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We investigate whether it is possible to teleport the coherence of an unknown quantum state from Alice to
Bob by communicating a lesser number of classical bits in comparison to what is required for teleporting an
unknown quantum state. We find that we cannot achieve perfect teleportation of coherence with one bit of
classical communication for an arbitrary qubit. However, we find that if the qubit is partially known, i.e., chosen
from the equatorial and polar circles of the Bloch sphere, then teleportation of coherence is possible with the
transfer of one cbit of information when we have maximally entangled states as a shared resource. In the case
of the resource being a non-maximally entangled state, we can teleport the coherence with a certain probability
of success. In a general teleportation protocol for coherence, we derive a compact formula for the final state
at Bob’s lab in terms of the composition of the completely positive maps corresponding to the shared resource
state and joint POVM performed by Alice on her qubit and the unknown state. Using this formula, we show
that teleportation of the coherence of a partially known state with real matrix elements is possible perfectly with
the help of a maximally entangled state as a resource. Furthermore, we explore the teleportation of coherence
with the Werner states and show that even when the Werner states become separable, the amount of teleported

coherence is non-zero, implying the possibility of teleportation of coherence without entanglement.

I. INTRODUCTION

Quantum Coherence [1] and entanglement [2] are two
central features in quantum theory that make the theory
counterintuitive and can also be utilised as a resource to
perform important information theoretic and computational
tasks. Motivated by this increasing importance, a general
study from the perspective of resource theory is being
formulated. Several measures based on resource theoretic
approaches are available to quantify the coherence and the
entanglement present in a quantum system [1-19]. Quantum
coherence can be interpreted in several ways, like as a
measure of non-classicality in physical systems, a measure
of superposition, and as a quantity capturing the wave aspect
of the state vector [20-22]. It is also observed that perfect
cloning and broadcasting of quantum coherence are not
possible [23, 24]. Coherence acts as a resource in tasks like
quantum algorithms [25-27], biological processes [28, 29]
quantum metrology [30-34], reference frame alignment [35],
thermodynamic tasks [36—40]. From the point of view of
resource theory, coherence is classified into two classes,
namely speakable coherence and unspeakable coherence[41].
The quantification of coherence involves a chosen basis. In
situations where the labelling of the chosen basis is not
important, the relevant notion of coherence is speakable
one, and in situations where the labelling or the identity of
the basis elements matters, the relevant notion of coherence
is unspeakable one.  Coherence involved in quantum
metrology, reference frame alignment, and thermodynamic
tasks are examples of unspeakable coherence, whereas the
coherence involved in computational, cryptographic, and

communication tasks are examples of speakable coherence.
In the last two decades, several developments have been
made in quantum based technologies. These include quantum
repeaters for communicating over large distances [42],
quantum teleportation [43], broadcasting of entanglement
[44—47]. These were introduced in the process with the vision
of having quantum networks [48—50]. In particular, ”Quantum
teleportation” is one of the most fascinating discoveries of
the 20th century [43]. The entangled states which are useful
for teleportation are identified as well as detected in this
process [51-54]. Research was also done to implement
the teleportation process, if not perfectly but at least with
a certain probability of success [55]. Recently, it has also
been utilized to understand phenomena like closed time-like
curves [56]. It has been demonstrated in the laboratory
with the help of various resources like photonic qubits,
nuclear magnetic resonance (NMR)[57], optical modes [58—
66] , atomic ensembles [67-70], trapped atoms [71-75], and
solid state systems[76—79]. Efficient teleportation was also
achieved in terms of distance [80, 81].

