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This work presents GALÆXI as a novel, energy-efficient flow solver for the simulation of compressible flows 
on unstructured hexahedral meshes leveraging the parallel computing power of modern Graphics Processing 
Units (GPUs). GALÆXI implements the high-order Discontinuous Galerkin Spectral Element Method (DGSEM) 
using shock capturing with a finite-volume subcell approach to ensure the stability of the high-order scheme near 
shocks. This work provides details on the general code design, the parallelization strategy, and the implementation 
approach for the compute kernels with a focus on the element local mappings between volume and surface data 
due to the unstructured mesh. The scheme is implemented using a pure distributed memory parallelization based 
on a domain decomposition, where each GPU handles a distinct region of the computational domain. On each 
GPU, the computations are assigned to different compute streams which allows to antedate the computation 
of quantities required for communication while performing local computations from other streams to hide the 
communication latency. This parallelization strategy allows for maximizing the use of available computational 
resources. This results in excellent strong scaling properties of GALÆXI up to 1024 GPUs if each GPU is assigned 
a minimum of one million degrees of freedom. To verify its implementation, a convergence study is performed 
that recovers the theoretical order of convergence of the implemented numerical schemes. Moreover, the solver 
is validated using both the incompressible and compressible formulation of the Taylor–Green-Vortex at a Mach 
number of 0.1 and 1.25, respectively. A mesh convergence study shows that the results converge to the high-

fidelity reference solution and that the results match the original CPU implementation. Finally, GALÆXI is applied 
to a large-scale wall-resolved large eddy simulation of a linear cascade of the NASA Rotor 37. Here, the supersonic 
region and shocks at the leading edge are captured accurately and robustly by the implemented shock-capturing 
approach. It is demonstrated that GALÆXI requires less than half of the energy to carry out this simulation in 
comparison to the reference CPU implementation. This renders GALÆXI as a potent tool for accurate and efficient 
simulations of compressible flows in the realm of exascale computing and the associated new HPC architectures.
1. Introduction

The computational sciences have become an essential driver for un-

derstanding the dynamics of complex, nonlinear systems ranging from 
the dynamics of earth’s climate [1] to obtaining information about a 
patient’s characteristic blood flow to derive personalized approaches in 
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medical therapy [2]. While these successes also rely on significant break-

throughs in the development of numerical methods and physical models, 
a major portion can be ascribed to the exponential increase in available 
computing power, which has allowed simulating increasingly large and 
complex problems over the last decades. However, the corresponding 
process of shrinking transistors from generation to generation has be-
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come increasingly challenging and the resulting gains in performance 
have diminished in recent years [3]. As a consequence, the community is 
moving towards accelerator chips, which do not serve as a one-size-fits-

all hardware like traditional CPUs. These chips are specialized to yield 
better performance and efficiency for specific tasks, such as workloads in 
artificial intelligence, video encoding or cryptography. This also shows 
in the field of high-performance computing (HPC), where nine out of the 
ten fastest supercomputers listed in the most recent TOP500 [4] from 
November 2023 employ some form of accelerator. In the most recent 
GREEN500 [5] list, which focuses on sustainability in terms of energy 
invested per computation, all of the ten most efficient HPC systems em-

ploy GPU accelerators.

However, such accelerators generally differ considerably from 
general-purpose CPUs in terms of hardware design, as well as the work-

ing principle. As a consequence, using accelerators oftentimes not only 
requires rewriting and redesigning large portions of existing code to 
make efficient use of such hardware, but also might change which 
numerical algorithms are most efficient for a specific task. This poses 
significant challenges for legacy HPC codes due to the considerable ef-

fort required to migrate the existing codebase to hardware accelerators. 
This issue is particularly pervasive in the field of Computational Fluid 
Dynamics (CFD), where scale-resolving simulations of turbulent flows 
generally require significant HPC resources. Here, modern high-order 
discretization methods such as Discontinuous Galerkin (DG) and Flux 
Reconstruction (FR) schemes have become popular due to their com-

putational efficiency for such multi-scale problems and their excellent 
scaling properties on HPC systems.

Over the last two decades, these advantages have led to the develop-

ment of a rich landscape of high-order HPC solvers for scale-resolving 
CFD simulations. Here, spectral element discretizations have seen partic-

ular interest and have been implemented for instance in Nektar++ [6]

and HORSES3D [7], which can solve both the compressible and incom-

pressible Navier–Stokes equations (NSE), and the DG solver ExaDG [8], 
which solves the incompressible NSE. While these solvers are written in 
traditional HPC languages like C++ and Fortran, the solver Trixi.jl [9]

implements multiple DG discretizations in Julia to combine the advan-

tages of high computational performance with the flexibility and ease 
of implementation provided by modern Python-style languages. In addi-

tion to DG-based approaches, also other high-order methods have been 
widely adopted using for instance weighted essentially non-oscillatory 
(WENO) finite volume (FV) schemes as implemented in UCNS3D [10] or 
high-order finite difference methods with WENO-type shock capturing 
as utilized in the STREAmS [11,12] solver.

The need to adapt the existing and established codebases to the 
new GPU-focused HPC architectures has already been considered in 
the CFD community. One of the most established high-order codes for 
incompressible and weakly compressible flow is Nek5000 [13]. The 
first effort to port Nek5000 to accelerators was reported in 2015 [14], 
where a barebones version of the code was adapted for GPUs using the 
OpenACC library. Full GPU support was then offered by its successor 
NekRS [15], which is based on the Open Concurrent Computing Abstrac-

tion (OCCA) [16]. Similarly, Neko [17] was implemented from scratch 
using modern, object-orientated Fortran and abstraction layers to sup-

port multiple hardware backends. While the previous codes focus mainly 
on incompressible and weakly compressible flows, pyFR [18] also solves 
the compressible NSE on unstructured meshes using the FR approach. 
Moreover, it is written in Python and relies on code generation to sup-

port multiple computing backends including accelerators and provides 
excellent scaling properties on HPC systems. Similarly, the deal.II [19]

and MFEM [20] libraries provide DG discretizations to solve the com-

pressible NSE and both have added GPU support in recent years.

In this work, we present GALÆXI2 as a GPU-accelerated solver 
for hyperbolic-parabolic conservation laws with special emphasis on 
2

2 https://github .com /flexi -framework /galaexi/.
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compressible flows. The numerical simulation of compressible flows is 
highly relevant for a large number of problems, e.g., from the avia-

tion industry or aeroacoustics. GALÆXI builds on the well-established 
FLEXI solver [21] and inherits the majority of its features and its ex-

tensive pre- and post-processing suite that is designed for large-scale 
applications. Hence, GALÆXI implements multiple flavors of the Dis-

continuous Galerkin Spectral Element Method (DGSEM) and can handle 
fully unstructured, hexahedral, curved, high-order meshes to account 
for complex geometries. Moreover, multiple stabilization techniques are 
implemented to ensure the stability of the scheme in underresolved sim-

ulations and in the vicinity of shocks using shock capturing schemes 
based on localized finite-volume (FV) subcell approaches. We consider 
this focus on compressible, transonic flow through the combination of 
high-order accuracy and provable stability near shocks together with 
the efficient implementation of this hybrid discretization on GPU sys-

tems as one of the unique features of GALÆXI that sets it apart from 
existing solvers. The user interface of GALÆXI is deliberately kept com-

patible to FLEXI, such that GALÆXI can serve as a drop-in replacement 
to run existing simulation setups on GPU systems without modifications.

This work contributes the following aspects to the challenging but 
necessary steps for the transition to exascale HPC architectures in CFD. It 
provides insights into the suitability of DGSEM for GPU acceleration and 
quantifies the gains in performance and efficiency that can be expected 
for explicit, high-order DG methods when moving from traditional CPUs 
to GPUs. It also provides practical guidelines on how existing codebases 
can be ported to GPU hardware and proposes parallelization concepts for 
achieving parallel efficiency on HPC hardware with high-order schemes. 
Furthermore, the savings in the context of energy-to-solution are dis-

cussed in particular and can serve as a point of reference in terms of 
energy efficiency.

This work is organized as follows. First, Section 2 introduces the 
governing equations and the numerical methods implemented in GA-

LÆXI. Based on this, Section 3 provides details on the parallelization 
strategy and the implementation of the compute kernels. The resulting 
performance and scaling abilities of GALÆXI are presented and dis-

cussed in Section 4. The implementation of the numerical scheme is 
verified in Section 5, demonstrating the theoretical convergence rates 
of the numerical methods and accurate results for the incompressible 
and compressible formulations of the Taylor–Green-Vortex (TGV) test 
case. To demonstrate the applicability to applications of relevance, GA-

LÆXI is employed in Section 6 to compute a large-scale, wall-resolved 
LES of the NASA Rotor 37 [22] test case. Section 7 summarizes the major 
results of the paper and provides an outlook on further developments.

2. Numerical methods

GALÆXI is implemented as a general solution framework for 
hyperbolic-parabolic conservation equations, similar to the FLEXI 
framework, but exhibits a particular focus on the compressible Navier–

Stokes equations (NSE), which are introduced in Section 2.1. The 
DGSEM with its temporal and spatial high-order accurate discretization 
will be introduced in Section 2.2, followed by the compatible sub-cell 
shock capturing scheme in Section 2.3.

2.1. Governing equations

GALÆXI is used to solve the compressible NSE, which describe the 
evolution of the conserved variables 𝑼 (𝒙, 𝑡) = (𝜌, 𝜌𝒖, 𝜌𝑒)𝑇 which are 
comprised of the density, momentum, and energy density, respectively, 
at each position in space 𝒙 and time 𝑡. The NSE can be derived by 
enforcing the conservation of mass, momentum, and energy across an 
infinitesimal control volume. This yields the evolution equations of the 

conserved variables in differential form as

https://github.com/flexi-framework/galaexi/
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𝜕𝜌

𝜕𝑡
+∇ ⋅ (𝜌𝒖) = 0, (1)

𝜕𝜌𝒖

𝜕𝑡
+∇ ⋅ (𝜌𝒖 ⊗ 𝒖+ 𝑝𝑰 − 𝝉) = 𝟎, (2)

𝜕𝜌𝑒

𝜕𝑡
+∇ ⋅ (𝒖 (𝜌𝑒 + 𝑝) − 𝝉 ⋅ 𝒖+ 𝒒) = 0, (3)

where 𝑝 denotes the static pressure, 𝑰 the identity matrix, and 𝟎 the 
zero vector. Assuming a Newtonian fluid and Fourier’s law of thermal 
conduction yields the stress tensor 𝝉 and heat flux 𝒒 as

𝝉 = 𝜇
(
∇𝒖+∇𝒖𝑇 − 2

3
(∇ ⋅ 𝒖)𝑰

)
, (4)

𝒒 = −𝜆 ∇𝑇 . (5)

Here, 𝜇 denotes the dynamic viscosity of the fluid and 𝜆 denotes its heat 
conductivity. Both are material properties of the specific fluid and de-

pend in the general case on the fluid’s local state. Hence, both quantities 
cannot be considered constant in the general case. In this work, we as-

sume the viscosity to follow Sutherland’s law [23], which postulates a 
dependency of the viscosity on the temperature of the form

𝜇(𝑇 ) = 𝜇𝑟𝑒𝑓

1.4042 (𝑇 ∕𝑇𝑟𝑒𝑓 )3∕2

𝑇 ∕𝑇𝑟𝑒𝑓 + 0.4042
, (6)

where 𝜇𝑟𝑒𝑓 is the viscosity at the reference temperature 𝑇𝑟𝑒𝑓 . Based on 
this, the thermal conductivity can be computed as

𝜆 = 𝛾𝑅

𝛾 − 1
𝜇

Pr
, (7)

with 𝛾 as the ratio of specific heats, 𝑅 denoting the specific gas constant, 
and Pr as the dimensionless Prandtl number, which is assumed in the 
following to be constant with Pr = 0.71.

