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Abstract
Point clouds represent one of the prevalent formats for 3D con-

tent. Distortions introduced at various stages in the point cloud

processing pipeline affect the visual quality, altering their geomet-

ric composition, texture information, or both. Understanding and

quantifying the impact of the distortion domain on visual quality

is vital for driving rate optimization and guiding post-processing

steps to improve the quality of experience. In this paper, we pro-

pose a multi-task guided multi-modality no reference metric (M3-

Unity), which utilizes 4 types of modalities across attributes and

dimensionalities to represent point clouds. An attention mechanism

establishes inter/intra associations among 3D/2D patches, which

can complement each other, yielding local and global features, to

fit the highly nonlinear property of the human vision system. A

multi-task decoder involving distortion-type classification selects

the best association among 4 modalities, aiding the regression task

and enabling the in-depth analysis of the interplay between geomet-

rical and textural distortions. Furthermore, our framework design

and attention strategy enable us to measure the impact of individ-

ual attributes and their combinations, providing insights into how

these associations contribute particularly in relation to distortion

type. Extensive experimental results on 4 datasets consistently out-

perform the state-of-the-art metrics by a large margin. The code is

available at https://github.com/cwi-dis/ACMMM2024-Oral.
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1 Introduction
Point cloud is prevailing among the available 3D imaging formats

nowadays [16]. It consists of points in 3D space representing a

geometric object realistically with various attributes, such as color,

reflectance, and more. However, from acquisition to compression,

transmission, and rendering, the quality of a point cloud undergoes

degradation. Consequently, there is a demand for effective and

efficient objective Point Cloud Quality Assessment (PCQA) metric

to guide the design, optimization, and parameter tuning of point

cloud processing pipelines. PCQA metrics have been extensively

utilized in various applications, including visual tasks: restoration

[10, 36], compression [22, 37], as well as for quality monitoring in

various systems [9, 26, 38, 41].

Among all the visual artifacts for point clouds, the encountered

distortions can be categorized into geometric and textural distor-

tions, which can be created by compression algorithms and other

noise-generation methods. Particularly in the context of lossy com-

pression, approaches have been devised to encode geometric co-

ordinates or associated attributes, depending on application re-

quirements [33]. Given the necessity of color attributes for human

visualization, combining algorithms for both geometric and textu-

ral attributes is essential for holistic representation. Consequently,

numerous studies have recently evaluated point cloud quality both

subjectively and objectively [4]. Subjective studies investigate the

quality of point clouds under different distortion types of both

geometry and texture attributes or of a single attribute [5]. Ob-

jective metrics also follow a similar paradigm to predict quality.
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Figure 1: A high level illustration of M3-Unity. The distor-
tion type serves as a prior in shaping the perceptual quality
through the HVS. The interplay of 4 modalities in represent-
ing entangled distortion adds complexity to this process.
Early objective metrics primarily focused on geometric distortions.

Geometric-based metrics, from a simple displacement such as point-

to-point or point-to-plane [39] distances in the Euclidian space to a

more complex geometric feature such as point-to-distribution [18]

and density-to-density [1] distances, examine the quality only from

a geometric perspective. Color-based metrics [40, 43] produce a

score computed only from the color attribute. However, these met-

rics are hard to disentangle when distortions affect both attributes

simultaneously, even when one attribute is not explicitly distorted

(for example, distortion in geometry will affect the texture). There-

fore the landscape has evolved to incorporate both geometry and

texture [3, 7, 30, 51], with several approaches integrating multi-

modal learning. MM-PCQA [56] first introduces multimodal learn-

ing for PCQA, combining uncolored point clouds and projected

texture maps. MFT-PCQA [24] further improves the performance

with a mediate-fusion strategy. pmBQA [47] perceives the quality

by using 4 homogeneous modalities. Despite these advancements,

existing metrics often overlook certain dimensionalities and fail

to exploit the potential of both attributes. Besides, the role of the

distortion type is ignored. Furthermore, Lazzarotto et al. [19] re-
veal that alternative trade-offs between geometry and texture can

potentially provide better visual quality in a pair-wise comparison

experiment. These researches shed certain light on how such in-

terplay varies based on the distortion type as a first step towards

this underexplored aspect in PCQA in a subjective manner. None

of the existing metrics has explored how the geometric/textural

distortion and their interplay contribute to the perceived quality of

the point cloud automatically. Therefore, a more considerate design

that can consider the interplay of such attributes in the Human

Vision System (HVS) is needed.

Understanding attributes and their interrelationships is crucial

in various real-world applications. Nevertheless, the relative sig-

nificance of each attribute representation as well as the interplay

between them remain ambiguous in the context of PCQA, which

reflects human perception preferences. As for which attribute is

more important, we refer to specific distortion types. To this end,

our metric, Multi-Modality and MUlti-task no reference quality
assessment for colored point clouds, termedM3-Unity, investigate
two attributes and their interplay for perceptual quality assessment.

