
ar
X

iv
:2

40
9.

14
55

9v
1

 [
cs

.D
S

]
 2

2
S

ep
 2

02
4

Computing String Covers in Sublinear Time

Jakub Radoszewski1,⋆[0000−0002−0067−6401] and Wiktor
Zuba2,⋆⋆[0000−0002−1988−3507]

1 University of Warsaw, Warsaw, Poland jrad@mimuw.edu.pl
2 CWI, Amsterdam, The Netherlands wiktor.zuba@cwi.nl

Abstract. Let T be a string of length n over an integer alphabet of size
σ. In the word RAM model, T can be represented in O(n/ log

σ
n) space.

We show that a representation of all covers of T can be computed in the
optimal O(n/ log

σ
n) time; in particular, the shortest cover can be com-

puted within this time. We also design an O(n(log σ + log log n)/ log n)-
sized data structure that computes in O(1) time any element of the so-
called (shortest) cover array of T , that is, the length of the shortest cover
of any given prefix of T . As a by-product, we describe the structure of
cover arrays of Fibonacci strings. On the negative side, we show that the
shortest cover of a length-n string cannot be computed using o(n/ log n)
operations in the PILLAR model of Charalampopoulos, Kociumaka, and
Wellnitz (FOCS 2020).

Keywords: Cover · Quasiperiod · Cover array · Packed string matching
· PILLAR model

1 Introduction

A string C is called a cover (or a quasiperiod) of a string T if each position in T
lies within an occurrence of C in T . A cover is called proper if it is shorter than the
covered string. A string that does not have proper covers is called superprimitive

(see [6]). The shortest cover of a string of length n can be computed in O(n)
time [1]. Furthermore, all covers of a length-n string can be computed in O(n)
time [33]. A cover of a string is a prex of the string, so a string of length n
indeed has at most n covers.

The lengths of all covers of a string of length n can be represented using
O(log n) disjoint arithmetic progressions [16]. For a string T , we denote such a
representation as Covers(T). A similar representation is well known to exist for
the set of all borders of a string (see, e.g., [14]).

We consider the standard word RAM model with machine word composed of
ω ≥ log2 n bits. In this model, a string of length n over an alphabet of size σ can
be represented using O(n/ logσ n) machine words, that is, O(n log σ) bits, in a
so-called packed representation; see [4]. In Section 3 we show the following result
that improves upon [1,6,33] in the case that the string is over a small alphabet.

⋆ Supported by the Polish National Science Center, grant no. 2022/46/E/ST6/00463.
⋆⋆ Supported by the European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie Sklodowska-Curie Grant Agreement No 101034253.

2 J. Radoszewski and W. Zuba

Theorem 1. A representation Covers(T) of all the covers of a string T of length

n over an alphabet of size σ given in a packed form, consisting of O(log n)
arithmetic progressions, can be computed in O(n/ logσ n) time.

The representation Covers(T) can be transformed in O(n/ logn) time to a
Boolean array of size n, represented in a packed form, that stores for every
ℓ ∈ [1 . . n] a Boolean value that determines if a length-ℓ prex of T is a cover of
T .

ℓ:

T [ℓ− 1]:

CovT [ℓ]:

a b a a b a

a b a

a b a a b a

a b a

a b a

a b a

a b a a b a b a a b a a b a b a

a b a a b a b a

1 2 3 4 5 3 7 3 9 5 3 12 5 3 15 3 9 5 3 20 3

a b a a b a b a a b a a b a b a a b a b a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 1: Both proper covers (aba, abaababa) and the cover array of a Fibonacci
string T . Values CovT [ℓ] = ℓ corresponding to superprimitive prexes T [0 . . ℓ)
are shown in gray.

The (shortest) cover array of a string T , CovT [1 . . |T |], stores for every posi-
tion ℓ of T the length of the shortest cover of a length-ℓ prex of T as CovT [ℓ]; see
Fig. 1. The cover array is the output of Breslauer’s on-line algorithm computing
shortest covers [6]; see also [15]. We give a sublinear-sized representation of this
array.

Theorem 2. Let T be a text of length n over an integer alphabet of size σ.
There exists a data structure using space O(n(log σ+log logn)/ logn) that, given
ℓ ∈ [1 . . n], returns CovT [ℓ] in O(1) time.

Our results extend the list of basic stringology problems for which repre-
senting the input in a packed form allows to obtain an o(n)-time solution;
see [2,4,9,12,26,34].

As a by-product, we give a characterization of the cover arrays of Fibonacci
strings (Theorem 5).

We also consider covers in the PILLAR model. This model was introduced
in [10] with the aim of unifying approximate pattern matching algorithms across
dierent settings. In this model, we consider a collection X of strings and assume
that certain primitive PILLAR operations can be performed efficiently. The set
of primitive operations consists of computing the length of the longest common
prex (LCP) or suffix (LCPR) of substrings of strings in X , so-called internal pat-
tern matching (IPM) queries that ask for the set of occurrences of one substring

Computing String Covers in Sublinear Time 3

in another substring that is at most twice as long, represented as an arithmetic
progression, as well as simple operations allowing to access letters of strings.
(For a formal denition, see Section 5.)

The strength of the PILLAR model lies in the fact that efficient implementa-
tions of its primitives are known in many dierent settings:

– In the standard setting, in which all strings in the collection X are substrings
of a given string of length n over an integer alphabet of size σ, each PILLAR

operation on its substrings can be performed in O(1) time after O(n) pre-
processing [5,19,31] and even after just O(n/ logσ n) preprocessing [26,30].