In this article, in general, we address the question of whether
we can teleport the coherence of a quantum state, with a
lesser number of classical bits than what is required to teleport
the state itself. It is already known that teleportation of an
unknown state is possible with the transfer of two classical
bits of information. The process of teleportation of a known
state is known as remote state preparation, and it requires
the transfer of one bit of information for the process to be
(only for equatorial qubit) perfect [82]. It is obvious that once
the entire information of the state is recreated in a different
location, the coherence of the state is also transferred. There
are many instances where it has been seen that the coherence



of the state is not the entire information of the state [23]. So
it becomes a natural question: will the transfer of coherence
in either known or unknown cases require a lesser number of
bits? We find in this article that we are able to teleport the
coherence of a partially known state with one bit of classical
communication and with a maximally entangled resource
when the qubits are taken from equatorial and polar circles. In
addition to that, we show that if we start with a non-maximally
entangled state as a resource, then we can teleport coherence
probabilistically. Here we came up with a compact formula
for the final state at Bob’s lab. This is done in terms of the
composition of the completely positive maps corresponding
to the shared resource state and the joint POVM performed
by Alice to her qubit and the unknown particle. With this,
we also find out the amount of coherence that is teleported
when we have the shared resource state as the maximally
entangled mixed states and Werner states. We also discuss the
general teleportation of coherence for an initial mixed state as
an input state at Alice’s lab. The results of the article stand
out from the perspective of transferring the coherence of a
coherent state to a state where there is no coherence. This is
important in a quantum network since coherence is a useful
resource. In a quantum network, one node can teleport the
coherence to another node where it is required. Here we show
that this is possible without actually transferring the entire
information of the state. Interestingly, we are able to show
this can be done much more cost-effectively with a lesser
number of classical bits if the states are from the equatorial
or polar circles. Our results are useful from the perspective
of work extraction as well. Korzekwa et al. [83] have
shown the existence of thermal machines that can extract work
from coherence arbitrarily well. These machines only have
to operate on individual copies of a state. When Alice and
Bob share a maximally entangled state, before teleportation of
coherence, the coherence at Bob’s side is zero, and hence no
work extraction is possible. However, after the teleportation,
Bob can use the teleported coherence for work extraction.
The paper is organized as follows: In Section II, we study the
possibility of the teleportation of quantum coherence of a pure
state with maximally as well as non-maximally entangled
resources using fewer cbits. In Section III, we investigate the
same for an arbitrary mixed state with maximally entangled
mixed state and Werner state as resources and demonstrate
the possibility of teleporting some fraction of the initial
coherence without entanglement. We conclude the article in
section IV.

II. TELEPORTATION OF QUANTUM COHERENCE
WITH PURE ENTANGLED STATES AS A RESOURCE

In this section, our aim is to address the question of whether
we can perfectly teleport the coherence of an unknown state
with a lesser number of classical bits than what is required for
the teleportation of the state. Before we present our protocol,
let us briefly recapitulate the notion of quantum coherence.
Let H = C? be the d dimensional Hilbert space associated

with the qudit of our consideration. Here, S(#) is the set of
positive trace-class linear operators, with trace being 1 on the
Hilbert space H. For a state p € S(#), the coherence of the
state is given by Cy, (p) = Ziﬁj [{i|p|7)], where {]7)} is an
orthonormal basis of H . It is clear from the definition that the
l;-norm of coherence is basis-dependent. The states which
are diagonal in the matrix representation with respect to this
chosen basis are defined as incoherent states. Therefore,
the incoherent states are of the form p = Zle Aila) (il .
Let us denote the set of all incoherent states by I C S(H).
Quantum operations on a physical system are mathematically
represented by a completely positive and trace-preserving
(CPTP) linear map ® : B(H) — B(H) with B(#) being
the set of bounded linear operators on H. It is well known
that the action of a CPTP map ¢ on a quantum state p can be
represented as ®(p) = > KipKZT, where > KZ.TKi =1
with I being the identity operator on H. This representation
of a CPTP map is known as the operator-sum representation,
and the linear operators K; : H — H are called Kraus
operators. Given a CPTP map, its Kraus representation is not
unique. A quantum operation P is said to be incoherent if
K;IK! c Iforalli=1,..,n.

