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Cloud Virual Realiy (VR) gaming ofoads compuaionally-inensive VR games o resourceul daa ceners. However, ensuring
goodQaliy o Experience (oE) in cloud VR gaming is inherenly challenging as VR gamers demand high visual qualiy, shor
response ime, and negligible cybersickness. In his aricle, we sudy he oE o cloud VR gaming and build a oE-opimized
sysem in a ew seps. Firs, we esablish a cloud VR gaming esbed capable o emulaing various nework condiions. Using
he esbed, we conduc comprehensive oE evaluaions using a user sudy o evaluae he inuence o diverse acors, such
as encoding setings, nework condiions, and game genres, on gamer oE scores. Second, we consruc he very rs oE
models or cloud VR gaming using our oE evaluaion resuls. Our oE models achieve up o 0.93 (휎 = 0.02) in Pearson
Linear Correlaion Coecien (PLCC) and 0.92 (휎 = 0.02) in Spearman Rank-Order Correlaion Coecien (SROCC), where 휎
sands or he sandard deviaion. Las, we leverage our oE models or dynamically adaping encoding setings in our esbed.
Exensive experimens revealed ha, compared o he curren pracice, our adapive cloud VR gaming sysem improves: (i)
overall qualiy by 0.87 (휎 = 0.44), (ii) visual qualiy by 0.61 (휎 = 0.45), and (iii) ineracion qualiy by 1.20 (휎 = 0.48) on average
in 5-poin Mean Opinion Score (MOS).

CCS Conceps: • Human-centered computing→ Virtual reality; • Inormation systems→ Multimedia streaming.

Addiional Key Words and Phrases: VR gaming, cloud gaming, oE modeling, dynamic adapaion

1 INTRODUCTION
Te Virual Realiy (VR) gaming marke has winessed subsanial growh and is anicipaed o coninue is
expansion in he orhcoming years. For example, a recen marke repor [21] indicaed ha he VR gaming
marke is projeced o demonsrae a Compound Annual Growh Rae (CAGR) o 32.75% unil 2028. Te same
repor also saed ha he number o boh VR and Augmened Realiy (AR) gamers are anicipaed o reach 216
million by 2025. Key consumer elecronic manuacurers, such as Mea, HC, and Apple coninue o compee
or he VR gaming marke wih subsanial invesmen [22, 62]. Mos modern VR games dicae Head-Mouned
Displays (HMDs) and game conrollers or gamer ineracion. HMDs can be classied ino wo ypes: ehered
and sandalone. Sandalone HMDs oer gamers reedom, making hem preerable or VR gaming wihou he
consrain o cables.
However, he limied GPU power and batery capaciy o sandalone HMDs can derimenally aec he gaming

experience. One possible soluion involves wirelessly ranserring he rendering workloads o resourceul cloud
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servers. In ac, as high-speed wireless neworks, such as WiFi and 4G/5G cellular neworks, are ubiquiously
available, hey can “glue” VR games and cloud services ino cloud VR gaming sysems. Fig. 1 depics a ypical
cloud VR gaming sysem, which consiss o hree paries: game developers, cloud VR gaming service providers,
and VR gamers. Cloud VR gaming service providers obain VR games rom game developers, while hese games
are execued in virual machines or conainers or individual gamers. Te rendered game scenes are capured,
compressed, and sreamed hrough he Inerne in real-ime o VR gamers’ HMDs. Simulaneously, he HMDs and
conrollers inercep, compress, and sream back sensor inpus, enabling gamers o inerac wih VR games. Dier-
en VR gamers have diverse access neworks wih dynamic bandwidhs, which impose addiional complicaions
or cloud VR gaming service providers o oer immersive gaming experiences o VR gamers.
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Fig. 1. A ypical cloud VR gaming sysem.

In paricular, VR gamers require or shor response ime and high visual qualiy when playing cloud VR games.
Unlike presenaional sreaming services [1], such as Youube, Neix, and Hulu, cloud VR gaming employs
ineracive bidirecional communicaions, in which any deerioraion in response ime and visual qualiy could
urn gamers away rom services. o ulll he needs o VR gamers, his aricle exends our preliminary oE
evaluaions [35], and makes he ollowing conribuions:

• We build an open-source cloud VR gaming esbed ha enables us o emulae diverse and dynamic Wide
Area Neworks (WANs). We design and carry ou oE evaluaions using a user sudy on his open-source
esbed [33] o quaniy he impacs o dieren acors, such as encoding setings (birae, rame rae, and
resoluion), nework condiions (delay), and game genres on gamer oE scores. Our user sudy is he rs
invesigaion conduced on a WAN-based cloud VR gaming sysem.We make our user sudy daa available
or he research communiy [34].

• We consruc cloud VR gaming oE models uilizing ndings rom our oE evaluaions o predic gamer
oE scores under various acors. Given measurableQaliy-o-Service (oS) merics, such as hroughpu,
delay, and packe loss rae, our oE models achieve high correlaion, reaching up o 0.93 (휎 = 0.02) in
Pearson Linear Correlaion Coefcien (PLCC) and 0.92 (휎 = 0.02) in Spearman Rank-Order Correlaion
Coefcien (SROCC) [58], where 휎 sands or he sandard deviaion. Our models are he very rs ones buil
or cloud VR gaming sysems. Our models are also available upon reques or research purposes.

• We develop a oE-driven adapaion algorihm a he cloud servers in our sysem. Tis algorihm dy-
namically selecs he encoding setings o maximize gamer oE by considering he curren nework
and sysem dynamics. Furhermore, we carried ou real experimens o assess he eeciveness o our
adapaion algorihm in comparison o wo baseline approaches. In our cloud VR gaming sysem, he
overall oE scores in 5-poin Mean Opinion Score (MOS) are improved by up o 1.86 (휎 = 0.38) under
congesed neworks. Our proposed algorihm is a rs o is kind, as oE-driven adapaion o cloud VR
gaming has never been done in he lieraure.
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Te res o his aricle is organized as ollows. In Sec. 2, we oer an exensive review o relaed work. Sec. 3
delves ino he design o our esbed and oulines he associaed research challenges. We elaborae on he seup,
procedures, and analysis o our oE evaluaions in Sec. 4. Sec. 5 ocuses on consrucing oE models using
resuls rom he user sudy. Te oE-driven adapaion algorihm o encoding setings is developed in Sec. 6.
Sec. 7 evaluaes he perormance o our oE-opimized cloud VR gaming sysem. Sec. 8 draws our conclusions.

2 RELATED WORK
In his secion, we survey cloud gaming sysems rom hree aspecs: oE evaluaions, oE modeling, and
oE-driven adapaion.

2.1 oE Evaluaions
Several oE evaluaions have been conduced hrough user sudies o assess gamer oE o cloud gaming. For
example, Jarschel e al. [26] evaluaed gamer oE under diverse delays and packe loss raes, and idenied he
key acors using heir home-brew cloud gaming esbed. Sackl e al. [48] manipulaed he delay beween he
server and clien o invesigae is impacs on gamer oE across dieren game genres on he Seam In-home
sreaming plaorm. Slivar e al. [55] adoped he same plaorm or anoher user sudy o dieren encoding
setings wih wo game genres. GamingAnywhere [18] was he rs open-source cloud gaming plaorm, which
can be exended or user sudies. For example, we conduced a user sudy using GamingAnywhere o analyze
how dieren parameers, such as resoluion, birae, rame rae, and nework delay aec he mobile gaming
experience [19]. Dieren rom our curren work, hese papers [19, 26, 48, 55] considered radiional cloud gaming
raher han cloud VR gaming.
Te challenges become more complicaed when VR is inroduced, given he heighened requiremens or

