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Cloud Virtual Reality (VR) gaming offloads computationally-intensive VR games to resourceful data centers. However, ensuring
good Quality of Experience (QoE) in cloud VR gaming is inherently challenging as VR gamers demand high visual quality, short
response time, and negligible cybersickness. In this article, we study the QoE of cloud VR gaming and build a QoE-optimized
system in a few steps. First, we establish a cloud VR gaming testbed capable of emulating various network conditions. Using
the testbed, we conduct comprehensive QoE evaluations using a user study to evaluate the influence of diverse factors, such
as encoding settings, network conditions, and game genres, on gamer QoE scores. Second, we construct the very first QoE
models for cloud VR gaming using our QoE evaluation results. Our QoE models achieve up to 0.93 (¢ = 0.02) in Pearson
Linear Correlation Coefficient (PLCC) and 0.92 (¢ = 0.02) in Spearman Rank-Order Correlation Coefficient (SROCC), where o
stands for the standard deviation. Last, we leverage our QoE models for dynamically adapting encoding settings in our testbed.
Extensive experiments revealed that, compared to the current practice, our adaptive cloud VR gaming system improves: (i)
overall quality by 0.87 (¢ = 0.44), (ii) visual quality by 0.61 (¢ = 0.45), and (iii) interaction quality by 1.20 (¢ = 0.48) on average
in 5-point Mean Opinion Score (MOS).

CCS Concepts: » Human-centered computing — Virtual reality; - Information systems — Multimedia streaming.
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1 INTRODUCTION

The Virtual Reality (VR) gaming market has witnessed substantial growth and is anticipated to continue its
expansion in the forthcoming years. For example, a recent market report [21] indicated that the VR gaming
market is projected to demonstrate a Compound Annual Growth Rate (CAGR) of 32.75% until 2028. The same
report also stated that the number of both VR and Augmented Reality (AR) gamers are anticipated to reach 216
million by 2025. Key consumer electronic manufacturers, such as Meta, HTC, and Apple continue to compete
for the VR gaming market with substantial investment [22, 62]. Most modern VR games dictate Head-Mounted
Displays (HMDs) and game controllers for gamer interaction. HMDs can be classified into two types: tethered
and standalone. Standalone HMDs offer gamers freedom, making them preferable for VR gaming without the
constraint of cables.

However, the limited GPU power and battery capacity of standalone HMDs can detrimentally affect the gaming
experience. One possible solution involves wirelessly transferring the rendering workloads to resourceful cloud
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servers. In fact, as high-speed wireless networks, such as WiFi and 4G/5G cellular networks, are ubiquitously
available, they can “glue” VR games and cloud services into cloud VR gaming systems. Fig. 1 depicts a typical
cloud VR gaming system, which consists of three parties: game developers, cloud VR gaming service providers,
and VR gamers. Cloud VR gaming service providers obtain VR games from game developers, while these games
are executed in virtual machines or containers for individual gamers. The rendered game scenes are captured,
compressed, and streamed through the Internet in real-time to VR gamers’ HMDs. Simultaneously, the HMDs and
controllers intercept, compress, and stream back sensor inputs, enabling gamers to interact with VR games. Differ-
ent VR gamers have diverse access networks with dynamic bandwidths, which impose additional complications
for cloud VR gaming service providers to offer immersive gaming experiences to VR gamers.
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Fig. 1. A typical cloud VR gaming system.

In particular, VR gamers require for short response time and high visual quality when playing cloud VR games.
Unlike presentational streaming services [1], such as YouTube, Netflix, and Hulu, cloud VR gaming employs
interactive bidirectional communications, in which any deterioration in response time and visual quality could
turn gamers away from services. To fulfill the needs of VR gamers, this article extends our preliminary QoE
evaluations [35], and makes the following contributions:

e We build an open-source cloud VR gaming testbed that enables us to emulate diverse and dynamic Wide
Area Networks (WANSs). We design and carry out QoE evaluations using a user study on this open-source
testbed [33] to quantify the impacts of different factors, such as encoding settings (bitrate, frame rate, and
resolution), network conditions (delay), and game genres on gamer QoE scores. Our user study is the first
investigation conducted on @ WAN-based cloud VR gaming system. We make our user study data available
for the research community [34].

e We construct cloud VR gaming QoE models utilizing findings from our QoE evaluations to predict gamer
QoE scores under various factors. Given measurable Quality-of-Service (QoS) metrics, such as throughput,
delay, and packet loss rate, our QoE models achieve high correlation, reaching up to 0.93 (¢ = 0.02) in
Pearson Linear Correlation Coefficient (PLCC) and 0.92 (¢ = 0.02) in Spearman Rank-Order Correlation
Coefficient (SROCC) [58], where o stands for the standard deviation. Our models are the very first ones built
for cloud VR gaming systems. Our models are also available upon request for research purposes.

e We develop a QoE-driven adaptation algorithm at the cloud servers in our system. This algorithm dy-
namically selects the encoding settings to maximize gamer QoE by considering the current network
and system dynamics. Furthermore, we carried out real experiments to assess the effectiveness of our
adaptation algorithm in comparison to two baseline approaches. In our cloud VR gaming system, the
overall QoE scores in 5-point Mean Opinion Score (MOS) are improved by up to 1.86 (o = 0.38) under
congested networks. Our proposed algorithm is a first of its kind, as QoE-driven adaptation of cloud VR
gaming has never been done in the literature.
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The rest of this article is organized as follows. In Sec. 2, we offer an extensive review of related work. Sec. 3
delves into the design of our testbed and outlines the associated research challenges. We elaborate on the setup,
procedures, and analysis of our QoE evaluations in Sec. 4. Sec. 5 focuses on constructing QoE models using
results from the user study. The QoE-driven adaptation algorithm of encoding settings is developed in Sec. 6.
Sec. 7 evaluates the performance of our QoE-optimized cloud VR gaming system. Sec. 8 draws our conclusions.

2 RELATED WORK

In this section, we survey cloud gaming systems from three aspects: QoE evaluations, QoE modeling, and
QoE-driven adaptation.

2.1 QoE Evaluations

Several QoE evaluations have been conducted through user studies to assess gamer QoE of cloud gaming. For
example, Jarschel et al. [26] evaluated gamer QoE under diverse delays and packet loss rates, and identified the
key factors using their home-brew cloud gaming testbed. Sackl et al. [48] manipulated the delay between the
server and client to investigate its impacts on gamer QoF across different game genres on the Steam In-home
streaming platform. Slivar et al. [55] adopted the same platform for another user study of different encoding
settings with two game genres. GamingAnywhere [18] was the first open-source cloud gaming platform, which
can be extended for user studies. For example, we conducted a user study using GamingAnywhere to analyze
how different parameters, such as resolution, bitrate, frame rate, and network delay affect the mobile gaming
experience [19]. Different from our current work, these papers [19, 26, 48, 55] considered traditional cloud gaming
rather than cloud VR gaming.