Now any measure of coherence C is defined to be a
functional from the set of quantum states to the non-negative
real numbers such that the following constraints are obeyed.
i) C(p) = O for all p € I, i.e., for all incoherent states, the
measure of coherence is zero.

ii) The measure of coherence should not increase under
incoherent operations. If A is an incoherent operation, then
C(A(p)) < Clp)

iii) It is strongly monotonic: It does not increase
under selective incoherent operations on average, i.e.,
C(X,pipi) < C(p) for all {K;} with 3, KJK; = T and
K,IK] C I, where p; = Tr(K;pK) and p; = KPLKT

Let us denote the system whose state is the unknown quantum
state [¢) as system 17, one part of the shared state at Alice’s
lab as ”system 2" and the other part at Bob’s side as ’system
3”. We imagine that Alice and Bob share an entangled pair in
the maximally entangled state |®T )55 = % (100) +111)). An

unknown state p1 = [¢)(¢| is given to Alice, and it has C'(p;)
amount of coherence. We consider a general scenario where
Alice performs a joint measurement II; which is a positive
operator-valued measure (POVM) on the input particle and
half of the entangled pair, and ) _, II, = I. Now, depending on
the measurement outcomes, the reduced state of Bob, which
is unnormalised, can be written as

p$) = Trio [ (o1 © [@)(P)ITEY]. (1)

Where we have adopted the notation that Hgg) means HEQ 1L
After Alice communicates the measurement outcome to
Bob via a classical channel, Bob performs a local unitary,
and we expect the coherence of the state at Bob’s location
to have the same coherence as that of the input state, i.e.,

C (pg’)) = C(p). If this condition holds, then we say that
teleportation is complete.



In this article, we start with a two-level system as an input and
an arbitrary two-qubit shared state as a resource. In particular,
we also consider both maximally and non-maximally
entangled states as shared resources. For an unknown qubit
on Alice’s side, we ask the question whether we can teleport
the coherence of the qubit to Bob’s side with 1 bit of classical
communication or not. In each of these cases, we find that we
cannot do it perfectly with one bit of classical communication
universally. However, if we have a maximally entangled state
as a resource and we have partial knowledge about the state
of the input qubit, i.e., it is chosen from one of the two great
circles (equatorial and the polar circle) on the Bloch sphere,
coherence teleportation is possible perfectly with the use of
one cbit.

A. Teleportation of Coherence of a Qubit with Maximally
entangled state as a resource

The main idea is to teleport the coherence of an unknown
state |¢)) from Alice’s lab to Bob’s lab, rather than the state
itself. If, with the help of only one cbit, Alice can teleport a
state at Bob’s lab that has the same [;-norm coherence as the
unknown state, 1)) = «|0) + 8|1) € C?, where « and 3 are
complex numbers such that |«|? + |3]2 = 1, then the purpose
is fulfilled.

The unknown quantum state |¢) can be represented as

1) = cos(8/2)|0) + sin(6/2)e™|1) )

where 0 and ¢ with 0 < § < 7w and 0 < ¢ < 27 (the exact
value of # and ¢ are not known to us). The coherence of
the state |¢)) in terms of these parameters with respect to the
computational basis {|0}, |1}} is C(¢)) = 2|aB| = sin 6. Our
aim is to have C'(¢)) = sinfl amount of coherence at Bob’s
lab at the end of the protocol.

In the standard teleportation protocol, Alice and Bob share a
maximally entangled state [®)o3 = |®T)o5 = %(|00>23 +
|11)93) as resource. It is evident that if we teleport the
unknown state itself, then the coherence also gets teleported.
The [;-norm coherence of all those states (before Bob’s
unitary operation) is 2 cos(6/2) sin(#/2) which is the same as
the coherence of the initial state. However, this still requires
two bits of classical information.

However, the interesting question will be whether perfect
teleportation of coherence can be done with lesser number
of cbits. The main idea is that instead of doing Bell
measurement, we do POVM measurement by adding different
Bell projectors in various combinations. Given four Bell
projectors, there are only three different ways we can add
them to form a complete measurement. Let us consider the
following situation where the state shared between Alice and
Bob is

1
V2

Case I: Let Alice and Bob share a maximally entangled state
|®T). The combined state of the input and the shared state

|©F) = —(|00) + [11)), 3)

can be expressed as

3
Pye o) =2 3" |B) © ulv), @

=0

where | B;) are the four mutually orthogonal Bell states and u;
are the local unitary operations (I, 0,0y, 02).

