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Abstract. The LDBC Social Network Benchmark’s Interactive workload
captures an OLTP scenario operating on a correlated social network graph.
It consists of complex graph queries executed concurrently with a stream
of updates operation. Since its initial release in 2015, the Interactive
workload has become the de facto industry standard for benchmarking
transactional graph data management systems. As graph systems have
matured and the community’s understanding of graph processing features
has evolved, we initiated the renewal of this benchmark. This paper
describes the draft Interactive v2 workload with several new features:
delete operations, a cheapest path-nding query, support for larger data
sets, and a novel temporal parameter curation algorithm that ensures
stable runtimes for path queries.

1 Introduction

LDBC. The Linked Data Benchmark Council (LDBC)1 is a non-prot organi-
zation dedicated to designing benchmarks for graph data management [20,21].
LDBC has strong industrial participation in the form of 21 companies, including
database, hardware, and cloud vendors. Its membership also includes 3 non-
commercial institutions and 60+ individual members. LDBC acts as an indepen-
dent authority for benchmarks and oversees the use of its benchmarks through
a stringent auditing process. Thanks to this, audited LDBC benchmark results
allow quantitative and objective comparison of dierent technological solutions,
which is expected to stimulate progress through competition. Next, we describe
the two main workloads of the LDBC SNB suite.
SNB Interactive v1 workload. The LDBC Social Network Benchmark (SNB)
Interactive v1 workload was published in 2015 [7]. It is a transactional benchmark
that targets OLTP data management systems with graph features (e.g. path-
nding). SNB Interactive has been inuential in the graph data management
space: as of August 2023, 24 audited results were published using this workload.2

1 https://ldbcouncil.org
2 https://ldbcouncil.org/benchmarks/snb-interactive/
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SNB Business Intelligence workload. The LDBC SNB Business Intelligence
(BI) workload was released in 2022 [24]. This workload uses an improved data
generator, which introduces support for delete operations [28] and scale factors
up to SF30,000. The workload captures an OLAP scenario with heavy-hitting
analytical queries that touch on large portions of the graph (e.g. Messages created
within a 100-day period or Persons living in China) and applies daily batches of
updates. It targets both DBMSs and data analytical systems such as Spark.
Motivation. As of 2023, more than 8 years passed since the SNB Interactive v1
workload’s release. Therefore, we decided to renew it to ensure its continued
relevance. The new version’s key novel features are improved scalability, coverage
of cheapest path-nding, and inclusion of delete operations. The rst two new
features were part of the natural evolution of the benchmark. The decision to
support delete operations was motivated by a number of factors. On the technical
side, running the workload’s complex queries eciently while applying delete
operations assumes mature transaction support that is now expected by users
of graph(-capable) DBMSs. Deletes also make certain graph algorithms, such
as cheapest paths, more dicult to compute incrementally [19], thus limiting
the eects of caching and incremental view maintenance. On the business side,
supporting deletes is necessitated by law in several jurisdictions, exemplied by
the EU’s General Data Protection Regulation (GDPR) [22].

Fig. 1: Components and workow of the Interactive v2 workload. The correspond-
ing sections are shown in green circles § . Legend: Software component Data artifact

Contributions and paper structure. This paper presents the updated SNB
Interactive v2 workload following the workow shown in Figure 1. Interestingly,
while all three new features (scalability, cheapest path-nding, and delete op-
erations) were already supported in the BI workload, adopting them into the
highly transactional, concurrent SNB Interactive v2 workload presented several
complex technical challenges. We document the challenges and our key design
principles in Section 2. We present the SNB data set in Section 3, the bench-
mark’s operations in Section 4, and the workload in Section 5. In Section 6, we
introduce the parameter generator’s novel extensions that were necessitated by
delete operations. In Section 7, we discuss how the benchmark is used in practice.
We discuss LDBC’s other transactional benchmark, the FinBench, in Section 8.
Section 9 summarizes our contributions and outlines future directions.



2 Design principles

During LDBC’s benchmark design process, we follow the Benchmark Hand-
book [9], which prescribes four criteria for domain-specic benchmarks: (1) rele-
vance, (2) portability, (3) scalability, (4) simplicity. In the following, we discuss
the SNB Interactive v2 workload’s approach for complying with these criteria.

