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We consider multilingual dialogue systems and ask how the performance of a dialogue system can be improved by using
information that is available in other languages than the language in which a conversation is being conducted. We adopt a
collaborative chair-experts framework, where each expert agent can be either monolingual or cross-lingual, and a chair agent
follows a mixture-of-experts procedure for globally optimizing multilingual task-oriented dialogue systems. We propose a
mixture-of-languages routing framework that includes four functional components, i.e., input embeddings of multilingual
dialogues, language model, pairwise alignment between the representation of every two languages, and mixture-of-languages.
We quantify language characteristics of unity and diversity using a number of similarity metrics; i.e., genetic similarity, and
word and sentence similarity based on embeddings. Our main finding is that the performance of multilingual task-oriented
dialogue systems can be greatly impacted by three key aspects, i.e., data sufficiency, language characteristics, and model
design in a mixture-of-languages routing framework.
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1 INTRODUCTION

How many human languages are there in the world? As of 2019, Ethnologue summarized the most extensive
catalog of human languages in the world.! It covers 6,909 distinct languages, out of which 230 are spoken in
Europe, while 2,197 are spoken in Asia.? The ability to retrieve information across language boundaries is a
long-standing ambition in the information retrieval community [33]. Substantial progress has been made over
the years, with practical systems in place to help overcome language barriers [87].
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Table 1. Hierarchical classification based on the Ethnologue catalog? for English, German, Italian, Spanish, and Thai. The
Code column shows the unique identification by ISO 639-3 standards. Classification is the path to a language in the language
family trees in Ethnologue.

Language Code Classification

English eng Indo-European>Germanic>West>English

German  deu Indo-European>Germanic>West>High German>German>Middle
German>East Middle German

Italian ita Indo-European>Italic>Romance>Italo-Western>Italo-Dalmatian

Spanish spa Indo-European>Italic>Romance>Italo-Western>Western>Gallo-
Iberian>Ibero-Romance>West Iberian>Castilian

Thai tha Kra-Dai>Kam-Tai>Tai>Southwestern

The need for multilingual access has not disappeared. Roughly 80% of the world population does not speak
English [14]. As the ways in which we interact with information evolve, e.g., from documents to questions-and-
answers and from single-shot to multi-turn interactions, fundamental questions about multilingual information
retrieval resurface. How can we develop multilingual dialogue models to support multiple communities with
multiple languages as input and output [26, 91, 92]?

Significant challenges remain before we have effective multilingual dialogue systems. First, multilingual
dialogue datasets are quite scarce and face an acquisition challenge. For example, a survey [99] from several years
ago reports 63 available dialogue corpora and only 2 of them contain multilingual dialogues (i.e., Verbmobil [5]
and DSTC5 [41]), until March 2017. Since then, several publications have released dialogue datasets for training
multilingual chitchat [15, 52], and both bilingual [53] and multilingual [21, 36, 48, 71, 98, 103, 107, 108] task-
oriented dialogue systems (TDSs). Furthermore, a lack of language experts makes the acquisition of non-English
data challenging [26]. For example, in the multilingual natural language understanding (NLU) dataset [98], only
11.7% and 20.0% of the utterances are obtained for Thai and Spanish, respectively, due to a lack of bilingual
speakers.

Second, language commonalities and peculiarities are very important. On the one hand, languages have genetic
relationships through language evolution. We list the Ethnologue catalog entries of five languages (i.e., English,
German, Italian, Spanish, and Thai) in Table 1. English is neither always the best nor the only pivot language to
bridge the language gap [17, 83]. On the other hand, the unity and diversity of languages have been encoded
into high-dimensional vectors in recent computational linguistics. Figure 2 visualizes the mT5 [120] embeddings
of words from two multilingual dialogue benchmark datasets [71, 98], covering the five languages mentioned
above. Thai words are clustering independently, while words from European languages are mixed up. We further
conduct pairwise comparisons of the European languages in Figure 2. We find that intersecting areas (representing
commonalities between languages) and disjoint areas (representing peculiarities of languages) can be preserved
at the same time, but their proportions can be very different for different language pairs. For example, English
and Spanish are not as clearly separated as the other three language pairs, so the proportion of intersecting areas
is larger (see Figure 2).

Last but not least, the majority of TDS models focuses on either multiple language-specific optima [70, 98] or
cross-lingual adaptation from English to non-English towards multilingual TDSs (see Table 12 and 13). Very few
publications consider improving multilingual performance simultaneously, but simply training models using
multilingual data does not always lead to improvements, e.g., multilingual NBT [71] and bilingual mBART [53]

Shttps://www.ethnologue.com/browse/names
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Fig. 1. Visualization of the embeddings of words from two benchmark multilingual dialogue datasets, covering English,
German, Italian, Spanish, and Thai. We conduct dimension reduction using the UMAP algorithm [67] and plot all scatter in
2D coordinates using the Tensorflow embedding projector.*

are outperformed by their monolingual settings in terms of multiple evaluation metrics. Besides, optimizing all
pipeline tasks requires all language-specific annotations, which makes global optimization challenging [91].

In this work, we propose a multilingual dialogue framework that: (i) fully makes use of multilingual data;
(ii) captures commonalities between, and peculiarities of, languages; and (iii) improves multilingual performance
simultaneously. Figure 3 displays the framework.

We recast the multilingual TDS problem in a collaborative TDS framework [84, 86]: k expert agents account for
monolingual and cross-lingual dialogues, and a chair agent conducts a mixture-of-experts for globally optimizing
multilingual dialogues. To be more precise, we unify TDS tasks as a standard dialogue generation task and
implement a mixture-of-languages routing (MOLR) framework with four functional components, i.e., (i) input
embeddings, (ii) a language model, (iii) pairwise alignment between the representations of every two languages,
and (iv) mixture-of-languages. For the former two components, we choose mT5 [120] as the backbone of our base
model after comparing with pre-trained language baselines [8, 128]. Note that each base model can be either a
monolingual or cross-lingual expert agent, and it can flexibly be replaced by other popular multilingual language
models such as mBERT [20], mBART [55], and XLM-R [11], etc. Next, we introduce pairwise alignment between
the representations of every two languages to bridge the relationship between every two language routes. Here,
a language route is a path commencing from a source language as the starting point, passing through a pivot
language, to a target language as its destination. Language commonalities and peculiarities can be embedded into
pairwise alignment states. After that, we conduct global optimization by mixture of languages routing with two
collaboration policies, i.e., route-addressing and parameter-sharing. By mixture of languages routing we mean

“https://projector.tensorflow.org/
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(c) German vs. Italian. (d) English vs. Spanish.

Fig. 2. Pairwise comparison of the embeddings of words in dialogues from European languages.

the process of learning a combination of routes in the proposed model between or across multiple languages.
This setup enables the multilingual dialogue model to automatically learn the pivot languages, rather than fixing
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Inputs [DST] [DE] [DE] : DE_INPUT || [DST][IT][IT]:IT_INPUT || [DST][EN][EN] : EN_INPUT

[DST] [EN] [DE] : DE_INPUT || [DST][DE][IT]:IT_INPUT || [DST][IT][EN]: EN_INPUT

Fig. 3. The framework of mixture-of-languages routing (MOLR) in multilingual TDSs. Taking the dialogue state tracking (DST)
task as an example, the raw inputs are extended with prefixes and processed into monolingual and cross-lingual data,
respectively. The rounded rectangles represent intermediate language-specific representations. A learnable matrix M2 is
used to transform the presentations between any two languages [, [;,. The blue, red, and green arrows represent the routes
of English (EN), German (DE), and Italian (IT), respectively.

English as the only pivot language. Moreover, the unified generation framework equips the proposed model with
the ability to optimize multiple subtasks, simultaneously.

To assess the effectiveness of the proposed mixture-of-languages routing (MOLR) framework, we conduct
extensive experiments on two benchmark datasets, i.e., the multilingual DST dataset [71] and the NLU dataset [98].
We find that bilingual and multilingual MOLR models are on par with, and even outperform, state-of-the-
art baselines for both multilingual DST and NLU tasks. At best, compared with mT5, the proposed MOLR
models improve 2.31%/2.56%/0.67% of joint goal accuracy for English/German/Italian on the DST task, and
0.13%/1.89%/5.53% of slot F1 for English/Spanish/Thai on the NLU task. Note that most of the baselines conduct
classification over the predefined task-related label space; in contrast, we generate all the labels from the
vocabulary space.

The larger prediction space increases the difficulty of tasks, but the benefits are obvious: our framework is able
to predict values that are not predefined and is applicable to all dialogue tasks in a unified way.

The main contributions of this work are as follows:

e We propose a mixture-of-languages routing (MOLR) framework that is able to globally and simultane-
ously optimize the multilingual task-oriented dialogue system (TDS) performance. MOLR benefits from
multilingual data argumentation, language characteristic modeling, mixture-of-language routing.

ACM Trans. Inf. Syst.
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e We develop generation baselines that are at least on par with the-state-of-the-art classification baselines.

e We carry out a large number of contrastive experiments and deep-dive analyses, which reveal the
effectiveness of the MOLR framework and help understand its effectiveness.

e We find that it is better to gradually cross the language chasm: a larger degree of similarity between
source language and pivot language is usually helpful for the overall performance.

2 RELATED WORK

Given the challenges of multilingual TDSs, we summarize related work from three points of view: (i) data,
(ii) language, and (iii) model.

2.1 Multilingual data augmentation

Data augmentation has been widely used for alleviating data scarcity problems in multilingual dialogues [93]. On
the one hand, data augmentation targets better representation of dialogues. Zhao et al. [126] use atomic templates
to produce exemplars from dialogue acts, followed by a sentence generator to complete the whole utterance.
Louvan and Magnini [60] involve simple text and syntax substitutions, and combine them with pre-trained
language models. Yin et al. [123] replace text spans with paraphrases and use reinforcement learning to control
the quality of the augmented data. Pei et al. [85] search nearest neighbor dialogues as supplements to a current
dialogue to alleviate the scarcity of user preferences. Yan et al. [121] introduce heuristic approaches to generate
data and adopt contrastive learning to further improve the overall performance. Most recent work usually benefits
from monolingual pre-trained language models (e.g., BERT [20] and GPT-2 [89]). Researchers have also explored
retrieval-based approaches to expand the scale of dialogues [30]. Pei et al. [85] utilize retrieved neighbor dialogues
to enrich user profiles to improve the performance of dialogue response selection. Xu et al. [118] learn the
relation of neighboring elements and phrasal patterns to extend long-range dependencies in dialogues. Li et al.
[49] extract personalized wording from user-specific dialogue history as extra matching information to improve
retrieval-based dialogue systems. Ren et al. [95] involve search engine result pages to generate conversational
responses for answering complex information needs. Yan et al. [122] consider multiple responses to enhance
diversity of retrieval-based conversations by dynamic representation learning. Ling et al. [54] generate diverse
relevant and informative questions for improving interactiveness and persistence of human-machine interactions.

On the other hand, data augmentation aims to bridge language gaps. Dominant code-switching methods [43,
88] translate sentences in English into randomly selected target languages, which enables them to fine-tune
multilingual transformers with generalization ability across languages. XeroAlign [27] introduces an auxiliary
loss function based on machine translation and jointly optimizes the overall performance with the primary task.
Kaliamoorthi et al. [40] conduct knowledge transfer during distillation from a pre-trained mBERT teacher to a
tiny student model. Mrksic et al. [71] learn specialized cross-lingual vector spaces by multilingual data training
enhanced with semantic relations from lexical resources. Most recent work crosses the language chasm using
multilingual pre-trained language models (e.g., mBERT [20, 21, 36], XLM-R [11, 36, 48, 128], mT5 [108, 129]).

Similar to most recent work [108, 129], we choose a state-of-the-art multilingual pre-trained language model
(i.e., mT5) as our backbone for both better dialogue representation and language transfer. But unlike the above
approaches, (i) we generate pairwise language routes and focus on how to learn the relationships between
language pairs, and (ii) we aggregate language routes for global optimization of multilingual TDSs.

2.2 Unity and diversity of languages
In bioscience [24] and linguistic studies [22, 25, 105, 109], both unity and diversity play key roles for cross-linguistic

variation in human languages.
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Over time, languages generate biological or genetic relationships [29]. Linguists and language institutions have
conducted large-scale studies on language affinity® and the Ethnologue catalog.® Generally, a language family
tree is a common way to interpret genetic relationships that can reveal the unity and diversity of languages [104].
Their basic assumption is that two languages belong to the same language family if they are from a common
ancestor, or one is descended from the other.