In particular, we use additional 3D normal and multi-view projec-

tions to retain the intrinsic characteristics of the point cloud and

mimic the imaging process of HVS. Additionally, we measure the re-

lationship between geometry and texture and their interplay given

specific distortion type, as demonstrated in Figure 1. We evaluate

the performance of the proposed metric on 4 independent datasets,

i.e., SJTU-PCQA [49], WPC [21], Broad Quality Assessment of Static

Point Clouds (BASICS) [2] and MJ-PCCD [19]. Our metric outper-

forms the state-of-the-art performance in terms of Pearson and

Spearman correlation coefficients; moreover, the whole framework

design elucidates the interplay between geometric and textural

distortions. To summarize, our key contributions are fourfold:

• We propose M3-Unity, a metric that uses 4 modalities across

attributes and dimensionalities to represent the point cloud.

The multi-task decoder involving distortion type classifica-

tion selects the best combination among 4 modalities based

on the distortion type, aiding in the regression task.

• The performance of M3-Unity and its variant demonstrates

clear advantages over the state-of-the-art metrics across 4

datasets, showcasing substantial gains in comparison.

• We apply attention mechanism to establish inter/intra asso-

ciations among patches (especially within dimensionality,

we keep the spatial correspondence), yielding both local and

global features, to fit the highly nonlinear property of HVS.

• We delve into the relationship between geometric and tex-

tural distortion in terms of PCQA. Extensive experiments

are conducted to determine whether geometric, textural, or

their interplay is prioritized under various distortion types.

2 Related Work
2.1 Subjective assessment of point clouds
Subjective quality assessment are widely regarded as the most reli-

able method to evaluate the quality of point clouds, the interested

reader may refer to [4] for a detailed overview. Recently, many sub-

jective studies have been conducted and reported in the literature

to assess the performance of compression distortion in terms of

visual quality. Lots of works present the subjective result for com-

pressed point cloud, such as base point cloud compression method

from MPEG [29]; octree pruning using the Point Cloud Library and

projection-based method implemented in the 3DTK toolkit [12];

Video-based Point Cloud Compression (VPCC) andGeometry-based

PCC (GPCC) variants [6, 46]. Later, other distortion types are in-

troduced in the SJTU-PCQA dataset [49] to mimic the acquisition

and re-sampling noise besides the compression distortions. Liu et
al [21] distorts the source point clouds with 4 processes to simulate

real-world application scenarios and enrich the contents beyond

those addressed by MPEG and JPEG. Liu et al [25] construct the
largest dataset so far with pseudo-quality scores to support neural

network training. 31 types of impairments covering a wide range of

impairments during point cloud production, compression, transmis-

sion, and presentation are included. More recently, learning-based

point cloud compression techniques have been considered. AK et
al [2] include the GeoCNN compression distortion. Lazzarotto et
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al [19] first analyzes the impact of different configuration param-

eters on the performance of MPEG and JPEG Pleno compression

with the aid of objective metrics.

2.2 Objective assessment of point clouds
Objective PCQA algorithms automatically evaluate the visual qual-

ity of point clouds as human judgments, it can be classified as

Full-Reference (FR), Reduced-Reference (RR) and No-reference (NR)

based on the availability of reference information. In this paper, we

focus on deep-learning-based NR PCQA models.

PKT-PCQA [20] adopts a progressive knowledge transfer to con-

vert the coarse-grained quality classification knowledge to the fine-

grained quality prediction task. The key clusters are extracted based

on global and local information, an attention mechanism is incor-

porated into the network design. Structure Guided Resampling [58]

considers that HVS is highly sensitive to structure information, it

first exploits the unique normal vectors of point clouds to execute

regional pre-processing. Both the cognitive peculiarities of the hu-

man brain and naturalness regularity are involved in the designed

quality-aware features. These metrics are the single task with uni-

modal, which can not integrate the perception for both point cloud

and image modality and is easy to overfit on the training data with

only regression loss [45].

PQA-Net [23] takes 6 orthographic projections of point clouds as

input, features share a distortion identification and a quality predic-

tion module to obtain quality scores. GPA-net [34] proposes a graph

convolution kernel, i.e., GPAConv, which attentively captures the

perturbation of structure and texture, within a multi-task frame-

work. A coordinate normalization module is utilized to stabilize the

results of GPAConv under shift, scale and rotation transformations.

PQA-Net [23] and GPA-Net [34] account for one main task (qual-

ity regression) and other auxiliary tasks (distortion type/degree

predictions) when accessing only one modality of point clouds.

IT-PCQA [50] utilizes the rich prior knowledge in images and

builds a bridge between 2D and 3D perception in the field of quality

assessment, a hierarchical feature encoder and a conditional discrim-

inative network is proposed to extract latent features and minimize

the domain discrepancy. pmBQA [47] proposes a projection-based

blind quality indicator via multimodal learning by using 4 homo-

geneous modalities (i.e., texture, normal, depth and roughness).

