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Abstract

We investigate models for nonlinear ultrasound prop-
agation in soft biological tissue based on the one that
serves as the core for the software package k-Wave.
The systems are solved for the acoustic particle velocity,
mass density, and acoustic pressure and involve a frac-
tional absorption operator. We first consider a system
that incorporates additional viscosity in the equation for
momentum conservation. By constructing a Galerkin
approximation procedure, we prove the local existence
of its solutions. In view of inverse problems arising
from imaging tasks, the theory allows for the vari-
able background mass density, speed of sound, and the
nonlinearity parameter in the systems. Second, under
stronger conditions on the data, we take the vanishing
viscosity limit of the problem, thereby rigorously estab-
lishing the existence of solutions for the limiting system
as well.
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1 | INTRODUCTION

Ultrasound waves propagating in soft biological tissue, even at the intensities used in biomedi-
cal imaging applications, can undergo noticeable nonlinear distortion. At higher intensities still,
such as are used in therapeutic medical applications, the effect of the nonlinearities can be very
significant. Several scientific software packages have therefore been developed for modeling non-
linear propagation in biological tissue.' Here, the system of equations that are the basis for one of
those packages, k-Wave,>* will be analyzed. It is given in terms of the acoustic particle velocity u,
mass density p, and acoustic pressure p by the following set of equations:

linear momentum conservation: pou; + Vp = f,

mass conservation: pr+QRp+p)V-u+u-Vp, =0, )

2

pressure-density relation: p—c? (,o +d-Vp, + B et f,o) =0,
0 2A po

where u = d,; see Refs. [2, system (10)] and [4, system (1)]. The operator L accounts for absorption
and dispersion. It is defined by

= - y_ yH
Lp=zao<—c€ ') p + e tan (5 )(-a) 1p> )

with y € (1, 3) and «, > 0; see Ref. [4, eq. (3)]. In human tissue, typically y € (1,2]. The quan-
tities pg, cg, and % in this system are the background mass density, isentropic sound speed, and
nonlinearity parameter, respectively.

In k-Wave, these equations are discretized using a pseudo-spectral time domain (PSTD) time-
stepping scheme with a dispersion correcting factor applied in the spatial Fourier domain. The
particular form of the absorption/dispersion term in (1) was chosen both because the resulting
absorption depends on frequency according to a power law, as empirically observed in many tissue
types, and because it is memory-efficient when implemented using a PSTD scheme.

1.1 | Numerical example

In the spirit of motivation for the study of system (1), a simple numerical example, computed using
k-Wave, will be given here. With ultrasound tomography in mind, this example shows that for a
fixed number of sources and detectors, more independent data can be obtained when nonlinear
effects are included than in the linear case. Specifically, inspecting the singular value spectrum of
a set of simulated measurements shows that when pairs of sources are used simultaneously in the
nonlinear regime, the resulting measured signals are not just linear combinations of the signals
measured with the individual sources alone, as they are in the linear case. Figure 1 (left) shows a
ring array of eight equally spaced transducer elements that all act as detectors, and four of which
(shown in white) also act as sources, surrounding a region with a heterogeneous sound speed.’
All other material properties were chosen to be homogeneous: mass density p, = 1000 kg/m?,
absorption coefficient & = o, f¥ where ay = 0.5 dB/cm/MHz, y = 1.5, f = 0.25 MHz is the fre-
quency, B/A = 7is the acoustic nonlinearity parameter, and the source acoustic pressure is 5 MPa.
Simulations were conducted in both the nonlinear and linear regimes (i.e., no nonlinear terms
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FIGURE 1 Left: Set-up of the numerical example, showing the sound speed map (m/s) and the positions of
the transducers (white: sources and detectors, black: detectors only). Right: Snapshot of the field from the
leftmost transducer acting as a source.
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FIGURE 2 Left: Examples of linear and nonlinear time series. Right: Singular value spectrum of the linear
and nonlinear data.

included in the equations, equivalent to using a low source amplitude source). For each simula-
tion, the transducers acting as sources were driven with a single-frequency sinusoidal wave, and
acoustic pressure time series were detected at all other transducers. When acting as a source, a
transducer does not also act as a detector, so in both the linear and nonlinear cases, 64 time series
were measured: 28 using single sources (4 sources x 7 detectors), and 36 using pairs of sources
driven simultaneously (6 pairs of sources X 6 detectors). Figure 1 (right) shows a snapshot of the
acoustic pressure field emitted from the leftmost transducer. Figure 2 (left) shows examples of
measured time series in both the linear and nonlinear cases, showing characteristic wave steep-
ening due to the nonlinearity increasing the wave speed at the peaks of the wave and decreasing
it at the troughs. All 64 time series measured in the linear case were stacked into a matrix and the
singular values of that data matrix were computed. This was also done in the nonlinear case. The
singular value spectra, normalized to the largest singular value, are plotted in Figure 2 (right). The
cliff-edge after the 28th singular value in the linear case indicates that the data obtained using pairs
of sources are merely linear combinations of the data obtained using single sources. This is not
the case in the nonlinear regime. While this example may be interesting, we note that it does not
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prove—or indicate the extent to which—the data carry additional information about the material
properties, the estimation of which is the ultimate goal of ultrasound tomography.

1.2 | Main contributions

The main aim of this work is to gain rigorous understanding of the systems of the form in (1)
with possible additional viscosity included in the momentum balance equation. Throughout, we
assume that Q ¢ R?, whered € {2, 3}, isabounded domain thatis C! regular or Lipschitz regular
and convex. In view of inverse problems arising from imaging tasks, we are particularly interested
in allowing %, co, and pg in (1) to depend on x in this order of importance, that is, the simplification
Po = const. is the least restrictive one. With this in mind, we can rewrite the mass conservation

interms of o = ,oﬁ as follows:
0

o+(1+20)V-u+u-Vinp, =0.

To simplify the analysis, we supplement the system with the following homogeneous boundary
conditions:

v-u=0, v-Vo=0 ondQ, 3)

where v is the outer unit normal vector at the boundary 9, as well as the initial velocity and
density data

u(O) = Uy, d(O) = do, O'(O) =0p- (4)

Then d = I,u + dy, where [;u = fot u(s)ds for t € [0, T]. By taking into account a viscosity term
in the momentum balance in (1) and rearranging the terms, we arrive at the following system for
(u,0,p):

(mo#) pous + Vp —uV(V-u) = f,

(ma) o,+a(@)V-u=-u-Vinp, :=g(u), (5)

(pd) p—copob(0)o + Lo = cid - Vpo = ci(Lu +dy) - Vo, := h(u),

with a modified absorption operator

2 yH
Lo = —2a0(=Ay /)" [T(—A)w[ +n(=A) 2 G], 7,7 >0, (6)
'where —A = —Ay denotes the homogeneous Neumann-Laplacian and
Ay 0=V <le>
1/po” - 00 :

! Note that our analysis could also handle the choice (2), however at the cost of involving higher order commutators of the
coefficients py and cq and thus having to impose higher smoothness on them.
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We have introduced the following short-hand notation in (5):

B
— — _— 7
a(c)=1+20, blo)=1+ 4° 7
and
g(u) = —u - Vinp,, h(u) = cld - Vp, = ci(I,u + dy) - Vp,. (8)

We have chosen —uV(V - u) for the viscosity term with ¢ > 0 (which is equal to —uAwu for irro-
tational u) since it allows us to make use of cancellations below without having to impose the
equation V X u = 0 as a further partial differential equation (PDE).