In modern linguistics, important research topics include universal grammar [18, 75] and linguistic typology [79,
109, 114]. The former focuses on unity, in which all languages are treated as universal components of the language
faculty [18]. This is the theoretical basis of research on part-of-speech tagging [6, 73], chunking [61, 64], and
syntactic parsing [62, 68]. The latter emphasizes diversity, which captures the structural differences of languages,
as the principal bridge, to discover universals [19]. Morphology is usually diverse across languages, and it is
hard to find universals for traditional linguistic typology [97]. The world language tree is constructed based on
Levenshtein distances, which define the average number of edits needed to convert a source language to a target
language [72].

Language similarity has been a commonly used metric to quantitatively measure unity and diversity in recent
computational linguistics [2, 7, 112]. One branch of work measures language similarity by their structural
properties [16]. Bjerva et al. [4] define language similarity based on language structures, i.e., phrase structure
trees and dependency relations. Oco et al. [78] compute Dice’s coefficient to measure the similarity of eight
Philippine languages based on the language family tree in the Ethnologue. However, these approaches do not
apply when the structure is not available. Another branch of work measures language similarity as lexical overlap
between languages based on handcrafted cognates [77] or automatically extracted cognates [100]. Beinborn et al.
[3] identify cognates based on character-based machine translation. However, their methods cannot compare
the similarity of cognates without translation relationship (e.g., English “father” and the Italian “padre”) [2]. To
this end, most recent work encodes natural languages into high dimensional vectors namely embeddings, e.g.,
word embeddings [96, 102] and word-based syntax embeddings [50] and pretrained language models [42, 81].
Therefore, unity and diversity of languages can be measured using similarity and dissimilarity of embeddings.

In this work, we conduct an analysis of multilingual TDS results from the point of the view of language
characteristics, i.e., the unity and diversity of languages. We compare commonalities and specifications of
languages using multiple aspects, including visualization of word embeddings, as well as genetic and embedding-
based similarity metrics.

2.3 Multilingual TDS models

Monolingual TDSs have made considerable progress as reported in a large number of recent publications [9,
74, 99, 124]. Many recent studies have built new datasets and/or tasks to advance research on multilingual
TDSs [21, 36, 80, 119]. However, it is hard to fairly compare with the majority of approaches because they do not
report results on those all datasets [91]. Besides, from a technical perspective, understanding semantics is the
heart of any dialogue systems [35]. Thus, in this work, we mainly focus on a comparison of cross-lingual and
multilingual models on two commonly-used semantic understanding tasks (i.e., DST [71] and NLU [98]).

2.3.1 Cross-lingual models. Existing cross-lingual models mainly consider two key factors: dialogue representa-
tion and cross-lingual transfer. To conduct better language modeling, previous studies utilize variants of sequential
models. Upadhyay et al. [107] jointly train bilingual embeddings with a biRNN model for few-shot cross-lingual
NLU. Liu et al. [56] equip a biLSTM model with latent variables and word pairs to refine the aligned cross-lingual
word embeddings. Schuster et al. [98] deploy a biLSTM-CRF model, where the cross-lingual transfer comes from
sharing between the biLSTM and CRF layer across languages. Liu et al. [57] develop a biLSTM, transformer, and

Shttp://www.linguaechristi.org/people-groups/
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mBERT for sequence labeling tasks, and find that removing the word order can improve cross-lingual performance.
Several researchers generate code-switching sentences to enable cross-lingual capabilities, by either replacing
words [37, 58] or sentences [88] in target languages. MultiATIS++ [119] learns slot alignment based on an
mBERT encoder, machine translation, and label projection. GlobalWoZ [21] introduces several data augmentation
baselines for zero-shot and few-shot cross-lingual learning on the proposed dataset. Siddhant et al. [101] gain
cross-lingual transfer capabilities by representations from a multilingual neural machine translation encoder.
Gritta and Iacobacci [27] use an auxiliary translation-based loss function to jointly learn with the primary task.
Xiang et al. [116] inject multi-granularity translation-based noise to improve the robustness of cross-lingual
task-oriented dialogues. Hung et al. [36] finetune the XLM-R model with English and target languages in zero-shot
and few-shot transfer settings. Li et al. [48] provide several multilingual pretrained benchmarks such as XLM-R
and mBAR, and evaluate them on the multilingual ATIS and MTOP datasets for task-oriented semantic parsing.
Very recently, Zuo et al. [129] have applied mT5 with meta-learning on their unpublished dataset and Van et al.
[108] simply use mT5 as a state-of-the-art benchmark in their Vietnamese task-oriented dialogue dataset.

To sum up, the proposed methods enable transfer across languages using a variety of techniques, including
cross-lingual word embeddings [107], multilingual knowledge distillation [10], transferable latent variables [56],
code-swtching [37, 58, 88], word alignment [58, 119], and machine translation [27, 101, 116]. Most recent work
benefits from these techniques and from pre-trained multilingual language models such as mBERT [20, 21], XLM-
R [36, 48, 128], and mT5 [108, 129]. However, many terms in low resource languages are not in the vocabulary
of pre-trained language models [63]. So cross-lingual transfer techniques (e.g., pairwise alignment of language
states) are still necessary in the presence of pre-trained language models.

2.3.2  Multilingual models. Only few previous studies target multilingual TDS models. An intuitive solution is to
train a single model on combined multilingual datasets and evaluate the model on test data for all languages,
respectively. Mrksic et al. [71] use constraints from monolingual and cross-lingual synonymy and antonymy
to finetune multilingual word embedding spaces and apply them to the DST task. Schuster et al. [98] use a
multilingual translation-based biLSTM encoder to learn contextual word representations, evaluating on multiple
languages. GlobalWoZ [21] introduces several data augmentation baselines for zero-shot and few-shot cross-
lingual learning on the proposed dataset. Ding et al. [21] monolingual and cross-lingual use cases are parts of
multilingual TDSs and optimize for each use case separately. Recent work by Zuo et al. [129] reports a benchmark
of mT5 with meta-learning [23], however, neither the dataset nor the source code of the model is publicly
accessible.

None of the released models has modeled language relationships or conducted global optimization for multi-
lingual TDSs on public datasets, to the best of our knowledge. Unlike the majority of classification models, the
proposed generation model (i.e., MOLR) achieves competitive performance and is able to predict out-of-ontology
slot values as in [44, 115, 117].

Large language models (LLMs) have become more and more prevailing in the past few months. We have
been aware of this and are actively working towards extending MOLR by integrating open-sourced decoder-
only LLMs. This initiative facilitates the seamless adoption of the most recent LLMs. OpenChat3.5 [111] is a
multilingual chat model fine-tuned with the C-RLFT strategy on mixed-quality data, achieving performance
comparable to larger models like ChatGPT. BLOOM [46] is pretrained on the multilingual ROOTS corpus, offering
multilingual capabilities for various natural language processing tasks. Llama2-Chat [106] is a pretrained and
fine-tuned generative text model optimized specifically for multilingual dialogue tasks, ensuring high-quality
conversational responses. The sparse mixture-of-experts (MOE) language model Mixtral 8x7B [38] showcases
notable enhancements over its predecessor, Mistral 7B. Notably, the number of learnable parameters inevitably
increases 8-fold compared to its predecessor. We extend MOLR with decoder-only LLM backbones, however, the
increasing number of parameters is only from pairwise-align layers, not growing exponentially.

ACM Trans. Inf. Syst.
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3 COLLABORATIVE MULTILINGUAL DIALOGUE FRAMEWORK
3.1 A unified task-oriented dialogue system

A dialogue consists of multiple turns between a user and a system. At the t-th turn, the user provides an
utterance Uy, and the system produces a response R; as a reply. To get high-quality responses R, a TDS is usually
decomposed into four subtasks: natural language understanding (NLU), dialogue state tracking (DST), dialogue
policy learning (DPL) and natural language generation (NLG).

In this work, we unify a TDS with a neural network fy(-) parameterized by 0, which generally contains (i) an
input embedding, (ii) hidden states encoding, and (iii) output projection layers. This neural network works with
all subtasks in an end-to-end fashion. Specifically, we formulate the four subtasks as follows.

3.1.1 Natural language understanding (NLU). The NLU task is the key component of a task-oriented dialogue
system responsible for extracting the meaning or intent from user utterances expressed in natural language.
It involves parsing and interpreting user inputs to identify the user’s intention and extract relevant entities
necessary for completing the task. The types of the relevant entities are slots. Given a current user utterance U,
as input, the model outputs intents I; and slots S; by:

I, S; =f9(Ut)- (1)

3.1.2  Dialogue state tracking (DST). The DST task serves to maintain an internal representation of the current
state, i.e., belief state, of the dialogue based on the information exchanged between the user and the system.
It involves tracking the user’s goals, preferences, constraints, and other relevant information throughout the
conversation. Given a dialogue history C; = [Uy, S1, ..., U;] as input, the model outputs a belief state B; by:

B = fo(Cy), )

which can be denoted as a set of triples representing slot-value pairs for a specific domain: (domain, slot_name,
value).

3.1.3 Dialogue policy learning (DPL). The DPL task aims to the process of learning optimal policies for managing
the dialogue flow and making decisions on system actions. It involves learning a policy that maps the current
dialogue state to the most appropriate system action, considering the system’s goals and user preferences. Given
dialogue history C, belief states B;, and retrieval records from database D; as input, the DPL outputs system
actions by:

At = fo([Ce; Br; Dy)), ®3)
which is alist of triples representing as (domain, action_type, slot_name).

3.1.4 Natural language generation (NLG). NLG task refers to the process of generating natural language responses
or utterances based on the dialogue context, such as dialogue history, dialogue state, and system actions. It aims to
generate coherent and fluent natural languages that can be communicated to the user. Given dialogue history C;,
belief states B;, retrieval records from database D;, and system actions A; as input, the model outputs a response
R; by:

R; zfe([ct;Bt§Dt;At])~ (4)

To unify the above subtasks, we tackle them as a sequence-to-sequence generation task [32]. The input of all tasks
is a sequence of tokens that are aggregated from the concatenation of input sources, i.e., [U;], [Ct], [Hy; By; Dy ]
[Hy; By; Dy; Ap] for NLU, DST, DPL, NLG, respectively.

ACM Trans. Inf. Syst.
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3.2 Monolingual and cross-lingual expert agents

We use mT5 [120] as our backbone following conditional causal language modeling [121], which adopts a
transformer-based encoder-decoder model to learn a mapping f from an input sequence Xy, = (X1, X2, . . ., Xp,)
to a target sequence Yy, = (Y1,V2,- - - ¥Ym)s 1€, f0.0.00c : X1:n — Y1.m, by the following conditional probability
distribution:

PBenc,b4ce (Yim | Xin). (5)

For each input sequence, the encoder converts Xj., to the corresponding hidden states )N(m = (X1, Xg,...,%y,), the
encoder is represented as fp, . : Xi.n — Xi.n, formally, the probability can be computed as:

Peem (Xlzn | Xl:n)~ (6)

Mathematically, the decoder learns the probability distribution of Y;.,, given Hy.,, i.€., po(Y1.m | Xin). Using
Bayes’s rule, the distribution can be decomposed into conditional distribution over the vocabulary V at the j-th
timestamp token in the target sequence by:

P6sec Yim | Xien) = [ | Pouee 37 1 Yoy Kin), )
j=1

where y, denotes the 0-th target vector that represents the vector of the special “begin-of-sentence” token [BOS].
The model can be learned by minimizing the cross-entropy loss as follows:

N

ni
—Eexpert N Z Z Y; 10%1’0 (y; | Y:):j—l’Xllzn)’ (8)

i=1 j=1

where N denotes the batch size and n; denotes the length of the i-th target sequence.
For a monolingual agent, both the input sequence X;., and the target sequence Y;.,, are in the same language.
For a cross-lingual agent, the input sequence X;., and the target sequence Y., are from two different languages.

