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A B S T R A C T
Maritime security is of tremendous importance in countering drug trafficking, particularly through sea-based
routes. In this paper, we address the pressing need for effective detection methods by introducing a novel
approach utilizing Automatic Identification System (AIS) data. Our focus lies on detecting the ‘drop-off’
method, a prevalent technique for contraband smuggling at sea. Unlike existing research, primarily employing
unsupervised methods, we propose a supervised model specifically tailored to this illicit activity, with a
particular emphasis on its application to fishing vessels.

Our model significantly reduces the number of data points requiring classification by the observer by
70% , thereby enhancing the efficiency of the drop-off detection process. By employing a Long Short-Term
Memory (LSTM) model, our approach demonstrates a change from traditional methods and offers advantages
in capturing complex temporal patterns inherent in ‘drop-off’ activities. The rationale behind choosing LSTM
lies in its ability to effectively model sequential data, which is essential for detecting drug traffic activities at
sea where patterns are subtle and dynamic.

Moreover, this model holds the potential for integration into real-time surveillance systems, thereby
enhancing operational capabilities in detecting and preventing drug traffic. The generalizability of our model
makes for considerable potential in enhancing maritime security efforts and providing assistance in countering
drug traffic on a global scale. Importantly, our model outperforms both baseline models, underscoring its
effectiveness and superiority in addressing the specific challenges posed by ‘drop-off’ detection. For more
information and access to the code repository, please visit this link.

1. Introduction
1.1. Motivation

Recently, the BBC published an article about three men who were
put under investigation two weeks after their rescue on the coast
of Australia (Housden & Guinto, 2023). Suspicions were raised after
almost 400 kg of cocaine was found at their rescue location. Although
the men claimed to have fallen overboard while fishing, the authorities
suspected their story may not hold water. In fact, it is believed that the
men were attempting to retrieve cocaine from the ocean and transfer
it onto their fishing vessel as part of a drug smuggling operation. This
transfer of contraband through the ocean is known as the ‘drop-off’ or
‘pick-up’ method. Although this BBC article was focused on an incident
along the Australian coastline, this particular method of drug traffick-
ing is observed in various parts of the world. Despite the relatively
low number of arrests made in relation to drop-offs in the Netherlands,
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the Dutch police suspect that the ‘drop-off’ method is being employed
with increasing frequency along the country’s coast. This suspicion is
supported by the growing number of packages discovered in the ocean
or washed ashore (Mehlbaum et al., 2021).

In 2000, the International Maritime Organisation (IMO) adopted
a requirement that obliged certain vessels to be equipped with an
Automatic Identification System (AIS). It concerns passenger ships and
all vessels larger than 300 tonnage on international voyage, and larger
than 500 tonnage not engaged in international voyage (IMO, 2024).
Through AIS, these vessels are obliged to transmit certain dynamic
and static information: identity, type, position, course, speed, navi-
gational status, and other safety-related messages. Furthermore, the
vessel automatically receives the same data from other vessels on the
AIS. The idea behind the implementation of this regulation was to
significantly strengthen the safety and security of ships while also facili-
tating more effective monitoring by the authorities. In 2016, The Dutch
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Fig. 1. Snapshot of all vessels equipped with AIS on the coast of The Netherlands
(2023). Every arrow and dot represents a vessel.

government further mandated this regulation for all vessels operating
commercially and all pleasure crafts longer than 20 meters (Ministerie
van Infrastructuur en Waterstaat, 2022). The sea is incredibly busy,
90% of all international transport occurs at sea (Nguyen, Vadaine,
Hajduch, Garello, & Fablet, 2019). Most of these transporters are large
cargo ships carrying containers, which are obliged to sail within a
designated shipping lane. Additionally, many other vessels sail the
coast every day. Unlike cargo ships, these vessels are not bound by the
shipping lanes and consequently tend to follow more unpredictable and
chaotic paths. Therefore, detecting a pick-up with the current methods
in place is possible, but challenging. The concentration of vessels is
high, especially in regions around coasts (as shown in Fig. 1), and the
trajectories are complex.

The suspected number of drop-offs occurring is high and both
historical and real-time data are available. Utilizing machine learn-
ing for automated surveillance holds significant promise. There have
already been worldwide implementations of automated anomaly de-
tection using Recurrent Neural Networks (RNNs) or cluster methods.
However, these studies primarily focus on unsupervised approaches,
which concern general trajectory anomalies. Research on the detection
of anomalies at sea using supervised approaches is very limited, espe-
cially concerning the detection of the drop-off method. This is a gap
in this field that we are aiming to address with this research. The goal
of this research is to develop a machine-learning algorithm that can
detect the possibility of a drop-off taking place. The algorithm could
be integrated into real-time data systems for future use. It would serve
as a trigger to alert Team Maritime Police (TMP) and Coastguard when
there is a high likelihood of a drug transfer occurring.

1.2. Background
The type of drug transfer this paper focuses on is the drop-off

method, performed at sea. It is important to note that while this
method is commonly known as the drop-off method, the method ac-
tually consists of two actions: (1) a drop-off of the contraband into
the water, and (2) a pick-up of the contraband out of the water. A
mother vessel sails through a designated shipping lane outside the coast
of The Netherlands. Then at a pre-determined time and location, the
mother vessel drops a package of illegal drugs into the water, usually
without changing its speed or course. The daughter vessel is often
already present in the shipping lane or the area. Following the drop-off,
this vessel picks up the contraband with either nets or a hook, thereby
executing a pick-up. The organizers of the drop-offs are aware that the
daughter vessel’s live AIS activities are being monitored. For this rea-
son, the contraband is frequently transferred to at least one other vessel
before being brought to land. Generally speaking, to execute a pick-
up the daughter vessel must maneuver to the location of the package,

decrease speed, and, after performing the pick-up, often makes a U-
turn. This behavior differs from vessels occupied with normal activities,
such as fishing. Since the mother vessel maintains its course and speed
during the drop-off, its involvement is very challenging to trace using
AIS data. However, the daughter vessel does make several movements
that are anomalous in the AIS data. On top of that, fishing vessels
are known to be used for the smuggling of migrants, drug trafficking,
weapon trafficking, and acts of terrorism (de Coning, 2011). Fishermen
are often recruited for their knowledge of the sea and are generally not
the masterminds of the criminal act. They are more susceptible to these
recruitments due to financial difficulties caused by the declining fish
stocks in many regions of the world (Mehlbaum et al., 2021).