MM-PCQA [56] partitions point clouds into sub-models for local

geometry representation and renders them into 2D projections for

texture. A symmetric cross-modal attention module is used for

integrating quality-aware information. IT-PCQA [50] reveals the

potential connection between different types of media for qual-

ity assessment. pmBQA [47] extract modality features by texture,

normal, depth and roughness on 2D; MM-PCQA [56] proves the ef-

fectiveness of cross-modality perception for PCQA with texture on

2D and geometry on 3D. None of them considers the impact of dis-

tortion types. Remarkably, existing methods have not undertaken

a comprehensive assessment that considers both dimensionality

and attribute representations, while also incorporating multimodal

within the framework of distortion types.

3 Method
We illustrate the proposed M3-Unity as shown in Figure 2. First, we

preprocess the colored point cloud and extract multimodal features

with 3D and 2D encoders, respectively (§3.2). Second, we introduce

the cross-attributes attentive fusion module, which captures the

local and global associations at both the intra- and inter-modality

perception (§3.3). Last, we employ dual decoders to jointly learn

both quality regression and distortion-type classification (§3.4).

3.1 Multimodal geometry-texture input
processing

A colored point cloud, denoted as P, is a set of 𝑁 3D point elements.

Each point element is assigned a 3D coordinate pcoord ∈ R3
and an

RGB color value pRGB ∈ R3
as features: P = {(pcoord

𝑖
, pRGB

𝑖
)}𝑁

𝑖=1
.

We introduce how the point cloud data is processed into multiple

modalities of geometry and texture features as follows.

Processing the point cloud as 3D patches. To deal with dense point

clouds of very large 𝑁 with common neural architectures for point

cloud encoding, we first decompose each point cloud into patches

following [44, 56]. we obtain a set of 𝑛 = 6 point cloud patches from

each of the point cloud P ⊂ P, and each P is of cardinality 𝑘 . To do

this, we adopt Farthest Point Sampling (FPS) to obtain a set of an-

chor points and find the K-Nearest Neighbors (KNN) for each point.

For each point cloud patch P, we describe the geometry and texture

features for each point element, such that the texture features are

essentially the RGB features ptex = pRGB ∈ R3
, and the geometry

feature is the 3D coordinate pcoord, augmented by concatenating a

normal vector pnormal
calculated from the original point cloud as

pgeo = [pcoord, pnormal] ∈ R6
, i.e. P = {(pgeo

𝑖
, ptex

𝑖
)}𝑘

𝑖=1
. Addition-

ally, P ∈ P where P is defined as the set of all 3D point patches

extracted from the same point cloud.

Processing the point cloud as projected views. We further project

the colored point cloud to𝑚 = 6 2D views following Liu et al. [23],
which are evenly distributed in the 3D space from the ∞ and −∞
of the three Cartesian coordinate axes. For each 2D view, the color

RGB values from the 3D points are ray-casted to the pixel space,

and we calculate depth and normal maps from the 3D geometry,

resulting in the 2D geometry feature Xgeo ∈ R𝐻×𝑊 ×4
and the 2D

texture feature Xtex ∈ R𝐻×𝑊 ×3
, where 𝐻 ×𝑊 is the pixelated

resolution of the 2D projections. Similarly we define X as the set of

six projected views from a point cloud: X = [Xgeo,Xtex] ∈ X.

3.2 Point cloud multimodal encoding
The goal of multimodal encoding is to represent 3D point cloud

patches and 2D projection views as embeddings and adapt those

embeddings for multimodal fusion.

For the 3D modality, we opt for PointNet++ [32] to encode each

3D point cloud patch P = {(pgeo
𝑖

, ptex
𝑖

)}𝑘
𝑖=1

⊂ P while separating

attributes from geometry and texture:

hgeo
3D

= PointNet++

(
{pgeo

𝑖
}𝑘𝑖=1

)
; (1)

htex
3D

= PointNet++

(
{ptex𝑖 }𝑘𝑖=1

)
. (2)

hgeo
3D

∈ R𝑑 and htex
3D

∈ R𝑑 are 𝑑-dimensional embeddings of 3D

geometry and texture features. Note that to encode texture feature,

we still use the 3D coordinates to obtain spatial processes in the

PointNet++ such as the farthest-point sampling and grouping.

For the 2D modality, we choose ResNet50 [17] as the 2D encoder

that applies to the geometry and texture channels Xgeo
and Xtex
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Figure 2: M3-Unity architecture: no-reference multi-modality and multi-task learning for PCQA.

separately of each 2D project view X ∈ X:

hgeo
2D

= ResNet

(
Xgeo

)
; (3)

htex
2D

= ResNet

(
Xtex

)
. (4)

Likewise, hgeo
2D

∈ R𝑑 and htex
2D

∈ R𝑑 are encoded as 𝑑-dimensional

2D geometry and texture embeddings.