Lastly, the equation-of-state (EOS) closes the NSE by providing a rela-

tionship between the conserved variables and the pressure. For a perfect 
gas, this can be written as

𝑝 = (𝛾 − 1)
(

𝜌𝑒 − 𝜌

2
𝒖 ⋅ 𝒖

)
, or (8)

𝑇 = 𝑝

𝜌𝑅
. (9)

Equations (8) and (9) thus allow the computation of the primitive, i.e. 
non-conserved, variables 𝑼 𝑝𝑟𝑖𝑚 = (𝜌, 𝒖, 𝑝, 𝑇 )𝑇 from the state 𝑼 .

2.2. Discontinuous Galerkin spectral element method

In the following section, the DGSEM will be derived for the com-

pressible NSE, which can be written in flux formulation as

𝜕𝑼

𝜕𝑡
+∇𝑥 ⋅ 𝑭 (𝑼 ,∇𝑥𝑼 ) = 𝟎, (10)

where 𝑭 (𝑼 , ∇𝑥𝑼 ) encapsulates both the convective and viscous fluxes. 
Each of the main construction steps of the DGSEM will be discussed. 
However, a more in-depth derivation of the DGSEM and its implemen-

tation is provided by Krais et al. [21].

2.2.1. Mapping the equations

For the DGSEM, the domain Ω is subdivided into a set of non-

overlapping, curvilinear, hexahedral elements. Each physical element 
is then mapped from the physical space 𝒙 = (𝑥, 𝑦, 𝑧)𝑇 to the reference 
element 𝐸 ∈ [−1, 1]3 in computational space 𝝃 = (𝜉, 𝜂, 𝜁)𝑇 using a trans-

finite polynomial mapping 𝝃 = 𝝌(𝒙). The reference element is shown for 
𝑁 = 2 in Fig. 1. The Jacobian  of this mapping follows as the deter-

minant of the Jacobian matrix ∇𝜉 𝝌 , where ∇𝜉 denotes the del operator 
in the computational coordinates. The transformation of the governing 
equations into the computational space requires the contravariant basis 
vectors 𝒂𝑖, with 𝑖 = 1, 2, 3, which follow in the curl form as
3

𝑎𝑖
𝑛 = −𝑥̂𝑖 ⋅∇𝜉 × (𝑥𝑙∇𝜉𝑥𝑚), (𝑛, 𝑚, 𝑙) cyclic, (11)
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Fig. 1. Perspective sketch of a single DG element in the reference space using 
Legendre-Gauss interpolation points with 𝑁 = 2. Gray cubes indicate the inter-

polation points within the element, while the gray squares indicate interpolation 
points on the six local faces called 𝜉±, 𝜂±, 𝜁±. The linewise operations of the ten-

sor product ansatz are indicated for the center interpolation point, where the 
operations along the coordinates 𝝃 = (𝜉, 𝜂, 𝜁 ) are highlighted in blue, red and 
green, respectively.

where 𝑥̂𝑖 is the unit vector in the 𝑖-th Cartesian direction. Using the basis 
vectors and the Jacobian, the transformed equations in the reference 
element follow as

 𝜕𝑼

𝜕𝑡
+∇𝜉 ⋅ 

𝑖 = 𝟎, (12)

where  𝑖 denotes the contravariant fluxes given by

 𝑖 = 𝒂𝑖 ⋅ 𝑭 . (13)

To construct the DGSEM, Eq. (12) is formulated in the weak form, which 
will be derived in the next paragraph.

2.2.2. Weak formulation

To derive its weak form, Eq. (12) is projected onto a set of test func-

tions 𝜓(𝝃), spanning a polynomial subspace, using the inner product, 
which yields

∫
𝐸

 𝜕𝑼

𝜕𝑡
𝜓 d𝝃 + ∮

𝜕𝐸

𝜓 ( ⋅ )∗ d𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Surface Integral

−∫
𝐸

 ⋅∇𝜉𝜓 d𝝃

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Volume Integral

= 𝟎. (14)

Here, the surface integral incorporates the contribution of the fluxes 
across the element faces while the volume integral considers only the 
degrees of freedom within the element. Because adjacent elements share 
a common face and no continuity across elements has been imposed, 
the solution is generally discontinuous across the element faces. Con-

sequently, the solution and hence the fluxes on the element faces are 
non-unique. Therefore, numerical flux functions are used to compute a 
unique numerical flux across element boundaries, which is denoted by 
the asterisk (⋅)∗.

2.2.3. Solution representation

Within each element, the solution is represented by high-order La-
grange polynomials with any desired order resulting in arbitrary high-
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order accuracy of the DGSEM as demonstrated in Section 5.1. The 𝑗-th 
one-dimensional Lagrange polynomial of degree 𝑁 is defined as

𝓁𝑁
𝑖 (𝑥) =

𝑁∏
𝑖=0
𝑖≠𝑗

𝑥𝑖 − 𝑥

𝑥𝑖 − 𝑥𝑗

, (15)

with respect to a set of interpolation points {𝑥𝑗}𝑁
𝑗=0. In practice, either 

Legendre–Gauss (GL) or Legendre–Gauss–Lobatto (LGL) nodes are used 
as interpolation points. The superscript is subsequently dropped to keep 
the notation concise. Lagrange polynomials fulfill the Kronecker delta 
property given by

𝓁𝑖

(
𝑥𝑗

)
=

{
1, if 𝑖 = 𝑗,

0, if 𝑖 ≠ 𝑗.
(16)

A tensor-product ansatz is used to construct a three-dimensional ba-

sis of the polynomial subspace ℙ𝑁 from the one-dimensional Lagrange 
polynomials. This yields the approximation of the solution in the com-

putational space as

𝑼 (𝝃, 𝑡) ≈
𝑁∑

𝑖,𝑗,𝑘=0
𝑼̂ 𝑖𝑗𝑘(𝑡)𝓁𝑖(𝜉)𝓁𝑗 (𝜂)𝓁𝑘(𝜁). (17)

2.2.4. Semi-discrete form

Evaluating the integrals using the Gauss-type quadrature associated 
with the chosen set of interpolation points, i.e. collocation of interpo-

lation and integration points, yields the semi-discrete form of the DG 
operator that can be written for each point 𝑖, 𝑗, 𝑘 ∈ [0, 𝑁] as

𝜕𝑼̂ 𝑖𝑗𝑘

𝜕𝑡
=

ApplyJac
⏞⏞⏞

− 1
𝑖𝑗𝑘

[
𝑁∑

𝛼=0
 1

𝛼𝑗𝑘𝐷̂𝑖𝛼 +
( FillFlux

⏞⏞⏞[
𝒇 ∗𝑠̂

]𝜉+

𝑗𝑘
𝓁+

𝑖 +

FillFlux
⏞⏞⏞[
𝒇 ∗𝑠̂

]𝜉−

𝑗𝑘
𝓁−

𝑖

)

+
𝑁∑

𝛽=0
 2

𝑖𝛽𝑘𝐷̂𝑗𝛽 +
([

𝒇 ∗𝑠̂
]𝜂+

𝑖𝑘
𝓁+

𝑗 +
[
𝒇 ∗𝑠̂

]𝜂−

𝑖𝑘
𝓁−

𝑗

)

+
𝑁∑

𝛾=0
 3

𝑖𝑗𝛾 𝐷̂𝑘𝛾

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
VolInt

+
([

𝒇 ∗𝑠̂
]𝜁+

𝑖𝑗
𝓁+

𝑘
+
[
𝒇 ∗𝑠̂

]𝜁−

𝑖𝑗
𝓁−

𝑘

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

SurfInt

]
.

(18)

This notation follows Kopriva [24], where

𝓁±
𝑖 =

𝓁𝑖(±1)
𝜔𝑖

and 𝐷̂𝑖𝑗 = −
𝜔𝑖

𝜔𝑗

d𝓁𝑖(𝜉)
d𝜉

||||𝜉=𝜉𝑗

(19)

are one-dimensional building blocks that entail the numerical quadra-

ture weights 𝜔𝑖 and are precomputed during initialization to im-

prove the overall performance of the implementation. Moreover, 𝒇 ∗ =
𝒇 ∗(𝑼̃𝐿

, 𝑼̃𝑅) denotes the unique flux at the faces based on the solution 
on the surface of the left and right element, respectively, and 𝑠̂ denotes 
the surface element, which is the norm of the non-normalized phys-

ical unit vector as discussed in more detail by Krais et al. [21]. The 
monospaced namings in Eq. (18) refer to the routines in the numerical 
implementation which are summarized in Table 1 and are also detailed 
in Appendix A.

At this point, we would like to briefly discuss the influence of the 
unstructured mesh topology. First of all, the unstructured neighbor re-

lations only influence the surface-related operations and only direct 
neighbors are considered. Here, the relative orientation between the 
adjacent elements and their faces must be taken into account. This is 
done by corresponding mappings in the ProlongToFace and SurfInt
4

routines.
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2.2.5. Time integration

The semi-discrete form Eq. (18) is integrated in time using an ap-

propriate integration scheme. GALÆXI offers a variety of different ex-

plicit high-order Runge–Kutta-type schemes in a low-storage formula-

tion to reduce the memory consumption. In the following, a fourth-order 
Runge–Kutta scheme with 5 stages [25] is used for the validation and 
verification results in Section 5, while a scheme with 14 stages [26]

is used for the large-scale application in Section 6. The latter scheme 
is chosen since it exhibits an optimized stability region for convection-

dominated problems and allows for larger time steps.

2.2.6. Nonlinear stability

The semi-discrete form of the DG discretization in Eq. (18) is derived 
by means of numerical quadrature rules. However, since the integrands, 
i.e. the fluxes of the compressible NSE, are non-polynomial, they can-

not be integrated exactly by the applied quadrature rules. The resulting 
integration errors manifest as aliasing that can cause simulations to 
crash, especially in the underresolved regime. For DG, multiple mitiga-

tion strategies have been devised ranging from overintegration [27,28], 
also referred to as polynomial dealiasing, to filtering procedures that 
strive to counteract the accumulation of energy in the highest solution 
modes [29,30]. In this work, we rely on the split-flux formulation intro-

duced by Gassner et al. [31] to construct a nonlinear stable DG scheme. 
This approach is based on the strong formulation of the governing equa-

tions, which can be obtained through a second integration-by-parts of 
Eq. (14). The discretized form can be cast into the same algorithmic 
form as Eq. (18) with only minor modifications in the formulation of 
the fluxes [21]. Here, the fluxes of the NSE are replaced by split-form 
two-point fluxes that are equivalent on an analytical level but can be 
used to enforce additional constraints such as entropy consistency in the 
discretized formulation. In this work, a kinetic-energy-preserving split-

flux formulation proposed by Pirozzoli [32] is applied. It is important 
to stress that the evaluation of two-point fluxes increases the computa-

tional cost considerably.

