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A well-known method to prepare ground states of fermionic many-body hamiltonians is adiabatic
state preparation, in which an easy to prepare state is time-evolved towards an approximate ground
state under a specic time-dependent hamiltonian. However, which path to take in the evolution
is often unclear, and a direct linear interpolation, which is the most common method, may not be
optimal. In this work, we explore new types of adiabatic paths based on the spectral decomposition
of the two-body projection of the residual hamiltonian (the dierence between the nal and initial
hamiltonian). The decomposition denes a set of hamiltonian terms which may be adiabatically
interpolated in a piecewise or combined fashion. We demonstrate the usefulness of partially piecewise
interpolation through examples involving Fermi-Hubbard models where, due to symmetries, level
crossings occur in direct (fully combined) interpolation. We show that this specic deviation from a
direct path appropriately breaks the relevant symmetries, thus avoiding level crossings and enabling
an adiabatic passage. On the other hand, we show that a fully piecewise scheme, which interpolates
every hamiltonian term separately, exhibits a worst-case complexity of O(L6∆3) as compared to
O(L4∆3) for direct interpolation, in terms of the number of one-body modes L and the minimal gap
∆ along the path. This suboptimality result suggests that only those terms which break necessary
symmetries should be taken into account for piecewise interpolation, while the rest is treated with
direct interpolation.

I. INTRODUCTION

Quantum computers are currently regarded as a prime
candidate for solving problems in condensed matter
physics and chemistry that are untractable for classical
computers. In particular, since Feynman’s observation of
the potential of quantum simulation [1], the pioneering
work by Lloyd [2] and the invention of quantum phase
estimation [3], interest in the deployment of quantum
computers as simulators of highly correlated quantum
systems has exploded. A large body of work has been
established describing techniques for simulating dynam-
ics of many-body systems on a quantum computer [4–9],
and these may be combined with quantum phase estima-
tion in order to estimate eigenenergies [10]. A critical
question however, to make these methods useful, is how
to prepare the states of interest – be it thermal states
or eigenstates of the system under investigation – that
serve as input to the algorithms that simulate dynam-
ics or compute energies. Although experimental eorts
using heuristics such as variational quantum eigensolvers
[11–14] have shown great success in preparing such states
for systems of xed size, much remains unknown with re-
gards to solving highly correlated systems in general.

A well-known method for preparing approximate ground
states of complex systems is adiabatic state preparation,
which uses the adiabatic theorem to carry out quantum
computation. While originally formulated as a tool to
approximate quantum dynamics on large time scales with
respect to the inverse energy gap, the adiabatic theorem
was reintroduced to attack combinatorial problems [15]
and to study many-body systems such as Fermi-Hubbard

models [16, 17] and molecules [18–21].

The idea of adiabatic state preparation (ASP) is to pre-
pare an eigenstate ψf⟩ of a nal hamiltonian Hf , start-
ing with an eigenstate ψi⟩ of an initial hamiltonian Hi

which is straightforward to prepare. Given this initial
state, one time-evolves the state according to the time-
rescaled Schrödinger equation,

i
d

ds
ψ(s)⟩ = T H(s)ψ(s)⟩, (1)

where s = tT is a dimensionless time, and T is the
total (physical) evolution time. (We work in units such
that ℏ = 1.) The evolution is carried out under a time-
dependent hamiltonian H(s) which equals Hi at s = 0
and Hf at s = 1. After an evolution with time s, one
obtains a state ψT (s)⟩ = UT (s)ψ(0)⟩, where ψ(0)⟩ =
ψi⟩ and UT (s) solves eq. 1. By what is known as the
adiabatic theorem, the state at the end of this evolution,
ψT (1)⟩ will be close to the nal eigenstate ψf⟩ if T is
suciently large. One variant of this adiabatic theorem
which precisely indicates what close and suciently
large mean in this context, is due to Jansen et al. [22].
The statement is that if H(s) is a hamiltonian dened
on the interval [0, 1] which for every s  [0, 1] has an
instantaneous eigenstate ψ(s)⟩ whose energy is separated
from the rest of the spectrum by ∆(s) > 0, then for any
s  [0, 1], the condition

T ≥ 1

δ

 s

0

∥∂2
sH()∥
∆2(s)

+ 7
∥∂sH()∥2

∆3(s)


d +B


(2)

where ∥·∥ denotes the operator norm and B is a boundary

term that may be set to zero if Ḣ(0) = Ḣ(1) = 0, is
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sucient to guarantee that

⟨ψ(s)ψT (s)⟩ ≥ 1− δ (3)

provided that ψT (0)⟩ = ψ(0)⟩. Throughout the rest of
this paper, we will consider the case where ψ(s)⟩ is the
ground state of H(s).

In principle, any adiabatic evolution may be implemented
on a gate-based quantum computer through Trotter-
Suzuki [23, 24] or more sophisticated time-dependent
hamiltonian simulation methods [25–27]. Alternative ap-
proaches approximate the evolution through a series of
measurements [28, 29] or simulations thereof [30, 31].

The most commonly used interpolation method in adi-
abatic state preparation is a direct linear interpolation
between Hi and Hf [32], which is to say that

H(s) = Hi + s(Hf − Hi) (4)

However, this method is rather restrictive as the evolu-
tion is controlled by only a single parameter, s. Thus
the evolution is sensitive to gap closures along the path,
which cannot be avoided. An obvious solution is to in-
crease the number of control parameters in the passage
from Hi to Hf . This approach is discussed by Tomka et al.
[33], who show that evolving along a geodesic path, based
on the quantum metric tensor (or Fubini-Study metric)
with respect to the control parameters, maximises the
local delity along the path. In addition, they show that
an increase in the number of control parameters leads
to higher nal delities. Put simply, their results rely
on the fact that geodesic paths walk around regions
of parameter space associated with small energy gaps,
thus minimising diabatic errors. A similar category of
methods to avoid problematic regions in adiabatic state
preparation is known as counteradiabatic driving, where
an additional hamiltonian term is added during the evo-
lution, which actively suppresses diabatic errors and is
set to zero at the end [34–36].

The problem with these approaches, however, is that
their implementation becomes infeasible for large, com-
plex systems. For counterdiabatic driving to work, the
eigenstates and spectrum of the hamiltonian must be
known along the path, which is something we cannot
expect to achieve in such settings. For the geodesic ap-
proach, the main roadblock is the inability to solve the
geodesic equations, which become inaccesibly large sys-
tems of dierential equations already for small many-
body problems.