3.3 Cross-attribute attentive fusion
The core mechanism of attention gains popularity for capturing the

associations when processing images [11, 28, 44, 53]. We employ

patch attention [15, 54] to capture the local and global associations

for both intra- and inter-modality features, followed by a symmetric

fusion function that averages the cross-attented features to model

the symmetric interaction of the source pair of features.

Symmetric intra-modality attentions. For each 3D point cloud

patch P ∈ P, we employ intra-modality attention by applying the

symmetric fusion function Ψ∗ (·, ·) to encode the interrelationship

of geometry and texture features. For simpler notation, we assign a

random sequence for the patches and arrange the set of the features

extracted features hgeo
3D

and htex
3D

for all patches in forms of matrices

as Hgeo

3D
∈ R𝑛×𝑑

and Htex

3D
∈ R𝑛×𝑑

.

The 3D intra-modality attentive fusion becomes

Hintra

3D
= Ψ∗ (Hgeo

3D
,Htex

3D
) ∈ R𝑛×𝑑 . (5)

hintra
3D

= Mean(Hintra

3D
) ∈ R𝑑 , (6)

whereMean(·) is the mean pooling over the sequence dimension

to achieve the global feature for the entire point cloud from aggre-

gating all patches in an attentive manner. Ψ∗ (·, ·) is the symmetric

fusion function based on the attention function Ψ(·, ·) such that:

Ψ∗ (x, x̃) = 1

2

(Ψ(x, x̃) + Ψ(x̃, x)) , (7)

which assumes equal sequence dimensions 𝑙1 = 𝑙2 of the Query and

Key in the transformer. And Ψ(·, ·) is the basic fusion transformer,

which is computed by an attentive representation of a target modal-

ity referred to a reference modality in the multi-head self-attention.

Similarly for the 2D modality X, we define Hgeo

2D
∈ R𝑚×𝑑

and

Htex

2D
∈ R𝑚×𝑑

, and the 2D intra-modality attention is

hintra
2D

= Mean(Hintra

2D
) = Mean(Ψ∗ (Hgeo

2D
,Htex

2D
)) ∈ R𝑑 . (8)

We clarify that the random sequence assignment would not

affect the final output feature detailed, since the attention function

is equivariant to the permutation of the sequence, and we will

average over the sequence dimension to aggregated feature output.

Symmetric inter-modality attention. For inter-modality attentive

features, we cross-attend each pair of 3D point cloud patch and

2D projection in the combinatorial set {P,X} ∈ P × X. We employ

the inter-modality attention by applying Ψ∗ (·, ·) across 3D and 2D

modalities. Note that this result can only be achieved when we have

the same number of 3D patches and 2D projections 𝑛 =𝑚 for each

point cloud. In the rest of this section, we will discard the notation

of𝑚 and consistently use 𝑛 for |P| = |X| = 6 to reduce confusion.

Hgeo-geo

inter
= Ψ∗ (Hgeo

3D
,Hgeo

2D
) ∈ R𝑛×𝑑

Hgeo-tex

inter
= Ψ∗ (Hgeo

3D
,Htex

2D
) ∈ R𝑛×𝑑

Htex-geo

inter
= Ψ∗ (Htex

3D
,Hgeo

2D
) ∈ R𝑛×𝑑

Htex-tex

inter
= Ψ∗ (Htex

3D
,Htex

2D
) ∈ R𝑛×𝑑 .

(9)

Similar to Eq. 6, we apply average poolingMean(·) to obtain global

inter-modality attentive features hgeo-geo
inter

, hgeo-tex
inter

, htex-geo
inter

, and

htex-tex
inter

for the entire point cloud.

Feature aggregation. We aggregate all multi-modal geometry and

texture features as well as all intra- and inter-modality attentive
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features for the final feature encoding:

h = E
P𝑖 ∈P

[hgeo
3D,𝑖

+ htex
3D,𝑖 ] + E

X𝑗 ∈X
[hgeo

2D, 𝑗
+htex

2D, 𝑗 ]

+
hintra
3D

+hintra
2D

2

+
hgeo-geo
inter

+hgeo-tex
inter

+ htex-geo
inter

+htex-tex
inter

4

.

(10)

The resulting feature h serves as the input to the decoder heads for

final predictions, to be detailed as follows.

3.4 Multi-task learning with dual decoders
Dual decoders. We define dual decoders using multi-layer per-

ception for quality regression and distortion-type classification

respectively with a regression head𝜓regression and a classification

head 𝜓
classification

, both taking the aggregated feature h as the in-

put. The regression head𝜓regression is a two-layer ReLU-MLP that

outputs 𝑦 the quality score:

𝑦 = 𝜓regression (h) ∈ R. (11)

The classification head𝜓
classification

is a three-layer ReLU-MLP with

a softmax activation attached to the output layer, which gives 𝑧 the

one-hot prediction of classification type:

𝑧 = 𝜓
classification

(h) ∈ R𝑐 , (12)

where 𝑐 is the number of types of distortions.