The main contributions of the remaining of the work pertain to the analysis of the system in (5);
in particular, we establish existence of its solutions in Theorem 1 using a Galerkin-based frame-
work. Additionally, under the assumption that g = h = 0, we conduct analysis in the vanishing
viscosity limit ¢ \, 0 as a way of relating system (5) to system (1) with the absorption operator (6).
This result is contained in Theorem 2 below.

To the best of our knowledge, systems of the form in (5) with fractional absorption have not been
studied so far in a rigorous manner. In contrast, rigorous techniques for single-equations models
in nonlinear acoustics, such as the Westervelt or Kuznetsov equation, are by now pretty well-
established; see, for example, Refs. [6-10] and the review paper."! Analysis of a local compressible
Navier-Stokes system governing nonlinear sound motion can be found in Ref. [12]; see also Ref.
[13] and the references contained therein.

Notation

Below we occasionally use x <y for x < Cy, where C > 0 is a generic constant that does not
depend on the Galerkin discretization parameter. We use subscript ¢ to denote the temporal
domain (0, t) in Bochner spaces, where ¢ is taken from a certain time interval to be specified; for
example, || - || LP(La() denotes the norm on LP(0, t; L1(Q)). If the subscript is omitted, the temporal
domain is meant to be (0, T).

2 | EXISTENCE OF SOLUTIONS

In this section, we provide the proof of existence of solutions of (5) with boundary and initial data
given in (3) and (4), respectively. We first set the notion of the solution, where equations (mo*)
and (pd) will be understood in a time-integrated sense. More precisely, the solution space for the
velocity is

Xy ={u € L®0,T; H(div; Q) : RIV(Y - wllp2q2q) < 0, u-v=00n30},

endowed with the norm

1/2
il = {1 -l o)+ HIVOT 0 0 |
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Further, the solution space for the relative density is

y y+1
X, = {oeHl(O,T;HE(Q))nLW(O,T;HT(Q)) : Vo'-v=00n6(2}, y>d—-1, 2<y <3,
)

with the norm

1/2
lollx, =3 lloll? +llogll .y .
Xo Loo(HyTH(Q)) ! L2(H2(Q))

The assumptions made on y will be justified in the course of deriving energy estimates; see the
discussion at the beginning of Section 2.3. We note that the condition y < 3 can be removed if
g = 0. The setting g = h = 0 is considered in Section 3.

Third, as we will prove existence of the time-integrated pressure I;p, we introduce the
corresponding solution space as

t
Xy, = {Itp=/0 p(s)ds € L*(0,T; HY(Q)) : Vp-v =00ndQ, llﬁl/gpdxzo}. (10)

The targeted solution space for the studied problem is then X* = X% x X, x Xi,p-
Assumptions on data. We assume that the source term satisfies

f € Xy = LX0,T; Hy(div; Q) n L2(0, T; LA(Q)), 1)

where Hy(div; Q)= {ve€L*(Q): V-v=0inQ, v-v=00n9Q}. The initial conditions are
assumed to satisfy

(uy, dy, o) € H(div; Q) X (L®(Q) n H'(Q)) X Hy%l(g).

Additionally, we assume that

B/A € Xp/y =L®(Q)NW(Q) (12)
and
1 y+
Po € Xp, = {v eL®(Q) : 3 €L®(Q), VInv e L*(Q)NnH 2 (Q)} (13)
as well as that
cex, = {u ELX(Q)NW3(Q) : % € L°°(Q)}. (14)

We next make precise what is meant by a solution of the problem.
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Definition 1. We call (u, o, p) € X* a solution of problem (5) supplemented with boundary (3)
and initial conditions (4) if it satisfies

T
[ {eotw =4 Viip = w¥(5 0 =190+ (01 4 @)V - glae
0 Q
+ (Lp = oL, (b(@)9) — Lh(W)A, 1 $ + 20 (1(-)(0 = 5)(~2) ¢ +7(~1) * La(-)+ §) } dxdt = 0

y+1
for all v € L2(0, T; L>(Q)%), v € L*(0,T; L*(Q)), and ¢ € L*(0,T; H 2 (Q)), such that V¢ - v = 0,
with g|;—¢ = 0y.

The proof of existence of solutions is set up through a Faedo-Galerkin procedure. To this end,
we first need to construct suitable approximations of (u, g, p).

2.1 | Construction of Galerkin approximations

We approximate the system in (5) by constructing a Galerkin approximation of (o, p) by means of
smooth eigenfunctions of the Neumann-Laplacian and then using it to set up suitable approxima-
tions of u. This approach is in the spirit of Galerkin strategies for models of viscous compressible
fluids; see Refs. [14-16] and the references provided therein. However, here the relative density o
and acoustic pressure p are directly approximated by means of suitable basis functions as opposed
to the velocity u.

Let {w;};>; be the eigenfunctions of the Neumann-Laplacian operator —A;/, acting on
functions with zero mean, with eigenvalues {4;};>; that is, let

—Al/powi = /1,-wi in Q,
L

il /,,
Vw;-»=0 on 0Q.

w;dx =0,

Fix n € N and let W" = span{w;, ..., w,}. We seek approximate ¢ and p in the form of
n n
o =Y EM(Owix), p" = Y P Owi(x),
i=1 i=1

with the unknown time-dependent coefficients §ia’", §’lp "™ :10,T] - R for i € [1,n]. Let the
}l‘l
approximate initial relative density o be the H 2 (Q) projection of g, on W”". Denote £" =

[§7 .. §217 and & = £7(0).

We then set u” as the solution of the following system:

(mo®) pou! —uV(V-u")+Vp'=f inQx(0,7), u"0)=u], Vu"-v=0,
(ma®) o +a(c™)V-u" —gu") =0 inW"x(0,T), ¢"(0)=o0y,
(pd®)  p" =cipob(c™)o" —Lo™ + h(u") in W" x (0, T),

(15)
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where g(u") = —u" - Vlnp, and h(u") = cé(Itu” +dy) - Vpy; cf. (8). By considering (ma®) and
(pd®) in W", we mean that we project them onto the finite-dimensional space W" with respect
to the L?(Q) inner product. For showing that this approximation of (5) is well-posed, we need the
following auxiliary existence result.

Lemma 1. Let u > 0, py, — € L¥(Q), and f € L2(0, T; L2(Q)%). Let u) € H(div; Q). Then, given
Po
p" € L*(0,T; W"), there exists a unique u" € X', n H'(0, T; L>(Q)?) that satisfies

1 1
w —u—V(V-u") = —(f - Vp"),
Po Po
u'(0)=u;, u"-v=0.