2.1 Relevance: Choke point-based design process and domain

The benchmark must measure the peak performance of systems when per-
forming typical operations within the target problem domain.

Choke points. To ensure relevance, LDBC’s benchmark design process uses
choke points [4], i.e. technical diculties that are known to be challenging for
the present generation of DBMSs. Choke points are identied by expert data
systems architects and are also inuenced by the input from users of graph data
management systems who contribute their use cases at LDBC’s Technical User
Community meetings3. The initial choke points of SNB Interactive were based on
the inuential TPC-H benchmark [25] benchmark and were later extended with
choke points that target graph-specic features such as cardinality estimation for
paths and the execution of path-nding queries. LDBC workloads are designed
using an iterative process to ensure full coverage of the choke points required for
a given workload category.
Social network domain. The LDBC SNB uses the social network domain
because its concepts (Person, Forum, Message, etc.) are well-understood. Moreover,
the social network domain makes it easy to reason about some of the interesting
phenomena captured in the choke points. For example, the power law distribution
and correlations (Section 3.2) observable in real-life (social) networks trigger the
challenges for cardinality estimation.

2.2 Portability: Implementation rules

The benchmark should be implementable on dierent systems/architectures.

The SNB Interactive v2 workload guarantees portability by taking an agnostic
stance on implementation details.
Data model. Implementations are allowed to use any data model, including the
property graph, RDF, and relational models. They are also free to choose their
input format for bulk loading (e.g. CSV, N-Triples).
Implementation language. Implementations may use declarative query lan-
guages (SQL, Cypher [8], GQL, SQL/PGQ [6], etc.) or general-purpose imperative
programming languages (C++, Java, etc.). However, results in these two cate-
gories are ranked on separate leaderboards as the latter systems have a signicant
advantage due to their use of hand-coded highly-optimized query plans.
Setup. There are no restrictions on the operating system, hardware architecture,
or number of machines used (both single-node and distributed setups are allowed).
3 https://ldbcouncil.org/tags/tuc-meeting/



2.3 Scalability: Scalable data generator and driver

The benchmark should apply to small and large computer systems.

Improving scalability was a key goal during the design of SNB Interactive v2. While
we could leverage the improved data generator of the BI workload [24], scaling
the workload execution posed additional challenges. By its nature, simulating
a transactional database workload requires highly concurrent execution of the
operations.4 This requires the operations in the workload to be partitioned, which
is a major challenge as most of the Persons in the social network belong to a
single connected component that does not lend itself to any naïve partitioning
strategy. Moreover, update operations often have long dependency chains that
need to be tracked, e.g. a friendship can only be deleted if it already exists, the
creation of a friendship requires both Persons to exist, etc. Therefore, simulating a
transactional graph processing scenario is not possible using on-the-y workload
generation techniques commonly employed in database benchmarks. Instead,
SNB Interactive v2 requires extensive oine data, update stream (Section 3.3),
and parameter generation steps (Section 6) prior to the benchmark.

2.4 Simplicity: Stable query runtimes, single output metric

The benchmark must be understandable and its results must be easy to
interpret, otherwise, it lacks credibility.

Stable runtimes. To make the benchmark results easy to interpret, it is desirable
that instances of a given query type have similar expected runtimes (referred to
as stable runtimes). Ensuring this for graph workloads is non-trivial due to the
highly skewed distribution exhibited in real-world networks [16]. For example, in
a social network, a few Person nodes have a very large number of edges while
others only have a few connections. This has a signicant impact on runtimes: if
query parameters are selected using uniform random sampling, query runtimes
will be unstable, often exhibiting a multimodal distribution that spreads across
many orders of magnitude and has several outliers [12,24]. SNB Interactive v2
employs a sophisticated parameter curation process to select input parameters
that ensure stable runtimes (Section 6).
Guaranteed executability. Stable runtimes also necessitate that operations
are executable at their scheduled start time. For example, if an operation targets
entities that do not yet exist or were already deleted, the operation becomes
trivial or results in a runtime exception, compromising stable runtimes. Therefore,
our workload generator ensures that its operations are always executable.
Single metric. The result of an SNB Interactive benchmark run is characterized
by a single metric, throughput (operations/second), which captures the system-
under-test’s end-to-end performance on a transactional graph workload.