low delay and increased sensiiviy o qualiy impairmens. Tis is paricularly eviden in VR gaming, where
he ineracive naure o games places signican demands on boh delay and qualiy compared o oher VR
applicaions. More recenly, oE evaluaions o VR gaming have also been invesigaed. For example, Vlahovic
e al. [63] designed wo user sudies o nd ou he relaionship beween nework delay and gamer oE in a
rs-person shooer VR game. Teir observaions highlighed ha conexual acors, such as social conex and
diculy levels, can mask he negaive eecs due o long nework delay. Slivar e al. [56] evaluaed gamer oE
in a user sudy across various neworks (4G, 5G, and Eherne) considering wo muliplayer VR game genres.
Teir sudy also delved ino he inuence o social conex on gamer oE.Tese works [56, 63] only ocused on
local VR gaming raher han cloud VR gaming.
For cloud VR gaming, we designed a remoe VR gaming esbed [37] on he basis o Air Ligh VR (ALVR) [46],

and conduced a user sudy under dieren nework condiions using hree game genres. We repored ha
insucien bandwidh and high packe loss rae may cause higher negaive impacs on he oE han addiional
delay.Ta work employed a remoe VR gaming sysem on a Local Area Nework (LAN). In conras, we recenly
applied dynamic oveaion o WAN-based cloud VR gaming buil upon Air Ligh XR (ALXR) [47]. Specically,
we conduced a small user sudy [13] by varying oveaion parameers, including he oveal region size and
he compression raio o he peripheral area.Te curren aricle presens more comprehensive oE evaluaions
ocusing on gamer oE, which enables he consrucion o oE models and oE-driven adapaion algorihms.Te
preliminary resuls o our oE evaluaions were given in Lee e al. [35].

2.2 oE Modeling
Several research groups have buil oE models or cloud gaming. For example, Wang and Dey [65] proposed a
oE model ha considers game genres, encoding setings, video qualiy, response ime, and packe loss raes as
inpus o predic mobile gaming experience. Tey derived impairmen uncions rom he oE evaluaions o
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predic he Game Mean Opinion Score (GMOS) o each gamer. Slivar e al. [54] modeled game-dependen oE
using a quadraic uncion, which akes he rame rae and birae as inpus. Furhermore, hey considered game
genres and gaming experience in heir models. Dieren rom direcly using he birae and rame rae as inpus,
Zadooaghaj e al. [68] inroduced srucural oE models based on several inermediae acors derived rom
oher raw inpus. IU- recommendaion G.1072 [25] presened an opinion model or predicing cloud gaming
oE scores. Te model provides wo modes, one ha akes game genres ino accoun and anoher ha does no.
Te model calculaes various impairmen acors based on encoding and nework merics o predic he gamer
oE. Dieren rom our work, hese sudies [25, 54, 65, 68] considered radiional cloud gaming raher han cloud
VR gaming. Several works [5, 36, 61, 67] derived oE models or consuming 360° VR videos; however, litle has
been done o VR gaming. Alhough Krogoss e al. [29] presened a video and a gaming oE model based on
parameers like he delays and packe loss raes, heir oE models were no buil upon real user-sudy resuls.
Insead, heir models were essenially heurisics based on ndings in he lieraure.

2.3 oE-Driven Adapaion
Several works have been done o adap he birae on he y in video sreaming sessions. For example, Coano
e al. [8] and Sobhani e al. [57] proposed birae adapaion algorihms or HP Adapive Sreaming (HAS)
sysems. Dieren rom our work, hese adapaion algorihms are no oE-driven. For oE-driven adapaion,
several sudies [44, 49, 66] adaped sreaming rameworks leveraging eiher he oE models or oE-relaed
merics. Tese algorihms are mosly pull-based and hus are inapplicable o push-based cloud gaming. For
push-based adapaion, Khan e al. [28] proposed a oE-driven birae adapaion scheme buil upon uzzy logic.
I calculaed he levels o congesion and degradaion according o packe loss raes and oE models, respecively.
I hen changed he birae accordingly. Mos o hese sudies [8, 28, 44, 49, 57, 66] are or video sreaming raher
han more challenging cloud gaming sysems, and mos o hem only ake birae ino consideraion, excluding rame
raes and resoluions.
oE-driven adapaion in cloud gaming has only been recenly considered, e.g., Slivar [53] inroduced hree

adapaion algorihms or he birae and rame rae. Tese algorihms were buil upon he ndings in heir oE
evaluaions. Our prior work [17] aciliaed adapive cloud gaming in GamingAnywhere [18] by dynamically
reconguring he encoding setings considering he birae and rame rae. Addiionally, we developed echniques
or opimal birae allocaion, selecing he mos suiable birae and rame rae or each gamer o maximize he
overall gamer oE scores.Te curren aricle inroduces a oE-driven adapaion algorihm in cloud VR gaming
insead o radiional cloud gaming [17, 53].

3 BUILDING A CLOUD VR GAMING SYSTEM
Cloud VR gaming presens unique challenges compared o he ollowing relevan sysems:

• 360° Video-on-Demand (VoD) [12]. 360° VoD sysems like Youube operae wih unidirecional sream-
ing. As a resul, videos can be downloaded and buered a each clien or relaively long duraions o
miigae he negaive impacs due o nework delay and jiter. In conras, cloud VR gaming sreams
bidirecionally. Te server renders scenes based on he gamer’s posiion received rom he clien in
real-ime and hen ransmis i o he clien. Consequenly, delays and jiters canno be miigaed by a
large buer. Undersanding he behaviors o bidirecional cloud VR gaming sysems wih small buers
requires us o build a real cloud VR gaming sysem and measure is deailed perormance in various
merics.

• raditional cloud gaming [6]. radiional cloud gaming sysems like GamingAnywhere [18] operae
wih 2D moniors. Compared o HMDs used in cloud VR gaming, oE wih 2D moniors is well sudied.
While cloud VR gaming sysems employ HMDs or poenially higher gamer oE, he added dimensions
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Fig. 2. Cloud VR gaming: (a) archiecure and (b) esbed.

o oE acors increase he complexiy level o deliver novel immersive experiences. Tereore, oE
models are essenial in cloud VR gaming o ecienly esimae he gamer oE.

• Locally-rendered VR applications [64]. Local VR applicaions do no engage in remoe rendering,
hereby remaining unaeced by imperec nework condiions. In conras, cloud VR gaming renders
game scenes on poenially ar-away cloud servers, and hus is sensiive o bad nework condiions.
Consequenly, adapaion o nework and sysem dynamics becomes crucial o alleviae heir negaive
impacs on gamer oE.

In his aricle, we se ou o develop a cloud VR gaming sysem and address is unique challenges menioned
above. Compared o commercial cloud VR gaming sysems, open-source sysems are easier o augmen and
enhance or research. Among he mos prominen open-source sysems are NVIDIA CloudXR [41] and ALVR [46].
NVIDIA CloudXR suppors sreaming XR conen using he OpenVR Applicaion Programming Inerace (API)
or Android and Windows devices. Unorunaely, NVIDIA only makes CloudXR’s clien side open-source. Tis
prevens researchers rom inegraing heir innovaions ino he server side or experimens. In conras, ALVR is
an open-source projec on boh he server and clien sides. Vanilla ALVR sreams game scenes rom PCs o HMDs
over LANs. ALVR uses OpenVR API o obain game scenes rom SeamVR games. However, OpenVR runime
only suppors a limied number o HMD models. ALXR [47] is an exension o ALVR, which adops OpenXR on
he clien side o suppor more HMD models. Hence, we buil our open-source cloud gaming sysem on op o
ALXR.
Fig. 2(a) presens our proposed cloud VR gaming archiecure o a clien-server pair. Once he connecion

beween hem is esablished, he ALXR server exracs he game scenes rom SeamVR ino video rames hrough
OpenVR API. Ten, i encodes he rames and sends hem o he clien hrough he Inerne. Meanwhile, he
clien displays he received rames and sends he sensor inpus back o he server. According o he sensor inpus
rom he clien, ALXR server replays he gamer’s moions, exracs new game scenes, and sends he updaed
rames.
Fig. 2(b) shows our ALXR-based cloud VR gaming esbed. We use a Windows 10 PC as our server. I comes

wih an Inel Core i9 CPU, 64 GB RAM, an NVIDIA GeForce RX 3080 i GPU, and is conneced o he Inerne