Learning loss. We define and jointly learn the dual decoders by

a triplet learning loss L for a mini-batch with size of 𝑛 as:

L = 𝜆1Lmse + 𝜆2Lrank
+ 𝜆3Lce, (13)

where 𝜆1, 𝜆2, 𝜆3 ∈ [0, 1] are importance scores used to control the

proportion of each type of loss.

Specifically, we compute Mean Square Error (MSE) loss between

predicted quality scores and human scores as:

Lmse =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦′𝑖 )
2 . (14)

We compute ranking loss of the predicted quality scores and

human scores as:

L
rank

=
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑙𝑖 𝑗 , where

𝑙𝑖 𝑗 =max

(
0,

��𝑦𝑖 − 𝑦 𝑗
�� − (−1)1(𝑦𝑖<𝑦 𝑗 ) ·

(
𝑦′𝑖 − 𝑦′𝑗

))
.

(15)

Here 𝑖 and 𝑗 are the corresponding indexes for two point clouds in

a mini-batch, and 1(·) is the indicator function.
We compute the cross-entropy loss of the predicted distortion

type and the ground-truth labels:

Lce =
1

𝑛

𝑛∑︁
𝑖=1

−
(
𝑧′𝑖 log(𝑧𝑖 ) + (1 − 𝑧′𝑖 ) log(1 − 𝑧𝑖 )

)
(16)

4 Experimental Setup
Datasets. Weemploy the SJTU-PCQA [49],WPC [21], BASICS [2]

and MJ-PCCD [19] datasets for validation. SJTU-PCQA includes

9 reference point clouds and each one is corrupted with 7 distor-

tion types (octree-based compression, color noise, downscaling,

downscaling & color noise, downscaling & geometry Gaussian

noise, geometry Gaussian noise, color noise & geometry Gaussian

noise), which generates 378 distorted stimuli. WPC contains 20 ref-

erence point clouds with each one degraded under 5 distortion types

(VPCC, Gaussian noise, downsampling, GPCC (Octree/Trisoup)),

leading to 740 distorted stimuli. BASICS comprises 75 reference

point clouds from 3 different semantic categories. Each one is com-

pressed with 4 different algorithms (geoCNN, GPCC-octree-RAHT,

GPCC-octree-Predlift, VPCC), resulting in 1494 processed stimuli.

MJ-PCCD is created by compressing 6 reference point clouds from

the JPEG Pleno test set at 4 different bitrates with the GPCC, VPCC,

and JPEG Pleno standards, producing 213 distorted stimuli.

Evaluation Criteria. Three commonly used evaluation criteria

are used to reflect the relationship between objective scores and

subjective scores: (1) Pearson Linear Correlation Coefficient (PLCC),

whichmeasures the linearity of prediction; (2) Spearman Rank-order

Correlation Coefficient (SRCC), which measures the monotonicity

of prediction; (3) Root MSE (RMSE), which measures the error of

prediction.

Higher values of PLCC and SRCC indicate better performance

in terms of correlation with human opinion, while lower RMSE

indicates better consistency. A five-parametric logistic regression

is adopted [8].

Comparable methods. We selected 13 state-of-the-art PCQA met-

rics for comparison, which consist of 5 FR metrics: PCQM [30],

GraphSIM [51], PointSSIM [3], MPED [52] and PointPCA [7]; 2

RR metrics: PCM-RR [42] and RR-CAP [59] and 6 learning-based

NR metrics: 3D-NSS [55], IT-PCQA [50], VS-ResNet [14], MM-

PCQA [56], ResSCNN [25], GMS-3DQA [57].

Implementation details. The proposed M3-Unity is implemented

using PyTorch [31]. We use the Adam optimizer [27] with a weight

decay of 1e-4, an initial learning rate of 5e-5, and a batch size of

4. The model is trained for 100 epochs. Each point cloud patch

has a cardinality 𝑘 of 2048, the number of local patches and image

projections both equal to 6. Projected images have a resolution of

1920×1080, and cropped image patches are 224×224. We use Point-

Net++ [32] as the point cloud encoder and initialize ResNet50 [17]

with a pre-trained model on ImageNet [13] as the image encoder.

The multi-head attention module employs 8 heads and the feed-

forward dimension is 2048. MOS values are scaled between [1, 10].
𝜆1, 𝜆2 and 𝜆3 are all set to 1. We employ k-fold cross-validation to

evaluate performance [23]. We conduct 9/5/6-fold cross-validation

for SJTU-PCQA, WPC and MJ-PCCD datasets, respectively, and re-

port average scores. For the BASICS dataset, we follow the 60%-20%-

20% training-validation-testing split, ensuring no content overlap

between training and testing sets. For FR PCQA metrics requiring

no training, we assess them on the same testing sets.