Alice instead of performing Bell measurement, performs
the following POVM on the input and half of the entangled
pair

) = @) (@F] + [wH)(w], )

Iy = @7 )(@ |+ [T ) (e . ©6)

where |®*) and |¥*) are standard Bell states given by

) = %(\om ), )
W) = %aow + [10)), ®)
W) = —(jo1) - [10)). ©)

QI

2

After Alice performs the measurement given by the POVM

element Hgg) she communicates her result to Bob. The state

of the particle at Bob’s lab is given by
0 1 0 0
A = Tl (9) (0] @ [0 ) @S],

where po = Trips[I) (W) (0] © [@%)(@*)Iy)
Therefore, Bob’s state can be expressed as

o = &+ Re(aB")(0)(1] + [1){0]).

For the measurement with the POVM element H%), the
state of the particle at Bob’s lab is given by

1
i) = S TrialII) () (0] © 9 (@ DIy,

where pi = Trigs[Iy ([9)(¥] @ |@+)(@*)f)].
Therefore, Bob’s state can be expressed as

o = L Re(as)(0) (1] + 1) 0)).

The coherence of the state at Bob’s site for both the case is
Cn = 2|Re(afB")]
= cos(¢)sin(0)
# sin(0).

Interestingly, this equality will hold when cos(¢) = 1. This
condition actually tells us that if we have partial information
about the state of the qubit, i.e., it comes from the equatorial



circle, then the teleportation of the coherence will be possible
with the help of only one cbit.

Case II: In this case, Alice performs the following POVM on
her part,

EY) = @T)(@F| + | )(T|

By =07 )(@ | + [Wt)(u

The state at Bob’s part after Alice performs the measurement

with POVM element Eig) and communicates to Bob, is given
by

1
o = Trial B (v)wl @ [0) (@ LY

where py = Trig[BS ([4)(] ® [@7)(@+)EY)].
Therefore, Bob’s state can be expressed as

o = £ 4 itm(a87)(10) (1] ~ [1)0).

The state at Bob’s part after Alice performs the measurement

with POVM element Eg) and communicates to Bob, is given
by

1
) = TealE () (0] © [0°) (@ B

where pi = Triss[Efy ([0) (4] @ [@F)(@* ) Ef})]. Bobs
state in this case can be expressed as

o) =~ itm(08")(0) 1] ~ [1)(0)

Now the [1-norm coherence of these two states turns out to
be:

0 1 ¥
Cur(ps”) = Cu(p5”) = 2|Im(ap")|
= 2sin ¢ cos(0/2) sin(0/2)
# 2cos(0/2)sin(0/2).
Interestingly, the equality will hold when sin(¢) = 1. Like
the previous case, if the qubit is partially known, i.e., it comes

from the polar circle, then the teleportation of coherence is
perfectly possible with the use of only one cbit.

Case III: If Alice performs the following POVM on her part,

0 _ _
FY = oty @]+ ]2 )@,

P = (W) (U] [0 ) (0.

The state at Bob’s part after Alice performs the measurement

with POVM element ng ) and communicates to Bob is given
by

1
o = ~TralF (v w0 [0*) (@ DFS)

4

where po = Trig[F{y ([¥)(¥] @ [®+)(@+) ).
Therefore, Bob’s state can be expressed as

o 1
p3 _2

The state at Bob’s part after Alice performs the measurement

with POVM element Fl(zl) and communicates to Bob is given
by

1 1 1 1
o) = ~TralF (v © 10*) (@* P

where pi = Trigg[F ([9)(] @ [0+) (@),
Therefore, Bob’s state can be expressed as

w_ I
p3 _2

So, in this case, with the help of one cbit, it is not possible
to teleport the coherence of the qubit, even if it is partially
known, as the final state has zero coherence. We show that
perfect teleportation of coherence is not possible universally
with maximally entangled state as a resource and POVM
measurement on Alice’s side with the transfer of one cbit
of information. However, if the input qubit happens to be
from the equatorial and polar circles, then we can perfectly
teleport the coherence of the qubit with the help of one cbit of
information.

