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Abstract. To make sense of their surroundings, intelligent systems must
transform complex sensory inputs to structured codes that are reduced
to task-relevant information such as object category. Biological agents
achieve this in a largely autonomous manner, presumably via self-super-
vised learning. Whereas previous attempts to model the underlying mech-
anisms were largely discriminative in nature, there is ample evidence that
the brain employs a generative model of the world. Here, we propose that
eye movements, in combination with the focused nature of primate vision,
constitute a generative, self-supervised task of predicting and revealing
visual information. We construct a proof-of-principle model starting from
the framework of masked image modeling (MIM), a common approach in
deep representation learning. To do so, we analyze how core components
of MIM such as masking technique and data augmentation inuence the
formation of category-specic representations. This allows us not only
to better understand the principles behind MIM, but to then reassemble
a MIM more in line with the focused nature of biological perception.
We nd that MIM disentangles neurons in latent space without explicit
regularization, a property that has been suggested to structure visual
representations in primates. Together with previous ndings of invari-
ance learning, this highlights an interesting connection of MIM to latent
regularization approaches for self-supervised learning. The source code
is available under https://github.com/RobinWeiler/FocusMIM

Keywords: Self-supervised learning ´ Representation learning ´ Gener-
ative model

1 Introduction

Both biological and articial intelligent systems must construct useful object rep-
resentations (in the general case equivalent to classiable) from large amounts of
unlabeled data [1]. In self-supervised learning (SSL), two main approaches have

⋆ Equal contribution

ar
X

iv
:2

40
4.

08
52

6v
2 

 [
cs

.C
V

] 
 8

 J
ul

 2
02

4



2

crystalized over the last years: multi-view based learning (via contrasting [2], la-
tent regularization [3] or distillation [4]), and masked image-modeling (MIM) [5,
6] which predicts occluded image content usually at the pixel-level, but to which
also the more recently developed latent predictions [7] can be counted. While
constrastive methods have been suggested as a model of SSL in the brain, struc-
turing representational geometry via temporal [8] and spatial cues [9], we pos-
tulate that the brain may be engaged in MIM via eye movements and attention
shifts (Fig. 1): Perception, at a singular point in time, is selective, both through
foveal vision and selective attention [10]. Sequentially, saccadic eye movements
and attention shifts then ood the sensory stream with new information - in a
manner that is to some degree predictable from knowledge about the direction
and magnitude of the gaze shift (via a corollary discharge [11, 12]) and image
structure.

Studying the principles behind MIM is attractive, as it requires fewer as-
sumptions about temporal sequences and data augmentations than the men-
tioned multi-view approaches to biological SSL and achieves performance on par
or close to contrastive methods [13]. MIM ts well with predictive theories of
cortical processing [14–16]. Both conceptualize perception as the process of iden-

Fig. 1. Representation learning through eye movements. (a) Random patch masks used
in articial MIM approaches, gray patches are hidden from the network. (b) In our
approach, selective masking is achieved through the inhomogeneous nature of foveal
vision. Eye movements depicted as vectors reveal previously inaccessible or distorted
information that is compared to the prediction xt+δ. (c) After pretraining on the pre-
diction task, the quality of latent representations in the latent representation is assessed
through classication accuracy in linear probing.
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tifying a hierarchical latent variable model that could have caused the sensory
inputs [17, 18] (this generative aspect is lacking in discriminative SSL models)
and are predictive of future inputs. Experimental evidence for predictions of vi-
sual content across saccades comes, e.g., from [19]. Anatomically, the frontal eye
elds have been proposed to predict across eye movements to stabilize percep-
tion [11]. We postulate a larger role of these predictions: the learning of visual
features useful for downstream tasks such as classication.

