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 real-world dataset of group 
emotion experiences based on 
physiological data
Patrícia Bota  1,2,5✉, Joana Brito1,5,Ana Fred1,2, PabloCesar3,4 & Hugo Silva1,2

Afective computing has experienced substantial advancements in recognizing emotions through image
and acial expression analysis. However, the incorporation o physiological data remains constrained.
Emotion recognition with physiological data shows promising results in controlled experiments but 
lacks generalization to real-world settings.To address this, we presentG-REx, a dataset or real-world
afective computing.We collected physiological data (photoplethysmography and electrodermal
activity) using a wrist-worn device during long-duration movie sessions. Emotion annotations were 
retrospectively performed on segments with elevated physiological responses. he dataset includes 
over 31movie sessions, totaling 380h+ o data rom 190+ subjects. he data were collected in a 
group setting, which can give urther context to emotion recognition systems.Our setup aims to be
easily replicable in any real-lie scenario, acilitating the collection o large datasets or novel afective
computing systems.

Background & Summary
In recent years, the eld of aective computing i.e. “computing that relates to, arises from, or inuences emotions”1, 
has gained prominence with more than 10k papers published between 2021–2023 (Scopus: searching for emotion 
and aective (https://www.scopus.com/ in the last 3 years). e literature has observed a growth in text sentiment 
analysis and image/video-based emotion recognition through body posture and facial expression. For this type of 
research, large data corpus are available (e.g. AectNet2 with 0.4 million annotated facial expressions; EmotiW chal-
lenge3 with 1088 annotated videos), which is crucial for the development of accurate articial intelligent algorithms. 
In addition to body and facial expressions, emotions can be measured using autonomic nervous system responses.

is growth has also been observed in emotion recognition based on physiological data, namely through 
unobtrusive physiological sensors which aim to capture data in real-life settings. Compared to video or 
text-based emotion recognition, the use of physiological data oers several advantages, including unobtrusive 
data collection over extended periods for individuals and groups, high spatial and temporal resolution, and 
reduced susceptibility to conscious manipulation by subjects.

In the physiological-based aective computing literature, there is a large number of public datasets available 
(e.g.4–10). However, the majority of these datasets are designed for data collected in the lab and rely on the use 
of short clips/images validated to elicit basic emotions, e.g.5–7,11. e use of short video clips does not replicate a 
naturalistic emotion elicitation setup where normally we can see a build-up of emotion. is method can intro-
duce bias, as the anticipated emotion may be mistaken for the ground truth instead of the self-reported one. 
Such a scenario is plausible especially when the intended emotional response to a clip is noticeable, potentially 
causing individuals to confuse the expected emotion with the one experienced. Moreover, utilizing self-reported 
emotions to categorize entire clips, ranging from a few seconds to minutes, obscures the dynamic nature of emo-
tional responses throughout the clip’s duration.

While in-lab experiments allow higher control over the collected data, the literature has questioned whether 
they can be replicated and generalized to real-life scenarios8,12. e authors in13, compared stress responses 
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induced in the lab to stress induced at the volunteer’s home. e experimental results showed that the volunteer 
in-lab HR during the stressor was lower than in the real-world setting. Similarly, in14 the authors observed that 
physiological data collected in the lab diered from data collected replicating real-world data, where the person 
is free to move. is resulted in the test of a model created in the lab showing a deterioration in emotion recog-
nition accuracy when tested with real-world-like data.

A further example of the limitations of in-lab data collection setups is the US government15 MOSAIC pro-
gram, which had the goal of evaluating aect detection systems in real-world scenarios. e data was collected 
following a lifelog setup, during everyday routines, such as working and work-related travelling. Emotion-related 
ground truth was collected for positive and negative aect, stress and anxiety. ese were measured at the start 
of the study and once per day using the ESM technique. Neither of the teams met the program goal metrics for 
aect detection, attaining accuracy near zero across teams. Based on the results, the authors in15 suggest the need 
for a dierent data collection paradigm that is closer to a real-world scenario.

e terms “in-the-wild”/“real-world” or “naturalistic” data have been denoted to describe data collection 
when the experimenters do not control the emotion elicitation nor constraint the data acquisition12. ese can 
be further divided into “ambulatory” settings where the data is collected in daily living with the subjects moving 
freely, or “static” when the data collection is limited to a specic location (such as workplace, car or cinema)12.

e state-of-the-art has been moving from in-lab controlled and small-video excerpts setups to alterna-
tive data collection approaches closer to naturalistic scenarios, such as the BIRAFFE216, in which physiological 
data was collected (ECG, EDA) during video games, or the PPB-Emo dataset9 with physiological data collected 
(EEG) during driving.

A limited number of robust datasets with data collected in real-life scenarios can be found, such as the 
DAPPER8 and K-EmoCon4 datasets. e DAPPER dataset8 follows a lifelog paradigm, with physiological data 
(HR, EDA, and accelerometer) collected during the volunteers daily living for ve days. e data was annotated 
using the ESM and DRM techniques. e ESM was performed 6 times a day, asking for the momentary emo-
tional annotation on the volunteers’ smartphone; and DRM was performed at the end of the day asking the vol-
unteers to recall and annotate the major emotional and behavioral episodes throughout the day. e K-EmoCon 
dataset4 contains physiological data (PPG, EDA, HR, EEG) collected across naturalistic conversations, namely 
paired debates on social issues. e data was annotated retrospectively by the participants, their debate partners 
and themselves by watching their recorded facial expressions and upper body data.

In this study, we ll this gap by providing a labeled naturalistic dataset designed for group emotion recogni-
tion — the G-REx dataset. In line with the naturalistic data collection, we rely on real movies for emotion elicita-
tion, using physiological sensors integrated into an unobtrusive and wireless bracelet device, and collect data in 
a group setting (analogous to a cinema theatre). is paradigm allows for a naturalistic emotion elicitation over 
a long period (each movie has around 2 hours). In this paradigm, we collected data from over 190+ subjects, 
covering 31 movie sessions and more than 380 hours of physiological data. Our proposed experimental setup 
for annotated aective data collection can be replicated across diverse naturalistic experimental settings, from a 
cinema session to a classroom or a hospital.

The collected data can be used for the implementation of affective computing systems across diverse 
applications, such as neurosecurity systems to warn the users of emotion-manipulative content, modulating 
live-performances/media content to the audience response or development of subject-specic recommenda-
tions17, among others.