In this work, we introduce a more hands-on approach
to produce new types of adiabatic paths for generic
fermionic many-body hamiltonians in a second quantised
representation. Section II gives a brief description of such
systems. The adiabatic paths are based on a decom-
position of the coecient tensor of such hamiltonians
(section III), which denes a set of control parameters
that govern the adiabatic evolution. We emphasise that
such adiabatic paths can be seen as a new view on adia-

batic state preparation for fermionic systems by consider-
ing many-body hamiltonians in terms of their two-body
eigenstates. We demonstrate, through a set of worked ex-
amples (section IV), that there exist scenarios in which
direct interpolation suers from level crossings caused by
symmetries, and how the two-body decomposition may
be used to explicitly break symmetries and lift such cross-
ings. In section V, we show how a description of these
two-body eigenstates as superpositions of fermion pairs,
following a suitable one-body transformation, leads to a
worst-case adiabatic complexity in terms of the number
of one-body modes L and a minimum gap ∆ (section V).
The implications of this analysis are discussed for dif-
ferent systems. We summarise and conclude in section
VI.

II. MANY-BODY HAMILTONIANS

Of interest in this work are generic fermionic, interacting,
particle-conserving many-body hamiltonians, expressed
in a second-quantised representation as

H =

L

P,Q=1

hPQ a†P aQ

+
1

2

L

P,Q,R,S=1

gPQRS a†P a
†
RaSaQ (5)

where P,Q,R, S index general single-particle modes
(which may include a spin index, in which case the modes
are known as spin orbitals). Furthermore, the coecients
hPQ and gPQRS describe the one- and two-body terms re-
spectively, and the fermionic creation (annihilation) op-

erators a†P (aP ) satisfy the canonical anticommutation
relations,

aP , aQ = a†P , a
†
Q = 0,

a†P , aQ = δPQ (6)

Depending on context, we will sometimes split a single-
particle mode into a spatial and a spin component, writ-
ing lowercase p, q, r, s for the spatial and , , , for the
spin component.

Such hamiltonians are the central object of study in
chemistry and condensed matter theory. In chemistry,
the starting point for describing molecules is typically
the electronic structure hamiltonian in the nonrelativistic
Born-Oppenheimer approximation, given in rst quanti-
sation by

Ĥ = Enuc −


Ii

1

rI − ri
+

1

2



i

2
i

  
ĥ

+
1

2



ij

1

ri − rj 
  

ĝ

(7)
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where the upper case indices run over all nuclei and the
lower case indices label the electrons. Enuc is a nuclear
energy constant which may be set to zero for practical
purposes. When we project the Hilbert space onto a
xed basis set ψp⟩ consisting of single-particle modes
(which may be assumed to be real, following common
practice), the projected electronic structure hamiltonian
assumes the form of eq. 5 with

h(p)(q) = hpqδ, g(p)(q)(r)(s) = gpqrsδδ, (8)

hpq =


dr1 ψp(r1) ĥψq(r1), (9)

gpqrs =


dr1dr2 ψp(r1)ψq(r1) ĝ ψr(r2)ψs(r2) (10)

From these expressions we may draw the symmetry con-
ditions

hPQ = hQP (11)

gPQRS = gRSPQ = gQPRS = gPQSR (12)

which we shall assume satised for all hamiltonians con-
sidered in this paper. Note that the hermiticity of
the hamiltonian is guaranteed by the use of real-valued
single-particle modes.

The electronic structure hamiltonian may be simplied
by restricting the electrons to orbitals localised at sites
arranged on a lattice, and neglecting any Coulomb in-
teraction between dierent sites. Taking one orbital per
site, one arrives at the single-band Fermi-Hubbard (FH)
hamiltonian,

H = j


⟨p,q⟩,
(a†paq + a†qap) + U



p

np↑np↓ + µ


p

np

(13)

where j is the hopping strength between two neighbour-
ing sites, U is the on-site Coulomb interaction and µ is a
chemical potential strength. The Fermi-Hubbard model
may be written in the form of eq. 5 with coecients as
in eq. 8 through the identication

hpq =


j if sites p and q are neighbours,

0 else,

gpqrs = Uδpqδrsδpr (14)

which are readily seen to exhibit the symmetries of
eqs. 11–12. In section IV, we study a generalisation of
the one-dimensional FH hamiltonian that allows for spin-
dependent hopping strengths, i.e. h(p)(q) = h

pqδ.

Throughout the rest of this paper, we will work with a
xed particle number (denoted N) for each hamiltonian.
In a sector of xed N , we can absorb the one-body terms
of any hamiltonian of the form in eq. 5 into the two-body
terms, by inserting the identity as

a†P aQ =
1

N − 1



R

a†P a
†
RaRaQ (15)

and when we dene

wPQRS :=
hPQδRS + δPQhRS

N − 1
(16)

then we may write the one-body operator as



PQ

hPQ a†P aQ =
1

2



PQRS

wPQRS a†P a
†
RaSaQ (17)

Now dene the combined one-body and two-body inter-
action tensor

GPQRS :=
1

2
(wPQRS + gPQRS) (18)

and observe that

H =


PQRS

GPQRS a†P a
†
RaSaQ; (19)

the one- and two-electron terms have now been combined
into a single term. We shall refer to G as the interaction
tensor of H.

Lastly, it will be convenient to express H as a sum over
only the unique pairs (P,R) and (Q,S): by invoking the
fermionic anticommutation relations, we may write

H =


P<R
Q<S

G̃PQRS a†P a
†
RaSaQ (20)

with G̃PQRS := GPQRS −GPSRQ −GRQPS +GRSPQ =
2(GPQRS − GPSRQ). This tensor shall be termed the
antisymmetrised interaction tensor of H.

Naturally, if the initial hamiltonian Hi contains all one-
body terms, then there is no need to explicitly include
them in the two-body terms of the residual hamiltonian
Hr as described above. In section IV we will see an exam-
ple of this where Hi takes the form of a mean-eld (also
known as Hartree-Fock) approximation.

III. ADIABATIC STATE PREPARATION BY
TWO-BODY EIGENDECOMPOSITION

In this work, we deviate from the direct interpolation ap-
proach (eq. 4) by decomposing the residual hamiltonian
Hr = Hf − Hi into a sum of terms Hr

k, k  1,    ,M,
and evolving a linear combination of the terms Hr

k. That
is,

H(s) = Hi +

M

k=1

γk(s) H
r
k (21)

The decomposition denes an M -dimensional parameter
space in which we consider paths γ(s) restricted to a
hypercube, starting from γ(0) = [0, 0,    , 0] and ending
at γ(1) = [1, 1,    , 1].
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We dene the residual terms Hr
k through a decompo-

sition of the antisymmetrised interaction tensor of Hr.
This is akin to known low-rank factorisation methods of
the two-body part of the interaction tensor, aimed at
achieving improved memory eciency and speed-ups in
quantum simulation implementations [9, 37]. Whereas
most of these works focus on the Cholesky decomposition
of the interaction tensor [38–40], we use an eigendecom-
position. More precisely, we regard the antisymmetrised
interaction tensor G̃ as an L(L−1)2×L(L−1)2 matrix
F, by combining the indices (PR) and (QS):

F(PR)(QS) := G̃PQRS  (22)

We point out that F represents a two-particle hamilto-
nian, since in the two-particle sector, the operator string

a†P a
†
RaSaQ is equivalent to the outer product PR⟩⟨QS.