The challenges become more complicated when VR is introduced, given the heightened requirements for
low delay and increased sensitivity to quality impairments. This is particularly evident in VR gaming, where
the interactive nature of games places significant demands on both delay and quality compared to other VR
applications. More recently, QoE evaluations of VR gaming have also been investigated. For example, Vlahovic
et al. [63] designed two user studies to find out the relationship between network delay and gamer QoF in a
first-person shooter VR game. Their observations highlighted that contextual factors, such as social context and
difficulty levels, can mask the negative effects due to long network delay. Slivar et al. [56] evaluated gamer QoE
in a user study across various networks (4G, 5G, and Ethernet) considering two multiplayer VR game genres.
Their study also delved into the influence of social context on gamer QoE. These works [56, 63] only focused on
local VR gaming rather than cloud VR gaming.

For cloud VR gaming, we designed a remote VR gaming testbed [37] on the basis of Air Light VR (ALVR) [46],
and conducted a user study under different network conditions using three game genres. We reported that
insufficient bandwidth and high packet loss rate may cause higher negative impacts on the QoE than additional
delay. That work employed a remote VR gaming system on a Local Area Network (LAN). In contrast, we recently
applied dynamic foveation to WAN-based cloud VR gaming built upon Air Light XR (ALXR) [47]. Specifically,
we conducted a small user study [13] by varying foveation parameters, including the foveal region size and
the compression ratio of the peripheral area. The current article presents more comprehensive QoE evaluations
focusing on gamer QoE, which enables the construction of QoE models and QoE-driven adaptation algorithms. The
preliminary results of our QoE evaluations were given in Lee et al. [35].

2.2 QoE Modeling

Several research groups have built QoE models for cloud gaming. For example, Wang and Dey [65] proposed a
QoE model that considers game genres, encoding settings, video quality, response time, and packet loss rates as
inputs to predict mobile gaming experience. They derived impairment functions from the QoE evaluations to
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predict the Game Mean Opinion Score (GMOS) of each gamer. Slivar et al. [54] modeled game-dependent QoE
using a quadratic function, which takes the frame rate and bitrate as inputs. Furthermore, they considered game
genres and gaming experience in their models. Different from directly using the bitrate and frame rate as inputs,
Zadtootaghaj et al. [68] introduced structural QoE models based on several intermediate factors derived from
other raw inputs. ITU-T recommendation G.1072 [25] presented an opinion model for predicting cloud gaming
QoE scores. The model provides two modes, one that takes game genres into account and another that does not.
The model calculates various impairment factors based on encoding and network metrics to predict the gamer
QOE. Different from our work, these studies [25, 54, 65, 68] considered traditional cloud gaming rather than cloud
VR gaming. Several works [5, 36, 61, 67] derived QoE models for consuming 360° VR videos; however, little has
been done to VR gaming. Although Krogfoss et al. [29] presented a video and a gaming QoE model based on
parameters like the delays and packet loss rates, their QoE models were not built upon real user-study results.
Instead, their models were essentially heuristics based on findings in the literature.

2.3 QoE-Driven Adaptation

Several works have been done to adapt the bitrate on the fly in video streaming sessions. For example, Cofano
et al. [8] and Sobhani et al. [57] proposed bitrate adaptation algorithms for HTTP Adaptive Streaming (HAS)
systems. Different from our work, these adaptation algorithms are not QoE-driven. For QoE-driven adaptation,
several studies [44, 49, 66] adapted streaming frameworks leveraging either the QoE models or QoE-related
metrics. These algorithms are mostly pull-based and thus are inapplicable to push-based cloud gaming. For
push-based adaptation, Khan et al. [28] proposed a QoE-driven bitrate adaptation scheme built upon fuzzy logic.
It calculated the levels of congestion and degradation according to packet loss rates and QoE models, respectively.
It then changed the bitrate accordingly. Most of these studies [8, 28, 44,49, 57, 66] are for video streaming rather
than more challenging cloud gaming systems, and most of them only take bitrate into consideration, excluding frame
rates and resolutions.

QoE-driven adaptation in cloud gaming has only been recently considered, e.g., Slivar [53] introduced three
adaptation algorithms for the bitrate and frame rate. These algorithms were built upon the findings in their QoE
evaluations. Our prior work [17] facilitated adaptive cloud gaming in GamingAnywhere [18] by dynamically
reconfiguring the encoding settings considering the bitrate and frame rate. Additionally, we developed techniques
for optimal bitrate allocation, selecting the most suitable bitrate and frame rate for each gamer to maximize the
overall gamer QoE scores. The current article introduces a QoE-driven adaptation algorithm in cloud VR gaming
instead of traditional cloud gaming [17, 53].

3 BUILDING A CLOUD VR GAMING SYSTEM

Cloud VR gaming presents unique challenges compared to the following relevant systems:

e 360° Video-on-Demand (VoD) [12]. 360° VoD systems like YouTube operate with unidirectional stream-
ing. As a result, videos can be downloaded and buffered at each client for relatively long durations to
mitigate the negative impacts due to network delay and jitter. In contrast, cloud VR gaming streams
bidirectionally. The server renders scenes based on the gamer’s position received from the client in
real-time and then transmits it to the client. Consequently, delays and jitters cannot be mitigated by a
large buffer. Understanding the behaviors of bidirectional cloud VR gaming systems with small buffers
requires us to build a real cloud VR gaming system and measure its detailed performance in various
metrics.

e Traditional cloud gaming [6]. Traditional cloud gaming systems like GamingAnywhere [18] operate
with 2D monitors. Compared to HMDs used in cloud VR gaming, QoE with 2D monitors is well studied.
While cloud VR gaming systems employ HMDs for potentially higher gamer QoE, the added dimensions
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Fig. 2. Cloud VR gaming: (a) architecture and (b) testbed.

of QoE factors increase the complexity level to deliver novel immersive experiences. Therefore, QoE
models are essential in cloud VR gaming to efficiently estimate the gamer QoE.

e Locally-rendered VR applications [64]. Local VR applications do not engage in remote rendering,
thereby remaining unaffected by imperfect network conditions: In contrast, cloud VR gaming renders
game scenes on potentially far-away cloud servers, and thus is sensitive to bad network conditions.
Consequently, adaptation to network and system dynamics becomes crucial to alleviate their negative
impacts on gamer QoE.

In this article, we set out to develop a cloud VR gaming system and address its unique challenges mentioned
above. Compared to commercial cloud VR gaming systems, open-source systems are easier to augment and
enhance for research. Among the most prominent open-source systems are NVIDIA CloudXR [41] and ALVR [46].
NVIDIA CloudXR supports streaming XR content using the OpenVR Application Programming Interface (API)
for Android and Windows devices. Unfortunately, NVIDIA only makes CloudXR’s client side open-source. This
prevents researchers from integrating their innovations into the server side for experiments. In contrast, ALVR is
an open-source project on both the server and client sides. Vanilla ALVR streams game scenes from PCs to HMDs
over LANs. ALVR uses OpenVR API to obtain game scenes from SteamVR games. However, OpenVR runtime
only supports a limited number of HMD models. ALXR [47] is an extension to ALVR, which adopts OpenXR on
the client side to support more HMD models. Hence, we built our open-source cloud gaming system on top of
ALXR.