When the partially known qubit is not from the equatorial
and polar circles of the Bloch sphere, it is interesting to
see whether Bob can increase the teleported coherence by
applying any general unitary transformation on his part after
receiving the cbit from Alice so that the coherence of his qubit
becomes the same as the original coherence at Alice’s side.
Consider a general SU(2) matrix,

b
U2><2 = |:_(Z* 0/*:| )

where a and b are complex numbers such that |a|? + |b]? = 1.
In Case 1, after the application of U, the new state denoted by
pu will be,

pu = Upy°UT
[ 1/2 Re(aﬁ*)} Ut
Re(ap*) 1/2 '

The [;-norm coherence comes out to be:

Culpv) = 2|Re(af)||(a® — b°)]
= 2|Re(af*)| /1 — (2Re(ab*))? (10)
# 2| |B].
Note that the maximum possible value of the quantity
1 — (2Re(ab*))? is 1. The RHS of Eqn. (10) can at most be

2Re(a5*) which is not equal to 2|a|| 5|, So the application of
unitary operators on Bob’s part does not give any significant




advantage. Similarly, for the other cases, it can be shown that
there is no general unitary operator that can take all possible
Bob’s states to the state which will have the coherence of
the original states. Hence, although perfect teleportation of
quantum coherence is possible for specific classes of states
(states from the equatorial and polar circles), universally it is
not possible even if Bob applies any unitary transform on his
part.

B. Teleportation of coherence with the help of non-maximally
entangled state:

Here we investigate whether we can teleport the coherence
of an unknown state using a non-maximally entangled state
and by communicating one cbit of information. We will see
that indeed it is possible with a certain probability of success
if we have partial knowledge about the state.

Let the state shared between Alice and Bob be the following:

[®)ap = (100) + n|11)), (11)

1
V14 |n|?

where n is a complex number. Now let us consider the
following four mutually orthonormal vectors, which form a
basis of C? @ C? .

i (|00) + n|11
|®,) = \/7|2| +n|11)),
B =~ (07100} = 1),
Ut (|01) + n*|10
wy) = \/7|2‘ +n*[10)),
;) = Wigar: (n]01) — [10)).

Notice that these are non maximally entangled vectors in
C? @ C2

Case I: Alice will perform the following POVM to her part:

612 = @I NR ]+ [T, (T,
efy) = | )@y | + ) ().

The state at Bob’s part after Alice performs the measurement

with POVM element elg) and communicates to Bob, is given
by

—

p@——ﬂmhﬂwwm@ﬂ@ﬂqﬂ

where po = Tria3[el%) (|4) (1] @ | @) (;F])ely]. Therefore,

Bob’s state can be expressed as
nf*

1+|n

FON 1
3 1+ |n|*
n|?

1+ |n|*
|n|?

10){0] + |4|1><1|+

2ilm(aB")[0) (1] -

The probability of success for the POVM egg) to be clicked is
_Atn|*

given by pg = (1+\"| [CESTBER
The coherence of the state at Bob’s side is given by

4jn?
T+
= 12'_ ||n42s,ingz5cos(0/2) sin(6/2)
# 2cos(0/2)sin(0/2).

Cu(ps”) =1

[Im(af”)|

Unlike the case discussed in the previous section, even if the
state of the input qubit is partially known, i.e., it is from the

polar circle of the Bloch sphere, the coherence is not perfectly
2|n|?

teleported. It is TP

times the original coherence.

The state at Bob’s part after Alice performs the measurement

with POVM element 6512) and communicates to Bob is given
by

1
o) = - Triledy (1) (0] @ 1) (@7 ety

where p; = Trios[el) (|v) (0] ® |®3)(D:F|)el)]. Therefore,
Bob’s state can be expressed as

RO g + 2iIm(aB*)|0)(1] — 2iIm(af*)|1)(0).

This probability that the POVM e} will click is given by
2fnf?
PL= TPy

The coherence of this state is given by

Cuu(ps”) = 2/Im(ap")

= 25sin ¢ cos(6/2) sin(0/2)

# 2cos(0/2) sin(6/2)

In this case if the partially known state happens to be from
the polar circle of the Bloch sphere, then the coherence is
perfectly teleported.

Case II: Alice performs the following POVM to her part:

T = [N (@ |+ W) (U,
Ty = 0, (@ |+ [0 ) (.