– In the dynamic setting, the collection X can updated dynamically under edit
operations (insertions, deletions, substitutions) with each edit operation and

each PILLAR operation performed in O(logO(1)N) time, where N is the total
size of X [10,27].

– In the fully compressed setting, given a collection X of straight-line programs
(SLPs) of total size n generating strings of total length N , each PILLAR

operation can be performed in O(log2 N log logN) time after O(n logN)-
time preprocessing [10].

– An efficient implementation of the PILLAR operations is also known in the
quantum setting [23,25].

Thus if a problem can be solved fast in the PILLAR model, it immediately
implies its efficient solutions in all the above mentioned settings. For example,
the fact that an O(log n)-sized representation of all the periods (equivalently,
borders) of a length-n string can be computed in O(log n) time in the PILLAR

model [30,31, Period Query] implies that a representation of the periods of a

dynamic string can be updated in O(logO(1)N) time per operation and that a
representation of all periods of a fully compressed string of length N generated
by an SLP of size n can be computed in O(n logO(1) N) time. In the case of
covers, some efficient algorithms were designed for each of the above mentioned
non-standard settings separately:

– In the internal setting, which is a special case of the standard setting, after
O(n log n) preprocessing of a length-n string T , one can compute a represen-
tation of all covers of any substring of T in O(log n log logn) time and the
shortest cover of any substring in O(log n) time [16,3].

– In a restricted dynamic setting in which each edit operation is reverted im-
mediately after it is performed, the shortest cover can be updated in O(log n)
time [32]. No algorithm is known for computing covers in the fully dynamic
setting.

– In the fully compressed setting, a representation of all covers of a length-N
string specied by an SLP of size n with derivation tree of height h can be
computed in O(nh(n + log2 N)) time [24]; with the technique of balancing
SLPs [22], the time complexity becomes O(n logN(n+ log2 N)).

The O(n)-time algorithms for computing covers of a length-n string [1,6,33]
perform only single-letter comparisons and thus work also in the PILLAR model.

4 J. Radoszewski and W. Zuba

If there was a (much) more efficient algorithm computing the shortest cover of
a string in the PILLAR model, one would immediately improve or generalize all
the above results, including our Theorem 1. We show that, contrary to the case
of periods, no such efficient algorithm for covers exists. A proof of Theorem 3 is
given in Section 5.

Theorem 3. There is no algorithm in the PILLAR model that solves any of the

following problems for a length-n binary string in o(n/ logn) time:

– check if T is superprimitive;

– check if a given prex of T is a cover of T .

Consequently, computing the shortest cover or a representation of all covers
of a string requires Ω(n/ logn) time in the PILLAR model.

2 Preliminaries

We assume that letters of a string T are numbered from 0 to |T |− 1, i.e., T =
T [0] · · ·T [|T |−1]. By T [i . . j] = T [i . . j+1) we denote a substring T [i] · · ·T [j]. If
T is given in a packed form, then packed representation of its substring T [i . . j]
can be computed in O((j − i+1)/ logσ n) time using standard word RAM oper-
ations. A substring T [i . . j] is called a prex if i = 0 and a suffix if j = |T |− 1.
A string B that occurs in T as a prex and as a suffix is called a border of T .

A positive integer p is called a period of string U if U [i] = U [i + p] holds
for all i ∈ [0 . . |U |− p). A string U is called periodic if the smallest period p of
U satises 2p ≤ |U |. Otherwise, U is called aperiodic. We also use the following
Periodicity Lemma.

Lemma 1 (Fine and Wilf, [20]). If a string U has periods p and q and

p+ q ≤ |U |, then gcd(p, q) is a period of U .

For a string X and non-negative integer k, by Xk we denote a concatenation
of k copies of X . A non-empty string U is primitive if U = Xk implies that
k = 1. A string of the form X2 is called a square. If X is primitive, the square
X2 is said to be primitively rooted.

Lemma 2 (Three Squares Lemma, [18]). If a string U has primitively

rooted square prexes X2, Y 2, Z2 such that |X | < |Y | < |Z|, then |Z| > |X |+|Y |.

3 Sublinear-Time Covers

Let c = ⌊ 1
6
logσ n⌋. To show Theorem 1 we divide the set Covers(T) into two

subsets:

– SCovers(T) = Covers(T) ∩ [1 . . c] of short cover lengths, and
– LCovers(T) = Covers(T) ∩ [c+ 1 . . n] = Covers(T) \ SCovers(T) of long cover

lengths

Computing String Covers in Sublinear Time 5

and compute their representations separately. If c = 0, there are only long covers.

Lemma 3. The representation of SCovers(T) can be computed in O(n/ logσ n)
time.

Proof. Let F be the set of all the factors of T of length 3c that start at positions
that are multiples of c. If the length of T is not a multiple of c, when computing
F we extend T with at most c arbitrary letters. Let us notice that every string
in F ts in a machine word, so those strings can be treated as integers.

To compute F , we rst construct a Boolean array of all the possible length-
3c strings, and then iterate through the length-3c substrings of T starting at
positions that are multiples of c, addressing the array directly through those
integer representations. The size of the array as well as |F| is bounded by σ3c ≤
σ

1

2
log

σ
n =

√
n. Iterating through all the considered substrings takes O(n/c)

time. Hence, this computation takes O(n/ logσ n) time in total.

T

n

SF

c 3c

S

C

C

C

Fig. 2: Algorithm for checking a single candidate for a short cover. For each string
in F we check if the occurrences of C therein cover its middle part.