3.3 Multilingual agents with mixture-of-languages routing

We introduce the workflow of the mixture-of-languages routing (MOLR) model as shown in Figure 3, considering
the DST task as an example. First, we follow T5’s modeling of prefix and use “[TASK]” as the class label [90] and
extend each raw input with a task-specific prefix in the following format:

| [TASK] [Pivot-language] [Target-language]: [Source-language-input] |

Note that if [Pivot-language] and [Target-language] are identical, then the processed data is monolingual data,
otherwise it is cross-lingual data. Then, the processed inputs pass through the input embedding layers followed
by a language model, and they are transformed into language-specific hidden states. Next, MOLR uses a learnable
matrix to conduct pairwise alignment for every two language-specific hidden states. Last, MOLR adopts mixture-
of-languages policies to integrate all states from multiple routes between or across multiple languages. To be more
specific, we implement the input embeddings layers and the language model based on mT5, the state-of-the-art
pretrained language model and introduce pairwise alignment and mixture-of-languages routing as follows.
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3.3.1 Pairwise alignment. Recall that in Eq. 7, the k-th monolingual model outputs the probability over the
vocabulary V at the j-th timestamp by:

plgdec (YJ | YO:j—l, )N(I:n) = SOftmaX(deec (Yo:j—l: Xl:n))
= SOftmaX(wetask (S}f))
= softmax (W, 7%)

©)

= softmax([}'1,}’z, .- -»Yl(V\]T}N’f)’

where softmax(-) is the activation function that scales logits into probabilities, jlf € RY represents the decoded
hidden state at the j-th timestamp from a language model. Here, we use a pre-trained language model mTS5. ¢,
denotes the task layer and Wemp, = [y1,¥2,...,y|v|] € RIVIXd s the word embedding matrix.

Given any two monolingual models for languages I,, [, the hidden states can be denoted as 37;.“ and }7}” .Given a
learnable matrix M?_’b € R%* that transforms the decoded hidden states from yj to jf}b, and vice versa, formally,

we can denote the pairwise alignment as:

y}b — M;l—>b}~,;l c Rd,
~ra b—azb d (10)
yi = Mj y; € R%.

The benefit of this transition is that we can learn the hidden state of language b even though we only have the
training data of language a and vice versa.

3.3.2  Mixture-of-languages routing. To learn from a mixture of language routes, we utilize two collaboration
policies, i.e., route-addressing and parameter-sharing.

ca.ora.

Route-addressing. Let H = [§5: ,yi?;y;.b; ...] eRId (% is the number of languages and d is the dimension),

and Wy, Wi, W, € R%*4 be the matrices for query Q, key K, and value V. Each H is associated with a query Q
and a key-value pair (K, V). The computation of an attentive representation A of y; in the self-attention is:

Q=W,H e R™ K =W H e R™ vV =W, H e R,
A =softmax(a"'QK") € R, (11)
§; = ¢(AV) € RY,

where H is the attended output and A is the attention distribution that attends to V, « is a scaling factor, and ¢ is
a linear layer followed by the accumulation of attended values, parameterized by 6.

Parameter-sharing. For the same task and the same language, all the model parameters are shared, otherwise
only the parameters g, in a task layer  (see Eq. 9) are not shared, and the other parameters in the model are
shared. In the shared modules, we aim to learn a common space representation for all tasks. This policy serves as
regularization and alleviates the overfitting problem, as the model learns a representation that generalizes to all
tasks.

3.4 Extension of decoder-only large language models

With the emergence of LLMs and the prevalence of applications such as ChatGPT, decoder-only architectures
have become highly popular [28, 125]. We extend the proposed framework by incorporating decoder-only
LLMs as backbones that adhere to causal language modeling. We follow the LLM’s routine and treat it as an
instruction-following task. First, we prepare the raw data with the following format:
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Instruction: [Route-id][Pivot-language][Target-language][Task-prompt]
Input: [Raw-input]
Output: [Raw-output]

where “[Route-id]” serves as the special token used to identify each type of language route. It plays a crucial role in
determining the information flow, ensuring effective learning by considering both specification and generalization
of linguistic features” “[Task-prompt]” refers to an instance of a prompt designed to lead LLMs to accomplish a
specific task. The details of the prompt are listed in Table 11, Appendix A. Similarly, the processed inputs pass
through the input embedding layers followed by a decoder-only LLM, and they are transformed into language-
specific hidden states. Last, MOLR employs a mixture-of-languages policies to integrate states from multiple routes,
whether between or across multiple languages. More specifically, we implement the input embedding layers and a
state-of-the-art decoder-only LLM (e.g., LLaMa2-Chat [106], Bloom [46], OpenChat3.5 [111]) capable of supporting
the candidate languages. Subsequently, we introduce pairwise alignments and mixture-of-languages routing as
enhancements. Then, we perform parameter-efficient fine-tuning (PEFT) with low-rank adapters (LoRAs) [34] on
a LLM using the aforementioned data.

4 EXPERIMENTAL SETUP

4.1 Research questions

We seek to answer the following questions in the experiments:

(RQ4.1) Does the mixture-of-languages routing (MOLR) model improve the performance of monolingual and
multilingual models?

(RQ4.2) How do language characteristics influence the performance of MOLR models? (i) How to qualitatively
analyze language unity and diversity? (ii) How to quantify language unity and diversity? (iii) How do
language unity and diversity influence the mixture-of-languages?

(RQ4.3) How do the key components influence the performance of MOLR models? (i) How do different com-
bination policies influence the MOLR model? (ii) How do different number of layers of expert agents
influence the gains of the MOLR model?

(RQ4.4) Can the MOLR framework be effectively adapted to the new era of decoder-only LLMs?

4.2 Datasets and evaluation

We conduct a large number of experiments on two benchmark datasets for the following multilingual TDS tasks
to fairly compare with the majority of prior approaches [91].

4.2.1 Dialogue state tracking (DST) and natural language generation (NLG). The multilingual DST dataset [71] is
extended from the WOZ 2.0 dataset [113] by manually translating English into Italian and German, respectively.
For each language, the dataset contains 1200 multiple-turn dialogues in the restaurant domain, and it is split into
600, 200, 400 dialogues for training, validation, and testing. The dataset contains 4 types of goal-related slots:
3 informing slots (i.e., food, price range and area) to track a user’s search constraints, and 1 request slot (i.e.,
request) to track a user’s questions about the search results. The evaluation metrics for the DST task are:

e joint goal accuracy, which measures the proportion of dialogue turns where all search constraints exactly
match the ground truth on the test set.

® Request accuracy, which represents the proportion of dialogue turns where all the user questions are
recognized correctly.

The evaluation metrics for the NLG task are:
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e BLEU-4, which measures precision and calculates the ratio of 4-grams in the generated responses that
match those in the reference responses.

e ROUGE-L, which measures recall and calculates the ratio of longest common subsequences in the reference
responses that are captured by the generated responses.

4.2.2  Natural language understanding (NLU). The multilingual NLU dataset [98] consists of 43k, 8.6k, and 5k
single-turn dialogues in English, Spanish, and Thai, respectively, covering 3 domains (weather, alarm, and
reminder). The dataset has 12 types of intents and 11 types of slots. The evaluation metrics are:

e Intent accuracy, which indicates the proportion of the correctly identified intents.
e Slot F1, which is the geometric mean of the precision and recall for slot filling.

4.2.3 Language similarity metrics. We propose language similarity metrics to compare the similarity of any
two languages «, §§ from a genetic and semantic point of view. A higher degree of similarity denotes a higher
degree of language unity, while a smaller degree of similarity denotes a higher degree of language diversity.
To compare phylogenetic relationships, the Robinson-Foulds distance is the most widely used metric [82]. To
measure semantic similarity, word and sentence embeddings are widely used in modern NLP tasks [7].

o Genetic similarity, which defines the similarity of any two languages based on their Robinson-Foulds
distance (RFD)’ in language family trees. Here we define it as ¢generic (@, f) = m if they have at
least one ancestor, otherwise ¢generic(a, f) = 0. RFD(, -) counts the number of unique entries that are not
in common in the classification based on the Ethnologue catalogue (see Table 1).

e Word similarity, which measures the parallel degree of two languages using the cosine similarity of the
centroid word embeddings of the datasets, i.e., ¢rora(a, f) = cos(a”, B*). We compute the centroid of
word embeddings a*, * as the mean of all word embeddings.

e Sentence similarity, which measures the parallel degree of two languages as the cosine similarity of the
centroid sentence embeddings in the datasets, that is, @sentence (@, f) = cos(a®, B). A language can be
represented by the mean of all sentence embeddings in a dataset. We compute the centroid of word
embeddings a*, B* as the mean of all sentence embeddings. Here we use the embedding of the “[TASK]”
token at the beginning of in a sentence as its sentence embedding.

4.3 Language routes of mT5and variants

Recall that a language route is a path starting from a source language to a target language, passing through a
pivot language. We format all language routes of mT5 and its variants in Table 2. The notation I(-), H(-), T(-),
and M(-) indicates input layers, hidden layers, task layers, and mapping layers (see Section 3.2 and 3.3). In this
work, we develop I(+) and H(:) with a language model (Eq. 5) and M(-) for pairwise alignment (Eq. 10). To be
more specific, we have the following types of language routes for mT5 and its variants:

e mT5: single language route for monolingual models.

e mT5+bDA: double language routes for training a single model with bilingual data.

e mT5+bMOLR: quadruple language routes for training a bilingual model with bilingual data. There are
two monolingual routes and two cross-lingual routes.

e mT5+bDA: multiple language routes for training a single model with multilingual data. Here we use
triple language routes.

e mT5+bDA: multi-hop quadruple language routes for training a multilingual model with multilingual
data in multiple stages. Here we use two stages of quadruple language routes. The model from Hop1 is

https://en.wikipedia.org/wiki/Robinson%E2%80%93Foulds_metric
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Table 2. Language routes of the proposed models given any three languages a, f, y with DST or NLU as a [TASK].

Model Setting Language routes
mT5 Eﬁgfage e [TASKI[alla]  1(@) - H(a) - T(a)
Double [TASK] [«][e] : I(«) = H(a) — T(@)
mT5+bDA language routes  [TASK][B][B] : I(B) — H(B) — T(B)
[TASK] [«a][e] : I(@) = H(a) — T(@)
. Quadruple [TASK][BI[A] - 1(B) — H(B) — T(p)
mT5+bMOLR language routes  [TASK][f][a] : (@) = H(f) = M(f — a) — T(@)
[TASK][a][f] : I(B) — H(a) = M(a — ) — T(f)
Multivle |TASK] [«][] : I(a) — H(a) — T(a)
mT5+mDA languzge routes [TASKIIBIIBI : 1(B) — H(B) — T(B)
[TASK][y][y] : I(y) = H(y) = T(y)
Hop 1:
[TASK][y][y] : I(y) = H(y) = T(y)
[TASK][BI[A] - 1(B) — H(B) — T(p)
[TASK][A][y] : I(y) = H(B) — M(B —y) = T(y)
reenorg | Multi-hop [TASKI 1181 : I(8) = Hy) — My — ) = T(5)
language routes  Hop 2:
[TASK :I(@) > H(a) = T(a)

:1(B) — H(P) — T(P)
(a) > H(B) > M(f— a) > T(a)
:I(f) — H(a) » M(a — ) = T(p)

used as a pre-trained model for Hop2. A “hop” refers to a set of language routes between two languages, a
stage in a multi-stage process of training a multilingual model using multilingual data (see Table 2).

4.4 Baselines

For the DST task, we consider four groups of baselines, depending on the base model that they use: (i) based on
neural belief tracker (NBT), (ii) based on global-locally self-attentive dialogue state tracker (GLAD), (iii) based
on bidirectional encoder representations from transformers (BERT), and (iv) based on cross-lingual language
model pretraining (XLM). The selection is based on recent DST models that regard English, German, and Italian
as target languages, and report comparable results on the multilingual DST dataset [71].

For the NLU task, we also consider four groups of baselines, depending on the base model that they use:
(i) based on recurrent neural networks (RNNs), (ii) based on transformers, (iii) based on bidirectional encoder
representations from transformers (BERT), and (iv) based on cross-lingual language model pretraining (XLM).
The selection is based on recent NLU models that regard English, Spanish, and Thai as target languages, and
report comparable results on the multilingual DST dataset [98].

4.5

We use a pre-trained model mT5-small from the Huggingface library.® It consists of 8 layers of transformer
blocks for both encoders and decoders. Each attention module has 6 attention heads and the scaling factor « is
1. The total number of parameters is about 300 million. We set the training epochs to 60. We use the AdamW

Implementation details

8https://huggingface.co/google/mt5-small
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optimizer [59] with the default learning rate of 1e-5. We use a linear scheduler with 2,000 warmup steps. In the
DST task, we set the batch size to 6 and gradient accumulation to 2. In the NLU task, we set the batch size to 16
and gradient accumulation to 1.