Here, we investigate the inuence of multiple variations to MIM in convolu-
tional neural networks (CNNs) that align well with biological constraints. First,
the inuence of dierent masking strategies is tested, resulting in a peripheral
masking strategy that learns strong representations and is more in line with the
focused nature of biological perception. In doing so, we discover that representa-
tions are markedly improved, and that neurons become more decorrelated, when
peripheral information is completely suppressed during learning. Second, the in-
uence of data augmentation is tested, showing that these are especially relevant
for the peripheral masking strategy. Third, we show that the relevant loss sig-
nal originates from the main object: although networks reconstruct the context
too, this is not necessary for representation learning. In fact, we nd that under
some conditions networks learn faster when being only rewarded for predicting
the foreground, which is interesting as segmentation may naturally be available
from geometric cues or motion [20, 21]. Indeed, availability of segmentation has
been shown to aid constrastive SSL if leveraged during pretraining [22], while
its eect on MIM has previously not been studied to our knowledge.

2 Related Work

The breakthrough for MIM in representation learning arguably was achieved us-
ing random patch masks (Fig. 1a) in a vision transformer [6], an architecture that
diers from information processing in biological networks. Investigations into the
inuence of masking strategies found that the optimal masking ratio falls roughly
between 40% and 80%, being suciently large but not overly aggressive [6, 18]. A
more biologically compatible architecture (CNNs) for MIM was used by Pathak
et al. [5], as do we for this reason. Pathak et al. found that a central mask
(predicting from peripheral context to a small central region) performed worse
than randomly distributed patch or region masks, although quantitative reports
were not provided. Here, we address this shortcoming and systematically study
the choice of the masking paradigm. A recent CNN-based MIM is ConvNeXt-v2
[13], which utilizes random patch masks like the transformer-based methods in
combination with a shallow decoder, whereas we strive to make the masking
paradigm more plausible. Xie et al. [23] further demonstrated the potential for
MIM in CNNs, achieving high accuracy in a ResNet-based model. In contrast
to their evaluation paradigm that employs the same (full) dataset both during
pretraining and ne-tuning [see also 13], we return to the ethologically relevant
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setting with limited amounts of labeled data.

Biological approaches to SSL derive mostly from multi-view approaches.
They avoid representation collapse, a catastrophic network state in which dif-
ferent inputs are projected onto the same latent activity pattern and thus can-
not be distinguished anymore, by introducing an expanding force that pushes
representations apart. Illing et al. [9] used a single negative sample at a time,
interpreted as being obtained by larger eye movements. Their approach converts
contrastive predictive coding [2] into a fully local learning rule. Interestingly, the
model also has a generative component (predicting the next representation in
a sequence of views) as a means to representation learning that is not investi-
gated further. Local predictive learning (LPL) [8], on the other hand, relies on
pushing representations apart based on their temporal distance, converting vari-
ance regularization [3] into a local learning rule. In contrast, MIM, as we employ
it, prevents representation collapse in a more minimalist way, i.e., without the
necessity of negative examples [9] or accumulated temporal statistics [8], but
instead solves a generative problem in which loss minimization is incompatible
with a collapsed solution. As the approach presented here is an initial step, we
use the spatially non-local backpropagation, however, see [24, 25] and subsequent
work for biologically plausible solutions yielding comparable weight updates.

Previous functional models have combined focused vision with eye movements
in a variety of ways, from controlling information gain [26] and active inference
[27], to achieving representation invariance and a reduced need for detail in
generative model learning [28]. The model of Thompson et al. [29] combines
spatially structured eye movements with visual information processing in an
enactive approach to counting. The approach of Illing et al. [9] uses on- vs. o-
object eye movements as a heuristic to shape representational geometry in latent
space. In comparison, our approach is more reduced in dynamics and focuses
instead on the consequences for neural representation learning when casting eye
movements as a self-supervised predictive task. It should also be noted that all
mentioned functional interpretations are mutually compatible.

3 Method

3.1 Model

We reduce the task of predicting across eye movements to its essence and avoid
learning a remapping of spatial receptive elds, which we argue is orthogonal to
the process of information restoration that drives representation learning [18].
Thus, inputs and predictions take place in the same reference frame (Fig. 1c), as
in other MIM approaches [6, 13, 18]. The network architecture, shown in Fig. 1c,
resembles an autoencoder. Unless explicitly noted otherwise, we use the following
setup: The encoder reduces the spatial dimension from 96 x 96 (with three color
channels) to 12 x 12 (x 128 channels). Due to the large receptive elds of the latent
space neurons at the output of the encoder, they map roughly onto neurons
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in visual area V4 or higher in primates [30]. The inversely structured decoder
(with deconvolutions instead of convolutions) maps the latent representations
back onto a 96 x 96 x 3 output, constituting the model’s expectation of image
content. Both encoder and decoder comprise nine ResNet18-style blocks [31] of
two convolutions passed by a skip connection. Convolutions are followed by a
ReLU activation function except the last decoder layer, which is followed by a
sigmoid function. The convolution at the entry to each third block has stride= 2,
which is where we double and half the number of channels in the encoder and
decoder, respectively, starting with 32 channels at the rst encoder block.