Emotion measures. Taking the componential view of emotion18, emotions are multi-component emotional 
responses to relevant stimuli for the subject survival or well-being. is multi-component emotional response 
comprises changes in the individual subjective experience (feeling), peripheral signals, central physiology and 
behavior. Central physiology relies on the use of specialized machines such as functional magnetic resonance 
imaging (fMRI), or positron emission tomography (PET) for emotion assessment. ese imaging techniques 
allow a high-resolution view of the brain region activated by dierent emotions. However, they have strong draw-
backs to be used daily, such as requiring specialized facilities, being large in volume, having an elevated economic 
cost, requiring the presence of a trained technician, and requiring the individual to remain motionless.

An alternative is the analysis of bodily behavior for emotion recognition. e analysis of facial expressions 
is one of the most studied areas in aective computing as computer vision techniques can be used for aective 
computing applications and the collection of ground truth is facilitated. However, they depend on the subject 
externalization of their emotional expression and are to be recorded by a camera at all times for daily data collec-
tion. A third approach, commonly used in clinics is the use of self-reporting. Self-reporting can be expensive and 
the subject might not want to disclose their true emotions. Nonetheless, self-reporting is oen the ground-truth 
method for the development of automatic emotion recognition algorithms.

Physiological signals such as EDA and PPG can bypass these constraints since they are acquired by very small 
sensors through a single contact with the skin in unobtrusive places such as the wrist or hand. ese character-
istics facilitate the collection of large amounts of emotion-related data in the real world.

Other physiological signals such as EEG or ECG also contain information for emotion recognition. However, 
their use is not as favorable for daily use as the former requires the use of gel electrodes on the hair, and the latter 
a two-point contact.

Peripheral signals are controlled by the ANS, namely the SNS and the PNS. e SNS is oen referred to as the 
“ght-or-ight” system, while the PNS is denoted as the “rest-and-digest” system.

e EDA measures the conductivity of the skin which is modulated by the dermal sweat gland activity. Upon 
a relevant stimulus, the SNS becomes activated and directs the sweat glands to open and release. e incre-
ment of sweat, which contains a high quantity of electrolytes, increases the conductance at the skin surface19. 
Since eccrine sweat glands are innervated by the SNS but not by the PNS. e analysis of the skin conductance 
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decomposes the ANS complexity by oering an unbiased view of the SNS activity (emotional and physiolog-
ical functions)20. is has been validated in the literature with the electrodermal level increasing linearly with 
arousal level21,22. On the comprehensive meta-analysis performed by Kreibig23, EDA changes were reported for a 
set of discrete emotions. e author reports a decrease in EDA observed for non-crying sadness, acute sadness, 
contentment and relief. Amusement, happiness and joy were characterised by an increase in EDA and faster 
breathing.

On the other hand, the PPG measures the peripheral tissue’s blood volume through the absorbance of the 
light. When light is directed into the skin, it will be absorbed by blood, tissue and others. e level of absorp-
tion will be modulated by the blood volume and its haemoglobin constituents which vary with the cardiac 
cycle. During the systole, the blood volume will be higher with higher haemoglobin levels resulting in a higher 
absorption of light. e opposite is observed during the diastole, where the low arterial blood volume results 
in the PPG minimum value. ese blood volume changes characterise the PPG signal (aer inversion) through 
which metrics such as HR can be extracted. e HR is controlled by both the SNS and PNS. While the SNS is 
responsible for the increase in HR through vasoconstriction, the PNS is responsible for slowing it down. e 
combination of both modulates the HR and allows for the ne-tuned modulation and variability of the cardiac 
system in response to varying physiological and environmental conditions, emotional states, and stress levels.

In its systematic review, Kreibig23 observed that the HR increased in negative (anger, anxiety, 
contamination-related disgust, embarrassment, fear, crying-sadness), positive (anticipatory pleasure, happiness, 
joy) emotions and surprise. On the other hand, HR decreased for mutilation-related disgust, imminent-thread 
fear, non-crying and acute sadness, affection, contentment, visual anticipatory pleasure and suspense. 
e changes in the HR (HRV) have also been correlated to emotional responses. e HRV was reported to 
increase for amusement and joy, while it decreased for happiness. An increase in HRV was observed in 
contamination-related disgust and the positive emotions of amusement and joy.

e literature substantiates the physiological foundation of both EDA and PPG for emotion recognition. 
Particularly in daily living scenarios, potentially advancing the eld of aective computing and emotion-aware 
technology applications.

Methods
In light of the promising potential of EDA and PPG data for emotion recognition in an unobtrusive approach. 
We prepared the G-REx dataset to bridge the gap in the eld between the real-world and controlled experiments, 
by opting for collecting data in long-duration content in a cinema, retrospectively annotated in small segments 
by their emotional relevance. Our approach, by not disturbing the volunteers while collecting data and using a 
quick and easy annotation method, facilitates the collection of large amounts of naturalistic data, leading the way 
for the understanding of emotional responses in real-world contexts as well as the analysis of group dynamics.

Dataset design. e G-REx dataset was designed for large data collection in naturalistic group scenarios. 
As a proof-of-work, we collected data at a University campus room replicating a movie theatre (Fig. 1). Instead 
of relying on selected movie clips as observed in the literature5,7,11, we rely on longer-duration content such as a 
cinema movie.

e dataset was collected with the following objectives:

 1. Expand the annotated public datasets for physiological-based aective computing collected in naturalistic 
scenarios.

 2. Analyse physiological-based group dynamics in a long-duration setting.
 3. Propose an experimental setup that can be easily replicated across any naturalistic setting with little eort 

to the user based on unobtrusive physiological data collection and retrospective emotion annotation.

Fig. 1 Photos taken during the movie sessions.
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Data annotation. Datasets on emotion recognition usually contain emotion-annotated segments. In the 
CASE dataset6 real-time continuous annotation of arousal and valence is performed while the participants watch 
videos of a few seconds (below 200 seconds). is is the literature common practice for short clips5,6,11,24. However, 
to perform the annotation in naturalistic scenarios or as in the case of a long lm, the annotation becomes tiring 
and distracts the user from the elicitation process; Not being compatible with a naturalistic emotion elicitation.