The implementation of the extended framework uses decoder-only LLMs as backbones, which are open-
resourced and capable of supporting the candidate languages. For example, LLAMA-2-7B-CHAT-HF,” BLoom-781,1
and OPENCHAT3.5'! available through the Huggingface library. The total number of parameters is about 7 billion.
We perform PEFT with LoRA [34] and integrate MOLR into the LLaMA Board [31]. Specifically, the maximum
sequence length is 1024 and the learning rate is 1e-05. The MOLR models are trained for 10 epochs with a
per-device batch size of 8, and accumulated gradients every 4 steps. A cosine learning rate scheduler is employed,
with a maximum gradient norm of 1.0. We log results every 5 steps and save model checkpoints every 100 steps.
Warm-up steps are set to 2000. LoRA is used with a rank of 8 and a dropout rate of 0.1 for regularization. The
monolingual models are trained with the same settings excluding the number of epoch as 60. All experiments are
run on NVIDIA GeForce RTX 4090 24GB and NVIDIA A100 SXM4 40GB GPUs.

5 RESULTS

We show experimental results to answer the research questions in Section 4.1.

5.1 Main results (RQ4.1)

We compare the performance of MOLR models with the existing monolingual models and multilingual models
on both the DST (see Table 3) and the NLU (see Table 4) task.

5.1.1  MOLR improves both monolingual and multilingual DST. From the results for the DST task in Table 3, we
have the following observations.

First, the mT5 models with MOLR outperform all monolingual and multilingual baselines for German and
Italian. They also achieve higher scores than most of the scores reported for English. Specifically, mT5+bMOLR
significantly outperforms mT5 by 1.89%/2.56%/0.67% of joint goal accuracy and 0.3%/0.73%/1.09% of request
accuracy for English/German/Italian. The improvements demonstrate the effectiveness of MOLR. We believe the
main reason is that MOLR is able to explore pairwise relationships between languages and to fully make use
of multilingual data for global optimization. Although XQA-DST and DistilledBERTY achieve slightly higher
results than mT5+bMOLR for English in terms of joint goal accuracy (+0.54%) and request accuracy (+0.38%), the
predictive space is much smaller than MOLR models. This is mainly because QA-DST and DistilledBERTT are
classification models; in contrast, the MOLR models are generation models.

Second, mT5 is the state-of-the-art base model compared with all types of base models. More precisely, mT5
(89.53%) achieves the highest joint goal accuracy for English, followed by XLM-R-DST (88.50%), GLAD (88.10%),
BERT (87.70%), NBT (84.20%). mT5 dramatically improves the existing reported results on German and Italian.
Specifically, it increases 10.96% and 9.48% over the best NBT results on German and Italian, respectively.

Third, pairwise alignment brings consistent improvement. MOLR improves over mT5 in all settings. However,
NBT+mDA decreases the joint goal accuracy by 1.40% for English compared with monolingual NBT. The benefit
of multilingual data for training appears to be limited without modeling the language relationships. When adding
more languages, mT5+mMOLR achieves slight changes: Compared with mT5+bMOLR, mT5+mMOLR improves
the joint goal accuracy by 0.42% in English and the request accuracy by 0.37% in German, but slightly drops in
the remaining settings.

“https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Ohttps://huggingface.co/bigscience/bloom-7b1
https://huggingface.co/openchat/openchat_3.5
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Table 3. Comparison of dialogue state tracking (DST) models for supervised learning using English, German, and Italian
as target languages. In the cells with results, the numbers before and after “/” denote joint the goal accuracy and request
accuracy, respectively. The boldface indicates leading results. As multilingual settings are under-explored in the baselines
models, we reproduce several competitive baselines for comparison. These results are marked using “*”.

Joint Goal/Request Accuracy (%)

DST Models Settings English  German Italian
NBT

NBT [69] NBT w/CNN encoder 84.20/91.60 - -
NBT-DNN [69] NBT w/DNN encoder 84.40/91.20 - -
NBT+SSU [70] NBT+statistical state update 84.80/- 68.10/- 76.10/-
StateNet [94] NBT+LSTM-based state update 88.90/- - =
NBT+Morph [110] NBT+morphology fine-tuning - 66.30/- 78.10/-
NBT+mDA [71] NBT+multilingual data augmentation 82.80/- 57.70/- 77.10/-
GLAD

GLAD [127] Global-locally self-attentive DST 88.10/97.10 2 -
GCE [76] GLAD-+globally-conditioned encoder 88.51/97.38 - -
GLAD+DA [123]  GLAD+paraphrase data augmentation 88.00/- - -
GLAD+RDA [123] GLAD+DA+reinforcement learning 90.70/- = -
BERT

BERT [38] BERT context encoder 87.70/~ - -
BERT+RNN [47] BERT context encoder+RNN state decoder 89.20/- - -
BERTY [45] BERT context & candidate encoder 90.50/97.60 - -
DistilledBERTT [45] Distilled variant of BERTY 90.40/97.70 53.28%/93.01* 67.92*/95.26*
SUMBT [47] BERT+RNN-+slot-utterance attention 91.00/- - -
XLM

XLM-R-DST [128] XLM-R context encoder with 270M parameters 88.50/- - -
XQA-DST [128] XLM-R+value span extraction 92.38/- - -

T5 (Ours)

mT5 Multilingual T5 with 300M parameters 89.53/97.02 79.06/95.92 87.58/95.44
mT5+bMOLR mT5+bilingual mixture-of-languages routing ~ 91.42/97.32 81.62/96.65 88.25/96.53
mT5+mMOLR mT5+multilingual mixture-of-languages routing 91.84/97.02 81.56/97.02 87.77/96.41

Fourth, global optimization of multilingual DST is still underexplored. NBT+Morph finetunes German and
Italian model with multilingual word embeddings. NBT+mDA uses multilingual data during training for global
optimization. However, recent models ignore the performance on German and Italian. This might be because most
research is English-centered: either English models or cross-lingual adaptation from English to other languages.

5.1.2  MOLR improves monolingual and multilingual NLU. From the results on the NLU task in Table 4, we have
the following observations.

First, MOLR models outperform or are on par with all monolingual and multilingual baselines for English,
Spanish, and Thai. Particularly, mT5+bMOLR and mT5+bMOLR improve over mT5 by 5.32%/1.14% and 5.13%/1.75%
of slot F1 for Thai and Spanish. The improvements prove the effectiveness of MOLR. The gain of MOLR is limited
in other settings, including evaluation results on English and intent accuracy. The general improvement is smaller
than 0.5%. One reason is that the volume of data is already sufficient for good intent identification. For example,
biLSTM-CRF achieves 99.11% of accuracy on intent identification and 94.81% of slot F1 for English. Thus, the

ACM Trans. Inf. Syst.



Mixture-of-languages Routing for Multilingual Dialogues « 17

Table 4. Comparison of natural language understanding (NLU) models for supervised learning using English, Spanish, and
Thai as target languages. In the cells with results, the numbers before and after “/” denote intent accuracy and slot F1 score,
respectively. Boldface indicates leading results.

Intent Accuracy/Slot F1 (%)

NLU Models Settings English  Spanish Thai
RNNs

biLSTM [57] biLSTM for only target language ~/94.87 - -
biLSTM-CRF [98] Monolingual biLSTM with CRF layer 99.11/94.81 97.26/80.95 95.13/87.26
CoVe [98] biLSTM-CRF based NMT to English - 97.81/82.55 96.87/90.60
mCoVe [98] Multilingual CoVe [66] - 97.82/82.49 96.98/91.22
mCoVe+Auto [98] mCoVe with autoencoder objective - 97.90/82.13 96.87/91.51
Transformers

Transformer [57] Transformer w/frozen word embeddings —/94.93 - -
BERT

mBERT [57] mBERT fine-tuning —/95.97 - -
mBERT+DA [93] mBERT+ monolingual data augmentation - 98.20/84.27 91.42/59.68
XLM

XLM-R [27] XLM-R encoder with 270M parameters - 98.70/89.10 96.80/93.10
XLM-R+TA [27] XLM-R+translation alignment loss 99.30/96.60 98.80/89.80 97.80/94.40
T5 (Ours)

mT5 Multilingual T5 with 300M parameters 99.35/96.40 98.68/88.45 97.52/89.48

mT5+bMOLR mT5+bilingual mixture-of-languages routing ~ 99.29/96.49 99.08/89.59 97.28/94.81
mT5+mMOLR  mT5+multilingual mixture-of-languages routing 99.40/96.50 98.88/90.21 97.70/94.61

performance of slot filling leaves more room for improvement than intent identification. Another reason is
that the extra information from low-resource languages (e.g., Spanish and Thai when used in combination with
English) is quite limited. For example, in the NLU dataset, only 11.7% and 20.0% of the utterances are parallel
with English, respectively, which is al that is available to help improve the English model. In contrast, the rest of
the non-parallel English utterances can bring new information to the low-resource languages.

Second, mT5 is the state-of-the-art base model compared with all types of base models similar to DST (see
Table 3). Specifically, mT5 (96.40%) obtains the highest slot F1 for English, followed by mBERT (95.97%), trans-
formers (94.93%) and biLSTM (94.87%). XLM-R is as competitive as mT5, but we choose mT as our backbone
considering both the DST performance and the generation benefit (i.e., out-of-ontology prediction).

Third, pairwise alignment brings consistent improvements for slot filling. Compared with mT5, mT5+bMOLR
improves 5.32%, 1.14%, 0.09% of slot F1 for Thai, Spanish and English, respectively. Adding more languages to
mT5+bMOLR, mT5+mMOLR brings a small increase for most settings, except for a small decrease in slot F1 for
Thai (-0.2%). Similarly, it depends on how much meaningful information a new language can bring to learn better
relationships.

Fourth, global optimization of multilingual NLU is still underexplored. Even for language-specific optimization,
biLSTM-CRF and XLM-R+TA are the only approaches for which results are reported on all languages, to the best
of our knowledge. This might be because most prior research focuses on cross-lingual adaptation from English to
other low-resource languages in the NLU dataset.
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5.2  Analysis of language characteristics (RQ4.2)

In Section 5.1, we observe that the overall performance varies a lot for different languages. In this section, we
first analyze the language characteristics (i.e., unity and diversity) in depth by visualizing the word embeddings,
as well as genetic, word, and sentence similarities of different languages. Then we analyze the gains on different
languages in different settings.

5.2.1 Qualitative analysis of the unity and diversity of languages. See Figure 4 for visualizations of the word
embeddings of mT5+mMOLR in the DST and NLU datasets, before and after fine-tuning, respectively. We aim to
understand how MOLR influences the unity and diversity of languages qualitatively.

First, different languages have both similar and dissimilar words in the semantic embedding space. Specifically,
some data points from different languages are very close to each other while other data points are far away and
located in an isolated cluster. For example, parts of English and German points are mixed up while other sets of
German data points are concentrated in an isolated area.

Second, similarities between languages are very different for different language pairs. For example, the
boundaries between English and German, and between English and Italian are not obvious; in contrast, the
boundaries between Thai and English, and Thai and Spanish are quite clear. This indicates that English, German,
and Italian are quite similar to each other, while Thai is an independent and distinct language that is not similar to
English and Spanish. Besides, Thai is closer to English rather than Spanish; the English cluster seems to separate
Thai and Spanish.

Third, the relative relationships are not changed before and after fine-tuning. In DST, English, German, and
Italian points are mixed together with a small isolated cluster of German points. In NLU, English and Spanish
have both shared and non-shared areas, while the majority of Thai points are in an isolated cluster. This shows
that English, German, and Italian have more unity while Thai has more diversity compared with English and
Spanish.

5.2.2 Quantitative analysis of the unity and diversity of languages. As shown in Table 5, we evaluate the unity and
diversity of languages by three similarity metrics, i.e, genetic similarity, word similarity, and sentence similarity
based on word embeddings of mT5 model in the datasets. We aim to quantify the unity and diversity of language
and use the similarity order to analyze our MOLR models in the next section.

First, (EN, DE) are the most similar language pair in terms of genetic similarity, followed by (EN, IT), (DE,
IT), (EN, ES). Second, (ES, TH) are more similar than (EN, TH) in terms of word and sentence similarity. Last
but not least, considering the similarity in one aspect is not always meaningful. For example, the comparison of
genetic similarity is invalid for “(EN, TH)” and “(ES, TH)”, and word similarity of “(EN, DE)” and “(EN, IT)” has
very little difference. Another example is that the order of sentence similarity is inconsistent with that of word
similarity. Unlike in NLU, the difference in word similarity in DST is small, which might increase the difficulty of
distinguishing between sentence embeddings. Hence, it is important to consider all similarity metrics. In this
work, we sort the similarity degree of all language pairs in descending order as:

| $(EN,DE) > ¢(EN,IT) > ¢(DE,IT) > $(EN,ES) > $(EN,TH) > ¢(ES, TH)

The point of this order is to fairly compare the similarity between languages; this can be used as language-specific
knowledge to analyze how different languages influence MOLR.