2.2.7. Second-order equations

For the NSE, the gradients of the primitive variables ∇𝑥𝑼
𝑝𝑟𝑖𝑚 are 

required to evaluate the viscous fluxes. While several approaches exist in 
the literature, GALÆXI follows the BR1 method by Bassi and Rebay [33]. 
Here, so-called lifted gradients 𝒈 are introduced that should fulfill

𝒈− 1
 ∇𝑥𝑼

𝑝𝑟𝑖𝑚 = 𝟎. (20)

This equation is then solved for 𝒈 by deriving the weak form of Eq. (20)

and applying the DGSEM as is done for the NSE themselves. This yields 
an additional set of equations that is structurally similar to Eq. (18) but 
using the lifting fluxes instead of the fluxes of the NSE as detailed in 
Krais et al. [21]. Hence, the computation of the gradients corresponds 
to increasing the set of unknowns by an additional (𝑛dim × 𝑛lift) vari-

ables, where 𝑛dim corresponds to the number of spatial dimensions and 
𝑛lift to the number of primitive variables for which the gradients should 
be computed. This also means that each of the operations indicated in 
Eq. (18), i.e. ApplyJac, SurfInt, VolInt, FillFlux, has to be executed 
again for the lifting procedure in each spatial direction.

2.2.8. Computational complexity

Table 1 also provides the estimated number of operations, i.e. 
the computational complexity, for the different steps of the three-

dimensional DG discretization. The given numbers describe the asymp-

totic behavior of the individual operations without considering details 
such as the computational complexity of the flux computation and com-

piler optimizations. Most importantly, the computational effort to com-

pute the volume integral scales one order higher in terms of 𝑁 than 
all other operations, i.e. it scales with (𝑁4) instead of (𝑁3) or even 
(𝑁2). Hence, the volume integral becomes the dominant operation for 
increasing 𝑁 . However, the computations carried out for the volume in-
tegral are purely element local, highly dense and can be computed very 
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Table 1

Individual operations required to evaluate the three-dimensional DG operator with details on whether the routine acts on 
volume data or surface data. Moreover, it is indicated whether performed operations are DOF-local, i.e. are performed 
independently for each specific DOF, if they have to be re-applied during the computation of the gradients, which is indicated 
by the prefix Lift_*, and their computational complexity in terms of 𝑁 . A more detailed discussion of these routines can be 
found in Appendix A.

Routine Vol/Surf DOF-local Lift_* Operations Explanation

ConsToPrim Surf, Vol YES NO (𝑁2,3) Computes primitive variables 𝑼 𝑝𝑟𝑖𝑚 from state 𝑼 .

VolInt Vol NO YES (𝑁4) Evaluates volume fluxes  and multiplies with 𝑫̂.

ProlongToFace Vol → Surf NO YES (𝑁2) Evaluates solution at element faces 𝑼𝐿∕𝑅 to compute 𝒇 ∗.

FillFlux Surf YES YES (𝑁2) Computes common flux 𝒇 ∗ on faces with Riemann solver.

SurfInt Vol ← Surf NO YES (𝑁2) Computes surface integral with 𝒇 ∗ and 𝓵̂
±

.

ApplyJac Vol YES YES (𝑁3) Applies Jacobian  to 𝑼̂ 𝑡.
efficiently on various types of hardware. In practice, this increase in effi-

ciency was observed to partly compensate for the additional operations 
required with increasing 𝑁 [34]. Moreover, the communication stencil 
between elements is small, since only surface fluxes with direct neigh-

bor elements have to be exchanged. Consequently, the high cost of the 
volume integral and the small communication stencil allow for hiding 
the communication latencies very efficiently in parallel computations.

2.3. Shock capturing

GALÆXI is designed for the simulation of compressible flows which 
can entail discontinuities in the form of shocks. However, the applica-

tion of high-order discretizations near discontinuities or strong gradients 
in the solution produces spurious oscillations and can cause the nu-

merical scheme to become unstable. As a consequence, a wide variety 
of different shock identification and capturing methods are proposed 
in the literature that all strive to stabilize high-order discretizations 
near shocks and provide stable and accurate simulations of compress-

ible flows. The common objective of those methods is to retain the 
high-order accuracy of the baseline scheme in smooth regions while 
identifying and handling so-called troubled cells within the domain dur-

ing the simulation. Popular approaches for the shock treatment include 
high-order filtering approaches [35,36], limiting methods inspired by 
total variation diminishing/bounded FV schemes [37,38], or the addi-

tion of artificial viscosity [39–41] to smooth the shock profile. Another 
approach is to employ a hybrid discretization, where the high-order DG 
scheme is stabilized in the vicinity of the troubled region using a subcell-

based FV scheme [42–45]. For this, the DG element is subdivided into 
multiple FV subcells as indicated in Fig. 2. The resulting FV scheme can 
then either be solved directly within the troubled elements and coupled 
to the surrounding DG elements using the common Riemann fluxes [42]

or can also be used as a regularizing limiter [45]. In the following, we 
employ the blending approach by Hennemann et al. [44], who proposed 
to compute a convex blending of both the high-order DG and low-order 
FV discretization operators. This approach has also been demonstrated 
to yield a sensible turbulence model if tuned correctly [46]. Within each 
element both the high-order DG operator DG(𝑼̂ ) and the compatible 
low-order FV scheme FV(𝑼̂ ) are evaluated. The convex blending of 
both schemes then yields

𝜕𝑼̂

𝜕𝑡
= (1 − 𝛼)DG(𝑼̂ ) + 𝛼FV(𝑼̂ ), (21)

where the blending factor 𝛼 ∈ [0, 1] can be computed either via an a 
priori or a posteriori strategy for each individual DG element [47]. In this 
work, the a priori indicator by Hennemann et al. [44] is used, for which 
the blending approach becomes an operator local to each individual 
element. Clearly, the standard DG scheme can be recovered for 𝛼 = 0, 
while 𝛼 = 1 yields a pure FV discretization. It is important to stress that 
only the contributions of the operators within the element have to be 
blended since the outer surface fluxes are identical for the DG and FV 
5

formulation.
Fig. 2. Sketch of the sub-cell shock capturing scheme. The DG polynomial us-

ing LGL points and a polynomial degree of 𝑁 = 3 is shown in black with the 
interpolation points indicated as dots and the integral mean solution within the 
subcells is shown in blue. The solution in the neighboring DG elements is indi-

cated in red.

3. Parallelization strategy on accelerators

GALÆXI is the endeavor to extend the flow solver FLEXI [21] to-

wards accelerator-based HPC systems. Here, GALÆXI follows three dis-

tinct design principles. First, the general data structure and paralleliza-

tion strategy of FLEXI for unstructured geometries should be retained. 
Second, we strive to retain the majority of the codebase and the as-

sociated features of the original implementation. Lastly, GALÆXI is 
designed such that all routines called during the time-stepping are exe-

cuted on the accelerator without the need to transfer data to and from 
the CPU. Device code and compute kernels are only required for rou-

tines that are called during time-stepping and thus have to be computed 
on the accelerator. In contrast, initialization and non-frequently per-

formed analyzing routines are still computed on the CPU, since they 
are less time-critical and CPUs are better suited towards unstructured 
workloads. Both GALÆXI and FLEXI are implemented in modern For-

tran 2008. The device code for the accelerators in GALÆXI is currently 
implemented using CUDA Fortran, but the integration of other compute 
backends is under development.

The design and implementation of GALÆXI is detailed in the follow-

ing sections using a hierarchical top-down approach. First, the high-level 
distribution of work across different compute devices and the employed 
communication scheme between them is detailed in Section 3.1. Based 
on this, Section 3.2 provides details on how communication and com-

pute kernels are arranged and scheduled on a single GPU. Lastly, the 
general implementation paradigms for the individual compute kernels 
are detailed in Section 3.3. Obviously, performance optimizations have 
to be performed across all of these three levels and changes on one level 
affect the suitability and performance of the others. While these indi-

vidual levels are inherently interlinked, we chose this partitioning in 
the following to provide a more structured overview of the design prin-
ciples and methods applied in GALÆXI.
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Fig. 3. Domain decomposition for a generic airfoil simulation with large spanwise extension. The domain is cut such that the airfoil (transparent surface) including 
the boundary layer part is visible. Patches of different colors represent individual MPI domains that are processed by different ranks. This figure is an example of a 
fine granularity, i.e. the CPU case. In the GPU case, the MPI domains become larger.
3.1. Inter-GPU parallelization

The parallelization strategy between GPUs in GALÆXI is largely 
inherited from FLEXI, which employs a pure distributed memory ap-

proach using MPI. Before going into the specific implementation details 
of GALÆXI, the original MPI parallelization strategy of FLEXI is briefly 
presented. Here, each computational rank is assigned a subdomain of 
roughly the same number of elements as shown in Fig. 3. In the DG 
context, elements are only coupled via their surface fluxes. Thus, only 
the surface information across the MPI borders has to be exchanged be-

tween individual MPI ranks during the computation. Moreover, FLEXI 
sorts this face information such that the data exchanged between two 
MPI partners is contiguous in memory and that the sorting is known 
a priori on both faces. This allows to exchange solely the data itself 
without any additional sorting information. The overall communication 
effort is thus proportional to the number of faces at the MPI boundaries, 
which are referred to in the following simply as MPI faces. To minimize 
the amount of communication, i.e. the number of MPI faces in the do-

main, FLEXI distributes the domain along a pre-computed space-filling 
curve. This ensures that the resulting subdomains remain reasonably 
compact for any number of subdomains while minimizing partitioning 
effort. During the simulation, communication is generally asynchronous 
and non-blocking, which means that communicated data is computed 
and sent at the earliest possible opportunity. The communication bar-

rier that checks whether the data has been received is positioned at 
the latest possible instant before the data is required for further com-

putations. This allows to effectively hide the communication latency by 
performing local operations during the data exchange. For this, opera-

tions on MPI faces are prioritized over inner faces to use all operations 
performed on inner faces for latency hiding.

GALÆXI follows the same general approach for parallelizing across 
multiple GPUs. Here, each GPU on a node is associated with a distinct 
CPU core while respecting the memory topology to optimize perfor-

mance.3 Moreover, CUDA-aware4 implementations of MPI are used, 
which improve the performance of MPI communication. By providing 
Remote Direct Memory Access (RDMA) and host offloading, these allow 
direct access to the local memory of different GPUs on the same node 
and transmission of MPI messages directly from the GPU to the network 
adapter without the assistance of the CPU or the main memory. The 
following key differences emerge between the CPU and GPU implemen-

tations. First, the domain size on a single GPU is larger than for the CPU 
case. This is a result of the much higher computational power a GPU 

3 This means, for instance, to associate the CPU core and the GPU such that 
both reside within the same non-uniform memory access (NUMA) domain.

4 For further information about CUDA-aware MPI see: https://docs .open -mpi .
6

org /en /v5 .0 .x /tuning -apps /networking /cuda .html.
provides compared to a single CPU core. A GPU requires significantly 
more workload to run at capacity and to exploit the full degree of its 
parallelism. In practice, this means that the computational domain per 
rank increases if GPUs are used. Since the subdomains are compact, an 
increase in size means that the volume increases much faster than the 
MPI surface, i.e. that inner work becomes more dominant in compari-

son to the required communication and at the same time the amount of 
data to be communicated decreases. In consequence, the performance of 
the interconnect becomes less dominant than in the CPU case. Second, 
the GPU implementation has to consider the asynchronicity between the 
GPU device and the host. While an operation is launched by the host at 
a specific position in the code sequence, the GPU schedules and exe-

cutes the operation independently of the work performed by the host in 
the meantime. Hence, additional synchronization between the host and 
the device is necessary to ensure data consistency. This entails for in-

stance ensuring that a buffer that is about to be sent via MPI has already 
been filled with the required information by the GPU. This introduces 
additional overhead. However, due to the asynchronous operation, CPU 
and device operations can again be overlapped, which results in an ad-

ditional level of parallelism on an intra-GPU level and is addressed in 
Section 3.2.