Fig. 2(a) presents our proposed cloud VR gaming architecture of a client-server pair. Once the connection
between them is established, the ALXR server extracts the game scenes from SteamVR into video frames through
OpenVR API. Then, it encodes the frames and sends them to the client through the Internet. Meanwhile, the
client displays the received frames and sends the sensor inputs back to the server. According to the sensor inputs
from the client, ALXR server replays the gamer’s motions, extracts new game scenes, and sends the updated
frames.

Fig. 2(b) shows our ALXR-based cloud VR gaming testbed. We use a Windows 10 PC as our server. It comes
with an Intel Core 19 CPU, 64 GB RAM, an NVIDIA GeForce RTX 3080 Ti GPU, and is connected to the Internet

ALXR project reuses ALVR’s server implementation built on OpenVR APL
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through a GigE cable. We use a Meta Quest 2 HMD as our client. It comes with a Qualcomm Snapdragon XR2
CPU, 6 GB RAM, an Adreno 650 GPU, and is connected to a WiFi 6 AP. Between the Internet and WiFi AP,
we add a FreeBSD 13.1 gateway running Dummynet [14] to emulate diverse and dynamic network conditions.
We install ALXR version 18.2.3. Originally, ALXR assumes LAN environments, which is less challenging than
our envisioned cloud VR gaming scenario. To conduct WAN-based realistic cloud VR gaming experiments, we
enhanced ALXR into a cloud VR gaming system [33]. In particular, we transformed the original server-centric
ALXR architecture, where the server discovers the client, into a client-centric ALXR, where the client connects to
a user-specified cloud gaming server.

Developing cloud VR gaming systems with short response time and high visual quality is no easy task, because
of the best-effort Internet, non-real-time operating systems, and hard-to-predict human perception. We face three
primary challenges when doing so. First, multiple factors, such as network conditions, encoding settings, and
game genres affect gamer QoE. Second, gathering gamer QoEF scores takes time, as controlled QoE evaluations
are time-consuming by nature. Third, even if we can estimate the QoE scores, it is not trivial to leverage them in
our cloud VR gaming system for optimizing the gaming experience. We addressed these challenges in three steps.
In Sec. 4, we conduct comprehensive QoE evaluations using a user study on our open-source cloud VR gaming
system. In Sec. 5, we analyze gamer QoE scores and build corresponding QoE models. In Sec. 6, we incorporate
the QoE models to enable QoE-driven dynamic adaptation of encoding settings at runtime.

4 QOE EVALUATIONS

In this section, we conduct QoE evaluations using a user study.

4.1 Setup

(b) (©)

Fig. 3. Sample scenes of three considered games: (a) AngryBird, (b) BeatSaber, and (c) ArtPuzzle.

To be comprehensive, we aimed to employ VR game genres with diverse characteristics. In particular, we
employed Temporal Perceptual Information (TI) and Spatial Perceptual Information (SI) [23] to characterize game
genres following prior works [54, 59]. Between them, TI captures object motions, behavioral patterns, and
changes occurring over time across video frames. In contrast, SI focuses on the characteristics of individual
frames, including the spatial layout of pixels and static properties of objects, such as colors. After considering
multiple candidate VR games, we chose the following three VR games, as shown in Fig. 3:

e AngryBird. A player uses a slingshot to launch birds with the goal of knocking down all pigs. It is a
leisure game.

e BeatSaber. A player slashes through the moving boxes on the beats with specified directions. It is a
fast-paced game.
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e ArtPuzzle. A player manipulates pieces to complete each puzzle. It is a slow-paced game with many
texture details.

To understand their temporal and spatial characteristics, we plot the TI.and SI values of the rendered game scenes
from 12 subjects (reported in Sec. 4.3) in Fig. 4. This scatter plot reveals that the game scenes from different games
naturally scatter into three clusters. In particular, we observe that: (i) AngryBird has low TI and SI values and is
less sensitive to time and quality, (ii) BeatSaber has the highest TI values and is time sensitive, and (iii) ArtPuzzle
has the highest SI values and is quality sensitive. That is, these three representative games cover the spectrum of
diverse temporal and spatial characteristics.

We varied multiple parameters in the user study. A pilot test was conducted with 5 subjects to adjust the
parameter values. In this test, we explored a broader range of values and then selected a narrower range. This
narrower range is sufficient for subjects to perceive differences, thereby achieving a balance in experiment
duration to avoid subject fatigue. The values of each parameter are presented below, with bold font indicating
default settings:

e Bitrate. The number of bits per second used for encoding. Higher bitrate offers better quality at a cost of
larger compressed scene size, while lower bitrate reduces the size at the expense of lower quality. We
denote the bitrate as b; where b € Q*. We vary it in {2, 8, 32} Mbps.

e Frame rate. The number of frames every second. Higher frame rates offer smoother videos but incur higher
computational and storage costs, while lower frame rates reduce these costs but may result in choppier
videos. We denote the frame rate as f, where f € Z*. We vary it in {12, 24, 36, 72} frame-per-second (fps).

e Resolution. The number of pixels contained in each game scene. Higher resolution offers finer details
but introduces more information to compress, while lower resolution leads to less information but lacks
of detail. We denote the resolution as r, where both width and height are € Z*. We vary r in {1408x768,
21121184, 2880x1568}. For ease of expression, we refer to these resolutions as 768p, 1184p, and 1568p in
the rest of this article.

e Delay. The local Round-Trip Time (RTT) is about 10 ms in our system. We inject an extra round trip delay
of {0, 100, 300, 500} ms on the gateway, representing the domestic delay as well as delays between the
USA and Europe, East Asia and South America, and Oceania and Africa, respectively.

We group bitrate, frame rate, and resolution into encoding settings. We consider delay as the key parameter of
network conditions due to the strict real-time requirement of cloud VR gaming services.
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4.2 Measurement Methodology

We measure the following metrics:
Throughput. The receiving speed at the client, which is denoted as p.
Frame loss rate. The fraction of lost frames.
Delay. The round-trip delay between the server and client, which is denoted as d.
Packet loss rate. The fraction of lost packets, which is denoted as I.
Peak Signal-to-Noise Ratio (PSNR). A widely used video quality metric in the decibel scale [38, Ch. 8].
Structural Similarity Index (SSIM). Another video quality metric that takes human perception into
consideration [38, Ch. 12].
e Video Multimethod Assessment Fusion (VMAF). A learning-based video quality metric based on
human perception [20].

In terms of measurements, we measure the throughput, delay, and packet loss rate by instrumenting the source
code. To calculate PSNR, SSIM, and VMAF, we capture the rendered frames at the server to be reference frames.
For decoded frames, due to hardware limitations, we cannot directly save the frames at the client side in real-time.
Moreover, decoded frames must go through some matrix transformation to compensate for lens distortion, which
further complicates the task at hand. Thus, we develop a two-step approach. First, we augment the encoder at the
server to compute the encoding distortion. To account for frame loss due to packet loss, we add QR codes to the
reference frames on the server. We then match the QR codes between them and the decoded frames captured
on the client. Once a frame is lost, we duplicate the previously decoded frame for error concealment. Last, we
compute the objective video quality of the concealed frames for the transmission distortion. We sum up the
encoding and transmission distortion for the final video quality.