Accordingly, the anomaly detection is focused on the daughter
vessel. Since this research is limited to anomaly detection related to the
daughter vessel, the ‘pick-up’ action rather than the ‘drop-off’ action
is of relevance. When discussing the method, we will use the term
‘drop-off’, and when referring to the anomaly, we will refer to ‘pick-up’.

1.3. Related work
In the context of all types of maritime anomaly detection, there

exists a wide variety of classification and prediction methods. In 2022,
Wolsing et al. survey on anomaly detection of AIS tracks (Wolsing,
Roepert, Bauer, & Wehrle, 2022). To categorize the existing methods,
they adopted the same classification as described by Lane, Nevell, Hay-
ward, and Beaney (2010): ‘route deviation’, ‘unexpected activity’, ‘port
arrival’, ‘close approach’, and ‘zone entry’. From these five categories,
the classification of potential pick-ups falls under the ‘route deviation’
category, although ‘close approach’ and ‘unexpected activity’ are also
closely related. Accordingly, the remainder of this section will focus on
the existing research related to these three categories.

The vast majority of papers researching anomaly detection with
AIS data focuses on deviation anomalies (Yang, Liu, Li, Zhang, & Liu,
2024). Venscus et al. introduced a method using a Long Short Term
Memory network (LSTM) with bootstrapping to predict route deviation
anomalies (Venskus, Treigys, & Markeviūtė, 2021) in an unsupervised
manner. The resulting model accurately detected abnormal movements
such as ‘vessel slowdown’, ‘turn around‘, ‘sharp direction change’, and
‘unplanned stopping’. It is noted that this works for predictable paths
such as cargo vessels, but that it is much more challenging with fishing
vessels’ complex trajectories. However, it is anticipated that this chal-
lenge concerning complex trajectories manifest in other deep learning
models too. Therefore, LSTM remains a promising choice for anomaly
detection in maritime environments. Its ability to model sequential data
and capture temporal dependencies makes it well-suited for identifying
subtle deviations in vessel behaviors over time. LSTM’s capability to
learn long-term dependencies enables it to discern complex patterns
inherent in maritime activities.

Nguyen et al. (2019) developed GeoTrackNet, an anomaly detection
model in route deviations. It employs probabilistic notation of tracks
with a Variational Recurrent Neural Network trained for anomaly
detection. Unlike previous models that try to detect route deviations,
GeoTrackNet can be applied to any type of vessel, including fishing
vessels. The authors do note that their patterns are the most complex
of all vessels and thereby pose the greatest challenge for the model to
learn their deviations. It is interesting to note their novel approach to
feature representation in the use of a four-hot encoding vector as input
to the neural network, albeit with resource-intensive computational
requirements. The four-hot encoding is a concatenation of four one-hot-
encoded vectors of the ship’s latitude, longitude, Speed Over Ground
(SOG), and Course Over Ground (COG). Continuous values are dis-
cretized into bins, and each bin is represented by a one-hot vector. This
is argued to be more appropriate than using the conventional numerical
input for a neural network, since the encoding better represents the
geo-spatial meaning of these variables (Nguyen et al., 2019).
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An interesting research under the ‘unexpected activity’ anomalies is

by Singh and Heymann (2020). They propose a neural network frame-
work to detect intentional on-and-off switching of the AIS transmitter. It
uses the numerical values of latitude, longitude, SOG, and COG as input
for their model. The authors test their model by comparison to known
power outages and reach a 99, 99% accuracy in detecting whereas
the AIS that is transmitted is normal, intentionally turned off, or is
due to a power outage, only missing a few instances. This highlights
the significance of considering various types of unexpected activities
beyond traditional anomalies, which aligns with our research objective
of developing a comprehensive approach for detecting sea-based drug
transfers, including behaviors such as intentional AIS manipulation.

Within the ‘close approach’ category, the identification of collision
of vessels was researched by Liu, Wang, Cai, Liu, and Liu (2020). In this
research, an RNN is implemented to predict collisions of two vessels
at sea based on interpolating geographical information. While the
research shows promising results, it is suggested to use other variables
such as SOG and COG in further research. Fang, Yu, Ke, Shaw, and Peng
(2019) do consider SOG and COG as variables in addition to longitude
and latitude and approach the classification with spatial indexing.
A grid is defined on the spatial resolution and a close approach is
determined by checking pairs of vessels in the same or adjacent squares.
The results of the research are compared to official precautionary areas,
revealing discrepancies in certain areas while showcasing favorable
outcomes in areas pertinent to the task of detecting maritime based
drug-traffic. Notably, the selection of feature representation yielded
positive results, further validating its efficacy for our objectives.

Most research done in anomaly detection for fishing vessels is
regarding illegal fishing activities. While this is not the goal of this
research, these models are built with the same trajectory data and so
address the issue of complex trajectories. Arasteh et al. (2020) intro-
duced FishNet, a Convolutional Neural Network tailored for classifying
fishing trajectories. While FishNet achieves a commendable F-1 score of
92.35%, surpassing the 90% score of the highest baseline, its inability
to distinguish anomalous events from routine activities, such as port
arrivals or specific route deviations, highlights the need for further
advancements in anomaly detection algorithms.

Recently do Nascimento, Alves, de Farias, and Dutra (2024) pro-
posed an approach that combines navigation behavior models with
expert rules to detect illegal maritime activities. This model integrates
AIS data and expert knowledge by using active learning. This reduces
the required manual work as the methods are focused on detecting
illegal fishing and suspicious behavior. However, it relies heavily on
expert rules and labeled data, limiting adaptability to new or evolving
threats. Additionally, it does not differentiate between various types
of suspicious behavior, making intervening by the maritime authorities
more challenging.

These related works are summarized in Table 1.

