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Abstract Novel prediction methods should always be compared to a baseline to know how well they
perform. Without this frame of reference, the performance score of a model is basically meaningless.
What does it mean when a model achieves an F1 of 0.8 on a test set? A proper baseline is needed to
evaluate the goodness of a performance score. Comparing with the latest state-of-the-art model is
usually insightful. However, being state-of-the-art can change rapidly when newer models are developed.
Contrary to an advanced model, a simple dummy classier could be used. However, the latter could
be beaten too easily, making the comparison less valuable. This paper presents a universal baseline
method for all binary classication models, named the Dutch Draw (DD). This approach weighs simple
classiers and determines the best classier to use as a baseline. We theoretically derive the DD
baseline for many commonly used evaluation measures and show that in most situations it reduces to
(almost) always predicting either zero or one. Summarizing, the DD baseline is: (1) general, as it is
applicable to all binary classication problems; (2) simple, as it is quickly determined without training
or parameter-tuning; (3) informative, as insightful conclusions can be drawn from the results. The DD
baseline serves two purposes. First, to enable comparisons across research papers by this robust and
universal baseline. Secondly, to provide a sanity check during the development process of a prediction
model. It is a major warning sign when a model is outperformed by the DD baseline.
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1 Introduction

A typical data science project can be crudely simplied to the following steps: (1) comprehending the
problem context, (2) understanding the data, (3) preparing the data, (4) modeling, (5) evaluating the
model, and (6) deploying the model (Wirth and Hipp, 2000). Before deploying a new model, it should
be tested whether it meets certain predened success criteria. A baseline plays an essential role in this
evaluation, as it gives an indication of the actual performance of a model.

However, which baseline should be selected? A good baseline is desirable, but what explicitly makes a
baseline good? Comparing with the latest state-of-the-art model is usually insightful. However, being
state-of-the-art can change rapidly when newer models are developed. Reproducibility of a model is
also often a problem, because code is not published or large amounts of computational resources are
required to retrain the model. These aspects make it hard or even impossible to compare older results
with newer research. Nevertheless, it is important to stress that the comparison with a state-of-the-
art model still has merit. However, we are pleading for an additional universal baseline that can be
computed quickly and can make it possible to compare results across research domains and papers.
With that aim in mind, we outline three principal properties that any universal baseline should have:
generality, simplicity, and informativeness.

Generality In research, a new model is commonly compared to a limited number of existing models
that are used in the same eld. Although these are usually carefully selected, they are still subjectively
chosen. Take binary classication, in which the objective is to label each observation either zero or
one. Here, one could already select a decision tree (Min and Jeong, 2009), random forest (Couronné
et al., 2018), variants of naive Bayes (Wang and Manning, 2012), k-nearest neighbors (Araújo et al.,
2017), support vector machine (Shahraki et al., 2017), neural network (Sundarkumar and Ravi, 2013),
or logistic regression model (Sergioli et al., 2019) to evaluate the performance. These models are often
trained specically for a problem instance with parameters tuned for optimal performance in that
specic case. Hence, these methods are not general. One could not take a decision tree that is used
for determining bankruptcy (Min and Jeong, 2009) and use it as a baseline for a pathological voice
detection problem (Muhammad and Melhem, 2014). At least structural adaptations and retraining
are necessary. A good standard baseline should be applicable to all binary classication problems,
irrespective of the domain.

Simplicity An additional universal baseline should not be too complex. But, it is hard to determine
for a measure if a baseline is too complex or not. Essentially, two components are critical in our view:
(1) computational time and (2) explainability. It is necessary for practical applications that the baseline
can be determined relatively fast. For example, training a neural network many times to generate an
average baseline or optimizing the parameters of a certain model could take too much valuable time.
Secondly, if a baseline is very complex, it can be harder to draw meaningful conclusions. Is it expected
that a new model is outperformed by this ingeniously complicated baseline, or is it exactly what one
would expect? This leads to the last property of a good standard baseline.

Informativeness Our baseline should be informative. When a method achieves a score higher or lower
than the baseline, clear conclusions need to be drawn. Is it obvious that the baseline should be beaten?
Consider the athletic event high jump, where an athlete needs to jump over a bar at a specic height. If
the bar is set too low, anyone can jump over it. If the bar is too high, no one makes it. Both situations
do not give us any additional information to distinguish a professional athlete from a regular amateur.
The bar should be placed at a height where the professional could obviously beat it, but the amateur
can not. Drawing from this analogy, a baseline should be obviously beaten by any developed model. If
not, this should be considered a major warning sign.
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Our research focuses on nding such a general, simple and informative baseline for binary classication

problems. Although we focus on these type of problems, the three properties should also hold for
constructing baselines in other supervised learning problems, such as multiclass classication and
regression. Two methods that immediately come to mind are dummy classiers and optimal threshold

classiers. They could be ideal candidates for our additional universal baseline.

Dummy classier A dummy classier is a non-learning model that makes predictions following a simple
set of rules. For example, always predicting the most frequent class label or predicting each class with
some probability. A dummy classier is simple and general, however it is not always informative. The
information gained by performing better than a simple dummy classier can even be zero. With the
plethora of dummy classiers, selection is also still arbitrary and questionable.

Optimal threshold classier Koyejo et al. (2014) determined for a large family of binary performance
measures that the optimal classier consists of a sign function with a threshold tailored to each specic
measure. To determine the optimal classier, it is necessary to know or approximate P(Y = 1X = x),
which is the probability that the binary label Y is 1 given the features X = x. Lipton et al. (2014)
had a similar approach, but they only focus on the F1 score. The conditional probabilities need to
be learned from training data. However, this leads to arbitrary selections, as a model is necessary to
approximate these probabilities. It is a clever approach, but unfortunately there is no clear-cut best
approximation model for dierent research domains. If the approximation model is not accurate, the
optimal classier is based on wrong information, which makes it hard to draw meaningful conclusions
from this approach.

Both the dummy classier and the optimal threshold classier have their strengths and weaknesses. In
this paper, we introduce a novel baseline approach, called the Dutch Draw (DD). The DD eliminates
these weaknesses, whilst keeping their strengths. The DD can be seen as a dummy classier on steroids.
Instead of arbitrarily choosing a dummy classier, we mathematically derive which classier, from a
family of classiers, has the best expected performance. Also, this expected performance can be directly
determined, making it very fast to obtain the baseline. The DD baseline is: (1) applicable to any binary
classication problem; (2) reproducible; (3) simple; (4) parameter-free; (5) more informative than any
single dummy baseline; (6) and an explainable minimal requirement for any new model. This makes
the DD an ideal candidate for a universal baseline in binary classication.

Our contributions are as follows: (1) we introduce the DD and explain why this method produces a
universal baseline that is general, simple and informative for all binary classication problems; (2) we
provide the mathematical properties of the DD for many evaluation measures and summarize them in
several tables; (3) we demonstrate how the DD baseline can be used in practice to identify which models
should denitely be reconsidered; (4) and we made the DD available in a Python package.1

2 Preliminaries

Before formulating the DD, we need to introduce necessary notation, and simultaneously, provide
elementary information on binary classication. This is required to explain how binary models are
evaluated. Then, we discuss how performance measures are constructed for binary classication and
we examine the ones that are most commonly used.

1https://github.com/joris-pries/DutchDraw
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2.1 Binary classication

The goal of binary classication is to learn (from a dataset) the relationship between the input vari-
ables and the binary output variable. When the dataset consists of M ∈ N>0 observations, let M :=
1,    ,M be the set of observation indices. Each instance, denoted by xi, has K ∈ N>0 explanatory
feature values. These features can be categorical or numerical. Without loss of generality, we assume
that xi ∈ RK for all i ∈ M. Moreover, each observation has a corresponding output value yi ∈ 0, 1.
Now, let X := [x1   xM ]T ∈ RM×K denote the matrix with all observations and their explanatory
feature values and let y = (y1,    , yM ) ∈ 0, 1M be the response vector. The complete dataset is then
represented by (X,y). We call the observations with response value 1 positive, while the observa-
tions with response value 0 are negative. Let P denote the number of positives and N the number of
negatives. Note that by denition P +N = M must hold.

2.2 Evaluation measures

An evaluation measure quanties the prediction performance of a trained model. We categorize the
evaluation measures into two groups: base measures and performance measures (Canbek et al., 2017).
Since there are two possible values for both the predicted and the true classes in binary classication,
there are four base measures: the number of true positives (TP), false positives (FP), false negatives
(FN) and true negatives (TN). Performance measures are a function of one or more these four base
measures. To shorten notation, let P̂ := TP+FP and N̂ := TN+FN denote the number of positively
and negatively predicted instances respectively.

All considered performance measures and base measures are shown in Table 1. Also their abbreviations,
possibly alternative names, their denitions and corresponding codomains are presented in Table 1.
The codomains show in what set the measure can theoretically take values (without considering the
exact values of P , N , P̂ and N̂). In Sec. 3, the case-specic codomains are provided when we discuss
the evaluation measures in more detail. Finally, note that the list is not exhaustive, but it contains
most of the commonly used evaluation measures.

Ill-dened measures

Not every evaluation measure is well-dened. Often, the problem occurs due to division by zero. For
example, the True Positive Rate (TPR) dened as TPR = TPP cannot be calculated whenever P = 0.
Therefore, we have made assumptions for the allowed values of P , N , P̂ and N̂ . These are shown in
Table 2. One exception is the Prevalence Threshold (PT) (Balayla, 2020), where the denominator is zero
if TPR is equal to the False Positive Rate (dened as FPR = FPN). Depending on the classier, this
situation could occur regularly. Therefore, PT is omitted throughout the rest of this research.

3 Dutch Draw (DD)

In this section, we introduce the DD framework and discuss how this method is able to provide a
universal baseline for any evaluation measure. This baseline is general, simple, and informative, which
is crucial for a good baseline, as we explained in Sec. 1. First, we provide the family of DD classiers,
and thereafter explain how the optimal classier generates the baseline.
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Table 1 Denitions and codomains of evaluation measures

Measure Denition Codomain

True Positives (TP) TP N0

True Negatives (TN) TN N0

False Negatives (FN) FN N0

False Positives (FP) FP N0

True Positive Rate (TPR), Recall, Sensitivity TPR = TP
P

[0, 1]

True Negative Rate (TNR), Specicity, Selectivity TNR = TN
N

[0, 1]

False Negative Rate (FNR), Miss Rate FNR = FN
P

[0, 1]

False Positive Rate (FPR), Fall-out FPR = FP
N

[0, 1]

Positive Predictive Value (PPV), Precision PPV = TP

P̂
[0, 1]

Negative Predictive Value (NPV) NPV = TN

N̂
[0, 1]

False Discovery Rate (FDR) FDR = FP

P̂
[0, 1]

False Omission Rate (FOR) FOR = FN

N̂
[0, 1]

Fβ score (Fβ) Fβ = (1 + β2)


1
PPV

+ β2

TPR


[0, 1]

Youden’s J Statistic/Index (J), (Bookmaker) Informedness J = TPR + TNR− 1 [−1, 1]

Markedness (MK) MK = PPV + NPV− 1 [−1, 1]

Accuracy (Acc) Acc = TP+TN
M

[0, 1]

Balanced Accuracy (BAcc) BAcc = 1
2
(TPR + TNR) [0, 1]

Matthews Correlation Coecient (MCC) MCC = TP·TN−FP·FN√
P̂ ·N̂·P·N

[−1, 1]

Cohen’s kappa (κ) κ = Po−Pe
1−Pe

, with Po = Acc,Pe = P̂ ·P+N̂·N
M2 [−1, 1]

Fowlkes-Mallows Index (FM), G-mean 1 FM =
√
TPR · PPV [0, 1]

G-mean 2 (G(2)) G(2) =
√
TPR · TNR [0, 1]

Prevalence Threshold (PT) PT =
√

TPR·FPR−FPR
TPR−FPR

[0, 1]

Threat Score (TS), Critical Success Index TS = TP
P+FP

[0, 1]

3.1 Dutch Draw classiers

The goal of our research is to provide a universal baseline for any evaluation measure in binary classica-
tion. The DD baseline comes from choosing the best DD classier. Before we discuss what best actually
entails, we have to dene the DD classier in general. This is the function σθ : RM×K → 0, 1M with
input an evaluation dataset with M observations and K feature values per observation. The function
generates the predictions for these observations by outputting a vector of M binary predictions. It is
described in words as:

σθ(X) :=take a random sample without replacement of size bM · θe
of rows from X and assign 1 to these observations and 0

to the remaining rows
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Table 2 Assumptions on domains P , N , P̂ and N̂ : Some measures are not dened if P , N , P̂ or N̂ is equal to
zero. These domain requirements are therefore necessary (always M > 0).