3.2. Intra-GPU parallelization

As already discussed in the previous paragraphs, device kernels are 
launched within host code. However, the GPU schedules and executes 
the launched kernels asynchronously and can also execute multiple ker-

nels concurrently to maximize its utilization. It is important to consider 
these properties to maximize the achieved performance on the device. 
GALÆXI relies on so-called streams to manage the concurrency and 
scheduling of operations on the GPU. Within the GPU context, streams 
are similar to execution pipelines. Kernels within each stream are ex-

ecuted serially, i.e. the next kernel within a stream pipeline is only 
executed once all preceding kernels within this distinct pipeline have 
finished execution. However, kernels from different streams can run 
concurrently on the GPU to maximize utilization. This can improve the 
overall performance either when running small kernels that cannot fully 
utilize the GPU or by hiding the overhead associated with starting a ker-

nel on the device. Another benefit is that streams allow the mitigation 
of the tail effect, which describes the negative performance impact of 
the last partial wave of computations in a kernel. This effect stems from 
the last thread blocks of a kernel call which will generally not fill the 
whole GPU, leading to a significant portion of the GPU idling when the 
last wave of computations is performed. By using streams, the idling re-

sources can execute kernels from different streams that are known to be 
independent of the current computation, which improves GPU utiliza-
tion and thus the overall performance.

https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html
https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html
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Fig. 4. Flowchart of GALÆXI for a single evaluation of the convective DG oper-

ator using streams. Some routines comprise several individual compute kernels 
instead of single, monolithic device kernels. These are summarized here to keep 
the flowchart concise. Moreover, the lifting procedure to compute the gradients 
is omitted here for readability.

A key factor when using streams is to ensure correct results indepen-

dent of how the individual kernels are scheduled. Therefore, another 
level of synchronization between the streams is required to mitigate 
race conditions. In GALÆXI, the different operations of the convective 
DG operator, summarized in Table 1, are assigned to individual streams 
depending on their interdependence. This means that if one kernel re-

quires a previous kernel to be completed, both are assigned to the same 
stream to be executed sequentially. In contrast, operations that are in-

dependent of each other get assigned to different streams. In GALÆXI, 
three streams are employed to account for the available concurrency:

• Stream 1 (priority low): Operations within DG elements.

• Stream 2 (priority mid): Operations on inner faces.

• Stream 3 (priority top): Operations on MPI faces.

Here, each stream is assigned a priority which incentivizes the GPU 
to preempt and postpone the execution of low-priority kernels in fa-

vor of high-priority ones. In GALÆXI, Stream 3 containing the MPI 
faces is assigned the highest priority to ensure that data that has to 
be communicated is always computed at the earliest possible instant 
7

to ensure optimal latency hiding. The flowchart for the evaluation of 
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the DG operator using these streams is shown in Fig. 4. The local oper-

ations within the DG element and the operations at the element faces 
can be performed independently in their streams until the computation 
of SurfInt, where the surface fluxes 𝒇 ∗ as well as the contributions of 
the VolInt denoted 𝑼VolInt

𝑡 are required. Hence, an explicit synchro-

nization barrier is employed to wait until all previous operations in all 
streams have completed. Then, the surface contributions can be added 
to the volume integral to yield the final 𝑼 𝑡.

Special care must be taken when extending the operator towards 
multiple GPUs, which requires MPI communication. Here, it has to be 
ensured that all kernels within the GPU are assigned correctly to individ-

ual streams and that the MPI communication between GPUs is effectively 
hidden by the local work. For this, the work associated with MPI faces, 
i.e. Stream 3, is ensured to be computed with the highest priority, such 
that the communication can be initialized as soon as possible. The work 
queued in the other streams is then used to hide both the local overhead 
of tail effects on the GPU and the latency of the MPI communication. 
In practical application, the host idles at the MPI barrier until the com-

munication is finished, but the GPU is kept busy with the work from 
Stream 1 and Stream 2 to retain the overall efficiency. Effectively, the 
communication of the solution at the MPI faces 𝑼̃𝐿∕𝑅

MPI
is hidden by Con-

sToPrim on Stream 1. The communication of the resulting fluxes across 
the MPI faces 𝒇 ∗

MPI
is hidden by VolInt in Stream 1 and ConsToPrim

and FillFlux in Stream 2.

3.3. Kernel implementation

The goal for the implementation of the compute kernels is to maxi-

mize the utilization of the available parallel resources provided by the 
device which roughly translates to keeping as many threads as possible 
busy. However, oftentimes the number of concurrent threads is limited 
by the number of registers required by each thread and the amount of 
shared memory. Furthermore, the effective performance is limited by 
the available memory bandwidth, which might not be sufficient to keep 
all threads busy.

Since the specifics of these limitations and their importance depend 
heavily on the specific hardware, GALÆXI approaches the problem from 
a more general perspective. Here, it is assumed that addressing these 
GPU-specific limitations in general and improving the overall perfor-

mance for some generic GPU architecture also yields sensible improve-

ments across all specific GPU models. While this approach may not 
achieve the optimum performance for each specific type of hardware, 
it has demonstrated to yield a suitable baseline for more in-depth and 
hardware-specific optimization.

Device code is typically based on a kernel, which is the code each 
individual thread executes. The overall number of threads and their 
grouping are specified in the launch configuration. In some sense, the 
launch configuration entails an implicit tightly nested loop, while the 
loop body, i.e. the actual computation, is implemented in the kernel. The 
optimal launch configuration is oftentimes highly hardware-specific and 
can improve (or impair) the overall performance significantly. Along 
the same lines as discussed above, our code relies on sensible initial 
guesses for all of these kernels, which gave reasonable results. Further 
improvements are planned through the application of more sophisti-

cated tuning approaches, for instance the kernel tuner toolkit [48], which 
allows automatized optimization of the launch configuration for specific 
hardware.

The complete list of operations of the DG operator is detailed in 
Table 1 and the computing time of the kernels associated with these 
operations is summarized in Fig. 5. Naturally, operations that are local 
for each degree of freedom (DOF) are the easiest to implement for dif-

ferent hardware. Hence, the following paragraph first introduces how 
kernels are designed for DOF-wise operations in GALÆXI before mov-

ing to the much more intricate task of kernels that map data between 

the volume and faces of DG elements.
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Fig. 5. Portion of compute time in percent for individual routines on HAWK-AI 
with 𝑁 = 7, split-form DG and 8.5 × 105 DOF on a single GPU. Routines associ-

ated with the computation of the gradients via the lifting method are prefixed 
with “Lift_”. Various small routines associated with performing the actual time 
integration, i.e. updating 𝑼 , are summarized under Misc.

3.3.1. Pointwise operations

For pointwise operations, a large number of identical computations 
have to be performed with no interdependence between individual DOF. 
Such a computation becomes embarrassingly parallel and straightfor-

ward to distribute. The following paragraph details how such com-

putations are implemented in GALÆXI using the ConsToPrim oper-

ation as an example. This operation computes the primitive variables 
𝑼 𝑝𝑟𝑖𝑚 = (𝜌, 𝒖, 𝑝, 𝑇 )𝑇 based on the vector of conservative variables 𝑼
using the EOS defined in Eqs. (8) and (9). For this, an elemental Con-

sToPrim_Point routine is implemented that performs the computation 
for a single DOF. This elemental routine is the building block of the main 
computation and is agnostic to the underlying hardware. GALÆXI then 
uses different wrappers for this elemental function. These wrappers dis-

tribute the overall work depending on the specific type of computational 
hardware used. If CPUs are used, the design of the wrapper becomes 
straightforward as shown in Algorithm 1. A single CPU core just calls 
the ConsToPrim_Point routine for each DOF within each element of 
its domain using a tightly nested loop. The GPU wrapper shown in Al-

gorithm 2 is based on the CUDA programming model and consists of 
two individual components. First, the kernel that implements the actual 
compute operation of an individual GPU thread. The second component 
is a function that calls the kernel and provides the launch configuration

config. The launch configuration determines how many threads will be 
started to execute the kernel and how the individual threads are grouped 
into thread blocks. In this specific case, each thread of the GPU performs 
the computation for a single DOF in the domain. For this, each thread 
determines in line 8 of Algorithm 2 its own globally unique thread ID 
𝑖. This thread ID incorporates the ID of the current block (blockID), 
the size of each block (blockDim), and its thread number within the 
block (threadID), which are all available for each thread during run-

time. The thread then performs the computation for this 𝑖-th DOF. Note 
that the high-dimensional structure of the array becomes irrelevant in 
this case and can be “flattened” to a one-dimensional array containing 
𝑛𝐷𝑂𝐹 entries.

More advanced techniques can be used to optimize those wrappers 
for different hardware. This includes for instance vectorization, such 
that either the vector units of a CPU or real vector accelerators can per-

form the operations performed in ConsToPrim on several entries of 𝑼
simultaneously. Similarly, optimization such as loop unrolling or shared 
memory parallelization are straightforward to implement. For GPU us-
8

age, the wrapper can be adapted to distribute multiple DOF to each 
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Algorithm 1 Wrapper for ConsToPrim_Point on CPU.

1: function ConsToPrim_CPU(𝑁, 𝑛𝐸𝑙𝑒𝑚𝑠, 𝑼 )

2: for 𝑛 ← 1 to 𝑛𝐸𝑙𝑒𝑚𝑠 do ⊳ loop over elements

3: for 𝑖, 𝑗, 𝑘 ← 0 to 𝑁 do ⊳ loop within element

4: 𝑼
𝑝𝑟𝑖𝑚

𝑖𝑗𝑘,𝑛
← ConsToPrim_Point(𝑼 𝑖𝑗𝑘,𝑛)

5: end for

6: end for

7: return 𝑼 𝑝𝑟𝑖𝑚

8: end function

Algorithm 2 Wrapper for ConsToPrim_Point on GPU.

1: function ConsToPrim_GPU(𝑁, 𝑛𝐸𝑙𝑒𝑚𝑠, 𝑼 )

2: 𝑛𝐷𝑂𝐹 ← (𝑁 + 1)3𝑛𝐸𝑙𝑒𝑚𝑠 ⊳ number of DOF in array

3: 𝑼 𝑝𝑟𝑖𝑚 ← ConsToPrim_Kernel«config»(𝑛𝐷𝑂𝐹 , 𝑼 )
4: return 𝑼 𝑝𝑟𝑖𝑚

5: end function

6:

7: kernel ConsToPrim_Kernel (𝑛𝐷𝑂𝐹 , 𝑼 )

8: 𝑖 ← (blockID-1)*blockDim+threadID ⊳ own index

9: if 𝑖 ≤ 𝑛𝐷𝑂𝐹 then

10: 𝑼𝑃 𝑟𝑖𝑚
𝑖

← ConsToPrim_Point(𝑼 𝑖)
11: return 𝑼

𝑝𝑟𝑖𝑚
𝑖

12: end if

13: end kernel

thread and optimize the launch configuration, depending on the hard-

ware specifics. The same building block approach can also be applied 
to support other backends such as HIP, ROCm, OpenMP or OpenACC 
while only maintaining a single version of the equation-specific code.

3.3.2. Volume ↔ surface operations

The optimization potential of the pointwise operations discussed 
above is mostly independent of the core algorithms themselves. In con-

trast, the most challenging routines for GPU porting and parallelization 
in the DG context are routines that map data between the faces and the 
volume. Due to the highly local nature of the DG method, the transfer 
of data from within the element to its faces and vice versa is required in 
only a few operations. Thus, the original FLEXI code opted to store the 
data on the element faces and within the elements in different arrays 
from which it is retrieved based on precomputed mappings. However, 
revisiting Table 1 reveals that two specific operations in the DG operator 
access both volume and surface data: ProlongToFace and SurfInt.5

The former evaluates the polynomial solution from the interior points at 
the element faces and stores it in a face-based array (𝑼 → 𝑼̃

𝐿∕𝑅
), while 

the latter computes the integral of the fluxes on the element faces and 
adds their contribution to the volume (𝒇 ∗ → 𝑼 𝑡). In both cases, an in-

terpolation point in the volume is linked to several points on the surface 
and vice versa, as shown in Fig. 1. Special care must be taken to exploit 
the full potential for parallelization of the task on a GPU while avoiding 
race conditions and costly synchronizations among individual threads. 
In the following, this is illustrated for the SurfInt routine.