The state at Bob’s part after Alice performs the measurement
with POVM element ﬂ'g) and communicates to Bob is given

by
1
P = p—OTm{mz (1) (| @ |@F) (@ )i,

where pg = Tr123[77$)(|1/1><1/)|®|<1>+>< |)7r§g)] Therefore,
Bob’s state can be expressed as

o 1 _nl® \2
" Inf 2Re(a)|O)1]
(1 + [n?)(lef? + B2 [n?)
2
; In 2Re(0f")[1)(0).

(L +[n2) (el + |57 |n]?)

The probability that the POVM 79 will click is given by
po = _ lel’+181%|n)?

(I+n?) -
The coherence of the post-measurement state on Bob’s side is
given by

Afn|?
(1 + o) (laf? + 82 [n]?)

Here also, unlike the case discussed in the previous section,
even if the partially known state is from the equatorial circle
of the Bloch sphere, the coherence is not perfectly teleported.

. 4|n|?
Itis ey TP+ arme

o (p) = |Re(af*)|.

| times the original coherence.

The state at Bob’s part after Alice performs the measurement

with POVM element ﬂ;) and communicates to Bob is given
by

1
p) = p—lTTlZ[le (1) (] @ [ ) (@),

where p1 = Trigs[r\ s (|00) ()| ® |®F)(D:+|)7'Y)]. Therefore,

Bob’s state can be expressed as

[n?

(1) 1
P = 0)(0] +
3 2| >< | 1 | |2

1+ |n|
n|?
(1 + [n?)(le?[n]? + [B[?)
n|?

Alalnf> +1812)

The probability that the POVM i} will click is

M
P1=""a¥mp) -

|

2Re(af")[0)(1

T 2Re(af™)|1)(0].

The coherence of this state is given by
Afn|?
(1 +[nl)(|el?n> + 18[%)

Here, too, perfect teleportation of coherence is not possible,
unlike in the case discussed in the previous section, even if

o (p$)) = |Re(af*)|.

the partially known state is from the equatorial circle of the
4|n|?
(A+n?)([al?[n[>+]B]

Bloch sphere. It is
coherence.

2)| times the original

Case III: In this case Alice performs the following POVM to
her part:

o) = @) (@) + @ )(D;],
(” = (WU + [0 (]

The state at Bob’s part after Alice performs the measurement

with POVM element fl(g) and communicates to Bob is given
by

1
o = —Tral £ (v (] © [0F) (@ DAY

DA

where pg = Trlgg[ V(1) (] @ | ) (D 5’|. Therefore,

Bob’s state can be expressed as

2
o _ o] 00
P3 |a|2+|5‘2‘n|2| >< ‘
|BI2|n >

—_————11)(1].
T +18meE VY

The probability that the POVM £ will click is given by

— lel®+182|n|?
Po 1+[n[? .

In this case, the coherence of this state is zero. This is not
useful for the teleportation of coherence.

The state at Bob’s part after Alice performs the

measurement with POVM element f, (1) and communicates to
Bob is given by

1
A = - Tralfly) (10) (W] @ |@5)(@5 D),

where p1 = Tr123[ 13 (|4) (] @ | @) (®75]) £(5)]. Therefore,

Bob’s state can be expressed as

) — ElR
lo|2[n[? +|B]?
n |af?|n[?
al?|n|? +|B]2

10){0]
1) (1.

The probability that the POVM f 1(%) will click is

lof?In]® +]8*
p1= 1+[n]? .

We see that the coherence of the post-measurement state is
Zero.

So, we observe that only in the Case I, perfect teleportation
of coherence is possible probabilistically, with the probability

being ﬁ when the partially known states are from the

polar circle of the Bloch sphere.



III. TELEPORTATION OF COHERENCE WITH
ARBITRARY SHARED STATE AND ARBITRARY POVM
MEASUREMENT:

In this section, we will talk about the teleportation of
the coherence of an arbitrary state (pure and mixed) with
the help of an arbitrary shared state and by considering
in general arbitrary POVM measurements. Consider two
finite-dimensional Hilbert space H; and #H. over the field
of complex numbers, with the dimension of H; being n.
Let us consider a linear map ® : B(H1) — B(H>), where
B(H) is the vector space of bounded linear operators on .
Let {e;; = [i)(j|}};—; be a complete set of matrix units
for B(H1). Then operator ps = >, eij @ ®(ey;) €
B(H1) ® B(H2) is known as the CJKS matrix [84-88]
corresponding to ®. It can easily be verified that the map
® — pg is linear and bijective and is called the CJKS
isomorphism.