ALXR projec reuses ALVR’s server implemenaion buil on OpenVR API.
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hrough a GigE cable. We use a MeaQes 2 HMD as our clien. I comes wih aQalcomm Snapdragon XR2
CPU, 6 GB RAM, an Adreno 650 GPU, and is conneced o a WiFi 6 AP. Beween he Inerne and WiFi AP,
we add a FreeBSD 13.1 gaeway running Dummyne [14] o emulae diverse and dynamic nework condiions.
We insall ALXR version 18.2.3. Originally, ALXR assumes LAN environmens, which is less challenging han
our envisioned cloud VR gaming scenario. o conduc WAN-based realisic cloud VR gaming experimens, we
enhanced ALXR ino a cloud VR gaming sysem [33]. In paricular, we ransormed he original server-cenric
ALXR archiecure, where he server discovers he clien, ino a clien-cenric ALXR, where he clien connecs o
a user-specied cloud gaming server.
Developing cloud VR gaming sysems wih shor response ime and high visual qualiy is no easy ask, because

o he bes-eor Inerne, non-real-ime operaing sysems, and hard-o-predic human percepion. We ace hree
primary challenges when doing so. Firs, muliple acors, such as nework condiions, encoding setings, and
game genres aec gamer oE. Second, gahering gamer oE scores akes ime, as conrolled oE evaluaions
are ime-consuming by naure. Tird, even i we can esimae he oE scores, i is no rivial o leverage hem in
our cloud VR gaming sysem or opimizing he gaming experience. We addressed hese challenges in hree seps.
In Sec. 4, we conduc comprehensive oE evaluaions using a user sudy on our open-source cloud VR gaming
sysem. In Sec. 5, we analyze gamer oE scores and build corresponding oE models. In Sec. 6, we incorporae
he oE models o enable oE-driven dynamic adapaion o encoding setings a runime.

4 OE EVALUATIONS
In his secion, we conduc oE evaluaions using a user sudy.

4.1 Seup

(a) (b) (c)

Fig. 3. Sample scenes o hree considered games: (a) AngryBird, (b) BeaSaber, and (c) ArPuzzle.

o be comprehensive, we aimed o employ VR game genres wih diverse characerisics. In paricular, we
employed emporal Percepual Inormaion (I) and Spaial Percepual Inormaion (SI) [23] o characerize game
genres ollowing prior works [54, 59]. Beween hem, I capures objec moions, behavioral paterns, and
changes occurring over ime across video rames. In conras, SI ocuses on he characerisics o individual
rames, including he spaial layou o pixels and saic properies o objecs, such as colors. Aer considering
muliple candidae VR games, we chose he ollowing hree VR games, as shown in Fig. 3:

• AngryBird. A player uses a slingsho o launch birds wih he goal o knocking down all pigs. I is a
leisure game.

• BeatSaber. A player slashes hrough he moving boxes on he beas wih specied direcions. I is a
as-paced game.
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Fig. 4. TI versus SI values rom diferen game genres.

• ArtPuzzle. A player manipulaes pieces o complee each puzzle. I is a slow-paced game wih many
exure deails.

o undersand heir emporal and spaial characerisics, we plo he I and SI values o he rendered game scenes
rom 12 subjecs (repored in Sec. 4.3) in Fig. 4. Tis scater plo reveals ha he game scenes rom dieren games
naurally scater ino hree clusers. In paricular, we observe ha: (i) AngryBird has low I and SI values and is
less sensiive o ime and qualiy, (ii) BeaSaber has he highes I values and is ime sensiive, and (iii) ArPuzzle
has he highes SI values and is qualiy sensiive. Ta is, hese hree represenaive games cover he specrum o
diverse emporal and spaial characerisics.
We varied muliple parameers in he user sudy. A pilo es was conduced wih 5 subjecs o adjus he

parameer values. In his es, we explored a broader range o values and hen seleced a narrower range. Tis
narrower range is sucien or subjecs o perceive dierences, hereby achieving a balance in experimen
duraion o avoid subjec aigue. Te values o each parameer are presened below, wih bold on indicaing
deaul setings:

• Bitrate.Te number o bis per second used or encoding. Higher birae oers beter qualiy a a cos o
larger compressed scene size, while lower birae reduces he size a he expense o lower qualiy. We
denoe he birae as 푏, where 푏 ∈ Q+. We vary i in {2, 8, 32} Mbps.

• Frame rate.Tenumber o rames every second. Higher rame raes oer smooher videos bu incur higher
compuaional and sorage coss, while lower rame raes reduce hese coss bu may resul in choppier
videos. We denoe he rame rae as 푓 , where 푓 ∈ Z+. We vary i in {12, 24, 36, 72} rame-per-second (ps).

• Resolution.Te number o pixels conained in each game scene. Higher resoluion oers ner deails
bu inroduces more inormaion o compress, while lower resoluion leads o less inormaion bu lacks
o deail. We denoe he resoluion as 푟 , where boh widh and heigh are ∈ Z+. We vary 푟 in {1408×768,
2112×1184, 2880×1568}. For ease o expression, we reer o hese resoluions as 768p, 1184p, and 1568p in
he res o his aricle.

• Delay.Te local Round-rip ime (R) is abou 10 ms in our sysem. We injec an exra round rip delay
o {0, 100, 300, 500} ms on he gaeway, represening he domesic delay as well as delays beween he
USA and Europe, Eas Asia and Souh America, and Oceania and Arica, respecively.

We group birae, rame rae, and resoluion ino encoding setings. We consider delay as he key parameer o
nework condiions due o he sric real-ime requiremen o cloud VR gaming services.
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4.2 Measuremen Mehodology
We measure he ollowing merics:

• Troughput.Te receiving speed a he clien, which is denoed as 푝 .
• Frame loss rate.Te racion o los rames.
• Delay.Te round-rip delay beween he server and clien, which is denoed as 푑 .
• Packet loss rate.Te racion o los packes, which is denoed as 푙 .
• Peak Signal-to-Noise Ratio (PSNR). A widely used video qualiy meric in he decibel scale [38, Ch. 8].
• Structural Similarity Index (SSIM). Anoher video qualiy meric ha akes human percepion ino
consideraion [38, Ch. 12].

• Video Multimethod Assessment Fusion (VMAF). A learning-based video qualiy meric based on
human percepion [20].

In erms o measuremens, we measure he hroughpu, delay, and packe loss rae by insrumening he source
code. o calculae PSNR, SSIM, and VMAF, we capure he rendered rames a he server o be reerence rames.
For decoded rames, due o hardware limiaions, we canno direcly save he rames a he clien side in real-ime.
Moreover, decoded rames mus go hrough some marix ransormaion o compensae or lens disorion, which
urher complicaes he ask a hand. Tus, we develop a wo-sep approach. Firs, we augmen he encoder a he
server o compue he encoding disorion. o accoun or rame loss due o packe loss, we add R codes o he
reerence rames on he server. We hen mach he R codes beween hem and he decoded rames capured
on he clien. Once a rame is los, we duplicae he previously decoded rame or error concealmen. Las, we
compue he objecive video qualiy o he concealed rames or he ransmission disorion. We sum up he
encoding and ransmission disorion or he nal video qualiy.