In the original CPU version, Algorithm 3, the SurfInt routine loops 
over all faces on the current rank. For each face, it obtains the orienta-

tion of the face with respect to the volume. The orientation of the face 
of a hexahedral DG element depends on which of its six local faces it 
refers to. The contribution of this face is then added to all DOF within 
the element.

This operation is hard to parallelize for GPU hardware since all 6 
local faces add their contribution to each individual DOF within the el-

ement. Writing to the same entries in an array multiple times can yield 

5 As shown in Table 1, the volume integral is also not a point-local operation 
due to the application of the differentiation matrix along the lines indicated in 
Fig. 1. However, the operations are retained to the interpolation points within 
the volume of the DG element, i.e. no exchange of information between the 

volume and the faces is required.
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Algorithm 3 CPU implementation of the SurfInt operation.

1: function SurfInt(𝒇 ∗, 𝑼 𝑡, 𝓵̂
+

, 𝓵̂−
)

2: for 𝑠 ← 1 to 𝑛𝐹 𝑎𝑐𝑒𝑠 do

3: if isPrimary then

4: 𝒇 ∗,tmp, locFace ← FaceMapping(𝑠, isPrimary, 𝒇 ∗
𝑠
)

5: 𝑼 𝑡 ← DoSurfInt(locFace, 𝑼 𝑡, 𝒇 ∗,tmp, 𝓵̂+
, 𝓵̂−)

6: end if

7: if isReplica then

8: 𝒇 ∗,tmp, locFace ← FaceMapping(𝑠, isPrimary, −𝒇 ∗
𝑠
)

9: 𝑼 𝑡 ← DoSurfInt(locFace, 𝑼 𝑡, 𝒇 ∗,tmp, 𝓵̂+
, 𝓵̂−)

10: end if

11: end for

12: return 𝑼 𝑡

13: end function

14:

15: function DoSurfInt(locFace, 𝑼 𝑡, 𝒇 ∗
𝑝𝑞

, 𝓵̂+
, 𝓵̂−

)

16: switch (locFace)

17: case 𝜉−

18: for 𝑖, 𝑗, 𝑘 ← 0 to 𝑁 do

19: 𝑼 𝑡,𝑖𝑗𝑘 ←𝑼 𝑡,𝑖𝑗𝑘 + 𝒇 ∗
𝑗𝑘
𝓁−

𝑖

20: end for

21: case ...

22: case 𝜁+

23: for 𝑖, 𝑗, 𝑘 ← 0 to 𝑁 do

24: 𝑼 𝑡,𝑖𝑗𝑘 ←𝑼 𝑡,𝑖𝑗𝑘 + 𝒇 ∗
𝑖𝑗
𝓁+

𝑘

25: end for

26: end function

Algorithm 4 GPU kernel for the SurfInt operation.

1: kernel ConsToPrim_Kernel (𝑁, 𝑛𝐸𝑙𝑒𝑚𝑠, 𝒇 ∗, 𝑼 𝑡)

2: 𝑖 ← (blockID-1)*blockDim+threadID

3: 𝑛𝐷𝑂𝐹 ← (𝑁 + 1)3𝑛𝐸𝑙𝑒𝑚𝑠 ⊳ number of volume DOF

4: if 𝑖 ≤ 𝑛𝐷𝑂𝐹 then

5: for locFace ∈ {𝜉−, 𝜂−, 𝜁−, 𝜉+, 𝜂+, 𝜁+} do

6: 𝑝, 𝑞, 𝑠, 𝓁±
𝑘

, isPrimary ← FaceMapping(𝑖, locFace)
7: if isPrimary then

8: 𝑼 𝑡,𝑖 =𝑼 𝑡,𝑖 + 𝒇 ∗
𝑝𝑞,𝑠

𝓁±
𝑘

9: else

10: 𝑼 𝑡,𝑖 =𝑼 𝑡,𝑖 − 𝒇 ∗
𝑝𝑞,𝑠

𝓁±
𝑘

11: end if

12: end for

13: return 𝑼 𝑡,𝑖

14: end if

15: end kernel

race conditions if the individual threads are not properly synchronized–

but synchronizing threads is costly. In GALÆXI, the sequence of opera-

tions is thus altered for the GPU implementation in comparison to the 
original CPU implementation. The developed algorithm, Algorithm 4, 
runs as follows. First, each GPU thread is assigned a single DOF within 
an element. Due to the tensor product structure of the DGSEM, this re-

sults in only a single DOF per face influencing the solution as indicated 
in Fig. 1. The thread then loops over all six faces (locFace) of the ele-

ment. For each face, it identifies the face index 𝑠 within the flux array 
and the corresponding DOF on the face specified by the indices 𝑝, 𝑞. The 
face whose normal vector is used to compute the Riemann flux is deter-

mined by the flag isPrimary, while for the adjacent element (isReplica

face) the sign of the flux contribution has to be flipped to account for the 
fact that its outward facing normal vector points in the opposite direc-

tion. Additionally, the correct integration weight 𝜔̂ is identified to add 
the flux contribution of this locFace to the respective DOF. While this 
requires multiple threads to access the same face data multiple times, 
it avoids race conditions between threads without the need of explicit 
synchronization, since only a single thread writes to a specific entry in 
the 𝑼 𝑡 array. Lastly, transforming the fluxes from the face-local to the 
element-local coordinate system requires some form of mapping. Since 
GALÆXI is an unstructured solver, the algorithm also needs to account 
9

for the case where coordinate systems of neighboring elements are ro-
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tated with respect to each other. The combination results in mappings 
which are non-trivial to obtain. However, the required mappings are 
hardware-agnostic and not relevant for the efficiency of the GPU ker-

nel. In consequence, these specifics are condensed into a single call to 
a subroutine FaceMapping to keep the algorithm concise. More details 
on the face connectivity can be found in Krais et al. [21].

At this point, it is important to revisit the required compute time 
of the different DG operations as shown in Fig. 5. It is evident that the 
majority of the computational work can be attributed to the operations

VolInt, Lift_VolInt, and ConsToPrim, which are operations local to 
each DG element that can be scheduled independently of any communi-

cation. This has three crucial implications. First, only a small number of 
routines require the majority of the compute time, which yields distinct 
targets for more sophisticated optimization. Second, these routines do 
not require any communication, which again highlights the beneficial 
ratio of local work to required communication of DG schemes. Third, 
the overhead introduced by the unstructured mesh is negligible, since 
the additional work is mainly limited to the routines mapping from the 
faces to the volumes, i.e. SurfInt and ProlongToFace, which take 
only around 15% of the overall compute time.

3.4. Summary of the parallelization strategy

This section provides details on the parallelization concept of GA-

LÆXI on three different levels. First, the parallelization of the workload 
between GPUs was introduced. Here, GALÆXI subdivides the domain 
into subdomains with roughly the same number of elements, which 
are then assigned to the individual GPUs and communication across 
the boundaries of neighboring subdomains is performed using CUDA-

aware MPI. Second, the individual compute kernels within the GPU are 
scheduled using streams to improve the overall utilization of the GPU. 
Operations associated with the MPI communication are assigned to the 
stream with the highest priority to allow the GPU to antedate the ex-

ecution of these kernels to initiate the communication at the earliest 
possible point in time. Third, the design concepts of the kernels were 
introduced using the ConsToPrim operations as an example for point-

wise operations and the SurfInt to detail the more intricate case of 
kernels that have to map from the elements’ volume to their faces and 
vice versa. The resulting performance of the kernels demonstrates that 
the overhead of the unstructured mesh is negligible. A detailed discus-

sion of the resulting parallel performance of GALÆXI across multiple 
GPUs is provided in the following paragraphs.

4. Performance evaluation

In the following section, the performance and the scaling abilities 
of GALÆXI are demonstrated. First, Section 4.1 introduces the details 
of the applied systems, i.e. HAWK-AI and JUWELS Booster. Section 4.2

then derives the performance metrics that are used to evaluate the per-

formance. With these in place, Section 4.3 provides details on the code’s 
memory consumption while the results of the scaling tests are discussed 
in Section 4.4.

4.1. Hardware architecture

The performance of GALÆXI and FLEXI is investigated for two dif-

ferent systems. First, the JUWELS Booster installed at the Jülich Super-

computing Centre (JSC) and second, the HAWK and HAWK-AI systems 
at the High-Performance Computing Center Stuttgart (HLRS).

The JUWELS Booster module entails a total of 936 two-socket nodes. 
Each node provides two AMD EPYC 7402 processors with 24 cores per 
socket and a total of 512 GiB of DDR4-3200 main memory per node. 
Each node comprises 4 NVIDIA A100 GPUs with 40 GiB memory in-

terconnected using NVlink, where each GPU is connected to its own 
network adapter and the individual nodes are integrated using a Mel-

lanox HDR200 InfiniBand interconnect with 200 Gbit/s per adapter in 

a DragonFly+ topology.
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The HAWK supercomputer at HLRS is based on an HPE Apollo 9000 
with 5632 dual-socket nodes. Each node is equipped with two AMD 
EPYC 7742 CPUs, which yield 128 CPU cores per node. Each node com-

prises 256 GiB of main memory and the nodes are connected using a 
Mellanox HDR200 InfiniBand interconnect in a 9D-hypercube topol-

ogy. The HAWK-AI partition of HAWK is based on an HPE Apollo 6500 
Gen10 Plus with 24 nodes, where each node is equipped with two 64-

core AMD EPYC 7702 processors, 8 NVIDIA A100 GPUs interconnected 
using NVlink, and 1 TiB of main memory. 20 nodes employ A100 GPUs 
with 40 GiB memory and 4 nodes entail A100 GPUs in the 80 GiB ver-

sion. The nodes of HAWK-AI are fully integrated into the main HAWK 
partition using an InifiniBand interconnect in a Fat-Tree topology, such 
that nodes from both systems can be used within a single compute job. 
The HAWK-AI partition was designed to integrate AI and big data ca-

pabilities into traditional HPC jobs but is also capable of running and 
scaling GPU-accelerated HPC applications on its own.

4.2. Performance metrics

In the following, we focus on two distinct metrics to quantify and 
compare the performance of GALÆXI and FLEXI on different hard-

ware, which rely on the time-to-solution and the energy-to-solution 
paradigms, respectively. For this, we use the performance index (PID), 
which is a commonly used metric to quantify the performance of DG 
codes [21,49] and is defined as

PID = Walltime × #Ranks

#RK-stages × #DOF
. (22)

The PID describes the walltime required by a single rank to advance 
a single DOF for one stage of the explicit Runge–Kutta time-stepping. 
Hence, the PID is independent of the number of timesteps performed, 
the number of DOF used in the simulation and the number of ranks 
employed, where a rank refers either to a CPU core or a whole GPU as 
discussed in Section 3. While this provides a good measure of efficiency 
for code performance comparison on either CPU or GPU systems, the 
usefulness of this definition is limited when comparing GPU and CPU 
codes with each other. Here, a whole GPU would be compared to a 
single CPU core with a vastly different compute performance and power 
consumption. To account for the differences in hardware, we propose in 
this work the novel energy-normalized PID (EPID) as a more suitable 
measure of performance. The EPID is defined as

EPID = Walltime × Power

#RK-stages × #DOF
= Power

#Ranks
⏟⏟⏟

𝑃rank

× PID, (23)

and describes the energy required to compute the time update for a 
single DOF on the specific computing hardware. The EPID can thus be 
interpreted as the PID normalized by the specific power required per 
rank, which is denoted as 𝑃rank.