CJKS theorem on completely positive maps [84-88]. The
CIKS matrix py = 3. eij @ ®(ei;) € B(H1) @ B(Ha)
is positive if and only if the map ® : B(H1) — B(H2) is
completely positive.

From the above theorem, we conclude that for any state 7 and
POVM E belongs to B(H1) ® B(Hz) can be written as the

Now

Tr(pBA)

following for two completely positive map 7" and @5

o= e @T(es)) (12)
i,j=1

FE = Z €ij (9 @E(eij) (13)
ij=1

In the following theorem, ®%, denotes the completely positive
map whose Kraus operators are the complex conjugate of that
of the completely positive map .

Theorem: Let Alice have the unknown state p whose
coherence she needs to teleport to Bob. Let the shared state
between Alice and Bob be 7. If Alice performs a general
measurement with a POVM element E and communicates the
result to Bob, then the state at Bob’s lab is pp = T o ®},(p),
where T is the completely positive map corresponding to the
shared state 7, @7, is the complex conjugate of the completely
positive map corresponding to the POVM element E and “o”
represents composition of the two maps.

Proof. The reduced state at Bob’s location is pp =
Tri2(WE @ T)(p @ 7)(VE @ T)). Let A be any operator on
the Hilbert space associated with Bob.

=Tr(Tri(VE® D) (p@ 1) (VE®1)A) = Tr((p® 7)(E @ A)) (14)

=Y Trilp®@ei; @ T(eiy) (e ® P(ern) @ A)]

0,3,k

=Y Trilpe i)l @ T G (k)1 © (k) © A)]

0,9kl

= D > (Uplk) (M, |R) UMD T[T (1) () A]

0,4,k P

= D D UMD Uplk) (kM| TrIT(16) (51)A]

B4kl P

= Z@'I > My (M) ) Tr(T(1i) (i) A]

= SRR (HTHT(0) ) A

= Tr[T(®g(p))Al

As A is arbitrary, we conclude that

pp =T o ®p(p) (15)

A. Teleportation of coherence using mixed entangled state as a
resource :

In this subsection, we study the teleportation of coherence
using mixed entangled states as a resource state, unlike
pure entangled states in the previous subsections. Here, we
consider two types of mixed entangled states as examples of



resources that can be used. These are (a) Maximally mixed
entangled states (b) Werner states.

Maximally Entangled Mixed States: This class of two qubit
states appeared first in [89, 90]. It has the maximum amount
of entanglement because no global unitary transformation can
increase the entanglement of formation or even the negativity
of entanglement of the states in this class. Let Alice and Bob
share a two-qubit maximally entangled mixed state given by
the following:

7= p1 [T (U | + p2|00)(00] + p3|TT) (U] + pg|11)(11]

where p1, p2, p3 and py are probabilities in decreasing order,
ie., p1 > p2 > ps > pyg. Alice performs the following
POVMs on the input and half of the entangled pair

) = [@+) (@] + W) (U], (16)

Y = @)@ |+ [T )(w . (17)

Let Alice perform the measurement given by the POVM

element H:(L ) she communicate her result to Bob. In this case,
®% and T are given by the following equations:

=A+o0,A0,

= proyAay + p2(0/4]0)|0) 0]

+p302 Aoy + pa(1A[D)[1)(1]

where A belongs to the set of bounded linear operators on the

Hilbert space associated with Bob. The state of the particle at
Bob’s lab is given by

=Td% = —— (p1ospo, + pioypo
PB E(p) 1+p1—|—p3(p1 P P10y POy

+p30:p0x + p3p + p2(|0)(0 + pa[1)(1]). (18)
The coherence of this state is given by

4|p1 p3| | (

C(pB) = T+ pr & ps

po1)| - (19)