3.2 Self-Supervised Pretraining

As other work in MIM, we dene pretraining as the self-supervised training
phase in which the model is presented with a partial view of an image and at-
tempts to predict the image pixel by pixel in full resolution. The loss function
is given as the mean squared reconstruction error in parts of visual space with
incomplete inputs (masked or blurred, depending on the paradigm), normalized
by the area over which the loss is calculated. This generative loss is reminiscent
of predictive coding [15]. Pretraining was conducted on the unlabeled split of
the STL-10 dataset [32], which was specically constructed for SSL with few la-
beled examples, and is suciently naturalistic and large to exclude the need for
another dataset. We investigated a broad spectrum of input masking strategies
(Fig. 2) that pertain to the original hypothesis of peripheral masking:

Random patches: The most common masking strategy, used, e.g., in [13, 18,
31] (cf. Fig. 1a) serves as an optimal baseline. We split the image into 144 patches
of 8 x 8 pixels and replaced the masked image content with the average color of
the image.

Fig. 2. The masking strategies dene the pretraining task. Top row: Exemplary inputs
for dierent pretraining paradigms, with masked areas covered in the image’s gray
average color. Masked periphery and random patches are shown with 60% masking
ratio. Bottom row: Predictions from the given inputs after pretraining. Right image:
Ground truth
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Masked periphery: A central circle in full resolution, with the periphery
masked with the sample’s average color (see also Fig. 1b). Biologically, this strict
discarding of out-of-focus information is imaginable through inattentiveness [10].

Blurry periphery and Blurry random patches: Variations of the above
paradigms with local Gaussian blurring instead of a uniformly colored mask to
test the inuence of incomplete masking.

Foveal lter: A centered circle with a small radius in full resolution. Outside
the circle, the level of blur increases with distance to the center, mimicking
the physiological constraints of human foveal vision, i.e., the distribution of cone
photoreceptors across the retina [33, p. 244]. The implementation follows [34, 35].

For both random patches and masked periphery (using a square mask in-
stead of a circle), we experimented with sparse convolutions as in [13] to avoid
processing of borders between masks and image content. However, we found
no signicant dierence in linear probing accuracy (as described below), so we
continued with standard convolutions.

3.3 Choice of Pretraining Hyperparameters

During pretraining, we employed random-resized cropping (scale∈ {0.08, 1.0},
aspect ratio∈ {0.75, 1.33}). We used the Adam optimizer [36] with weight de-
cay= 1e−8, batch size= 512, and selected the learning rate from {5e-5, 1e-4,
5e-4} that led to the best classication performance (described below) for each
of the major pretraining tasks (masked periphery, random patches, foveal lter)
to render the obtained ndings independent of the choice. This value was then
kept when blurry information was introduced. For each of the major masking
paradigms, we additionally varied the masking ratio from 10 - 90% in steps of 10
to choose a model with optimal classication accuracy. For the random patches,
we found a masking ratio of 60% to lead to the best representations. For the
masked periphery, a higher ratio of 80% performed slightly better. We thus con-
tinued with this fraction for the remaining results, and refer to [18, 31] for more
detailed studies on the inuence of the masking ratio. After 500 epochs of pre-
training, we continued with the model that achieved the lowest reconstruction
loss for further analysis.