Table 1. Human Factors in GE and VE

Factor GE Levels (game time per week in hr) VE Levels (prior VR experience)
Desc. | Novice (< 1) | Intermediate (> 1 and < 5) | Advanced (>5) No Yes

Percent. 25% 25% 50% 50% 50%
Enum. 1 2 3 0 1

Total Duration (175 mins)
[ |

Intro Play Time Break | Play Time |Rating||Break| = Play Time |Rating| | g, o
(4 mins) (6 mins) (1 min) (3 mins) |(1 min)| [(1 min) (3 mins)  |(1 min)
L L _
Training Session Testing Session 1 Testing Session 33

Fig. 5. Procedure of the user study.

4.3 User Study

We recruited 12 subjects to conduct our user study, of whom 10 were males. All subjects were college students
between 20-25 years old with 20/20 corrected vision in the Snellen test. They also passed the Ishihara test
for color vision. We considered two human factors, Gaming Experience (GE) and VR Experience (VE) levels. As
summarized in Table 1, we categorized all subjects into three GE levels: (i) novice (< 1 hour game time per week),

We followed the recommendation for 360° video scenarios [40] and employed the default 1080p model.
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Table 2. Scenarios for Each Game Genre

Bitrate (Mbps) | Frame Rate (fps) | Resolution | Delay (ms)
2 72 2880x1568 0
72 2880x1568 0
32 72 2880%x1568 0
32 12 2880%1568 0
32 24 2880%1568 0
32 36 2880x1568 0
32 72 2112x1184 0
32 72 1408X768 0
32 72 2880x1568 100
32 72 2880%1568 300
32 72 2880x1568 500

Table 3. QoE Questionnaire for QoE User Study

QoE Performance
QoE Question Rating Experiments | Evaluations
(Sec. 4) (Sec.7)

Overall Quality (O) How Wo;lflfh};:;;a;;tgh:e‘:;il:g quality 1 (Bad) = 5 (Excellent) v v
Visual Quality (v) | TV W‘(’)‘f‘lglf’:g“aﬁ;gthszsvs‘fﬁ quality 1 (Bad) - 5 (Excellent) v v
Immersive Level ()| 0 g i g seeiont’ ! Low) =5 (High) / .
Cybersickness (S) Are Zizg:i:%;?i:.xl;ness 1 (No problem) - 5 (Unbearable) v v
T o010 N
Interaction Quality (A) H0Yor:zgggzirﬁa?iZih;eirfl(:;is;lr;lent 1 (Not responsive) - 5 (Completely responsive) X v

(ii) intermediate (> 1 and < 5hours), and advanced (> 5 hours). We enumerated the GE levels into 1, 2, and 3 for
the sake of presentation. There were 3, 3, and 6 gamers in the GE levels, respectively. Table 1 also shows that we
classified all subjects into two VE levels using a Boolean value, where 0 means no prior VR experience.

Fig. 5 shows the procedure of our user study. At the beginning, we provided an introduction to each subject. In
the training session, the players played all three games to get familiar with the HMD and controllers. The game
scenes/levels we used in training sessions were different from those in the testing sessions. To avoid fatigue, we
only varied one factor at a time, leading to 11 scenarios (sessions) for each game. Table 2 lists all the scenarios.
Since we had three considered games, each subject underwent 33 sessions. There was a 1-minute break after each
session. The order of sessions was random to avoid the learning effect. We recorded each subject’s inputs for our
QoE questions given in Table 3. This table consists of all questions used in this section (upper half) and in the
performance evaluations section (Sec. 7). In this section, we asked all questions except for the last row of the
table. Particularly, there are five questions [43, 50, 54, 60]: Overall Quality (O), Visual Quality (V), Immersive Level
(I), Cybersickness (S), and Continue (C). The ratings are on a 1-5 scale using Absolute Category Rating (ACR),
where higher is better, except for: (i) Continue, which is a Boolean value, and (ii) Cybersickness, where lower
is better. It is worth noting that we avoided long cybersickness questionnaires [27] to prevent the prolonged
duration of each session, which would limit the number of tested conditions [52]. Furthermore, our focus was on
the mean cybersickness score, and thus the longer cybersickness questionnaires may not be necessary [16]. Even
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after doing so, the user study duration of each subject was still too long, so we had to separate each subject’s
sessions into two days, for varying: (i) encoding settings on day 1, which lasted for about 120 minutes, and (ii)
network conditions on day 2, which lasted for about 45 minutes. It took us about 45 hours to complete the user
study. Given that we had 12 subjects and 33 sessions each, we gathered a total of 396 responses throughout the
user study. We analyzed the results below.
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Fig. 6. MOS of overall quality under different settings, sample results under default encoding and network factors with
varying: (a) bitrate (72 fps, 2880x1568), (b) frame rate (32 Mbps, 2880x1568), and (c) resolution (32 Mbps, 72 fps).
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Fig. 7. Implications of bitrate with default frame rate (72 fps), resolution (2880x1568), and delay on: (a) MOS of visual quality,
(b) objective quality in VMAF, and (c) immersive level score.

4.4  Results

Bitrate affects the gamer QoE the most among other encoding settings. Fig. 6 gives the MOS scores of
overall quality under different encoding settings. Slopes in Fig. 6(a) are generally steeper compared to those in
Figs. 6(b) and 6(c), showing that the bitrate imposes the most significant impact on the gamer QoE. We performed
Wilcoxon signed-rank tests between the MOS of the lowest and highest values for each encoding setting. We
found that the p-values of bitrate are almost consistently lower than those of the frame rate and resolution across
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all three games (except the p-value of the frame rate in BeatSaber). This confirms that the bitrate is the most
important encoding setting. Note that all these p-values are below 0.001, demonstrating clear statistical difference.

MOS growth rate decelerates as bitrate increases. Fig. 7 presents sample quality and immersion results
under different bitrates. We observe that both MOS of visual quality and objective quality metrics, i.e., VMAF,
improve rapidly from 2 to 8 Mbps, with an average slope of 0.25 and 2.87, respectively. However, the improvement
decelerates from 8 to 32 Mbps, with an average slope of 0.08 and 1.31, respectively. The same behavior of the
immersive level can be seen in Fig. 7(c). While we cannot show all figures due to the space limitation, a similar
trend was also observed with other QoE questions, e.g., MOS of overall quality in Fig. 6(a). These observations
indicate that as the bitrate increases, the growth rate of MOS decelerates gradually.
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Fig. 8. Implications of frame rate with default bitrate (32 Mbps), resolution (2880x1568), and delay on: (a) MOS of overall
quality, (b) immersive level score, and (c) fraction of continue.
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Fig. 9. Implications of delay with default bitrate (32 Mbps), frame rate (72 fps), and resolution (2880x1568) on: (a) MOS of
overall quality and (b) immersive level score.