4 Most audited Interactive v1 implementations use 48 read and 32/64 write threads.



3 Data sets

The LDBC SNB workloads include a scalable distributed data generator based
on Spark.5 Here, we give an overview of the data sets used in the benchmark.

3.1 Graph schema

Fig. 2: A subset of the LDBC SNB graph schema visualized using a UML-like
notation. Thick lines denote many-to-many relationships.

The graph schema of LDBC SNB has 14 node types connected by 20 edge types.
The data set consists of a Person–knows–Person (friendship) graph and a number
of Message threads within Forums. The root of a Message thread is a Post and the
rest of the thread consists of Comments. All Messages are connected to Persons
by creatorship and likes edges. A simplied schema is shown in Figure 2.

3.2 Distribution and correlations

The data set contains two types of graph-shaped data structures. First, the
Message threads form trees and constitute the majority of the data. Second, the
Person–knows–Person subgraph is a network with many-to-many relationships
whose distribution is modelled after Facebook [26] with the social graph exhibiting
the small-world phenomenon [27] characterized by a small diameter.

A unique feature not observed in other data generators is that the attribute
distributions are skewed and correlate both within an entity (e.g. people living in
France have predominantly French names). Moreover, the graph has structural
correlations: following the homophily principle [15], people are more likely to
be friends if they studied at the same University at the same time, live in close
proximity, and/or have the same interests. These correlations are exploited by
the workload to stress choke points for querying correlated data (see Section 6.4).

3.3 Graph generation stages

Temporal graph. The data generator rst produces a temporal graph, which
contains all entities that exist at some point in the simulated social network’s
3-year time period, i.e. between Jan 1, 2010 and Dec 31, 2012. During this
time, entities are inserted and deleted in the network, and the timestamps of
5 https://github.com/ldbc/ldbc_snb_datagen_spark



these events are captured according to their time of occurrence in the simulation
time. The insertion and deletion of entities follow realistic time intervals and
conform to the semantics of the social network. Namely: (1) The deletion dates
of Persons are based on the statistics collected from the collapse of a real-world
social network [13]. When a Person is deleted, the content they created is also
deleted [29]. (2) The network contains infrequent ashmob events such as spikes
in insertions of Messages for a given Tag [7]. Deep delete operations and ashmob
events are unique to the LDBC SNB data generator: according to a recent
survey [5], these features are not supported by any other (graph) data generator.
Initial snapshot and update stream. As the second step in the data genera-
tion, the data serializer splits the temporal graph into two parts by setting a
cuto date at 97% of the simulation time (Nov 29, 2012). The entities created
before the cuto date form the initial snapshot, while the entity creations and
deletions occurring after the cuto date form the update stream.

3.4 Scale factors

Table 1: SNB Interactive v2 data sets. k: thousand, M: million, B: billion.
Scale Factor (SF) 10 30 100 300 1,000 3,000 10,000 30,000

#nodes 27M 78M 255M 738M 2.4B 7.2B 23B 82.76B
#edges 170M 506M 1.7B 5.1B 17B 51.9B 173B 340.5B

#Person nodes 68k 170k 473k 1.2M 3.4M 9M 26M 77M
#knows edges 1.8M 5.5M 19M 55.7M 187M 559M 1.9B 6.8B

#insert operations 44.6M 127M 399M 1.1B 3.3B 8.9B 27B 76.7B
#delete operations 353k 1M 3.3M 9.3M 28.9M 79.7M 245M 721.8M

The data generator produces dynamic social network graphs in dierent sizes,
characterized by scale factors (SF) which correspond to the data set’s disk usage
when serialized in CSV (comma-separated values) format, measured in GiB. The
data generator used for Interactive v1 only supports data sets up to SF1,000. To
improve scalability, Interactive v2 uses the new Spark-based generator, which
was optimized extensively,6 allowing it to scale up to SF30,000. Table 1 shows
the main statistics of the data sets.

