the format: <p>object</p>
<Xleft><Ytop><Xright><Ybottom>, with X
and Y coordinates normalized to [0,100]. Xleft
and Ytop for the top-left corner.Xright and Ybot-
tom for thr bottom-right corner.

LEGO Manual <p>1 light stone grey plate</p>
<59><3><91><39>

BLIP2 <p>1 light purple brick</p>
<57><15><82><35><p>and<p>1 dark
purple brick 2x6</p> <82><25><93><36>

InstructiBLIP <p>1 light purple brick 2x6</p>
<57><15><82><35><p>and<p>1 light
purple brick 2x6</p> <82><25><93><36>

LLaVA The light purple brick is located at the center of
the image, surrounded by the yellow and black
bricks.

MiniGPT-4 Sure! Here are the positions of the light purple
brick in the image: Xleft = 0, Ytop = 25, Xright
= 30, Ybottom = 50.

Otter The 1 light purple brick 2x6 is on the left side of
the image.

mPLUG-OWL2 <p>1 light purple brick</p>
<125><48><45><97></s>

QWEN-VL <20><61><30><78>

LLaVA(LoRA) <p>1 light purple brick</p>
<62><15><87><35>

mPLUG-
OWL2(LoRA)

<p>1 light purple brick</p>
<60><24><69><35></s>

QWEN-
VL(LoRA)

<p>1 light purple brick</p>
<57><15><82><35>

GPT-4o “ ‘pythonPIL import Image Load the imageim-
age_path =...

Table 9.2: Object detection inference results.

but often misses subtle details like shape, orientation, and color, leading to a lower T_ACC.
Conversely, LLaVA captures these details accurately, resulting in a high T_ACC but generates
longer, descriptive responses, resulting in a lower BLEU score. Thus, InstructBLIP excels in brevity
but lacks detail, whereas LLaVA provides detailed descriptions at the cost of brevity and overall
similarity.

The issue arises from the fact that we simulate multi-round conversations through prompts.
Some models tend to provide an overall scene description instead of following our conversational
guidance for the next step. This indicates that our assessment of a model’s ability to guide the
user can be improved by simulating continuous steps in our VQA task detection. By incorporating
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9.4 Dataset Diversity

multi-round conversations as in-context examples, we can help models better understand the task.

9.4 Dataset Diversity

Our primary research motivation is to apply VLMs for practical scenarios of industrial product
assembly in an AR environment. However, this framework can be extended to other types of tasks,
such as vision-language tasks with and without instruction guides and images. Dierent tasks and
settings can be easily dened by constructing applicable queries within the proposed framework.

Under our designed tasks, as long as there are continuous assembly steps and object-nding
steps matched with corresponding VL pairs, dataset construction, and model capability evaluation
can be performed using our approach. This highlights the versatility of our method. However, it is
important to note that some datasets may not be as straightforward as the LEGO manual, which
clearly highlights assembly points. For state detection tasks, the model may need to compare and
analyze images before and after each step to determine changes.

By focusing on constructing diverse datasets with clear instructional guides and relevant VL
pairs, we can better evaluate and enhance the model’s ability to understand and assist in complex
tasks.

9.5 Future Works

Upon concluding this series of experiments, signicant improvements were observed across all three
tasks when ne-tuning models with our bespoke dataset. This progress opens several potential
avenues for future research, which we delineate below:

• Generation of Graphical Manuals: Our current study assumes a linear assembly process
with input from manuals detailing only a nite number of steps. This assumption precludes
scenarios such as step-skipping that are plausible during actual assembly tasks. Future work
could explore methodologies to transition from linear to graphical manuals, potentially using
algorithms that learn dierent assembly strategies or expand linear manuals into graphi-
cal formats. Such advancements would challenge the prevailing assumption of sequential
task execution and bring vision assistance technologies closer to human-like interaction and
understanding.

• Dataset Quality Assurance Process Improvement: Due to our HTML questionnaire
being auto-generated by Python, the questions designed to check if users understand the
tutorial were inadvertently placed at the beginning. Although this arrangement allows for
the entire questionnaire to be completed within 25 minutes, a more eective approach would
involve randomly interspersing these comprehension checks throughout the sections related to
the two main tasks. This strategy would not only assess users’ understanding more eectively
but also help evaluate whether fatigue inuences their performance.

• Combined Tasks: Our initial task design—encompassing scene comprehension, object de-
tection, and state recognition—was informed by an extensive literature review. In practice,
these capabilities might be employed concurrently. For instance, when a user incorrectly
assembles a part, state detection could rst assess the error, followed by object detection to
identify the incorrect piece, and nally, scene understanding could guide the user on correc-
tive measures. Further exploration into developing tasks that simulate a more comprehensive
range of realistic instructional interactions may yield novel methods to generate data for au-
thentic guidance-oriented question-and-answer scenarios.
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10

Conclusion

10.1 Conclusion

This research highlights the intricate challenges involved in eectively integrating Vision-Language
Models (VLMs) with AR technologies to enhance educational and interactive applications. By
developing a bespoke dataset derived from LEGO instruction manuals and formulating precise
multimedia tasks, we have advanced the eld in mitigating prevalent limitations in scene compre-
hension, object detection, and state recognition—key areas where VLMs often underperform. The
deployment of our novel query architecture, coupled with AR-specic tasks, represents signicant
progress in harnessing the full potential of VLMs for complex instructional tasks. Our compre-
hensive evaluation of contemporary VLMs demonstrates our approach’s eectiveness and points
to considerable opportunities for future advancements in model accuracy and functionality. These
ndings set a promising foundation for further research and development within the realm of aug-
mented instructional technologies, potentially revolutionizing how educational content is delivered
and interacted with in digital environments.
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11

Appendix

11.1 Quality Assurance Settings

This section provides the quality assurance settings and example questions for two tasks.