For this reason, we refer to F as the two-particle matrix.
Note however that the noninteracting part of F is scaled
by a factor 1(N − 1) with respect to that of Hr, which
arises from the insertion of identity (eq. 15).

Now since F is symmetric with respect to the exchange
(PR) ↔ (QS) (following from the symmetry conditions
of eq. 11–12, we may eigendecompose F into (normalised)
orthogonal eigenvectors,

F(PR)(QS) =


k

λk ϕ
(PR)
k ϕ

(QS)
k (23)

and dene

Hr
k := λk

 

P<R

ϕ
(PR)
k a†P a

†
R

 

Q<S

ϕ
(QS)
k aSaQ


=: λkΦk

(24)

In the following, we will refer to λk as the two-body eigen-

values; the states ϕk⟩ =


P<R ϕ(PR)a†P a
†
Rvac⟩ as the

two-body eigenstates; and the operators Φk as the pseu-
doprojectors of F.

IV. LIFTING CROSSINGS BY SYMMETRY
BREAKING IN FERMI-HUBBARD MODELS

We will now illustrate how our method applies to cases
where a discrete symmetry in the hamiltonian is inuen-
tial on the course of the adiabatic evolution. In particu-
lar, we consider the situation in which the initial hamil-
tonian and the nal hamiltonian share such a symmetry.
In such a case, if the ground states of the initial and nal
hamiltonian belong to dierent symmetry sectors, then
necessarily at some point the energy levels cross and an
excited state is obtained at the end of the adiabatic evo-
lution. This is a known problem that was addressed in
the work by Farhi et al. [15] and also plays a role in
many-body contexts [41]. Typically the solution is to add
a symmetry-breaking eld to the interpolation hamilto-
nian which is set to zero in the end. In this section, we

show how symmetry breaking behaviour emerges natu-
rally from the formalism of the two-body eigendecompo-
sition.

To see where this symmetry breaking comes from, it is
important to note the following fact: if and only if a

two-particle eigenstate ϕ⟩ =


P<R ϕ(PR)a
†
P a

†
Rvac⟩ is

also an eigenstate of some unitary symmetry operator
U (with some eigenvalue µ), which is expressible as a
product of one-body rotations, then the corresponding
two-body operator Φ commutes with U. The only if
direction is trivial (since ϕ⟩ is an eigenstate of Φ); for
the if direction, observe that

µϕ⟩ = U
 

P<R

ϕ(PR) a
†
P a

†
Rvac⟩



=


P<R

ϕ(PR)Ua†PU
†Ua†RU

†vac⟩

=


P<R

ϕ(PR)



M

UPM a†M



N

URN a†N


vac⟩

=


M<N

= µϕ(MN)  

P<R

ϕ(PR)


UPMURN − UPNURM


×

× a†M a†N vac⟩ (25)

The last line and the fact that µ = 1 then imply that

UΦU† = µΦµ∗ = Φ (26)

so that indeed [Φ,U] = 0. This has the following impli-
cation: if all two-body eigenvalues λk are distinct, then
all two-particle states ϕk⟩, being eigenstates of the resid-
ual hamiltonian Hr, are also eigenstates of the symmetry
operator U, and thus all hamiltonian terms Hr

k commute
with U. In such a case, no symmetry is broken. How-
ever, if the eigenvalues corresponding to two two-body
eigenstates with dierent symmetry are degenerate, then
these two-body eigenstates may be mixed to produce new
hamiltonian terms which do not commute with U and
therefore break the symmetry. In practice, one will need
to x a particular mixing to make the adiabatic process
unambiguous; in the following, this is taken care of by a
small splitting dλ in the relevant two-body eigenvalues.
Note that while such a splitting does open a gap, this gap
scales inversely in dλ; thus if this splitting is small with
respect to the overall energy scale, direct linear inter-
polation still requires a problematically large evolution
time.

We demonstrate this idea with two simple examples, cho-
sen such that (i) it displays an approximate discrete
symmetry, which is only slightly broken and, (ii) the
best mean eld (Hartree-Fock) solution predicts a ground
state in a symmetry sector dierent from that of the true
ground state. In such a situation, straightforward adi-
abatic following of the Hartree-Fock state has to be ex-
ceedingly slow to avoid a crossing into an excited state. A
multi-step adiabatic procedure, along the lines presented
in this paper, will avoid the crossing altogether and allow
a convergence on the true ground state.
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A. Fermi-Hubbard trimer

First, consider the following two-particle, three-site
Fermi-Hubbard model:

H =
↑

↑

U

j j

j13

−j13

U

=




j(a†1a2 + a†3a1) + j a†1a3 + h.c.

+ U(n1↑n1↓ + n3↑n3↓) (27)

where ni = a†iai; h, j↑, j↓ and U ≤ 0 are real con-
stants; and we set j↑ = j13 = −j↓. The discrete symme-
try we will keep track of is the reection of sites 1 ↔ 3.
It is exact when U1 = U3, and we will later consider cases
where U1 and U3 are slightly dierent, breaking the sym-
metry. We assume j > 0 throughout.

1. The case U = 0

Let us rst consider U1 = U3 = 0. For j13 = j, the one-
body kinetic energy terms for spin up have two degener-
ate ground states, at energy Ekin↑ = −j. For j13 < j, the
unique ground state is symmetric (S), while for j13 > j
the ground state is anti-symmetric (A). This makes clear
that the ground state for one spin-up and one spin-down
particle is symmetric for j13 < j but antisymmetric for
j13 > j. Turning on U < 0 will shift the S-A transition
to lower values of j13. The Hartree-Fock mean eld so-
lution follows this trend but we will see that there are
values of j13 where Hartree-Fock places the ground state
in the wrong symmetry sector.

2. The case U < 0: tracing the ground state of H

Turning on a negative U1 = U3 = U will change the
nature of the two-body ground state.

For small U  ≪ j and j13 = j + δ the energies of the
symmetric (S) and anti-symmetric (A) states split as (in
rst order perturbation theory in U , δ)

ES = −3j + U9− δ3, EA = −3j + U3− 5δ3 (28)

implying that the S-A crossing (as a function of j13) shifts
to j13 = j + U6, that is to a smaller value of j13.

For U large and negative, the two electrons will tend to
form a local pair at site 1 or 3, with energy U . In second

order perturbation theory, taking into account processes
with two hops (of strength j or j13) connecting the pair
states with unpaired states at energy 0, the on-site ener-
gies of these pairs are adjusted to

ϵ1 = ϵ3 = U + 2j2U + 2j213U (29)

while the pair hopping amplitude becomes

t13 = −2j213U (30)

This leads to S and A ground state energies

E
(2)
S = U + 2j2U, E

(2)
A = U + 2j2U + 4j23U (31)

Including terms of order j4U3, j2j213U
3 and j413U

3 we
nd

E
(4)
S = U + 2

j2

U
+ 8

j4

U3
+

14

3

j2j213
U3

+O
 (j2 + j213)

3

U5


,

(32)

E
(4)
A = U + 2

j2

U
+ 4

j213
U

− 4
j4

U3
+ 2

j2j213
U3

− 16
j413
U3

+O
 (j2 + j213)

3

U5


 (33)

This puts the S-A crossing (in an expansion in terms of

jU) at j13 =
√
3j2U .