An alternative format is performed in K-EmoCon4, where an approximate 10-minute debate is annotated 
based on three perspectives: self-reporting, by the partner, and by external observers. e annotation was per-
formed retrospectively every 5 seconds while viewing the debate footage in terms of arousal and valence and 
18 discrete emotions. e annotation through external observers can have drawbacks in a naturalistic scenario 
such as additional annotators becoming expensive in large-scale scenarios. Additionally, since the annotation is 
resorting to the observation of bodily expressions these can not truly describe the emotion felt by the subject or 
are subjective to the external annotation interpretation bias.

With this in mind, we follow a similar strategy to K-EmoCon4 (i.e. retrospective annotation), designed 
to better t naturalistic settings. In G-REx, the annotation is performed by the subjects themselves and is as 
quick and less intrusive as possible. Instead of annotating the entire two-hour movie, which would be too 
time-consuming and tiresome for the volunteer, we ask for the subject to annotate only selected segments of a 
few seconds (20 seconds) where events (onset events with high amplitude) were detected on the subjects EDA 
data (segment of [onset - 5 seconds, onset + 15 seconds]). We selected a time interval of 20 seconds, following 
what was performed in AMIGOS25, and the 5 seconds previous to the onset was taken from the literature report-
ing the latency period of emotional stimuli between 1 to 5 seconds26.

We rst lter and smoothen the EDA signal (Butter low-pass 4th order and 5 cut-o frequency, 0.75 * sam-
pling rate boxzen kernel smoother), then extract the EDR component and apply a smoother (20 seconds boxzen 
kernel) to the EDR so minor variations in the data would not be detected. en, we apply the emotiphai_eda 
method from BioSPPy (https://github.com/scientisst/BioSPPy/blob/main/biosppy/signals/eda.py) and merge 
events with onsets separated for less than 32 seconds, so moments separated in time are selected for annotation.

e literature27 has shown that events with higher amplitude are easier to recall for the subject. us, the 
segments are sorted by the amplitude so the highest emotional events as given by the EDA signal are annotated 
rst. is leads to the annotation of a lower number of segments (lower complexity) ordered by their emotional 
importance (more time-ecient) albeit more meaningful (hence potentially more informative).

To perform the self-report the annotation platform relies on the SAM assessment technique, the gold stand-
ard technique in the state of the art for emotional report28. Lastly, the literature29,30 reports that although past 
emotional events can not be re-experienced, they can be reconstructed by anchoring on relevant thoughts or 
events. With this in mind, during the annotation, the re-visualization of the video segments is used to provide 
context as an anchoring tool to help the reconstruction of the emotional events experienced by the subject. An 
illustration of the annotation platform used in this study is shown in Fig. 2.

Fig. 2 Illustration of the annotation platform.
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Participants recruitment. e data collection was performed between October 2022 and June 2023, mak-
ing a total of 31 sessions. e volunteers were recruited from participants in the Diferencial (https://diferen-
cial.tecnico.ulisboa.pt/) cinema sessions. Diferencial is a student club from the Instituto Superior Técnico of the 
University of Lisbon. e cinema sessions were advertised in Diferencial’s social media platforms, namely Twitter 
and Instagram being free and open for anyone to participate, regardless if they are students at the university. In 
the post description, there was a notication that physiological data collection was being performed on volun-
teers. At the cinema sessions, a lab researcher of the team approached the audience, described the experiment 
and asked if they would like to participate. At the end, a chocolate bar was given as a reward for the participation.

Ethics statement. e study was submitted to and approved by the Instituto Superior Técnico (IST) - 
University of Lisbon (UL) Ethics Committee (Ref. n. ° 11/2021 (CE-IST) Date: 20/04/2021). e participants 
were given a consent form upon arriving at the cinema room before the data collection. e informed consent 
form contained information regarding the context, goal, procedure, data registration, data privacy and risks of 
participation in the experiment. In this form, the participants manually lled in their participation agreement, 
age, gender, if they participated in the study with any friends and their familiarity with the movie. Additionally, 
the participants were asked to ll out a physiological data purpose form with an agreement for the usage, visu-
alization and analysis of the data, sharing the data in academic publications, at conferences, in media, and with 
external partners. Participants were notied that their participation is voluntary, must be done in an informed 
and free manner, and that their data can be destroyed and their participation withdrawn by request at any time 
without consequences.

Data collection setup. e data collection took place during the Diferencial cinema sessions, on an amphi-
theater at the Instituto Superior Técnico, University of Lisbon. e cinema sessions were performed once per 
week starting at 8 to 8.30 PM during the school academic year. e EmotiphAI31 platform was set up in a cor-
ner of the room, with the router at the center. During the movie visualization, the participants were given the 
informed consent form and the EmotiphAI bracelet was placed on their non-dominant hand with the respective 
sensors. e EDA sensor electrodes were placed on the thenar and hypothenar areas, while the PPG was placed 
surrounding the index nger distal phalange (red circle in Fig. 3). e hardware and soware used for the exper-
iment is detailed below:

Hardware:

•	 EmotiphAI collector (Microso Surface Pro, 7 1.10 GHz x 8 CPU): was used to host the EmotiphAI platform 
for both physiological data collection31 and emotion self-reporting.

•	 EmotiphAI wearable (Fig. 3): contained two physiological sensors that were connected to the subject’s skin 
using Pre-gelled Ag/AgCl electrodes. e details of each sensor are described in Table 1. e EDA sensor con-
sisted of the BITalino EDA sensor (https://pluxbiosignals.com/products/electrodermal-activity-eda-sensor), 
and the PulseSensor PPG from (https://pulsesensor.com). e EmotiphAI Wearable was based on a modied 
version of the ScientISST CORE, a device designed for monitoring and analyzing physiological data (https://
scientisst.com).

•	 Pre-gelled Ag/AgCl electrodes: were used to improve the skin conductivity and electrode’s adherence to the 
skin.

•	 TL-WR940N router: provided the local network for WiFI communication with no password between the 
EmotiphAI bracelet and the EmotiphAI collector.

Fig. 3 Timeline with the experimental protocol steps.
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Soware:

•	 EmotiphAI collector: e physiological data collection was controlled by the EmotiphAI data collection plat-
form31 adapted for the scientISST device. e platform allows for data storage and real-time data visualiza-
tion. e data was stored locally on the hub device and then moved to a private cloud. For further detail on 
the acquisition platform, we refer the reader to31.