5.2.3 Gains of MOLR are language-specific. We compare mT5 and its variants with different language routes on
the DST and NLU tasks, as shown in Table 6.

First, gains of MOLR vary when choosing different pivot languages (Section 3.3) at different stages of language
routes (Section 4.3). mT5+bMOLR achieves better performance when the similarity between the source language

2https://projector.tensorflow.org/

ACM Trans. Inf. Syst.



Mixture-of-languages Routing for Multilingual Dialogues « 19

’ :’1

A
~

* R

% -
M English 3 H English
=G
ome| Zom
(a) DST word embeddings “before” fine-tuning. (b) DST word embeddings “after” fine-tuning.
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Fig. 4. Visualization of words in the DST and NLU datasets “before” and “after” fine-tuning. We conduct dimension reduction
using the UMAP algorithm [67] and plot all scatter in 2D coordinates using the Tensorflow embedding projector.!?

and pivot language is larger in most settings. Specifically, it obtains 1.35% higher joint goal accuracy for Italian
DST using English rather than German as the pivot language. Besides, it gets 1.45% improvements in slot F1
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Table 5. Similarity between languages. We report genetic similarity, as well as word and sentence similarity based on the
DST and NLU datasets.

DST: Similarity NLU: Similarity
Language pair Genetic Word Sentence Language pair Genetic Word Sentence
(EN, DE) 0.1667 0.6725 0.8813 (EN, ES) 0.0833 0.7448 0.8777
(EN,IT) 0.1250 0.6711 0.9036 (EN, TH) 0.0000 0.4787 0.5706
(DE, IT) 0.0909 0.6486 0.9066 (ES, TH) 0.0000 0.4056 0.5512

Table 6. The performance of the proposed mT5-based models with different language routes on the DST and NLU tasks. The
bold numbers are the best results in terms of different evaluation metrics for target languages.

DST: Joint Goal / Request Accuracy (%)
Model English (EN) German (DE) Italian (IT)

mT5 89.53/97.02 79.06/95.92 87.58/95.44
EN,.DE—EN ENJIT—EN DEEN—DE DEIT—-DE ITEN—IT ITDE—-IT

mT5+bMOLR 91.42/97.32 91.11/97.57 81.62/96.65 81.62/96.23  88.25/96.53 ~ 86.98/96.41

1.DEIT—DE 1.ITDE—IT 1.ENJIT—EN 1ITEN—IT 1ENDE—EN1DEEN—DE
2.EN,.DE—EN2.EN,IT—EN 2.DE,EN—DE2.DE,IT—>DE 2ITEN—IT 2ITDE—IT

mT5+mMOLR 91.84/97.02 91.42/97.14 81.56/97.02 81.38/96.23 87.77/96.41  86.00/96.35

NLU: Intent Accuracy/ Slot F1 (%)
English (EN) Spanish (ES) Thai (TH)
mT5 99.35/96.40 98.68/88.45 97.52/89.48
EN,ES—EN ENTH—EN ESEN—ES ESTH—ES THEN—TH THES—TH

mT5+bMOLR  99.29/96.49 99.29/96.34 99.08/89.59 98.78/88.94 97.28/94.81 97.64/93.39

1.ES,TH—ES 1.TH,ES—TH 1.EN,TH—EN1.TH,EN—TH1.EN,ES—EN 1.ES,EN—ES
2.EN,ES—EN 2.EN,TH—EN2.ES.EN—ES 2.ESTH—ES 2THEN—TH2THES—TH

mT5+mMOLR 99.40/96.50 99.30/96.39 98.91/89.53 98.88/90.21 97.70/94.61 97.52/94.59

for Thai NLU using English rather than Spanish as the pivot language. For mT5+mMOLR, the first stage is
pre-training, and the second stage is the main procedure. It achieves better performance when the similarity
between the source language and the pivot language in the second stage is larger in most settings. For example,
it improves 1.77% of joint goal accuracy for Italian DST using English rather than German as the pivot language
in the second stage. Language transfer is easier if the source and pivot languages are more similar, and it can
avoid introducing too many language gaps in the early stage of a language route.

Second, compared with mT5+bMOLR, the performance of mT5+mMOLR varies with different additional
languages in the second stage. For example, mT5+mMOLR increases 0.42% in joint goal accuracy by adding
Italian into the additional route of “DE,JIT—DE”. However, mT5+mMOLR decreases 0.98% in joint goal accuracy
by adding English into the additional route of “DE,EN—DE”. The second stage is essential, and it is helpful if the
source language and pivot language are similar in the second stage.

Third, the performance of mT5+mMOLR is dependent on the volume of additional languages and the difficulty
of tasks. For most settings, the changes are small compared with mT5+bMOLR. Particularly, mT5+mMOLR
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Table 7. Comparison of the effect of different combination policies on mT5+bMOLR model. The bold numbers are the best
results in terms of different evaluation metrics for target languages.

DST: Joint Goal Accuracy / Request Accuracy (%)
Model English (EN) German (DE) Italian (IT)
mT5 89.53/97.02 79.06/95.92 87.58/95.44

EN.DE—EN ENJIT—EN DE,EN—DE DEJIT—DE ITEN—IT IT,DE—IT

w/ bDA 89.59/96.71 91.05/96.90  79.98/96.35 81.25/96.53 85.82/96.71 87.89/96.17
w/ route-addressing ~ 89.11/97.14 89.17/95.92 79.12/95.44 77.97/95.74 84.97/95.86 80.85/95.01
w/ parameter-sharing 91.42/97.32 91.11/97.57 81.62/96.65 81.62/96.23 88.25/96.53 86.98/96.41

NLU: Intent Accuracy / Slot F1 (%)
English (EN) Spanish (ES) Thai (TH)
mT5 99.35/96.40 98.68/88.45 97.52/89.48
EN,ES—-EN EN,TH—EN ESEN—ES ESTH—ES TH.EN—TH THES—TH

w/ bDA 99.34/96.53 99.32/96.47 98.98/89.92 98.72/88.57 97.87/94.45 97.52/92.06
w/ route-addressing  99.25/95.93  99.22/95.86 98.72/89.89 98.45/87.19 97.52/93.67 97.16/91.33
w/ parameter-sharing 99.29/96.49  99.29/96.34 99.08/89.59 98.78/88.94 97.28/94.81 97.64/93.39

increases 1.27% of slot F1 by adding English into the additional route of “TH,EN—TH” for Spanish NLU. Similarly,
mT5+mMOLR increases 1.20% of slot F1 by adding English into the additional route of “ES,EN—ES” for Thai
NLU. One reason is that English is a high-resource language compared with Spanish and Thai in NLU, which is
able to provide sufficient extra information for improvement. Another reason is that the slot filling task is more
difficult than intent identification, and the potential for improvement of the former is larger than the latter.

5.3 Analysis of key components of mT5+bMOLR (RQ4.3)

5.3.1 Combination policies are essential. We compare mT5 with its variants, i.e., mT5+bDA which is mT5 with
bilingual data training, route-addressing, and parameter-sharing combination policies, as shown in Table 7.

First, mT5 with parameter-sharing outperforms mT5 in all settings. Specifically, it improves 2.56%/0.73%,
1.83%/0.61%, and 0.19%/0.96% for German, English, and Italian DST in terms of joint goal accuracy and request
accuracy, respectively. Meanwhile, it improves 0.18%/5.13%, 0.23%/1.76%, and 0.05%/0.10% for Thai, Spanish, and
English NLU, respectively. This proves the overall effectiveness of MOLR models.

Second, mT5 with parameter-sharing outperforms or is on par with bDA (i.e., bilingual data augmentation) in
all settings. In DST, “EN, DE—EN”, “EN, DE—DE”, “ITLEEN—DE” changes +1.83%/+0.61%, +1.64%/+0.3%, +2.43%/-
0.17% in terms of joint goal accuracy and request accuracy, given a pivot language similar to source language.
However, mT5+bDA cannot always benefit from multilingual data, e.g., “ITEN—IT” decreases 1.76% of joint goal
accuracy compared with mT5. In NLU, “TH,ES—TH” and “ES, TH—ES” mutually increase as much as 2.53% and
1.64% in terms of slot F1, while the changes are quite small (<0.40%) for the other settings. This reveals that the
gains are also from MOLR and global optimization, along with multilingual data.

Third, policy parameter-sharing outperforms route-addressing in general. In DST, parameter-sharing beats
route-addressing by 1.94%-6.13% and 0.18%-1.64% in terms of joint goal accuracy and request accuracy. In NLU,
parameter-sharing outperforms route-addressing by 0.04%-2.40% and 0.48%-2.06% in terms of joint goal accuracy
and request accuracy, excluding the intent accuracy for “TH,EN—TH” (-0.24%) and slot F1 for “ES,EN—ES”
(-0.30%). Thus, we use parameter-sharing as the combination policy for our best-performing models.
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Table 8. Model complexity by agent models with the different number of layers.

DST: Joint Goal Accuracy / Request Accuracy (%)
English (EN) German (DE) Italian (IT)
#Layers EN.DE—EN ENJIT—EN DEEN—DE DEIT—-DE ITEN—IT ITDE—-IT

8 91.42/97.32 91.11/97.57 81.62/96.65 81.62/96.23 88.25/96.53 86.98/96.41
6 90.75/97.20  90.44/97.14  80.83/95.01 82.47/95.98  85.51/96.10 87.16/96.41
4 88.92/97.20  88.98/97.02  78.76/96.04  79.79/96.53  85.09/96.35  83.99/95.98
2 86.49/97.14  86.79/97.02  76.38/95.56  78.03/94.64  81.98/95.19  81.56/95.19

NLU: Intent Accuracy / Slot F1 (%)
English (EN) Spanish (ES) Thai (TH)
EN,ES—-EN EN,TH—EN ESEN—ES ESTH—ES THEN—-TH THES—TH

99.29/96.49  99.29/96.34  99.08/89.59 98.78/88.94 97.28/94.81 @ 97.64/93.39
99.38/96.37  99.27/96.33  98.88/89.87  98.68/88.33  97.58/93.27 = 97.66/91.58
99.28/96.07  99.27/96.01  98.95/87.28  98.55/83.75  97.40/91.61  97.22/84.87
99.30/93.53  99.33/93.68  98.62/83.59  98.39/66.25  97.64/84.82  96.93/69.16

NSRS Y

5.3.2  Impact of the number of layers varies with tasks and languages. We study the influence of the different
number of layers for each expert model in Table 8.

First, the best settings of layers for expert agents (Section 3.2) vary for different tasks. In DST, joint goal
accuracy notably decreases 3.59%—6.27%, and request accuracy only decreases by 0.17%—-1.59% with reducing the
number of layers from 8 to 2. In NLU, slot F1 dramatically reduces by 2.96%—-24.23%, in contrast, intent accuracy
reduces or even increases slightly, e.g., “THEN—TH” improves 0.36%. The difficulty of different tasks varies, and
the number of layers has less influence on simpler tasks.

Second, the influence of the number of layers is language-specific. In DST, we reduce the number of layers
from 8 to 2. The mixture of German and Italian (i.e., “DEIT—DE” and “IT,DE—IT”) does not always drop like
the rest of the settings. Since the amount of multilingual data is comparable, it is likely caused by the language
specification, i.e., (DE, IT) are less similar than (EN, DE) and (EN, IT), and the mixture of German and Italian can
preserve more diversity.

Third, the number of layers is sensitive to high-resource pivot languages. Reducing the number of layers from
8 to 4, the changes in “EN,ES—EN ” and “EN,TH—EN” are less than 0.1% and 0.5% in terms of intent accuracy
and slot F1. The pivot languages (i.e., Spanish and Thai) have much fewer data samples compared with the
high-resource language, i.e., English.