3. The case U < 0: Hartree-Fock approximation

To write a mean eld (Hartree-Fock) Ansatz, we should
rst decide on the symmetry sector. For an overall anti-
symmetric Ansatz, we have

HF,A⟩ = 1√
2
(a†1↑ − a†3↑)

1√
2 + x2

(a†1↓ + xa†2↓ + a†3↓)vac⟩
(34)

The expectation value becomes

⟨H⟩HF,A =
1

2 + x2


4jx− 2j13 − (2 + x2)j13 + U



=
1

2 + x2


(U − 4j13) + 4jx− j13x

2

 (35)

This expression is minimised for (keeping the leading
terms in an expansion in terms of jU , j13U)

x = 4jU ⇒

⟨H⟩min
HF,A =

U

2
− 2j13 + 4

j2

U
+O

 (j + j13)
3

U2


 (36)

The competing Ansatz is symmetric in both the up and
the down factors,

HF, S⟩ = 1
2 + y2

(a†1↑ + ya†2↑ + a†3↓)×

× 1√
2 + x2

(a†1↓ + xa†2↓ + a†3↓)vac⟩, (37)
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leading to

⟨H⟩HF,S =
1

(2 + x2)(2 + y2)


4jx(2 + y2) + 4jy(2 + x2)

− 2(2 + y2)j13 + 2(2 + x2)j13 + 2U


=
1

(2 + x2)(2 + y2)


8j(x+ y) + 4j(xy2 + yx2)

+ 2(x2 − y2)j13 + 2U

 (38)

In leading order, the minimum energy is reached for

x = y = 4jU ⇒

⟨H⟩min
HF,S =

U

2
+ 8

j2

U
+O

 j4

U3


 (39)

Comparing the expressions in the S and A sectors, we
conclude that, in mean eld and to leading order in jU ,
the S-A crossing happens at j13 = 2j2U .

4. Adiabatic procedure

Suppose now that we consider the Fermi-Hubbard trimer
with j > 0, U < 0, U  ≫ j and

√
3j2U  < j13 <

2j2U  and try to identify the ground state with a single
spin-up and spin-down particle through adiabatic follow-
ing. We have just demonstrated that in this situation,
the HF solution is in the S sector, while the true ground
state is in the A sector. This means that the adiabatic
procedure will fail altogether and end up in a symmetric
state, which is an excited state of H.

Let us now consider how the stepwise procedure works
out in this example. The adiabatic procedure starts from
the HF hamiltonian, with mean eld parameters (called
x, y in the above) optimised for our choice of U , j and
j13. It is obtained from H by replacing

ni↑ni↓  ni↑⟨ni↓⟩+ ⟨ni↑⟩ni↓ − ⟨ni↑⟩⟨ni↓⟩ (40)

This implies that the exact two-body hamiltonian H(2)

diers from the two-body HF hamiltonian via diagonal
terms only, which directly correspond to the two-body
eigenvalues λk of the stepwise adiabatic following from

H(2) to H
(2)
HF. Among these eigenvalues, the most negative

ones are

λ11 = ⟨1↑1↓(H(2) − H
(2)
HF)1↑1↓⟩ =

U

2
+

32j4

U3
+O

 j6

U5



λ33 = ⟨3↑3↓(H(2) − H
(2)
HF)3↑3↓⟩ = λ11 (41)

For U1 = U3 = U , these two-body eigenvalues are de-
generate, leaving an ambiguity in the denition of the
stepwise procedure. After all, one could perfectly dene
the eigenvectors of the two-particle matrix in such a way
that the symmetric and antisymmetric sectors sectors are
not mixed. As such, it is necessary to add an arbitrar-
ily small splitting δU = U3 −U1. While this implies that
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FIG. 1. Instantaneous ground state energy gaps in the adia-
batic ground state preparation of the Fermi-Hubbard trimer,
with U = −5, j = 1 and j13 = 037. In the direct interpola-
tion, H(s) = (1 − s)HHF + sH, a gap closure occurs around
s = 069. The stepwise procedure is carried out as in eq. 43,
with each step taking a third of the total time. Through sym-
metry breaking, a gap is visibly opened.

the energy levels in a direct interpolation will not strictly
cross, the gap that is opened will only scale in δU , mean-
ing the time required for the direct interpolation can be
made arbitrarily large. Having resolved this ambiguity,
we can then design the stepwise adiabatic procedure as
follows. Dening

Hr
1 = λ11a

†
1↑a

†
1↓a1↓a1↑

Hr
3 = λ33a

†
3↑a

†
3↓a3↓a3↑

Hrest = H − HHF − Hr
1 − Hr

3 (42)

we interpolate thus:

Hi  Hi + Hr
1

 Hi + Hr
1 + Hrest

 Hi + Hr
1 + Hrest + Hr

3 = H (43)

With this, the discrete symmetry is broken along all steps
of the path, and the S-A crossing, which derails the di-
rect adiabatic interpolation from the HF to the exact
hamiltonian, is avoided. The resulting development of
the instantaneous gap can be seen in gure 1.

B. Fermi-Hubbard model on four sites with
alternating hopping

As a second example, we present a variation on the same
theme: a simple model for correlated electrons where a
mean eld (Hartree Fock) solution is unable to correctly
incorporate two-body correlations and as a result puts
the ground state in the wrong symmetry sector, derail-
ing adiabatic interpolation with the HF state as starting
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point. The stepwise adiabatic procedure based on two-
body eigenspaces cures this situation.

We consider a Fermi-Hubbard model on four sites,

H =

↑

↑

UU

↑

↑

U

j + δ

j − δ

j + δ

j − δ

U

j j

=


i





ji(a
†
iai+1, + hc) + U



i

ni↑ni↓, (44)

with a uniform U < 0 but spin-dependent, non-uniform
hoppings

j1 = j3 = j, j2↑ = j4↑ = j + δ, j2↓ = j4↓ = j − δ
(45)

Note that we assume periodic boundary conditions, iden-
tifying site i = 5 with i = 1. We assume half lling,
N↑ = N↓ = 2.

The hamiltonian H is invariant under a reection 1 ↔ 4,
2 ↔ 3. Assuming j > 0 and 0 < δ < j, it is quickly found
that for U = 0 the spin up particles have a symmetric
(S) ground state, while the ground state for particles with
spin down is antisymmetric (A). This renders the overall
ground state antisymmetric (A).