•	 EmotiphAI annotator: e annotation platform runs on the collected data on post-processing. Aer the 
movie is over, the annotation platform iterates across the users and, for each, their most signicant moments 
as given by high amplitude EDA events (onset to peak amplitude) are selected for the volunteers to annotate 
retrospectively. For further detail on the annotation platform and segment selection methodology, we refer 
the reader to the Data Annotation section.

Experimental protocol. Figure 3 shows the experimental procedure for physiological and emotional data 
collection at each cinema session. A research team of two to three members was on the site to help follow each 
step of the protocol.

Consent form. As each participant arrived for the cinema session, they were approached by one member of the 
research team, given a description of the experiment, and asked if they would like to participate. If they agreed, 
an informed consent form was given for the volunteers to read and ll out.

Sensor placement. Upon agreeing to the data collection, the EmotiphAI wearable was placed on the 
non-dominant hand with two physiological sensors (EDA and PPG). e volunteers were then ready to start 
watching the movie and start the data collection.

Data collection. e movie and physiological data collection were manually synchronised by starting both at 
the same time. e volunteers watched the movie in a naturalistic scenario, being able to sit in any location in the 
amphitheater, surrounded by their friends or strangers.

Data annotation. e volunteers were approached by our team to ensure the annotation of emotional segments 
in terms of arousal, valence and uncertainty in the annotation. A description of the emotion annotation is dis-
played in Table 2.

Overall, each session lasted approximately 2 hours and 30 minutes (depending on the movie length), which 
included around 10 minutes for emotional self-reporting, and an additional 10 minutes for sensor placement and 
the completion of the consent form.

Follow up. e literature on emotion recognition has shown that the personality type might inuence the 
emotional reaction (e.g. neuroticism is correlated to high negative-emotional response)32,33. With this in mind, 
on the day aer the data collection, a follow-up email was sent to the volunteers. e follow-up email had the 
goal of thanking the participants for their contribution and sharing an optional questionnaire with the big-ve 
factor model for personality assessment using the 50-item English version of the International Personality Item 
Pool (IPIP-J)34.

Afective stimuli. e cinema movies were selected by the Diferencial team. Most of the movies were part 
of thematic cycles, each dedicated to specic themes. e collected data covered the following cycles: “Horror”, 
“Ghibli”, “Mind*uck”, “Musical”, “Asian culture”, and “Is Anybody out there?”. Additionally, two collaborations 
were performed with the IST student groups (“AmbientalIST”, “NucleAr” and “AEIST”) and one collaboration 
with a production company (“JumpCut”). Before two of the sessions, a short lm was displayed before the movie 
data collection.

SR: 100 Res: 12 bits Comm: WiFi (TCP) Range: 100 meters Size: 22.51 × 40.90 × 53.50 (mm) Weight: 64 g Battery: Li-On; 7.4 V 800 mA
Sensor Range Bandwidth Input Voltage Range
EDA 0–25 μS 0–2.8 Hz 1.8–5.5 V
PPG 0.3 – Vdd 3–5.5 V

Table 1. Overview of EmotiphAI wearable characteristics. SR: Sampling rate; Res: Resolution; Comm: 
Communication.

Category Description Range
Arousal Denotes general energy deactivation/activation61 [1, 5] ∈ N
Valence Denotes displeasure/pleasure61 [1, 5] ∈ N
Uncertainty Denotes the level of uncertainty/certain in the emotion annotation Yes/No

Table 2. Description of self-reported emotion annotation scales.
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Data Records
The G-REx dataset is available on Zenodo (https://zenodo.org/record/8136135)35. The data will be made 
available after completing the End User License Agreement (EULA) (available at https://forms.gle/
RmMosk31zvvQRaUH7).

e G-REx dataset was organized to contain both the Raw and Transformed data. As well as all the code for 
the data transformation. To guarantee the reproducibility and transparency of the research, the code utilized for 
the data transformation is also included within the dataset, with the resultant plots and table content derived 
during the research process.

Dataset contents. e G-REx dataset is available on Zenodo (https://zenodo.org/record/8136135). For the 
structure of the dataset, we followed a similar approach to the one in36. An overview of the structure is shown in 
Fig. 4. e dataset contains six main folders, outlined as follows:

•	 1_Stimuli:

•	 Raw/video_info.json/csv — Contains detailed information on the movies used in the dataset.
•	 Transformed/stimu_trans_data_<DATA_TYPE>.pickle — Contains the information of the movie 

details for the annotated segments and session data. <DATA_TYPE> ∈ {session, segments}.

•	 2_Questionnaire:

•	 Raw/quest_raw_data.json/csv/xlsx — Contains the questionnaire data for all the participants in the 
dataset.

•	 Transformed/quest_trans_data_<DATA_TYPE>.pickle — Contains the user ID and device information 
of the emotion annotated segments and session data. <DATA_TYPE> ∈ {session, segments}.

•	 3_Physio:

•	 Raw/S<X>_physio_raw_data_M<Y>.hdf5; where <X> is the session ID ∈ {0, 1,…, 28}, and <Y> is 
the movie ID ∈ {0, 1,…, 30} — Contains the raw HDF5 data collected by the EmotiphAI platform for each 
session X and movie Y.

•	 Transformed/physio_trans_data_<DATA_TYPE>.pickle – Contains the transformed raw and ltered 
EDA, PPG, HR and time information data for the annotated segments and session data. <DATA_TYPE> 
∈ {session, segments}.

•	 4_Annotation:

•	 ann_trans_data_segments.pickle – Contains the arousal, valence and uncertainty values for the annotated 
segments.

•	 5_Scripts:

•	 read_physio_data.py – Reads the collected raw physiological signals, emotion annotations, video data and 
the self-report questionnaires to store the transformed data in separate dictionaries, with matrices data 
for the session and annotated data segments.

•	 data_analysis.py – Script used to obtain the plots and tables displayed in the technical validation section.
•	 quality_<SIGNAL>.py – Obtain the data quality and lower quality signals.<SIGNAL> ∈ {EDA, PPG}.
•	 6_Results: <SIGNAL>/<DATA_TYPE>/Plots/D<H>_M<Y>_idx<Z>_<DATA_TYPE>_<SIG-

NAL>.png – Plot of the raw and ltered data. e<H>variable is the device ID, <Y> is the movie name, 

Fig. 4 Diagram of the dataset structure.
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and <Z> is the sample index. <SIGNAL> ∈ {EDA, PPG}; <DATA_TYPE> ∈ {session, segments}. 
<SIGNAL>/<DATA_TYPE>/Quality/<SIGNAL>_quality_bad_<DATA_TYPE>.csv – Table with 
the physiological signals technical validation results.<SIGNAL> ∈ {EDA, PPG}; <DATA_TYPE> ∈ 
{session, segments}.