Domain requirement for:

Measure P N P̂ N̂

TP, TN, FN, FP, Acc, κ - - - -

TPR, FNR, TS > 0 - - -

TNR, FPR - > 0 - -

PPV, FDR - - > 0 -

NPV, FOR - - - > 0

Fβ , FM > 0 - > 0 -

J, BAcc, G(2) > 0 > 0 - -

MK - - > 0 > 0

MCC > 0 > 0 > 0 > 0

Here, b·e is the function that rounds its argument to the nearest integer. The parameter θ ∈ [0, 1]
controls what percentage of observations are predicted as positive. The mathematical denition of σθ
is given by:

σθ(X) := (1E(i))i∈M with E ⊆ M uniformly drawn s.t. E = bM · θe,

with (1E(i))i∈M the vector with ones in the positions in E and zeroes elsewhere. Note that a classier σθ
does not learn from the features in the data, just as a dummy classier. The set of all DD classiers σθ :
θ ∈ [0, 1] is the complete family of models that classify a random sample of any size as positive.

Given a DD classier, the number of predicted positives P̂ depends on θ and is given by P̂θ := bM · θe
and the number of predicted negatives is N̂θ := M − bM · θe. To be specic, these two numbers are
integers, and thus, dierent values of θ can lead to the same value of P̂θ. Therefore, we introduce the

parameter θ∗ := bM ·θe
M as the discretized version of θ. Furthermore, we dene:

Θ∗ :=


bM · θe

M
: θ ∈ [0, 1]


=


0,

1

M
,    ,

M − 1

M
, 1



as the set of all unique values that θ∗ can obtain for all θ ∈ [0, 1].

Next, we derive mathematical properties of the DD classier for every evaluation measure in Table 1
(except PT). Note that the DD is stochastic, thus we examine the distribution of the evaluation measure.
Furthermore, we also determine the range and expectation of a DD classier.

3.1.1 Distribution

The distributions of the base measures (see Sec. 2.2) are directly determined by σθ. Consider for
example TP: the number of positive observations that are also predicted to be positive. In a dataset
of M observations with P labeled positive, bM · θe random observations are predicted as positive in
the DD approach. This implies that TPθ is hypergeometrically distributed with parameters M , P and
bM · θe, as the classier randomly draws bM · θe samples without replacement from a population of size
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M , where P samples are labeled positive. Thus:

P(TPθ = s) =





(Ps)·(
M−P

bM·θe−s)
( M
bM·θe)

if s ∈ D(TPθ),

0 else,

where D(TPθ) is the domain of TPθ. The denition of this domain is given in Eq. (1).

The other three base measures are also hypergeometrically distributed following similar reasoning. This
leads to:

TPθ ∼ Hypergeometric(M,P, bM · θe),
FPθ ∼ Hypergeometric(M,N, bM · θe),
FNθ ∼ Hypergeometric(M,P,M − bM · θe),
TNθ ∼ Hypergeometric(M,N,M − bM · θe)

Note that these random variables are not independent. In fact, they can all be written in terms of TPθ.
This is a crucial eect of the DD approach, as it reduces the formulations to only a function of a single
variable. Consequently, most evaluation measures can be written as a linear combination of only TPθ.
With only one random variable, theoretical derivations and optimal classiers can be determined. As
mentioned before, TPθ+FNθ = P and TNθ+FPθ = N = M−P , and we also have TPθ+FPθ = bM ·θe,
because this denotes the total number of positively predicted observations. These three identities are
linear in TPθ, thus each base measure can be written in the form Xθ (a, b) := a ·TPθ + b with a, b ∈ R.
Additionally, let fXθ

(a, b) be the probability distribution of Xθ (a, b). Then, by combining the identities,
we get:

TPθ = TPθ, (B1)

FPθ = P̂θ −TPθ, (B2)

FNθ = P −TPθ, (B3)

TNθ = N − P̂θ +TPθ, (B4)

with P̂θ := bM · θe.

Example: distribution Fβ score To illustrate how the probability function fXθ
(a, b) can directly be

derived, we consider the Fβ score F
(β)
θ (Chinchor, 1992). It is the weighted harmonic average between

the True Positive Rate (TPRθ) and the Positive Predictive Value (PPVθ). The latter two performance
measures are discussed extensively in A.5 and A.9, respectively. The Fβ score balances predicting the
actual positive observations correctly (TPRθ) and being cautious in predicting observations as positive
(PPVθ). The factor β > 0 indicates how much more TPRθ is weighted compared to PPVθ. The Fβ

score is commonly dened as:

F
(β)
θ =

1 + β2

1
PPVθ

+ β2

TPRθ



By substituting PPVθ and TPRθ by their denitions (see Table 1) and using Eq. (B1) and (B2), we
get:

F
(β)
θ =

(1 + β2)TPθ

β2 · P + bM · θe 
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Since PPVθ is only dened when P̂θ = bM · θe > 0 and TPRθ is only dened when P > 0, we need

for F
(β)
θ that both these restrictions hold. The denition of F

(β)
θ is linear in TPθ and can therefore be

formulated as:

F
(β)
θ = Xθ

(
1 + β2

β2 · P + bM · θe , 0
)


3.1.2 Range

The values that Xθ (a, b) can attain depend on a and b, and of course, on the domain of TPθ. Without
restriction, the maximum number that TPθ can be is P . Then, all positive observations are also
predicted to be positive. However, when θ is small enough such that bM · θe < P , then only bM · θe
observations are predicted as positive. Consequently, TPθ can only reach the value bM · θe in this case.
Hence, in general, the upper bound of the domain of TPθ is minP, bM · θe. The same reasoning holds
for the lower bound: when θ is small enough, the minimum number of TPθ is 0, since all positive
observations can be predicted as negative. However, when θ gets large enough, positive observations
have to be predicted positive even if all M − P negative observations are predicted positive. Thus, in
general, the lower bound of the domain is max0, bM · θe− (M − P ). Now, let D(TPθ) be the domain
of TPθ, then:

D(TPθ) := i ∈ N0 : max0, bM · θe− (M − P ) ≤ i ≤ minP, bM · θe  (1)

Consequently, the range of Xθ (a, b) is given by

R (Xθ (a, b)) := a · i+ bi∈D(TPθ)
 (R)

3.1.3 Expectation

The introduction of Xθ (a, b) allows us to write its expected value in terms of a and b. This statistic is
required to calculate the actual baseline. Since TPθ has a Hypergeometric(M,P, bM · θe) distribution,
its expected value is known and given by

E[TPθ] =
bM · θe

M
· P

Next, we obtain the following general denition for the expectation of Xθ (a, b):

E[Xθ (a, b)] = a ·E[TPθ] + b = a · bM · θe
M

· P + b, ()

This rule is consistently used to determine the expectation for each measure.

Example: expectation Fβ score To demonstrate how the expectation is calculated for a performance

measure, we again consider F
(β)
θ . It is linear in TPθ with a = (1+ β2)(β2 ·P + bM · θe) and b = 0, and

so, its expectation is given by:

E[F
(β)
θ ] = E

[
Xθ

(
1 + β2

β2 · P + bM · θe , 0
)]

()
=

1 + β2

β2 · P + bM · θe ·E[TPθ] + 0

=
bM · θe · P · (1 + β2)

M · (β2 · P + bM · θe)

=
(1 + β2) · P · θ∗
β2 · P +M · θ∗  (2)

A full overview of the distribution and mean of all considered base and performance measures is given
in Table 3. All the calculations performed to derive the corresponding distributions and expectations
are provided in Appendix A.
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Table 3 Properties of performance measures for a DD classier: Expectation and distribution of each perfor-

mance measure for a DD classier σθ with θ∗ =
bM ·θe

M
.

Distribution fXθ
(a, b)

Measure Expectation

a b

TP θ∗ · P 1 0

TN (1− θ∗) (M − P ) 1 M − P −M · θ∗

FN (1− θ∗)P −1 P

FP θ∗ (M − P ) −1 M · θ∗

TPR θ∗ 1
P

0

TNR 1− θ∗ 1
M−P

1− M·θ∗
M−P

FNR 1− θ∗ − 1
P

1

FPR θ∗ − 1
M−P

M·θ∗
M−P

PPV P
M

1
M·θ∗ 0

NPV 1− P
M

1
M(1−θ∗) 1− P

M(1−θ∗)

FDR 1− P
M

− 1
M·θ∗ 1

FOR P
M

− 1
M(1−θ∗)

P
M(1−θ∗)

Fβ
(1+β2)θ∗·P
β2·P+M·θ∗

1+β2

β2·P+M·θ∗ 0

J 0 M
P (M−P )

− M·θ∗
M−P

MK 0 1
M·θ∗(1−θ∗) − P

M(1−θ∗)

Acc
(1−θ∗)(M−P )+θ∗·P

M
2
M

1− θ∗ − P
M

BAcc 1
2

M
2P (M−P )

1
2
− M·θ∗

2(M−P )

MCC 0 1√
P (M−P )θ∗(1−θ∗)

−
√

P ·θ∗√
(M−P )(1−θ∗)

κ 0 2
P (1−θ∗)+(M−P )θ∗ − 2θ∗·P

P (1−θ∗)+(M−P )θ∗

FM


θ∗·P
M

1√
P ·M ·θ∗ 0

G(2) - Nonlinear in TPθ Nonlinear in TPθ

TS - Nonlinear in TPθ Nonlinear in TPθ



The Dutch Draw 10

3.2 Optimal Dutch Draw classier

Next, we discuss how the DD baseline will ultimately be derived. In order to do so, an overview is
presented in Fig. 1. Starting with the denition of the DD classiers in Sec. 3.1 and determining their
expectations for commonly used measures (see Table 3), we are now able to identify the optimal DD
classier. Given a performance measure and dataset, the optimal DD classier is found by optimizing
(taking the minimum or maximum of) the associated expectation for θ ∈ [0, 1].