4.3. Memory requirements

The memory consumption of a real-world application on the device 
is given in Table 2 in KiB per DOF for different polynomial degrees 𝑁 . In 
general, the overall memory consumption is low, which is a well-known 
property of the explicit numerical scheme. The results clearly show that 
increasing 𝑁 improves the memory efficiency, i.e. reduces the required 
amount of memory per DOF. This is because GALÆXI stores both the so-

lution for the DOF within the DG element ((𝑁 +1)3) and on its surfaces 
(6(𝑁 +1)2). With increasing 𝑁 , the ratio between surface to volume in-

formation thus decreases, yielding a lower overall memory footprint. As 
an illustration of memory efficiency, it is possible to compute a problem 
with 𝑁 = 7 and 48 million DOF per solution variable on a single device 
10

with 40 GiB of memory.
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Fig. 6. Scaling results for GALÆXI with the split-form DG scheme and 𝑁 = 7
plotted as PID over the specific load, i.e. DOF per GPU, for up to 1024 GPUs.

4.4. Scaling tests

To evaluate the scalability of GALÆXI on HPC systems, its paral-

lel performance is evaluated on the JUWELS booster module using up 
to 1024 GPUs for a wide range of problem sizes. For this, the spatial 
resolution of a Cartesian mesh with 4 × 4 × 2 = 32 elements is suc-

cessively doubled in each spatial direction until the finest resolution 
of 2563 = 16.8 × 106 elements is reached. For a polynomial degree of 
𝑁 = 7, which is a typical choice for production runs, this results in 
16 384 to 8.6 × 109 DOF, respectively. The case for the scaling test is 
based on the setup of the incompressible Taylor–Green-Vortex consid-

ered in Section 5.2. Its simulation domain is a triple periodic box with 
corresponding initial conditions. However, in contrast to an implicit 
time integration scheme, the computational cost and thus the scaling 
behavior of the explicit scheme is independent of the chosen initial con-

dition. Each computation is advanced for 100 timesteps and the scaling 
properties are evaluated based on the PID. Here, only the time for the 
timestepping is considered and initialization and analyze routines are 
neglected. The results of the scaling tests are presented from three differ-

ent perspectives—first, the influence of the computational load per GPU 
on the overall performance, second, investigating the parallel efficiency 
in a weak scaling setting and third, from a strong scaling perspective.

In a first step, the PID is plotted against the specific load in terms of 
DOF per GPU in Fig. 6. Since the PID is a measure of computational time, 
a lower PID indicates better performance. Most strikingly, all curves 
converge above the limit of 106 DOF per GPU, which means that the 
overhead of the parallelization and communication becomes negligi-

ble in comparison to using only a single GPU. Hence, GALÆXI scales 
almost perfectly beyond the threshold of 106 DOF per GPU. The be-

havior changes for loads below this threshold. Here the PID increases 
towards lower loads for all cases, which means that the computational 
efficiency decreases. Moreover, the more GPUs are used for the simula-

tion, the more pronounced this loss in performance becomes. This can 
be attributed to two factors. First, the communication latency between 
the GPUs cannot be hidden completely at low loads, since the amount of 
local work is insufficient to hide the communication. Furthermore, the 
loss in performance becomes more pronounced the more potential com-

munication partners, i.e. GPUs, are used for the simulation. The severity 
of this performance penalty depends strongly on the network topology 
of the HPC system and the job placement on the system, which is de-

termined by the scheduler. In the case of the JUWELS booster module, 
which uses a DragonFly-type network topology, the communication cost 
increases significantly when the nodes are spread across a larger num-

ber of switch groups, which contain 192 GPUs each. However, lacking 
latency hiding cannot explain the performance loss when using a single 

GPU, since here no communication is necessary. Instead, this drop in 
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Table 2

Measured memory consumption per DOF on the GPU for different polynomial degrees 𝑁 and the Navier–Stokes 
equation system.

N 1 2 3 4 5 6 7 8 9 10 11 12

KiB 1.457 1.188 1.049 0.996 0.942 0.895 0.869 0.841 0.827 0.808 0.801 0.787
Fig. 7. Weak scaling of GALÆXI with the split-form DG scheme and 𝑁 = 7
plotted as the parallel efficiency over the number of GPUs for specific loads, i.e. 
DOF per GPU. The parallel efficiency is computed based on the PID on a single 
node, i.e. on 4 GPUs.

performance can be attributed to the overhead associated with launch-

ing kernels on the GPU. If the actual computational load of the kernel 
becomes too small, the kernels cannot be launched quickly enough to 
use the GPU to capacity. Moreover, tail effects become noticeable, as dis-

cussed in Section 3. To summarize the results, the GPU implementation 
can be seen to be kernel-bound for high loads, where the performance 
becomes independent of the total number of GPUs used. For very low 
loads, the performance gets low-load-bound and becomes increasingly 
communication-bound with a dominant performance penalty the more 
compute nodes are used. This is in stark contrast to the CPU implemen-

tation of FLEXI as reported by Blind et al. [50]. Here, the impact of 
the communication overhead is similarly noticeable for very low loads. 
However, a performance penalty also appears for very high loads, since 
here the fast CPU cache cannot hold all necessary data and the band-

width to the main memory becomes the bottleneck. This results in a 
narrow band in the rage of 3000 to 10 000 DOF per rank, where opti-

mal performance is achieved [21,50]. In the case of GALÆXI, increasing 
the load only improves the overall performance with the available GPU 
memory as the single limiting factor.

In Fig. 7 the investigated weak scaling properties of GALÆXI are de-

picted. In the weak scaling paradigm, the problem size and the amount 
of compute resources are increased proportionally, such that the over-

all load per GPU is kept constant for each case. The parallel efficiency is 
presented with respect to the performance of a complete compute node 
equipped with 4 GPUs (parallel efficiency equal to 1). This is done in 
order to take communication into account in a meaningful way, as the 
baseline case includes MPI communication. It also enables a suitable as-

sessment of the communication overhead in the case that only one GPU 
is used without communication. The results show again the threshold 
of 106 DOF per GPU as discussed before. For lower loads, the communi-

cation latency degrades the overall performance, while loads above 106
DOF per GPU show almost perfect weak scaling up to the maximum of 
1024 GPUs.

Lastly, the results for strong scaling of GALÆXI are shown in Fig. 8. 
The strong scaling analysis investigates how performance changes when 
the number of GPUs is increased while the problem size remains con-

stant. This causes problems for large cases, which might not fit into 
the memory of only a few GPUs, but rather require a larger number of 
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GPUs to be actually computed. This limitation is the reason why the scal-
Fig. 8. Strong scaling of GALÆXI with the split-form DG scheme and 𝑁 = 7
plotted as the speedup over the number of GPUs for three problem sizes. For 
two cases, the results without the use of parallel streams are shown dashed. The 
speedup is computed based on the smallest number of GPUs that was able to 
run the given case. The ideal speedup is shown in black.

ing results in Fig. 8 not exclusively start at a single GPU, but rather at 
the minimum number of GPUs required to compute the given problem 
size due to memory constraints. The performance using this minimum 
number of GPUs is then used to compute the relative speedup when in-

creasing the number of GPUs. The strong scaling capabilities of GALÆXI 
are excellent up to the maximum 1024 GPUs, as long as the computa-

tional load exceeds the threshold of 106 DOF per rank, which is indicated 
explicitly for both cases. Below this threshold, i.e. towards larger num-

ber of GPUs, the load per device is insufficient to exploit the computing 
power of the GPU and to hide the necessary communication, which re-

sults in the loss of performance. This also matches the results by Fischer 
et al. [15], who report that NekRS reaches its limit for strong scaling 
at a similar load of about 2 to 4 million DOF per rank. For computa-

tional loads above this threshold, GALÆXI yields almost perfect strong 
scaling results up to the maximum of 1024 GPUs. Next, the influence of 
our scheduling strategy based on parallel streams and introduced in Sec-

tion 3.2 is investigated. For this, Fig. 8 also shows the scaling results for 
the same problem sizes, with (solid lines) and without (dashed lines) 
the use of parallel streams for kernel scheduling. For both setups, the 
omittance of stream scheduling results in a significant loss in parallel 
performance for low loads. This can be attributed to two aspects. First, 
parallel streams allow for hiding the overhead of kernel launches and 
tail effects for low loads. However, more importantly, our implemen-

tation permits the GPU to preempt the computation of quantities that 
have to be communicated via MPI. This facilitates more efficient hid-

ing of communication latency, resulting in better parallel performance 
in cases involving many communication partners and low amounts of 
local work.

5. Verification & validation

5.1. Verification - convergence tests

The correct implementation of the high-order accurate numerical 
schemes in GALÆXI is verified by testing the order of convergence of 
the spatial operator with the method of manufactured solutions [51]. 

This method allows the derivation of source terms for nonlinear partial 
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Fig. 9. Convergence of the standard DG scheme on GL nodes (left) and the split-flux DG scheme on LGL nodes (right) using 𝑁 ∈ [2, 9] for the manufactured solution.
differential equations that lead to exact solutions that can be expressed 
in analytical form and allow computing the error of the numerical dis-

cretization scheme. Following Hindenlang et al. [52], the exact solution 
is assumed to follow a sinusoidal function of the form

𝜌(𝒙, 𝑡) = 2 + 𝐴 sin (2𝜋(𝑥 + 𝑦 + 𝑧 − 𝑎𝑡)) ,

𝒖(𝒙, 𝑡) = 2 + 𝐴 sin (2𝜋(𝑥 + 𝑦 + 𝑧 − 𝑎𝑡)) , (24)

𝐸(𝒙, 𝑡) =
(
2 + 𝐴 sin (2𝜋(𝑥 + 𝑦 + 𝑧 − 𝑎𝑡))

)2
,

where the amplitude and advection speed are chosen as 𝐴 = 0.1 and 
𝑎 = 1, respectively. This solution describes an oblique, periodic wave 
that is advected linearly with speed 𝑎. The source terms that are re-

quired for Eq. (24) to be an exact function of the NSE are detailed in 
Gassner et al. [53]. The problem is then initialized within a domain of 
Ω ∈ [−1, 1]3 with periodic boundary conditions and is discretized with 
varying 𝑁 ∈ [2, 9]. The meshes are varied in the range of containing a 
single element up to 643 elements at maximum. The computation is ad-

vanced in time up to 𝑡 = 1 and the timestep is chosen sufficiently small 
to not influence the overall discretization error. The convergence test 
is carried out with both the standard collocation formulation on GL in-

terpolation points and the split-flux formulation on LGL interpolation 
points. The results in Fig. 9 demonstrate that the expected design order 
is reached for all investigated cases, which verifies the correct imple-

mentation of the schemes.