1. Tracing the exact ground state

Turning on U < 0 will change the nature of the ground
state, as the particles will tend to form two local pairs.
For U  ≪ j, there is an eective description in terms of
two such pairs with induced pair hopping of order j2U .
It is quickly checked that this leads to a symmetric (S)
ground state. The symmetry sector of the many-body
ground state will thus change from A to S at a critical
value Uc(j, δ) < 0.

For a quick estimate of the cross-over point from A to
S, we can follow, in (degenerate) rst order perturbation
theory in U and δ, in the lowest two energy eigenstates
(here labeled by their symmetry A or S)

⟨H⟩A = −4j − 2δ + U, ⟨H⟩S = −4j +
5

4
U, (46)

putting the A-S cross-over at Uc = −8δ.

2. Mean eld (Hartree-Fock, HF) and adiabatic procedure

As in our previous example, a HF state is unable to ac-
commodate the correlations induced by U < 0. In fact,

0.2

0.4

0.6

0.8
direct
stepwise

10 s

FIG. 2. Instantaneous gaps in the direct and stepwise adia-
batic ground state preparation of the four-site Fermi-Hubbard
model with alternating spins, with U = −2, j = 1 and
δ = 01. The direct interpolation causes a level crossing
around s = 067. The stepwise interpolation is carried out
by adding a single projector onto one of the sites in the rst
half, and the rest of H−HHF in the second half. It is observed
that the stepwise method avoids the level crossing.

since all four sites are on equal footing, self-consistent
mean elds for both the up and down spins will be uni-
form on all four sites and will not aect the one-particle
states that make up the HF ground state. The mean
eld ground state will thus be the same as that of the
non-interacting problem, and it will be antisymmetric
(A). This means that, for U  larger than Uc, direct
adiabatic interpolation from the Hartree-Fock hamilto-
nian HHF (into which we absorb the uniform mean-eld
energy shift) to H will result in an excited state of H.
The stepwise procedure based on two-particle eigenstates
of HHF − H avoids this problem. It has four non-zero
eigenvalues λk, corresponding to projectors on each of
the sites. (As in the three-site example, for this to be
unambiguous one needs to assume an arbitrarily small
splitting of the value of U for the four sites.) Adding
one of these in the rst step and the other three in the
second step gives an adiabatic path that breaks the left-
right symmetry and thereby avoids the crossing, allowing
a correct interpolation from the antisymmetric HF state
to the symmetric ground state of H. This can be seen
in gure 2. We observe that in the same model with
U > 0 the stepwise adiabatic following similarly avoids
the problem of an exact A-S crossing, but in that case
the gaps coming with the stepwise procedure are smaller
and tend to decrease with δ. This is seen in gure 3.

V. COMPLEXITY CONSIDERATIONS

Having seen the potential of a (partially) piecewise in-
terpolation to lift gap closures, we will now study more
generally the worst-case complexity of direct and piece-
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direct
stepwise

s

0.1

0.2

0.3

0.4

0.5

10

FIG. 3. Instantaneous gaps for the four-site Fermi-Hubbard
model, with positive U (U = +2, j = 1 and δ = 025). In
the same way as in gure 2, the direct interpolation causes
a gap closure around s = 061 while the stepwise procedure
keeps the gap open. Note however a small gap in the stepwise
procedure around s = 067.

wise paths, in view of the adiabatic complexity bound
of eq. 2. For simplicity, we replace the gap ∆(s) by its
minimum ∆ = mins∈[0,1] ∆(s), and consider complexity
in terms of this parameter. What remains then is to
determine the scaling of the numerators

In :=

 1

0

∥∂n
s H()∥2/nd (n  1, 2) (47)

in the system size. Since for typical systems of interest,
the number of particles N scales proportionally with the
number of one-particle modes L, we take L as the system
size scaling parameter.

Now, from eqs. 21 and 24,

∥∂n
s H(s)∥ ≤

L(L−1)/2

k=1

∂n
s γk(s) · λk · ∥Φk∥ (48)

Note that the path functions γk can always be cho-
sen such that ∂n

s γk(s) is upper bounded by a con-
stant. In particular, one may always pick all γk such
that ∂sγk(0) = ∂sγk(1) = 0, so that the boundary term
in eq. 2 drops out. The two-body eigenvalues λk then,
being the eigenvalues of F, are bounded by the energy
scale of a two-particle system which does not grow with
the system size. Therefore the norms ∥Φk∥ are the only
meaningful quantities to be upper bounded. As such, it
suces to consider only the rst derivative numerator I1.
We shall universally upper bound the operator norm of
any pseudoprojector Φk in the following, and shall hence-
forth drop the subscript k. Afterwards, we discuss some
implications of this bound for dierent choices of paths
and systems.

1. Upper bound to the pseudoprojector operator norm

Dene b such that Φ = b†b for some operator Φ from the
decomposition. When we dene the L×L antisymmetric
matrix ϕ̃ with entries

ϕ̃PR := ϕ(PR) − ϕ(RP ) (49)

we may write

b† =


P<R

ϕ(PR)a†P a
†
R =

1

2



PR

ϕ̃PRa†P a
†
R (50)

Next, apply a Youla decomposition ϕ̃ = VΞVT where V
is an L× L orthogonal matrix and

Ξ =

L/2

m=1


0 ξm

−ξm 0


(51)

if L is even; if L is odd, Ξ has an additional row and
column of zeros. This then yields

b† =
⌊L/2⌋

m=1

ξm ã†2m−1 ã
†
2m (52)

where we dened the rotated fermionic operators ã
(†)
K =

P VPKa
(†)
P . Note that since the vector with entries

ϕ(PR) is a normalised eigenvector, the squares of ξm sum
to unity.

Since ∥Φ∥ = ∥b∥2 = maxΨ⟩ ∥bΨ⟩∥2, in order to obtain
the spectral norm of Φ it is sucient to nd the state
whose norm is maximised under the application of b.
Now, from eq. 52 we observe that b denes a set of pairs

(2m−1, 2m)⌊L/2⌋
m=1 , and only annihilates particles from a

product state


P ã†P vac⟩ if they appear together in these
pairs. As such, it makes sense to describe a product state
in terms of its fermion pairs and its unpaired fermions.
We shall denote a product state as a ket P ,U⟩ where
P is the set of lled pairs and U is the set of remaining
unpaired fermions; in other words,

P ,U⟩ =


i∈U

′
ã†i

 

m∈P
ã†2m−1 ã

†
2m


vac⟩ (53)

where the prime on the leftmost product symbol indicates
that a certain order of the unpaired modes is assumed,
in order to x the sign of P ,U⟩. In this notation, the
matrix elements of Φ are given by

⟨P ,U ΦP ′,U ′⟩ = δUU ′






m∈P ξ2m if P = P ′

ξmξn if P \m = P ′ \n
0 otherwise.