§3.1

All DD classiers

Table 3

Expectations of all DD classiers

§3.2

Optimal DD classier

Table 4

DD baseline

(1)

(2)

(3)

Fig. 1 Road to DD baseline: This is an overview of how the DD baseline is determined. (1) all expectations are
derived; (2) the expectation is maximized/minimized; (3) the performance of the best DD classier is the DD baseline

3.2.1 Dutch Draw baseline

The optimal DD classiers and the corresponding DD baseline can be found in Table 4. For many
performance measures, it is optimal to always predict positive or negative. In some cases, this is not
allowed due to ill-dened measures. Then, it is often optimal to only predict one sample dierently.
For several other measures, almost all parameter values give the optimal baseline. Next, we give an
example to illustrate how the results of Table 4 are derived.

Example: DD baseline for the Fβ score To determine the DD baseline, the extreme values of the expec-

tation E[F
(β)
θ ] need to be identied. To do this, examine the following function f : [0, 1] → [0, 1] dened

as:

f(t) =
(1 + β2) · P · t
β2 · P +M · t 

The relationship between f and E[F
(β)
θ ] is given as f(bM ·θeM) = E[F

(β)
θ ]. To nd the extreme values,

we have to look at the derivative of f :

df(t)

dt
=

β2(1 + β2) · P 2

(β2 · P +M · t)2 

It is strictly positive for all t in its domain, thus f is strictly increasing in t. This means E[F
(β)
θ ] is

non-decreasing in θ and also in θ∗, because the term θ∗ = bM · θeM is non-decreasing in θ. Hence, the
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extreme values of the expectation of F
(β)
θ are its border values:

min
θ∈[1/(2M),1]


E[F

(β)
θ ]


= min

θ∈[1/(2M),1]

(
(1 + β2) · P · bM · θe
M · (β2 · P + bM · θe)

)

=
(1 + β2) · P

M(β2 · P + 1)
,

max
θ∈[1/(2M),1]


E[F

(β)
θ ]


= max

θ∈[1/(2M),1]

(
(1 + β2) · P · bM · θe
M · (β2 · P + bM · θe)

)

=
(1 + β2) · P
β2 · P +M



Note that bM · θe > 0 is a restriction for F
(β)
θ , and hence the optima are taken over the interval

[1(2M), 1]. Furthermore, the optimization values θmin and θmax for the extreme values are given
by

θmin ∈ argmin
θ∈[1/(2M),1]


E[F

(β)
θ ]


= argmin

θ∈[1/(2M),1]

(
bM · θe

β2 · P + bM · θe

)

=


[12 , 1] if M = 1

1
2M , 3

2M


if M > 1,

θmax ∈ argmax
θ∈[1/(2M),1]


E[F

(β)
θ ]


= argmax

θ∈[1/(2M),1]

(
bM · θe

β2 · P + bM · θe

)

=

[
1− 1

2M
, 1

]
,

respectively. Following this reasoning, the discrete forms θ∗min and θ∗max are given by

θ∗min ∈ argmin
θ∗∈Θ∗\{0}

{
E[F

(β)
θ∗ ]

}
= argmin

θ∗∈Θ∗\{0}


θ∗

β2 · P +M · θ∗


=


1

M


,

θ∗max ∈ argmax
θ∗∈Θ∗\{0}

{
E[F

(β)
θ∗ ]

}
= argmax

θ∗∈Θ∗\{0}


θ∗

β2 · P +M · θ∗


= 1

The smallest E[F
(β)
θ ] is obtained when all observations except one are predicted negative, while pre-

dicting everything positive yields the largest E[F
(β)
θ ].
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Table 4 DD baseline: For many evaluation measures, the minimum and maximum expected score of all allowed
DD classiers is determined, which is the DD baseline. In this table, the baselines and the optimizing parameters are
given. - denotes that no closed-form expression was found.

Measure max{E} Θ?
max := argmax{E} min{E} Θ?

min := argmin{E}

TP P {1} 0 {0}

TN M − P {0} 0 {1}

FN P {0} 0 {1}

FP M − P {1} 0 {0}

TPR 1 {1} 0 {0}

TNR 1 {0} 0 {1}

FNR 1 {0} 0 {1}

FPR 1 {1} 0 {0}

PPV P
M

Θ∗ \ {0} P
M

Θ∗ \ {0}

NPV 1− P
M

Θ∗ \ {1} 1− P
M

Θ∗ \ {1}

FDR 1− P
M

Θ∗ \ {0} 1− P
M

Θ∗ \ {0}

FOR P
M

Θ∗ \ {1} P
M

Θ∗ \ {1}

Fβ
(1+β2)·P
β2·P+M

{1} (1+β2)·P
M(β2·P+1)


1
M



J 0 Θ∗ 0 Θ∗

MK 0 Θ∗ \ {0, 1} 0 Θ∗ \ {0, 1}

Acc max
{

P
M

, 1− P
M

}
{[P < M

2
]} 2 min

{
P
M

, 1− P
M

}
{[P > M

2
]} 2

BAcc 1
2

Θ∗ 1
2

Θ∗

MCC 0 Θ∗ \ {0, 1} 0 Θ∗ \ {0, 1}

κ 0 Θ∗ 3 0 Θ∗ 3

FM


P
M

{1}
√

P
M

{ 1
M

}

G(2) - - 0 {0, 1}

TS P
M

{1} 0 {0}

4 Dutch Draw in Practice

Now that we have established how to derive the DD baseline, it is time to see it in action. As a demon-
stration, we determined the DD baseline for commonly used evaluation measures on eight datasets
extracted from the UCI machine learning archive (Dua and Gra, 2021): Adult, Bank Marketing, Ban-
knote Authentication, Cleveland Heart Disease, Haberman’s Survival, LSVT Voice Rehabilitation, Occupancy

2If P = M
2
, then Θ∗. Note that Iverson brackets are used to simplify notation.

3If P = M , then Θ∗ \ {1}.
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Detection, and Wisconsin Cancer. The resulting DD baselines are shown in Table 5. For some measures,
the DD baseline already achieves the highest attainable score, such as for TPR and FNR. This suggests
that these measures are not reliable indicators of the overall performance of a model. The problem
is that these measures are only concerned with correctly predicting the positive instances. Always
predicting positive therefore trivially gives the optimal performance. A less obvious DD baseline is
the one for the F1 score on the Bank Marketing dataset. The DD achieves an expected performance
of approximately 0629. Any new model for the Bank Marketing dataset should therefore surpass this
score. Next, we want to discuss what conclusions can be drawn from such a comparison by examining
the following example.

Table 5 DD baseline for UCI datasets: Each dataset has dierent P and M , resulting in dierent Dutch Draw
baselines.

Measure Adult 4 Bank
Marketing 5

Banknote
Authentication 4

Cleveland Heart
Disease 4

Haberman’s
Survival 4

LSVT Voice
Rehabilitation 6

Occupancy
Detection 7

Wisconsin Cancer
(Diagnostic) 4

TP 11687 5289 610 139 81 42 4750 212

TN 37155 39922 762 164 225 84 15810 357

FN 37155 39922 672 164 225 84 15810 357

FP 11687 5289 610 139 81 42 4750 212

TPR 1 1 1 1 1 1 1 1

TNR 1 1 1 1 1 1 1 1

FNR 1 1 1 1 1 1 1 1

FPR 1 1 1 1 1 1 1 1

PPV 0.239 0.117 0.445 0.459 0.265 0.333 0.231 0.373

NPV 0.761 0.883 0.555 0.541 0.735 0.667 0.769 0.627

FDR 0.761 0.883 0.555 0.541 0.735 0.667 0.769 0.627

FOR 0.239 0.117 0.445 0.459 0.265 0.333 0.231 0.373

F1 0.386 0.209 0.616 0.629 0.419 0.5 0.375 0.543

J 0 0 0 0 0 0 0 0

MK 0 0 0 0 0 0 0 0

Acc 0.761 0.883 0.555 0.541 0.735 0.667 0.769 0.627

BAcc 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MCC 0 0 0 0 0 0 0 0

κ 0 0 0 0 0 0 0 0

FM 0.489 0.342 0.667 0.677 0.514 0.577 0.481 0.61

G(2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

TS 0.239 0.117 0.445 0.459 0.265 0.333 0.231 0.373

4.1 Example: Cleveland Heart disease

The objective of this dataset is to predict whether patients have a heart disease given several feature
values. In order to do so, we used ve commonly used machine learning algorithms to perform this
binary classication task: logistic regression, decision tree, random forest, k-nearest neighbors, and Gaussian

4Dua and Gra (2021)
5Moro et al. (2014)
6Tsanas et al. (2014)
7Candanedo and Feldheim (2016)
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naive Bayes. These algorithms all had their default parameters in scikit-learn (Pedregosa et al., 2011).
The dataset was randomly split in a training (90%) and test set (10%). Fig. 2 shows the corresponding
performance results.

Before applying a newly developed model to actual patients, its performance should at least be better
than the DD baseline, as the latter does not learn anything from the feature values of the data. In
Fig. 2, we see that some methods fail to beat the baseline and should therefore be reconsidered. For
example, decision tree and k-nearest neighbors underperform for the Fβ score (FBETA), Fowlkes-Mallows

Index (FM), and Threat Score (TS). Note that the two methods were not trained to be optimal for
the selected performance measures, whereas the DD does take the performance measure into account.
However, this does not make the comparison unfair, since they are not competing for being the best
prediction method. After all, the DD baseline is a minimal requirement for any new binary classication
method. Even though a model is optimized for, say, the Accuracy, its performance should still beat
the DD baseline for the F1 score, as both the Accuracy and F1 score provide indications of the overall
prediction performance. To conclude, this example shows how the DD can be used in practice and why
it is valuable in the evaluation process.

Fig. 2 Comparing performance to the DD baseline: Five standard machine learning algorithms (logistic re-
gression, decision tree, random forest, k-nearest neighbors, and gaussian naive bayes) are tested on the Cleveland
Heart Disease dataset for many commonly used performance measures. The results are compared with the minimal
and maximal DD baseline (DDB), which are given in the rst two columns. Bold and underlined indicates that this
score is more relevant, as the performance measure is commonly minimized or maximized. The blue boxes highlight
some situations where a model achieves a score inferior to the DD baseline
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5 Discussion and Conclusion

In this research, we have proposed a new baseline methodology called the Dutch Draw (DD). The DD
baseline is: (1) applicable to any binary classication problem; (2) reproducible; (3) simple; (4) pa-
rameter-free; (5) more informative than any single dummy baseline; (6) and an explainable minimal
requirement for any new model. We have shown that for most commonly used measures the DD base-
line can be theoretically determined (see Table 4). When the baseline cannot be derived directly, it can
be identied quickly by computation. For most performance measures, the DD baseline reduces to one
of the following three cases: (i) always predicting positive or negative; (ii) always predicting positive or
negative, except for one instance; (iii) any DD classier, except maybe for θ∗ = 0 or θ∗ = 1. However,
there are exceptions to these three cases. Examine the following example for the G-mean 2 : P = 9 and
M = 10. We have previously seen (Table 4) that θ∗ ∈ 0, 1 achieves the lowest expected score. To
nd the highest expected score, note that θ∗ = 1

M gives an expected score of 3
10 , θ

∗ = 2
M a score of

4
√
2

15 , and θ∗ = M−1
M a score of 1

10 . This shows that the optimal parameter is not in 0, 1
M , M−1

M , 1, as
4
√
2

15 > 3
10 > 1

10 . In this case, the maximum is achieved for θ∗ = 3
10 . This shows that the DD does not

always reduce to one of the three previously mentioned cases and does not always give straightforward
results.