1.4. Our proposal
As of the time of composing this paper, no prior research on

supervised ’drop-off’ method detection has been identified by the au-
thors. Our research differs from previous research in multiple ways.
Of the existing research on illegal activities at sea, most focus on
illegal fishing. This concerns mainly forbidden navigational maneuvers.
This makes illegal fishing an issue of trajectory, whereas the drop-off
method is an issue of behavioral patterns (including, but not limited
to trajectory patterns). Other research focuses on anomaly detection,
taking the entirety of illegal activities into account. Due to the lack
of labeled data, stemming from confidentiality concerns, the models
proposed for this are unsupervised. However, unsupervised models
must rely on identifying deviations from expected patterns, which can
be complex and dynamic in maritime environments. Moreover, the
lack of ground truth labels makes it difficult to assess the performance
of these models accurately. This underscores the need for innovative

Table 1
Literature survey in tabular form.

Category Paper Keywords

Review paper
Yang et al. (2024) Machine Learning

Using AIS
Categories of
classification

Wolsing et al.
(2022)

Survey of anomalies
Using AIS

Lane et al. (2010) Route deviation,
Unexpected activity,
Port arrival,
Close approach,
Zone entry

Route
deviation

Venskus et al.
(2021)

LSTM, unsupervised

Nguyen et al.
(2019)

GeoTrackNet,
Any vessel

Unexpected
activity

Singh and Heymann
(2020)

On-and-off
switching of AIS

Close approach Liu et al. (2020) Collisions, RNN
Fang et al. (2019) Variable choice:

SOG, COG
Fishing Vessels Arasteh et al.

(2020)
Illegal fishing,
Anomaly detection,
FishNet

do Nascimento
et al. (2024)

Illegal fishing,
Suspicious behavior,
Active Learning

strategies to address the unique intricacies of detecting illicit activities
at sea. This research aims to bridge this gap. This research is novel
for several reasons. Firstly, unlike much of the prior work which
uses unsupervised methods, our model utilizes labeled data, improving
the precision of anomaly detection. Secondly, the study introduces a
focus on the specific ’drop-off’ method used in maritime based drug
traffic, which has not been sufficiently explored in existing research.
Thirdly, the model is designed to be adaptable to different maritime
regions, making it versatile for different geographic contexts. Lastly, by
utilizing a sliding window approach, our model is optimized for real-
time anomaly detection. Our approach is designed to detect suspicious
behavior at an early stage, enabling maritime authorities to intervene
in a timely manner and address emerging threats more effectively.

A significant challenge in this study is dealing with imbalanced
classification. In the context of maritime drug trafficking, instances
of illegal activities are rare compared to the vast amount of legit-
imate maritime traffic, leading to a highly imbalanced dataset. To
address this, we have employed techniques such as class weighting and
specialized metrics that focus on performance for the minority class.

Furthermore, the nonstationary nature of maritime data adds an-
other layer of complexity. Maritime environments are subject to dy-
namic changes due to varying traffic patterns, environmental condi-
tions, and regulatory measures over time. By choosing the sliding
window approach with an LSTM model, we ensure that the model
is always focusing on the most recent and relevant data, helping to
address challenges posed by nonstationarity.

Building upon prior work in anomaly detection for fishing vessels,
our research leverages advancements in deep learning techniques to
develop a model specifically tailored for detecting maritime based drug
transfers. We have determined a feature selection and model refinement
based on insights gained from existing literature.

2. Data
2.1. Automatic identification system

Every Fishing vessel (longer than 15 m) is obliged to transmit an
Automatic Identification System, AIS for short. These transmits consist
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Table 2
All the AIS variables, together with their type and numerical range.

Name Type Description
Date and UTC Time Datetime The date and UTC time

of the transmission.
MMSI Integer Unique 9 digit identifier

number for radio station(s)
Status Integer ∈[1, 15] Status of the vessel by

manual input, e.g., ‘Fishing’.
Latitude (◦) Float ∈[−90, 90] Position coordinate
Longitude (◦) Float ∈[−180, 180] Position coordinate
SOG (knots) Float Speed over Ground,

the speed relative to the ground.
HDG (◦) Float ∈[0, 365] Heading, the direction

in which the vessel is pointing
COG (◦) Float ∈[0, 365] Course over Ground,

the direction which the vessel is heading
ROT (◦∕) Float ∈[−720, 720] Rate of Turn,

the position of the steering wheel
IMO number String Unique 7 digit number

for propelled sea going merchant ships of more
than 100 Gross Tonnage

Name String Name of the vessel
Call Sign String Unique alphanumeric

vessel identity
Length Bow (m) Integer Vessel measurement
Length Stern (m) Integer Vessel measurement
Length Overall (m) Integer Vessel measurement
Width Port (m) Integer Vessel measurement
Width Starboard (m) Integer Vessel measurement
Width Overall (m) Integer Vessel measurement
Draught (m) Integer Vessel measurement
Destination String The intended destination
Vessel Type String e.g., ‘Vessel’
Extra info String e.g., ‘Fishing’

of static and dynamic information. The static information has been
manually entered by the vessel’s crew and consists of information
such as the Maritime Mobile Service Identity (MMSI) number of the
ship, its name, its status, dimensions of the boat, destination, and
vessel type. The dynamic information is transmitted automatically and
consists of the date and time, the vessel’s SOG, its location represented
in longitude and latitude coordinates, its COG, its Heading (HDG),
and Rate of Turn (ROT). The variables, together with their type and
numerical range can be observed in Table 2. Unlike the other variables
in the table, the range for the SOG is not fixed. AIS data often includes
unrealistically high SOG values (Eriksen, Greidanus, & Delaney, 2018).
To filter out this noise from the dataset during pre-processing of the
data, a threshold is used based on research by Greig, Hines, Cope, and
Liu (2020). Hence, the truncation threshold for fishing vessels is set at
15 knots.

Although AIS data is widely accessible, it has its limitations. The
primary issue associated with using AIS data is that it can be unreliable.
AIS sends out signals every 2 − 12 seconds, depending on the ship’s
SOG as well as gaps in the reception (IMO, 1998). This is usually
a result of saturation of the system due to a high concentration of
vessels in an area or insufficient quality of the transmissions caused
by the equipment of the receiver and/or the transmitter (Ford, Peel,
Kroodsma, Hardesty, Rosebrock, & Wilcox, 2018; Wolsing et al., 2022).
As a result, the trajectories often contain significant gaps.