Each pickle le consists of a dictionary with several keys. e detailed information regarding the components 
of each pickle le can be seen in Fig. 5.

Dataset summary. e G-REx dataset consists of data collected from 31 sessions, making a total of 191 
users and more than 380 hours of data collected. is includes data from the physiological signals EDA and PPG, 
and emotional annotations of selected movie moments, making a total of + 1400 annotated segments. In two of 
the sessions, two dierent movies were seen, while in the remainder only one movie was seen resulting in a total 
of 31 sessions but 29 movies.

Lastly, we also gathered the movie le for context information. A summary of the total collected data is displayed  
in Table 3.

Preprocessing. e raw data was collected using the EmotiphAI collector and stored on an HDF5 le37 (t to 
store large amounts of data in a hierarchical structure with several databases, i.e. for various devices on the same 
session containing both physiological and emotion annotations). To facilitate the usage of the data, we provide a 
compact format of the session and segments data, as well as questionnaire, stimuli and emotion annotations on 
separate but synchronized dictionaries stored on pickle les.

echnical Validation
To characterise the collected data, we provide a quality evaluation of the dataset data. We start by looking at the 
physiological data, dividing it into the quality and lower-quality sets, and looking at description metrics to see 
how the two compare. We then observe the distribution of emotion annotations and movie genres, underscoring 
the dataset’s representation. Lastly, we performed statistical evaluations, comparing the distributional properties 
of arousal, valence, and genre groups, benchmarked against mean EDA, HR, and subjectively reported arousal 
and valence measures.

Physiological signals. e EDA signal is read through the connection of gel electrodes to the skin. is 
makes the EDA easily subjected to artifacts such as loss of contact of the electrodes with the skin either due to 

Fig. 5 Diagram showing the structure of the pickle data in their respective keys.

Total Aer Processing
SegmentsSession Segments Session

# of Participants 191 191 92 149
# of Movies 31 31 27 27
# Sessions 29 (≈384.5 hours) 29 (≈8.2 hours) 25 (≈175.9 hours) 25 (≈5.7 hours)
# Samples 241 1481 112 1031
Age Range 18–69
Physiological Signals EDA, PPG
Emotion Annotations Arousal, Valence

Table 3. Summary of the dataset data.
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a long-duration use or sweat, which disconnects the gel glue. ese artifacts can be removed using a low-value 
threshold. A similar analysis can be performed to the PPG signal, where the sensor can lose connection to the n-
ger or be too tight causing saturation at the maximum value. In addition, the PPG allows the extraction of the HR,  
which has expected range-values denoted in the literature between 40 and 200 bpm38. Values outside this range 
are noise and can be removed.

To remove noisy data and obtain a view of its description, we applied quality metrics identied in the lit-
erature31,38–43 for the EDA and PPG signals. Using the quality metrics, the data was divided into quality and 
lower-quality sets. As observed in the literature, some works apply cut-os to remove low-quality data using a 
cut-o threshold40, while others44 use the metrics to obtain an overview of the data distribution of the two to 
observe how the quality segments and lower quality segments distributions compare to each other.

Additionally, our technical validation of the physiological signals is performed for the two types of data 
collected: the entire data in a session format, and 20-second annotated segments. A 4-second threshold was 
used following40 to denote the lower-quality data. For the session data, which contains data around 2 hours, the 
4 seconds was meaningless, we used a conservative approach and relied on a threshold of 7% for the session data.

Electrodermal activity. e experimental results for the data quality analysis on the sessions and emotion 
segments can be seen in Table 5 for the EDA data.

SNR. e experimental results show a SNR of around 120 dB for the EDA signal, meaning that the signal level 
is approximately 120 dB higher than the noise level for both the session and the annotated segments data. e 
SNR decreases for the lower quality data, with values around 100 dB for the sessions and even lower for the seg-
ments data (≈40 dB), both showing higher standard deviation in the lower quality data. In45 the authors report a 
SNR between ≈50 to 60 dB. While in5, the authors report an average SNR between 26.66 dB to 37.74 dB (report-
ing for all the collected signals). ese values are in line (or even below) with what was obtained in our work 
for the quality data set. However, it is expected for these values to change according to how the SNR metric was 
obtained. We followed the approach by42, where a SNR value was obtained between 50 to 80 dB. Similar values 
were obtained by the authors in44, namely 61.6 dB for the EDA.

Full scale. Across all the data we observe no saturation. Saturation is commonly observed when the sensor 
range of values is below the reading, for example by a hard press on the sensor. e results show a correct posi-
tioning of the sensor, with data in line with the physiologically expected.

Zero. e zero percentage allows the detection of records where no data was collected. e percentage of 
zero-valued signals is low, attaining a value below 1% for the quality data in both the sessions and annotated 
segments. On the other hand, we observe a high percentage of zero data (%) on the samples identified as 
lower-quality data (above 50%). is shows that the zero-data metric is the most contributing factor for the 
assignment as lower quality data. e zero value read by the sensor can be due to the loss of contact between the 
electrodes and the skin, physiological problems such as hyperhidrosis where the sweat causes the electrodes to 
disconnect aer a long session (such as it can happen in a 2-hour movie), or problems related with the device 
form-factor (for example a cable was set loose or broken). Additionally, it should be taken into consideration 
that due to the naturalistic setting of the data collection, some of the devices lost WiFi connection (e.g., volun-
teers leaving the room), leading to no data being recorded.

e literature46 expects a prevalence of hyperhidrosis at 4.8%, following a study in the USA population in 
2016. However, this value might be biased towards a severe case, with 70% reporting severe excessive sweating. 
In our study, a hyperhidrosis percentage above the expected can be because our proof of work device relies on 
the use of gel electrodes to connect the sensor to the skin, and 2 hours of movies can be too long for the elec-
trodes to stay in place.

Loss. Across the dataset we observe a data loss of 0%. Our data loss is much lower than the reported in the liter-
ature, such as in the work of41, where the authors report a data loss of around 50% on average for data streaming. 
Similar to our values, a loss of 0% is reported in44.