3.4 Linear Probing to Assess Representation Quality

To analyze the quality of the learned representations after pretraining, linear
probing was conducted. Here, we followed the standard SSL procedure of dis-
carding the decoder and appending a linear layer to the frozen encoder. The
128 x 12 x 12 x 10 (latent dimension ∗ classes of the STL-10 labeled splits) param-
eters of the linear layer were then t without further augmentations on the
training split of the STL-10 dataset (5,000 images), of which we used 1,000 for
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training validation and early stopping at the minimum validation loss. Irrespec-
tive of pretraining paradigm, we used images without mask or blurring in this
phase, as these consistently led to higher readout accuracy. As in pretraining,
we employed the Adam optimizer [36] (learning rate= 1e-4, weight decay= 1e-8,
batch size= 512). Classication accuracy was then evaluated on the 8,000 test
images, averaged across ve randomly seeded runs. We also experimented with
multilayer perceptron readout and ne-tuning (retraining the whole network),
but neither of these approaches led to large dierences in accuracy.

3.5 Generalization to a dierent network architecture

To test in how far the inuence of masking strategy depends on the network
architecture, we pretrained a modern CNN, the ConvNeXt-v2-Pico [13]. Key dif-
ferences to the ResNet described above are increased receptive eld size, separate
depthwise and pointwise convolutions, the use of GELU activation functions, and
a shallow decoder consisting of a single block. Pretraining on the STL-10 dataset
was conducted in two congurations: with random patch masks or with masked
periphery. Due to the ConvNeXt-v2’s initial stage that splits the input image
into 7 x 7 patches, we implemented peripheral masking as predicting from the
central 3 x 3 patches to the surround. For the random patches, we used a mask-
ing ratio of 60%, as suggested in [13]. Models were then pretrained for 370 epochs
with hyperparameters close to [13]: batch size= 512, learning rate selected for
optimal performance out of {1.6e-4, 5e-4, 1.5e-3}, AdamW optimizer [37] with 20
epoch linear warmup and subsequent cosine decay, weight decay=0.05 as well as
random resized cropping and horizontal ipping augmentations. For linear prob-
ing and ne-tuning, random erasing was additionally applied, and warmup was
reduced to three epochs, with a base learning rate of 0.0006 (ne-tuning) and
0.008 (linear probing). While ne-tuning led to the best performance when us-
ing global average pooling before the classication head, linear readout proted
from skipping this, so we proceeded with the optimal settings for each.

3.6 Correlation of Neurons in Latent Space

In addition to linear discriminability, representations can also be analyzed based
on their statistical properties. One desirable property here is decorrelation [3,
38, 39]. To quantify this, the covariance matrix is required [3, 39]:

C(R) =
1

n− 1

n

i=1

rir
T
i (1)

with R dened as a tensor containing the n latent representation vectors ri that
are z-scored across the batch dimension, with n equal to the number of samples
(we compute across one mini-batch with n = 512). As in [3], the sum of the
squared o-diagonal entries in C then quanties the degree to which neurons are
correlated:

c(R) =


i̸=j

[C(R)]2i,j (2)
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Fig. 3. Representative presegmentation masks used to investigate how discarding loss
signals from the background aects network performance. The masks were obtained
with the rembg-library, with brightness indicating condence, overlaid onto the respec-
tive STL-10 images.

3.7 Disentangling Predictions of Object vs. Background

Unlike assumed in section 3.6, eye movements reveal information sequentially,
often targeting salient points such as objects [40, 41]. Objects may also be seg-
mented already before recognition, either from motion signals [20, 21] or occlu-
sion geometry [20], making them prioritized prediction targets. We thus evalu-
ated the inuence of reduced learning signal availability from the background.
First, we obtained a gure-background segmentation mask using the rembg-
library (https://github.com/danielgatis/rembg). We discarded ∼ 8,000 im-
ages for which no clear segmentation mask could be obtained. In these, less than
100 pixels (out of 96 x 96) received a condence score of 0.8 (on a scale from 0
to 1) or higher. In the remaining images, the masks were generally high-quality
and only small object parts were missed (Fig. 3). During pretraining, the recon-
struction loss was then multiplied with the foreground condence score at each
point in space and normalized to compensate the reduced prediction area.

4 Results

To identify the minimally necessary components for biological MIM, we applied
various combinations of masking strategy and data augmentation, and plot their
inuence on representation quality in Fig. 4a-c.