Table 1. Human Facors in GE and VE

Factor GE Levels (game time per week in hr) VE Levels (prior VR experience)
Desc. Novice (< 1) Inermediae (≥ 1 and < 5) Advanced (≥ 5 ) No Yes

Percent. 25% 25% 50% 50% 50%
Enum. 1 2 3 0 1
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(4 mins)
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(6 mins)
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Feedback

Total Duration (175 mins)

Testing Session 1 Testing Session 33Training Session

Break
(1 min)
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Rating
(1 min)

Rating
(1 min)

Fig. 5. Procedure o he user sudy.

4.3 User Sudy
We recruied 12 subjecs o conduc our user sudy, o whom 10 were males. All subjecs were college sudens
beween 20–25 years old wih 20/20 correced vision in he Snellen es. Tey also passed he Ishihara es
or color vision. We considered wo human acors, Gaming Experience (GE) and VR Experience (VE) levels. As
summarized in able 1, we caegorized all subjecs ino hree GE levels: (i) novice (< 1 hour game ime per week),

We ollowed he recommendaion or 360° video scenarios [40] and employed he deaul 1080p model.
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Table 2. Scenarios or Each Game Genre

Bitrate (Mbps) Frame Rate (ps) Resolution Delay (ms)
2 72 2880×1568 0
8 72 2880×1568 0
32 72 2880×1568 0
32 12 2880×1568 0
32 24 2880×1568 0
32 36 2880×1568 0
32 72 2112×1184 0
32 72 1408×768 0
32 72 2880×1568 100
32 72 2880×1568 300
32 72 2880×1568 500

Table 3. oE Qesionnaire or oE User Sudy

oE Qestion Rating
oE

Experiments
(Sec. 4)

Perormance
Evaluations

(Sec. 7)

Overall Qaliy (O) How would you rae he overall qualiy
o his gaming session? 1 (Bad) – 5 (Excellen) ÿ ÿ

Visual Qaliy (V) How would you rae he visual qualiy
o his gaming session? 1 (Bad) – 5 (Excellen) ÿ ÿ

Immersive Level (I) How is your assessmen abou he sense
o immersion during his gaming session? 1 (Low) – 5 (High) ÿ ×

Cybersickness (S) Are you eeling any sickness
or discomor now? 1 (No problem) – 5 (Unbearable) ÿ ÿ

Coninue (C) Would you like o coninue o play
under his condiion? 0 (No) – 1 (Yes) ÿ ×

IneracionQaliy (A) How responsive was he environmen
o acions ha you perormed? 1 (No responsive) - 5 (Compleely responsive) × ÿ

(ii) inermediae (≥ 1 and < 5 hours), and advanced (≥ 5 hours). We enumeraed he GE levels ino 1, 2, and 3 or
he sake o presenaion. Tere were 3, 3, and 6 gamers in he GE levels, respecively. able 1 also shows ha we
classied all subjecs ino wo VE levels using a Boolean value, where 0 means no prior VR experience.
Fig. 5 shows he procedure o our user sudy. A he beginning, we provided an inroducion o each subjec. In

he raining session, he players played all hree games o ge amiliar wih he HMD and conrollers. Te game
scenes/levels we used in raining sessions were dieren rom hose in he esing sessions. o avoid aigue, we
only varied one acor a a ime, leading o 11 scenarios (sessions) or each game. able 2 liss all he scenarios.
Since we had hree considered games, each subjec underwen 33 sessions. Tere was a 1-minue break aer each
session. Te order o sessions was random o avoid he learning eec. We recorded each subjec’s inpus or our
oE quesions given in able 3. Tis able consiss o all quesions used in his secion (upper hal) and in he
perormance evaluaions secion (Sec. 7). In his secion, we asked all quesions excep or he las row o he
able. Paricularly, here are ve quesions [43, 50, 54, 60]: Overall Qaliy (O), Visual Qaliy (V), Immersive Level
(I), Cybersickness (S), and Coninue (C). Te raings are on a 1–5 scale using Absolue Caegory Raing (ACR),
where higher is beter, excep or: (i) Coninue, which is a Boolean value, and (ii) Cybersickness, where lower
is beter. I is worh noing ha we avoided long cybersickness quesionnaires [27] o preven he prolonged
duraion o each session, which would limi he number o esed condiions [52]. Furhermore, our ocus was on
he mean cybersickness score, and hus he longer cybersickness quesionnaires may no be necessary [16]. Even
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aer doing so, he user sudy duraion o each subjec was sill oo long, so we had o separae each subjec’s
sessions ino wo days, or varying: (i) encoding setings on day 1, which lased or abou 120 minues, and (ii)
nework condiions on day 2, which lased or abou 45 minues. I ook us abou 45 hours o complee he user
sudy. Given ha we had 12 subjecs and 33 sessions each, we gahered a oal o 396 responses hroughou he
user sudy. We analyzed he resuls below.
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Fig. 6. MOS o overall qualiy under diferen setings, sample resuls under deaul encoding and nework acors wih
varying: (a) birae (72 ps, 2880×1568), (b) rame rae (32 Mbps, 2880×1568), and (c) resoluion (32 Mbps, 72 ps).
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Fig. 7. Implicaions o birae wih deaul rame rae (72 ps), resoluion (2880×1568), and delay on: (a) MOS o visual qualiy,
(b) objecive qualiy in VMAF, and (c) immersive level score.

4.4 Resuls
Bitrate afects the gamer oE the most among other encoding settings. Fig. 6 gives he MOS scores o
overall qualiy under dieren encoding setings. Slopes in Fig. 6(a) are generally seeper compared o hose in
Figs. 6(b) and 6(c), showing ha he birae imposes he mos signican impac on he gamer oE. We perormed
Wilcoxon signed-rank ess beween he MOS o he lowes and highes values or each encoding seting. We
ound ha he p-values o birae are almos consisenly lower han hose o he rame rae and resoluion across
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all hree games (excep he p-value o he rame rae in BeaSaber). Tis conrms ha he birae is he mos
imporan encoding seting. Noe ha all hese p-values are below 0.001, demonsraing clear saisical dierence.
MOS growth rate decelerates as bitrate increases. Fig. 7 presens sample qualiy and immersion resuls

under dieren biraes. We observe ha boh MOS o visual qualiy and objecive qualiy merics, i.e., VMAF,
improve rapidly rom 2 o 8 Mbps, wih an average slope o 0.25 and 2.87, respecively. However, he improvemen
deceleraes rom 8 o 32 Mbps, wih an average slope o 0.08 and 1.31, respecively. Te same behavior o he
immersive level can be seen in Fig. 7(c). While we canno show all gures due o he space limiaion, a similar
rend was also observed wih oher oE quesions, e.g., MOS o overall qualiy in Fig. 6(a). Tese observaions
indicae ha as he birae increases, he growh rae o MOS deceleraes gradually.
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Fig. 8. Implicaions o rame rae wih deaul birae (32 Mbps), resoluion (2880×1568), and delay on: (a) MOS o overall
qualiy, (b) immersive level score, and (c) racion o coninue.
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Fig. 9. Implicaions o delay wih deaul birae (32 Mbps), rame rae (72 ps), and resoluion (2880×1568) on: (a) MOS o
overall qualiy and (b) immersive level score.