By introducing the DD baseline, we have simplied and improved the evaluation process of new binary
classication methods. We consider it a minimal requirement for any novel model to at least beat the
DD baseline. When this does not happen, the question is raised how much a new method has even
learned from the data, since the DD baseline is derived from dummy classiers. When the novel model
has beaten the DD baseline, it should still be compared to a state-of-the-art method in that specic
domain to obtain additional insights. In Sec. 4, we have shown how the DD should be used in practice
and that commonly used approaches such as k-nearest neighbors and a decision tree can underperform.
Hence, using the Dutch Draw as a general, simple and informative baseline should be the new gold
standard in any model evaluation process.

5.1 Further research

Our baseline is a stepping stone for further research, where multiple avenues should be explored. We
discuss four possible research directions.

Firstly, we are now able to determine whether a binary classication model performs better than a
universal baseline. However, we do not yet know how much it performs better (or worse). For example,
let the baseline have a score of 0.5 and a new model a score of 0.9. How much better is the latter score?
It could be that a tiny bit of extra information easily pushes the score from 0.5 to 0.9. Or, it is possible
that a model needs a lot of information to understand the intricacies of the problem, making it very
dicult to reach a score of 0.9. Thus, it is necessary to quantify how hard it is to reach any score.
Also, when another model is added that achieves a score of 0.91, can the dierence in performance of
these models be quantied? Is it only a slightly better model or is it a leap forward?

Secondly, our DD baseline could be used to construct new standardized evaluation measures from their
original versions. The advantage of these new measures would be that the interpretation of their scores
is independent of the number of positive and negative observations in the dataset. In other words, the
DD baseline would already be incorporated in the new measure, such that comparing a score to the
baseline is not necessary anymore. There are many ways how the DD baseline can be used to scale a
measure. Let ∆max and ∆min denote the maximum and minimum Dutch Draw baseline, respectively.
As an example, a measure µ with range [µmin, µmax] that needs to be maximized can be rescaled
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by

µrescaled =





−1 if µ ≤ ∆min,
µ−∆max

∆max−∆min
if ∆min ≤ µ ≤ ∆max,

µ−∆max

µmax−∆max
else

Everything below the lowest Dutch Draw baseline (∆min) gets value −1, because every Dutch Draw
classier is then performing better. This should be a major warning sign. A score between ∆min and
∆max is rescaled to [−1, 0]. This value indicates that the performance is still worse than the best
Dutch Draw baseline. All scores above ∆max are scaled to [0, 1] In this case, the performance at least
performed better than the best Dutch Draw baseline.

Thirdly, another natural extension would be to drop the binary assumption and consider multiclass
classication. This is more complicated than it seems, because not every multiclass evaluation mea-
sure follows automatically from its binary counterpart. However, we expect that for most multiclass
measures it is again optimal to always predict a single specic class.

Fourthly, the essence of the DD could be used to create universal baselines for other prediction problems,
such as for regression problems. This means an approach that also uses (almost) no information from
the data and is able to generate a measure-specic baseline to which newly developed models could be
compared.

As a nal note, we have published the code for the DD, such that the reader can easily implement the
baseline into their binary classication problems.8

A Mathematical Derivations

This section contains the complete theoretical analysis that is used to gather the information presented in Sec. 2
and 3, and more specically, Table 2, 3 and 4. Each subsection is dedicated to one of the evaluation measures. The
following denitions are frequently used throughout this section:

Xθ (a, b) := a · TPθ + b with a, b ∈ R
fXθ

(a, b) := probability distribution of Xθ (a, b)

An overview of the entire Appendix can be viewed in Table 6.

Table 6 Overview of the Appendix: Each measure is discussed in the corresponding section in the Appendix

Measure TP TN FN FP TPR TNR FNR FPR PPV NPV FDR FOR

Section A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12

Measure Fβ J MK Acc BAcc MCC κ FM G(2) PT TS

Section A.13 A.14 A.15 A.16 A.17 A.18 A.19 A.20 A.21 A.22 A.23

A.1 Number of True Positives

The Number of True Positives TPθ is one of the four base measures that are introduced in Sec. 2.2. This measure
indicates how many of the predicted positive observations are actually positive. Under the DD methodology, each
evaluation measure can be written in terms of TPθ .

8https://github.com/joris-pries/DutchDraw
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A.1.1 Denition and Distribution

Since we want to formulate each measure in terms of TPθ , we have for TPθ :

TPθ
(B1)
= Xθ (1, 0) ∼ fXθ

(1, 0) 

The range of this base measure depends on θ. Therefore, Eq. (R) yields the range of this measure:

TPθ ∈ R (Xθ (1, 0)) 

A.1.2 Expectation

The expectation of TPθ using the DD is given by

E[TPθ ] = E[Xθ (1, 0)]
()
=

bM · θe
M

· P = θ∗ · P (3)

A.1.3 Optimal Baselines

The DD baseline is given by the optimal expectation. Eq. (3) shows that the expected value depends on the parameter
θ. Therefore, either the minimum or maximum of the expectation yields the baseline. They are given by

min
θ∈[0,1]

(E[TPθ ]) = P · min
θ∈[0,1]

 bM · θe
M


= 0,

max
θ∈[0,1]

(E[TPθ ]) = P · max
θ∈[0,1]

 bM · θe
M


= P

The values of θ ∈ [0, 1] that minimize or maximize the expected value are θmin and θmax, respectively, and are dened
as

θmin ∈ argmin
θ∈[0,1]

(E[TPθ ]) = argmin
θ∈[0,1]

 bM · θe
M


=


0,

1

2M


,

θmax ∈ argmax
θ∈[0,1]

(E[TPθ ]) = argmax
θ∈[0,1]

 bM · θe
M


=


1− 1

2M
, 1




Equivalently, the discrete optimizers θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ are determined by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TPθ∗ ]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TPθ∗ ]} = argmax
θ∗∈Θ∗

{θ∗} = {1}

A.2 Number of True Negatives

The Number of True Negatives TNθ is also one of the four base measures and is introduced in Sec. 2.2. This base
measure counts the number of negative predicted instances that are actually negative.

A.2.1 Denition and Distribution

Since we want to formulate each measure in terms of TPθ , we have for TNθ :

TNθ = M − P − bM · θe+ TPθ ,

which corresponds to Eq. (B4). Furthermore,

TNθ
(B4)
= Xθ (1,M − P − bM · θe) ∼ fXθ

(1,M − P − bM · θe) ,

and for its range

TNθ

(R)
∈ R (Xθ (1,M − P − bM · θe)) 
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A.2.2 Expectation

TNθ is linear in TPθ with slope a = 1 and intercept b = M − P − bM · θe, so its expectation is given by

E[TNθ ] = E[Xθ (1,M − P − bM · θe)] ()
= 1 ·E[TPθ ] +M − P − bM · θe

=


1− bM · θe

M


(M − P ) = (1− θ∗) (M − P ) 

A.2.3 Optimal Baselines

To determine the range of the expectation of TNθ , and hence, obtain baselines, its extreme values are calcu-
lated:

min
θ∈[0,1]

(E[TNθ ]) = (M − P ) min
θ∈[0,1]


1− bM · θe

M


= 0,

max
θ∈[0,1]

(E[TNθ ]) = (M − P ) max
θ∈[0,1]


1− bM · θe

M


= M − P

The associated optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] are

θmin ∈ argmin
θ∈[0,1]

(E[TNθ ]) = argmin
θ∈[0,1]


1− bM · θe

M


=


1− 1

2M
, 1


,

θmax ∈ argmax
θ∈[0,1]

(E[TNθ ]) = argmax
θ∈[0,1]


1− bM · θe

M


=


0,

1

2M




The discrete equivalents θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ are then determined by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TNθ∗ ]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TNθ∗ ]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}

A.3 Number of False Negatives

The Number of False Negative FNθ is one of the four base measures that are introduced in Sec. 2.2. This base measure
counts the number of mistakes made by predicting instances negative while the actual labels are positive.

A.3.1 Denition and Distribution

Eq. (B3) shows that FNθ can be expressed in terms of TPθ :

FNθ
(B3)
= P − TPθ = Xθ (−1, P ) ∼ fXθ

(−1, P ) ,

and for its range:

FNθ

(R)
∈ R (Xθ (−1, P )) 

A.3.2 Expectation

As Eq. (B3) shows, FNθ is linear in TPθ with slope a = −1 and intercept b = P . Hence, the expectation of FNθ is
given by

E[FNθ ] = E[Xθ (−1, P )]
()
= −1 ·E[TPθ ] + P =


1− bM · θe

M


· P = (1− θ∗) · P
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A.3.3 Optimal Baselines

The range of the expectation of FNθ determines the baselines. The extreme values are given by

min
θ∈[0,1]

(E[FNθ ]) = P · min
θ∈[0,1]


1− bM · θe

M


= 0,

max
θ∈[0,1]

(E[FNθ ]) = P · max
θ∈[0,1]


1− bM · θe

M


= P

The associated optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] are then

θmin ∈ argmin
θ∈[0,1]

(E[FNθ ]) = argmin
θ∈[0,1]


1− bM · θe

M


=


1− 1

2M
, 1


,

θmax ∈ argmax
θ∈[0,1]

(E[FNθ ]) = argmax
θ∈[0,1]


1− bM · θe

M


=


0,

1

2M


,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers are as follows:

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FNθ∗ ]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FNθ∗ ]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}

A.4 Number of False Positives

The Number of False Positives FPθ is one of the four base measures that we discussed in Sec. 2.2. This base measure
counts the number of mistakes made by predicting instances positive while the actual labels are negative.

A.4.1 Denition and Distribution

Each base measure can be expressed in terms of TPθ , thus we have for FPθ :

FPθ
(B2)
= bM · θe− TPθ = Xθ (−1, bM · θe) ∼ fXθ

(−1, bM · θe) ,

and for its range:

FPθ

(R)
∈ R (Xθ (−1, bM · θe)) 

A.4.2 Expectation

As Eq. (B2) shows, FPθ is linear in TPθ with slope a = −1 and intercept b = bM · θe, thus the expectation of FPθ is
dened as

E[FPθ ] = E[Xθ (−1, bM · θe)] ()
= −1 ·E[TPθ ] + bM · θe =

bM · θe
M

· (M − P ) = θ∗ · (M − P ) 

A.4.3 Optimal Baselines

The baselines of FPθ are given by the extreme values of its expectation. Hence:

min
θ∈[0,1]

(E[FPθ ]) = (M − P ) min
θ∈[0,1]

 bM · θe
M


= 0,

max
θ∈[0,1]

(E[FPθ ]) = (M − P ) max
θ∈[0,1]

 bM · θe
M


= M − P
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The corresponding optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] are

θmin ∈ argmin
θ∈[0,1]

(E[FPθ ]) = argmin
θ∈[0,1]

 bM · θe
M


=


0,

1

2M


,

θmax ∈ argmax
θ∈[0,1]

(E[FPθ ]) = argmax
θ∈[0,1]

 bM · θe
M


=


1− 1

2M
, 1




The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimization values are determined by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FPθ∗ ]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FPθ∗ ]} = argmax
θ∗∈Θ∗

{θ∗} = {1}

A.5 True Positive Rate

The True Positive Rate TPRθ , Recall, or Sensitivity is the performance measure that presents the fraction of positive
observations that are correctly predicted. This makes it a fundamental performance measure in binary classica-
tion.