4.1 Inuence of Masking Strategy

Out of the used masking strategies, we identied the masked periphery con-
dition as the most promising candidate for a biological model. This masking
technique inspired by foveal visual perception led to the second-highest classi-
cation accuracy in linear readout (mean value 67.9±0.4%) when crop-and-resize
transformations were used during pretraining, outperformed only by the random
patch masks (70.2± 0.4%). Similarly, in the ConvNeXt-v2 architecture, periph-
eral masking led to a high linear readout accuracy of 71.6± 0.6% (ne-tuning:
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Fig. 4. Linear readout accuracy quanties representation quality after pretraining. a)
Inuence of masking strategy in comparison to the multi-view approaches CLAPP [9]
and LPL [8], that both come in two variants trained with a local learning rule or
backpropagation. The remaining baselines are pure autoencoding (AE) from full image
to full image in the same network as the masked methods, and directly conducting
linear probing on the input images. b) Inuence of data augmentation. In the left-
and rightmost bar, the lled and outlined bars overlap, i.e., classication accuracy is
unaected by augmentation. c) Incomplete masking by Gaussian blurring, instead of
uniform average coloring, drastically decreased representation quality. d) Masked image
modeling implicitly decorrelates latent space neurons. Error bars and shaded regions
indicate the standard deviation across ve randomly seeded runs.

90.9± 0.3%), compared to 68.2± 0.3% (ne-tuning: 89.4± 0.4%) attained with
random patch masks. Strong performance in these settings supports the assump-
tion that solving the pretraining tasks of predicting hidden image areas leads
to discovery of object representations [18]. In contrast, deblurring the periph-
eral region from the foveal lter resulted in comparably poor representations,
with readout accuracy not much higher than pure autoencoding. Presumably,
this condition allows the network to nd a local solution that does not require
global integration [18]. To more closely investigate the eect of input information
content on classication accuracy, we replaced uniform masking with Gaussian
blurring (Fig. 2, third column). Despite the low information content, the intro-
duced information was sucient to substantially degrade performance in both
the masked periphery and random patch condition (Fig. 4c).

4.2 Decorrelation of Latent Space Neurons

To investigate the degree to which neurons in latent space develop independent
tuning properties, we computed the correlation term c using Eq. 2. Interestingly,
both masked periphery and random patches decorrelated neural representations
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(Fig. 4d), and more strongly than the foveal lter. This decorrelation, reminis-
cent of sparse coding [42], emerged without being explicitly enforced as in other
approaches [3, 39, 42].

4.3 Inuence of Data Augmentation

Applying crop-and-resize augmentations during pretraining proved necessary for
representation learning in the masked periphery condition. When leaving out
this augmentation, readout accuracy dropped from 67.9 ± 0.4% to 56.7 ± 0.5%
(Fig. 4b). Biologically, cropping and resizing can be approximately obtained by
changes in viewpoint and viewing angle, especially since no assumption about
temporal co-occurrence is made: dierently augmented versions of an image
are presented in dierent epochs. Interestingly, neither the foveal lter nor the
random patches were aected by ablating the crop-and-resize transformation.
Maintaining the position of the patch masks across epochs alone did not reduce
readout accuracy (70.3 ± 0.9%), but in combination with ablation of the crop-
and-resize augmentation, accuracy reduced to 62.5 ± 0.8%. We conclude that
the model requires exposure to a variety of prediction tasks from each object,
whether through data augmentation or through changes in mask position.

4.4 Predicting Object vs. Background

Restricting the pretraining loss to the main object instead of the background (cf.
section 3.7) did not aect linear probing accuracy negatively, suggesting that on-
object predictions are sucient for classication. While there was no substantial
dierence in readout accuracy when disregarding, as opposed to when using,
loss signal from the background in the masked periphery condition (Fig. 5b),
the network pretrained using random patch masks proted from disregarding
the background, especially in early epochs (Fig. 5a).