Figure 11.1: Examples question for Task2 in quality assurance.
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11.1 Quality Assurance Settings

Criteria Description
C1: Boundary precision To what extent a bounding box is well-aligned with the object in

an image.
C2: Entity disambiguity To what extent the text in the bounding box is well-aligned with

the reference text.
Total Questions 103
Time to Complete 20-40 minutes

Table 11.1: Evaluation criteria for Task 2.

Figure 11.2: Examples question for Task3 in quality assurance.

Criteria Description
C1: Relevance Evaluate how relevant the evaluating image is to the reference

image. Assess whether the content or context of the evaluating
image pertains directly to that of the reference image.

C2: Similarity Assess how similar the evaluating image is to the reference image.
Consider the visual and thematic elements that align or corre-
spond between the two images.

Total Questions 105
Time to Complete 15-35 minutes

Table 11.2: Evaluation criteria for Task 3.
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11.2 In-context Examples

11.2 In-context Examples

This section presents in-context examples from the dataset showcasing how the model handles
various tasks such as scene understanding, object detection, and state detection. Each example
consists of an image and a query-response pair, illustrating the model’s application in practical
scenarios.

Image Query and Generated Answer
Query: [grounding] After I collect the following 2 pieces: 1 black
plate 1x2 with the vertical clasp on the short side, and 1 bright
orange smooth roof tile 1x2x 2

3 . Tell me what to do.
Answer: Put the plate 1x2 vertically on the table, clasp to the
back. Put the roof tile 1x2x 2

3 vertically on top, slope to the left.

Query: [grounding] After I collect the following 2 pieces: 1 dark
stone grey at tile 1x8, and 1 dark stone grey at tile 1x4. Tell me
what to do for the current situation.
Answer: Put the at tile 1x8 horizontally in front of the previous
piece. Put the at tile 1x4 vertically in front of the previous piece
on the leftmost column.
Query: [object] Please identify and highlight the positions of the
following 2 pieces: 1 black plate 2x6, and 1 bright yellow plate 1x2
with vertical clasp on long side.
Answer: 1 black plate <57><15><82><35> and 1 bright yellow
plate <82><25><93><36>

Query: [object] Please identify and highlight the positions of 2
transparent uorescent green round bricks 1x1.
Answer: 2 transparent uorescent green round bricks
<20><61><30><78>

Query: [state] After I nd 4 white bricks 1x2x5. Did I do it
correctly for they will form two pillars at the back. First, locate the
two plates 2x2 in the left and right corners at the back. Put 2
horizontally on the plate 2x2 at the left back. Put the other 2
horizontally on the plate 2x2 at the right back.
Answer: No.
Query: [state] After I nd 4 white bricks 1x2x5. Did I do it
correctly for they will form two pillars at the back. First, locate the
two plates 2x2 in the left and right corners at the back. Put 2
horizontally on the plate 2x2 at the left back. Put the other 2
horizontally on the plate 2x2 at the right back.
Answer: Yes.

Table 11.3: In-context examples of model interactions with specic tasks within the dataset.
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11.3 Snellius Scripts

11.3 Snellius Scripts

In this section, we detail the congurations used for two critical experiments conducted on the Snel-
lius computational platform using the Blip2 model. These experiments are dierentiated by their
specic goals: one for inference and the other for ne-tuning, each utilizing GPUs in congurations
tailored to their computational needs.

11.3.1 Inference Conguration

The rst script congures a single GPU job aimed at running inference tasks with the Blip2 model.
This setup focuses on executing two separate inference runs with dierent parameters to test the
model’s performance under varied conditions.

#!/bin/bash
#SBATCH –job-name=blip2_inf_job
#SBATCH –nodes=1
#SBATCH –ntasks=1
#SBATCH –cpus-per-task=18
#SBATCH –gpus=1
#SBATCH –partition=gpu
#SBATCH –time=15:00:00
module load 2023
source .env/bin/activate
python inference_BLIP2.py ’Blip2’ ’object’ ’ablation_format’

Table 11.4: GPU job submission script for inference.

This script is an example of the Blip2 model’s inference code, focusing on state and object
detection tasks.

11.3.2 Fine-Tuning Conguration

The second script details the setup for a more resource-intensive job that utilizes two GPUs for
ne-tuning the Blip2 model. This arrangement is intended to optimize the model’s performance
by adjusting weights based on extensive learning over new datasets.

#!/bin/bash
#SBATCH –job-name=blip_finetune
#SBATCH –nodes=1
#SBATCH –ntasks=2
#SBATCH –gpus=2
#SBATCH –cpus-per-task=18
#SBATCH –partition=gpu
#SBATCH –time=18:00:00
module load 2023
module load NCCL/2.18.3-GCCcore-12.3.0-CUDA-12.1.1
source .env/bin/activate
python blip2_ft_try.py

Table 11.5: Batch script for GPU job submission, formatted for clarity.

This script is an example of the Blip2 model’s ne-tuning code, intended to improve the model’s
accuracy and eciency in processing tasks.
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