Proof. We observe that the right-hand side satisfies pi( f—Vp") € L*0,T; L*(Q)). The statement
0
then follows along the lines of, for example, Ref. [17, Theorem 9.6]; we omit the details here. []

Lemma 1 allows us to define the solution operator S : L*(0,T; W") — X,‘f, such that S(p") =
u". Let p»(, p»® e L2(0, T; W"), and denote u™>" = S(p™(V) and u™? = S(p™?). By testing
the problem solved by u™(") — ™ with —V(V - (w1 — u™?))), we conclude that this operator
is globally Lipschitz continuous:

IS(p™ M) = S(P™ )i = IV - @™V = D)l oz + VEIVY - @D = w @)l 220y,
<CollVp™® — V@ 12200y
<cp™® = p 2wy,

(16)
where the last line follows by the equivalence of norms in finite-dimensional spaces. The Galerkin
problem then reduces to looking for a solution of

o" = —a(a™V - S(p") + g(S(pY))  in W x (0,T),
a"(0) = o, (17)
p" = cipob(c™a" — La™ + h(S(p™)) in W" x (0,T),

which we tackle in the next step. The solution is at first obtained on an n-dependent interval
[0, T,].

Proposition 1. Let the assumptions of Lemma 1 hold with py € X, , B/A € Xp/4, and c(z) € X,
Then there exists T,, = T,(n) € (0,T), such that problem (17) has a unique solution (c", p") €
HY0,T,;; W) N L*0, T,y; W™).

Proof. Let R;, R, > 0. To prove unique solvability of (17), we apply Banach’s fixed-point theorem
on the mapping

T : (o}, pi) = (@", p"),
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where (o, p?) is taken from the ball
B = {(UQ,PZ) € HY(0,T; W) X L*(0,T; W") : om0tz < Ris 1P I22(0)) < Ras
SO =ap |,

and (", p") solves the following linear problem:
o = —a(o)V - S(p:) +g(S(py)) inW"x(0,T),
a"(0) = oy, (18)
p" +Lo" = clpob(al)ol + h(S(p})) in W"x(0,T).

Self-mapping: Take (¢, pi) € B. We first check that (¢”, p") = 7 (¢}, p;) € B. Note that
ot ey <N 2@y + Iof + og 2z
<A+ Dllof 2 + VTG 20,
Using the first equation in (18), we then have

o™ Iz 2y <A+ T)(||a(O'L')V - S(PDON 22y + ||g(S(PZ))||L2(L2(Q))) + ﬁ”agnm(o) 19
19
<1+ DVT(Ia@)ll 0@V - SO ez + 18EE D eqzay) + VIO 2-

By relying on the estimate
g PN 22 = | = S(PE) - VIn poll22¢q) < 1V In PoIILw(Q)ﬁlls(pﬁ)lle(LZ(Q))
and the equivalence of norms in finite-dimensional spaces, from (19), we conclude that
lo"™ | z2() <C(M)A + T)ﬁ((l +RDR; + [IVIn pollz(yRs) + ﬁ|lgg||L2(Q)-
We can thus guarantee that ||0" || ;1(72(q)) < Ry by reducing T = T(n).

From the last equation in (18) and the fact that ||L(c")|;212(q)) < C(MIIo" | m1(12()), We can
estimate p” as follows:

D" 2oy < VTIE200b(0M)0" | pwraay + 1L iy + VTNRSDOI D20
1
SC(”)(ﬁllcépolle(Q)(l + ;||B/A||Lw(9))R1 + 0" | 2y + ﬁ||C§VPo||Lm(Q)Rz)

+ ﬁ||C§VPo||Lw(Q)||d0||L2(Q),
(20)

8SUBD|7 SUOLILLIOD 9AITERID 9(qedl|dde auy Aq peusenob ale sajoie YO 9N JO 3| 1o Akeiq i auljuO A3]IAA UO (SUOIPUOD-PUE-SWLIBIAL0D" A3 | 1M Aelq 1 Ul juo//SdnL) SUONIPUOD pue swie 1 8yl 89S *[7202/0T/LT] uo Areiqiauljuo AS|IAN ‘0ju| UT 8puUNdSIA JOOA WiNUeD Ag T//2T wides/TTTT OT/I0p/Wod A8 |1m Afiq1pul|uo//sdny woij pepeojumoq ‘0 ‘0656297



10 of 29 | COX ET AL.

where we have used the fact that

I1h(S(PI Lo 12()) = ||C(2)(Iz(S(P:3)) +dy) - Vool 2y
<IlegVeollLs@ TSP L2 + llcgdo - Voollr2(q)-

Since we can reduce [|o" || 1 (12(q)) by reducing the final time, from (20), we conclude that

IP" Iz z2¢02)) < Ras

provided T = T(n) is small enough.

Contractivity: Let (o™, p™®, (¢™@, p™@) € B and denote (¢™O, pr(V) = 7 (™D, p=1)y
and (o™@, p"™ @y =71 2 , D (2)) Further, we introduce the following notation for the
differences:

=n _ O.r*t,(l) _ o.Z,(Z)’ =g _ o

—n n,(1) n,(2)

b,=D« — D« ﬁn = p”,(l) _ pn,(2)'

We can see (En, ﬁn) as the solution to the following problem:

-

5 = —a(@! M)V - (S(pI) = SN = 250V - S(pI ) + g (L)~ S(pI)) i W x (0.7,

15%0) =

7 +15 = COpOﬁO’:O{I My 2 2pob(oy g+ h(S(pf(l)) S(p: (2))> inW" x(0,T),

S

where we have used the fact that a(c™ ") — a(¢™®) = 25" and b(@™V) — b(c™?) = o*, cf.
(7). Similarly to (19), we then have the following estimate:

1" 2o <1+ VT (1la(@ ™V - (SEM) = SREDlmqeacay + 2050V - SEEloazca
+ ||g(5(P2’(1)) - S(P:’(Z))> Lo (z2())-

By relying on the fact that

a (a:f’(l)>

Jr-s(ei)

<C(n)(1 +Ry),
Le(L>()

<C(n)

V-S <pf (2)>
Lo (L (Q))

< CIp? 220y < C(MR,,
Lo(L2(Q))

together with the Lipschitz continuity of S (see (16)) and

1 (2 —n
||g(S(Pn( N-s <P:( )>>“L°°(L2(Q)) < CMIIVIn pollpo@yllp, 22y
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we obtain

15" 2y S CA +DIVT (I8 Iy + 152 202 )- 1)
We can bound the differences of pressures as follows:
1P 22 < \EIIC(Z)Po%EZU:’(D||Loo(L2(Q)) + ﬁllcgpob(d*"’(z)ﬁ:IILw(LZ(Q)) + IL@ )ll2 2y

+ ISP ) = SEFDa)-
(22)

By the equivalence of norms in finite-dimensional spaces and estimate (21), we infer
—n —n —n —n
IL(o )lir22@) < CMINo lmae) S C(")ﬁ(lIU*IILw(LZ(Q)) + ”p*“LZ(LZ(Q)))-
Further,
X¢! 2 (1 2
ISR = SEE Dy < VTIEL(SEED) = SGED) ) - Vool
a 2
VTNV polls@IS(PE ™) = S(PI Pl raqay)
<COVTIP, Ni22(ay)-
Using this bound in (22) together with the Lipschitz continuity of the operator S yields
15" 2czacon) < COOVT (1B i ceacon) + 1B N2z )- (23)
By adding the two bounds, (21) and (23), we arrive at
—n —n —n —n
lo @) + 1P 2@y < Cm)(A + T)ﬁ(lla* lLo2c) + P, ||L2(L2(Q))>-

Thus, strict contractivity of the mapping can be guaranteed by reducing T = T(n). An application
of Banach'’s fixed-point theorem yields the statement. O

2.2 | Energy identity for Galerkin approximations
Having constructed Galerkin approximations, in the next step, we derive an energy identity for