Different game genres have different requirements. Fig. 6(a) reveals that MOS of overall quality is more
sensitive in ArtPuzzle under different bitrates. The same can be said with visual quality and immersive level in
Figs. 7(a) and 7(c), compared to other game genres. In these cases, the p-values for ArtPuzzle on MOS are lower
than those in AngryBird and BeatSaber, and all of the values are below 0.001 after conducting the Wilcoxon
signed-rank tests, showing statistical differences. This is intuitive, as ArtPuzzle needs higher visual quality due to
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its texture details. Fig. 8 reports the influence of varying frame rates. Figs. 8(a) and 8(b) depict that when the
frame rate drops below 24 fps, the MOS of overall quality and immersive level score drop drastically, especially
for BeatSaber. The p-values between 24 and 12 fps are both below 0.001, with MOS differences of 2.08 and 2.33,
respectively. Fig. 8(c) shows that no one wants to continue playing BeatSaber at 12 fps, while AngryBird and
ArtPuzzle are still acceptable to 10% and 20% of gamers, respectively. Fig. 9 presents the implication of extra delay
on overall quality and immersive level. Similar to Fig. 8, BeatSaber is more sensitive to injected delays, as gamers
may not react in time. The p-values between 0 and 500 ms of injected delay are both below 0.001, with MOS
differences of 3.02 and 3.17, respectively. From the observations above, it is statistically significant that diverse
game genres incur different requirements on the QoS.
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Fig. 10. Cybersickness score with default parameters and different: (a) frame rate (32 Mbps, 2880x1568), (b) delay (32 Mbps,
72 fps, 2880x1568), and (c) subjects at 12 fps (32 Mbps, 2880%1568).

Cybersickness highly depends on subjects. Fig. 10 summarizes the cybersickness scores under diverse
factors. We observe that the cybersickness score remains relatively consistent across most frame rate and delay
settings unless the frame rate drops below 24 fps (Fig. 10(a)), or the delay approaches 500 ms (Fig. 10(b)). In these
extreme cases, the average cybersickness score is increased by 0.78 and 0.81, respectively. However, the p-values
are all above 0.01 in these cases after conducting Wilcoxon signed-rank tests, which indicates minor significance.
A deeper investigation indicates that even under these unfavorable settings, such as frame rate of 12 fps, 50% of
the subjects gave a rating of 1 (No problem), as illustrated in Fig. 10(c). We conclude that cybersickness scores
largely depend on subjects. Thus, we leave modeling cybersickness as one of our future works.

5 QOE MODELING

In this section, we model the gamer QoE scores using the data collected from our QoE evaluations. We leave
modeling cybersickness as our future work. We also exclude modeling continue since we fail to see immediate
applications.

5.1 Modeling Approach

We model the overall quality, visual quality, and immersive level as: Qo(b, f,r,...), Qv(b, f,r,...), and
Qr(b, f,r,...), where 1 < Qo(-),0Qv(-),Qs(-) < 5. These QoE models take five categories of inputs: encod-
ing settings, network conditions, video quality metrics, human factors, and game genre. In total, our QoE models
take 14 inputs. Table 4 summarizes the inputs, where: (i) encoding settings include bitrate b, frame rate f, and
resolution r; (ii) network conditions encompass throughput, frame loss rate, packet loss rate, and delay; (iii) video
quality metrics include PSNR, SSIM, and VMAF, (iv) human factors cover GE and VE levels; and (v) game genre is
captured by TI and SL
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Table 4. QoE Model Inputs

Category Ipput Table 5. Hyper-parameters: AngryBird/BeatSaber/ArtPuz-
Bitrate, zle/General
Encoding Setting Frame Rate,
Resolution Model Hyper-parameter
Throughput, Poly Degree In_tersect.ion
Network Condition Frame Loss Rate’, 1/1/1/1 With / With /
ctwork Lo Packet Loss Rate, i i Wlth / With
Delay RE No. Estimators Minimum Samples
- 4 200/ 200/ 200/ 350 2/4/2/2
Video Quality PSNR%, ) No. Estimators | Minimum Samples
Metric SSIM, VMAF! GB 7350 /200/ 50/ 250 2/16/8/4
Human Factor GE, VE AB No. Estimators | Minimum Samples
Game Genre TL SI 350 /350 / 100/ 100 4/2/8/16

T Measured by external measurement tools rather than
instrumented code.

Encoding Setting ————|
Network Condition ———3»
. . . QoE Models . ) . .
Video Quality Metric —— —>» Overall Quality / Visual Quality / Immersive Level
(Poly / RF / GB / AB)
Human Factor ———
Game Genre ——

Fig. 11. Block diagram of the QoE models.

To understand their pros and cons, we build two classes of models: per-game and general, where the latter models
are meant for all game genres. Since the former models are for each game, we remove the game genre (TI/SI) from
their inputs. We consider four regression models as functions for predicting QoE, including polynomial regressor
and decision tree-based regressors. Polynomial regressor (Poly) is chosen because it is a popular baseline model.
Among decision tree-based regressors, Random Forest (RF), Gradient Boosting (GB), and Ada Boosting (AB)
are widely used [7]: We adjust the key hyper-parameters of these regressors: (i) the degree of polynomial and
intersection-only in Poly and (ii) the number of estimators and minimum samples per-leaf in decision tree-based
solutions (RF/GB/AB). Fig. 11 highlights the inputs and outputs of these regressor models.

We use Scikit-Learn [42] to implement these regression models in Python. For each regressor, we performed a
grid search on the key hyper-parameters, resulting in 6 combinations for Poly and 35 combinations for RF/GB/AB,
using the results from the QoE evaluations in the following steps. First, we need to split the dataset to evaluate
the QoE models. This can be done in two ways: (i) some earlier work [11] split the dataset into training, validation,
and testing sets, while (ii) others [3, 10, 69] split the dataset into training and testing sets only. We opt for the
latter approach as we have fewer subjects than Fan et al. [11]. Second, we perform 3-fold cross-validation on
overall quality by subjects. In particular, we take two-thirds of the subjects as training data and the rest as testing
data. We consider all 495 possible train-test splits and evaluate the average performance in PLCC and SROCC.
Third, we select the best hyper-parameters leading to the highest performance for the corresponding regressor
models, as given in Table 5. Note that since the degree of Poly is one, it is equal to linear regression. Last, after
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determining the hyper-parameters, we include an additional metric, R squared (R?), in addition to PLCC and
SROCC, to compare the performance between per-game and general models, as well as across different regressor
models. It is important to note that general models can be trained with more samples than per-game models. To
ensure a fair comparison, we retain only one-third of random samples for general models, which is referred to as

adjusted general models.

Kuan-Yu Lee, Ashutosh Singla, Pablo Cesar, and Cheng-Hsin Hsu

Table 6. QoE Modeling Results on Overall Quality: AngryBird/BeatSaber/ArtPuzzle/Adjusted General

Metric
Model R PLCC SROCC
Poly 0.68/0.77/0.78/0.77 | 0.87/090/0.93/091 | 0.88/0.90/0.92/0.92
RF | 0.80/0.84/084/0.82|0.93/093/0.93/0.93 | 0.91/0.88/0.91/0.90
GB | 081/0.85/0.84/0.82 | 0.93/0.94/0.93/0.93 | 0.91/0.89/0.91/0.91
AB | 0.83/0.84/080/0.81 | 0.94/094/0.92/0.91 | 0.92/0.88/0.90/ 0.90
1.00 1.00 1.00
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Fig. 12. Performance of general models on: (a) MOS of overall quality, (b) MOS of visual quality, and (c) immersive level score.
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Fig. 13. Predicted vs. ground-truth MOS: (a) Poly and (b) RF.
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5.2 Resulting Models

We make the following observations on various QoE models considered by us:

o Adjusted general models deliver good enough performance. Table 6 gives the overall performance
across per-game and adjusted general models. For all regressors, the adjusted general models achieve
similar performance with per-game ones. Take RF as an example, the highest improvements of per-game
models over general ones are merely 0.02 in R?, 0.001 in PLCC, and 0.01 in SROCC on overall quality.
Hence, we employ the general model below, if not otherwise specified.