5 Results
5.1 Overall Performance
Results of SRCC and PLCC on 4 datasets for the proposed M3-Unity

and other 13 PCQA metrics are shown in Table 1. First, M3-Unity

significantly outperforms the compared metrics in terms of SRCC

on all datasets. Second, compared with GMS-3DQA, which uses the

projection-based grid mini-patch sampling only from image modal-

ity, the PLCC decreases by 0.017 on the MJ-PCCD. One possible
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Table 1: Performance comparison among the proposed and the state-of-the-art PCQAmetrics on the 4 datasets. Best in bold and
second with underlined fonts. Please note that the state-of-the-art results were taken from the literature, often with different
training strategies and splits, and not independently validated by the authors.

Category Method

SJTU-PCQA WPC BASICS MJ-PCCD

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

FR

PointSSIM [3] 0.687 0.714 0.454 0.467 0.692 0.725 0.467 0.597

PCQM [30] 0.864 0.885 0.743 0.750 0.810 0.888 0.779 0.858

GrahSim [51] 0.878 0.845 0.583 0.616 / / 0.758 0.844

MPED [52] 0.898 0.915 0.620 0.618 0.761 0.835 0.735 0.811

PointPCA [7] 0.907 0.932 0.890 0.894 0.866 0.926 0.834 0.702

RR

PCM-RR [42] 0.482 0.336 0.310 0.343 0.436 0.518 0.497 0.636

RR-CAP [59] 0.758 0.769 0.716 0.731 0.558 0.740 0.550 0.735

NR

IT-PCQA [50] 0.630 0.580 0.568 0.561 0.310 0.302 0.658 0.807

3D-NSS [55] 0.714 0.738 0.648 0.651 0.617 0.657 0.446 0.411

ResSCNN [25] 0.810 0.860 0.735 0.752 0.628 0.682 0.759 0.842

VS-ResNet [14] 0.830 0.860 0.760 0.770 0.711 0.852 0.526 0.583

MM-PCQA [56] 0.910 0.923 0.841 0.856 0.831 0.882 0.860 0.898

GMS-3DQA [57] 0.911 0.918 0.831 0.834 0.855 0.930 0.879 0.936
M3-Unity(Proposed) 0.947 0.961 0.900 0.900 0.872 0.937 0.903 0.919

Table 2: Cross-dataset validation among 4 datasets. Both the training and testing are on the complete dataset.
Test

SJTU-PCQA WPC BASICS MJ-PCCD

Train SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

SJTU-PCQA – – – 0.444 0.473 2.020 0.537 0.671 0.794 0.457 0.701 0.835

WPC 0.821 0.841 1.314 – – – 0.617 0.712 0.752 0.643 0.767 0.751

BASICS 0.523 0.559 2.013 0.509 0.514 1.967 – – – 0.825 0.867 0.582

MJ-PCCD 0.635 0.653 1.838 0.440 0.507 1.976 0.779 0.827 0.602 – – –

reason is there are super dense/sparse point clouds in MJ-PCCD.

Therefore, the projection takes effect when revealing the over-

lap/hole. While compared with MM-PCQA, which uses 2 modalities

from 3D and 2D, M3-Unity is better across 4 datasets, that’s because

we utilized multi-attributes for both dimensionalities and the inter-

play among them. In summary, M3-Unity demonstrates robust and

competitive performance across 4 benchmarks. This validates our

motivation that incorporating multi-attributes in both dimension-

alities and the interplay contributes to improved perceptual quality

inference.

5.2 Cross Dataset Validation
To verify the generalization and robustness of M3-Unity, we con-

duct cross-dataset experiments among all datasets. The results are

shown in Table 2. From Table 2, we can see that M3-Unity has good

generalization performance, the cross-dataset performance is even

higher than certain FR PCQAmetrics, for example, the performance

is higher than PointSSIM when training on WPC and testing on

SJTU-PCQA (the SRCC of MM-PCQA [56] is 0.769, and the PLCC

of CoPA [35] is 0.643) and MJ-PCCD datasets.

5.3 Time and complexity analysis
We provide the parameter size by dividing the whole network

into four parts: image encoding (70.5M), point cloud encoding

(3.3M), attention (23.1M), and decoding (1.2M). M3-Unity/M3-Unity

MOS: 4.591

Geometry-Only: 5.642     PointSSIM: 4.327

Texture-Only: 4.734     Y_PNSR:    4.445

MOS: 9.117

Figure 3: Point cloud Unicorn comparison between learning-
based and traditional FR metrics. The left side shows the ref-
erenceUnicorn, while the right side displays the distorted ver-
sion with geometry Gaussian noise (points randomly shifted
within 0.02%).

(3D Point Cloud-Only)/M3-Unity (2D Projection-Only) contain

98.1M/25.4M/97.0M parameters using around 37GB/30GB/14GB

GPU memory with batch size 4 and has an average inference time

of 0.49s/0.44s/0.04s for 1 point cloud from the SJTU dataset on A100.

5.4 Ablation Study
We conduct an ablation study onM3-Unity to examine the impact of

key components for the performance. Additionally, in the context of

the 4 datasets characterized by distinct content and distortion types,

we categorized each dataset into Human and Animal (HA) and

Inanimate Object (IO) subsets and reported the related performance.