Diferent game genres have diferent requirements. Fig. 6(a) reveals ha MOS o overall qualiy is more
sensiive in ArPuzzle under dieren biraes. Te same can be said wih visual qualiy and immersive level in
Figs. 7(a) and 7(c), compared o oher game genres. In hese cases, he p-values or ArPuzzle on MOS are lower
han hose in AngryBird and BeaSaber, and all o he values are below 0.001 aer conducing he Wilcoxon
signed-rank ess, showing saisical dierences. Tis is inuiive, as ArPuzzle needs higher visual qualiy due o
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is exure deails. Fig. 8 repors he inuence o varying rame raes. Figs. 8(a) and 8(b) depic ha when he
rame rae drops below 24 ps, he MOS o overall qualiy and immersive level score drop drasically, especially
or BeaSaber. Te p-values beween 24 and 12 ps are boh below 0.001, wih MOS dierences o 2.08 and 2.33,
respecively. Fig. 8(c) shows ha no one wans o coninue playing BeaSaber a 12 ps, while AngryBird and
ArPuzzle are sill accepable o 10% and 20% o gamers, respecively. Fig. 9 presens he implicaion o exra delay
on overall qualiy and immersive level. Similar o Fig. 8, BeaSaber is more sensiive o injeced delays, as gamers
may no reac in ime. Te p-values beween 0 and 500 ms o injeced delay are boh below 0.001, wih MOS
dierences o 3.02 and 3.17, respecively. From he observaions above, i is saisically signican ha diverse
game genres incur dieren requiremens on he oS.
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Fig. 10. Cybersickness score wih deaul parameers and diferen: (a) rame rae (32 Mbps, 2880×1568), (b) delay (32 Mbps,
72 ps, 2880×1568), and (c) subjecs a 12 ps (32 Mbps, 2880×1568).

Cybersickness highly depends on subjects. Fig. 10 summarizes he cybersickness scores under diverse
acors. We observe ha he cybersickness score remains relaively consisen across mos rame rae and delay
setings unless he rame rae drops below 24 ps (Fig. 10(a)), or he delay approaches 500 ms (Fig. 10(b)). In hese
exreme cases, he average cybersickness score is increased by 0.78 and 0.81, respecively. However, he p-values
are all above 0.01 in hese cases aer conducing Wilcoxon signed-rank ess, which indicaes minor signicance.
A deeper invesigaion indicaes ha even under hese unavorable setings, such as rame rae o 12 ps, 50% o
he subjecs gave a raing o 1 (No problem), as illusraed in Fig. 10(c). We conclude ha cybersickness scores
largely depend on subjecs. Tus, we leave modeling cybersickness as one o our uure works.

5 OE MODELING
In his secion, we model he gamer oE scores using he daa colleced rom our oE evaluaions. We leave
modeling cybersickness as our uure work. We also exclude modeling coninue since we ail o see immediae
applicaions.

5.1 Modeling Approach
We model he overall qualiy, visual qualiy, and immersive level as: 푄푂 (푏, 푓 , 푟 , . . . ), 푄푉 (푏, 푓 , 푟 , . . . ), and
푄퐼 (푏, 푓 , 푟 , . . . ), where 1 ≤ 푄푂 (·),푄푉 (·),푄퐼 (·) ≤ 5. Tese oE models ake ve caegories o inpus: encod-
ing setings, nework condiions, video qualiy merics, human acors, and game genre. In oal, our oE models
ake 14 inpus. able 4 summarizes he inpus, where: (i) encoding setings include birae 푏, rame rae 푓 , and
resoluion 푟 ; (ii) nework condiions encompass hroughpu, rame loss rae, packe loss rae, and delay; (iii) video
qualiy merics include PSNR, SSIM, and VMAF; (iv) human acors cover GE and VE levels; and (v) game genre is
capured by I and SI.
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Table 4. oE Model Inpus

Category Input

Encoding Setting
Birae,

Frame Rae,
Resoluion

Network Condition

Troughpu,
Frame Loss Rae†,
Packe Loss Rae,

Delay
VideoQality

Metric
PSNR†,

SSIM†, VMAF†
Human Factor GE, VE
Game Genre I, SI

† Measured by exernal measuremen ools raher han
insrumened code.

Table 5. Hyper-parameers: AngryBird/BeaSaber/ArPuz-
zle/General

Model Hyper-parameter

Poly Degree Intersection

1 / 1 / 1 / 1 Wih / Wih /
Wih / Wih

RF No. Estimators Minimum Samples
200 / 200 / 200 / 350 2 / 4 / 2 / 2

GB No. Estimators Minimum Samples
250 / 200 / 50 / 250 2 / 16 / 8 / 4

AB No. Estimators Minimum Samples
350 / 350 / 100 / 100 4 / 2 / 8 / 16

QoE Models
(Poly / RF / GB / AB)

Encoding Setting

Overall Quality / Visual Quality / Immersive Level

Network Condition

Video Quality Metric

Human Factor

Game Genre

Fig. 11. Block diagram o he oE models.

o undersand heir pros and cons, we build wo classes o models: per-game and general, where he later models
are mean or all game genres. Since he ormer models are or each game, we remove he game genre (I/SI) rom
heir inpus. We consider our regression models as uncions or predicing oE, including polynomial regressor
and decision ree-based regressors. Polynomial regressor (Poly) is chosen because i is a popular baseline model.
Among decision ree-based regressors, Random Fores (RF), Gradien Boosing (GB), and Ada Boosing (AB)
are widely used [7]. We adjus he key hyper-parameers o hese regressors: (i) he degree o polynomial and
inersecion-only in Poly and (ii) he number o esimaors and minimum samples per-lea in decision ree-based
soluions (RF/GB/AB). Fig. 11 highlighs he inpus and oupus o hese regressor models.
We use Sciki-Learn [42] o implemen hese regression models in Pyhon. For each regressor, we perormed a

grid search on he key hyper-parameers, resuling in 6 combinaions or Poly and 35 combinaions or RF/GB/AB,
using he resuls rom he oE evaluaions in he ollowing seps. Firs, we need o spli he daase o evaluae
he oE models. Tis can be done in wo ways: (i) some earlier work [11] spli he daase ino raining, validaion,
and esing ses, while (ii) ohers [3, 10, 69] spli he daase ino raining and esing ses only. We op or he
later approach as we have ewer subjecs han Fan e al. [11]. Second, we perorm 3-old cross-validaion on
overall qualiy by subjecs. In paricular, we ake wo-hirds o he subjecs as raining daa and he res as esing
daa. We consider all 495 possible rain-es splis and evaluae he average perormance in PLCC and SROCC.
Tird, we selec he bes hyper-parameers leading o he highes perormance or he corresponding regressor
models, as given in able 5. Noe ha since he degree o Poly is one, i is equal o linear regression. Las, aer
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deermining he hyper-parameers, we include an addiional meric, R squared (푅2), in addiion o PLCC and
SROCC, o compare he perormance beween per-game and general models, as well as across dieren regressor
models. I is imporan o noe ha general models can be rained wih more samples han per-game models. o
ensure a air comparison, we reain only one-hird o random samples or general models, which is reerred o as
adjused general models.

Table 6. oE Modeling Resuls on Overall Qaliy: AngryBird/BeaSaber/ArPuzzle/Adjused General

Model Metric
R2 PLCC SROCC

Poly 0.68 / 0.77 / 0.78 / 0.77 0.87 / 0.90 / 0.93 / 0.91 0.88 / 0.90 / 0.92 / 0.92
RF 0.80 / 0.84 / 0.84 / 0.82 0.93 / 0.93 / 0.93 / 0.93 0.91 / 0.88 / 0.91 / 0.90
GB 0.81 / 0.85 / 0.84 / 0.82 0.93 / 0.94 / 0.93 / 0.93 0.91 / 0.89 / 0.91 / 0.91
AB 0.83 / 0.84 / 0.80 / 0.81 0.94 / 0.94 / 0.92 / 0.91 0.92 / 0.88 / 0.90 / 0.90
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Fig. 12. Perormance o general models on: (a) MOS o overall qualiy, (b) MOS o visual qualiy, and (c) immersive level score.
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Fig. 13. Prediced vs. ground-ruh MOS: (a) Poly and (b) RF.
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5.2 Resuling Models
We make he ollowing observaions on various oE models considered by us:

• Adjusted general models deliver good enough perormance. able 6 gives he overall perormance
across per-game and adjused general models. For all regressors, he adjused general models achieve
similar perormance wih per-game ones. ake RF as an example, he highes improvemens o per-game
models over general ones are merely 0.02 in R2, 0.001 in PLCC, and 0.01 in SROCC on overall qualiy.
Hence, we employ he general model below, i no oherwise specied.