Max, Mean, Min. e lower quality data in both the sessions and annotated segments show a lower average 
value (around 0 μS). Similarly, the maximum and minimum values are higher in the quality data when com-
pared to the lower-quality data.

rough these statistics, we can see if the EDA data is in line with what is reported in the literature. Namely, 
Braithwaite et al.47 reports expected EDA values between 2 to 20 μS, increasing for periods of high arousal. In48, 
the authors report EDA data between 10 and around 28 μS (M (Mean): 15.55; STD (Standard Deviation): 1.67). 
ese values are in line with the values obtained for the quality data, taking that deviations can result from the 
type of electrodes and their body location.

Photoplethysmography. A similar analysis was performed for the PPG data. e quality metrics can be 
seen in Table 4, and the obtained results in Table 6.

SNR. e dierence in the SNR in the noisier and quality data sets are predominant, with the quality data 
showing a SNR above 70 dB and the lower quality data SNR below 10 dB.

Full scale. Once again no saturation is observed. Similarly to39, we obtained a very low full-scale percentage.
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Zero. We observe a higher number of zeros in the lower-quality data in both the sessions and the annotated 
segments, while the quality data has a lower percentage of zeros (below 2%). In some of the sessions, some of 
the devices were turned on but were not being used by any volunteer, thus recording a value of 0 throughout the 
entire session.

Abnormal HR. Abnormal values for the HR (below 40 and above 20038) are not observed in the quality data. 
While for the lower-quality data, abnormal values are observed for almost the entire set (around 90%).

Spectral entropy. We observed higher entropy for the quality data. e authors in40, denote a lower entropy is 
expected for the quality data, denoting a pointier spectrum in its amplitude waveform. While a at spectrum 
(i.e. uniform distribution) is characterised by higher entropy and noisier data. is was not observed in our data. 
e higher entropy observed can be a result of the increased complexity in the quality data which shows higher 
standard deviation and diverse morphology compared to a at line (lower quality data signal). Our results are in 
line with41, which reports a threshold of around > 0.8 to denote a lower-quality signal.

Max, Min, Mean. e data shows lower amplitude values for the lower data quality set, attaining a minimum 
value of zero.

Overall, we observe that, for the EDA sensor, the annotated segments show a smaller proportion of 
lower-quality segments compared to the session data. A large amount of data was removed from the session set 
due to the presence of zero-value data for more than 7% of the session. e large amount of data being selected 
as zero results from the small threshold used as a criterion to identify the data was low quality (7%) in around 

Signal Metric Description
Cut-O

   EDA & PPG Full scale Amplitude at the bit resolution of 12 bits (212—1) for more than 4 seconds and 7% in the 
session data39. Applied to the ltered data.

   EDA & PPG Zero Amplitude below 0.05 μS for EDA and 0.01 a.u. for the PPG for more than 4 seconds in 
the segment data and 7% in the session data. Applied to the raw data.

   EDA & PPG Loss Counting packet number and time discontinuities31. Data was considered as lower 
quality if it had a data loss above 7%.

   PPG Abnormal Heart Rate (HR) HR below 40 bpm or above 200 bpm detected for more than 4 seconds in the segments 
or 7% in the session data was considered as low-quality data38.

Data Distribution

   EDA & PPG Signal-to-noise Ratio (SNR)

For the EDA, SNR was obtained by the logarithmic ratio between the cleaned signal 
(low-pass 4rd order Butterworth lter of 5 Hz and 0.75 seconds-window smoother 
moving average)60 and noise (3rd order Butterworth band-pass lter of 2–10 Hz)42. For 
the PPG, the noise was obtained by a 4th order highpass Butterworth lter with 15 cut-o 
frequency62 and the cleaned signal by a 4th order band-pass Butterworth lter with 1–8 
cut-o frequency60.

   EDA & PPG Max, Mean, Min Statistical features (maximum, mean and minimum) extracted from the ltered data39.

   PPG Spectral Entropy .Entropy of power spectrum between 0.1 to 3 Hz, ranging between 0 for a periodic signal 
and 1 for a constant spectrum40,41,43

Table 4. Data quality metrics deployed for analysing the EDA and PPG signal quality.

Data Size SNR (dB)
Full scale 
(%) Zero (%) Loss (%)

Abnormal HR 
(%)

Spectral 
Entropy Max (a.u.) Mean (a.u) Min (a.u.)

Quality Segments 1213 76.07 ± 14.24 0.01 ± 0.17 1.62 ± 3.16 0.0 ± 0.0 0.0 ± 0.0 0.68 ± 0.09 1903.95 ± 1137.23 24.09 ± 55.37 −1244.47 ± 745.14
Lower Quality 
Segments 268 3.6 ± 14.39 0.03 ± 0.32 95.57 ± 17.61 0.0 ± 0.0 93.66 ± 24.37 0.05 ± 0.18 196.01 ± 809.31 1.65 ± 15.63 −150.52 ± 607.29

Quality Session 199 72.47 ± 9.92 0.01 ± 0.08 1.21 ± 1.55 0.0 ± 0.0 0.0 ± 0.0 0.72 ± 0.07 3518.95 ± 1122.89 14.93 ± 27.25 −2539.92 ± 774.41
Lower Quality 
Session 42 7.92 ± 20.47 0.01 ± 0.05 89.37 ±28.96 0.0 ± 0.0 85.71 ± 34.99 0.10 ± 0.25 605.43 ± 1543.48 1.72 ± 6.01 −432.49 ±1104.39

Table 6. Data quality metrics analysed for the PPG signal.

Data Size SNR (db) Full scale (%) Zero (%) Loss (%) Max (μS) Mean (μS) Min (μS)
Quality Segments 1265 122.71 ± 23.26 0.0 ± 0.0 0.3 ± 1.84 0.0 ± 0.0 7.85 ± 5.22 6.42 ± 4.25 5.48 ± 3.89
Lower Quality Segments 216 37.79 ± 35.3 0.0 ± 0.0 83.46 ± 22.4 0.0 ± 0.0 2.94 ± 5.3 0.7 ± 1.71 0.0 ± 0.01
Quality Session 136 127.12 ± 15.09 0.0 ± 0.0 0.75 ± 1.7 0.0 ± 0.0 15.54 ± 6.59 7.06 ± 4.3 2.03 ± 3.41
Lower Quality Session 105 100.56 ± 39.71 0.0 ± 0.0 52.06 ± 32.3 0.0 ± 0.0 9.97 ± 7.51 1.75 ± 1.96 0.0 ± 0.0

Table 5. Data quality metrics analysed for the EDA signal.
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2 hours of data collection. During a 2-hour session, the individuals are likely to get relaxed/bored and the EDA 
drops to zero episodically.