Besides this, the missing information can also be caused by the
fishing vessel’s crew, not cooperating with the AIS system. It is possible
that a fishing vessel’s captain has, intentionally or not, never activated
its AIS system or incorrectly entered static information. Furthermore,
the AIS transmitter can be turned off. This can be related with the goal
of (drug) trafficking or more innocent crimes such as the prevention of
disclosing a good fishing spot to other fishers in the area (Ford et al.,
2018; Wolsing et al., 2022). However, this does generally get easily
noticed by the authorities.

2.2. Data set
2.2.1. Data extraction

The dataset used for this research was sourced from MadeSmart, a
trusted repository for historical AIS data (MadeSmartGroup, 2014). We
define data points as segments of a vessel’s route. Positive data points
represent segments that were part of a route undertaken by a vessel
involved in drug trafficking during that specific journey. Specifically,
all segments of tracks where ships were performing a pick-up at any
point during that track are included. Therefore, segments are also
labeled positive if there was no pick-up during that specific segment,
but there was a pick-up during the entire track. This approach is used
because we aim to detect suspicious ships before the drop-off occurs, to
be able to intervene on time. Negative data points represent any other
route segments in the data. The negative data points were obtained
by downloading all the tracks available in 2022, with two filters. The
first filter required the tracks to have occurred in the polygon shown
in Fig. 2. This polygon was determined in collaboration with TMP.
Additionally, the polygon encompasses a large shipping lane which
cargo ships navigate through. Therefore, a majority of the pick-ups
are expected to occur in this lane. The second filter is that on ship
type. Only fishing vessels are exported. Since the vessel type in the
AIS system relies on manual input from the skipper, it is susceptible to
human error. Nonetheless, the filter was necessary to effectively restrict
the amount of downloaded data. The resulting negative dataset consists
of AIS information from almost 40 million tracks. To ensure our model
captures the full range of maritime activity, this dataset spans an entire
year. Thus, different seasonal patterns, varying weather conditions, and
fluctuating sea states are taken into account. These temporal variations
allow the model to account for a wide range of behaviors, making it
more robust in real-world scenarios where nonstationary factors such
as weather and tides may influence ship movements.

The positive dataset is built on 18 tracks of known pick-ups. The
tracks cover the estimated time of suspicious activity, spanning from
3 h to 4 days. The whole positive dataset is much smaller, consisting
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Fig. 2. The polygon filter on downloaded data for the negative dataset: an area with
significant traffic activity.

of nearly 200 thousand data points. The majority of the tracks occurred
within the past three years, with the earliest one dating back to 2013.
The positive dataset, representing segments of routes associated with
drug trafficking activities, was meticulously curated based on direct
evidence from TMP investigations or compelling suspicions from expert
analysis. This manual labeling process ensured that positive instances
were authentic representations of confirmed or highly probable illicit
activities. As a result, the quantity of positive data points is relatively
limited. Using the TMP’s knowledge of known pick-ups, the data from
that day was extracted from MadeSmart.

2.2.2. Class imbalance
Due to the small availability of the positive dataset, the dataset

suffers from extreme class imbalance. The minority class makes up
0.5% of the total dataset. There is no statistics on the actual percentage
of tracks that represent pick-ups per year. It can, however, be assumed
that a class imbalance is realistic. Only a small amount of the traffic at
sea is en route to a pick-up. To enhance generalizability, the training
data should reflect the real world and this imbalance must remain (van
den Goorbergh, van Smeden, Timmerman, & Calster, 2022). This is
crucial for applications where the imbalance itself is a natural and
significant feature of the problem, such as maritime traffic, where pick-
up events are rare. It is challenging to pinpoint the exact threshold at
which the minority class becomes too under-represented. Nonetheless,
previous research suggests that, in general, when the minority class
constitutes less than 1% of the dataset, it leads to significant class
imbalance issues and can result in poor model performance (Krawczyk,
2016; Sun, Wong, & Kamel, 2011). We deal with the extreme dataset
imbalance by using data augmentation, where the negative class is
undersampled resulting in a minority set that makes up 1% of the
complete dataset. We opt for undersampling rather than oversampling
methods like SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002),
since it generates synthetic samples, which can sometimes lead to less
realistic data points, particularly if the minority class has complex pat-
terns like those of the fishing vessels. Moreover, using undersampling
makes the model less prone to overfitting than oversampling and it is
generally simpler to implement.

2.3. Dataset preprocessing
For the proposed model, the dynamic variables SOG, COG, Latitude,

Longitude, as well as the static variables Date and UTC Time, and MMSI
are considered. The other AIS variables are removed from the dataset.
During pre-processing some general errors should be addressed (Yang
et al., 2022). This includes incorrect MMSI lengths, duplicate data
points, and abnormal latitude, longitude, SOG, and COG values. Possi-
ble errors such as large gaps in the reception of latitude and longitude

Fig. 3. Pearson correlation coefficients between variables.

data are not to be removed from the dataset. The large gaps in the data
could be an indicator of intentional tampering with the material. By
removing these gaps, important information might get lost. The model
must focus on finding anomalies in the trajectories. To achieve this,
the latitude and longitude values undergo normalization to not contain
positional information. This normalization process involves converting
latitude and longitude to relative values by subtracting each coordinate
from the initial coordinates of the track.

Summarized, the input data for the algorithm comprises normalized
dynamic variables such as SOG and COG, as well as static variables
including date, time, and MMSI, derived from historical AIS data.
These variables represent segments of vessel routes, with positive in-
stances indicating segments associated with drug trafficking activities
and negative instances representing other route segments.

2.4. Data properties
The correlation heatmap provided in Fig. 3 shows the Pearson corre-

lation coefficients between different variables. Based on this heatmap,
we can infer certain properties of the dataset.

Latitude and Longitude have a strong positive correlation of 0.73,
which is expected since they represent spatial coordinates and are often
correlated.