The next claim resembles to some extent a property of seeds; cf. [29, Lemma
2.2]. See Fig. 2 for an illustration.

Claim. For i ∈ [1 . . c], C = T [0 . . i) is a cover of T if and only if C is a border
of T and the occurrences of C in each string S in F cover the middle length-c
part of S.

Proof. (⇒) Assume that C is a cover of T . As C has to cover the rst and the
last position of T , C is a border of T . For every integer multiple ic of c such that
(i + 1)c < |T |, occurrences of C in T have to cover U = T [ic . . (i + 1)c). These
occurrences need to be contained in S = T [(i− 1)c . .min((i+ 2)c, |T |− 1)]. We
have S ∈ F (possibly after appending 3c− |S| letters) and C covers the middle
length-c part of S.

(⇐) Assume that C is a border of T and the occurrences of C in each
string S in F cover the middle length-c part of S. Since C is a border of T ,
its occurrences cover substrings T [0 . . |C|) and T [|T |− |C| . . |T |). Moreover, for
every integer multiple ic of c such that (i + 1)c < |T |, occurrences of C in T
cover T [ic . . (i+ 1)c). Hence, occurrences of C in T cover all positions of T . ⊓⊔

6 J. Radoszewski and W. Zuba

Now to compute SCovers(T) we iterate through all the c lengths of candidates
for a short cover independently.

For a single candidate C = T [0 . . i), it is enough to check if C is a suffix of
T , which can be done in O(1) time, and then for each substring S ∈ F check if
the occurrences of C in S cover its middle part. The latter can be done naively
in O(|C|+ |S|) time, which sums up to O(c · |F|) = O(

√
n · logσ n) time for each

i, and O(
√
n · log2σ n) = o(n/ logσ n) time in total for all the candidates.

The result is reported in the form of the O(c) = O(log n) lengths of short
covers (arithmetic progressions of length 1). ⊓⊔

In the computation of long covers, we use Internal Pattern Matching. In
particular, we use IPM queries which, given two substrings X , Y of T such that
|X | ≤ |Y | ≤ 2|X |, return the set of occurrences of X in Y represented as an
arithmetic progression. Moreover, we use Period Queries that return the set of
all periods (equivalently, borders) of any substring of T . We need to apply a
period query only to T itself. Such a query returns, for every d being an integer
power of two, the set of lengths of all borders of T of length between d and 2d
represented as an arithmetic progression. If an arithmetic progression has length
greater than two, then the dierence p of the progression is the common shortest
period of all the borders represented by this progression.

Theorem 4 ([30]). Assume that a text T of length n over integer alphabet of

size σ is given in a packed form. After O(n/ logσ n) time preprocessing, one can

answer an IPM query for substrings X, Y of T in O(|Y |/|X |) time and a Period

Query for T in O(logn) time.

Lemma 4. The representation of LCovers(T) can be computed in O(n/ logσ n)
time.

Proof. As we already noticed, a cover of T is in particular its border. We ask
a Period Query of Theorem 4 to compute a representation of the set of all
borders of T . We disregard arithmetic progressions such that all their elements
are smaller than c, as they can only correspond to the case of short covers that
was already considered. Moreover, we trim the at most one remaining arithmetic
progression that contains elements smaller than c so that it contains only border
lengths greater than c.

For each arithmetic progression there exists a cut-o value t such that all
borders of length at most t represented by the progression are covers of T , while
the longer ones are not covers of T . (This is because a shorter border from the
progression is a cover of a longer border from the progression.) It is sufficient to
compute this cut-o value for each progression.

We consider the progressions separately. Let us consider a progression Γ of
border lengths in [d . . 2d]. For the two shortest borders B1, B2 represented by the
progression Γ (or fewer if progression Γ contains at most one element), we use
IPM queries for Bi and substrings of T of length 2|Bi|− 1 starting at positions
≡ 0 (mod |Bi|) to nd a representation of the set of occurrences of Bi in T as

Computing String Covers in Sublinear Time 7

O(n/d) arithmetic progressions. This representation allows us to easily check in
O(n/d) time if Bi is a cover of T .

If any of B1 and B2 exists and is not a cover of T , we can safely ignore all
the remaining borders in progression Γ . Otherwise, if at least three borders are
represented by Γ , we know that the dierence p of the progression is the common
smallest period of all borders represented by Γ . In O(n/d) time we partition the
already computed occurrences of B1 in T into maximal arithmetic progressions
of consecutive occurrences with dierence p. Let ∆ be the minimum length of
such an arithmetic progression of occurrences of B1. Then exactly the ∆ shortest
borders of the progression Γ are covers of T , or all borders if the progression
contains less than ∆ elements.

Let us argue for the correctness of the algorithm. Let B1, B2, . . . , Br be all
borders represented by progression Γ ordered by increasing lengths. We have
|Bi+1| = |Bi| + p for all i ∈ [1 . . r). It suffices to note that (1) B∆′ for ∆′ =
min(∆, r) is a cover of T and (2) B∆+1, if it exists, is not a cover of T .

As for (1), as all arithmetic progressions with dierence p of occurrences of
B1 in T have length at least ∆′, they imply occurrences of B∆′ that cover the
same set of positions of T as the occurrences of B1, i.e., all positions.