(15) on [0, T, ]. For this purpose, we introduce P‘s‘?”g = P’%?n [g(u™)] € W" as the Ritz projection of
g = g(u") = —u" - Vlnp, in the sense of

/ ng(u”) -Vu,dx = / iVP%%Q -Vu,dx forallv, € W" (24)
Q Po Q Lo

that is,

(A1 /5,8"), V)12 = (—A1/p0P€8n9, v, forallv, e W™
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In the derivation of the energy identity for (u", o”, p™), we rely on the stability of this projection
operator in the following sense.

y+1

Lemma 2. For g=g")=-Vinp,-u", where u"e€L®(Q)nH > (Q), p)€X,,
IV In pgl| ya1 <1, we have
Le(Q)NH 2 (Q)
VPSS, 8llz2(q) < CIIV In gl e (@ynwracoy 1™ 1)
Yy
—AN)+ PO <C|IVl1 n ,
1A Pl < CIVInpoll o @5)
e
I(=AN) + Pyagllzz) < ClIVInpll v lut] oo,
Le(Q)NH 2 (Q) L®(Q)nH 2 (Q)
with C depending only on || || (q), | pi l| L (q), but not on n.
0
Proof. The proof is provided in the Appendix. O

We proceed to derive an energy identity for (u",c", p™) on [0, T, ] under the assumption of
uniform smallness of solutions on [0, T, ].

Proposition 2. Let the assumptions of Lemma 1 and Proposition 1 hold with f € Xy. Let
(u", ", p") be the solution of (15) on [0, T, ]. Assume that there exists r > 0, independent of n, such
that

lc"(x,t)| <r forall(x,t) € W"x[0,T,]. (26)

Then ifr > 0 is sufficiently small, there exist a, a > 0 and b, b> 0, independent of n, such that

0<a<a(@)<a forall (x,t) e W" x[0,T,],
— 27
0<b<b@")<b forall (x,t) e W" x[0,T,],
and the following identity holds:
1d
53 (IVa@)V w2, )+ lleoVB@) Va2, o ) + wll V(@@ /oo V(Y - uliZ, "
28

+1

Y d M
+ 00 (201(=AN) 07 I ) + 1 I=AN) + 0"I2, g ) = thsy + rhss,

where the right-hand side terms are given by
rhs, = — / a(@)V - (o' IV - u dx + / %céb’(a")a?ch"lz dx
Q Q
- / o"(VIegb(a™] + c¢ib(c™)VInpy) - Vo dx + %/ a’'(@™)ol|V - u"|? (29)
Q Q

+ ,u/ iV(V -u?) - (d'(e™)Va™")V - ut dx
Q Po
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and

rhs, = Vh(u") - Vo} dx

2=

VPg, () - VIcip,b(0") 0" — h(u")] = 26y (t(=Ay) 307 +1(=By) > ") P, g(u) ) dx
(30)

-
[
Q
with a’(c™) = 2 and b’ (c") = %
Proof. Since a(c") =1+ 20" and b(c") =1+ %o", the bounds in (27) follow immediately by
(26) if r is small enough. The identity in (28) is obtained by convenient testing of the problem that
will lead to cancellations of several terms. We test equation (mo®) in (15) with

V" = ——V(a(@" (O - w (D),
Po

equation (ma®) with —A, /Po p"(t), and equation (pd®) with A, /0,07 (£). We note that we are
allowed to do this because v" € L2(Q)?¢ and —A /oo P (0)s Ay/p,07(t) € W". Proceeding in this
manner, integrating over Q, and integrating by parts in space yields

/ —(poul! + Vp" — uV(V -u") - f) - in(a(a”)V ~u)dx
Q 0
+ / V(o +a(@™V - u" — g(u™)) - in” dx
Q Po
— / V(p" = ctpob(c™) " — h(u™)) - iVcrt” dx
Q Po
y yH
+ 2a /(_Al/Po)_l (1’(—A)2021 +n(-A) 2 G”)(—Al/poct”) dx=0
Q

a.e. in time. Conveniently, the (space-integrated) terms —Vp" - i V(a(a")V -u")and V(a(c™)V -
u") - in p" aswell as Vo' - V p" and —Vp" Vo cancel out and we are left with
0

/ —(poul! — uV(V -u") - f) - iV(a(cr”)V ~u)dx —/ Vg(u") - in” dx
Q Po Q Po

—/ V(=cipob(a™) o™ — h(u™)) - ‘OLVO'? dx +2ay [ (t(=A)207 + n(—=A) 2 c™)o]'dx = 0.
Q 0 Q

To transform the terms further, we can employ the following identities:
—/ u; - V(a(c")V - u")dx :/ a(@™)V - ulV -udx — / (a(@™)V - uMuj -vds
Q Q 60

1d 1
— n g2 _ I ( AN\ ~1 g2
/zdt| a(o")V - u"|*dx Z/QG(U)CHV u"|“dx
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14 of 29 | COX ET AL.

and
" /Q V(Y- ) - V(a@)V - w)dx =l Val@ /oo V(Y - wlE g
+,u/Q V(V-u")- iVa(a”)V -u" dx,
as well as, with § = céb(a”),

1
[VBVG"? = 5B |Va" > +6"(VB + BV Inp,) - Vo],

1 1d
n. —ygh = - —
VipoBo"] OVO't ,

where 5, = cé%of. In this way, we obtain the energy identity

(IVa@DV - w12, ) + e Vb@™) Vo2, o ) + KIVaeD o V(Y - w2, o

N1
&la

v d yH
2 2
+ 0 (22N (=)107 2, + 0 1(=2) + 0”112, )
- —/ L ¢ VaemV - undx + / L Vgny. vprdx - / L Vh@n) - vor dx
a Po a Po a Po ! (31)
+ / %céb’(o")afch”lz dx — / a™(V[cgb(6™)] + ¢ib(c™)V In py) - Vo' dx
Q Q

1 1
+= [ d(@™}|V-u"Pdx+u [ —V(V-u")-Va(c")V - u"dx :=rhs.
2 Q Q Po

Note that the term with V p” on the right-hand side of (31) cannot be controlled directly by the left-
hand side terms so we would not be able to derive an energy estimate starting from (31). To mend
this, we rewrite this term by additionally testing equation (pd®) in (15) with —A, /0o Pﬁgn g e
W". We then have

1 1
—Vg")-Vp'dx = [ —VP? g(u")-Vp"dx
/ong()p /onwg()p
= [ (5 Phtngtu) - Vicdpob(a™ " = )
Q Po
y pHl
— 20y (t(=A)207 + n(—A) 2 c”)P’;{‘}ng(u")) dx.

Using this identity, the right-hand side of (31) can be rewritten as the sum rhs = rhs; + rhs,, where
rhs; is defined in (29) and rhs, in (30), to arrive at the claim. O

2.3 | Energy estimate

Starting from the obtained identity in (28), we next derive an energy estimate, at first, on [0, T, ]
and again under an assumption of uniform smallness of solutions. Concerning the regularity
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induced by the y-power damping terms on the left-hand side of (31), there are several requirements
that we needed to take into account:

* First of all, we need to obtain a bound on ¢ from the 7 term i% (31) whose control in its
turn enables nondegeneracy of a(¢") = 1 + 20" and b(c") =1+ aa”. Thus, we require that
i d

2 4 > 2 . . . . .
* Second, rhsy, given in (29), contains the gradient of o;, which we have to control by the left-hand

Y
side term 2ay7||(=Ay)4 0} ||i2 @ in (31), resulting in the requirement 2% > 1.