¢ Random forest achieves the best performance. Next, we train our general models with all samples,
and give results in Fig. 12. We find that the RF model performs the best. For example, in Fig. 12(a), RF
achieves up to 0.85 in R%, 0.93 in PLCC, and 0.92 in SROCC on overall quality. A closer look depicts that
among all inputs, the throughput and round-trip delay have the highest impacts with coefficients of 0.40
and 0.39, which are rather intuitive, as they directly affect the response time and visual quality. Fig. 13
plots the relationship between the predicted and ground-truth MOS. This figure depicts that RF results in
a stronger linear correlation compared to Poly. Hence, we adopt RF for building our QoE models in the rest
of this article.

e Immersive level is relatively hard to model. Compared to overall and visual quality, the performance
of immersive level is a bit lower, as illustrated in Fig. 12. There may be two possible reasons. First,
immersive level is influenced more by game genres and subject preferences. This in turn makes their
scores harder to be modeled by our regressors. The second reason is the impact of the QoE experiments
duration. According to ITU-T recommendation P.809 [24], immersive levels are better investigated in
experiments with longer durations. Since our QoE experiments duration of each session is not long, this
might lead to more noise to ratings. With that said, we can still achieve acceptable performance of 0.78 in
R?, 0.91 in PLCC, and 0.90 in SROCC on immersive levels.

Although our models perform well when estimating the gamer’s QoE, some of its inputs may be hard to measure
at run-time. In particular, frame loss rate, PSNR, SSIM, and VMAF are measured externally from other tools in our
testbed. To make our QoE model more suitable for real-life scenarios, we train light-weight models without these
inputs. The light-weight models approximate the original ones and are denoted as: Qo (b, fory...), Qv(b, fir...),
and Q;(b, f,r,...), where 1 < Qo(-), Ov(-),Qr(-) < 5. We observe that the light-weight models produce QoE
predictions fairly close to those from the original models. More specifically, the performance gaps between Qo (+)
and Qo (+) are 0.02 in R?, 0.01 in PLCC, and 0.02 in SROCC; those between Qy (-) and Qy () are 0.01 in R?, 0.01 in
PLCC, and 0.02 in SROCC; and those between Q;(-) and Q;(+) are 0.02 in R?, 0.01 in PLCC, and 0.01 in SROCC.
Hence, we recommend and adopt the light-weight models in the rest of this article.

6 QOE-DRIVEN ENCODING SETTINGS ADAPTATION

In this section, we develop an algorithm to select the optimal encoding settings under dynamic networks and
systems.

6.1 Problem Formulation

We use encoding settings as control knobs, striving to find the optimal settings e* = (b*, f*, r*), among all possible
bitrate b, frame rate f, and resolution r, to maximize the expected QoE. More specifically, we periodically select
and set e* for every §-sec adaptation time window. We choose § empirically by investigating multiple time
windows. If not otherwise specified, we let § = 3 seconds to strike a balance between the system overhead and
the update frequency. While our approach is applicable to overall quality, visual quality, and immersive level
using the proposed models Qo (+), Qv (), and O;(-), we consider overall quality O (+) for concrete discussion.
Other QoE aspects can be readily adopted in the objective function if needed. The key constraint of our problem
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is end-to-end bandwidth, denoted as B. Notice that b represents encoding bitrate, which is smaller than streaming
bitrate that accounts for various overheads, such as segmentation, protocol, and error correction. We use « to
denote the overhead, proportional to the encoding bitrate. We use @ = 15% following Li et al. [37] if not otherwise
specified. With the above symbols, we formulate our optimization problem as:

e* = argmax Qo(b,f, r...)
e=(b.fr) (1)

st.(1+a)b <B.

We note that the dots in Q¢ (+) represent seven non-encoding-setting inputs of our QoE models (see Table 4).
Among these seven inputs, four of them are constants: the subject’s GE and VE levels and the game genre’s TI
and SI values. The remaining three inputs are measured in real-time, which are throughput p, delay d, and packet
loss rate I. By solving the optimization problem once every adaptation window, our cloud VR gaming system
adapts to the network and system dynamics in a QoE-aware fashion.

6.2 QoE-Driven Adaptation (QDA) Algorithm

Solving the optimization problem in Eq. (1) is challenging for three reasons. First, QoE evaluations are time-
consuming. Therefore, only a few (ten, more precisely) encoding settings were tested in our QoE evaluations,
while additional encoding settings can and should be derived before solving the adaptation problem. Second,
three measured inputs, which are throughput p, delay d, and packet loss rate [, vary in rather large ranges, leading
to huge search space of optimal solutions. Last, numerically solving the QoE-driven optimization problem leads
to excessive running time, which is not suitable for real-time cloud VR gaming.

To address the first challenge, we adopt quadratic functions to interpolate QoE of encoding settings that
were not included in the QoF evaluations. More specifically, to densify the encoding settings, we fit a quadratic
function along each dimension of bitrate, frame rate, and resolution. To ensure these quadratic functions to be
monotonically non-decreasing, we add two control bitrates at 35 and 38 Mbps and two control frame rates at 84
and 90 fps. The QoE values of these control sample points are set to be the same as those of the closest encoding
setting from our QoE evaluations. With these quadratic functions, we interpolate the QoE of encoding settings
with b € {2,3,4,5,6,7,...,31}, f € {48,60}, and r € {1760x960, 2496X1376} to increase the considered encoding
settings from 10 to 42. For the second challenge, we discretize the range of each measured input into multiple
bins to reduce the search space. Specifically, we employ a binning method based on data characteristics called
Freedman Diaconis [15], which makes sure individual bins have enough data points. Following this method, we
create 7, 7, and 3 bins for throughput p, delay d, and packet loss rate I, respectively. For the third challenge,
to speed up the adaptation decisions, we construct a lookup table Qo(b, f,r,...) for e using Qo(b, fir,..0).
Because the lookup table is built offline, doing so incurs no runtime complexity with a memory footprint < 700
KB.

We propose a QoE-driven adaptation (QDA) algorithm based on the lookup table Qo (b, f, 7, .. .). The algorithm
measures network conditions for individual frames and applies Exponentially Weighted Moving Average (EWMA)
to filter out high-frequency noise. In particular, a 30% weight is assigned to the latest measurement. QDA algorithm
is executed at the ALXR server once every § seconds. First, the EWMA values are placed into bins. The algorithm
then takes the middle points of the bins, human factors, and game genres, and iterates through all feasible
encoding settings that do not violate the bandwidth constraint. Among all feasible encoding settings, we choose
e* that maximizes Qo(b, f,r,...), which is then used to reconfigure the video codec at the ALXR server. We note
that this lookup can be done efficiently: throughout our experiments, the QDA algorithm always terminates in
~ 20 ms on a commodity Intel 19 workstation.
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7 PERFORMANCE EVALUATIONS

We evaluate our cloud VR gaming system, especially the QDA algorithm with an additional user study in this
section. This user study is based on the QoE models constructed with the results obtained from the previous user
study in Sec. 4.