A.5.1 Denition and Distribution

The True Positive Rate is commonly dened as

TPRθ =
TPθ

P
 (4)

Hence, P > 0 should hold, otherwise the denominator is zero. Now, TPRθ is linear in TPθ and can therefore be
written as

TPRθ = Xθ


1

P
, 0


∼ fXθ


1

P
, 0


, (5)

and for its range:

TPRθ

(R)
∈ R


Xθ


1

P
, 0




A.5.2 Expectation

Since TPRθ is linear in TPθ with slope a = 1P and intercept b = 0, its expectation is

E[TPRθ ] = E


Xθ


1

P
, 0


()
=

1

P
·E[TPθ ] + 0 =

bM · θe
M

= θ∗

A.5.3 Optimal Baselines

The range of the expectation of TPRθ directly determines the baselines. The extreme values are given by

min
θ∈[0,1]

(E[TPRθ ]) = min
θ∈[0,1]

 bM · θe
M


= 0,

max
θ∈[0,1]

(E[TPRθ ]) = max
θ∈[0,1]

 bM · θe
M


= 1

Furthermore, the corresponding optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] are given by

θmin ∈ argmin
θ∈[0,1]

(E[TPRθ ]) = argmin
θ∈[0,1]

 bM · θe
M


=


0,

1

2M


,

θmax ∈ argmax
θ∈[0,1]

(E[TPRθ ]) = argmax
θ∈[0,1]

 bM · θe
M


=


1− 1

2M
, 1
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The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers are then

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TPRθ∗ ]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TPRθ∗ ]} = argmax
θ∗∈Θ∗

{θ∗} = {1},

respectively.

A.6 True Negative Rate

The True Negative Rate TNRθ , Specicity, or Selectivity is the measure that shows how relatively well the negative
observations are correctly predicted. Hence, this performance measure is a fundamental measure in binary classica-
tion.

A.6.1 Denition and Distribution

The True Negative Rate is commonly dened as

TNRθ =
TNθ

N


Hence, N := M − P > 0 should hold, otherwise the denominator is zero. By using Eq. (B4), TNRθ can be rewritten
as

TNRθ =
M − P − bM · θe+ TPθ

M − P
= 1− bM · θe− TPθ

M − P


Hence, it is linear in TPθ and can therefore be written as

TNRθ = Xθ


1

M − P
, 1− bM · θe

M − P


∼ fXθ


1

M − P
, 1− bM · θe

M − P


, (6)

and for its range:

TNRθ

(R)
∈ R


Xθ


1

M − P
, 1− bM · θe

M − P




A.6.2 Expectation

Since TNRθ is linear in TPθ in terms of Xθ (a, b) with slope a = 1 (M − P ) and intercept b = 1− bM · θe (M − P ),
its expectation is

E[TNRθ ] = E


Xθ


1

M − P
, 1− bM · θe

M − P


()
=

1

M − P
·E[TPθ ] + 1− bM · θe

M − P
= 1− bM · θe

M
= 1− θ∗

A.6.3 Optimal Baselines

The extreme values of the expectation of TNRθ determine the baselines. The range is given by

min
θ∈[0,1]

(E[TNRθ ]) = min
θ∈[0,1]


1− bM · θe

M


= 0,

max
θ∈[0,1]

(E[TNRθ ]) = max
θ∈[0,1]


1− bM · θe

M


= 1

Moreover, the optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] corresponding to the extreme values are dened
as

θmin ∈ argmin
θ∈[0,1]

(E[TNRθ ]) = argmin
θ∈[0,1]


1− bM · θe

M


=


1− 1

2M
, 1


,

θmax ∈ argmax
θ∈[0,1]

(E[TNRθ ]) = argmax
θ∈[0,1]


1− bM · θe

M


=


0,

1

2M


,
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respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers are given by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TNRθ∗ ]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TNRθ∗ ]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}

A.7 False Negative Rate

The False Negative Rate FNRθ or Miss Rate is the performance measure that indicates the relative number of
incorrectly predicted positive observations. Therefore, it can be seen as the counterpart to the True Positive Rate that
is discussed in Sec. A.5.

A.7.1 Denition and Distribution

The False Negative Rate is commonly dened as

FNRθ =
FNθ

P


Hence, P > 0 should hold, otherwise the denominator is zero. With the aid of Eq. (B3), FNRθ can be reformulated
to

FNRθ =
P − TPθ

P
= 1− TPθ

P


Thus, it is linear in TPθ and can therefore be written as

FNRθ = Xθ


− 1

P
, 1


∼ fXθ


− 1

P
, 1


,

and for its range:

FNRθ

(R)
∈ R


Xθ


− 1

P
, 1




A.7.2 Expectation

Because FNRθ is linear in TPθ with slope a = −1P and intercept b = 1, its expectation is

E[FNRθ ] = E


Xθ


− 1

P
, 1


()
= − 1

P
·E[TPθ ] + 1 = 1− bM · θe

M
= 1− θ∗

A.7.3 Optimal Baselines

The range of the expectation of FNRθ determines the baselines. The extreme values are given by:

min
θ∈[0,1]

(E[FNRθ ]) = min
θ∈[0,1]


1− bM · θe

M


= 0,

max
θ∈[0,1]

(E[FNRθ ]) = max
θ∈[0,1]


1− bM · θe

M


= 1

Furthermore, the optimizers θmin ∈ [0, 1] and θmax ∈ [0, 1] for the extreme values are as follows:

θmin ∈ argmin
θ∈[0,1]

(E[FNRθ ]) = argmin
θ∈[0,1]


1− bM · θe

M


=


1− 1

2M
, 1


,

θmax ∈ argmax
θ∈[0,1]

(E[FNRθ ]) = argmax
θ∈[0,1]


1− bM · θe

M


=


0,

1

2M


,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimization values are then:

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FNRθ∗ ]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FNRθ∗ ]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}
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A.8 False Positive Rate

The False Positive Rate FPRθ or Fall-out is the performance measure that shows the fraction of incorrectly predicted
negative observations. Hence, it can be seen as the counterpart to the True Negative Rate that is introduced in
Sec. A.6.

A.8.1 Denition and Distribution

The False Positive Rate is commonly dened as

FPRθ =
FPθ

N


Hence, N := M − P should hold, otherwise the denominator is zero. By using Eq. (B2), FPRθ can be restated
as

FPRθ =
bM · θe− TPθ

M − P
 (7)

Note that it is linear in TPθ and can therefore be written as

FPRθ = Xθ


− 1

M − P
,
bM · θe
M − P


∼ fXθ


− 1

M − P
,
bM · θe
M − P


,

with range:

FPRθ

(R)
∈ R


Xθ


− 1

M − P
,
bM · θe
M − P




A.8.2 Expectation

Since FPRθ is linear in TPθ with slope a = −1 (M − P ) and intercept b = bM · θe (M − P ), its expectation is given
by

E[FPRθ ] = E


Xθ


− 1

M − P
,
bM · θe
M − P


()
= − 1

M − P
·E[TPθ ] +

bM · θe
M − P

=
bM · θe

M
= θ∗

A.8.3 Optimal Baselines

The extreme values of the expectation of FPRθ determine the baselines. The range is given by

min
θ∈[0,1]

(E[FPRθ ]) = min
θ∈[0,1]

 bM · θe
M


= 0,

max
θ∈[0,1]

(E[FPRθ ]) = max
θ∈[0,1]

 bM · θe
M


= 1

Moreover, the optimizers θmin ∈ [0, 1] and θmax ∈ [0, 1] for the extreme values are determined by

θmin ∈ argmin
θ∈[0,1]

(E[FPRθ ]) = argmin
θ∈[0,1]

 bM · θe
M


=


0,

1

2M


,

θmax ∈ argmax
θ∈[0,1]

(E[FPRθ ]) = argmax
θ∈[0,1]

 bM · θe
M


=


1− 1

2M
, 1


,

respectively. The discrete forms θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of these are then

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FNRθ∗ ]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FNRθ∗ ]} = argmax
θ∗∈Θ∗

{θ∗} = {1}
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A.9 Positive Predictive Value

The Positive Predictive Value PPVθ or Precision is the performance measure that considers the fraction of all
positively predicted observations that are in fact positive. Therefore, it provides an indication of how cautious the
model is in assigning positive predictions. A large value means the model is cautious in predicting observations as
positive, while a small value means the opposite.

A.9.1 Denition and Distribution

The Positive Predictive Value is commonly dened as

PPVθ =
TPθ

TPθ + FPθ
 (8)

By using Eq. (B1) and (B2), this denition can be reformulated to

PPVθ =
TPθ

bM · θe 

Note that this performance measure is only dened whenever bM ·θe > 0, otherwise the denominator is zero. Therefore,
we assume specically for PPVθ that θ ≥ 1

2M
. The denition of PPVθ is linear in TPθ and can thus be formulated

as

PPVθ = Xθ


1

bM · θe , 0


∼ fXθ


1

bM · θe , 0

, (9)

with range:

PPVθ

(R)
∈ R


Xθ


1

bM · θe , 0




A.9.2 Expectation

Because PPVθ is linear in TPθ with slope a = 1bM · θe and intercept b = 0, its expectation is

E[PPVθ ] = E


Xθ


1

bM · θe , 0


()
=

1

bM · θe ·E[TPθ ] + 0 =
P

M


A.9.3 Optimal Baselines

The baselines are determined by the extreme values of the expectation of PPVθ :

min
θ∈[1/(2M),1]

(E[PPVθ ]) =
P

M
,

max
θ∈[1/(2M),1]

(E[PPVθ ]) =
P

M
,

because the expectation does not depend on θ. Hence, the optimization values θmin and θmax are simply all allowed
values for θ:

θmin = θmax ∈


1

2M
, 1




Consequently, the discrete versions θ∗min and θ∗max of these optimizers are in the set of all allowed discrete val-
ues:

θ∗min = θ∗max ∈ Θ∗ \ {0}

A.10 Negative Predictive Value

The Negative Predictive Value NPVθ is the performance measure that indicates the fraction of all negatively predicted
observations that are in fact negative. Hence, it shows how cautious the model is in assigning negative predictions.
A large value means the model is cautious in predicting observations negatively, while a small value means the
opposite.
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A.10.1 Denition and Distribution

The Negative Predictive Value is commonly dened as

NPVθ =
TNθ

TNθ + FNθ


With the help of Eq. (B3) and (B4), this denition can be rewritten as

NPVθ = 1− P − TPθ

M − bM · θe 

Note that this performance measure is only dened whenever bM · θe < M , otherwise the denominator is zero.
Therefore, we assume specically for NPVθ that θ < 1− 1

2M
. The denition of NPVθ is linear in TPθ and can thus

be formulated as

NPVθ = Xθ


1

M − bM · θe , 1− P

M − bM · θe


∼ fXθ


1

M − bM · θe , 1− P

M − bM · θe


, (10)

with range:

NPVθ

(R)
∈ R


Xθ


1

M − bM · θe , 1− P

M − bM · θe




A.10.2 Expectation

Since NPVθ is linear in TPθ with slope a = 1(M − bM · θe) and intercept b = 1− P(M − bM · θe), its expectation
is given by

E[NPVθ ] = E


Xθ


1

M − bM · θe , 1− P

M − bM · θe


()
=

1

M − bM · θe ·E[TPθ ] + 1− P

M − bM · θe = 1− P

M


A.10.3 Optimal Baselines

The extreme values of the expectation of NPVθ determine the baselines. They are given by

min
θ∈[0,1−1/(2M))