As for (2), assume that B∆+1 exists (with ∆ ≥ 2) and let i, i + p, . . . , i +
(∆ − 1)p be a maximal arithmetic progression of occurrences of B1 in T . The
previous arithmetic progression has its last element smaller than i− (|B1|− p),
as otherwise, by Lemma 1, B1 would have a period smaller than p. Similarly, the
next arithmetic progression starts at a position greater than i+(∆−1)p+(|B1|−
p). An occurrence of B∆+1 in T implies an arithmetic progression of occurrences
of B1 with dierence p and ∆+ 1 elements starting at the same position. Thus
none of the occurrences of B1 at positions i, i+ p, . . . , i+ (∆− 1)p extend to an
occurrence of B∆+1, the last position of T covered by an occurrence of B∆+1

from a previous arithmetic progression is smaller than i+p, and the rst position
of T covered by an occurrence of B∆+1 from a next arithmetic progression is
greater than i+(∆−1)p. Hence, position i+p of T is not covered by occurrences
of B∆+1. This proves (2) and concludes correctness of the algorithm.

Overall, an arithmetic progression of border lengths in [d . . 2d] is processed
in O(n/d) time. It suffices to consider d such that 2d ≥ c, i.e., d = 2i for
i ≥ (log2 c)− 1. The time complexity is thus proportional to:

⌊log
2
n⌋∑

i=⌊log
2
c⌋−1

n

2i
≤ n

2⌊log2
c⌋−1

∞∑

i=0

1

2i
= O(n/c) = O(n/ logσ n),

as desired. ⊓⊔

Theorem 1 follows directly from Lemmas 3 and 4.

Remark 1. The algorithm for computing long covers works in O(n/ logσ n) time
in the PILLAR model. For a constant σ, the complexity matches our lower bound
of Theorem 3. However, the computation of short covers in Lemma 3 works in
Θ(n) time in the PILLAR model.

8 J. Radoszewski and W. Zuba

4 Sublinear Data Structure for Cover Array

4.1 Why Representing the Cover Array in Sublinear Space can be
a Challenge

The cover array may require Θ(n logn) bits to represent in a straightforward
manner. In particular, the array may contain Θ(n) dierent values; this is true
even if we disregard trivial positions i such that CovT [i] = i and positions i such
that T [0 . . i) is periodic, as shown in the following Example 1.

Example 1. Let T = a
2m

ba
3m

ba
2m for positive integer m be a string of length

Θ(m). Then all prexes of T of length at least 2m+1 are aperiodic and the last
m+1 positions of the array CovT contain the following lengths of proper covers:
3m+ 1, 3m+ 2, . . . , 4m+ 1.

Example 1 might still not be fully convincing that a sublinear-sized repre-
sentation of the cover array is not obvious. Indeed, the the cover array of the
string family from Example 1 has an especially simple structure (a prex con-
sisting only of ones, a substring with an arithmetic sequence with dierence 1
corresponding to superprimitive prexes, and a suffix with arithmetic sequence
with dierence 1). Below in Corollary 1 we give a dierent example, that in a
Fibonacci string all but a logarithmic number of prexes have a proper cover
and (except for a short prex) no two consecutive positions of the cover array
form an arithmetic sequence of dierence 1. The cover array of a Fibonacci string
contains a logarithmic number of dierent values.

Let us recall that the Fibonacci strings are dened as follows: Fib0 = b,
Fib1 = a, and Fibm = Fibm−1Fibm−2 for m > 1. All covers of whole Fibonacci
strings (as well as other types of quasiperiodicity) were characterized in [13]
(see also [37] for similar results on Tribonacci strings). Moreover, a complete
characterization of the lengths of shortest covers of cyclic shifts of Fibonacci
strings was shown [17]. However, apparently, the structure of the cover array of
Fibonacci strings was not studied before. The theorem below shows the recursive
structure of the array; see Fig. 1 for a concrete example.

Let Fib be the innite Fibonacci string (the limit of strings Fibm). For any
m > 0, Fibm is a prex of Fib, and hence also CovFibm is a prex of CovFib. Thus
it is enough to characterize the values of CovFib. Let Fk = |Fibk|.

Theorem 5. In the corner cases CovFib[ℓ] is equal to

– ℓ if ℓ ≤ 2,
– 3 if ℓ = Fk for odd k ≥ 3,
– 5 if ℓ = Fk for even k ≥ 4,
– ℓ if ℓ = Fk − 1 or ℓ = 2Fk − 1 for k ≥ 4.

Otherwise, CovFib[ℓ] = CovFib[ℓ− Fk−1], where Fk < ℓ < Fk+1.

Proof. It is well-known that for anym ≥ 1, LCP(Fibm+1,Fibm−1Fibm) = Fm+1−
2; see e.g. [28]. In particular, Fm−1 is a period of Fibm+1[0 . . Fm+1 − 2) =

Computing String Covers in Sublinear Time 9

(Fibm−1Fibm)[0 . . Fm+1 − 2) = (Fibm−1Fibm−1Fibm−2)[0 . . Fm+1 − 2), but not
a period of Fibm+1[0 . . Fm+1 − 1). Equivalently, Fib[0 . . ℓ− Fm−1) is a border of
Fib[0 . . ℓ) if and only if Fm−1 < ℓ ≤ Fm+1 − 2.

The value of CovFib[Fk] as well as of CovFib[ℓ] for ℓ ≤ 2 follows from [13].
From the same paper we know that Fibk−2 is the longest proper border of Fibk.
Moreover, Fib[0 . . Fk−2 − 1) is the longest border of Fib[0 . . Fk − 1). Indeed, an
existence of a longer border (of length dierent than Fk−1 − 1) would result
in Fib[0 . . Fk − 2) having period 1 by the periodicity lemma (as it already has
periods Fk−1 and Fk−2; see [28]).