4.5 Reconstruction Quality

Beyond the network’s discriminative function, its generative capacity bears func-
tional relevance, e.g., for counterfactual reasoning, predictions of occluded image
content, and imagination [17]. An interesting eect from generative model learn-
ing could be observed in the networks pretrained with uniform (average colored)
and blurry masks: These networks also reconstructed in locations in which no
loss was calculated. While this would be expected to some degree when the
masked area varies across image presentations (random patches), it is surprising
in the masked periphery condition (Fig. 2, second column). Here, also the cen-
tral region was reconstructed reasonably well, although it did not contribute to
the pretraining loss. This holistic percept ts well with proposals on the role of
visual predictions in creating a stable visual representation [11, 17].

Across masking paradigms, reconstruction accuracy was uncorrelated with
readout accuracy: while the foveal lter achieved the best reconstructions (Fig. 2),
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Fig. 5. Inuence of presegmentation and masking strategy on pretraining eciency. (a)
When using random patches, using presegmentation to weight the reconstruction loss
accelerated pretraining. (b) This was not the case when restricting the reconstruction
loss to the foreground object. Shaded regions indicate the standard deviation across
ve randomly seeded runs.

it performed poorly in linear probing (Fig. 4a). Given a pretraining paradigm,
however, longer training on the reconstruction task also improved readout (Fig. 5).

A third angle to analyze the generative capacity of the network stems from
the fact that eye movements are often preceded by covert attention shifts, which
increase information sampling from these areas [43]. The sampled information
can then be used to improve predictions about the expected image content. To
test whether the model could exploit such a mechanism for improved reconstruc-
tions, we provided the model with a second circular input sampling area (covert
attention) on top of the peripheral masking while constraining the error to the
foreground (section 3.7). The additionally provided information indeed led to
more truthful predictions (Fig. 6), i.e., reduced prediction errors (from 2.6e-2
to 2.3e-2), which ties the approach back to earlier theories of predictions as a
stabilizing mechanism [11]. Applying this twofold sampling during pretraining,
however, did not alter readout accuracy signicantly, irrespective of whether the
covert attention circle was placed at random or on the main object.

5 Conclusion

In this paper, we investigated key components of masked image modeling (MIM)
through the lens of biological vision. As a similarly performant alternative to the
random patch masks common in articial representation learning [6, 13], we iden-
tied the more biologically plausible peripheral masking (Fig. 4a). Provided with
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Fig. 6. Sampling via covert attention improves predictions and stabilizes perception.
(a) Top row: ground truth. Middle row: input in the masked periphery condition with
a masking ratio of 80%. Bottom row: reconstructions after pretraining. (b) Same as (a)
with additionally provided information via a second, non-central input circle (covert
attention). The top row depicts the input mask consisting of these two circular areas
(fovea and attention).

dierently augmented views of the input images (Fig. 4b), this approach does
not pose restrictions on the temporal sequence in which inputs are encountered,
as does [8], or on knowledge about the spatial extent of an object to obtain neg-
ative samples, as does [9]. We conclude that peripheral masking and prediction
is a candidate mechanism for self-supervised learning in the brain, with saccadic
prediction errors computed in the early (but likely not primary) visual cortex
[19] where bottom-up signals are compared to feedback from the frontal eye elds
[11]. However, further experimental studies are required to denitely link these
error signals to plasticity in the ventral stream, and to elucidate whether covert
attention shifts can elicit similar prediction errors. Functionally, an additional
advantage of the employed approach in contrast to purely discriminative meth-
ods is the acquisition of a generative model (Fig. 2, Fig. 6). That multi-view SSL
has been implemented with more local learning rules than backpropagation [8, 9,
44, 45] prompts the question of whether the same can be done with MIM. From a
theoretical perspective, implicit decorrelation of latent space neurons (Fig. 4d),
together with previous observations of implicit invariance learning [46], connect
the MIM framework to SSL via latent regularization [3], where these objectives
are explicitly enforced. This raises the question of whether and how synergies
could be eciently exploited in models combining both learning paradigms [7,
47]. As a general requirement for high classication accuracy across all inves-
tigated masking strategies, we identied opacity of the input masks (Fig. 4c),
just as humans sometimes do not perceive objects in their eld of view when
attending to another point in space [10]. As primates employ eye movements in a
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strategic and enactive way [29], an interesting extension would be to learn from
multiple peripherally masked glimpses in a sequence through spatiotemporally
masked videos [48].
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