5.2. Validation - Taylor–Green-Vortex

A popular validation case for turbulent flows is the Taylor–Green-

Vortex (TGV) introduced by Taylor and Green [54]. One reason for its 
widespread use is its analytically prescribed initial conditions, which 
are given for a domain of size Ω ∈ [0, 2𝜋𝐿]3 by

𝒖(𝒙,0) =
⎛⎜⎜⎜⎝

𝑈0 sin
(

𝑥

𝐿

)
cos

(
𝑦

𝐿

)
cos

(
𝑧

𝐿

)
−𝑈0 cos

(
𝑥

𝐿

)
sin

(
𝑦

𝐿

)
cos

(
𝑧

𝐿

)
0

⎞⎟⎟⎟⎠ , (25)

𝑝(𝒙,0) = 𝑝0 +
𝜌0𝑈2

0
16

(
cos

(
2𝑥

𝐿

)
+ cos

(
2𝑦

𝐿

))(
2 + cos

(
2𝑧

𝐿

))
,

with 𝐿 = 1 denoting the characteristic length, 𝑈0 = 1 the magnitude of 
the initial velocity fluctuations and 𝜌0 = 1 the reference density. The 
background pressure 𝑝0 is chosen to fit a prescribed background Mach 
number Ma0 = 𝑈0

√
𝜌0∕(𝛾𝑝0) and the viscosity 𝜇𝑟𝑒𝑓 is used to obtain 

the desired Reynolds number which is defined as Re = 𝜌0𝑈0𝐿∕𝜇𝑟𝑒𝑓 . 
However, Eq. (25) does not yield sufficient initial conditions for a com-

pressible flow field, since it lacks information about the density and 
temperature fields. Two different approaches are commonly used to ex-

tend it to a full description of a compressible flow field as required for 
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the computation with a compressible solver. For this, either field is held 
constant, while the other quantity is computed to yield a thermodynam-

ically admissible state. Assuming a perfect gas that follows Eq. (9) this 
yields the two variants

Version I: 𝜌(𝒙,0) = 𝜌0, 𝑇 (𝒙,0) = 𝑝

𝑅𝜌0
, (26)

Version II: 𝜌(𝒙,0) = 𝑝

𝑅𝑇0
, 𝑇 (𝒙,0) = 𝑇0. (27)

Two common metrics to assess the accuracy of numerical schemes 
for the TGV case are the instantaneous kinetic energy in the domain 
𝐸𝑘 and the viscous dissipation rate 𝜀𝑇 . The integral kinetic energy is 
defined as

𝐸𝑘 = 1
2𝜌0𝑈2

0 |Ω| ∫Ω 𝜌𝒖 ⋅ 𝒖dΩ, (28)

where |Ω| denotes the overall size of the integration domain. The vis-

cous dissipation rate of the kinetic energy can be split into a solenoidal 
and a dilatational contribution (Zeman [55], Sarkar et al. [56]), which 
are defined as

𝜀𝑆 = 𝐿2

Re𝑈2
0 |Ω| ∫Ω

𝜇(𝑇 )
𝜇0

𝝎 ⋅𝝎dΩ, (29)

𝜀𝐷 = 4𝐿2

3Re𝑈2
0 |Ω| ∫Ω

𝜇(𝑇 )
𝜇0

(∇ ⋅ 𝒖)2 dΩ, (30)

respectively. The solenoidal component 𝜀𝑆 can be related to the vortical 
motion and the dilatational component 𝜀𝐷 to compressibility effects.

Two versions of the TGV case are investigated, which both exhibit a 
Reynolds number of Re = 1600 with the initial conditions prescribed in 
Eq. (25). First, the weakly compressible case with Ma0 = 0.1 is investi-

gated to verify that GALÆXI accurately captures the physics of turbulent 
flow. In a second step, the Mach number is increased to Ma0 = 1.25, 
which causes complex shock patterns to emerge during the simulation. 
Consequently, this supersonic TGV setup is a suitable test case to as-

sess the stability and accuracy of compressible flow solvers for shock-

turbulence interaction.

5.2.1. Incompressible TGV

First, we consider the TGV at Re = 1600 in the incompressible limit 
with Ma0 = 0.1 and Version II, i.e. an initially constant temperature 
field. Four different uniform resolutions were investigated to demon-

strate the mesh convergence of the code. For this, either 83, 163, 323, or 
643 elements were used with a polynomial degree of 𝑁 = 7, correspond-

ing to 643, 1283, 2563, or 5123 DOF. Two simulations were carried out 
for each mesh, first with the GPU-accelerated GALÆXI and second with 
its CPU-based predecessor FLEXI for verification purposes. The results 
are also validated against the high-fidelity reference solution published 

by DeBonis [57]. The results shown in Fig. 10 (left) demonstrate that 
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Fig. 10. Temporal evolution of the solenoidal dissipation rate 𝜀𝑆 for the incompressible TGV at Ma0 = 0.1 (left) and the compressible TGV at Ma0 = 1.25 (right) using 
between 83 and 643 elements with a polynomial degree 𝑁 = 7 which results in 643 to 5123 DOF. The results by DeBonis [57] (left) and Chapelier et al. [58] (right) 
serve as the reference solution for the incompressible and compressible case, respectively. The results of the CPU implementation are given for reference.
Fig. 11. Instantaneous flow field of the incompressible TGV case with Ma0 = 0.1
and Re = 1600 at time 𝑡 = 10 using 5123 DOF visualized by iso-surfaces of the 
Q-criterion colored by Ma.

GALÆXI and FLEXI yield the same results up to machine precision. 
Moreover, as the resolution increases, the temporal evolution of the dis-

sipation rate converges to the reference solution, to the point where the 
solution on the finest mesh with 512 DOF in each direction matches the 
reference almost perfectly. The instantaneous flow field of the TGV case 
at 𝑡 = 10 is illustrated in Fig. 11, highlighting its vortex structures using 
iso-contours of the Q-criterion colored by the Mach number.

5.2.2. Compressible TGV

More recently, the TGV case was extended to the compressible 
regime by increasing the Mach number of the initial flow field [59,58]. A 
common choice is Ma0 = 1.25, for which complex shock patterns emerge 
that interact with the turbulent flow. Consequently, the compressible, 
supersonic TGV case allows for assessing the stability and accuracy of 
compressible flow solvers for shock-turbulence interactions. The simu-

lation is again initialized using the setup in Eq. (27), i.e. Version II, and 
Sutherland’s law is applied to address the dependency of the viscosity on 
the temperature in the compressible case. The shock capturing scheme 
introduced in Section 2.3 is applied for the stabilization of the scheme 
near shocks. Again, four mesh resolutions were investigated with 643 , 
1283, 2563, and 5123 DOF and a polynomial degree of 𝑁 = 7. The per-

mitted maximum of the blending parameter 𝛼 is set identically across 
all investigated resolutions. The results reported by Chapelier et al. [58]

serve as the reference solution. The results in Fig. 10 (right) again show 
13

that GALÆXI and FLEXI yield identical results for the temporal evolu-
tion of the solenoidal dissipation rate. Moreover, at higher resolutions, 
the results converge to the reference solution, where the results are al-

most identical for the largest case of 512 DOF per spatial direction.

6. Application

Based on these verification and validation results, both GALÆXI and 
FLEXI are applied to the large-scale application case of a wall-resolved 
LES of the NASA Rotor 37 [22]. This allows for verification that GALÆXI 
can handle complex simulations of compressible flow and quantify the 
gains in efficiency and energy-to-solution by using GPUs. For this, Sec-

tion 6.1 first provides some background on the case, while Section 6.2

gives details on the computational setup. Finally, the results are dis-

cussed in Section 6.3.

6.1. Description

In the following section, the applicability of GALÆXI towards large-

scale test cases is demonstrated for the turbulent flow within a NASA 
Rotor 37 rectilinear transonic compressor cascade. This rotor was orig-

inally employed in one of four transonic axial-flow compressor stages 
designed and tested at the NASA Lewis Research Center in the late 
1970s [22]. With its geometry parameters and measurement data pub-

licly available [60,61], the rotor has since become a benchmark test case 
in the turbomachinery research community including CFD studies [62], 
investigation of optimization techniques [63], tip leakage flow analy-

sis [64], and uncertainty quantification approaches [65]. At its design 
point, the rotor operates with a blade tip Mach number of 1.4939, gen-

erating an overall pressure ratio of 2.106. The setup investigated here 
corresponds to a ground-idle condition, providing a tip Mach number of 
0.824 with a total pressure ratio of 1.305. The cascade geometry is gen-

erated by unwinding the blade profile at mid-span and extruding it for 
5% of the chord length. The resulting Reynolds number based on the 
inflow velocity and the rotor chord is 972 550. The low operating point 
and the position at mid-span results in an inlet relative Mach number 
of 0.758 and an incidence relative to the mean camberline of 10.1◦ . 
A validation of the FLEXI solution against experimental integral data 
at mid-span is given in Kopper [66]. The results obtained from GALÆXI 
were confirmed to match the solution of the CPU-based framework. Both 
solvers predict a transonic expansion region forming on the suction side 
near the leading edge as a result of the high subsonic inflow velocity 
and near-stall condition. The region is terminated with a near-normal 
shock and subsequent shock-boundary-layer interaction with flow sep-

aration occurring throughout the suction side. On the pressure side, a 
small laminar separation region forms which is subsequently terminated 

by turbulent re-attachment.
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Table 3

Setup and performance results for the simulation runs on both CPU and GPU for a simulation time of 8𝑡∗.

Ranks DOF/Rank 𝑃rank [W] PID [s] EPID [J] Walltime/𝑡∗ [s] Energy/𝑡∗ [kWh]

GPU 128 2.03 × 106 448 4.58 × 10−9 2.05 × 10−6 9209 147
CPU 32768 7.93 × 103 4.94 1.02 × 10−6 5.06 × 10−6 7538 339

Savings 59.5 % 56.8 %
Fig. 12. Computational mesh for the simulation of the NASA Rotor 37 case. The 
inflow and outflow regions are pruned and a zoom highlights the mesh around 
the leading edge.

6.2. Computational setup

The computational setup is identical for both GALÆXI and FLEXI, 
except for the hardware on which the simulations are run. The mesh for 
the LES comprises one compressor pitch with the compressor blade ori-

entated with the stagger angle of 51.2◦and is depicted in Fig. 12. The 
domain is discretized using 1.2 ×106 elements with 𝑁 = 5, which results 
in a total of 2.6 ×108 DOF for the simulation. The inflow is modeled using 
far-field conditions and a subsonic outflow condition [67] is employed. 
Additionally, sponge zones [68] are positioned at the inflow and out-

flow boundaries to prevent the formation of artificial reflections. The 
rotor itself is modeled as an adiabatic wall and the spanwise and pitch-

wise boundaries are defined as periodic. The simulation is performed 
using the split-form DG method as introduced in Section 2.2 to miti-

gate aliasing errors with the flux formulation given by Pirozzoli [32]. 
The solution is advanced in time using a 14-stage 4th-order Runge–

Kutta method [26]. During the simulation, the viscosity is computed 
with Sutherland’s law as given in Eq. (6).

The computational resources are chosen such that both codes run 
at their maximum efficiency. For GALÆXI, 128 Nvidia A100 GPUs on 
HAWK-AI are employed, which yields a total load of 2.0 × 106 DOF per 
GPU. For FLEXI, the number of CPU nodes is chosen such that the wall-

time is similar to the GALÆXI computation, which is obtained when 
using 256 nodes (32 768 CPU cores). This results in a load of around 
7900 DOF/core, which resides well within the performance optimum of 
FLEXI [21]. The details of these setups are summarized in Table 3. The 
simulations are initialized with a precomputed converged flow state and 
are advanced for a total of 8 characteristic time units 𝑡∗ = 𝑡 𝑢∞∕𝑐, where 
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𝑡∗ is defined with respect to the inflow velocity 𝑢∞ and chord length 𝑐.
6.3. Results

The instantaneous Mach number distribution on the domain cen-

terline computed by GALÆXI is depicted in Fig. 13. The flow enters 
from the left with a high incidence relative to the camberline. This re-

sults in a shift of the stagnation point towards the pressure side and a 
strong transonic expansion fan on the suction side. The supersonic re-

gion is terminated with a near-normal shock, as illustrated in the zoom 
region. The corresponding pressure jump results in a forced boundary 
layer transition with high levels of unsteadiness. Numerical oscillations 
in the vicinity of the discontinuity, i.e. shock, resulting from Gibb’s phe-

nomenon, are mitigated with the convex blending approach outlined in 
Section 2.3. The grayscale overlay in the zoom region represents the 
local values of the blending factor 𝛼. It is evident that the FV shock 
capturing is active only near the shock in order to preserve the high 
numerical order of the DG operator in areas with a smooth solution. 
Downstream of the shock region, the separation of the boundary layer 
causes temporally varying blockage which couples with the upstream 
flow physics resulting in a highly unsteady flow field. Periods with en-

hanced separation result in counter-rotating vortex shedding as is visible 
near the wake downstream of the blade row.