(54)

From eq. 54, it is clear that ∥bP ,U⟩∥ is maximised when
P ,U⟩ lies in the sector with a minimal number of un-
paired fermions (zero if N is even, one if odd). Further-
more, b†b preserves the unpaired fermions, and therefore
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the state Ψ⟩ that maximises the norm must lie in this
sector.

If N is even, all particles in this sector are paired up.
Such paired fermions, then, are equivalent to what are
known as hardcore bosons (HCBs): particles whose oper-
ator algebra commutes at dierent sites, but which may
only singly occupy any given site. In this sense, the set

b†
mvac⟩⌊L/2⌋

m=1 with b†
m = ã†2m−1 ã

†
2m may be viewed as

a single-particle HCB basis, and b†, to which we shall

add a subscript b† = b†
ξ, is then a rotated HCB creation

operator. A universal upper bound on the spectral norm
of a pseudoprojector Φ is now given by

∥Φ∥ ≤ max
∥ξ∥=1

max
Ψ⟩∈HHCB

⌊L/2⌋,N/2

⟨Ψ b†
ξbξΨ⟩ (55)

where HHCB
l,n denotes an l-site, n-particle HCB Hilbert

space. An expression for the right-hand side of eq. 55
was found by Tennie et al. [42, theorem 1]; the upper
bound that follows is

Theorem 1. For even particle number N , a universal
upper bound on the operator norm of a pseudoprojector
Φ is given by

∥Φ∥ ≤ N2

⌊L2⌋ (⌊L2⌋ −N2 + 1) (56)

For N odd, a similar result may be found through the ob-
servation that any eigenstate of Φ with maximum eigen-
value must lie in the sector where all fermions except one
are paired up, for the same reason as discussed above.
The problem of upper bounding the operator norm of
∥Φ∥ is then equivalent to the even case in a Hilbert space
with one less HCB site available. This is formalised in
the following theorem.

Theorem 2. For odd N , ∥Φ∥ is upper bounded by

∥Φ∥ ≤ ⌊N2⌋
⌊L2⌋ − 1

(⌊L2⌋ − ⌊N2⌋) (57)

The bounds of theorems 1 and 2 are also tight.

Theorem 3. Let ℓ = ⌊L2⌋. The upper bound in
the even case, theorem 1, is saturated by taking ξm =
1

√
ℓ ∀m, and taking Ψ⟩ to be the maximally symmetric

state

Ψ⟩ =


ℓ

N2

−1/2 

P:P=N/2

P , ∅⟩ (58)

where the sum runs over all sets P of N2 HCB sites.

The upper bound of in the odd case, theorem 2, is satu-
rated by ξm = 1

√
ℓ− 1 ∀m ̸= ℓ, ξℓ = 0 and

Ψ⟩ =


ℓ− 1

⌊N2⌋

−1/2 

P:P=⌊N/2⌋
ℓ/∈P

P , 2ℓ− 1⟩ (59)

The proofs of theorems 2 and 3 are deferred to appendices
A and B respectively. We note that instead of the ℓ-th
HCB site, the unpaired fermion could occupy any HCB
site.

In typical systems of interest, the particle number N will
scale proportionally to the number of modes L; we have
thus shown that the operator norm of each pseudopro-
jector Φk scales at most linearly in L.

2. Implications

Let us now think about how the above result can be used
to reason about the adiabatic complexity of a choice of
system or path, in terms of the numerator of eq. 47. We
set a baseline with the following bound which applies to
direct interpolation. Dene the residual hamiltonian Hr

in a generic fashion as in eq. 20, and observe that

∥Hr∥ ≤


P<R
Q<S

∥F(PR)(QS) a
†
P a

†
RaSaQ∥

≤


P<R
Q<S

F(PR)(QS) ≤


L(L− 1)2 ∥F∥F (60)

where ∥ · ∥F denotes the Frobenius norm. Given the di-

mensionality of F, it is clear that ∥F∥F ≤ c


L(L− 1)2
for some nonnegative constant c, and thus ∥Hr∥ ≤ O(L2).
The resulting numerator, for direct interpolation, from
eq. 47 then scales as O(L4).

In comparison, consider a fully stepwise scheme where we
adiabatically add every term Hr

k from the eigendecom-
position, eq. 24, separately, i.e. we evolve

Hi  Hi + Hr
k1

 Hi + Hr
k1

+ Hr
k2

 · · ·  H (61)

where A  B denotes a direct adiabatic interpolation
between A and B. In this scheme, at any point in the
evolution, exactly one of the γk (cf. eq. 21) must increase
at a rate scaling in the number of terms (which is O(L2)),
with the rest staying constant (being either 0 or 1). From
the universal result that ∥Φk∥ ≤ O(L), we then have

I1 ≤
 1

0

O(L2)O(L)2d = O(L6) (62)

This indicates that the fully stepwise procedure is un-
favourable as compared to direct interpolation. This is
no surprise: with the work of Tomka et al [33] in mind,
the direct path is a geodesic if the gap is held constant,
whereas the fully stepwise approach is a walk along the
corners of a hypercube in parameter space.

However, we emphasise that these bounds are worst-case
and can be improved in certain settings. Consider, for
example, the standard Fermi-Hubbard model of eq. 13
with the hopping part plus the chemical potential (which
is proportional to the identity in for xed N) taken as
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the initial hamiltonian. The spectral norm of the resid-
ual hamiltonian Hr is easily found to be UN2 = O(L),
leading to I1 ≤ O(L2). Furthermore, since Hr is di-
agonal in the two-particle position basis, all its pseudo-

projectors are of the form Φk = a†Ika
†
Jk
aJk

aIk and thus
have unit spectral norm. Since Hr contains L2 such
terms, a fully stepwise procedure yields the same numer-
ator bound, I1 ≤ O(L2).

On the other hand, the paired fermion formalism may be
used to nd examples which saturate the bounds of both
eq. 60 and 62. To this end, we dene a residual hamil-
tonian Hr and the corresponding operators Φk through
its two-body eigenstates. As we have seen, a fully paired

state Ψ⟩ = (ξ1a
†
1a

†
2 + · · · + ξ⌊L/2⌋a

†
L−1a

†
L)vac⟩, where

ξm = (⌊L2⌋)−1/2 for all m, gives rise to a pseudoprojec-
tor with a maximal norm that is O(L). Since the one-
body basis is free to choose, we can permute the one-
body modes in L − 1 ways such that all resulting two-
body states are fully paired and mutually orthogonal1.
Furthermore, we make use of the fact that the mapping
ξm  −ξm preserves the spectrum of any pseudoprojec-
tor Φ. After all, from eq. 54 we see that ξm appears in
an o-diagonal element ⟨P ,U ΦP ′,U⟩ only if m  P and
m  P ′ or vice versa. Therefore this mapping is realised
by the transformation Φk  ΣΦkΣ where Σ is a diagonal
matrix with a −1 entry in those columns corresponding
to the product state P ,U⟩ where m  P , and a +1 entry
elsewhere. Now we can use this to vary the signs of the
terms in a fully paired two-body state; if L is a power of
two, we can construct L2 vectors ξ that are the (nor-
malised) columns of an Hadamard matrix, so that the
resulting L2 two-body states are mutually orthogonal.
As such, we have dened the L(L−1)2 two-body eigen-
states necessary to describe an interacting hamiltonian,
each of which fully paired.