• Random orest achieves the best perormance. Nex, we rain our general models wih all samples,
and give resuls in Fig. 12. We nd ha he RF model perorms he bes. For example, in Fig. 12(a), RF
achieves up o 0.85 in R2, 0.93 in PLCC, and 0.92 in SROCC on overall qualiy. A closer look depics ha
among all inpus, he hroughpu and round-rip delay have he highes impacs wih coeciens o 0.40
and 0.39, which are raher inuiive, as hey direcly aec he response ime and visual qualiy. Fig. 13
plos he relaionship beween he prediced and ground-ruh MOS. Tis gure depics ha RF resuls in
a sronger linear correlaion compared o Poly. Hence, we adop RF or building our oE models in he res
o his aricle.

• Immersive level is relatively hard to model. Compared o overall and visual qualiy, he perormance
o immersive level is a bi lower, as illusraed in Fig. 12. Tere may be wo possible reasons. Firs,
immersive level is inuenced more by game genres and subjec preerences. Tis in urn makes heir
scores harder o be modeled by our regressors. Te second reason is he impac o he oE experimens
duraion. According o IU- recommendaion P.809 [24], immersive levels are beter invesigaed in
experimens wih longer duraions. Since our oE experimens duraion o each session is no long, his
migh lead o more noise o raings. Wih ha said, we can sill achieve accepable perormance o 0.78 in
R2, 0.91 in PLCC, and 0.90 in SROCC on immersive levels.

Alhough our models perorm well when esimaing he gamer’s oE, some o is inpus may be hard o measure
a run-ime. In paricular, rame loss rae, PSNR, SSIM, and VMAF are measured exernally rom oher ools in our
esbed. o make our oE model more suiable or real-lie scenarios, we rain ligh-weigh models wihou hese
inpus. Te ligh-weigh models approximae he original ones and are denoed as: 푄̃푂 (푏, 푓 , 푟 , . . . ), 푄̃푉 (푏, 푓 , 푟 , . . . ),
and 푄̃퐼 (푏, 푓 , 푟 , . . . ), where 1 ≤ 푄̃푂 (·), 푄̃푉 (·), 푄̃퐼 (·) ≤ 5. We observe ha he ligh-weigh models produce oE
predicions airly close o hose rom he original models. More specically, he perormance gaps beween 푄푂 (·)
and 푄̃푂 (·) are 0.02 in R2, 0.01 in PLCC, and 0.02 in SROCC; hose beween 푄푉 (·) and 푄̃푉 (·) are 0.01 in R2, 0.01 in
PLCC, and 0.02 in SROCC; and hose beween 푄퐼 (·) and 푄̃퐼 (·) are 0.02 in R2, 0.01 in PLCC, and 0.01 in SROCC.
Hence, we recommend and adop he ligh-weigh models in he res o his aricle.

6 OE-DRIVEN ENCODING SETTINGS ADAPTATION
In his secion, we develop an algorihm o selec he opimal encoding setings under dynamic neworks and
sysems.

6.1 Problem Formulaion
We use encoding setings as conrol knobs, sriving o nd he opimal setings 푒∗ = (푏∗, 푓 ∗, 푟 ∗), among all possible
birae 푏, rame rae 푓 , and resoluion 푟 , o maximize he expeced oE. More specically, we periodically selec
and se 푒∗ or every 훿-sec adapaion ime window. We choose 훿 empirically by invesigaing muliple ime
windows. I no oherwise specied, we le 훿 = 3 seconds o srike a balance beween he sysem overhead and
he updae requency. While our approach is applicable o overall qualiy, visual qualiy, and immersive level
using he proposed models 푄̃푂 (·), 푄̃푉 (·), and 푄̃퐼 (·), we consider overall qualiy 푄̃푂 (·) or concree discussion.
Oher oE aspecs can be readily adoped in he objecive uncion i needed. Te key consrain o our problem
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is end-o-end bandwidh, denoed as 퐵. Noice ha 푏 represens encoding birae, which is smaller han sreaming
birae ha accouns or various overheads, such as segmenaion, proocol, and error correcion. We use 훼 o
denoe he overhead, proporional o he encoding birae. We use 훼 = 15% ollowing Li e al. [37] i no oherwise
specied. Wih he above symbols, we ormulae our opimizaion problem as:

푒∗ = 푎푟푔푚푎푥
푒=(푏,푓 ,푟 )

푄̃푂 (푏, 푓 , 푟 , . . . )

s.. (1 + 훼)푏 ≤ 퐵.
(1)

We noe ha he dos in 푄̃푂 (·) represen seven non-encoding-seting inpus o our oE models (see able 4).
Among hese seven inpus, our o hem are consans: he subjec’s GE and VE levels and he game genre’s I
and SI values. Te remaining hree inpus are measured in real-ime, which are hroughpu 푝 , delay 푑 , and packe
loss rae 푙 . By solving he opimizaion problem once every adapaion window, our cloud VR gaming sysem
adaps o he nework and sysem dynamics in a oE-aware ashion.

6.2 oE-Driven Adapaion (DA) Algorihm
Solving he opimizaion problem in Eq. (1) is challenging or hree reasons. Firs, oE evaluaions are ime-
consuming. Tereore, only a ew (en, more precisely) encoding setings were esed in our oE evaluaions,
while addiional encoding setings can and should be derived beore solving he adapaion problem. Second,
hree measured inpus, which are hroughpu 푝 , delay 푑 , and packe loss rae 푙 , vary in raher large ranges, leading
o huge search space o opimal soluions. Las, numerically solving he oE-driven opimizaion problem leads
o excessive running ime, which is no suiable or real-ime cloud VR gaming.
o address he rs challenge, we adop quadraic uncions o inerpolae oE o encoding setings ha

were no included in he oE evaluaions. More specically, o densiy he encoding setings, we  a quadraic
uncion along each dimension o birae, rame rae, and resoluion. o ensure hese quadraic uncions o be
monoonically non-decreasing, we add wo conrol biraes a 35 and 38 Mbps and wo conrol rame raes a 84
and 90 ps. Te oE values o hese conrol sample poins are se o be he same as hose o he closes encoding
seting rom our oE evaluaions. Wih hese quadraic uncions, we inerpolae he oE o encoding setings
wih 푏 ∈ {2, 3, 4, 5, 6, 7, . . . , 31}, 푓 ∈ {48, 60}, and 푟 ∈ {1760×960, 2496×1376} o increase he considered encoding
setings rom 10 o 42. For he second challenge, we discreize he range o each measured inpu ino muliple
bins o reduce he search space. Specically, we employ a binning mehod based on daa characerisics called
Freedman Diaconis [15], which makes sure individual bins have enough daa poins. Following his mehod, we
creae 7, 7, and 3 bins or hroughpu 푝 , delay 푑 , and packe loss rae 푙 , respecively. For he hird challenge,
o speed up he adapaion decisions, we consruc a lookup able 푄̂푂 (푏, 푓 , 푟 , . . . ) or 푒∗ using 푄̃푂 (푏, 푓 , 푟 , . . . ).
Because he lookup able is buil ofine, doing so incurs no runime complexiy wih a memory ooprin ≤ 700
KB.
We propose a oE-driven adapaion (DA) algorihm based on he lookup able 푄̂푂 (푏, 푓 , 푟 , . . . ). Te algorihm

measures nework condiions or individual rames and applies Exponenially Weighed Moving Average (EWMA)
o ler ou high-requency noise. In paricular, a 30% weigh is assigned o he laes measuremen. DA algorihm
is execued a he ALXR server once every 훿 seconds. Firs, he EWMA values are placed ino bins. Te algorihm
hen akes he middle poins o he bins, human acors, and game genres, and ieraes hrough all easible
encoding setings ha do no violae he bandwidh consrain. Among all easible encoding setings, we choose
푒∗ ha maximizes 푄̂푂 (푏, 푓 , 푟 , . . . ), which is hen used o recongure he video codec a he ALXR server. We noe
ha his lookup can be done ecienly: hroughou our experimens, he DA algorihm always erminaes in
∼ 20 ms on a commodiy Inel i9 worksaion.
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7 PERFORMANCE EVALUATIONS
We evaluae our cloud VR gaming sysem, especially he DA algorihm wih an addiional user sudy in his
secion. Tis user sudy is based on he oE models consruced wih he resuls obained rom he previous user
sudy in Sec. 4.