4 Operations

The LDBC SNB Interactive v2 workload uses four types of operations. There
are 14 complex (CR) and 7 short read queries (SR). Update operations include
8 inserts (INS) and, newly introduced in the Interactive v2 workload, 8 deletes
(DEL). The workload mix consists of approximately 8% CR, 72% SR, 20% INS, and
0.2% DEL operations. In this section, we describe the four operation types using
6 For details on the optimization steps, see https://ldbcouncil.org/tags/datagen/.



examples. We also give ranges on how long operations are expected to take in
state-of-the-art systems (Section 7.2).

4.1 Complex read queries (CR)

Complex read queries CR1–CR12 discover a given Person’s social environment (one-
to three-hop neighbourhoods) and retrieve related content (Forums, Messages,
etc.). Queries CR13 and CR14 perform path-nding between pairs of Persons. The
runtimes of complex read queries are typically between 1 and 500 ms, making
them feasible to compute interactively, in line with the workload’s name.
CR3. For a given Person, nd their friends and friends of friends, who created
Messages in both Country $countryX and $countryY within a given time period.
Only consider Persons that are foreign to both of those Countries. Return the
number of their Messages per Country, xCount and yCount (Figure 3a).
CR13. Return the length of the (unweighted) shortest path between two Persons.

(a) Complex read query CR3. (b) SR2. (c) SR6.

Fig. 3: Graph patterns of complex and short read queries.

Cheapest path-nding. While we strived to keep the changes to the queries
minimal, we replaced CR14 due to two reasons. First, we found the original query
in Interactive v1 to be ill-suited to the workload as it required the enumeration
of all shortest paths between two Persons, which can be prohibitively expensive
on large scale factors. Second, we introduced a new choke point, CP-7.6 Cheapest
path-nding,7 a key computational kernel and a language opportunity for GQL [6].
Therefore, we changed CR14 to use cheapest paths instead of all shortest paths.
CR14 (new). Given two Persons, nd any cheapest path in the interaction sub-
graph. This graph contains edges from the Person–knows–Person graph where the
endpoint Persons have exchanged at least one Message (i.e. one Person created a
direct Comment to a Message of the other Person). The weights of knows edges
are integers dened as maxround40 −√

numInteractions⌞,1⌞.
4.2 Short read queries (SR)

Short read queries perform local neighbourhood lookups on Persons and Messages.
Most short read queries can be evaluated in 0.1 to 75 ms.
7 The term shortest paths refers to the problem of nding unweighted shortest paths,
which can be solved with the BFS algorithm. We use cheapest paths to refer to the
weighted shortest paths problem which can be solved using e.g. Dijkstra’s algorithm.



SR2. Given a start Person, retrieve their last 10 Messages. For each Message,
return it with the root Post in its thread, and the author of that Post (Figure 3b).
SR6. Given a Message, retrieve its container Forum (directly for Posts, via the
root Post for Comments) and the Person that moderates that Forum (Figure 3c).

4.3 Insert operations (INS)

Insert operations add new entities from the update stream to the graph. A typical
insert operation takes between 0.1 and 100 ms.
INS5. Insert a hasMember edge between a Person and a Forum. The executability
of this operation depends on the existence of its two endpoint nodes.
INS6. Insert a Post node. This operation’s executability depends on two nodes:
both the Person creating the Post and the Forum containing it must exist. When
the Post is inserted, they are linked to it via hasCreator and containerOf edges.

4.4 Delete operations (DEL)

The Interactive v2 workload uses deep cascading delete operations. Cascading
deletes capture the behaviour of real social networks where users expect their
content to be removed once they delete their accounts. The technical reasons for
requiring cascading delete operations are two-fold: (1) Preventing dangling
edges. To maintain the integrity of the graph, it is required there are no dangling
edges thus nodes must be always deleted with all their edges. To prevent dangling
edges, most graph DBMSs support the automatic deletion of edges attached
to a given node, e.g. through Cypher’s DETACH DELETE clause [11]. To achieve
the same eect, RDBMSs can make use of FOREIGN KEY constraints with the
ON DELETE CASCADE clause. (2) Testing triggered deletions. Node deletions
can trigger the deletion of other nodes (Figure 4). For example, according to the
SNB schema’s constraints, the deletion of a Post implies the deletion of all its
descendant Comments along with their edges. Such deletions may be implemented
using triggers, constraints (RDBMSs may again harness FOREIGN KEYs), or by
formulating (potentially recursive) subqueries that determine which other nodes
need to be deleted with DELETE ... USING clause.
Choke points. The coverage of delete features is ensured by three new choke
points: CP-9.3 Delete node (stressed by 4 operations), CP-9.4 Delete edge (8 oper-
ations), and CP-9.5 Delete recursively (4 operations). In the following, we present
two delete operations, both of which cover all new choke points.
DEL6. Remove a Post with all its edges and child Comments via DEL7 (Figure 4a).
DEL7. Remove a Comment with all its edges and child Comments, which are
deleted recursively by invoking DEL7 (Figure 4b).