(E[NPVθ ]) = 1− P

M
,

max
θ∈[0,1−1/(2M))

(E[NPVθ ]) = 1− P

M
,

because the expectation does not depend on θ. Consequently, the optimization values θmin and θmax are all allowed
values for θ:

θmin = θmax ∈

0, 1− 1

2M




This also means the discrete forms θ∗min and θ∗max of the optimizers are in the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {1}

A.11 False Discovery Rate

The False Discovery Rate FDRθ is the performance measure that looks at the fraction of positively predicted obser-
vations that are actually negative. Therefore, it can be seen as the counterpart to the Positive Predictive Value that
we discuss in Sec. A.9. Consequently, a small value means the model is cautious in predicting observations as positive,
while a large value means the opposite.
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A.11.1 Denition and Distribution

The False Discovery Rate is commonly dened as

FDRθ =
FPθ

TPθ + FPθ
= 1− PPVθ 

With the help of Eq. (9), this denition can be rewritten as

FDRθ = 1− TPθ

bM · θe 

Note that this performance measure is only dened whenever bM ·θe > 0, otherwise the denominator is zero. Therefore,
we assume specically for FDRθ that θ > 1

2M
. The denition of FDRθ is linear in TPθ and can thus be formulated

as

FDRθ = Xθ


− 1

bM · θe , 1


∼ fXθ


− 1

bM · θe , 1

,

with range:

FDRθ

(R)
∈ R


Xθ


− 1

bM · θe , 1




A.11.2 Expectation

Since FDRθ is linear in TPθ with slope a = −1bM · θe and intercept b = 1, its expectation is given by

E[FDRθ ] = E


Xθ


− 1

bM · θe , 1


()
= − 1

bM · θe ·E[TPθ ] + 1 = 1− P

M


A.11.3 Optimal Baselines

The extreme values of the expectation of FDRθ determine the baselines. Its range is given by

min
θ∈(1/(2M),1]

(E[FDRθ ]) = 1− P

M
,

max
θ∈(1/(2M),1]

(E[FDRθ ]) = 1− P

M
,

because the expectation does not depend on θ. Consequently, the optimization values θmin and θmax are all allowed
values for θ:

θmin = θmax ∈


1

2M
, 1




This also means the discrete forms θ∗min and θ∗max of the optimizers are in the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0}

A.12 False Omission Rate

The False Omission Rate FORθ is the performance measure that considers the fraction of observations that are
predicted negative, but are in fact positive. Hence, it can be seen as the counterpart to the Negative Predictive Value
that is introduced in Sec. A.10. As a consequence, a small value means the model is cautious is predicting observations
negatively, while a large value means the opposite.



The Dutch Draw 27

A.12.1 Denition and Distribution

The False Omission Rate is commonly dened as

FORθ =
FNθ

TNθ + FNθ


With the aid of Eq. (B3), this can be reformulated to

FORθ =
P − TPθ

M − bM · θe 

Note that this performance measure is only dened whenever bM · θe < M , otherwise the denominator is zero.
Therefore, we assume specically for FORθ that θ < 1 − 1

2M
. Now, FORθ is linear in TPθ and can therefore be

written as

FORθ = Xθ


− 1

M − bM · θe ,
P

M − bM · θe


∼ fXθ


− 1

M − bM · θe ,
P

M − bM · θe


,

with range:

FORθ

(R)
∈ R


Xθ


− 1

M − bM · θe ,
P

M − bM · θe




A.12.2 Expectation

Because FORθ is linear in TPθ with slope a = −1(M − bM · θe) and intercept b = P(M − bM · θe), its expectation
is

E[FORθ ] = E


Xθ


− 1

M − bM · θe ,
P

M − bM · θe


()
= − 1

M − bM · θe ·E[TPθ ] +
P

M − bM · θe =
P

M


A.12.3 Optimal Baselines

The range of the expectation of FORθ determines the baselines. The extreme values are dened as

min
θ∈[0,1−1/(2M))

(E[FORθ ]) =
P

M
,

max
θ∈[0,1−1/(2M))

(E[FORθ ]) =
P

M
,

because the expectation does not depend on θ. Consequently, the optimization values θmin and θmax are all allowed
values for θ:

θmin = θmax ∈

0, 1− 1

2M




This also means the discrete forms θ∗min and θ∗max of the optimizers are in the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {1}

A.13 Fβ Score

The Fβ score F
(β)
θ was introduced by Chinchor (1992). It is the weighted harmonic average between the True Positive

Rate (TPRθ) and the Positive Predictive Value (PPVθ). These two performance measures are discussed extensively
in Sec. A.5 and A.9, respectively, and their summarized results are shown in Tables 3 and 4. The Fβ score balances
predicting the actual positive observations correctly (TPRθ) and being cautious in predicting observations as positive
(PPVθ). The factor β > 0 indicates how much more TPRθ is weighted compared to PPVθ .
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A.13.1 Denition and Distribution

The Fβ score is commonly dened as

F
(β)
θ =

1 + β2

1
PPVθ

+ β2

TPRθ



By using the denitions of TPRθ and PPVθ in Eq. (4) and (8), F
(β)
θ can be formulated in terms of the base mea-

sures:

F
(β)
θ =

(1 + β2) · TPθ

β2 · P + TPθ + FPθ

Eq. (B1) and (B2) allow us to write the formulation above in terms of only TPθ :

F
(β)
θ =

(1 + β2) · TPθ

β2 · P + bM · θe 

Note that P > 0 and bM · θe > 0, otherwise TPRθ or PPVθ is not dened, and hence, F
(β)
θ is not dened. Now, F

(β)
θ

is linear in TPθ and can be formulated as

F
(β)
θ = Xθ


1 + β2

β2 · P + bM · θe , 0

,

with range:

F
(β)
θ

(R)
∈ R


Xθ


1 + β2

β2 · P + bM · θe , 0




A.13.2 Expectation

Because F
(β)
θ is linear in TPθ with slope a = (1 + β2)(β2P + bM · θe) and intercept b = 0, its expectation is given

by

E[F
(β)
θ ] = E


Xθ


1 + β2

β2 · P + bM · θe , 0


()
=

1 + β2

β2 · P + bM · θe ·E[TPθ ] + 0 =
bM · θe · P · (1 + β2)

M · (β2 · P + bM · θe)

=
(1 + β2) · P · θ∗
β2 · P +M · θ∗  (11)

A.13.3 Optimal Baselines

To determine the extreme values of the expectation of F
(β)
θ , and therefore the baselines, the derivative of the function

f : [0, 1] → [0, 1] dened as

f(t) =
(1 + β2) · P · t
β2 · P +M · t

is calculated. First note that E[F
(β)
θ ] = f(bM · θeM). The derivative is given by

df(t)

dt
=

β2(1 + β2) · P 2

(β2 · P +M · t)2 

It is strictly positive for all t in its domain, thus f is strictly increasing in t. This means E[F
(β)
θ ] given in Eq. (11)

is non-decreasing in both θ and θ∗. This is because the term bM · θeM is non-decreasing in θ. Hence, the extreme

values of the expectation of F
(β)
θ are its border values:

min
θ∈[1/(2M),1]


E[F

(β)
θ ]


= min

θ∈[1/(2M),1]


(1 + β2) · P · bM · θe
M(β2 · P + bM · θe)


=

(1 + β2) · P
M(β2 · P + 1)

,

max
θ∈[1/(2M),1]


E[F

(β)
θ ]


= max

θ∈[1/(2M),1]


(1 + β2) · P · bM · θe
M(β2 · P + bM · θe)


=

(1 + β2) · P
β2 · P +M
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Consequently, the optimization values θmin and θmax for the extreme values are given by

θmin ∈ argmin
θ∈[1/(2M),1]


E[F

(β)
θ ]


= argmin

θ∈[1/(2M),1]

 bM · θe
β2 · P + bM · θe


=


[ 1
2
, 1] if M = 1
1

2M
, 3
2M


if M > 1,

θmax ∈ argmax
θ∈[1/(2M),1]


E[F

(β)
θ ]


= argmax

θ∈[1/(2M),1]

 bM · θe
β2 · P + bM · θe


=


[ 1
2
, 1] if M = 1

1− 1
2M

, 1


if M > 1,

respectively. Following this reasoning, the discrete forms θ∗min and θ∗max are given by

θ∗min ∈ argmin
θ∗∈Θ∗\{0}

{
E[F

(β)
θ∗ ]

}
= argmin

θ∗∈Θ∗\{0}


θ∗

β2 · P +M · θ∗


=


1

M


,

θ∗max ∈ argmax
θ∗∈Θ∗\{0}

{
E[F

(β)
θ∗ ]

}
= argmax

θ∗∈Θ∗\{0}


θ∗

β2 · P +M · θ∗


= {1}

A.14 Youdens J Statistic

The Youden’s J Statistic Jθ , Youden’s Index, or (Bookmaker) Informedness was introduced by Youden (1950) to
capture the performance of a diagnostic test as a single statistic. It incorporates both the True Positive Rate and the
True Negative Rate, which are discussed in Sec. A.5 and A.6, respectively. Youden’s J Statistic shows how well the
model is able to correctly predict both the positive as the negative observations.

A.14.1 Denition and Distribution

The Youden’s J Statistic is commonly dened as

Jθ = TPRθ + TNRθ − 1

By using Eq. (5) and (6), which provide the denitions of TPRθ and TNRθ in terms of TPθ , the denition of Jθ can
be reformulated as

Jθ =
M · TPθ − P · bM · θe

P (M − P )


Because TPRθ needs P > 0, and TNRθ needs N > 0, we have both these assumptions for Jθ . Consequently, M > 1.
Now, Jθ is linear in TPθ and can therefore be written as

Jθ = Xθ


M

P (M − P )
,− bM · θe

M − P


∼ fXθ


M

P (M − P )
,− bM · θe

M − P


,

with range:

Jθ
(R)
∈ R


Xθ


M

P (M − P )
,− bM · θe

M − P




A.14.2 Expectation

Since Jθ is linear in TPθ with slope a = M(P (M − P )) and intercept b = −bM · θe (M − P ), its expectation is
given by

E[Jθ ] = E


Xθ


M

P (M − P )
,− bM · θe

M − P


()
=

M

P (M − P )
·E[TPθ ]−

bM · θe
M − P

= 0
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A.14.3 Optimal Baselines

The extreme values of the expectation of Jθ determine the baselines. They are given by

min
θ∈[0,1]

(E[Jθ ]) = 0,

max
θ∈[0,1]

(E[Jθ ]) = 0,

because the expected value does not depend on θ. Consequently, the optimization values θmin and θmax can be any
value in the domain of θ:

θmin = θmax ∈ [0, 1]

This also holds for the discrete forms θ∗min and θ∗max of the optimizers:

θ∗min = θ∗max ∈ Θ∗

A.15 Markedness

The Markedness MKθ or deltaP is a performance measure that is mostly used in linguistics and social sciences. It
combines both the Positive Predictive Value and the Negative Predictive Value. These two measures are discussed in
Sec. A.9 and A.10, respectively. The Markedness indicates how cautious the model is in predicting observations as
positive and also how cautious it is in predicting them as negative.

A.15.1 Denition and Distribution

The Markedness is commonly dened as

MKθ = PPVθ +NPVθ − 1

This denition of MKθ can be reformulated in terms of TPθ by using Eq. (9) and (10):

MKθ =
M · TPθ − P · bM · θe
bM · θe(M − bM · θe) 

Note that MKθ is only dened for M > 1 and θ ∈ [1(2M), 1 − 1(2M)), otherwise the denominator becomes zero.