While for the segment data, the threshold was set as 4 seconds in 20 seconds of data. ese values were 
selected following the literature40. The authors in40,41 report around 64% to 75% of quality EDA data. We 
obtained around 85% for the segments and around 55% for the session data. While for the session data, large 
amounts of EDA data were discarded due to the zero-metric, the same was not observed for the PPG data. 
Leading to a lower number of sessions and annotated segments being identied as lower quality. For the PPG 
data, the authors in41 report around 50% of quality data using an Empatica device. We obtained around 80% for 
the segments and session PPG data.

Data characterisation. Aer the pre-processing step of the noisy sample removal, we obtained a total of 
1031 annotated segments and 112 sample sessions.

A histogram with the total number of annotated samples can be seen in Fig. 6a. e gure shows that overall 
the users annotated around 5 to 10 samples per session. e number was tailored to 7 following the volunteer’s 
feedback on their preferences. With a few exceptions of users who participated in more than one session. For 
example, one subject who was part of the cinema club participated in most of the sessions, which is seen by the 
large peak in the histogram near ID 25. e IDs in the blank correspond to users who were removed on the data 
pre-processing step or did not annotate any segments.

Each movie was assigned to its predominant genre following the IMDB characterization (https://imdb.com). 
In Fig. 6b we show the assigned movie genre of each annotated sample. As can be seen, due to the movie cycles, 
we collected data from eight main movie genres.

Figure 7a displays the volunteer’s personality scores across the big ve dimensions. e extraversion dimen-
sion shows a broader range of values covering most of the scale, followed by neuroticism. ese dimensions have 
been correlated to the expression of emotions, namely to the frequency and intensity of positive and negative 
emotions49. e remaining dimensions are skewed to the upper range of the scale.

Lastly, Fig. 7b shows the age range of the volunteers. As can be seen, we acquired data across all age distribu-
tions, with 18 to 29 years old being predominant. is range is expected since the data collection took place on 
a university campus.

Fig. 6 Histogram with the number of annotations per user and samples collected per movie genre.

Fig. 7 Distribution of personalities and age range.
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Emotion annotation. Aer the movie, the EmotiphAI31 platform was used to annotate selected movie 
scenes using the SAM50 manikins on the arousal and valence dimensions. e results of the annotations can 
be seen in Fig. 8, where both dimensions cover the entire annotation space. Statistical characterization of the 
annotations distribution is shown in Table 7. As can be seen, both dimensions are centered around the value of 3, 
with a standard deviation of around 1. Both dimensions show negative (le-modal) skewness and kurtosis. e 
valence shows a near-zero skewness corresponding to a symmetrical distribution, while arousal is slightly neg-
atively skewed. Regarding the kurtosis score, both dimensions show an elevated negative kurtosis score. A high 
negative value describes a atter distribution compared to a normal distribution, denoting a more homogenous 
distribution of the data across the annotated scale with the probability of values near the mean lower than in a 
normal distribution. Moreover, the distribution has lighter tails, suggesting fewer extreme values. e authors 
in11, also analyze the annotations of kurtosis and skewness in the technical validation, where an overall negative 
skewness and a positive kurtosis distribution are obtained for valence and arousal. However, it should be taken 
into consideration that these metrics are heavily impacted by the number of samples and the elicitation content.

Statistical analysis. A statistical test for a normal distribution of the dierent groups was computed using 
the Shapiro test (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html), to test the null 
hypothesis that the data was drawn from a normal distribution. When any of the obtained p-values are below 
the thresholds for signicance level (i.e. 0.05) we rejected the null hypothesis and concluded that the data is not 
normally distributed. Taken that the data is not normally distributed, we computed the Kruskal-Wallis H-test 
(https://hdocs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html#scipy.stats.kruskal) to assess the 
null hypothesis that the population median of all of the groups is equal. On the other hand, when the p-value is 
above 0.05, not showing enough evidence to reject the null hypothesis that the data was drawn from a normal 
distribution, we performed the ANOVA test (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_
oneway.html). All the tests were computed using the annotated segments data.

e experimental results are shown in Table 8. Analyzing the Shapiro test, across most groups, a p-value was 
obtained below the 0.05 threshold, denoting that the groups do not follow a normal distribution. Our results are 
in line with the normality test performed in11, where a Kolmogorov-Smirnov normality test p-value below the 
threshold was obtained across participants.

For the group dierences (Kruskal-Wallis/ANOVA), it can be seen that overall, we fail to reject the null 
hypothesis of equal medians across groups (p-value > 0.05). We observe that the normalized mean EDA and 
HR have very similar medians across the dierent groups, i.e. arousal and valence scores 1 to 5. ese results are 
expected since emotion classication is a complex task and a more diverse set of features (rather than the mean 
of the signals), combined with articial intelligence algorithms are required to separate the dierent classes and 
perform emotion recognition.

An exception is the normalized mean HR and EDA, and the arousal and valence self-reports for the dierent 
movie genres where a p-value below the threshold was obtained. Denoting that at least one group’s population 
median is dierent from the others.

To better understand the statistical results from Table 8, we illustrate the data distributions of the groups 
across the studied measurements in Figs. 9–12.

UsageNotes
Due to access controls, we cannot directly share the videos as a part of the dataset. With this in mind, we made 
available a detailed description of the videos used in the “video_info.csv” le, so they can be identied by the 
users.

Fig. 8 Histogram of the self-reported annotations.

Mean STD Skewness Kurtosis
Arousal 3.13 1.15 −0.29 −0.68
Valence 3.30 1.06 −0.08 −0.57

Table 7. Statistics on the annotations distribution.
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Potential applications. e G-REx dataset provides physiological data (namely EDA and PPG) recorded 
during a naturalistic emotion elicitation setup. us, the main usage of the dataset is to explore emotion recogni-
tion analysis through physiological data closer to naturalistic data. e naturalistic scenario allowed us to acquire 
large amounts of data which can enable the implementation of deep learning approaches that depend on a large 
number of samples for a good performance.