* Third, to be able to absorb the g(u") terms in rhs,, defined in (30), by the left-hand side, we
need an upper bound on y: y < 3.

Altogether, we thus assume that the propagation medium exhibits attenuation with the exponent
y>d-land2 <y <3, de{23} (32)

As mentioned before, the condition y <3 can be removed if g=0. The case g=h =0 is
analyzed in Section 3 in a y-uniform manner for which the lower bound on y has to be
strengthened, however.

In the analysis below, we use the Poincaré-Friedrichs inequality as well as elliptic regularity
of the Neumann problem (Ref. [18, Theorem 4, p. 217]) to conclude existence of constants C;, C‘S,
such that

~ y y+1
19l < C-03) Pz < Clblhy fora p € 1@, [ ¢ =0, se {32521,
Q
We note that, under the assumptions (32) made on y, we have continuity of the embeddings

H3(Q) » HY(Q) - L5Q), H3 (Q) — L¥(Q) n W (Q) (33)

for d € {2,3}. We next derive a uniform bound for the sum of the semidiscrete energy and
dissipation functionals at time ¢ given by

E@) = [0 OI2 gy + IV O, ) + 15O .
2

H 2 (Q)

and

t
D) = / <y||V(V-u”<s))||§z(m+||o-?(s>||2y +||Vlsp||§2(m> ds,
0 H2(Q)

at first, for t € [0,T,]. In the subsequent step, we will use this result to bootstrap the existence
and the energy bounds to [0, T].

Proposition 3. Let the assumptions of Proposition 2 hold and let the approximate initial velocity
u; € H(div; Q) satisfy

u; — wy in H(div;Q) as n — oo.
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Let the condition (32) on 'y as well as

VI3 Volll 2y + lleg Vool + IIVlnpoIIH%(m < Spy.0 (34)

hold. Furthermore, assume that there exist r > 0, independent of n, such that

o™ L0710y + 118" (@) 207,130y + 16/ (@VE w07, 1300y + IIegb' (@) 1207, 1500

35)
+“V[céb(gn)]”L°°(O,Tn;L2(Q)) + ||C(2)b(Un)V In poll (o1, 2200)) < ¥
; ' _ ' _ B - .
with a’(c") =2 and b'(c") = o Then for sufficiently small r and sufficiently small 6, .,
independently of n, the following lﬁ)und holds:
esssup E(t) + ess sup D(t)
te(0,T,) te(0,Ty)
S Cl(Po) eXP(CzTn)<||V . (palf)||i2(L2(Q)) + ”Itf”iz(Lz(Q)) + ”uO”IZ_](div;Q) + ”CO \/ C"O VO‘O”EZ(Q) + ”0.0”2 y+l
H 2 (Q)
+IVIEd, - VoollP. g, ),
(36)

where C; and C, do not depend on T, or n.

Note that the smallness assumption on the gradients of ¢, and p, made in (34) only restricts
their variations but still allows for large absolute values of these quantities.

Proof. We start from the derived energy identity in (31) and estimate the right-hand side terms
within rhs; and rhs,.

Estimate of rhs;: The time integral of the first right-hand side term rhs; can be bounded using
Holder’s inequality and the fact that a’(c™) = 2 as follows:

t
_ — 1
/ rhs,(s)ds < IV - (o5 Plligzpall Vv - u"|| L2 + 5||Céb/(0'")gfl||L[2(L6(Q))||VO'"||L[2(L3(g))||VUn||L;>°(L2(Q))
0

+ ||U"||L[2(L°°(n))||V0f1||Lt2(L2(Q))<||V[C(2)b(0")]||L;>°(L2(Q)) + ||C§b(0")V 1np0||L;’°(L2(Q))>
+ ||Uzn||L[2(L3(Q))||V : u”||L;>°(L2(Q))||V : u"”Lf(LG(Q))

+2ull1/ ool IV Lo s ap IV - 'l 2o @p I VIV - )l 220y

(37)
for t € [0,T,,]. By employing the assumed r bound and Young’s inequality, we have
1 21/ ( ~N\ N n n 1 n n
§||Cob (6™t lzsp Vo lzwspll Vo llLs ) SEV‘ Vo™ ll2sap Vo Iy
2 nj2 1 ni2
<rllotlE L A Ol
LE(H 2 (Q) LY(H 2 (Q)
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since [|cgb’(6™)o] lIr2(0,1,:16(q) < r- Similarly,

107 220 1V a2 ( 1V Eegb @™ Mz + b @)V Inpollzracan )
<l lzge@plVorllizaaay - 7

1
< 2 C@ll" | rerloll?,

L Y
Li(H 2 (Q) Ly (H2(Q)

for any € > 0. Note that by the first embedding in (33), we have
(v - un”LtZ(LG(Q)) SV un”LIZ(Hl(Q)) SV un”Ltz(LZ(Q)) +[|V(V - un)”LtZ(I;(Q))-
Thus, we can estimate the last two terms in (37) using also the assumed r bound as follows:

”Utn”Ltz(LS(Q))”V : un”L[""(LZ(Q))”V : un”Ltz(LG(Q))
+2ull1/pollo@ Vo lipas@pllV - wll2@sp I VY - Dl 22

Srive un||L[°°(L2(Q))(”V ) un”LtZ(LZ(Q)) +IIVV - un”Ltz(LZ(Q)))
+ ull1/pollLeoyr(llV - un”Ltz(LZ(Q)) +IVV - un”LtZ(LZ(Q)))”V(V : un)”Ltz(L2(Q))'

Then by applying Young’s inequality, we obtain

”O';l”LtZ(p(Q))”V : un”L;"’(LZ(Q))”V : un”LtZ(Lﬁ(Q))
+ 2/"“1/PO”L°°(Q)||VU””L;"’(D(Q))”V : un”Lf(Lﬁ(Q))“V(V : un)”Ltz(LZ(Q))

SVt +(UIV - uwt)? +el|VV - ut||? ) +url|VV - u”)?

2
LPL2() LALX(Q) LAL(Q) LAL(Q)

2 D) 2p2 ~u|?
/Pl IV - W sy + HPIVY -l

for any € > 0. Note that the presence of the ¢ term above will lead to a nonuniform estimate in u.
In Section 3, we discuss a way to mend this by requiring more regularity from o;'. By employing
the derived bounds in (33), we arrive at

t
1 —1.£v/2 2
/0 rhs;(s)ds < 4_Ea V- (P() f)”Ll(LZ(Q)) +el[V - un”L?o(LZ(Q))

2
+ o™l

+r?|lo™ 1 +er?|ol v+ PV w2
2T @) T L T T RS T
2 a2 -u)|)?
+ A+ 11/poll @IV - 8"l 5 g + (L4 ) + DIV - U )