Note: WPC only includes IO.
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Table 3: Ablation study of M3-Unity on key components, i.e., distortion type, attention, and modality. The numbers in brackets
denote the performance of the IB and HA, with the best performance highlighted in blue and orange, respectively.

Settings SJTU-PCQA WPC BASICS MJ-PCCD

SRCC PLCC ACC SRCC PLCC ACC SRCC PLCC ACC SRCC PLCC ACC

M3-Unity

0.947
(0.933|0.964)

0.961
(0.949|0.964)

0.728

(0.583|0.795)
0.900

/

0.900

/

0.981

/

0.872

(0.867|0.889)

0.937
(0.925|0.929)

0.847
(0.810|0.840)

0.903
(0.858|0.892)

0.919

(0.908|0.905)

0.643
(0.545|0.552)

(Distortion Type)

/wo DT classification

0.938

(0.930|0.963)

0.951

(0.948|0.966)

/

0.898

/

0.898

/

/

0.856

(0.860|0.872)

0.924

(0.916|0.933)

/

0.900

(0.873|0.883)
0.924

(0.917|0.920) /

(Attention)

/wo patch attention

0.919

(0.876|0.946)

0.941

(0.921|0.950)

0.537

(0.446|0.671)

0.849

/

0.855

/

0.969

/

0.684

(0.691|0.777)

0.733

(0.802|0.807)

0.730

(0.525|0.740)

0.846

(0.808|0.853)

0.869

(0.847|0.881)

0.590

(0.611|0.587)
(Modality)

/wo 2D projection

0.914

(0.886|0.947)

0.947

(0.938|0.954)

0.595

(0.542|0.610)

0.608

/

0.638

/

0.792

/

0.770

(0.759|0.771)

0.638

(0.850|0.815)

0.610

(0.565|0.650)

0.736

(0.533|0.776)

0.812

(0.664|0.838)

0.492

(0.462|0.403)

/wo 3D point cloud

0.943

(0.900|0.967)
0.957

(0.941|0.971)
0.773

(0.571|0.795)
0.911
/

0.912
/

0.989
/

0.879
(0.872|0.890)

0.937
(0.930|0.945)

0.843

(0.905|0.880)
0.896

(0.860|0.880)

0.931
(0.912|0.936)

0.624

(0.575|0.636)

Impacts of distortion type classification. To verify the effect of the
distortion type classification module, we compare the performance

with only the regression decoder. The result is in Table 3 (Distortion

Type). Omitting the distortion type classification task causes a slight

performance drop across the four datasets. Notably, the prediction

accuracy (ACC) of distortion types differs considerably between

the WPC and MJ-PCCD datasets. ACC measures the proportion of

correct predictions out of the total. There is no discernible corre-

lation between distortion type classification accuracy and quality

prediction accuracy with the current datasets.

Impacts of the modalities. Combining 4 modalities improves vi-

sual representations compared to unimodal approaches, as shown in

Table 3. M3-Unity generally outperforms unimodal models, except

on the WPC dataset, indicating the contribution of all modalities

to perceptual representations. Among the modalities, 2D texture is

most crucial for most datasets. However, for the BASICS dataset,

2D geometry performed best (SRCC/PLCC of 0.849/0.911 versus

0.835/0.909). Additionally, image-based modalities are more impor-

tant than point cloud-based ones, as the HVS prioritizes visual

stimuli from images.

Impacts of the attention. The self-attention mechanism calculates

semantic affinities between different items in a data sequence [15],

i.e., we capture the local context within the point cloud, by en-

hancing input embedding with the support of FPS and KNN search.

Upon removing the attention module, the results are presented in

Table 3 (Attention). M3-Unity exhibits superiority in comparison

to the model without attention.

Our investigation found that M3-Unity and its variants consis-

tently perform better on HA than IO data, as measured by SRCC

across all datasets, with HA data numbers equal to or greater than

IO for SJTU-PCQA andMJ-PCCD datasets. Specifically, we observed

that patch attention predominantly influences performance for the

SJTU and BASICS datasets, whereas 2D projection assumes a piv-

otal role for the WPC and MJ-PCCD datasets within the framework

of M3-Unity, relative to other components. Upon further analysis,

we found that excluding the patch attention component resulted

in a performance drop of 9.4% for IO data and 6.2% for HA data.

Similarly, when excluding the 2D projection component, the perfor-

mance drop was more pronounced, with reductions of 21.8% for IO

data and 9.3% for HA data. Remarkably, IO data consistently exhib-

ited a greater decline in performance compared to HA data across

the datasets, except for the BASICS dataset, where the performance

decrement was comparable for both categories.

5.5 Discussion
We examine the interplay of geometry and texture distortion repre-

sentations in composite distortions and explore their associations

across dimensionalities.