5 Workload scheduling and benchmark driver

In this section, we explain how operations are scheduled in the SNB Interactive
workload, how the driver operates, and how the nal throughput metric is deter-



(a) Delete operation DEL6: Remove Post. (b) Delete operation DEL7: Remove Comment.

Fig. 4: Cascading delete operations in Interactive v2. Symbol denotes deletion.

mined. In all cases, we assume that the system-under-test has been populated
with the initial snapshot using a bulk loader before the driver runs the operations.

5.1 Scheduling operations

TCR (total compression ratio). The scheduling follows the simulation time
of the temporal social network graph. The user-provided total compression ratio
(TCR) value controls the speed at which the simulation is replayed. For example,
a TCR value of 0.02 means that the simulation is replayed 50× faster, i.e. for
every 20 milliseconds in wall clock time, 1 second passes in the simulation time.
Update operations. The driver replays the update operations starting from the
cuto date (Section 3.3), Nov 29, 2012. The operations are scheduled according
to the distance of their start time from this date, adjusted by the TCR. They
are then used to set the cadence of the schedule for the complex reads and, in
turn, the short read queries, as we will explain momentarily.
Complex read queries. The complex read queries dier signicantly in their
expected runtimes as they touch on dierent amounts of data. As each query
instance contributes equally to the output metric,8 we balance them such that
each query type is expected to take the same amount of time to execute. For
example, CR14 (new) is expected to be more dicult than CR13, therefore it
is scheduled less frequently. Frequencies vary based on the SF as the relative
diculties of queries change with the data size (e.g. three-hop neighbourhood
queries grow faster on larger SFs than one-hop ones).
Short read queries. Short read queries are triggered by complex read queries
and other short read queries, and use their output as their input. For example,
both CR3 and CR14 trigger SR2, which also triggers itself. This mimics the real-life
scenario of a user retrieving more information about Person proles based on
the result of the earlier queries. The mapping between complex and short read
queries is given in the specication [2, Chapter 5].

5.2 Driver

Driver modes. The SNB driver has two key modes of operation. In cross-
validation mode, it tests an implementation against the output of another imple-
mentation. To ensure deterministic results, operations in this mode are executed
8 Unlike in TPC-H [25] and SNB BI [24], which use geometric mean in their metrics.



sequentially with no overlap between queries and updates. In benchmark mode
the driver performs a benchmark run where queries and updates are issued
concurrently from multiple threads. The run starts with a 30-minute warm-up
period, followed by a 2-hour measurement window. This mode does not perform
validation as query results may dier (slightly) due to concurrent updates.
Dependency tracking. To ensure that updates are executable, concurrent
threads must be synchronized so that an operation is only executed when its
dependencies exist in the network (e.g. two Persons can only become friends if both
of them already exist). This is achieved via maintaining a global clock in the driver
and performing dependency tracking for the updates [7]: each update operation
has a timestamp denoting the creation time of the last operation it depends on.
The data generator calculates these timestamp during generation and ensures
that there is a minimum time separation, Tsafe, between dependent entities to
reduce synchronization overhead in the driver when executing operations. The
driver then only needs to check every Tsafe time whether a given update operation
can be executed. By default, Tsafe is set to 10 seconds in the simulation time.
Latency requirements. The workload simulates a highly transactional scenario
where operations are subject to (soft) latency requirements. To incorporate this
in the workload, it prescribes the 95% on-time requirement : for a benchmark run
to be successful, 95% of the operations must start on-time, i.e. within 1 second
of their scheduled start time. Benchmark runs where the system-under-test falls
behind too much from the schedule are considered invalid.
Throughput. The throughput of a run is the total number of operations (CR, SR,
INS, DEL) executed per second. A lower TCR value implies a higher throughput.
Individual execution times. To facilitate deeper analyis, the benchmark driver
also collects all individual query execution times. Based on these, the benchmark
reports must include statics for each operation type (min, max, mean, P50, P90,
P95, and P99 of the execution times).
Driver implementation in v2. The Interactive v2 is implemented in Java 17.
It consists of 26,500 lines of code for the core project and an additional 18,000
lines of test code. The new version contains several patches including bug xes,
usability improvements, and performance optimizations.9