7.1 Technical Setup

To drive our experiments, we adopt a real 5G network dataset [45], which contains throughput traces with
two mobility patterns: static and driving and, two applications: file downloading and video streaming. Because
cloud VR gaming clients: (i) are static and (ii) incur a tremendous amount of network traffic, we select the static
file-downloading trace with the highest standard deviation to approximate the available bandwidth under the
most challenging network conditions. The average bandwidth in this trace is 121 Mbps (o = 88.44), and the
maximum bandwidth reaches 254 Mbps. Built upon the trace, we consider three test scenarios: (i) C1, where
the bandwidth is dedicated to one client, (ii) C5, where the bandwidth is equally divided among five clients,
and (iii) C10, where the bandwidth is equally divided among 10 clients. As the number of clients increases, the
bandwidth becomes more constrained. We note that our cloud VR gaming system ceases to work when the
network bandwidth goes below ~ 3 Mbps. Hence, we scan through C1, C5, and C10, and skip any bandwidth
samples < 3 Mbps. In total, 10.66%, 18.07%, and 31.20% bandwidth samples were skipped from C1, C5, and C10,
respectively. The resulting traces are still long enough for our user study. We use Dummynet to emulate diverse
network conditions in three scenarios: C1, C5, and C10.

In particular, we conduct a user study to compare our QDA algorithm against the following two baseline
algorithms:

e No Adaptation (NA). In vanilla ALXR, a gamer has an option to disable the bitrate adaptation algorithm
altogether.

e Delay Threshold-based Adaptation (DTA). ALXR provides a delay threshold-based bitrate adaptation
algorithm. This algorithm dynamically adjusts the bitrate based on a target delay dr and a tolerance
interval dj. It also keeps track of the streaming bitrate b at the ALXR server and considers a bitrate
threshold br. The algorithm is executed once each frame. Specifically, if the measured delay exceeds
dr + dp, the bitrate is decreased by 3 Mbps. Conversely, if the measured delay falls below dr — dp and the
streaming bitrate bs surpasses the threshold br, the bitrate is increased by 1 Mbps. We let dr = 12 ms, dp
=3 ms, and by = 0.7bs, following ALXR’s default settings. Unlike our QoE-driven algorithm, DTA does
not consider the frame rate and resolution when making decisions.

7.2 Test Method

We designed a new user study to evaluate the performance between QDA algorithms and two baseline algorithms.
We utilized the same set of game genres mentioned in Sec. 4.1. The user study design is based on that in our first
user study described in Sec. 4.3 (see Fig. 5), but with a few changes on questionnaires, as summarized in Table 3.
First, we removed the immersive level from the QoE questionnaire because we found that it was not easy for our
subjects to properly rate the immersive levels given the relatively short gaming sessions. In addition, prolonging
the gaming session is not an option due to potential subject fatigue. Second, we add a new question on Interaction
Quality (A), which has been shown to be crucial for interactive VR applications [50]. The ratings are also on a
1-5 scale using ACR. Moreover, focusing on the dynamics, the interaction quality is a better indicator to evaluate
the effectiveness of adaptation algorithms in dynamic networks and systems. Third, we ask each subject to play a
fraction (~ 60%) of all sessions with different network scenarios, adaptation algorithms, and game genres to avoid

We opt for the file-downloading traces for enough traffic loads.
This is enforced by a watchdog mechanism.
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subject fatigue. By doing so, each subject’s user study duration is limited to 90 minutes. More specifically, among
27 total possible gaming sessions (3 network scenarios, 3 adaptation algorithms, and 3 game genres), each subject
gets to play 16 random ones. Last, we dropped continue (C) from the QoE questionnaire to further reduce the
user study duration.

We enlisted 20 subjects (17 males) aged between 20-26 years old. All of them passed the Snellen and Ishihara
tests. Among these subjects, 6, 3, and 11 were categorized as novice, intermediate, and advanced gamers. In
addition, eight of them had prior VR experience. In total, with 20 subjects and 16 sessions each, we completed
320 gaming sessions. On average, each combination of network condition, adaptation algorithm, and game genre
accumulated 11.85 (standard deviation o = 0.80) gaming sessions. In order to objectively assess the performance
and study their relationship with subjective results, we measure two kinds of objective metrics: (i) network
metrics, including delay and packet loss rate; and (ii) video quality metrics, including PSNR, SSIM, and VMAF.
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Fig. 14. Comparison of QoE quality among different adaptation algorithms for AngryBird: (a) MOS of overall quality, (b)
MOS of visual quality, and (c) interaction quality score.

Table 7. QoE Scores from NA/DTA/QDA Algorithms; Scenario C10

QoE AngryBird BeatSaber ArtPuzzle
Overall Quality 1.50/2.92/3.50 | 1.17/1.92/3.25 | 1.42/2.23/2.92
Visual Quality 1.92/2.62/2.90 | 1.75/1.92/2.92 | 1.58/1.77/2.33

Interaction Quality | 1.50/3.08/4.00 | 1.08/2.08/3.25 | 1.41/2.15/3.67

7.3 Results

MOS scores on overall, visual, and interaction quality. Fig. 14 compares the overall, visual, and interaction
quality achieved by various adaptation algorithms under different scenarios. Sample results from AngryBird are
shown; results from other game genres (BeatSaber and ArtPuzzle) are similar and omitted. Figs.14(a) and 14(c)
depict that QDA delivers much better QoE in overall and interaction quality, compared to NA and DTA. The boost
is particularly evident in the bandwidth-limited C10 scenario: the QoE gaps on: (i) overall quality reach up to 2.00
(o = 0.45) compared to NA, and up to 0.58 (o = 0.47) compared to DTA; and (ii) interaction quality reach up to
2.50 (o = 0.40) compared to NA and up to 0.92 (¢ = 0.45) compared to DTA. Regarding visual quality, Fig. 14(b)
reveals that the gaps are relatively smaller than those of overall and interaction quality. This discrepancy can be
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attributed to the need to reduce the encoding bitrate in challenging scenarios to prevent lagging and artifacts
during gameplays.