(3%)
for any € > 0, where the hidden constant does not depend on n. The ¢” and u" terms on the
right-hand side above will be either absorbed for small enough ¢ and r or tackled via Grénwall’s
inequality in the final stages of the proof.
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Estimate of rhs,: Next, we estimate the time integral of rhs,, given in (30), by employing
Holder’s inequality as follows:

t
/ rhs,(s)ds < ”1/P0”L°°(Q){ (”Vh(un)”er(U(Q))”VO'tn||Lt2(L2(Q))
0

+ ||VP€3ng(u")||Lf(L2(Q))||V[C§Pob(0")C’"]”Lf(LZ(m) + ||VP€8ng(un)"L[2(L2(ﬂ))”Vh(un)”le(LZ(Q)))
y y
200 (Tl (=8) 507z 1 (=2) T P M 22
et Al 0
#0I=0)F a8 F P @l ) -

By employing Young’s inequality, we obtain

t
/ ths(5) ds < I1/polliman { (o IVR@OIZ, 1) + NV, i)
0

+el VeIl ||V[c0,o0b(o-”) o ]IILZ +el VeIl

LZ(LZ(Q)) Q) LE(LX(Q)

+—||Vh(u">||L2(LZ(Q»)+2ao(sr I=8) 7 1. 1 + 32 1A PRI, )

FPEA) T 0 + 2B P 2@, (m»)}
(39)

for any € > 0. We further have

el V@I, 1 g =NV VIR,
SNV, o 1V IR0 )+ 2 2, VOV IO,
and
FIVREOIE, o) < G IVIE VRO o L2, o)+ 221 VRol o ILVH I,
+ VI - Vool )

and the arising u" terms on the right-hand side can be absorbed by u f IV(V - u™(s)])?
for sufficiently small ¢ > 0 and §, . . Furthermore,

1) 95

N T COEA T

1
<—IIV[ opo]b(U")+COPoV o" +cgpo = Vo" e @zaplle” IILZ(LM(Q» 2—8Ilcﬁpob(U")lli?o(Lm(Q))IIVU IILZ(LZ(Q»
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From here,

1 2 n
e MG L COLA [,

S (1VEe3 0l ) (L4 5 e + N30V S0 oy + 18P0 35 Wy 1™ )

R0l )1+ PPNV 12,

and these terms can be handled via Gronwall’s inequality.
We can use the stability of P‘;‘?n g(u'") according to Lemma 2 to estimate

—||( A)s PP°.1g(u")IIL2(LZ(Q)) II( &) P BN e

ll” |l +CVT|VIng| s f[u|

< 1 :
<ClIVinpol L(Lo@nH? (@) Le(QNH 2 (Q) Lf(LW(Q)nH%(Q))’

Lo(QNH 3 (Q)

where C does not depend on n, and absorb these terms for sufficiently small

1V 1n oo vt (e 8y )
Le(QNH 2 (Q)
Combining the bounds: By employing (38) and (39) in the time-integrated identity (28), taking

the supremum over t € (0, 7) for t € (0, T,,) and reducing € and r (independently of n), we end up
with

esssup £(1) + /0 <,M||V(V W' ()17, + (= AN)W”(S)IILZ(Q)) ds

te(0,7)

1 —
SC(”"'O”iI(diV;Q) + “CO V 0o VUO"iz(Q) + ”070”;);721(9) + 4_E”V : (p() lf)llil(LZ(Q))

+ ||gn||2 y+1 + (1 + ||1/PO||L00(Q))||V un”Lz(OTLZ(Q)) +T ||V[Czdo Vp()]“LZ(Q)>
L2(0,5;H 2 (Q))
(40)

for t € (0,T,), where C does not depend on T,, or n. Above, we have also used the boundedness
of approximate initial data:

IV -uglirze) S luolla@iviay,  llogh v Sliopll yar
H 2 (Q) H 2 (Q)

Estimate (41) does not contain a bound on p", which we obtain in the final step of the proof.
To this end, we test the time-integrated version of (mo®) with V(I,p") € L>(Q)? for t € [0,T,],
which yields, after integration over €,

[ {ootu — )+ V15" = ¥V L) = 1) - VL p = 0
Q
From here, we obtain

IVLp™ lr20,0:020)) < e + V(Y - Lu™) — po(u" — ug)|l120.7:12(0))

S Flleaey + #IVV - L) 20202000 + 100l 18" | 1200.2:220)) + 100l Loy 18 1 12¢)-
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Note that we cannot obtain a bound on V p” from (mo®) because we lack a bound on u;'. Squaring
this estimate, multiplying itby A > 0, and adding it to (41) with 1 sufficiently small (independently
of n) leads to

esssup £(t) + esssup D(¢)
te(0,7) te(0,7)

S C((l + ||Po”zm(m)”uonfﬂdiv;m + ”CO \/ O'0 VUO”?}(Q) + ”O’Ollji%(fb + ”V : (palf)||?1(12(0>) + ”Itflliz(LZ(Q))

+ ”Po”iwm”un”;(OJ;LZ(Q)) + ”O-n”Z y+1 + (1 + ||1/p0||L°°(Q))”V : un”iz(o’T;LZ(Q))
L2(0,;H 2 (Q))

FT,IVIE, - Vool )

12(0)
(41)
for t € [0,T,], where the constant C does not depend on n. By employing Gronwall’s inequality,
we arrive at the claimed estimate. O

2.4 | Extending the existence interval to [0, T|

Equipped with a uniform bound in (36), we can now extend the existence interval of Galerkin
approximations to [0,T]. We do so by proving that for small enough data, the uniform
boundedness assumption made in (35) holds.

Proposition 4. Let the assumptions of Lemma 1 and Proposition 1 hold. Let assumption (32) on

Y as well as assumption (34) on the smallness of gradients of p, and cé hold with the bound &, .

Further, let (u", o™, p™) be the solution of (15) on [0, T, . Then there exists § > 0, independent of n,
such that if

ool 1 o 128012 gy *+ 14011 gy oy + I, <6 42)

and 8, ., is small enough, independent of n, then the following uniform bound holds:

0-Co
L™, u")(t) 1= 6" (Olle(q) + 21167 lz200,6:23) + 211V Ol L3@) + %||(B/A)Cgotn||L2(0,z;L6(Q))
+[VIegb(@MIOll 2 + llegb(a™) OV Inpoli2(q) < 7
forallt € [0,T,]. Consequently, T, = T can be chosen independent of n.
Proof. We argue by contradiction. Assume that there exists ¢, € [0, T, ], such that
L™, u™)(ty) > r.
Let t, = inf{t : L£(c",u")(t) > r}. By continuity of £, then

L(o",u")(t,)=Tr.
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However, since £(c", u")(t,) = r, we know from the energy bound (36) that
&(t,) + D(t,) < C6. (43)
Furthermore, by employing the Sobolev embeddings in (33), it follows that
L2(0", u")(to) < Co(&(t.) + D(t.)), (44)

where (crucially) the constant C, does not depend on T, or n. Combining estimates (43) and (44)
yields

L£2(a"™, u")(t,) < CCyé.

Choosing the size of data to be § < — leads to L(c", u"")(t,) < r and thus a contradiction.

By Proposition 3, the uniform boundedness of £ in turn implies that the energy is uniformly
bounded:

EM)<C, telo,T,]

and we can thus prolong Galerkin solutions until we reach the final time T O

2.5 | Passing to thelimitasn —

Thanks to the established n-uniform bounds on Galerkin approximations on [0, T|, we may extract
subsequences of {u"},~; and {0"},,5,, which we do not relabel, such that

u" -~ u weakly- x in L%(0,T; H(div; Q)),
V-u' —~V.-u weakly-* in  L®(0,T;L*(Q)), (45)
V(V-u") —=V(V-u) weakly in  L3(0,T;L*(Q)),

and

n

y+1
o" —o weakly-x in L®(0,T;H 2 (Q)),

v (46)
of —o, weakly in L*0,T;H2(Q)).