6 Parameter curation

To prevent caching query results, the SNB Interactive v2 driver instantiates the
parameterized complex read (CR) query templates with dierent substitution
parameters (a.k.a. parameter bindings). However, as explained in Section 2.4, the
naïve approach (using a uniform random sampling of parameters and ignoring
updates) leads to unstable runtimes, which compromise both the benchmark’s
understandability and reproducibility. To ensure stable runtimes, LDBC invented
parameter curation techniques, which select parameters that produce query
runtimes with a unimodal (preferably Gaussian) distribution [12,24].

9 github.com/ldbc/ldbc_snb_interactive_driver/releases/tag/v2.0.0-RC2



6.1 Building blocks for parameter curation

Temporal bucketing. To ensure that operations are always executable, i.e. they
avoid targeting nodes that are yet to be inserted or ones that are already deleted,
the parameter curation process in Interactive v2 employs temporal bucketing.
Namely, we create a parameter bucket for each day in the simulation time of the
update streams, i.e. each day in the simulation time has its own distinct set of
parameters. This is a novel feature in Interactive v2 – previous SNB benchmarks
lacked this feature and only selected parameters from the initial snapshot.
Factor tables. As shown in Figure 1, the parameter generation is a two-step pro-
cess. The factor generator produces factor tables, which contain data cube-like
summary statistics [10] of the temporal graph such as the number of Mes-
sages for friends. The factor generator is executed in a distributed setup us-
ing Spark as this computation includes expensive joins over large tables, e.g.
knowsperson,friend⌞  hasCreatorperson,comment⌞.
6.2 Parameter curation for relational queries

For relational queries (without path-nding), we based our parameter generation
on two techniques.
(1) Selecting windows. To select the parameters that are expected to yield
similar runtimes, we look for windows with the smallest variance for a given
value using SQL window functions. The parameters are rst sorted and grouped
together based on their dierence in frequency. Groups that are smaller than
a given minimum threshold are discarded to select a group of parameters large
enough to generate a sucient amount of parameters. From the latter, we select
the group with the smallest standard deviation.
(2) Selecting distributions. For queries where we want to select parameters
that are correlated or anti-correlated, we use factor tables encoding possible
combinations (e.g. countryPairsNumFriends for CR3): we select values near a
high percentile for the correlated and a low percentile for the anti-correlated case.
Generating the parameters. The parameter candidates discovered by the
previous approaches are stored in temporary tables. The parameter generation
step uses these tables to select parameters for each day in the update stream.

6.3 Parameter curation for path-nding queries

The eect of deletes. A key distinguishing feature of graph data management
systems is their rst-class support for path queries [1]. We demonstrate why
ensuring stable query runtimes for path queries is particularly challenging through
the example of Figure 5a, where we query for the (unweighted) shortest path
between Ada and Bob over a dynamic graph. Initially, at t = 1, the length of
the shortest path is 4 hops. Then, the edge between Carl and Dan is deleted,
making Ada and Bob unreachable from each other at t = 2. Finally, a new edge
is inserted between Carl and Bob, yielding a shortest path of length 3 at t = 3.
This illustrates how a given input parameter (a pair of Persons) can oscillate