The assumption M > 1 automatically follows from the assumptions P̂ > 0 and N̂ > 0, which hold for PPVθ and
NPVθ , respectively. In other words, there is at least one observation predicted positive and at least one predicted
negative, thus M > 1. Now, MKθ is linear in TPθ and can therefore be written as

MKθ = Xθ


M

bM · θe(M − bM · θe) ,−
P

M − bM · θe


∼ fXθ


M

bM · θe(M − bM · θe) ,−
P

M − bM · θe


,

with range:

MKθ

(R)
∈ R


Xθ


M

bM · θe(M − bM · θe) ,−
P

M − bM · θe




A.15.2 Expectation

By using slope a = M(bM · θe(M − bM · θe)) and intercept b = −P(M − bM · θe), the expectation of MKθ can be
calculated:

E[MKθ ] = E


Xθ


M

bM · θe(M − bM · θe) ,−
P

M − bM · θe


()
=

M

bM · θe(M − bM · θe) ·E[TPθ ]−
P

M − bM · θe = 0
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A.15.3 Optimal Baselines

The extreme values of the expectation of MKθ determine the baselines. Its range is given by:

min
θ∈[1/(2M),1−1/(2M))

(E[MKθ ]) = 0,

max
θ∈[1/(2M),1−1/(2M))

(E[MKθ ]) = 0,

since the expected value does not depend on θ. Therefore, the optimization values θmin and θmax are in the set of
allowed values for θ:

θmin = θmax ∈


1

2M
, 1− 1

2M




This also means the discrete forms θ∗min and θ∗max of the optimizers are in the set of the allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0, 1}

A.16 Accuracy

The Accuracy Accθ is the performance measure that assesses how good the model is in correctly predicting the
observations without making a distinction between positive or negative observations.

A.16.1 Denition and Distribution

The Accuracy is commonly dened as

Accθ =
TPθ + TNθ

M


By using Eq. (B4), this can be restated as

Accθ =
2 · TPθ +M − P − bM · θe

M


Note that it is linear in TPθ and can therefore be written as

Accθ = Xθ


2

M
,
M − P − bM · θe

M


∼ fXθ


2

M
,
M − P − bM · θe

M


, (12)

with range:

Accθ
(R)
∈ R


Xθ


2

M
,
M − P − bM · θe

M




A.16.2 Expectation

Since Accθ is linear in TPθ with slope a = 2M and intercept b = (M − P − bM · θe)M , its expectation can be
derived:

E[Accθ ] = E


Xθ


2

M
,
M − P − bM · θe

M


()
=

2

M
·E[TPθ ] +

M − P − bM · θe
M

=
(M − bM · θe) (M − P ) + bM · θe · P

M2
=

(1− θ∗) (M − P ) + θ∗ · P
M

 (13)
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A.16.3 Optimal Baselines

The range of the expectation of Accθ directly determines the baselines. To determine the extreme values of Accθ , the
derivative of the function f : [0, 1] → [0, 1] dened as

f(t) =
(1− t) (M − P ) + P · t

M

is calculated. First, note that E[Accθ ] = f(bM · θeM). The derivative is given by

df(t)

dt
=

2P −M

M


It does not depend on t, but whether the derivative is positive or negative depends on P and M . Whenever P > M
2
,

then f is strictly increasing for all t in its domain. If P < M
2
, then f is strictly decreasing. When P = M

2
, f is constant.

Consequently, the same holds for E[Accθ ] given in Eq. (13). This is because the term bM · θeM is non-decreasing in
θ. Thus, the extreme values of the expectation of Accθ are given by

min
θ∈[0,1]

(E[Accθ ]) =


P
M

if P < M
2

1− P
M

if P ≥ M
2

= min


P

M
, 1− P

M


,

max
θ∈[0,1]

(E[Accθ ]) =


1− P

M
if P < M

2
P
M

if P ≥ M
2

= max


P

M
, 1− P

M




This means that the optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] for these extreme values respectively are given
by

θmin ∈ argmin
θ∈[0,1]

(E[Accθ ]) =






1− 1

2M
, 1


if P < M

2

[0, 1] if P = M
2

0, 1
2M


if P > M

2
,

(14)

θmax ∈ argmax
θ∈[0,1]

(E[Accθ ]) =






0, 1

2M


if P < M

2

[0, 1] if P = M
2

1− 1
2M

, 1


if P > M
2


(15)

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers are given by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[Accθ∗ ]} =





{1} if P < M
2

Θ∗ if P = M
2

{0} if P > M
2
,

(16)

θ∗max ∈ argmax
θ∗∈Θ∗

{E[Accθ∗ ]} =





{0} if P < M
2

Θ∗ if P = M
2

{1} if P > M
2
,

(17)

respectively.

A.17 Balanced Accuracy

The Balanced Accuracy BAccθ is the mean of the True Positive Rate and True Negative Rate, which are discussed
in Sec. A.5 and A.6. It determines how good the model is in correctly predicting the positive observations and in
correctly predicting the negative observations on average.

A.17.1 Denition and Distribution

The Balanced Accuracy is commonly dened as

BAccθ =
1

2
· (TPRθ + TNRθ)



The Dutch Draw 33

By using Eq. (5) and (6), this can be reformulated as

BAccθ =
1

2


TPθ

P
+ 1− bM · θe− TPθ

M − P


=

M · TPθ

2P (M − P )
+

M − P − bM · θe
2 (M − P )



Note that P > 0 and N > 0 should hold, otherwise TPRθ or TNRθ is not dened. Consequently, M > 1. Note that
BAccθ is linear in TPθ and can therefore be written as

BAccθ = Xθ


M

2P (M − P )
,
M − P − bM · θe

2 (M − P )


∼ fXθ


M

2P (M − P )
,
M − P − bM · θe

2 (M − P )


,

with range:

BAccθ
(R)
∈ R


Xθ


M

2P (M − P )
,
M − P − bM · θe

2 (M − P )




A.17.2 Expectation

BAccθ is linear in TPθ with slope a = M(2P (M − P )) and intercept b = (M − P − bM · θe)(2 (M − P )), so its
expectation can be derived:

E[BAccθ ] = E


Xθ


M

2P (M − P )
,
M − P − bM · θe

2 (M − P )


()
=

M

2P (M − P )
·E[TPθ ] +

M − P − bM · θe
2 (M − P )

=
1

2


A.17.3 Optimal Baselines

The baselines are directly determined by the ranges of the expectation of BAccθ . Since the expectation is constant,
its extreme values are the same:

min
θ∈[0,1]

(E[BAccθ ]) =
1

2
,

max
θ∈[0,1]

(E[BAccθ ]) =
1

2


This means that the optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] for these extreme values respectively are
simply

θmin ∈ argmin
θ∈[0,1]

(E[BAccθ ]) = [0, 1],

θmax ∈ argmax
θ∈[0,1]

(E[BAccθ ]) = [0, 1]

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers are given by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[Accθ∗ ]} = Θ∗,

θ∗max ∈ argmax
θ∗∈Θ∗

{E[Accθ∗ ]} = Θ∗,

respectively.

A.18 Matthews Correlation Coecient

The Matthews Correlation Coecient MCCθ was established by Matthews (1975). However, its denition is identical
to that of the Yule phi coecient, which was introduced by Yule (1912). The performance measure can be seen as
the correlation coecient between the actual and predicted classes. Hence, it is one of the few measures that lies in
[−1, 1] instead of [0, 1].
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A.18.1 Denition and Distribution

The Matthews Correlation Coecient is commonly dened as

MCCθ =
TPθ · TNθ − FNθ · FPθ

(TPθ + FPθ)(TPθ + FNθ)(TNθ + FPθ)(TNθ + FNθ)


By using Eq. (B2) and (B4), this denition can be reformulated as

MCCθ =
M · TPθ − P · bM · θe

bM · θe · P (M − P ) (M − bM · θe)
 (18)

As Table 2 shows, the assumptions P > 0, N > 0, P̂ := bM · θe > 0, and N̂ := M − bM · θe > 0 must hold. If one of
these assumptions is violated, then the denominator in Eq. (18) is zero, and MCCθ is not dened. Therefore, we have
for MCCθ that 1

2M
≤ θ < 1− 1

2M
and M > 1. Next, to improve readability we introduce the variable C(M,P, θ) to

replace the denominator in Eq. (18):

C(M,P, θ) :=


bM · θe · P (M − P ) (M − bM · θe)

The denition of MCCθ is linear in TPθ and can thus be formulated as

MCCθ = Xθ


M

C(M,P, θ)
,
−P · bM · θe
C(M,P, θ)


∼ fXθ


M

C(M,P, θ)
,
−P · bM · θe
C(M,P, θ)


,

with range:

MCCθ

(R)
∈ R


Xθ


M

C(M,P, θ)
,
−P · bM · θe
C(M,P, θ)




A.18.2 Expectation

MCCθ is linear in TPθ with slope a = MC(M,P, θ) and intercept b = −P · bM · θeC(M,P, θ), so its expectation
can be derived from Eq. ():

E[MCCθ ] = E


Xθ


M

C(M,P, θ)
,
−P · bM · θe
C(M,P, θ)


()
=

M

C(M,P, θ)
·E[TPθ ]−

P · bM · θe
C(M,P, θ)

= 0

A.18.3 Optimal Baselines

The baselines are directly determined by the ranges of the expectation of MCCθ . Since the expectation is constant,
its extreme values are the same:

min
θ∈[1/(2M),1−1/(2M))

(E[MCCθ ]) = 0,

max
θ∈[1/(2M),1−1/(2M))

(E[MCCθ ]) = 0

This means that the optimization values θmin and θmax for these extreme values respectively are simply:

θmin = θmax ∈


1

2M
, 1− 1

2M




Consequently, the discrete versions θ∗min and θ∗max of the optimizers are given by:

θ∗min = θ∗max ∈ Θ∗ \ {0, 1}

A.19 Cohens Kappa

Cohen’s kappa κθ is a less straightforward performance measure than the other measures that we discuss in this
research. It is used to quantify the inter-rater reliability for two raters of categorical observations (Kv̊alseth, 1989).
In our case, we compare the rst rater, which is the DD classier, with the perfect rater, which assigns the true label
to each observation.
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A.19.1 Denition and Distribution

Although there are several denitions for Cohen’s kappa, here we choose the following:

κθ =
P θ
o − P θ

e

1− P θ
e

,

with P θ
o the Accuracy Accθ as dened in Sec. A.16 and P θ

e the probability that the shue approach assigns the true
label by chance. These two values can be expressed in terms of the base measures as follows:

P θ
o = Accθ =

TPθ + TNθ

M
,

P θ
e =

(TPθ + FPθ) · P + (TNθ + FNθ) (M − P )

M2


By using Eq. (12), (B1), (B2), (B3) and (B4) the above can be rewritten as

P θ
o =

2 · TPθ +M − P − bM · θe
M

,

P θ
e =

bM · θe · P + (M − bM · θe) (M − P )

M2


Note that for κθ to be well-dened, we need 1− P θ
e 6= 0. In other words,

bM · θe · P + (M − bM · θe) (M − P ) 6= M2

This simplies to

bM · θe
M

6= P

2P −M
 (19)

The left-hand side is by denition in the interval [0, 1]. For the right-hand side to be in that interval, we rstly need

P(2P − M) ≥ 0. Since P ≥ 0, that means 2P − M > 0, and hence, P > M
2
. Secondly, P(2P − M) ≤ 1. Since we

know P > M
2
, we obtain P ≥ M . This inequality reduces to P = M , because P is always at most M . Whenever

P = M , then Eq. (19) becomes

bM · θe
M

6= 1

To summarize, when P < M , then all θ ∈ [0, 1] are allowed in κθ , but when P = M , then θ < 1− 1(2M).