5.4 Feasibility of MOLR framework with decoder-only LLM backbones (RQ4.4)

5.4.1 Outcome. We evaluate the performance of extended MOLR models using various LLMs as backbones
on the DST task, which poses greater challenges and opportunities for improvement than the NLU task. We
compare the results of several models with both encoder-decoder and decoder-only LLMs as backbones in
Table 9. First, LLaMa-2-Chat+mMOLR significantly outperforms all models in terms of all metrics, using English,
German, and Italian as target languages. Specifically, joint goal accuracy increases by 1.48% in English, 2.52% in
German, and 2.33% in Italian, compared with mT5+mMOLR. The primary factor is the substantial increase in the
number of learnable parameters in the latest decoder-only LLMs, surpassing those of encoder-decoder LLMs by a
significant margin. This verifies the feasibility of extending MOLR framework with various decoder-only LLM
backbones. Second, the MOLR framework exerts a more significant impact on decoder-only LLMs. The MOLR
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Table 9. Comparison with models based on decoder-only LLMs for supervised learning of the dialogue state tracking (DST)
task, using English, German, and Italian as target languages. In the cells with results, the numbers before and after “/” denote
joint the goal accuracy and request accuracy, respectively. Boldface indicates leading results.

Joint Goal Accuracy / Request Accuracy (%)

DST Models English German Italian
Encoder-decoder LLMs

mT5 89.53/97.02 79.06/95.92 87.58/95.44
mT5+mMOLR 91.84/97.02 81.56/97.02 87.77/96.41
Decoder-only LLMs

OpenChat3.5 14.52/95.75 15.74/91.49 15.55/93.32
Bloom 87.97/96.66 75.58/95.81 80.50/95.20
LLaMa-2-Chat 90.40/97.21 79.83/96.05 86.63/96.42

LLaMa-2-Chat+mMOLR  93.32/97.93 84.08/97.27 90.10/97.08

Table 10. Comparison with models based on decoder-only LLMs for supervised learning of the natural language generation
(NLG) task, using English, German, and ltalian as target languages. In the cells with results, the numbers before and after “/”
denote BLEU-4 and ROUGE-L, respectively. Boldface indicates leading results.

BLEU-4 / ROUGE-L (%)

NLG Models English German Italian
Encoder-decoder LLMs

mT5 33.97/32.66  32.96/33.03 32.80/32.17
mT5+mMOLR 33.91/32.94 35.53/33.81 34.14/33.09
Decoder-only LLMs

OpenChat3.5 5.01/10.54 4.11/5.35 4.54/8.23
Bloom 29.14/27.24  28.65/27.14 28.11/26.79
LLaMa-2-Chat 31.50/29.21  30.95/29.22 30.68/28.62

LLaMa-2-Chat+mMOLR 33.24/31.39  32.59/30.46  32.61/30.54

framework improves the mT5 performance by 2.31% in English, 2.5% in German, 0.19% in Italian, in terms of joint
goal accuracy, while it boosts LLaMa-2-Chat performance by 2.92% in English, 4.25 in German, 3.47% in Italian.
Third, decoder-only LLMs are still facing difficulties in instruction following. For example, OpenChat3.5 drops
dramatically in all languages in terms of joint goal accuracy. We carefully checked the generated output and
found the reason to be that OpenChat3.5 generates lots of redundant and repeat inform-slot-value triplets.

We evaluate the performance of extended MOLR models using various LLMs as backbones on the NLG task,
as shown in Table 10. First, we observed that the utilization of MOLR led to enhancements in the performance of
both the encoder-decoder LLM mT5 and the decoder-only LLM LLaMa-2-Chat. For instance, with MOLR, mT5
achieved a notable increase of 2.57% in BLEU-4 for German and 1.34% for Italian, while experiencing a slight
decrease of 0.06% in English. Similarly, LLaMa-2-Chat exhibited improvements, with BLEU-4 increasing by 1.74%
in English, 1.64% in German, and 1.93% in Italian. Second, the combination of mT5 with mMOLR consistently
attains the highest scores, closely trailed by LLaMa-2-Chat with mMOLR. This trend can be attributed to mT5’s
encoder-decoder architecture, while LLaMa-2-Chat operates within a decoder-only framework and heavily relies
on the quality of the provided prompt as input. Notably, the prompt for the DST task is comparatively simpler
and less well-designed compared to that for the NLG task.
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5.4.2 Discussion. In the past few of months, decoder-only LLMs have more and more become prevailing. We are
cognizant of this and are actively working towards extending MOLR by integrating open-sourced decoder-only
LLMs. This initiative facilitates seamless adoption of the most recent LLMs. However, tracking belief states with
LLMs is still challenging even for some commercial models such as ChatGPT. Several recent studies show that the
generated outputs are sensitive to a well-designed prompt with an exhaustive list of schema [51, 65]. Moreover, it
unavoidably has extrinsic hallucination beyond the given schema and knowledge [1]. Finally, it is worth noting
that tailoring LLMs for downstream tasks necessitates ample task-specific data on a large scale. This underscores
the potential of MOLR, offering a pathway for multilingual data augmentation.

6 CONCLUSION AND FUTURE WORK

In this work, we have studied multilingual task-oriented dialogue systems in a collaborative task-oriented dialogue
system framework, where expert agents work on monolingual and cross-lingual dialogues, and the chair agent
accounts for a mixture-of-experts approach for globally optimizing multilingual dialogues. We have proposed a
mixture-of-languages routing framework, which aims to fully make use of multilingual data, capture language
relationships, and globally optimize multilingual performance simultaneously. We have conducted experiments
on two benchmark multilingual task-oriented dialogue system datasets to verify the effectiveness of the proposed
mixture-of-languages routing based on a pre-trained mT5 model.

Our main finding is that mixture-of-languages routing can be greatly influenced by data availability, language
characteristics, as well as collaboration policies. To be precise, training mixture-of-languages routing with
sufficient multilingual data can significantly improve performance over training with little data in a low-resource
language. Moreover, mixture-of-languages routing with increasing amounts of data in different languages can
perform very differently, so the gains of mixture-of-languages routing are language-specific. Different combination
policies enable global optimization, and their performance varies a lot; this demonstrates the versatility and
effectiveness of the collaborative paradigm. Together, these findings and insights provide an affirmative answer
to the leading research question for this work: multiple languages can indeed be used in a collaborative way to
improve the performance of task-oriented dialogue systems in every single language.

As to broader implications of multilingual task-oriented dialogue systems, researchers in this domain should
consider as many languages as possible. They should also enable their models to select valuable data for enhance-
ment. Language characteristics (e.g., unity and diversity) should never been underestimated.

One limitation of this work is that mixture-of-languages routing only works when multilingual data can bring
both commonalities and peculiarities of languages. In the extreme case where two languages do not have any
commonalities, mixture-of-languages routing can hardly learn to transfer across languages for cross-lingual
adaptation. And vice versa, if two languages do not have any peculiarities, mixture-of-languages routing can
hardly gain from language transfer for a multilingual model.

As to future work, we believe that multilingual task-oriented dialogue systems can be advanced in many
directions. First, we plan to use different pre-trained language models (e.g., GPT2, mBART, etc.) and compare them
with the mT5 model. Second, we plan to explore different collaboration policies and see how they influence the
overall performance. Third, we plan to experiment on new datasets with full dialogue tasks and more languages
and step forward to practical applications of multilingual task-oriented dialogue systems.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable feedback.

This research was partially funded by the Hybrid Intelligence Center, a 10-year program funded by the
Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific Research,
https://hybrid-intelligence-centre.nl, project LESSEN with project number NWA.1389.20.183 of the research

ACM Trans. Inf. Syst.



Mixture-of-languages Routing for Multilingual Dialogues « 25

program NWA ORC 2020/21, which is (partly) financed by the Dutch Research Council (NWO), and the FINDHR
(Fairness and Intersectional Non-Discrimination in Human Recommendation) and the VOXReality (Voice-driven
Interaction in XR Spaces) projects that received funding from the European Union’s Horizon Europe research
and innovation program under grant agreements No 101070212 and No 101070521, and the SURF cooperative
grant funded by NWO under grant agreement No EINF-7705.

All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

REFERENCES

(1]

—
~
flaas

[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17]

(18]
[19]

[20]
[21]
[22]
[23]

[24]

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung,
et al. 2023. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint
arXiv:2302.04023 (2023).

Lisa Beinborn and Rochelle Choenni. 2020. Semantic drift in multilingual representations. Computational Linguistics 46, 3 (2020),
571-603.

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych. 2013. Cognate production using character-based machine translation. In Proceedings
of the Sixth International Joint Conference on Natural Language Processing. 883-891.

Johannes Bjerva, Robert Ostling, Maria Han Veiga, Jérg Tiedemann, and Isabelle Augenstein. 2019. What do language representations
really represent? Computational Linguistics 45, 2 (2019), 381-389.

Susanne Burger, Karl Weilhammer, Florian Schiel, and Hans G Tillmann. 2000. Verbmobil data collection and annotation. In Verbmobil:
Foundations of Speech-to-speech Translation. Springer, 537-549.

Hugo C.C. Carneiro, Felipe M.G. Franca, and Priscila M.V. Lima. 2015. Multilingual part-of-speech tagging with weightless neural
networks. Neural Networks 66 (2015), 11-21.

Dhivya Chandrasekaran and Vijay Mago. 2021. Evolution of semantic similarity—a survey. Comput. Surveys 54, 2 (2021), 1-37.
Guan-Lin Chao and Ian Lane. 2019. BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations
from transformer. Proceedings of Interspeech (2019).

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. 2017. A survey on dialogue systems: Recent advances and new frontiers.
ACM SIGKDD Explorations Newsletter 19, 2 (2017), 25-35.

Wenhu Chen, Jianshu Chen, Yu Su, Xin Wang, Dong Yu, Xifeng Yan, and William Yang Wang. 2018. XL-NBT: A cross-lingual neural
belief tracking framework. In EMNLP. 414-424.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard Grave, Myle
Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In ACL. 8440-8451.
Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language model pretraining. Advances in Neural Information Processing
Systems 32 (2019).

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017. Word translation without parallel
data. arXiv preprint arXiv:1710.04087 (2017).

David Crystal. 2008. Two thousand million? English Today 24, 1 (2008), 3-6.

Richard Csaky and Gabor Recski. 2020. The gutenberg dialogue dataset. arXiv preprint arXiv:2004.12752 (2020).

Michael Cysouw. 2013. Predicting language-learning difficulty. In Approaches to Measuring Linguistic Differences. De Gruyter.

Raj Dabre, Aizhan Imankulova, Masahiro Kaneko, and Abhisek Chakrabarty. 2021. Simultaneous multi-pivot neural machine translation.
arXiv preprint arXiv:2104.07410 (2021).

Ewa Dabrowska. 2015. What exactly is universal grammar, and has anyone seen it? Frontiers in Psychology 6 (2015), 852.

Michael Daniel. 2011 Linguistic typology and the study of language. In The Oxford Handbook of Linguistic Typology. Oxford University
Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for
language understanding. In NAACL-HLT. 4171-4186.

Bosheng Ding, Junjie Hu, Lidong Bing, Mahani Aljunied, Shafiq Joty, Luo Si, and Chunyan Miao. 2022. GlobalWoZ: Globalizing
multiwoz to develop multilingual task-oriented dialogue systems. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1639-1657.

Robert MW. Dixon. 2010. I am a linguist: with a foreword by Peter Matthews. Brill.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML.
PMLR, 1126-1135.

W. Tecumseh Fitch. 2011. Unity and diversity in human language. Philosophical Transactions of the Royal Society B: Biological Sciences
366, 1563 (2011), 376-388.

ACM Trans. Inf. Syst.



26 .

[25]
[26]
[27]
(28]
[29]
[30]

[31]
(32]

(33]
(34]
[35]
(36]
(37]
(38]
(39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]
(48]
[49]
[50]
[51]

[52]

Pei et al.

Alexandre Francois. 2015. Trees, waves and linkages: Models of language diversification. In The Routledge Handbook of Historical
Linguistics. Routledge, 161-189.

Pascale Fung and Tanja Schultz. 2008. Multilingual spoken language processing. IEEE Signal Processing Magazine 25, 3 (2008), 89-97.
Milan Gritta and Ignacio Iacobacci. 2021. XeroAlign: Zero-shot cross-lingual transformer alignment. In ACL Findings. 371-381.
Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar,
Jia Wu, Seyedali Mirjalili, et al. 2023. A survey on large language models: Applications, challenges, limitations, and practical usage.
Authorea Preprints (2023).

Martin Haspelmath. 2004. How hopeless is genealogical linguistics, and how advanced is areal linguistics? Studies in Language 28, 1
(2004), 209-223.

Claudia Hauff, Julia Kiseleva, Mark Sanderson, Hamed Zamani, and Yongfeng Zhang. 2021. Conversational search and recommendation:
Introduction to the special issue. ACM Transactions on Information Systems 39, 4 (2021), 1-6.