Latitude and SOG have a weak negative correlation of −0.14, sug-
gesting a slight tendency for the speed to decrease as latitude increases.
Moreover, Longitude and Speed Over Ground have a weak positive
correlation of 0.2, indicating a slight tendency for the speed to increase
as longitude increases. This is probably due to the navigational routes
in the specific area we are investigating as shown in Fig. 2. Although,
looking at factors such as sea currents and wind patterns could also
explain this.

The weak correlations between the label variable and other vari-
ables suggest that there may not be strong linear relationships between
the features and the target variable. This underscores the need for
more sophisticated models like LSTM, capable of capturing complex,
nonlinear patterns in sequential data.

Sailing duration varies significantly for each fishing vessel. This
leads to great disparity in the number of data points for each track.
Fig. 4 shows the minimum, first quartile, median, third quartile and
maximum of the distribution on number of data points for both labels,
suspicious and not suspicious. From this, it is clear that the dataset
contains tracks with an extreme amount of data points, ranging from
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Fig. 4. Distribution of track length for both labels.

Fig. 5. Distribution of the SOG.

Fig. 6. Filtered distribution of the SOG.

tracks with 1 data point to tracks with 20,000 data points. In pre-
processing all tracks are truncated with the sliding window approach.
As a result, none of these extreme points should not be removed.

The boxplot in Fig. 5 summarizes the distribution of the SOG for
both the positive and negative datasets. We can conclude that, as found
in earlier research by Eriksen et al. (2018), Greig et al. (2020), the SOG
suffers from many erroneous outliers. The truncated SOG of a fishing
vessel is 15 knots; therefore, outliers above this value must be removed
during pre-processing. In order to get a better idea of the distribution of
the actual moving speed, the data is trimmed for speeds higher than 1
knot and lower than 16 knots. The boxplot for this trimmed version can
be observed in Fig. 6. This results in a realistic median moving speed
between 3 and 4 knots for both the positive and negative datasets. The
upper quartile and maximum values are higher in the negative dataset
compared to the positive dataset. This could be attributed to the limited
number of tracks available in the positive dataset, which reduces the
likelihood of including a fast vessel.

Fig. 7. Flowchart of proposed method.

3. Model description
The proposed method is illustrated as a flowchart in Fig. 7 at the

end of this section, after the discussion of its parts.

3.1. Proposed model: LSTM
The selected model for this research is a (stacked) LSTM model

(Hochreiter & Schmidhuber, 1997). LSTMs are a specialized form of
RNNs (Yu, Si, Hu, & Zhang, 2019). It is an extension of traditional
RNNs, aiming to address the vanishing gradient problem. The vanish-
ing gradient problem arises when training on long sequences, as the
gradients approach zero over time. It prohibits the model’s ability to
capture long-term dependencies. The LSTM model aims to improve the
long-term dependencies by the incorporation of a memory cell. This
enables the model to selectively retain or discard information over long
sequences. This capability makes LSTM especially useful in (spatial)
time-series analysis (Karim, Majumdar, Darabi, & Chen, 2018). The
input to an LSTM model is commonly a sequence of data, where each
element in the sequence represents a time step. In the classification of
dynamic AIS data, the sequence is (a segment of a) trajectory and the
element AIS data at a certain point in time. In summary, the selection
of LSTM is justified by its ability to effectively model sequential data,
which is essential for detecting drug traffic activities at sea where
patterns are subtle and dynamic.

The model’s architecture was experimented with both single-layer
and two-layer configurations. The choice of configuration depends
on the complexity of the task. For more complex tasks that require
capturing long-term dependencies or intricate patterns in the input
sequence, a two-layer LSTM model could be beneficial. The additional
layer allows the model to learn more abstract representations and
capture higher-level features. This increased depth can enhance the
model’s capacity to handle complex sequences. If the task is not com-
plex and a two-layer model is used, overfitting is likely to happen.
Since the complexity of the data is difficult to determine, the optimal
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Table 3
Hyperparameters LSTM model.

Hyperparameter Parameter Space
Number of Layers ∼   (1, 2)
Number of units layer 1 ∼   (32, 256)
Number of units layer 2 ∼   (32, 256)
Dropout ∼  (0.5, 0.65)
Learning Rate ∼  (0.0001, 0.01)
Batch Size ∼   (2048, 4096)

Table 4
Parameters LSTM model. The parameters with an asterisk (*)
were found with hyperparameter tuning, using the hyperopt
package.

Parameter Chosen Value
Number of Layers* 1
Number of units in layer 1* 154
Dropout* 0.64
Learning Rate* 0.002
Batch Size* 2048
Epochs 300
Window size 16
Overlap between windows 50%

configuration is found using hyperparameter tuning. This was done
with Hyperopt (Bergstra, Yamins, & Cox, 2013), which explores the
hyperparameter search space by making use of Sequential Model-
based Optimization, a Bayesian optimization technique. As the method
assesses the quality of the hyperparameters using an objective function,
it is crucial to select an appropriate objective function like the AUC-PR.

Table 3 contains the tuned input for Hyperopt. The  (, ) indicates
the uniform distribution and   (, ) the discrete (integer) uniform
distribution between the values of  and . The parameters found
through tuning can be observed in Table 4.

3.2. Sliding window
The classification model will be trained and tested on historic

AIS data. This entails that the LSTM model is trained on previously
completed trajectories. However, in further development, the model is
meant to be employed as a live classification model. In that case, the
complete trajectories are not yet known and thus cannot be used as
input for the model. As a solution, a sliding window will determine the
input sequence. A sliding window involves moving a fixed-size window
over every th received AIS message.

3.3. Adam optimization

Adam regularization (Kingma & Ba, 2017) is implemented as an
optimization algorithm. Adam is chosen as the preferred optimizer
due to its speed and early convergence capabilities. The 0 and 1, ,
and decay are kept as is standard for Keras (Chollet et al., 2015) 0.9,
0.99, 10−8, and 0 consecutively. The learning rate is optimized with
hyperparameter tuning.