Interplay between geometry and texture. To further explorewhich

distortion representation is allocated more attention when encoun-

tering degradations, we predict the quality with geometry-only (3D

position, normal point clouds, 2D depth, normal maps) and texture-

only (3D texture point cloud, 2D texture map) features, separately.

The performance is in Table 4.

In addition, we assessed the quality of the distorted point cloud

by examining it from both geometry-only and texture-only per-

spectives in comparison to the reference one. Figure 3 illustrates

the results obtained by the variants of M3-Unity alongside the re-

sults from FR PCQA metrics. Specifically, we use the average of

norm and curvature of PointSSIM [3] as the geometry measure-

ment, while Y_PNSR serves as the texture measurement. In the

FR manner, Y_PNSR exhibits greater similarity to the reference

Unicorn point cloud (MOS: 9.117) than geometry, underscoring the

predominant role of texture-related representation in predicting the

quality of the Unicorn point cloud. Notably, our model’s prediction

(Texture-Only) aligns closely with the distorted Unicorn point cloud
(MOS: 4.591), indicating that the learning-based model concludes

consistent with the FR metric. This verification underscores the

significant impact of texture on geometry Gaussian noise.

Interplay among the associations. We’ve identified 6 association

features in §3.3. To understand their contributions separately, we

compared their cosine similarity to the final feature map before

decoding [48]. By ranking (round to one decimal place) the features

based on similarity, we observed their influence on perceptual qual-

ity across distortion types and datasets, as depicted in Figure 4, we

draw the following observations: (1)MixedDistortion in Colored
Point Clouds: The most important factor for quality is the associ-

ation between 2D texture and 3D geometry. Following closely is
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Table 4: Performance comparison among the proposed metric with different variants on 4 datasets.

Settings

SJTU-PCQA WPC BASICS MJ-PCCD

SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

M3-Unity 0.947 0.961 0.834 0.900 0.900 0.989 0.872 0.937 0.375 0.903 0.919 0.643

Texture-Only 0.942 0.956 0.675 0.895 0.894 1.021 0.855 0.905 0.457 0.874 0.927 0.413
Geometry-Only 0.888 0.915 0.948 0.644 0.670 1.692 0.837 0.905 0.677 0.818 0.860 0.561

Associations among 4 modalities
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Figure 4: Visualization of the 6 associations’ average rankings per distortion type across 4 datasets (tex2D_geo2D, tex3D_geo3D,
tex2D_tex3D, tex2D_geo3D, geo2D_tex3D, geo2D_geo3D). The result is computed in the sameway as described in Sec §4 Implementation
details. Lower values indicate higher perceptual quality importance. The datasets in order from left to right are SJTU-PCQA, WPC,

BASICS, and MJ-PCCD. The distortion types in order from top to down are as described in Sec §4 datasets and overall ranking.

Figure 5: Average ranking grouped by different modality, attributes, and dimensionality. Each bar represents a ranking.

the association of geometry in both dimensionalities (SJTU-PCQA

and MJ-PCCD) and texture in both dimensionalities (WPC and

BASICS). The importance of the least crucial factor varies depend-

ing on the specific distortion type. (2) Compression: VPCC and

GPCC’s quality is least influenced by 3D-related association. VPCC

distorts 2D images due to its projection-based coding, while GPCC

follows a geometry-based coding principle, with attribute coding

relying on decoded geometry, making the correlations between 3D

geometry and 3D texture less effective. (3) Relative importance
grouped by modalities, attributes and dimensionality: The
average ranking of them is shown in Figure 5, which is accumulated

based on Figure 4, assuming one geo2D and geo3D compose the

geometry, similarly for texture, 3D and 2D. It shows that 2D texture

and 3D geometry are the most influential. Additionally, geometry

distortion is more pronounced than texture for SJTU-PCQA and

MJ-PCCD, since GPCC and JPEG Pleno in MJ-PCCD dataset can

produce super dense/sparse stimuli and with uneven point distri-

bution; SJTU-PCQA has more types of geometric distortion. 3D

distortion is more pronounced than 2D for WPC and MJ-PCCD

datasets.

6 Conclusions
In this paper, we introduce a novel no-reference framework de-

signed for evaluating the quality of colored point clouds across

multiple modalities and tasks. The self-attention mechanism is em-

ployed to fuse modality-related features, therefore enhancing the

feature representations for quality assessment. Our framework en-

ables a comprehensive measurement of the contributions stemming

from both inter- and intra-associations, particularly concerning

distinct distortion types relevant to perceptual quality assessment.

In our investigations, we discovered that relying solely on 3D posi-

tional data may not suffice for accurately gauging geometric distor-

tion, and the interplay between the attributes is crucial in under-

standing the overall distortion. We observed notable performance

improvements by incorporating additional geometric information

such as surface normals and association features. Furthermore, We

draw conclusions about the prioritization of geometry/texture for

point cloud quality assessment, providing valuable insights for

bit allocation in point cloud compression and various high-level

computer vision tasks.
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