We will prove by induction that CovFib[Fk − 1] = Fk − 1 for k ≥ 4. The base
case holds. By the above, the only candidate for the length of a proper cover of
CovFib[Fk − 1] is CovFib[Fk−2 − 1], which equals Fk−2 − 1 by induction. Prex
Fib[0 . . Fk−2 − 1) has an occurrence at positions 0 and Fk−2 in this Fib, but the
position Fk−2 − 1 remains uncovered; existence of yet another occurrence that
contains this position would result in a long overlap of occurrences which, in
turn, would result in the string Fib[0 . . Fk−2 − 1) being periodic, which is not
the case. Hence, CovFib[Fk − 1] = Fk − 1.

Next we prove by induction that CovFib[2Fk − 1] = 2Fk − 1 for k ≥ 4.
Similarly, Fib[0 . . Fk−1) is the longest border of Fib[0 . . 2Fk−1). By the inductive
hypothesis, CovFib[Fk − 1] = Fk − 1 is the only candidate for the length of
a proper cover of Fib[0 . . 2Fk − 1). By exactly the same argument as in the
previous case, the position Fk − 1 in Fib is not covered by this candidate. Thus
CovFib[2Fk − 1] = 2Fk − 1.

We have CovFib[6] = 3. Now, for k ≥ 5, let ℓ ∈ [Fk + 1 . . 2Fk−1 − 2] ∪
[2Fk−1 . . Fk+1 − 2]. As noted, Fib[0 . . ℓ − Fk−1) is a border of Fib[0 . . ℓ) (since
ℓ ≤ Fk+1 − 2). Additionally, if ℓ ≤ 2Fk−1 − 2, string Fib[0 . . ℓ − Fk−1) also
appears in Fib at position Fk−2 (by the LCP equality from the beginning of
the proof). Those two or three occurrences cover all the positions of Fib[0 . . ℓ),
hence a cover of Fib[0 . . ℓ− Fk−1) is also a cover of Fib[0 . . ℓ). At the same time
a shortest cover of Fib[0 . . ℓ) has to be a cover of a border that is a cover, hence
CovFib[ℓ] = CovFib[ℓ− Fk−1]. ⊓⊔

Corollary 1. For any m ≥ 1, the array CovFibm contains Θ(m) dierent values.
Only Θ(m) prexes of Fibm are superprimitive. Moreover, for all ℓ ∈ [5 . . Fm),
we have CovFibm [ℓ] + 1 = CovFibm [ℓ+ 1].

Proof. The rst two statements follow readily from Theorem 5. As for the third
statement, among the distinct values in CovFib from position 5 onwards, the
only pairs of consecutive numbers are (3, 4) and (4, 5). (This is because for large
enough k, values Fk+1−1 and 2Fk−1 dier by more than 1.) Therefore, if ℓ ≥ 5
would be the smallest position such that CovFib[ℓ+ 1] = CovFib[ℓ] + 1, then ℓ or
ℓ + 1 would be equal to Fk for some k ≥ 5. By the recursion in Theorem 5, if
ℓ+ 1 = Fk, then CovFib[ℓ] = ℓ > 5 and CovFib[ℓ+ 1] ∈ {3, 5}, so two consecutive
values are not possible. If ℓ = Fk and CovFib[ℓ] = 3, then CovFib[ℓ + 1] = 9 by
easy induction, so again two consecutive values on consecutive positions are not
possible. ⊓⊔

10 J. Radoszewski and W. Zuba

The recursive characterization of Theorem 5 allows to compute any element
of the cover array of Fibm in O(log n) time, where n = Fm, without additional
space. By Corollary 1, the cover array of Fibm has only O(logn) dierent val-
ues, which allows one to store the cover array of Fibm in a packed form in
O(n log log n/ logn) space so that its elements can be retrieved in O(1) time. In
the next subsection we show that an equally space-efficient representation exists
for every string over a constant-sized alphabet.

4.2 Proof of Theorem 2

We use the following known corollary of the periodicity lemma.

Lemma 5 ([7,35]). If |X | < |Y | < 2|X | are two strings and X has at least

three occurrences in Y as a substring, then X is periodic.

Before we describe the data structure, let us give some intuition.
Assume that CovT [ℓ] = c with c < ℓ. That is, string C = T [0 . . c) is a proper

shortest cover of a prex T [0 . . ℓ). If the second occurrence of C in T is at position
j > 0, then U2 = T [0 . .2j) is a square. Further, j > c/2, as otherwise C would
be periodic. Hence, C is a prex of T [0 . .2j). This concludes that the square
T [0 . .2j) is primitively rooted, as otherwise C would be periodic. By Lemma 2,
there are only O(log n) primitively rooted square prexes of T . Thus, if C is
a proper shortest cover of a prex of T , we can assign to C one of O(log n)
primitively rooted square prexes of T .

Let P = T [0 . . p) be the shortest aperiodic prex of T such that p ≥ j. As
T [0 . . c) = C is aperiodic, p is well-dened and C has a prex P . Thus, if C is a
proper shortest cover of a prex of T , this allows to assign to C one of O(log n)
aperiodic prexes of T .