Taking that the data was collected during movie visualizations. For the entertainment industry, such data 
can be used to gauge the emotional impact of movies, video games, or other media content. With the collected 
movie genre information, our data can be used to understand the viewers’ emotional responses to dierent 
genres and better understand viewer preferences for the development of personalized content recommendation 
systems. is information can assist producers and directors in rening their content to better evoke the desired 
emotional responses from the audience, leading to more engaging and immersive experiences.

e group context in which the data was collected has been shown to improve the emotion recognition clas-
sication in comparison to an individual-based classication51. us, G-REx group data can be used as an envi-
ronment context to improve emotion classication. In a group setting, physiology synchrony has been shown 
that it can identify relevant events in time52, or important structural moments in a live concert53, just to name a 
few examples. With this in mind, our data can be used to analyze physiological synchronization, use it as context 
for emotion classication, identify major plot moments throughout the movie, or study inter-subject causality 
through physiological data. e creation of physiological synchrony indexes can be transferred to other applica-
tions such as romantic attraction54, learning success55, psychotherapy56, moments of connection57, among others.

In another eld, the collected demographic information, such as personality and age, can be used as fairness 
constraints in algorithms to account for bias and manipulative content58,59.

Lastly, in addition to the intended usage of the dataset, the collected physiological data can be used to analyze 
physiology-related quality indices or outlier detection algorithms.

e diverse applications of physiological data such as EDA and PPG in aective computing hold signicant 
promise for advancing elds like psychology, neuroscience, and human-computer interaction, among others.

Group Measurement Shapiro Kruskal-Wallis ANOVA

Arousal
Mean EDA (0.00, 0.00, 0.00, 0.00, 0.87) 0.17
Mean HR (0.00, 0.00, 0.00, 0.00, 0.00) 0.22

Valence
Mean EDA (0.00, 0.00, 0.00, 0.00, 0.00) 0.15
Mean HR (0.01, 0.00, 0.00, 0.00, 0.00) 0.55

Genre

Mean EDA (0.23, 0.51, 0.01, 0.80, 0.00, 0.00, 0.02, 0.0) 0.00
Mean HR (0.22, 0.19, 0.08, 0.00, 0.00, 0.00, 0.07, 0.00) 0.00
Arousal (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 0.00
Valence (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 0.00

Table 8. Statistical test p-values determining whether there are statistically signicant dierences among the 
dierent groups. e tested groups are arousal and valence dimensions ∈ {1, 2, 3, 4, 5}; Movie genre: Drama, 
Animation, Musical, Comedy, Horror, Mystery, Action, Documentary. e most signicant results are shown in 
bold (p-value < 0.05). A Kruskal-Wallis test is performed when the normality test (Shapiro) obtains at least for 
one group a p-value < 0.05, and the ANOVA if all the p-values > 0.05. Tests were computed using the annotated 
segment data.

Fig. 9 Violin plot distribution for the mean standardized EDA (subtracting the session mean and dividing 
by the session standard deviation per subject) and normalized HR (dividing by the session mean per subject) 
across the arousal self-report scores. e group medians and extrema are shown. Test computed using the 
annotated segments data.
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Limitations. e dierent parts of the data collection protocol and their required soware/hardware are 
susceptible to specic constraining factors, which we detail below. e dataset limitations are related to collecting 
a dataset in a naturalistic scenario.

Data collection setup. Taking into consideration that the data collection was performed in a naturalistic setting, 
the volunteers were free to cover themselves and the devices with their clothes such as jackets and even leave 
their seats. Moreover, the movie was played by the cinema club on a separate projector. So it was necessary to 
start the movie and the data collection with a manual clue that directed the simultaneous start. is may present 

Fig. 12 Violin plot distribution for the arousal and valence self-reports across the movie genres. Test computed 
using the annotated segments data.

Fig. 10 Violin plot distribution for the standardized mean EDA and normalized HR across the valence self-
reported scores.

Fig. 11 Violin plot distribution for standardized mean EDA data per subject and normalized mean HR per 
subject across the movie genres.
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issues in the precision of timing that should be noted. However, these are not a major concern given the times-
cales of the physiological responses measured. Nonetheless, future work should focus on using an automatic 
method for synchronization.

Emotion annotation. Emotion annotation was performed retrospectively based on the subject emotional 
events read by their physiological data. Taking into consideration the naturalistic setting of the data collection, 
some of the detected events may not be related to emotional events but to random movements. Additionally, 
when performing the emotion annotation the volunteers were given a video preview of the selected moments 
for annotation. However, as the volunteers were freely viewing the video, their emotion elicitation could have 
been not from the movie but from conversations with their peers. To gather input on these issues, in the emotion 
annotation platform, we provide an open text box where the participants can introduce long textual external 
comments for each video segment, and we record the information on which participants participated in the 
experiment and sat side by side.

Participants health and room conditions. Our work aims to display a data collection methodology that can 
be replicated at a large scale in the real world. As such, in our proof-of-work, the volunteers were in a cinema 
session and we were required to collect as little data as possible so the interruption to the normal cinema session 
would be minimal and a large number of volunteers would be open to participate regularly in the data collection. 
Consequently, no records were obtained about any psychiatric or neurological conditions of the participants, 
nor was there any information gathered on whether participants had consumed any pharmacological medi-
cation during or prior to the study. Similarly, no data was acquired on the humidity, temperature of the room, 
or food intake during or prior to the movie. Such factors can potentially inuence physiological responses and 
thereby emotional status and future works should contemplate incorporating this information if the protocol 
setup allows reducing this limitation while maintaining the eciency of the data collection process.

Code availability
e raw data in “xlsx” or “HDF5” format was transformed into dictionaries containing the relevant data in 
matrices stored in a “pickle” format.

For the physiological data pre-processing, we rely on the “biosppy” library60, which contains modules for lter-
ing the EDA and PPG signals, peak extraction and EDA decomposition into the EDR and EDL components. For 
the statistical tests analysis, we used the “SciPy” library (https://github.com/scipy/scipy).

For further information regarding the raw or transformed data, code incompatibilities, or others, we welcome 
the reader to contact our corresponding author.

e processing was done in Python 3.7.4, and the required code is available in the “5_Scripts” folder on Zenodo 
(https://zenodo.org/record/8136135) so it can be easily replicated.
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