The achieved performance for both codes is summarized in Table 3. 
For GALÆXI, a PID increase of about 35 % is observed in comparison 
to the performance reported in Section 4. This is attributed to the ad-

ditional work and load imbalance between the ranks introduced by the 
test case, which includes the sponge zones, the boundary conditions, 
the shock indicator and the FV shock capturing scheme. The slight de-

viation in walltime per 𝑡∗ between the GPU and CPU cases stems from 
choosing powers of two for the resources.

The power draw of the simulation runs was measured via the moni-

toring facilities of the systems’ operators at the HLRS. It is important to 
stress that these measurement systems are not originally designed for the 
purpose of measuring the energy consumption of individual simulation 
runs, but rather to monitor and adjust the power draw of the overall 
facility. As a consequence, the power draw can only be measured on 
a rack-wise level and is limited in terms of accuracy and granularity, 
which means that the obtained results should be seen as a rough esti-

mate. From these measurements, the specific power draw per rank 𝑃rank

shown in Table 3 is computed as the overall power delivered to the 
racks used divided by the number of ranks. The measured power thus 
also includes the power for the network switches. It is important to note 
that due to the specific hardware layout, cooling is included in the total 
power consumption for the GPU case, while the cooling effort is not in-

cluded for the CPU system. Hence, the obtained results tend to favor the 
CPU implementation and should thus be seen as a conservative lower 
bound for the potential gains in efficiency provided by GPU hardware.

When comparing the resulting EPID, i.e. the necessary amount of 
energy to advance a single DOF for a single time level, GALÆXI more 
than halves the required energy-to-solution. In total, GALÆXI requires 
around 147 kWh to advance the solution for one characteristic time unit 
𝑡∗, while FLEXI requires around 339 kWh per 𝑡∗ on CPUs. It is reason-

able to relate this reduction in energy demand by GALÆXI to a similar 
reduction in associated carbon emissions. However, it is important to 
note that the I/O operations and analyzing routines are excluded from 
the PID computation. Since these operations are still performed on the 
CPU for GALÆXI, the resulting overhead causes a slight discrepancy in 

the savings for the EPID and energy-to-solution. As discussed before, 
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Fig. 13. Instantaneous field solution for the NASA Rotor 37 case colored by the Mach number. A zoom of the leading edge highlights the supersonic flow region with 
the local blending values 𝛼 of the FV shock capturing scheme overlaid for all elements with 𝛼 = 0.1 (light gray) up to 𝛼 = 0.7 (black). The domain is periodically 
extended which is indicated by a blurred overlay.
due to the measurement limitations, both results should be regarded as 
an estimate and lower bound of the achieved performance.

7. Conclusion & outlook

This work presents the open-source flow solver GALÆXI, which 
implements high-order DG methods on unstructured meshes for GPU-

accelerated HPC systems. GALÆXI is the GPU-accelerated spinoff of the 
established FLEXI solver and it supports the majority of the features pro-

vided by FLEXI, which are continuously being extended. This allows the 
application of GALÆXI for scale-resolving simulations of complex com-

pressible flows including shock waves using modern GPU-based HPC 
systems. This work provides details on the general code design, the par-

allelization strategy, and the implementation approach for the compute 
kernels. Thus, it serves as an indication on how existing spectral element 
codes can be ported efficiently for GPUs. As long as the GPUs are suffi-

ciently loaded, the results demonstrate excellent scaling properties for 
GALÆXI on up to 1024 GPUs. The correct high-order accurate imple-

mentation of GALÆXI has been verified by demonstrating the expected 
convergence rates. Furthermore, the code has been validated against 
reference data for the incompressible and compressible variants of the 
established TGV. As a demonstration of a large-scale application, GALÆ-

XI was employed for the simulation of a wall-resolved LES of a NASA 
Rotor 37 compressor cascade. Using this example of compressible flow, 
the implemented finite volume subcell approach was demonstrated to 
yield a stable and accurate scheme for capturing the unsteady super-

sonic expansion region at the leading edge. In addition, GALÆXI has 
been shown to use only half the energy required to run the same sim-

ulation using the CPU implementation. With this, GALÆXI reduced the 
required energy from around 339 kWh to 147 kWh per characteristic 
time unit in comparison to the CPU implementation, which halved the 
associated carbon emissions.

Currently, GALÆXI is implemented using the CUDA Fortran frame-

work, which does not support GPU hardware from vendors other than 
NVIDIA. Current efforts are focused on incorporating different com-

pute backends into GALÆXI to support accelerator devices of different 
vendors alongside the baseline CPU implementation via hardware ab-

stractions. The envisioned code is intended to be readily extendable 
to arbitrary compute devices, such that novel accelerator types can be 
incorporated without fundamental code redesigns. Concurrent work fo-

cuses on further optimization of key routines, in particular the VolInt

and FillFlux routines, which together consume almost half of the com-

puting time as was demonstrated. Along the same lines, automatic tun-

ing of hardware-specific launch configurations is to be integrated into 
the code. This is expected to provide high levels of performance across 
a wide range of different hardware. Here, the KernelTuner [48] pack-

age appears to be a suitable choice. Lastly, graph-based approaches to 
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domain decomposition might improve the utilization of the direct, high-
bandwidth connection between individual GPUs on the same node by 
maximizing the amount of intra-node and minimizing the amount of 
inter-node communication.

This work has demonstrated that high-order DG methods are well-

suited candidates for the efficient simulation of compressible flows on 
GPU systems. GALÆXI has showcased that unstructured mesh topolo-

gies and adequate state-of-the-art shock capturing based on FV subcells 
impose only negligible overhead on GPU hardware. Most importantly, 
GALÆXI is capable of reducing the carbon emissions associated with 
large-scale flow simulations by more than 55 % in comparison to the 
CPU reference, which renders it a potent tool for the upcoming genera-

tion of sustainable, exascale HPC systems.
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Appendix A. Description of the routines for the discontinuous 
Galerkin spectral element method

The following paragraphs provide more detailed descriptions of the 
individual routines required to evaluate the three-dimensional DG op-

erator given in Eq. (18). Please note that only the main routines listed 
in Table 1 are detailed here, which are both the most important rou-

tines and also the ones discussed throughout the paper. Consequently, 
the lifting operator is omitted in the following. The routines are listed 
in the order of their computation in the DG scheme.

A.1. ConsToPrim

This routine computes the primitive variables 𝑼 𝑝𝑟𝑖𝑚 from the state 
𝑼 . The primitive variables are required for two different purposes. First, 
the computation of the pressure 𝑝 from the conserved variables 𝑼 is 
required to evaluate the fluxes of the NSE. Secondly, the primitive vari-

ables are needed for the computation of the gradients in the lifting 
routines, which are required to evaluate the viscous fluxes. For an ideal 
gas, the primitive variables can be computed using the EOS in Eqs. (8)

and (9). The computation of the primitive variables is DOF-local, since 
it only depends on the conserved state 𝑼 at a given point and can thus 
be performed independently for each interpolation point in the volume 
and on the element faces.

A.2. VolInt

The VolInt is the computationally most intensive routine in the 
DGSEM. It can be separated into two parts. First, the evaluation of the 
fluxes  1,2,3 at each interpolation point of the element and second, the 
linewise multiplication of the fluxes with the derivative matrix 𝑫̂ , which 
entails the derivatives of the basis functions. The evaluation of the fluxes 
is again DOF-local and can be performed independently for each inter-
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polation point. In contrast, the application of the derivative matrix 𝑫̂
Computer Physics Communications 306 (2025) 109388

is not DOF-local, since the contribution to point (𝑖, 𝑗, 𝑘) depends on the 
fluxes along the summation indices 𝛼, 𝛽, 𝛾 in Eq. (18), which are the 
linewise connections originally shown in Fig. 1. This introduces com-

plications when trying to parallelize this routine on GPUs, because the 
update for a single interpolation point exhibits a wide stencil. Our ap-

proach was to take advantage of the shared memory of the GPU, such 
that one thread block of the GPU gets assigned a single DG element. This 
thread block then first computes all fluxes in the element, stores them in 
shared memory and then applies the derivative matrix to these fluxes. 
This ensures that the volume fluxes as intermediate results do not have 
to be moved to main memory, every flux has to be computed only once, 
and the full parallelism of the algorithm can be exploited. If the split-

flux formulation is employed, the algorithmic structure remains almost 
identical, but minor modifications are necessary, as already discussed 
in Section 2.2.

A.3. ProlongToFace

The ProlongToFace routine interpolates the solution 𝑼 , which is 
defined in the reference element, to the element faces. The solution on 
the faces is denoted as 𝑼̃𝐿∕𝑅

, i.e. the solution from the left and right 
neighbor. This is required later by the FillFlux routine to evaluate the 
fluxes across the faces. For this, the polynomial basis from Eq. (17) is 
evaluated at the faces with the current coefficients 𝑼̂ . Additional map-

pings then allow to infer to which global face number the specific local 
face of the element belongs in order to store the solution in the cor-

rect place. This mapping from element to face information is required 
due to the unstructured nature of the mesh. This mapping entails two 
different steps. First, it has to account for the orientation of the face-

based coordinates to the element-based coordinate system. Second, the 
relative rotation of a face with its neighbor has to be considered. These 
transformations are performed here to ensure that the face information 
is already correctly aligned for the computation of the face fluxes in
FillFlux.

A.4. FillFlux

This routine computes the common flux 𝒇 ∗ = 𝒇 ∗(𝑼̃𝐿
, 𝑼̃𝑅) across the 

element faces based on their left and right solution using a Riemann 
solver. Since the correct mapping and orientation of the neighboring 
faces is already ensured by the ProlongToFace routine, the Riemann 
solver can be applied directly. The routine is thus DOF-local and easily 
parallelizable for GPUs, since the Riemann solver can be applied inde-

pendently for each interpolation point on the faces. In addition, this 
routine multiplies the flux with the surface element 𝑠̂, which entails the 
size of the face.

A.5. SurfInt

This routine integrates the fluxes on the faces of the element and 
adds their contribution to the right-hand side of the DGSEM. Again, this 
routine entails a surface to volume mapping, due to the same reasons as 
in the ProlongToFace routine. Since this routine is discussed at length 
in Section 2.2, we refer to this section for further details.

A.6. ApplyJac

The ApplyJac routine divides the right-hand side of Eq. (18) by the 
Jacobian 𝑖𝑗𝑘 of the mapping for each individual interpolation point. 
This operation is thus DOF-local in the sense that the division can be 
performed independently for each interpolation point. This operation 
exhibits a low arithmetic intensity, since it performs only 5 floating 
point multiplications per interpolation point, but 6 floats have to be 
copied from memory (one entry for each conserved variable in 𝑼 and 

the (pointwise scalar) Jacobian  ). Hence, further optimization of the 

https://creativecommons.org/licenses/by/4.0/
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GPU implementation could fuse this operation for instance with the pri-

orly computed SurfInt to increase the number of operations performed 
for each byte of data transferred.
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