The concurrence of
entangled mixed state is

the above-mentioned maximally

C(r) = max{0, p1 — p3 — \/P2pa} (20)
Assuming ps = 0 the concurrence reduces to C(7) = p; — ps.
From Eq. (18) we get
2C(7)
C =——""2|R
(pB) 1+ p1 +ps | Re(po1)|
2C(1)
—C
T 1+pi+ps (°)
2C (1)
— 21
< HC(T)C(/)) 2D

When POVM H%) clicks and Alice communicates the result

to Bob, then the state at Bob’s place is the same as the Eq.
(18) and hence the relation between the coherence at Bob’s
place and the unknown state obeys the Eq. (21)

Wener States: Now let’s assume that Alice and Bob share the
Warner state 7 = p|U—)(U~| + %H with 0 < p < 1 and
Alice performs a measurement using the POVM described by
Eq.(16) and Eq. (17). If POVM given by Eq. (16) clicks and
Alice communicates the result to Bob, the state at Bob’s place
is given by

1—
p = poypo, +po.po. + — L (22)

The coherence of the above state with respect to the
computational basis is as follows:

2p
C = — 2R 23
(o5) = 14 2Be(po)]. @)
If the POVM described by Eq. (17) clicks and Alice
communicates the result to Bob, then the state at Bob’s place
is given by

PB = POzpog + pp + %H- (24)
The Coherence of the above state is the same as in Eq. (23).
It is a well-known fact that the Warner state is separable when
p < i. From the Eq. (23) we clearly see that the Teleported
coherence is non zero for 0 < p < % Hence, we conclude
that it is possible to teleport coherence without entanglement.

B. Teleportation of coherence of an unknown mixed state:

At last, we consider the case of teleportation of coherence
of an unknown mixed state with maximally entangled state as
a resource and POVM described by Eq. (5) and (6). In this
case the completely positive map 7' is the identity map and the
map (I)Eg‘;) and @;5 y is given by the following equations,

;I(O) (,0) =p+0zp0; (25)
12
;Iglz) (p) = 0,p0; + Oypoy (26)

So the state at Bob’s place when the outcomes of

the measurements of the POVMs Hgg) and H%) are
communicated to Bob is given by:

(0) — p* (0)( )

1
A =

=p+ 0pp0z, (27)
nw(p) = 0zpos +oypoy. (28)

In both cases, the coherence w.r.t.
turns out to be equal and is given by:

the computational basis

O(PSE?)) = C(Pg)) = |po1 + p1o] (29)
<|po1| + |p10] (30)
< C(p) (31)



Clearly, the teleported coherence is less than or equal to the
original coherence, even in the more general scenario when
the unknown state is a mixed state. However, if we have
partial knowledge about the state, i.e., the matrix elements of
the state are real, then the teleported coherence is equal to the
original coherence.

IV. CONCLUSION

Quantum Coherence being a useful resource in various
information processing tasks, it is of utmost importance to
transfer the coherence of a coherent state to a state where there
is no coherence. This is required in a quantum network where
one quantum processor can teleport the coherence to another
quantum processor if there is a requirement. Therefore, it
is important to know if it is possible to teleport coherence
without actually transferring the entire information of the
state. Interestingly, we are able to show that this can be done
with a lesser number of cbits for the states that are taken from
equatorial and polar circles.

In summary, we have addressed the question of whether
we can teleport the coherence of an unknown state with the
transfer of a lesser number of classical bits. We show that

by transferring one cbit of information, we can teleport the
coherence only for states which lie on the equatorial and polar
circles. This is done when we have a maximally entangled
state as a resource. However, for a non-maximally entangled
state, we can teleport coherence, if not deterministically
but with a certain probability of success. We have also
investigated the possibility of teleportation of coherence using
two qubit maximally entangled mixed states and Werner
states as resources. We observe that even when the Werner
state is separable, the teleported coherence is non-zero,
which indicates that the teleportation of coherence is possible
without entanglement. In a nutshell, we are able to provide
a cost-effective way to teleport coherence as a resource to a
place where there is a requirement of this resource. This is
done without actually transferring the state.
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