Now, since we have L(L − 1)2 pseudoprojectors with
maximal norm, the inequality of eq. 62 is automatically
saturated (for any choice of the two-body eigenvalues),
and the adiabatic numerator is maximised for the step-
wise procedure. Furthermore, this construction also at-
tains a maximally scaling numerator in the case of di-
rect interpolation, if we set all two-body eigenvalues to
1. Indeed, consider the sum over all pseudoprojectors Φk

which carry the same pairing (and therefore only dier

1 One way to see this is to draw a complete graph of L nodes
where nodes 2, . . . , L are drawn in a circle around node 1. A full
pairing (also known as perfect matching) may then be found by
selecting an edge from node 1 to any other node and pairwise
connecting the other nodes through edges orthogonal to the rst
edge. In this way, we nd L − 1 pairings without drawing any
parallel edges, guaranteeing that that resulting two-body states
are mutually orthogonal.

in their ξ vectors):



k : same pairing

Φk =


k



mn

ξkmξkn a†2m−1a
†
2ma2na2n−1

=


m

n2m−1n2m (63)

In other words, this particular sum of pseudoprojectors
is an operator that counts all pairs of fermions in a prod-
uct state that coincide with the mode pairs that dene
the pseudoprojectors. As a result, the sum over all pseu-
doprojectors dened in this example is an operator that
counts all possible pairs of fermions, and is therefore sim-
ply equal to N(N−1)2 times the identity. This operator
saturates the bound ∥Hr∥ ≤ O(L2) (under the assump-
tion that LN = O(1)) and therefore realises a maxi-
mal adiabatic numerator scaling of O(L4). This analysis
establishes a condition, expressed in the paired fermion
formalism, on the two-body eigenstates that yields worst-
case numerator scaling for both direct and fully stepwise
interpolation. In addition, it shows that direct interpola-
tion indeed outperforms a fully stepwise protocol in this
sense.

VI. CONCLUSION

In this work, we have proposed a new protocol for adia-
batic preparation of fermionic many-body ground states
based on the eigendecomposition of the (combined one-
and two-body) coecient tensor of the residual hamil-
tonian, being the dierence between the initial and -
nal hamiltonian, in second quantisation. The eigenvec-
tors in this decomposition are equivalent to two-body
eigenstates of the residual hamiltonian. The method de-
composes the residual hamiltonian into a sum of simpler
terms, each of which corresponds to an eigenvalue and
eigenvector from the eigendecomposition. In the adia-
batic scheme, every point along the evolution path is then
a linear combination of these terms.

We have demonstrated how this idea may be applied to
generalised Fermi-Hubbard models, through a few small
worked examples. Our nding is that a level crossing oc-
curring in a direct interpolation from a mean-eld hamil-
tonian, which arises from a discrete one-body symmetry,
can be cured with the two-body decomposition approach.
Although this is not a general superiority result, it shows
the existence of scenarios in which the use of (partially)
piecewise paths resulting from a two-body decomposi-
tion is advantageous as compared to direct interpolation.
More precisely, in this approach, one can design a pro-
cedure which explicitly breaks the symmetry by interpo-
lating through an intermediate hamiltonian which con-
tains only a subset of the hamiltonian terms from the
decomposition. As a result, a gap is seen to be opened.
The conditions for this to occur are rather specic: while
the initial hamiltonian must share a symmetry with the
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target hamiltonian and place the ground state in the in-
correct symmetry sector, the two-particle matrix of the
residual hamiltonian must have degenerate eigenvalues in
order to mix two-particle eigenstates from the relevant
sectors.

Having established this gap opening potential of the two-
body decomposition methodt, we proceeded to analyse
the adiabatic complexity of piecewise paths more broadly,
by examining how the two-body decomposition inuences
the numerator part of the complexity of many-body adi-
abatic state preparation. This numerator is primarily
dependent on the operator norm of each term from the
residual hamiltonian decomposition. We have found that
a description in terms of fermion pairs (or equivalently,
hard-core bosons) is key to understanding the scaling, in
terms of the number of single-particle modes L, of this
operator norm and therefore the adiabatic numerator.
The main result is that each residual hamiltonian term
scales at most as O(L), for a typical system where the
number of particles N scales proportionally with L. This
result has dierent implications, depending on the system
under investigation and the chosen evolution path. For
example, for the Fermi-Hubbard model with the interac-
tion part taken as the residual hamiltonian, the adiabatic
complexity scales as O(L2∆3) both in a direct interpo-
lation, and when following a fully piecewise path. This
is due to the fact that the norm of each residual hamil-
tonian term from the decomposition scales as O(1), and
there are only L nonzero terms. On the other hand, for a
situation in which all two-body eigenstates are uniformly
weighted superpositions of distinct fermion pairs, each
term attains the maximal scaling of O(L); as a result,
the time complexity of direct interpolation in this case
scales as O(L4∆3), whereas under a fully stepwise path
the we nd an O(L6∆3) scaling. Both these scalings

are worst-case. This nding agrees with the statement
by Tomka et al. that a geodesic path in parameter space
is generally benecial in terms of time complexity [33].
The result suggests that one should be selective when
choosing which of the hamiltonian terms from the decom-
position to interpolate in a piecewise fashion, and which
to interpolate directly. Namely, by piecewise interpolat-
ing only those terms which (are expected to) break any
relevant symmetries, one retains the power to lift level
crossings, while avoiding potentially unfavourable scal-
ing in L. We note however that the situation of maximal
scaling is a case where the residual hamiltonian is partic-
ularly dense. In large chemical systems, for example, the
two-electron part of the hamiltonian is typically sparse,
so it is expected that a lower adiabatic numerator can be
achieved for such systems.

All in all, our examples show that the two-body eigen-
decomposition method can outperform direct interpola-
tion through symmetry breaking, and we expect that the
method can be helpful in situations beyond a single reec-
tion symmetry. An example is the nonrelativistic treat-
ment of molecular electronic structure, which maintains
a SU(2) spin symmetry. Another approach could be the
use of a two-body eigendecomposition as a black box if
there is a hidden symmetry and the precise cause of a
gap closure is not straightforward to determine.
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Appendix A: Proof of theorem 2

The proof largely follows that of Tennie et al. [42, theo-
rem 1].