By the compact embedding X, << C([0,T]; H'(Q)), we also know that there is a subsequence
of {o"},>1, not relabeled, such that

" — o stronglyin C([0,T]; H'(Q)). (47)
Additionally, by the uniform boundedness of I, p", there is a subsequence of {I, p")}, . |, again not
relabeled, such that

I,p" — I,p weakly in L?(0, T; H'(Q)). (48)
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Thanks to (45) and (48), we can immediately pass to the limit as n — oo in
T
/ / (Po(u" —ul) + VI, p" — uV(V - Lu") = L, f) - vdxdt =0, v e L*0,T;L*(Q)%)
o Ja
to conclude that
T
/ / (oo(u —uy) + VI,p — uV(V - Lu) = I, f) -vdxdt =0 forall v € L*(0, T; L>(Q)%).
o Ja
Next, to pass to the limit in (ma®), we first note that for any w € L?(0, T; L*(Q)), we have

; , ,
/ /(U"V ‘u" — oV - wwdxdt = / /(o” — o)V - w'wdxdt + / /(V -w" — V- uw)owdxdt. (49)
0 Q 0 Q 0 Q

The convergence of the second term to zero as n — oo is immediate since cw € L?(0, T; L*(Q))
for w € L?(0, T; L?>(Q)). The convergence of the first term to zero follows by

T
/ /(Cf" — o)V -u'wdxdt < Cllo" —ollcqoria@)llV - w2014 lwllr20,7:02(0)
0o Jo
and (47). Next, we fix N and choose
N N
o) = Y EOwx), ¢ =Y EFOw(x), (50)
i=1 i=1
where {£ U}f\; ,and{§ P}fi , are given smooth functions. We choose n > N and note that ¢ satisfies

T
/ / (o + a(e™V - u" — g(u"))vdxds = 0.
o Ja

Thanks to the convergence of (49) to zero as n — oo, we can then pass to the limit as n — oo in
the above equation and use the density of functions of the form (50) in L?(0, T; L>(Q)) to conclude
that

T
/ / (0; +a(0)V -u—g(u)vdxdt =0 forany v € L?(0,T;L*(Q)).
o Ja

Similarly to the arguments in, for example, Ref. [19, Ch. 7], with v(T) = 0, we have

—/Qa"(O)v(O) dx — /OT/Qavt dxdt + /OT/Q(a(o”)V -u" —g(u"))vdxdt = 0.
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By passing to the limit as n — oo and using the analogous identity for o, we can show that g(0) =
o, since 6(0) — o, in L?(Q). With similar reasoning to (49),

T T T
/0 /Q(I[(b(an)o”) —1,(b(o)o))p dxdt = /0 /Qlt(a" —o)pdxdt + % /0 /QL((U" —0o)(o" +0))pdxdt - 0

as n — oo, thanks to (46) and (47). We can then pass to the limit also in

T )+1 +1
/ / {(Izp" — 2oL, (b(EM0™) — ThUM)A, pyd + 200 (t(—A)F (0" — SMY(=A) T § + (~A) T Lo"(—~A) '+ ) } dx
0 Q
=0,

using that
2 2
(=A)+(og — 00), (=A)*P)r2(q) = 0 asn — co.

Altogether, we conclude that (u, g, p) is a solution of the problem in the sense of Definition 1.

By passing to the limit in the semidiscrete energy estimate (36) and utilizing the lower semi-
continuity of norms, we find that (u, o, p) satisfies an energy bound analogous to (36) and arrive
at the following existence result.

Theorem 1 (Existence of solutions). Let T > 0. Let u > 0andd —1<y, 2 <y <3 (cf (32)), and
assume that

1

u, € H(div;Q), dy € L°(QNHNQ), oy€H : (Q), feXy,
and B/A € Xp/4, po € Xp, c(z) € X, where the spaces X ¢, Xg/a, X, and X, are defined in (11),
(12), (13), and (14), respectively. There exist & > 0 and 8, ., > 0, such that if the smallness conditions

(34) and (42) hold, then there exists a solution (u,a, p) of (5) in the sense of Definition 1, which
satisfies the following bound:

llaall +IVoll}

2
L (H(div;QQ))

T
. 2 2 2
@) e+ /0 (mw(v u(r))um+||a,(r)||H%(m+||VLp||L2(Q)> dr

+lol* .
Le(H™ > (@)

< Cl EXP(CZT)<||V : (P(;lf)||iz<Lz(Q)) + "Ilf”iz@z(g)) + ”u[)”il(div;ﬂ) + ”CO V ) VUO”%z(Q) + ”00”2%(!2)

+11VIcido - VoI, g, )-

L2(Q)

(51)
The estimate in (51) is not uniform in u; that is, we cannot use this result to investigate the limit

of solutions as u \, 0. As the setting u = 0 is of interest for working with (1), we investigate it next
by modifying the assumptions on y as well as the functions g and h.

3 | THE VANISHING VISCOSITY LIMIT UNDER STRONGER
ASSUMPTIONS

In this section, we discuss the vanishing u limit of solutions to the problem with g = h = 0:
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T
/ / (o = ) + VI,p — uV(V - w) = L) - v+ (0, + a(0)V - w)v
o Ja (52)

+ (10 = GBpol (b(@)0)) Ay, ¢ + 20y (T(-A)E (0 = ) =8) 2§ + (D)2 Lo(-2) 22 ¢ ) | e =
v+l
which holds for all v € L3(0, T; L>(Q)%), v € L?(0, T; L*(Q)), and ¢ € L*(0,T; H 2 (Q)), such that
Vé.-v=0.
Looking at the energy estimates in the previous section starting from the identity in (28), we
see that we can simplify them because now rhs, = 0. Since g = h = 0, we can assume slightly less
regularity of the coefficients as compared to (13), (14), namely that

o o160, o B/A LY, py € HHQ), . B/A € W'H(Q) (53)
0 0

Furthermore, there is no need for the initial condition on d. By then re-examining the derivation
of the estimate of the time-integrated rhs;, we observe that the culprit in (29) for the nonuniform
bounds in x was the term

t t
/ oMV - u'| ds < / o™ s IV - 221V - w3 ds, (54)
0 0

in particular, the need to further bound ||V - u"||3(q); see (37). We can obtain a u-uniform energy
estimate if we have the following bound:

0; |lpeo <Ca 55
o sy < Cllofl (55)

because we can then replace estimate (54) by

t
[ ot wias < / o2 NIV - w72, g .
0

For this reason, here we strengthen the lower bound on y toy > d, so that embedding estimate (55)
holds. (Note that since g = h = 0, we do not need the condition y < 3 any longer). By otherwise
proceeding as in the previous section via the Faedo-Galerkin procedure, we arrive at the following
uniform in y result.