For k = ℓ − c, we have T [k . . k + p) = P . We observe that there can be
no further occurrence of P in T at a position in (k . . ℓ − p] (that is, no further
occurrence of P in T [0 . . c)). Indeed, such an occurrence would be a substring
of C, so it would imply an occurrence of P in T at a position in [1 . . j). By
Lemma 5, this would contradict the fact that P is aperiodic. In summary, if C
is a proper shortest cover of a prex T [0 . . ℓ), then C can be uniquely identied
by the rightmost occurrence in T [0 . . ℓ) of the aperiodic prex P of T that is
assigned to C. Moreover, the occurrence is at one of the positions in (ℓ− 2p . . ℓ),
as 2p ≥ 2j > c.

Data structure: Let j1, . . . , jt be the half lengths of all primitively rooted
square prexes of T . By Lemma 2, we have t = O(log n). The data structure
stores t lengths of aperiodic prexes of T , p1, . . . , pt. For every i ∈ [1 . . t], pi is
the length of the shortest aperiodic prex of T [0 . . 2ji) of length at least ji. (It
is known that such a prex exists, as T [0 . .2ji − 1) is aperiodic by Lemma 1.)

For each ℓ ∈ [1 . . n], we store a bit sp[ℓ] that equals 1 if and only if T [0 . . ℓ) is
superprimitive. If sp[ℓ] = 0, a number pref [ℓ] ∈ [1 . . t] is stored that determines
the aperiodic prex P = T [0 . . ppref [ℓ]) of T that corresponds to the shortest
cover C of T [0 . . ℓ), as discussed above. Precisely, if ji is the position of the

Computing String Covers in Sublinear Time 11

second occurrence of C in T , then pref [ℓ] = i. Finally, a data structure for IPM
queries in T is stored.

Overall, provided that the arrays sp and pref are stored in a packed form,
the space complexity is O(log n + n log logn/ logn + n/ logn + n/ logσ n) =
O(n log log n/ logn+ n/ logσ n), as required.

Queries: To compute CovT [ℓ], we rst check if sp[ℓ] = 1 and, if that is
the case, return ℓ. Otherwise, we ask an IPM query to compute the righmost
occurrence of P = T [0 . . ppref [ℓ]) in T [ℓ − 2 · ppref [ℓ] + 1 . . ℓ). As P is aperiodic,
there are at most two such occurrences. We select as k the starting position of the
rightmost occurrence. The shortest cover of T [0 . . ℓ) is T [k . . ℓ) (i.e., CovT [ℓ] =
ℓ− k).

By [30], the query time complexity is O(1). This concludes the proof of
Theorem 2.

5 Lower Bound on the Complexity in the PILLAR Model

5.1 The PILLAR model

Let us start rst formally introduce the primitives of the PILLARmodel [11]. The
argument strings are fragments of strings in a given collection X :

– Extract(S, ℓ, r): Retrieve string S[ℓ . . r).
– LCP(X, Y), LCPR(X, Y): Compute the length of the longest common pre-

x/suffix of X and Y .
– IPM(X, Y): Assuming that |Y | ≤ 2|X |, compute the starting positions of all

exact occurrences of X in Y , expressed as an arithmetic progression.
– Access(S, i): Retrieve the letter S[i];
– Length(S): Compute the length |S| of the string S.

The runtime of algorithms in this model can be expressed in terms of the number
of primitive PILLAR operations (and additional operations not performed on the
strings themselves).

5.2 Lower Bound

We focus on checking if a string over an alphabet {a, b} is covered by its border
aba. Strings covered by aba are formed of concatenations of strings of a form
(ab)ka for k ≥ 1; equivalently, strings that have aba as a border and do not
contain a substring bb or aaa.

For innitely many positive integers n, we show a strategy for an adversary
to answer Cn/ logn PILLAR queries on a length-n binary string, for a certain
constant C > 0, after which the adversary still has the choice of xing the string
in two ways: in one T has a cover aba, and in the other T is superprimitive (i.e.,
it has no proper cover).

We dene a morphism φ : {0, 1} → {a, b}:

– φ(0) = abababa aba ababa = (ab)3a(ab)a(ab)2a

12 J. Radoszewski and W. Zuba

– φ(1) = abababa ababa aba = (ab)3a(ab)2a(ab)a

Both φ(0) and φ(1) have length 15 and have a cover aba. Thus φ(S), for any
string S over alphabet {0, 1}, has a cover aba.

Let us recall that a de Bruijn sequence of order k over an alphabet Σ is a
string of length |Σ|k + k − 1 over the alphabet Σ such that its every substring
of length k is distinct. It is well-known that such sequences exist for every nite
alphabet Σ and integer k ≥ 1 [8].

Let Bk be a de Bruijn sequence of order k over the binary alphabet {0, 1}.
We apply the morphism φ on B to obtain a string Tk over alphabet {a, b} of
length 15·(2k+k−1). Due to the property of de Bruijn sequences, each substring
of T of length at least 15(k+1)−1 is distinct. Indeed, every “aligned” substring
of length 15k starting at a position divisible by 15 in Tk is distinct, and every
substring of Tk of length 15(k+1)− 1 contains an “aligned” substring of length
15k.

Due to this property, an answer to an LCP or LCPR query on Tk for two
dierent positions is always bounded from above by 15(k+ 1)− 2. Similarly for
the IPM queries; if we query for a substring of length at least 15(k+1)− 1, then
we do not gain any interesting information (the only occurrence of the substring
is the one used to ask the query). On the other hand, by asking an IPM query
for a shorter substring we only gain information about a part of Tk of length at
most 30(k + 1)− 2.