between being reachable and being in disjoint connected components over a short
period. To ensure stable query runtimes for path queries in the presence of inserts
and deletes, Interactive v2 introduces a novel path curation algorithm, which
produces pairs of Person nodes whose shortest path length from each other is
guaranteed to be exactly k hops at any point during a given day.
Graph construction. The parameter curation algorithm builds two variants
of the Person–knows–Person subgraph for each day based on the temporal graph:
graph G1 has the inserts applied until the beginning of the day and the deletes
applied until the end of the day, while G2 has the deletes applied until the
beginning of the day and the inserts applied until the end of the day. For a given
pair of Person nodes, their shortest path length in G1 is an upper bound kupper
on their shortest path length at any point in the day – when the inserts during
the day are gradually applied, the shortest path length can only become shorter.
Conversely, G2 gives a lower bound klower for the shortest path – the deletes can
only make the shortest path length become longer.
Parameter selection. The bounds provided by G1 and G2 guarantee for the
shortest path length k that klower ≤ k ≤ kupper will hold at any point during the
day. We can ensure that k will stay constant during the day by selecting Person
pairs where klower = kupper holds. To this end, we select pairs who are exactly
4 hops apart in both G1 and G2, hence they will be always 4 hops apart during
the given day. Unreachable pairs of nodes can be generated by calculating the
connected components of G2 and selecting nodes from disjoint components. The
path curation for both the reachable and the unreachable cases is implemented
using the NetworKit graph algorithm library [23].

(a) Shortest path (denoted with
thick lines) between Ada and
Bob in the presence of updates.

(b) Pairs of Countries in the countryPairsNumFriends
factor table representing the number of friendships
between both Countries.

Fig. 5: Example graph and distribution for path curation.

6.4 Query variants

The new workload introduces variants for three queries: CR3, CR13, and CR14.
CR3: Correlated vs. anti-correlated Countries. We introduce variants for
CR3 (Figure 3a): variant CR3(a) starts from Countries that have a high correlation



in the friendship network, while variant CR3(b) starts from Countries that have
a low correlation of friendships between. To generate these inputs, we use the
countryPairsNumFriends factor table visualized in Figure 5b and select values
at percentile 1.00 for variant (a) and percentile 0.01 for variant (b).
CR13 and CR14: Reachable vs. unreachable Persons. Path queries are ex-
pected to have dierent runtimes if there is a path vs. when there is no path.
While the performance characteristics vary highly between systems, in principle,
the “no path” case should be simpler in the SNB graph, where one of the nodes
is always in a small connected component. To distinguish between these cases,
we have two variants for the two path queries CR13 and CR14. For variants (a)
we select Person pairs which do not have a path, and for variants (b) we select
pairs which have a path of length 4.

6.5 Parameter generator implementation

The parameter generator is implemented in Python using NetworKit [23] and SQL
queries executed by DuckDB [18]. Based on our experiments in [17, Figure 4.3],
the new parameter generator is scalable. Even with the signicant extra work
performed for temporal bucketing, it outperforms the old parameter generator
by more than 100× on SF1,000, and nishes in less than 1.5 hours on SF10,000.

7 Using the SNB Interactive v2 workload

In Sections 3 to 6, we presented the components that make up the SNB Interac-
tive v2 benchmark (Figure 1): its data sets, operations, driver, and parameter
generator. We continue by describing how the benchmark is used, including its
current implementations and considerations for auditing implementations.

7.1 Implementations

The portability of Interactive v2 is demonstrated by having four complete initial
implementations10 based on the Neo4j graph DBMS; and the Microsoft SQL
Server, PostgreSQL, and Umbra RDBMSs. The Neo4j implementation uses the
Cypher query language [8]. SQL Server uses the Transact-SQL language with the
graph extension.11 PostgreSQL and Umbra both use SQL’s PostgreSQL dialect.
All of these implementations passed cross-validation against each other.