Proposition 5. Let T > 0. Let u > 0 and y > d and assume that
}il
u, € Hdiv;Q), oo €H 2 (Q), f € Xy,
and that (53) holds. There exists § > 0, such that if

2 2
llooll w* 2012 ey + I, <6
2 (Q
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then there exists a solution (u, o, p) of (52), which satisfies the following bound:

T
2 2 2 2 2 2
w|lz o+ IIVollrs + |l " +/ ullV(V - u(t)) + |lo, () + ||VI ) dt
” ”L (H(dlv,Q)) " ”L (Lz(g)) ” ||L°°(H}z] (Q)) 0 < ” ”LZ(Q) ” t ”H%(Q) ” tp”Lz(Q)

< Cl eXp(CZT)<”V : (p(;lf)||%z(L2(Q)) + ”I[f”%z(Lz(Q)) + ”uonil(div;Q) + ”cO V 0o VO’O”?}(Q) + ”O-O”j_[ﬁ(g)),
2
(56)
where the constants C; and C, do not depend on L.

As (58) provides a p-uniform bound on (u,o,I;p), similarly to Section 2, we can find
subsequences of {u},,., and {7}, Which we do not relabel, such that

u - u*=0  weakly- * in L*®(0,T;H(div;Q)),
V-u =V -u*" weakly-* in  L%®(0,T;L*(Q)),

and
)il
o — oM % weakly-* in L%®(0,T;H 2 (Q)),
- y
o —oa =0 weakly in L%(0,T;H2(Q))

as u \, 0. Additionally,
I,p — I, p*="weaklyinL?(0, T; H'(Q))asu \ 0.
Furthermore, from (58) we have the uniform bound
VHIVY - W22y < C

and thus know that

T
//,uV(V-u)-vdxdt—»O asu \, 0.
0 Ja

These convergence results allow us to pass to the limit in (52) and prove existence of solutions for
the problem without viscosity. To give the statement, we introduce the space

X, ={uel*®0,T;Hdiv;Q)) : u-v=00n0dQ}.

Recall that the spaces X, and X ,, are defined in (9) and (10), respectively. We can thus state the
second main result of this work.

Theorem 2 (Existence of solutions when u = 0). Under the assumptions of Proposition 5, there
exists (=0, 0#=0, p*=) € X = X, x X, X X, that satisfies

/OT /Q { (po(u”zo —uy) + VI, p*=0 — Itf) v+ (Uimo +a(o*=O)Y - ul‘:")w

(LD = P (B(TH0)5)) By, + 200 (7(=A)* (0#0 = 3o )(=8) S+ 9(—) * T,0*(~)+ ) } dxdl

=0
(57)
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y_+1
for all v e L*(0, T; L>(Q)%), w € L*(0, T; L*(Q)), and ¢ € L1(0,T; H 2 (Q)), such that V¢ -v =0
with #=0|,_ = o,. Furthermore, the following bound holds:

fl=°| +[IVa || + [le#=0||?
Le(H

T
+ / (naﬁ‘:"(r)uzz +||V1tp“:°||§2(m)dt
0 HZ(Q)

<Cexp@T)(IV - (0 Py + IS gy + Nl + €03/ Vol + 1001 i)
HZ (Q)

2 2
Lo (H(div;Q)) Lo(12(Q)) w

(@)

where the constants C; and C, do not depend on .

With this result, we have established sufficient conditions for the existence of solutions to (1)
with the modified absorption operator (6), where the problem is understood in the sense of (57). As
previously mentioned, the theory can also be adapted to allow for having the original absorption
operator (2), however at the cost of higher smoothness of the coefficients p, and c;.
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APPENDIX

We here provide the proof of Lemma 2, which is partly based on the following consequence of the
Courant-Fischer max — min formula of eigenvalues of compact self-adjoint operators, adapted
from Ref. [20].

Lemma Al. Let V and H be Hilbert spaces with C : V — V self-adjoint and compact and
M 1V — H boundedly invertible with M € L(V,H) and M~' € L(H, V). Then the operator C :=
(M= YH*CM™ : H - H is self-adjoint and compact and the eigenvalues 4;, of C and u;, of C decay
at the same rate; more precisely, it holds

1
VTR < Ak < IIMIP s

withdy >4, > - >0and 4y >y > -+ > 0.

Proof. Recall that by the Courant-Fischer Theorem, the eigenvalues in decreasing order obey the
following variational characterization:

A = max{min{(Cx, x)y : x € Sy, ||x|| = 1} : dim(Sy) = k, S) subspace of V}.
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From this characterization, we obtain

A, = max min (Cx,x
k™ dim(sp)=k xeSk,||x||:1( v
= max min (M H*CM™ Mx, Mx)y
dim(Sy )=k xESy,|Ix||=1
= max min (Cx, %)y IMx|)?
dim(Sy )=k x€Sg,x=Mx/||Mx]|,||x||=1
>——  max min Cx, %)y = (%),
M| dim(sk>=kxeskx=Mx/||Mx||,||x||=1( = ()
using || Mx]| > ! [|x]| = L Due to the fact that
M=) M=)
Mx W
X=—— €8 = MS,,
(| Mx]]

and the dimension of Sy being k, due to regularity of M, S is of dimension k as well. Therefore,
taking the minimum over a superset by dropping the constraint ||x|| = 1 results in

(*) > _ max min (CX, %)y = ;/x
=M R dim@So=k 2eslzl=1 0 MR
Analogously, it holds
1 1
IL{ Z A = /1 )
CEIMEDTRTE T Qg
which concludes the proof. O

Proof of Lemma 2.

Proof. The first estimate in (25) follows by testing (24) with v" = P‘;“,’ng and using the Cauchy-
Schwarz inequality as well as the estimate

IVg(u™lir2) < IVVInpgllisoyllullzs) + 1V In pgll e (o)l V' | 22¢q)s

where VV denotes the Hessian. For the second and third bounds in (25), we recall the definition
of the fractional power of a symmetric nonnegative operator A with eigensystem {(4;, w;)};>1 as

A’v = Z/lgl(v,wi). (A1)

ieN

We also note that

12 ¥ 12 y y+1
I(=ANY Pipaglliz) < IIPolle(Q)II(—A1/p0)yPu9ng||L2(9), 1S {Z’ [
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We test (24) with

Bl
<
+
=

1
vt = (—A1/p0)y_5P€8ng ew" forye {

=y

(=41 /0, Piongllzzcay < (=41 0,) 8ll12(0)-

to obtain

Then we make use of Lemma Al with V = H = L*(Q), C = (A ,)"", € =(-Ay)™, M =
(—AN) /(=4 )72, and

sup (=AY (=1 /p,) 7?0l 120
vEL2(Q)\{0} lollz2(q)

(=AY wll 20

weH (W\{0} (=41 00 w120

M|

(Vw2 _ IVwllzz)
= sup < llpollze()s

weHy@\0} | \/7 Vwllrzq)

where Hé(Q) denotes the space of zero mean functions in H'(Q). Likewise [|M ]| < || L | Leo()-
Po
Using (Al), we thus obtain

(=415, Y Prongllzzcay < (=410, 8ll12(0)-
Combining the bounds leads to

I=An) P52, all 20y < 19011 ) 11/ Y P8l

1 14
< 101w I =1/ @l 20) < PN | 5| H=AwY iz

Le(Q)

Finally, we apply the Kato-Ponce-type estimate to further infer

I(=Axn) 8ll2(@) = I(=AnY [V Inpg - u"]llr20) S 11V 10 pollzs(o) U 120 + IV I ool 1127 (0 14" [l 1=

from which then the second and third estimates in (25) follow. O
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