7.1 Technical Seup
o drive our experimens, we adop a real 5G nework daase [45], which conains hroughpu races wih
wo mobiliy paterns: saic and driving and, wo applicaions: le downloading and video sreaming. Because
cloud VR gaming cliens: (i) are saic and (ii) incur a remendous amoun o nework rac, we selec he saic
le-downloading race wih he highes sandard deviaion o approximae he available bandwidh under he
mos challenging nework condiions. Te average bandwidh in his race is 121 Mbps (휎 = 88.44), and he
maximum bandwidh reaches 254 Mbps. Buil upon he race, we consider hree es scenarios: (i) C1, where
he bandwidh is dedicaed o one clien, (ii) C5, where he bandwidh is equally divided among ve cliens,
and (iii) C10, where he bandwidh is equally divided among 10 cliens. As he number o cliens increases, he
bandwidh becomes more consrained. We noe ha our cloud VR gaming sysem ceases o work when he
nework bandwidh goes below ~ 3 Mbps. Hence, we scan hrough C1, C5, and C10, and skip any bandwidh
samples < 3 Mbps. In oal, 10.66%, 18.07%, and 31.20% bandwidh samples were skipped rom C1, C5, and C10,
respecively. Te resuling races are sill long enough or our user sudy. We use Dummyne o emulae diverse
nework condiions in hree scenarios: C1, C5, and C10.
In paricular, we conduc a user sudy o compare our DA algorihm agains he ollowing wo baseline

algorihms:
• No Adaptation (NA). In vanilla ALXR, a gamer has an opion o disable he birae adapaion algorihm
alogeher.

• Delay Treshold-based Adaptation (DA). ALXR provides a delay hreshold-based birae adapaion
algorihm. Tis algorihm dynamically adjuss he birae based on a arge delay 푑푇 and a olerance
inerval 푑Δ. I also keeps rack o he sreaming birae 푏푠 a he ALXR server and considers a birae
hreshold 푏푇 . Te algorihm is execued once each rame. Specically, i he measured delay exceeds
푑푇 + 푑Δ, he birae is decreased by 3 Mbps. Conversely, i he measured delay alls below 푑푇 − 푑Δ and he
sreaming birae 푏푠 surpasses he hreshold 푏푇 , he birae is increased by 1 Mbps. We le 푑푇 = 12 ms, 푑Δ
= 3 ms, and 푏푇 = 0.7푏푠 , ollowing ALXR’s deaul setings. Unlike our oE-driven algorihm, DA does
no consider he rame rae and resoluion when making decisions.

7.2 Tes Mehod
We designed a new user sudy o evaluae he perormance beween DA algorihms and wo baseline algorihms.
We uilized he same se o game genres menioned in Sec. 4.1. Te user sudy design is based on ha in our rs
user sudy described in Sec. 4.3 (see Fig. 5), bu wih a ew changes on quesionnaires, as summarized in able 3.
Firs, we removed he immersive level rom he oE quesionnaire because we ound ha i was no easy or our
subjecs o properly rae he immersive levels given he relaively shor gaming sessions. In addiion, prolonging
he gaming session is no an opion due o poenial subjec aigue. Second, we add a new quesion on Ineracion
Qaliy (A), which has been shown o be crucial or ineracive VR applicaions [50]. Te raings are also on a
1–5 scale using ACR. Moreover, ocusing on he dynamics, he ineracion qualiy is a beter indicaor o evaluae
he eeciveness o adapaion algorihms in dynamic neworks and sysems. Tird, we ask each subjec o play a
racion (~ 60%) o all sessions wih dieren nework scenarios, adapaion algorihms, and game genres o avoid

We op or he le-downloading races or enough rac loads.
Tis is enorced by a wachdog mechanism.
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subjec aigue. By doing so, each subjec’s user sudy duraion is limied o 90 minues. More specically, among
27 oal possible gaming sessions (3 nework scenarios, 3 adapaion algorihms, and 3 game genres), each subjec
ges o play 16 random ones. Las, we dropped coninue (C) rom he oE quesionnaire o urher reduce he
user sudy duraion.
We enlised 20 subjecs (17 males) aged beween 20–26 years old. All o hem passed he Snellen and Ishihara

ess. Among hese subjecs, 6, 3, and 11 were caegorized as novice, inermediae, and advanced gamers. In
addiion, eigh o hem had prior VR experience. In oal, wih 20 subjecs and 16 sessions each, we compleed
320 gaming sessions. On average, each combinaion o nework condiion, adapaion algorihm, and game genre
accumulaed 11.85 (sandard deviaion 휎 = 0.80) gaming sessions. In order o objecively assess he perormance
and sudy heir relaionship wih subjecive resuls, we measure wo kinds o objecive merics: (i) network
metrics, including delay and packe loss rae; and (ii) video quality metrics, including PSNR, SSIM, and VMAF.
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Fig. 14. Comparison o oE qualiy among diferen adapaion algorihms or AngryBird: (a) MOS o overall qualiy, (b)
MOS o visual qualiy, and (c) ineracion qualiy score.

Table 7. oE Scores rom NA/DTA/DA Algorihms; Scenario C10

oE AngryBird BeatSaber ArtPuzzle
OverallQality 1.50/2.92/3.50 1.17/1.92/3.25 1.42/2.23/2.92
VisualQality 1.92/2.62/2.90 1.75/1.92/2.92 1.58/1.77/2.33

InteractionQality 1.50/3.08/4.00 1.08/2.08/3.25 1.41/2.15/3.67

7.3 Resuls
MOS scores on overall, visual, and interaction quality. Fig. 14 compares he overall, visual, and ineracion
qualiy achieved by various adapaion algorihms under dieren scenarios. Sample resuls rom AngryBird are
shown; resuls rom oher game genres (BeaSaber and ArPuzzle) are similar and omited. Figs.14(a) and 14(c)
depic ha DA delivers much beter oE in overall and ineracion qualiy, compared o NA and DA. Te boos
is paricularly eviden in he bandwidh-limied C10 scenario: he oE gaps on: (i) overall qualiy reach up o 2.00
(휎 = 0.45) compared o NA, and up o 0.58 (휎 = 0.47) compared o DA; and (ii) ineracion qualiy reach up o
2.50 (휎 = 0.40) compared o NA and up o 0.92 (휎 = 0.45) compared o DA. Regarding visual qualiy, Fig. 14(b)
reveals ha he gaps are relaively smaller han hose o overall and ineracion qualiy. Tis discrepancy can be
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atribued o he need o reduce he encoding birae in challenging scenarios o preven lagging and ariacs
during gameplays.
able 7 gives he oE scores o overall, visual, and ineracion qualiy under dieren game genres and