3.4. Loss function
In our research, we employed the standard binary cross-entropy

(BCE) loss function for model training. This decision was driven by
BCE’s well-established effectiveness in binary classification tasks, which
aligns with our objective of distinguishing between two classes. BCE’s
simplicity and robustness make it a preferred choice, ensuring stable
convergence during training. Additionally, its capacity to handle im-
balanced datasets, by adjusting class weights, provides a flexible and
reliable framework for optimizing our model’s performance. Hence,
leveraging BCE loss facilitated efficient and precise training, directly
contributing to the overall accuracy and reliability of our results. The

BCE function is given in Eq. (1).  is the number of data points,  is
the binary label (1 for suspicious or 0 for normal behavior), and ()
is the predicted probability of the label of point  being suspicious, or
belonging to the positive class, 1.

 = − 1


∑
=1

 ⋅ log(()) + (1 − ) ⋅ log(1 − ()) (1)

3.5. Performance measure

The output of the LSTM model is a sequence of predictions, where
each prediction corresponds to a time step in the input trajectory,
indicating the likelihood of a given segment being associated with drug
trafficking activities.

Given the significantly skewed distribution of the data, accuracy
alone can be misleading, making recall and precision more informative
metrics. For our implementation, prioritizing recall over precision is
preferred to ensure that potentially suspicious tracks are not over-
looked, aligning with the system’s preference for false alarms over
missed detections. Consequently, the Area Under the Precision–Recall
Curve (AUC-PR) serves as an optimal objective function for our re-
search, as it can be tailored to weigh in favor of either recall or
precision. Additionally, other metrics such as Balanced Accuracy and
 −  Score are selected to strike a balance between detecting as many
pick-ups as possible while minimizing false alarms. By choosing the 
to be 3, we aimed to enhance the model’s sensitivity to the positive
class, which aligns better with our goal of detecting suspicious ships
before the drop-off takes place, allowing for timely intervention.

In order to measure overall performance, the AUC-PR is computed
during training and after testing. AUC-PR traditionally evaluates the
performance of a soft classifier, which is a classifier that predicts prob-
abilities instead of discrete classes. However, by setting a threshold, it
can be used as a measure for hard classifiers. The threshold is set at 0.35
to reflect the specific trade-offs we need to manage in this classification
task. This lower threshold is chosen because of the high class imbalance
in our dataset, where the positive class (e.g., suspicious ships) is much
rarer than the negative class. By setting the threshold at 0.35, we aim
to increase recall, while managing precision.

The Balanced Accuracy and F− are also computed for the test set.
Balanced accuracy is an alternative to the classic accuracy measure
which takes the arithmetic mean of sensitivity and specificity. By doing
so, it aims to balance out the impact of class imbalance. F− takes the
harmonic mean of recall and precision with parameter . A higher 
increases the weight of the recall as opposed to precision.

3.6. Baseline
To evaluate our model using a performance score, a baseline must

be established. The objective of this research is not to enhance an
existing state-of-the-art model but to introduce a model for detecting
pick-ups. To the best of the authors’ knowledge, comparing this model
to any state-of-the-art model would be improper, due to the inherent
differences between them. Due to this unavailability, we have chosen
two different baselines.

Firstly, we employ the Dutch Draw (DD) (van de Bijl et al., 2022) as
our first baseline. This research by Van de Bijl et al. proposes a univer-
sal baseline for binary classification models (van de Bijl et al., 2022).
They found a way to determine a baseline that facilitates cross-paper
comparisons.

Secondly, we employ a baseline by training a Logistic Regression
(LR) model with balances weights. Logistic Regression is a simple yet
powerful linear model commonly used for binary classification tasks.
By employing LR as a baseline, we establish a straightforward and in-
terpretable benchmark against which we can compare the performance
of our more complex LSTM model. Balancing the class weights in the
LR model addresses the issue of class imbalance present in the dataset.
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4. Experimental design

The trajectories are split up with the sliding window approach.
Initial hyperparameter tuning through grid search found the ideal
length to be 16 and the ideal overlap to be 50%. Since the sliding
window is of size 16, all tracks with fewer than 16 data points are
removed. This ensures that the model receives sufficiently detailed
input data for analysis and is not subjected to underfitting. The dataset
is shuffled and split into 60% train set, 20% validation, and 20% test
set. A larger proportion of the data is allocated to validation and testing
than usual to ensure that these sets contain enough positive data points,
given their rarity. Each set is ensured to have a sufficient number
of positive data points. The variables  ,   ,   , and
   are put into a four-dimensional vector, to be used as input of the
LSTM.

The class weights of the BCE loss function are computed with a
function from the Scikit-learn package (Pedregosa et al., 2011). With
the addition of these weights, the loss function is weighted such that
samples from each class carry equal weight. To prevent overfitting,
Early Stopping has been implemented. Early Stopping monitors the
model’s performance using the validation set. If the AUC-PR validation
score has stagnated at a maximum, the model stops training. It is
implemented with a patience of 10 epochs.

The final parameters for the model can be observed in Table 4. The
grid search was conducted with a maximum of 15 evaluations for each
hyper-parameter configuration, ensuring a robust search for the opti-
mal parameters while considering computational resource limitations.
The holdout validation method was used in this process: the dataset was
split into training and validation sets with a 70–30 ratio. This approach
allows us to train the model on a substantial portion of the data while
using the remaining portion to validate the model’s performance. This
balance helps in effectively tuning the hyper-parameters and assessing
the model’s ability to generalize to new data.

5. Results
5.1. BCE loss

After 500 epochs, the model achieves 0.0091 loss on the training
set and 0.0612 on the validation set. Fig. 8 depicts the progression of
the BCE over all the epochs. The training and validation loss curves
reach a stable and nearly flat state at approximately epoch 200. During
the epochs that follow, there is a minimal difference in the loss values,
indicating that the model learns very little additional information. From
that point on, the model is more inclined to overfit if trained longer.
The AUC-PR was chosen as the metric for early stopping, thereby
decreasing the chance of over-fitting by ensuring that if the validation
AUC-PR performance stagnates, the model’s learning process comes to
a halt.

The plot displaying the validation loss consistently remains slightly
higher than the training loss without intersecting. This pattern indicates
a well-fit model. Since there is no large gap between validation and
training loss, the training set does not seem underrepresented. From the
graph, it can be seen that both the validation and training loss oscillate
while converging. This is to be expected due to mini-batch gradient
descent, a method that divides the training data set into small batches
to calculate model error and update model coefficients (Brownlee,
2019).