Hiyouga. 2023. LLaMA Factory. https://github.com/hiyouga/LLaMA-Factory.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. 2020. A simple language model for
task-oriented dialogue. Advances in Neural Information Processing Systems 33 (2020), 20179-20191.

Eduard Hovy, Nancy Ide, Robert Frederking, Joseph Mariani, and Antonio Zampolli. 2001. Multilingual Information Management:
Current Levels and Future Abilities. Istituti Editoriali e Poligrafici Internazionali, Pisa.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA:
Low-Rank adaptation of large language models. In ICLR. OpenReview.net. https://openreview.net/forum?id=nZeVKeeFYf9

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020. Challenges in building intelligent open-domain dialog systems. ACM Transactions
on Information Systems 38, 3 (2020), 1-32.

Chia-Chien Hung, Anne Lauscher, Ivan Vuli¢, Simone Paolo Ponzetto, and Goran Glavas. 2022. Multi2WOZ: A robust multilingual
dataset and conversational pretraining for task-oriented dialog. arXiv preprint arXiv:2205.10400 (2022).

Pratik Jayarao and Aman Srivastava. 2018. Intent detection for code-mix utterances in task oriented dialogue systems. In ICEECCOT.
IEEE, 583-587.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint arXiv:2401.04088 (2024).
Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, and Edouard Grave. 2018. Loss in Translation: Learning Bilingual
Word Mapping with a Retrieval Criterion. In EMNLP. 2979-2984.

Prabhu Kaliamoorthi, Aditya Siddhant, Edward Li, and Melvin Johnson. 2021. Distilling Large Language Models into Tiny and Effective
Students using pQRNN. arXiv preprint arXiv:2101.08890 (2021).

Seokhwan Kim, Luis Fernando D’Haro, Rafael E Banchs, Jason D Williams, Matthew Henderson, and Koichiro Yoshino. 2016. The fifth
dialog state tracking challenge. In SLT Workshop. IEEE, 511-517.

Dan Kondratyuk. 2019. Cross-lingual lemmatization and morphology tagging with two-stage multilingual BERT fine-tuning. In
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology. 12-18.

Jitin Krishnan, Antonios Anastasopoulos, Hemant Purohit, and Huzefa Rangwala. 2021. Multilingual code-switching for zero-shot
cross-lingual intent prediction and slot filling. In MRL Workshop. 211-223.

Adarsh Kumar, Peter Ku, Anuj Goyal, Angeliki Metallinou, and Dilek Hakkani-Tur. 2020. Ma-dst: Multi-attention-based scalable dialog
state tracking. In AAAI Vol. 34. 8107-8114.

Tuan Manh Lai, Quan Hung Tran, Trung Bui, and Daisuke Kihara. 2020. A simple but effective bert model for dialog state tracking on
resource-limited systems. In ICASSP. IEEE, 8034-8038.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni,
Francois Yvon, Matthias Gallé, et al. 2022. BLOOM: A 176b-parameter open-access multilingual language model. arXiv preprint
arXiv.2211.05100 (2022).

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019. SUMBT: Slot-utterance matching for universal and scalable belief tracking. In ACL.
5478-5483.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad. 2021. MTOP: A comprehensive multilingual
task-oriented semantic parsing benchmark. In EACL. 2950-2962.

Juntao Li, Chang Liu, Chongyang Tao, Zhangming Chan, Dongyan Zhao, Min Zhang, and Rui Yan. 2021. Dialogue history matters!
Personalized response selection in multi-turn retrieval-based chatbots. ACM Transactions on Information Systems 39, 4 (2021), 1-25.
Tomasz Limisiewicz and David Marecek. 2020. Syntax Representation in Word Embeddings and Neural Networks—-A Survey. arXiv
preprint arXiv:2010.01063 (2020).

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seungwhan Moon, Zhenpeng Zhou, Paul A Crook, Zhiguang Wang, Zhou Yu, Eunjoon Cho,
Rajen Subba, et al. 2021. Zero-shot dialogue state tracking via cross-task transfer. In EMNLP. 7890-7900.

Zhaojiang Lin, Zihan Liu, Genta Indra Winata, Samuel Cahyawijaya, Andrea Madotto, Yejin Bang, Etsuko Ishii, and Pascale Fung.
2021. XPersona: Evaluating multilingual personalized chatbot. In Proceedings of the 3rd Workshop on Natural Language Processing for

ACM Trans. Inf. Syst.



[53]
[54]

[55]

[56]
[57]
(58]

[59]
[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

[70]
[71]

[72]

(73]
[74]

[75]
[76]

[77]
(78]

[79]

Mixture-of-languages Routing for Multilingual Dialogues « 27

Conversational A 102-112.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata, Peng Xu, Feijun Jiang, Yuxiang Hu, Chen Shi, and Pascale Fung. 2021. Bitod: A
bilingual multi-domain dataset for task-oriented dialogue modeling. arXiv preprint arXiv:2106.02787 (2021).

Yanxiang Ling, Fei Cai, Jun Liu, Honghui Chen, and Maarten de Rijke. 2023. Generating relevant and informative questions for
open-domain conversations. ACM Transactions on Information Systems 41, 1 (2023), Article 2.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020.
Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics 8
(2020), 726-742.

Zihan Liu, Jamin Shin, Yan Xu, Genta Indra Winata, Peng Xu, Andrea Madotto, and Pascale Fung. 2019. Zero-shot Cross-lingual
dialogue systems with transferable latent variables. In EMNLP-IJCNLP. 1297-1303.

Zihan Liu, Genta [ Winata, Samuel Cahyawijaya, Andrea Madotto, Zhaojiang Lin, and Pascale Fung. 2021. On the importance of word
order information in cross-lingual sequence labeling. In AAAI Vol. 35. 13461-13469.

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng Xu, and Pascale Fung. 2020. Attention-informed mixed-language training for
zero-shot cross-lingual task-oriented dialogue systems. In AAAI Vol. 34. 8433-8440.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization. In ICLR.

Samuel Louvan and Bernardo Magnini. 2020. Simple is better! Lightweight data augmentation for low resource slot filling and intent
classification. In PACLIC. 167-177.

Jianjun Ma, Jiahuan Pei, and Degen Huang. 2016. Identification of English functional noun phrases using CRFs combining the semantic
information. Journal of Chinese Information Processing 30, 6 (2016), 59-66.

Jianjun Ma, Jiahuan Pei, Degen Huang, and Dingxin Song. 2018. Syntactic parsing of clause constituents for statistical machine
translation. International Journal of Computational Science and Engineering 17, 1 (2018), 126-132.

Longxuan Ma, Mingda Li, Wei-Nan Zhang, Jiapeng Li, and Ting Liu. 2021. Unstructured Text Enhanced Open-Domain Dialogue
System: A Systematic Survey. ACM Transactions on Information Systems 40, 1 (2021), 1-44.

Brian MacWhinney. 2005. A unified model of language acquisition. In Handbook of Bilingualism: Psycholinguistic Approaches, Judith F.
Kroll and Annette M.B. de Groot (Eds.). Vol. 4967. Oxford University Press, 50-70.

Andrea Madotto, Zhaojiang Lin, Genta Indra Winata, and Pascale Fung. 2021. Few-shot bot: Prompt-based learning for dialogue
systems. arXiv preprint arXiv:2110.08118 (2021).

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned in translation: Contextualized word vectors.
Advances in Neural Information Processing Systems 30 (2017).

Leland MclInnes, John Healy, Nathaniel Saul, and Lukas Grofiberger. 2018. UMAP: Uniform manifold approximation and projection.
Journal of Open Source Software 3, 29 (2018), 861.

David P Medeiros. 2018. ULTRA: Universal grammar as a universal parser. Frontiers in Psychology 9 (2018), 155.

Nikola Mrksi¢, Diarmuid O Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve Young. 2017. Neural belief tracker: Data-driven
dialogue state tracking. In ACL. 1777-1788.

Nikola Mrksi¢ and Ivan Vuli¢. 2018. Fully statistical neural belief tracking. In ACL. 108-113.

Nikola Mrksi¢, Ivan Vuli¢, Diarmuid O Séaghdha, Ira Leviant, Roi Reichart, Milica Gasi¢, Anna Korhonen, and Steve Young. 2017.
Semantic specialization of distributional word vector spaces using monolingual and cross-Lingual constraints. Transactions of the
Association for Computational Linguistics 5 (2017), 309-324.

André Miiller, Seren Wichmann, Viveka Velupillai, Cecil H. Brown, Pamela Brown, Sebastian Sauppe, Eric W. Holman, Dik Bakker,
Johann-Mattis List, Dmitri Egorov, Oleg Belyaev, Robert Mailhammer, Matthias Urban, Helen Geyer, and Anthony Grant. 2010. ASJP
world language tree of lexical similarity: Version 3 (July 2010). https://asjp.clld.org/static/WorldLanguageTree-003.pdf.

Tahira Naseem, Benjamin Snyder, Jacob Eisenstein, and Regina Barzilay. 2009. Multilingual part-of-speech tagging: Two unsupervised
approaches. Journal of Artificial Intelligence Research 36 (2009), 341-385.

Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, Vinay Adiga, and Erik Cambria. 2021. Recent advances in deep learning based
dialogue systems: A systematic survey. arXiv preprint arXiv:2105.04387 (2021).

Joakim Nivre. 2015. Towards a universal grammar for natural language processing. In CICLing. Springer, 3-16.

Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward scalable neural dialogue state tracking model. arXiv preprint arXiv:1812.00899
(2018).

Javad Nouri and Roman Yangarber. 2016. From alignment of etymological data to phylogenetic inference via population genetics. In
CogACLL Workshop. 27-37.

Nathaniel Oco, Leif Romeritch Syliongka, Rachel Edita Roxas, and Joel Ilao. 2013. Dice’s coefficient on trigram profiles as metric for
language similarity. In O-COCOSDA/CASLRE. IEEE, 1-4.

Helen O’Horan, Yevgeni Berzak, Ivan Vuli¢, Roi Reichart, and Anna Korhonen. 2016. Survey on the use of typological information in
natural language processing. In COLING Technical Papers. 1297-1308.

ACM Trans. Inf. Syst.



28 .

(80]
(81]
(82]
(83]
(84]
(85]
(86]

(87]
(88]

[89]
[90]
[o1]
[92]
[93]

[94]
[95]

[96]

[97]
[98]

[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]

[108]

Pei et al.

Subhadarshi Panda, Caglar Tirkaz, Tobias Falke, and Patrick Lehnen. 2021. Multilingual paraphrase generation for bootstrapping new
features in task-oriented dialog systems. In Workshop on NLP for Conversational AL 30-39.

Hyunji Hayley Park, Katherine J Zhang, Coleman Haley, Kenneth Steimel, Han Liu, and Lane Schwartz. 2021. Morphology matters: A
multilingual language modeling analysis. Transactions of the Association for Computational Linguistics 9 (2021), 261-276.

Nicholas D. Pattengale, Eric J. Gottlieb, and Bernard M.E. Moret. 2007. Efficiently computing the Robinson-Foulds metric. Journal of
Computational Biology 14, 6 (2007), 724-735.

Michael Paul, Andrew Finch, and Eiichrio Sumita. 2013. How to choose the best pivot language for automatic translation of low-resource
languages. ACM Transactions on Asian Language Information Processing (TALIP) 12, 4 (2013), 1-17.

Jiahuan Pei, Pengjie Ren, and Maarten de Rijke. 2019. A modular task-oriented dialogue system using a neural mixture-of-experts. In
SIGIR Workshop on Conversational Interaction Systems.

Jiahuan Pei, Pengjie Ren, and Maarten de Rijke. 2021. A cooperative memory network for personalized task-oriented dialogue systems
with incomplete user profiles. In The Web Conference. 1552-1561.

Jiahuan Pei, Pengjie Ren, Christof Monz, and Maarten de Rijke. 2020. Retrospective and prospective mixture-of-generators for
task-oriented dialogue response generation. In ECAL 2148-2155.

Carol Peters, Martin Braschler, and Paul Clough. 2012. Multilingual Information Retrieval. Springer-Verlag, Berlin, Heidelberg.

Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che. 2021. CoSDA-ML: multi-lingual code-switching data augmentation for zero-shot
cross-lingual NLP. In IJCAIL 3853-3860.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised
multitask learners. OpenAlI blog 1, 8 (2019), 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research 21 (2020), 1-67.
Evgeniia Razumovskaia, Goran Glavas, Olga Majewska, Anna Korhonen, and Ivan Vulic. 2021. Crossing the conversational chasm: A
primer on multilingual task-oriented dialogue systems. arXiv preprint arXiv:2104.08570 (2021).