adapaion algorihms under he bandwidh-limied C10 scenario. Compared o NA, he average improvemens
o our proposed DA across all hree game genres amoun o averagely 1.86 (휎 = 0.38) in overall qualiy, 0.97
(휎 = 0.45) in visual qualiy, and 2.31 (휎 = 0.35) in ineracion qualiy. Compared o DA, he average improvemens
sand a 0.87 (휎 = 0.44) in overall qualiy, 0.61 (휎 = 0.45) in visual qualiy, and 1.20 (휎 = 0.48) in ineracion qualiy.
Fig. 14 and able 7 conrm ha our proposed DA algorihm signicanly improves he oE scores on overall, visual,
and ineracion qualiy compared o he baseline algorihms.
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Fig. 15. Comparison o cybersickness score across diferen game genres: (a) AngryBird, (b) BeaSaber, and (c) ArPuzzle.
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Fig. 16. Comparison o VMAF across diverse adapaion algorihms wih diferen game genres: (a) AngryBird, (b) BeaSaber,
and (c) ArPuzzle. Signiicance values are deined as: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Cybersickness scores. Fig. 15 presens he cybersickness scores achieved by dieren adapaion algorihms
in dieren game genres. Tis gure shows ha among he hree game genres, DA demonsraes much lower
cybersickness scores under scenarios C5 and C10. Especially in C10, DA algorihm’s cybersickness scores are
0.63 (휎 = 0.42) lower han hose o NA and 0.25 (휎 = 0.34) lower han hose o DA on average. Tis oucome
can be atribued o more eecive adapaions made by our DA algorihm: beter-opimized encoding setings
lead o less lagging and ariacs and hus beter oE. Te observaions on our user sudy are consisen wih
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our previous sudy on simulaor sickness [51], where lower visual qualiy resuled in higher simulaor sickness
scores. Fig. 15 conrms ha our proposed DA algorihm leads o relaively lower cybersickness scores, compared o
he baseline algorihms.

Table 8. Video Qaliy From NA/DTA/DA Algorihms; Scenario C10

Metric AngryBird BeatSaber ArtPuzzle
PSNR (dB) 23.99/29.96/31.25 22.15/26.89/31.77 19.57/24.81/27.31

SSIM 0.63/0.82/0.88 0.80/0.87/0.93 0.53/0.69/0.82
VMAF 36.04/56.17/61.75 32.06/54.91/67.49 34.10/54.68/60.26

Objective quality. Fig. 16 repors sample VMAF resuls achieved by dieren adapaion algorihms wih
dieren game genres and under diverse scenarios. Tis gure illusraes ha our DA achieves he highes VMAF
scores compared o oher baseline algorihms. Furher analysis hrough he Friedman es reveals signican
dierences among he hree adapaion algorihms under he same nework scenarios and game genres. Te
푝-values are lower han 0.001, excep or scenario C5 in ArPuzzle. Even in ha exreme case, we sill observe a
푝-value lower han 0.01, indicaing saisical signicance.
able 8 summarizes all video qualiy merics, including PSNR, SSIM, and VMAF, achieved by dieren adapaion

algorihms under he mos challenging scenario C10. Tis able clearly shows ha he proposed DA algorihm
leads o higher video qualiy han he wo baseline algorihms; booss up o 9.62 dB in PSNR, 0.29 in SSIM, and
35.43 in VMAF are observed. Fig. 16 and able 8 conrm ha our proposed DA algorihm signicanly improves he
objecive video qualiy in PSNR, SSIM, and VMAF compared o he baseline algorihms. Beyond he qualiy merics,
our DA algorihm also demonsraes superior perormance in nework merics. Specically, he round-rip
delay is 3 ms lower han DA and 3.5 ms lower han NA; while he packe loss rae is 7.59% lower han DA
and 24.56% lower han NA on average under he mos congesed C10 scenario. Tese objecive oucomes are
consisen wih he subjecive oE improvemens.
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Fig. 17. Implicaions o diferen game genres wih DA algorihms on: (a) MOS o visual qualiy and (b) ineracion qualiy
score.

Implication o game genres. Fig. 17 illusraes he impac o dieren game genres on visual and ineracion
qualiy wih our DA algorihms under diverse scenarios, respecively; resuls rom oher algorihms (NA
and DA) are similar and omited. Fig. 17(a) illusraes ha ArPuzzle exhibis lower MOS han AngryBird
and BeaSaber under bandwidh-limied scenarios, emphasizing is high demand or visual qualiy due o is
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qualiy-sensiive naure. Neverheless, he MOS o visual qualiy in ArPuzzle can mainain 2.33 (휎 = 0.27) under
bandwidh-limied C10 scenario wih our DA algorihms. Similarly, Fig. 17(b) shows ha BeaSaber has lower
scores compared o AngryBird and ArPuzzle under all scenarios, indicaing is sensiiviy o ime and hus
sringen requiremens or ineracion qualiy. However, wih he help o our DA algorihm, he ineracion
qualiy scores can sill achieve 3.25 (휎 = 0.26) even under he C10 scenario. Fig. 17 conrms ha he resuls relaed
o visual and ineracion qualiy are consisen wih our expecaions oulined in Sec. 4.1. Specically, ArPuzzle
exhibis sensiiviy o qualiy, BeaSaber o ime, and AngryBird demonsraes less sensiiviy o boh acors.

8 CONCLUSION
In his aricle, we developed and opimized a cloud VR gaming sysem, which has no been horoughly sudied in
he lieraure. Aer conducing comprehensive oE evaluaions using a user sudy, we analyzed he impacs o
dieren encoding setings and nework condiions on gamer oE scores across diverse game genres.Te eedback
rom paricipans via quesionnaires revealed novel insighs ino he correlaion beween gamer-perceived oE
and measurable oS merics. Based on he oE evaluaion resuls, we buil general oE models or all game
genres using he RF regressor. Te resuling oE models are accurae: achieving up o 0.93 (휎 = 0.02) in PLCC
and 0.92 (휎 = 0.02) in SROCC. We also developed a oE-driven adapaion algorihm called DA o opimize
he encoding setings under dynamic neworks and sysems. We conduced a second user sudy o evaluae he
perormance o our DA algorihm in paricular, and he overall cloud VR gaming sysem in general. Compared
o he exising NA and DA algorihms, our proposed DA algorihm leads o beter cloud VR gaming oE, e.g.,
i improves he MOS o overall qualiy by up o 1.86 (휎 = 0.38) and reduces he cybersickness scores by up o 0.63
(휎 = 0.42) averagely across dieren game genres.
Tis aricle can be exended in muliple direcions, including bu no limied o:

• Building oE models or cybersickness scores.Modeling cybersickness requires addiional acors
ha were no considered in his aricle, such as subjec dierences, duraion o each gameplay, and
accumulaed aigue levels. More acors resul in higher modeling complexiy and hus need urher
invesigaion.

• Predicting gamer willingness to continue playing. Lebreon and Yamagishi [31, 32] examined he
user’s willingness o coninue waching videos under he curren oS levels. We can generalize heir
approach o cloud VR gaming o creae a model ha deermines: (i) wheher he curren measurable oS
merics can reain each gamer and (ii) i nework and sysem adapaions are necessary. Te resuling
models are exremely useul or cloud VR gaming service providers o mainain proabiliy.

• Exploring cross-layer optimization on cloud VR gaming. In Mobile Edge Compuing (MEC), cross-
layer opimizaion exchanges insighs across dieren layers, e.g., leveraging Radio Nework Inormaion
Service (RNIS) [2] or live radio saisics. While RNIS has been employed or cross-layer opimizaion in
ow conrol [9] and 360° VR video sreaming [39], i has no been used in cloud VR gaming. Cross-layer
opimizaion can be applied or beter packe prioriizaion, congesion conrol, and resource allocaion in
cloud VR gaming or even beter oE.

• Experimenting with alternative access networks. Compared o cosly wired neworks and limied-
range WiFi neworks, 5G Fixed Wireless Access (FWA) oers high-speed Inerne access o he home
wihou deploying expensive cables. FWA suppors high bandwidh and low delay and hus enables new
AR/VR applicaions in rural areas [4, 30]. Experimening cloud VR gaming over FWA could reveal new
challenges and opporuniies under is unique nework workload in emerging 5G-based access neworks.
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