We seek to maximise the expectation value ⟨Ψ b†
ξbξΨ⟩

with respect to Ψ⟩ and ξ. The hard-core boson
(HCB) operator bξ is dened as bξ =


m ξmbm =

m ξm ã2m ã2m−1; in the following, we will use m both as
an index of HCB sites and as a shorthand for the (equiv-
alent) pair of fermionic sites (2m− 1, 2m). Additionally,
we use the attening symbol ϕ to convert between sets
of pairs and sets of fermionic sites,

ϕ((µ1, µ2),   ) = µ1, µ2,    (A1)

In the subspace of maximally paired N -particle states
(with a single fermion left unpaired), Ψ⟩ may be ex-
panded as

Ψ⟩ =


I,i

AI,iI, i⟩ (A2)

where I is a set of fermionic pairs and I, i⟩ =

ã†i


m∈I b
†
mvac⟩, in line with eq. 53. Furthermore, we

dene AI,i = 0 if i  ϕ(I) or I ̸= ⌊N2⌋. The desired
expectation value may then be expressed as

⟨Ψ b†
ξbξΨ⟩ =



I,i
J,j



mn

AI,iAJ,j ξmξn ⟨I, ib†
mbnJ, j⟩

=


I,i
J,j

AI,iAJ,j



m∈I
n∈J

ξmξn δI\m,J\n δij

=


I′,i



mn

AI′∪m,i AI′∪n,i ξmξn

=


I′,i



m

AI′∪m,i ξm
2

 (A3)

In the third line, the I ′ indexes all pair sets of cardinality
⌊N2⌋ − 1.

The way to get to the desired upper bound of this ex-
pression is to insert the indicator functions 1m/∈I′ and
1i/∈ϕ(I′∪m) into the nal line of eq. A3. While these
indicator functions are already incorporated in the de-
nition of the coecients AI,i and hence may seem redun-
dant, they allow for clever use of the Cauchy-Schwarz
inequality in two dierent ways, which leads to a sys-
tem of inequalities from which we can obtain the upper
bound. The rst of these is nearly identical to that pre-
sented by Tennie et al [42, appendix A, eq. A3], and is

as follows,

⟨Ψ b†
ξbξΨ⟩ =



I′,i



m

AI′∪m,i ξm1m/∈I′

2

≤


I′,i



l

A2
I′∪l,i



k

(ξk1k/∈I′)2

=


I′,i



l

A2
I′∪l,i



k/∈I′

ξ2k

=


I,i



l∈I

A2
I,i



k/∈I\l
ξ2k

=


I,i

A2
I,i



l∈I


ξ2l +



k/∈I

ξ2k



=


I,i

A2
I,i


⌊N2⌋



k/∈I

ξ2k +


l∈I

ξ2l



=


I,i

A2
I,i


⌊N2⌋



k/∈I

ξ2k + 1−


l/∈I

ξ2l



= 1 + (⌊N2⌋ − 1)


I,i

A2
I,i



k/∈I

ξ2k (A4)

In the penultimate line, we used the normalisation of ξ,
and in the last line that of Ψ⟩.
For the second way, it becomes important that the un-
paired fermion takes away a site pair that could otherwise
be occupied by a pair of fermions:

⟨Ψ b†
ξbξΨ⟩ =



I′,i



m

AI′∪m,i ξm1m/∈I′1i/∈ϕ(I′∪m)
2

≤


I′,i



l

A2
I′∪l,i ξ

2
l



k

1k/∈I′1i/∈ϕ(I′∪k)

=


I′,i



l

A2
I′∪l,i ξ

2
l (⌊L2⌋ − ⌊N2⌋)

= (⌊L2⌋ − ⌊N2⌋)


I,i



l∈I

A2
I,i ξ

2
l

= (⌊L2⌋ − ⌊N2⌋)

1−



I,i



l/∈I

A2
I,i ξ

2
l




(A5)

Again, in the last line we used the normalisation of ξ and
Ψ⟩.
When we take the appropriate linear combination of in-
equalities A4 and A5, the sum


I,i A

2
I,i


k/∈I ξ

2
k cancels

out,

⌊L2⌋ − ⌊N2⌋
⌊N2⌋ − 1

⟨Ψ b†
ξbξΨ⟩+ ⟨Ψ b†

ξbξΨ⟩

≤ (⌊L2⌋ − ⌊N2⌋)

1 +

1

N − 1


, (A6)

and we nd

⟨Ψ b†
ξbξΨ⟩ ≤

⌊N2⌋(⌊L2⌋ − ⌊N2⌋)
⌊L2⌋ − 1

(A7)

as desired.
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Appendix B: Proof of theorem 3

In the following, let ℓ = ⌊L2⌋. For the even case, when we take ξm = 1
√
ℓ ∀m and Ψ⟩ the maximally symmetric

state

Ψ⟩ =


ℓ

N2

−1/2 

P:P=N/2

P , ∅⟩ (B1)

where P , ∅⟩ = 
k∈P b†

kvac⟩, then a straightforward calculation shows that

⟨Ψ b†
ξbξΨ⟩ =

1

ℓ


ℓ

N2

−1 

P,P′



mn

⟨vac
 

k∈P
bk


b†
mbn

 

l∈P′

b†
l


vac⟩

=
1

ℓ


ℓ

N2

−1 

P,P′



m∈P
n∈P′

δP\m,P′\n

=
1

ℓ


ℓ

N2

−1
ℓ

N2


(N2)(ℓ−N2 + 1)

=
N2

⌊L2⌋ (⌊L2⌋ −N2 + 1) (B2)

In the odd case then, where ξm = 1
√
ℓ− 1 ∀m ̸= ℓ, ξℓ = 0 and

Ψ⟩ =


ℓ− 1

⌊N2⌋

−1/2 

P:P=⌊N/2⌋
ℓ/∈P

P , 2ℓ− 1⟩ (B3)

where P , i⟩ = ã†i


k∈P b†
kvac⟩, we nd

⟨Ψ b†
ξbξΨ⟩ =

1

ℓ− 1


ℓ− 1

⌊N2⌋

−1

P,P′

ℓ/∈P,P′



m,n ̸=ℓ

⟨vac
 

k∈P
bk


ã2ℓ−1b

†
mbn ã

†
2ℓ−1

 

l∈P′

b†
l


vac⟩

=
1

ℓ− 1


ℓ− 1

⌊N2⌋

−1 

P,P′

ℓ/∈P,P′



m,n ̸=ℓ

⟨vac
 

k∈P
bk


(δmℓ ã

†
2m  

= 0

+ b†
m ã2ℓ−1)(δnℓ ã2n  

= 0

+ ã†2ℓ−1bn)
 

l∈P′

b†
l


vac⟩

=
1

ℓ− 1


ℓ− 1

⌊N2⌋

−1

P,P′

ℓ/∈P,P′



m,n ̸=ℓ

⟨vac
 

k∈P
bk


b†
mbn

 

l∈P′

b†
l


vac⟩

=
N2

⌊L2⌋ − 1
(⌊L2⌋ −N2) (B4)

In the last line, we directly used the result of eq. B2.