Table 7 gives the QoE scores of overall, visual, and interaction quality under different game genres and
adaptation algorithms under the bandwidth-limited C10 scenario. Compared to NA, the average improvements
of our proposed QDA across all three game genres amount to averagely 1.86 (¢ = 0.38) in overall quality, 0.97
(0 = 0.45) in visual quality, and 2.31 (o = 0.35) in interaction quality. Compared to DTA, the average improvements
stand at 0.87 (0 = 0.44) in overall quality, 0.61 (o = 0.45) in visual quality, and 1.20 (¢ = 0.48) in interaction quality.
Fig. 14 and Table 7 confirm that our proposed QDA algorithm significantly improves the QoE scores on overall, visual,
and interaction quality compared to the baseline algorithms.
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Fig. 15. Comparison of cybersickness score across different game genres: (a) AngryBird, (b) BeatSaber, and (c) ArtPuzzle.
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Fig. 16. Comparison of VMAF across diverse adaptation algorithms with different game genres: (a) AngryBird, (b) BeatSaber,
and (c) ArtPuzzle. Significance values are defined as: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Cybersickness scores. Fig. 15 presents the cybersickness scores achieved by different adaptation algorithms
in different game genres. This figure shows that among the three game genres, QDA demonstrates much lower
cybersickness scores under scenarios C5 and C10. Especially in C10, QDA algorithm’s cybersickness scores are
0.63 (o = 0.42) lower than those of NA and 0.25 (o = 0.34) lower than those of DTA on average. This outcome
can be attributed to more effective adaptations made by our QDA algorithm: better-optimized encoding settings
lead to less lagging and artifacts and thus better QoE. The observations on our user study are consistent with
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our previous study on simulator sickness [51], where lower visual quality resulted in higher simulator sickness
scores. Fig. 15 confirms that our proposed QDA algorithm leads to relatively lower cybersickness scores, compared to

the baseline algorithms.

Table 8. Video Quality From NA/DTA/QDA Algorithms; Scenario C10

Metric AngryBird BeatSaber ArtPuzzle
PSNR (dB) | 23.99/29.96/31.25 | 22.15/26.89/31.77 | 19.57/24.81/27.31
SSIM 0.63/0.82/0.88 0.80/0.87/0.93 0.53/0.69/0.82
VMAF 36.04/56.17/61.75 | 32.06/54.91/67.49 | 34.10/54.68/60.26

Objective quality. Fig. 16 reports sample VMAF results achieved by different adaptation algorithms with
different game genres and under diverse scenarios. This figure illustrates that our QDA achieves the highest VMAF
scores compared to other baseline algorithms. Further analysis through the Friedman test reveals significant
differences among the three adaptation algorithms under the same network scenarios and game genres. The
p-values are lower than 0.001, except for scenario C5 in ArtPuzzle. Even in that extreme case, we still observe a
p-value lower than 0.01, indicating statistical significance.

Table 8 summarizes all video quality metrics, including PSNR, SSIM, and VMAF, achieved by different adaptation
algorithms under the most challenging scenario C10. This table clearly shows that the proposed QDA algorithm
leads to higher video quality than the two baseline algorithms; boosts up to 9.62 dB in PSNR, 0.29 in SSIM, and
35.43 in VMATF are observed. Fig. 16 and Table 8 confirm that our proposed QDA algorithm significantly improves the
objective video quality in PSNR, SSIM, and VMAF compared to the baseline algorithms. Beyond the quality metrics,
our QDA algorithm also demonstrates superior performance in network metrics. Specifically, the round-trip
delay is 3 ms lower than DTA and 3.5 ms lower than NA; while the packet loss rate is 7.59% lower than DTA
and 24.56% lower than NA on average under the most congested C10 scenario. These objective outcomes are

consistent with the subjective QoE improvements.
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Fig. 17. Implications of different game genres with QDA algorithms on: (a) MOS of visual quality and (b) interaction quality

score.

Implication of game genres. Fig. 17 illustrates the impact of different game genres on visual and interaction
quality with our QDA algorithms under diverse scenarios, respectively; results from other algorithms (NA
and DTA) are similar and omitted. Fig. 17(a) illustrates that ArtPuzzle exhibits lower MOS than AngryBird
and BeatSaber under bandwidth-limited scenarios, emphasizing its high demand for visual quality due to its
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quality-sensitive nature. Nevertheless, the MOS of visual quality in ArtPuzzle can maintain 2.33 (o = 0.27) under
bandwidth-limited C10 scenario with our QDA algorithms. Similarly, Fig. 17(b) shows that BeatSaber has lower
scores compared to AngryBird and ArtPuzzle under all scenarios, indicating its sensitivity to time and thus
stringent requirements for interaction quality. However, with the help of our QDA algorithm, the interaction
quality scores can still achieve 3.25 (o = 0.26) even under the C10 scenario. Fig. 17 confirms that the results related
to visual and interaction quality are consistent with our expectations outlined in Sec. 4.1. Specifically, ArtPuzzle
exhibits sensitivity to quality, BeatSaber to time, and AngryBird demonstrates less sensitivity to both factors.

8 CONCLUSION

In this article, we developed and optimized a cloud VR gaming system, which has not been thoroughly studied in
the literature. After conducting comprehensive QoE evaluations using a user study, we analyzed the impacts of
different encoding settings and network conditions on gamer QoE scores across diverse game genres. The feedback
from participants via questionnaires revealed novel insights into the correlation between gamer-perceived QoE
and measurable QoS metrics. Based on the QoE evaluation results, we built general QoE models for all game
genres using the RF regressor. The resulting QoE models are accurate: achieving up to 0.93 (¢ = 0.02) in PLCC
and 0.92 (o = 0.02) in SROCC. We also developed a QoE-driven adaptation algorithm called QDA to optimize
the encoding settings under dynamic networks and systems. We conducted a second user study to evaluate the
performance of our QDA algorithm in particular, and the overall cloud VR gaming system in general. Compared
to the existing NA and DTA algorithms, our proposed QDA algorithm leads to better cloud VR gaming QoE, e.g.,
it improves the MOS of overall quality by up to 1.86 (¢ = 0.38) and reduces the cybersickness scores by up to 0.63
(o = 0.42) averagely across different game genres.
This article can be extended in multiple directions, including but not limited to:

¢ Building QoE models for cybersickness scores. Modeling cybersickness requires additional factors
that were not considered in this article, such as subject differences, duration of each gameplay, and
accumulated fatigue levels. More factors result in higher modeling complexity and thus need further
investigation.

o Predicting gamer willingness to continue playing. Lebreton and Yamagishi [31, 32] examined the
user’s willingness to continue watching videos under the current QoS levels. We can generalize their
approach to cloud VR gaming to create a model that determines: (i) whether the current measurable QoS
metrics can retain each gamer and (ii) if network and system adaptations are necessary. The resulting
models are extremely useful for cloud VR gaming service providers to maintain profitability.

e Exploring cross-layer optimization on cloud VR gaming. In Mobile Edge Computing (MEC), cross-
layer optimization exchanges insights across different layers, e.g., leveraging Radio Network Information
Service (RNIS) [2] for live radio statistics. While RNIS has been employed for cross-layer optimization in
flow control [9] and 360° VR video streaming [39], it has not been used in cloud VR gaming. Cross-layer
optimization can be applied for better packet prioritization, congestion control, and resource allocation in
cloud VR gaming for even better QoE.

e Experimenting with alternative access networks. Compared to costly wired networks and limited-
range WiFi networks, 5G Fixed Wireless Access (FWA) offers high-speed Internet access to the home
without deploying expensive cables. FWA supports high bandwidth and low delay and thus enables new
AR/VR applications in rural areas [4, 30]. Experimenting cloud VR gaming over FWA could reveal new
challenges and opportunities under its unique network workload in emerging 5G-based access networks.
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