Formally, the strategy of the adversary for a text T of length n = |Tk| is as
follows. Queries Extract, Access, Length, LCP, LCPR are answered as in Tk. An
IPM(X, Y) query for |X | < 15(k + 1) − 1 is also answered as in Tk. Finally, to
answer an IPM(X, Y) query for |X | ≥ 15(k + 1) − 1, we refer to the fragments
T [ix . . jx] = X and T [iy . . jy] = Y and return an occurrence ofX in Y at position
iy − ix if [ix . . jx] ⊆ [iy . . jy] and no occurrence otherwise.

We say that a position i ∈ [0 . . n) of T has been touched if the algorithm
has performed (1) an Access query on T [i], or (2) an LCP(T [ix . . jx], T [iy . . jy])
query such that i ∈ [ix . . ix + ℓ) ∪ [iy . . iy + ℓ) where ℓ is the result of the LCP

query, or (3) similarly an LCPR query such that i belongs to the computed LCPR

of one of the two queried substrings of T , or (4) an IPM(T [ix . . jx], T [iy . . jy])
query for jx − ix + 1 < 15(k + 1)− 1 such that i ∈ [ix . . jx] ∪ [iy . . jy]. In total,
after q PILLAR operations, fewer than 45q(k + 1) ≤ 90kq positions of T have
been touched. Thus after q = ⌊2k/(6k)⌋ operations, there still exists a position
in T that has not been touched. Assume i is such a position. Then the adversary
can make the choice to set T [i] as Tk[i] or as the letter dierent from Tk[i];
all the remaining untouched positions are set as in Tk. If T [i] = Tk[i], T = Tk

has a cover aba. If T [i] = Tk[i], T contains exactly one substring a
s for some

s ∈ [3 . . 5], or exactly one substring b
t, for some t ∈ [2 . . 3]. It is easy to see that

in this case T is superprimitive.

There exists a constant C > 0 (for example, C = 1/180) such that the
selected value of q satises q ≥ Cn/ logn. Theorem 3 is proved.

Computing String Covers in Sublinear Time 13

6 Open Problems

It remains open if the data structure of Theorem 2 can be constructed in sublin-
ear time or if its space complexity can be decreased to O(n/ logn) for σ = O(1).

Future work also includes designing sublinear-time algorithms for other no-
tions of quasiperiodicity for which O(n)-time algorithms are already known, for a
length-n string over an integer alphabet; this includes, for example, seeds [29,36],
enhanced covers [21], and partial covers [36].

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimi-
tivity testing for strings. Inf. Process. Lett. 39(1), 17–20 (1991).
https://doi.org/10.1016/0020-0190(91)90056-N

2. Bannai, H., Ellert, J.: Lyndon arrays in sublinear time. In: Gørtz, I.L., Farach-
Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on
Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs,
vol. 274, pp. 14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPICS.ESA.2023.14

3. Belazzougui, D., Kosolobov, D., Puglisi, S.J., Raman, R.: Weighted ancestors in
suffix trees revisited. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd An-
nual Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021,
Wroclaw, Poland. LIPIcs, vol. 191, pp. 8:1–8:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPICS.CPM.2021.8

4. Ben-Kiki, O., Bille, P., Breslauer, D., Gasieniec, L., Grossi, R., Weimann, O.: To-
wards optimal packed string matching. Theor. Comput. Sci. 525, 111–129 (2014).
https://doi.org/10.1016/J.TCS.2013.06.013

5. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Panario, D., Viola, A. (eds.) LATIN 2000: Theoretical Informatics, 4th Latin
American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceed-
ings. Lecture Notes in Computer Science, vol. 1776, pp. 88–94. Springer (2000).
https://doi.org/10.1007/10719839_9

6. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

7. Breslauer, D., Galil, Z.: Finding all periods and initial palin-
dromes of a string in parallel. Algorithmica 14(4), 355–366 (1995).
https://doi.org/10.1007/BF01294132

8. de Bruijn, N.G.: A combinatorial problem. Indagationes Math. 8, 461–467 (1946),
http://www.dwc.knaw.nl/DL/publications/PU00018235.pdf

9. Charalampopoulos, P., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Faster
algorithms for longest common substring. In: Mutzel, P., Pagh, R., Her-
man, G. (eds.) 29th Annual European Symposium on Algorithms, ESA 2021,
September 6-8, 2021, Lisbon, Portugal (Virtual Conference). LIPIcs, vol. 204,
pp. 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPICS.ESA.2021.30

10. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster approximate
pattern matching: A unified approach. In: Irani, S. (ed.) 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020,

14 J. Radoszewski and W. Zuba

Durham, NC, USA, November 16-19, 2020. pp. 978–989. IEEE (2020).
https://doi.org/10.1109/FOCS46700.2020.00095

11. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster approximate
pattern matching: A unified approach. In: 61st IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2020. pp. 978–989.
IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00095, full version:
arXiv:2004.08350v2

12. Charalampopoulos, P., Pissis, S.P., Radoszewski, J.: Longest palindromic substring
in sublinear time. In: Bannai, H., Holub, J. (eds.) 33rd Annual Symposium on
Combinatorial Pattern Matching, CPM 2022, June 27-29, 2022, Prague, Czech
Republic. LIPIcs, vol. 223, pp. 20:1–20:9. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2022). https://doi.org/10.4230/LIPICS.CPM.2022.20

13. Christou, M., Crochemore, M., Iliopoulos, C.S.: Quasiperiodicities in Fibonacci
strings. Ars Comb. 129, 211–225 (2016), https://arxiv.org/abs/1201.6162

14. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J.,
Rytter, W., Tyczyński, W., Waleń, T.: The maximum number of squares in
a tree. In: Kärkkäinen, J., Stoye, J. (eds.) Combinatorial Pattern Matching -
23rd Annual Symposium, CPM 2012, Helsinki, Finland, July 3-5, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7354, pp. 27–40. Springer (2012).
https://doi.org/10.1007/978-3-642-31265-6_3

15. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string re-
construction. In: Amir, A., Parida, L. (eds.) Combinatorial Pattern Matching, 21st
Annual Symposium, CPM 2010, New York, NY, USA, June 21-23, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6129, pp. 251–259. Springer (2010).
https://doi.org/10.1007/978-3-642-13509-5_23

16. Crochemore, M., Iliopoulos, C.S., Radoszewski, J., Rytter, W., Straszyński, J.,
Waleń, T., Zuba, W.: Internal quasiperiod queries. In: Boucher, C., Thankachan,
S.V. (eds.) String Processing and Information Retrieval - 27th International
Symposium, SPIRE 2020, Orlando, FL, USA, October 13-15, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12303, pp. 60–75. Springer (2020).
https://doi.org/10.1007/978-3-030-59212-7_5

17. Crochemore, M., Iliopoulos, C.S., Radoszewski, J., Rytter, W., Straszyński, J.,
Waleń, T., Zuba, W.: Shortest covers of all cyclic shifts of a string. Theor. Comput.
Sci. 866, 70–81 (2021). https://doi.org/10.1016/J.TCS.2021.03.011

18. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13(5), 405–425 (1995). https://doi.org/10.1007/BF01190846

19. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th An-
nual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997. pp. 137–143. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646102

20. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Pro-
ceedings of the American Mathematical Society 16(1), 109–114 (1965).
https://doi.org/10.2307/2034009

21. Flouri, T., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P., Puglisi, S.J., Smyth,
W.F., Tyczyński, W.: Enhanced string covering. Theor. Comput. Sci. 506, 102–114
(2013). https://doi.org/10.1016/J.TCS.2013.08.013

22. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
27:1–27:40 (2021). https://doi.org/10.1145/3457389

23. Hariharan, R., Vinay, V.: String matching in Õ(sqrt(n)+sqrt(m))
quantum time. J. Discrete Algorithms 1(1), 103–110 (2003).
https://doi.org/10.1016/S1570-8667(03)00010-8

Computing String Covers in Sublinear Time 15

24. I, T., Matsubara, W., Shimohira, K., Inenaga, S., Bannai, H., Takeda, M., Nar-
isawa, K., Shinohara, A.: Detecting regularities on grammar-compressed strings.
Inf. Comput. 240, 74–89 (2015). https://doi.org/10.1016/J.IC.2014.09.009

25. Jin, C., Nogler, J.: Quantum speed-ups for string synchronizing sets, longest
common substring, and k -mismatch matching. In: Bansal, N., Nagarajan, V.
(eds.) Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023. pp. 5090–5121. SIAM (2023).
https://doi.org/10.1137/1.9781611977554.CH186

26. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: Charikar, M., Cohen, E. (eds.)
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. pp. 756–767. ACM (2019).
https://doi.org/10.1145/3313276.3316368

27. Kempa, D., Kociumaka, T.: Dynamic suffix array with polylogarithmic queries
and updates. In: Leonardi, S., Gupta, A. (eds.) STOC 2022: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022.
pp. 1657–1670. ACM (2022). https://doi.org/10.1145/3519935.3520061

28. Knuth, D.E., Jr., J.H.M., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977). https://doi.org/10.1137/0206024

29. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear-
time algorithm for seeds computation. ACM Trans. Algorithms 16(2), 27:1–27:23
(2020). https://doi.org/10.1145/3386369

30. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern
matching queries in a text and applications. CoRR abs/1311.6235 (2013),
http://arxiv.org/abs/1311.6235

31. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern match-
ing queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015. pp. 532–551. SIAM (2015).
https://doi.org/10.1137/1.9781611973730.36

32. Mitani, K., Mieno, T., Seto, K., Horiyama, T.: Shortest cover after edit. CoRR
abs/2402.17428 (2024). https://doi.org/10.48550/ARXIV.2402.17428

33. Moore, D.W.G., Smyth, W.F.: A correction to ”An optimal algorithm to com-
pute all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995).
https://doi.org/10.1016/0020-0190(94)00235-Q

34. Munro, J.I., Navarro, G., Nekrich, Y.: Text indexing and searching in sublinear
time. In: Gørtz, I.L., Weimann, O. (eds.) 31st Annual Symposium on Combinatorial
Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen, Denmark. LIPIcs,
vol. 161, pp. 24:1–24:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/LIPICS.CPM.2020.24

35. Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution
of words equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) Automata,
Languages and Programming, 25th International Colloquium, ICALP’98, Aal-
borg, Denmark, July 13-17, 1998, Proceedings. Lecture Notes in Computer Science,
vol. 1443, pp. 731–742. Springer (1998). https://doi.org/10.1007/BFB0055097

36. Radoszewski, J.: Linear time construction of cover suffix tree and applications.
In: Gørtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual
European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam,
The Netherlands. LIPIcs, vol. 274, pp. 89:1–89:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ESA.2023.89

16 J. Radoszewski and W. Zuba

37. Singh, M.: Quasiperiodicity in Tribonacci Word (Mar 2020),
https://hal.science/hal-02141636, working paper or preprint