Evgeniia Razumovskaia, Goran Glavas, Olga Majewska, Edoardo Ponti, and Ivan Vuli¢. 2022. Natural language processing for
multilingual task-oriented dialogue. In ACL Tutorial Abstracts. 44-50.

Evgeniia Razumovskaia, Ivan Vuli¢, and Anna Korhonen. 2022. Data augmentation and learned layer aggregation for improved
multilingual language understanding in dialogue. In ACL Findings. 2017-2033.

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018. Towards universal dialogue state tracking. In EMNLP. 2780-2786.

Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evangelos Kanoulas, Christof Monz, and Maarten de Rijke. 2021. Conversations with
search engines: SERP-based conversational response generation. ACM Transactions on Information Systems 39, 4 (2021), 1-29.
Sebastian Ruder, Ivan Vuli¢, and Anders Segaard. 2019. A survey of cross-lingual word embedding models. journal of Artificial
Intelligence Research 65 (2019), 569-631.

Sergio Scalise, Elisabetta Magni, and Antonietta Bisetto. 2009. Universals of Language Today. Springer.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. 2019. Cross-lingual transfer learning for multilingual task oriented
dialog. In NAACL-HLT. 3795-3805.

Tulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau. 2018. A survey of available corpora for building
data-driven dialogue systems. Dialogue & Discourse 9, 1 (2018), 1-49.

Maurizio Serva and Filippo Petroni. 2008. Indo-European languages tree by Levenshtein distance. EPL (Europhysics Letters) 81, 6 (2008),
68005.

Aditya Siddhant, Melvin Johnson, Henry Tsai, Naveen Ari, Jason Riesa, Ankur Bapna, Orhan Firat, and Karthik Raman. 2020. Evaluating
the cross-lingual effectiveness of massively multilingual neural machine translation. In AAAI Vol. 34. 8854-8861.

Anders Segaard, Ivan Vuli¢, Sebastian Ruder, and Manaal Faruqui. 2019. Cross-lingual word embeddings. Synthesis Lectures on Human
Language Technologies 12,2 (2019), 1-132.

Georgios P Spithourakis, Ivan Vuli¢, Michat Lis, Ifiigo Casanueva, and Pawel Budzianowski. 2022. Evi: Multilingual spoken dialogue
tasks and dataset for knowledge-based enrolment, verification, and identification. arXiv preprint arXiv:2204.13496 (2022).

Chaoju Tang and Vincent J. van Heuven. 2007. Mutual intelligibility and similarity of Chinese dialects: Predicting judgments from
objective measures. Linguistics in the Netherlands 24, 1 (2007), 223-234.

Sandra A. Thompson, Robert E. Longacre, Shin Ja J. Hwang, and Timothy Shopen. 2007. Language typology and syntactic description.
Cambridge University Press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).
Shyam Upadhyay, Manaal Faruqui, Gokhan Tiir, Hakkani-Tir Dilek, and Larry Heck. 2018. (Almost) zero-shot cross-lingual spoken
language understanding. In ICASSP. IEEE, 6034-6038.

Phi Nguyen Van, Tung Cao Hoang, Dung Nguyen Manh, Quan Nguyen Minh, and Long Tran Quoc. 2022. ViWOZ: A multi-domain
task-oriented dialogue systems dataset for low-resource language. arXiv preprint arXiv:2203.07742 (2022).

ACM Trans. Inf. Syst.



[109]
[110]

[111]

[112]
[113]

[114]
[115]

[116]

[117]
[118]

[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]

[129]

Mixture-of-languages Routing for Multilingual Dialogues « 29

Piet van Sterkenburg (Ed.). 2008. Unity and Diversity of Languages. John Benjamins Publishing.

Ivan Vuli¢, Nikola Mrksgié, Roi Reichart, Diarmuid O Séaghdha, Steve Young, and Anna Korhonen. 2017. Morph-fitting: Fine-tuning
word vector spaces with simple language-specific rules. In ACL. 56-68.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. 2023. Openchat: Advancing open-source language
models with mixed-quality data. arXiv preprint arXiv:2309.11235 (2023).

Jiapeng Wang and Yihong Dong. 2020. Measurement of text similarity: a survey. Information 11, 9 (2020), 421.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksi¢, Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young.
2017. A network-based end-to-end trainable task-oriented dialogue system. In EACL. 438—449.

Lindsay J. Whaley. 1996. Introduction to Typology: The Unity and Diversity of Language. SAGE publications.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard Socher, and Pascale Fung. 2019. Transferable
multi-domain state generator for task-oriented dialogue systems. In ACL. 808-819.

Lu Xiang, Junnan Zhu, Yang Zhao, Yu Zhou, and Chengqing Zong. 2021. Robust cross-lingual task-oriented dialogue. Transactions on
Asian and Low-Resource Language Information Processing 20, 6 (2021), 1-24.

Puyang Xu and Qi Hu. 2018. An end-to-end approach for handling unknown slot values in dialogue state tracking. In ACL. 1448-1457.
Ruijian Xu, Chongyang Tao, Jiazhan Feng, Wei Wu, Rui Yan, and Dongyan Zhao. 2021. Response ranking with multi-types of deep
interactive representations in retrieval-based dialogues. ACM Transactions on Information Systems 39, 4(2021), 1-28.

Weijia Xu, Batool Haider, and Saab Mansour. 2020. End-to-end slot alignment and recognition for cross-lingual NLU. In EMNLP.
5052-5063.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A
massively multilingual pre-trained text-to-text transformer. In NAACL-HLT.

Guojun Yan, Jiahuan Pei, Pengjie Ren, Zhaochun Ren, Xin Xin, Huasheng Liang, Maarten de Rijke, and Zhumin Chen. 2022. ReMeDi:
Resources for multi-domain, multi-service, medical dialogues. In SIGIR. 3013-3024.

Rui Yan, Weiheng Liao, Dongyan Zhao, and Ji-Rong Wen. 2021. Multi-response awareness for retrieval-based conversations: Respond
with diversity via dynamic representation learning. ACM Transactions on Information Systems 39, 4 (2021), 1-29.

Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020. Dialog state tracking with reinforced data augmentation. In AAAI
Vol. 34. 9474-94381.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and XiaoYan Zhu. 2020. Recent advances and challenges in task-oriented
dialog systems. Science China Technological Sciences 63, 10 (2020), 2011-2027.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican
Dong, et al. 2023. A survey of large language models. arXiv preprint arXiv:2303.18223 (2023).

Zijian Zhao, Su Zhu, and Kai Yu. 2019. Data augmentation with atomic templates for spoken language understanding. In EMNLP-IJCNLP.
3637-3643.

Victor Zhong, Caiming Xiong, and Richard Socher. 2018. Global-locally self-attentive encoder for dialogue state tracking. In ACL.
1458-1467.

Han Zhou, Ignacio Iacobacci, and Pasquale Minervini. 2022. XQA-DST: Multi-domain and multi-lingual dialogue state tracking. arXiv
preprint arXiv:2204.05895 (2022).

Lei Zuo, Kun Qian, Bowen Yang, and Zhou Yu. 2021. AIWOZ: Towards multilingual task-oriented dialog systems for all. arXiv preprint
arXiv:2112.08333 (2021).

ACM Trans. Inf. Syst.



30 « Peietal

A EXAMPLES OF PROMPT

In Table 11 we show examples of prompts used in the decoder-only framework in DST and NLG task, respectively.

Table 11. Examples of prompts used in the extension of the decoder-only MOLR framework.

Task  Prompt

You are a helpful Al assistant tasked with generating key-value pairs from a dialogue context based on schema.
### Task: Slot Extraction aims to extract all slots and corresponding values mentioned in the given dialogue context.
If the value of a slot is mentioned, then the substring is formatted as “inform [slot] [value]”.
If the value of a slot is not mentioned, then the substring is formatted as “request slot [slot]”.
The output is a concatenation of all substrings of all slots.
### Schema:
food: the cuisine of the restaurant you are looking for, such as “british”.
DST  area: the location or area of the restaurant, including “centre”, “north”, “west”, “south”, “east”.
price range: price budget for the restaurant, including “cheap”, “moderate”, and “expensive”.
request: the attribute of a restaurant you are looking for, including “address”, “area”, “food”, “phone”, “price range”,
“postcode”, “name”.
### Example:
{“input”: “<|user|>i want to find a moderately priced restaurant in the west part of town .
what is the address and the postcode ?”,

», «

“output”: “request slot postcode, request slot address, inform price range moderate, inform area west”}

NLG You are a helpful Al assistant tasked with generating a response given the current user query and dialogue history.

B  SUMMARY OF ZERO-SHOT CROSS-LINGUAL BENCHMARKS

We summarize all the zero-shot crosslingual results on the DST (Table 12) and NLU (Table 13) datasets, as well as
our implementation of mT5 models. We find that mT5 and its variants achieve the state-of-the-art for zero-shot
crosslingual adaptation. This justifies our choice mT5 as our base model in the main results.
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Table 12. Comparison of dialogue state tracking (DST) models for zero-shot learning from English (EN) to German (DE) and
Italian (IT).

Joint/Request (%)
Models Settings EN - DE EN —IT
NBT
XL-NBT [10] (from [58]) Teacher-student NBT+bilingual data augmentation 30.80/68.32 41.23/81.23
MUSE
MUSE [58] Word alignment using MUSE [13] 21.57/74.22  20.66/79.09
MUSE+AMLT [58] MUSE +attention-based bilingual code-switching  36.51/82.99 39.35/84.23
XLM
XLM [58] XLM [12] context encoder 16.34/75.73 -
XLM+AMLT [58] XLM-+attention-based bilingual code-switching 33.12/82.96 N
XLM+CLCSA [88] XLM-+multilingual code-switching 48.70/88.30 -
XQA-DST [128] XLM-R [11]+value span extraction 64.88/— 68.63/-
BERT
mBERT [58] mBERT [20] context encoder 14.95/75.31 12.88/76.12
mBERT+AMLT [58] mBERT+attention-based bilingual code-switching  34.36/86.97 33.35/84.96
mBERT+CLCSA [88] mBERT+multilingual code-switching 63.20/94.00 61.30/94.20
T5 (Ours)
mT5 Multilingual T5 (small) with 300M parameters 28.42/92.27 32.14/87.22
mT5+AMLT mT5+bilingual code-switching 40.96/93.37 47.90/87.65
mT5+CLCSA mT5+multilingual code-switching 67.86/95.80 71.15/88.07
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Table 13. Comparison of natural language understanding (NLU) models for zero-shot learning from English (EN) to German
(DE) and Italian (IT).

Intent/Slot F1 (%)

Models Settings EN - ES EN —>TH
RNN

biRNN [56] An implantation of bidirectional RNN [107] 46.64/15.41 35.64/12.11
CoVe [98] biLSTM-CRF based translation model to English 37.13/ 5.35 54.24/ 8.84
mCoVe [98] Multilingual CoVe [66] 53.34/22.50 66.35/32.52
mCoVe+Auto [98] mCoVe w/autoencoder objective 53.89/19.25 70.70/35.62
biLSTM [56] biLSTM w/noise, refinement, delexicalization 90.20/65.79 73.43/32.24
MUSE

RCSLS [39] MUSE +relaxed cross-domain similarity local scaling 37.67/22.23 35.12/ 8.72
RCSLS+AMLT [58] RCSLS+attention-based bilingual code-switching 87.05/57.75 - 81.44/30.42
Transformers

Transformer [57] Transformer w/frozen word embeddings 89.71/67.10 74.68/31.20
Transformer+ORT [57] Order-reduced transformer 91.46/71.36 75.02/34.61
mBERT

mBERT [58] mBERT [20] context encoder 74.15/54.28 26.54/11.34
mBERT+AMLT [58] mBERT+attention-based bilingual code-switching  87.88/73.89 73.46/27.12
mBERT+CLCSA [88] mBERT+multilingual code-switching 92.80/75.20 74.80/28.10
XLM-R [27] XLM-R encoder with 270M parameters 90.70/70.10 71.90/53.10
T5 (Ours)

mT5 Multilingual T5 with 300M parameters 92.17/71.26 81.38/52.13
mT5+AMLT mT5+bilingual code-switching 92.77/71.92 91.61/57.46
mT5+CLCSA mT5+multilingual code-switching 94.71/75.77 93.20/47.02
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