7.2 Auditing

LDBC’s benchmarks come with stringent auditing guidelines to ensure that they
are implemented correctly and the results derived during benchmark runs are
10 https://github.com/ldbc/ldbc_snb_interactive_impls
11 https://learn.microsoft.com/en-us/sql/relational-databases/graphs/

sql-graph-overview?view=sql-server-ver16



reproducible. Audits are carried out by independent auditors who are certied
by the benchmark task force. The auditor ensures that an implementation is
compliant with the LDBC specication by performing a thorough code review,
running ACID tests, and executing the benchmark. The results of audits are
published as full disclosure reports and systems are ranked on the LDBC website
according to their throughput.12 In the following, we highlight important aspects
of the SNB auditing guidelines such as rules for precomputation and ACID tests.
For the detailed auditing guidelines, we refer the reader to the SNB specication [2,
Chapter 7].
Precomputation. The auditing guidelines permit the use of precomputed aux-
iliary data structures (views, indexes, views, etc.) provided that they are always
kept up-to-date upon update operations. A frequent use of precomputations is
the creation of a rootPost edge for each Message, which points to the root Post of
the Message’s thread. Implementers may decide to store information redundantly,
e.g. by adding a property to the Forum–hasMember–Person edge that contains
the number of Posts in the Forum, for improved locality during query execution.
ACID tests. To ensure thorough testing of transactional guarantees, SNB
Interactive v2 uses a separate ACID suite [29], which tests for 10 transactional
anomalies. While Interactive v1 only requires systems to guarantee the read
committed isolation level, the inclusion of delete operations necessitates snapshot
isolation to ensure queries read a consistent database state. To illustrate this
consider a graph with four nodes n1, n2, n3, n4, and three edges n1 → n2 → n3 →
n4. Assume transaction Ta begins traversing from n1, reading n1, n2, and n3.
Then, Tb deletes n2 and commits. Then, Tc inserts n5, connecting n3 and n4,
(n3 → n5 → n4), and commits. Ta then reads n5 and (incorrectly) concludes
that n4 is reachable from n1 – when in fact at no point in time was this a valid
database state. The ACID tests also include a durability test: during a benchmark
run, the system-under-test is shut down abruptly and restarted afterward. The
system is expected to guarantee durability, which is veried by the auditor who
checks whether the last update operations issued by the driver are reected in
the database’s state after recovery.
Full disclosure report (FDR). Audited benchmark results must be accom-
panied by a full disclosure report (FDR). The FDR documents the benchmark
setup for reproducibility and contains the detailed results of the benchmark run
(including statistics of the individual query runtimes).

8 Related work: LDBC FinBench

The LDBC FinBench (Financial Benchmark) targets distributed scale-out trans-
actional graph database management systems. It is set in the nancial domain
and uses concepts such as Account, Loan, and transfer. Its data distribution
follows the characteristics of the nancial domain, where a hub vertex (e.g. a
large e-commerce vendor) may have billions of edges. To make queries tractable

12 https://ldbcouncil.org/benchmarks/snb-interactive/



on such vertices, the workload employs truncation, i.e. a traversal only uses a
truncated set of edges, e.g. the 5,000 most recent edges. A requirement directly
derived from the nancial domain is having strict latency requirements for some
queries, e.g. 99% of a given query’s executions have to nish in 100 ms. The
workload also includes path-nding queries that can be expressed as regular
queries with memory [14].

9 Conclusion

Summary. In this paper, we summarized the LDBC SNB Interactive v1 workload
and explained its shortcoming to motivate its renewal. We then presented the
draft version of the Interactive v2 workload, which is expected to be very close
to the nal version of the workload. The new workload uses a data generator
producing deep cascading delete operations, includes a completely reworked driver
and workload scheduler, and a scalable parameter generator. We compared the
workload against other benchmarks and highlighted its key novel features that
allow the incorporation of delete operations while keeping important guarantees
such as stable query runtimes. While the benchmark was substantially reworked,
we made an eort to keep the user-facing changes minimal and only replaced a
single read query, CR14. We believe users with an existing v1 implementation
can adopt the new version with reasonable development cost and extend their
experiments to use larger scale factors in a matter of days. Therefore, we expect
users to quickly migrate to the new version upon its release.
Future work. As the next step in the Interactive v2 workload’s development pro-
cess, the SNB task force will nalize the workload, conduct standard-establishing
audits on two reference implementations and submit the workload for acceptance
by the LDBC Members Policy Council. Audits are expected to commence in 2024.
The task force will keep maintaining the workload in the coming years. In future
versions of SNB Interactive, we plan to incorporate long-running transactions,
schema constraints [3], and regular path queries [14].
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