5.2. Performance measures

Table 5 shows the final values of the performance measures after
training and testing. Tables 6 and 7 display the confusion matrices after
training and testing. A final recall score of 97% is high. It represents the
model only missing out on 3% of drop-offs. The final precision score is
71%. It is significantly lower than the recall. This is expected due to the

Fig. 8. Training Loss over 500 Epochs.

Fig. 9. AUC-PR Score During Training over 500 Epochs.

Table 5
Performance LSTM model.

Metric Training Testing
Recall (TPR) 0.9993 0.9703
Precision (PPV) 0.7391 0.7097
AUC-PR 0.7107 0.7096
Balanced Accuracy – 0.9832
F-3 – 0.9360

Table 6
Confusion matrix after training.

Predicted
Yes No

Re
al Yes 9578 3381

No 7 956 431

weight in the loss function favoring recall over precision. A precision
of 71% indicates that the model classifies 29% movements as pick-ups
when the trajectory of the vessel was in reality not normal.

After 500 epochs, the model achieves a ROC-PR score of 71% on the
training set and 67% on the test set. Fig. 9 illustrates the progression of
the ROC-PR curve during training. From this curve, it can be seen that
the model does not seem to over- or under-fit on the data. The training
and validation scores increase but reach a plateau near the end of the
epochs. After testing, the balanced accuracy scores 98% and the F-3
scores 94%.
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Table 7
Confusion matrix after testing.

Predicted
Yes No

Re
al Yes 8291 3392

No 253 849 751

Fig. 10. Scatterplot comparing the true labels against the predicted probabilities
generated by the LSTM model.

Additionally, we have included a scatterplot in Fig. 10 which rep-
resents the relationship between the true labels (actual outcomes) and
the predicted probabilities generated by the model. Each hexagon in the
plot corresponds to a group of data points with similar true labels and
predicted probabilities. For improved visualization, jittering has been
applied to the true labels, slightly dispersing the data points.

The intensity of color in each hexagon represents the density of data
points within that region. Darker shades indicate a higher concentration
of data points, while lighter shades indicate lower density. The logarith-
mic scale color bar on the right side of the plot provides a quantitative
measure of the density, with higher values indicating higher density.

5.3. Comparison to baseline
Table 8 presents the results for both baselines and the model’s

score. For the Recall, Specificity, Miss rate, and Fall Out metrics, a
direct comparison with the DD is not possible. As can be observed
from Table 8, the model scores better than both baselines for all the
performance measures.

The aforementioned metrics utilize the predicted labels. In con-
trast, the metrics presented in Table 9 are derived from the predicted
probabilities assigned to the labels by the models. The Coefficient of
determination (R2) assesses the goodness of fit of models by quan-
tifying the proportion of explained variance (Di Bucchianico, 2008).
Mean Absolute Error (MAE) measures the average absolute difference
between predicted and actual values in a regression model, providing a
straightforward assessment of prediction accuracy without considering
the direction of errors. Root Mean Squared Error (RMSE) is a measure
of the average magnitude of the errors between predicted and actual
values in a regression model (Chai, Draxler, et al., 2014).

These metrics were only calculable for the LR and LSTM models, not
for the DD model. Likewise to the predicted label metrics, these metrics

Table 8
Results with Dutch Draw scores, Logistic Regression scores and Proposed model scores.

Dutch Draw Log Reg Model
argmin{E} argmax{E}

Recall – – 0.819 0.9704
Specificity – – 0.831 0.9960
Miss Rate – – 0.181 0.0296
Fall Out – – 0.168 0.0040
Precision 0.0099 0.0099 0.048 0.7097
NPV 0.9901 0.9901 0.997 0.9997
FDR 0.9901 0.9901 0.951 0.2903
FOR 0.0099 0.0099 0.002 0.0003
f3 0.0910 0.0000 0.409 0.9360
J 0.0000 0.0000 0.047 0.9664
Markedness 0.0000 0.0000 0.045 0.7094
Accuracy 0.9901 0.0099 0.826 0.9958
Balanced Accuracy 0.5000 0.5000 0.825 0.9832
MCC 0.0000 0.0000 0.045 0.8280
Cohen 0.0000 0.0000 – 0.9958
FM 0.0996 0.0001 0.187 0.8298
G-mean 2 0.0000 0.0000 0.825 0.9831
Threat Score 0.0099 0.0000 0.047 0.6946

Table 9
Model metrics based on the predicted probability of the LR and the
LSTM.

Metric LR testing LSTM testing
R2 −14.1471 0.6928
MAE 0.3446 0.0036
RMSE 0.3947 0.0549

demonstrate superior results for the proposed LSTM when compared to
the LR baseline. However, R2, MAE and RMSE are not well-suited for
classification tasks, thus its interpretation in such contexts should be
cautious.

6. Discussion

6.1. Major findings

Four dynamic variables from the historic AIS data have been used.
All data from fishing vessels operating off of the Dutch coast in 2022
was used for the negative dataset. The minority positive class contained
historic AIS data from 18 known cases. The data was segmented using
a sliding window and pre-processed. Subsequently, an LSTM model
was tuned and fit to the training segment of the resulting data. The
activation function was implemented with a weight to ensure that the
model favored detecting pick-ups over missing potential pick-ups. The
model achieves a 67% ROC-PR score on the test set, a recall of 97%
and a precision of 71%. The model only misses 3% of occurring pick-
ups and miss-classifies 29% of normal tracks as suspicious. The model
outperforms both baseline models, implying a promising classification
model for detecting drop-offs. This result is anticipated and desired.
The 29% of normal tracks wrongly classified as suspicious is expected
due to the unpredictable behavior of fishing vessels. Furthermore,
a human observer will act as a second layer of detection and can
disregard the model’s positive classification upon further inspection.
Despite the model still having a relatively high error score, it signif-
icantly reduces the number of data points requiring classification by
the observer, thereby enhancing the efficiency of the drop-off detection
process.
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6.2. Limitations

Certain factors must be taken into account when interpreting the
model’s performance. First, the training data on which the model
is trained consists of many negative data points and a very small
number of positive data points. Given that the model is only trained
on 18 examples of suspicious behavior, it is highly probable that a
new occurrence may not resemble any previously seen cases. The
model could have a significantly lower likelihood of picking up on the
anomaly. Maritime data often reflects a mix of seasonal variations and
operational changes, so the model may require periodic retraining to
stay current with new patterns of vessel activity. Implementing online
learning or adaptive learning techniques could help the model better
cope with the nonstationary nature of this domain in the future.

Second, the model has been trained on only cases which are known.
Since the model is supervised, it will only detect anomalies that re-
semble previous cases known by police. Therefore, it is possible that
unknown instances of successful pick-ups are included in the negative
dataset. As a result, the model may have been told certain movements
are normal, even though they may actually indicate a pick-up unbe-
knownst to the police. This is not reflected in the performance measures
presented in this research but will become apparent when applied in
real life.

Lastly, the model’s reliance solely on fishing vessels’ data confines
its applicability, restricting its use to this specific vessel type. Our
aspiration is to develop a more versatile model capable of detecting
drop-offs across all types of maritime traffic in the future.

7. Conclusion
7.1. Method and findings summarized

This study is a significant advancement in bolstering maritime
security along the coast of The Netherlands by deploying a robust
supervised machine learning model using AIS data. Focusing on detect-
ing drop-offs, a swiftly emerging tactic for smuggling contraband, the
research fills a crucial gap in law enforcement efforts to counter illicit
activities at sea.

Using the dynamic variables found in AIS data, the study meticu-
lously developed and fine-tuned an LSTM model tailored specifically
for maritime applications. Notably, the model was carefully adjusted
to prioritize reducing false alerts while maximizing the identification
of missed pick-up instances. This targeted approach reflects a deep
understanding of the operational needs and challenges faced by law
enforcement agencies responsible for maritime surveillance.

The effectiveness of the model is evident from its impressive per-
formance metrics. With a commendable 67% ROC-PR, 97% recall, and
71% precision score, the model significantly outperforms traditional
methods and even surpasses the performance of both the DD and the
LR baseline. These metrics not only demonstrate the model’s reliability
but also highlight its practical usefulness in real-world scenarios.

7.2. Importance of this research
By achieving such performance, this research positions the su-

pervised machine learning model as a powerful tool for enhancing
maritime security. Its proficiency in precisely identifying drop-offs
serves as a crucial initial layer of filtration, with profound implications
for law enforcement. It facilitates the proactive interception of illegal
activities and shields coastal areas from criminal behavior.

7.3. Future research
As our model is applied and further refined by law enforcement

agencies, it is anticipated that more instances of positive data, rep-

resenting drug trafficking activities, will become available for analy-
sis. These additional data points offer an opportunity to enhance the
model’s effectiveness through retraining on expanded datasets. With a
more balanced distribution between positive and negative instances,
the model’s performance is expected to improve significantly. Addi-
tionally, it is advantageous that we do not have to downsample, as
this ensures the preservation of valuable data integrity. Furthermore,
the model’s capacity to recognize and generalize patterns beyond the
specific scenarios it was initially trained on will also increase. This
broader generalization is crucial for real-world applications, where
novel variations of drop-off methods may occur.

Additionally, exploring positively classified instances within the
negative dataset presents an intriguing avenue for investigation. By
examining instances where the model identifies suspicious behavior in
routes initially labeled as benign, we may uncover previously over-
looked instances of illicit activity. Implementing an active learning
framework alongside our model could streamline this process, allowing
the model to iteratively improve its performance by selectively focusing
on instances most likely to enhance its understanding of illicit activities.
Overall, these approaches have the potential to significantly enhance
the model’s efficacy and contribute to more effective detection and
prevention efforts in maritime law enforcement.

Furthermore, the current model relies on numerical values of dy-
namic AIS variables as input. These are latitude, longitude, SOG, and
COG. While effective, there is potential to explore alternative represen-
tations, such as a four-hot encoded vector, which has shown promise
in research. However, it is important to note that implementing this
encoding method would require substantial computational resources
due to its memory-intensive nature. Another suggestion is to incorpo-
rate more features into the model to open up avenues for enhancing
its predictive capabilities. Specifically, considering additional variables
beyond the existing AIS parameters, such as HDG and ROT, could
provide valuable insights into the shipper’s intentions, enriching the
predictive model. Likewise, incorporating external factors like wind
direction and current as predictors could offer further context and
improve the model’s ability to anticipate unusual behavior.

Next to these advancements, future research could explore transfer
learning as a means of leveraging knowledge from related tasks or
domains to improve the model’s performance. Specifically, pre-training
the LSTM model on a larger dataset or a similar task, such as anomaly
detection in another maritime domain, could yield valuable insights
and accelerate the learning process. By initializing the LSTM network
with pre-trained weights, the model can effectively transfer knowledge
and patterns learned from the source task to enhance its adaptability
and effectiveness in detecting anomalies in sea-based drug transfers.

7.4. Concluding

The model developed in this research is a model that is trained for
the classification of the ‘drop-off’ method and that is easily applicable.
If implemented as a live model in further application, it could serve as
a first layer of a monitoring system, thereby aiding human observers
in the detection of illegal activities. The model could also serve as
a baseline for future models in detecting pick-ups or, with adequate
tuning, be implemented for other illegal route deviation activities such
as human trafficking.

8. Abbreviations

All abbreviations used in this paper can be found in Table 10.
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Table 10
Abbreviations and their meaning.

Abbreviation Meaning
AIS Automatic Identification System
LSTM Long Short-Term Memory
IMO International Maritime Organisation
RNN Recurrent Neural Networks
TMP Team Maritime Police
SOG Speed Over Ground
COG Course Over Ground
MMSI Maritime Mobile Service Identity
HDG Heading
ROT Rate of Turn
BCE Binary Cross-Entropy
AUC-PR Area Under the Precision–Recall Curve
DD Dutch Draw
LR Logistic Regression
R2 Coefficient of Determination
MAE Mean Absolute Error
RMSE Root Mean Squared Error
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