Now, by using P θ
o and P θ

e in the denition of Cohen’s kappa, we obtain:

κθ =
2 ·M · TPθ − 2 · bM · θe · P

P (M − bM · θe) + (M − P ) bM · θe 

To improve readability, we introduce the variables aκθ and bκθ dened as

aκθ =
2M

P (M − bM · θe) + (M − P ) bM · θe

bκθ = − 2 · bM · θe · P
P (M − bM · θe) + (M − P ) bM · θe 

Hence, κθ is linear in TPθ and can be written as

κθ = Xθ (aκθ , bκθ ) ∼ fXθ
(aκθ , bκθ ) ,

with range:

κθ

(R)
∈ R (Xθ (aκθ , bκθ )) 
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A.19.2 Expectation

As Cohen’s kappa is linear in TPθ , its expectation can be derived:

E[κθ ] = E [Xθ (aκθ , bκθ )]
()
= aκθ ·E[TPθ ] + bκθ

=
2 · bM · θe · P

P (M − bM · θe) + (M − P ) bM · θe − 2 · bM · θe · P
P (M − bM · θe) + (M − P ) bM · θe

= 0

A.19.3 Optimal Baselines

The baselines are directly determined by the ranges of the expectation of κθ . Since the expectation is constant, its
extreme values are the same:


minθ∈[0,1] (E[κθ ]) = 0 if P < M

minθ∈[0,1−1/(2M)) (E[κθ ]) = 0 if P = M ,

maxθ∈[0,1] (E[κθ ]) = 0 if P < M

maxθ∈[0,1−1/(2M)) (E[κθ ]) = 0 if P = M .

This means that the optimization values θmin and θmax for these extreme values respectively are simply all allowed
values:


θmin = θmax ∈ [0, 1] if P < M

θmin = θmax ∈

0, 1− 1

2M


if P = M .

Consequently, the discrete versions θ∗min and θ∗max of the optimizers are given by


θ∗min = θ∗max ∈ Θ∗ if P < M

θ∗min = θ∗max ∈ Θ∗ \ {1} if P = M .

A.20 Fowlkes-Mallows Index

The Fowlkes-Mallows Index FMθ or G-mean 1 was introduced by (Fowlkes and Mallows, 1983) as a way to calculate
the similarity between two clusterings. It is the geometric average between the True Positive Rate (TPRθ) and
Positive Predictive Value (PPVθ), which are discussed in Sec. A.5 and A.9, respectively. It oers a balance between
correctly predicting the actual positive observations (TPRθ) and being cautious in predicting observations as positive
(PPVθ).

A.20.1 Denition and Distribution

The Fowlkes-Mallows Index is commonly dened as

FMθ =


TPRθ · PPVθ 

By using the denitions of TPRθ and PPVθ in terms of TPθ in, respectively, Eq. (5) and (9), we obtain:

FMθ =
TPθ

P · bM · θe


Since TPRθ is only dened when P > 0 and PPVθ only when P̂ := bM · θe > 0, also FMθ has these assumptions.
Therefore, θ ≥ 1

2M
. The denition of FMθ is linear in TPθ and can thus be formulated as

FMθ = Xθ

(
1

P · bM · θe
, 0

)
∼ fXθ

(
1

P · bM · θe
, 0

)
,
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with range:

FMθ

(R)
∈ R

(
Xθ

(
1

P · bM · θe
, 0

))


A.20.2 Expectation

Because FMθ is linear in TPθ with slope a = 1


P · bM · θe and intercept b = 0, its expectation is

E[FMθ ] = E


Xθ

(
1

P · bM · θe
, 0

)
()
=

1
P · bM · θe

·E[TPθ ] + 0 =


P · bM · θe

M
=


θ∗ · P
M



A.20.3 Optimal Baselines

The extreme values of the expectation of FMθ determine the baselines. They are given by:

min
θ∈[1/(2M),1]

(E[FMθ ]) = min
θ∈[1/(2M),1]

(
P · bM · θe

M

)
=

√
P

M
,

max
θ∈[1/(2M),1]

(E[FMθ ]) = max
θ∈[1/(2M),1]

(
P · bM · θe

M

)
=


P

M
,

because the expectation is a non-decreasing function in θ. Note that the minimum and maximum are equal to each
other when M = 1. Consequently, the optimizers θmin and θmax for the extreme values are determined by:

θmin ∈ argmin
θ∈[1/(2M),1]

(E[FMθ ]) = argmin
θ∈[1/(2M),1]

(
P · bM · θe

M

)
=


1

2M
, 1


if M = 1

1
2M

, 3
2M


if M > 1,

θmax ∈ argmax
θ∈[1/(2M),1]

(E[FMθ ]) = argmax
θ∈[1/(2M),1]

(
P · bM · θe

M

)
=


1

2M
, 1


if M = 1

1− 1
2M

, 1


if M > 1,

respectively. The discrete forms θ∗min and θ∗max of these are given by:

θ∗min ∈ argmin
θ∗∈Θ∗\{0}

{E[FMθ∗ ]} = argmin
θ∗∈Θ∗\{0}


θ∗ · P
M


=


1

M


,

θ∗max ∈ argmax
θ∗∈Θ∗\{0}

{E[FMθ∗ ]} = argmax
θ∗∈Θ∗\{0}


θ∗ · P
M


= {1}

A.21 G-mean 2

The G-mean 2 G
(2)
θ was established by (Kubat et al., 1998). This performance measure is the geometric average

between the True Positive Rate (TPRθ) and True Negative Rate (TNRθ), which we discuss in Sec. A.5 and A.6,
respectively. Hence, it balances correctly predicting the positive observations and correctly predicting the negative
observations.

A.21.1 Denition and Distribution

The G-mean 2 is dened as

G
(2)
θ =


TPRθ · TNRθ 
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Since TPRθ needs the assumption P > 0 and TNRθ needs N := M − P > 0, we have these restrictions also for G
(2)
θ .

Consequently, M > 1. Now, by using the denitions of TPRθ and TNRθ in terms of TPθ in, respectively, Eq. (5)
and (6), we obtain:

G
(2)
θ =

√
TPθ · (M − P − bM · θe) + TP2

θ

P (M − P )


This function is not a linear function of TPθ , and hence, we cannot write it in the form Xθ (a, b) = a · TPθ + b for
some variables a, b ∈ R.

A.21.2 Expectation

Since G
(2)
θ is not linear in TPθ , we cannot easily use the expectation of TPθ to determine that for G

(2)
θ . However, we

are able to determine the second moment of G
(2)
θ :

E


G

(2)
θ

2

=

M − P − bM · θe
P (M − P )

·E[TPθ ] +
1

P (M − P )
·E[TP2

θ ]

=
M − P − bM · θe

P (M − P )
· bM · θe

M
· P +

1

P (M − P )
·

Var[TPθ ] +E[TPθ ]

2

)

=
(M − P − bM · θe) · bM · θe

M (M − P )
+

bM ·θe(M−bM ·θe)P (M−P )

M2(M−1)
+


bM ·θe

M
· P

2

P (M − P )

=
bM · θe · (M − bM · θe)

M(M − 1)
= θ∗ · (1− θ∗) · M

M − 1


Of course, since the distribution of TPθ is known, the expectation of G
(2)
θ can always be numerically calculated.

A.21.3 Optimal Baselines

Since the function ϕ : R → R≥0 given by ϕ(x) = x2 is a convex function, we have by Jensen’s inequality that

E[G
(2)
θ ]2 ≤ E


G

(2)
θ

2

= θ∗ (1− θ∗)

M

M − 1


This means that

E[G
(2)
θ ] ≤

√
θ∗ (1− θ∗)

M

M − 1


Therefore, whenever θ∗ ∈ {0, 1}, then E[G
(2)
θ ] ≤ 0. Since G

(2)
θ ≥ 0, it must hold that E[G

(2)
θ ] = 0. Hence, the set {0, 1}

contains minimizers for E[G
(2)
θ ]. The continuous version of this set is the interval [0, 1(2M)) ∪ [1 − 1(2M), 1]. To

show that this interval contains the only possible values for the minimizers, consider the denition for the expectation

of G
(2)
θ :

E
[
G

(2)
θ

]
=

∑

k∈D(TPθ)

√
k · ((M − P )− (bM · θe− k))

P (M − P )
· P(TPθ = k),

where D(TPθ) is the domain of TPθ , i.e., the set of values k such that P(TPθ = k) > 0. Now, let θ be such that

1(2M) ≤ θ < 1 − 1(2M). Furthermore, consider the summand S
(θ)
k corresponding to k = min{P, bM · θe} ∈

D(TPθ):

S
(θ)
k=min{P,bM ·θe} =






M−bM ·θe

M−P
· P(TPθ = P ) if P ≤ bM · θe

bM ·θe
P

· P(TPθ = bM · θe) if P > bM · θe,



The Dutch Draw 39

which is strictly positive in both cases. Hence, there is at least one term in the summation in the denition of

E
[
G

(2)
θ

]
that is larger than 0, thus the expectation is strictly positive for 1(2M) ≤ θ < 1− 1(2M). Consequently,

the minimization values θmin ∈ [0, 1] are

θmin ∈ argmin
θ∈[0,1]


E[G

(2)
θ ]


=


0,

1

2M


∪

1− 1

2M
, 1




Following this reasoning, the discrete form θ∗min ∈ Θ∗ is given by

θ∗min ∈ argmin
θ∗∈Θ∗

{
E[G

(2)
θ ]

}
= {0, 1}

A.22 Prevalence Threshold (PT)

A relatively new performance measure named Prevalence Threshold (PTθ) was introduced by (Balayla, 2020). We
could not nd many articles that use this measure, but it is included for completeness. However, this performance
measure has an inherent problem that eliminates the possibility to determine all statistics.

A.22.1 Denition and Distribution

The Prevalence Threshold PTθ is commonly dened as

PTθ =

√
TPRθ · FPRθ − FPRθ

TPRθ − FPRθ


By using the denitions of TPRθ and FPRθ in terms of TPθ (see Equations (5) and (7)), we obtain:

PTθ =


P · (M − P ) · TPθ · (bM · θe− TPθ)− P (bM · θe− TPθ)

M · TPθ − P · bM · θe  (20)

It is clear that this performance measure is not a linear function of TPθ , therefore we cannot easily calculate its
expectation. However, there are more fundamental problems with PTθ .

A.22.2 Division by Zero

Eq. (20) shows that PTθ is a problematic measure. When is the denominator zero? This happens when TPθ =
(bM · θeM) · P . In this case, the fraction is undened, as the denominator is zero. Furthermore, also the numerator
is zero in that case. The number of true positives TPθ can attain the value (bM · θeM) · P = θ∗ · P whenever the
latter is also an integer. For example, this always happens for θ∗ ∈ {0, 1}. But even when θ∗ ∈ Θ∗ \ {0, 1}, PTθ is
still only safe to use when M and P are coprime, i.e., when the only positive integer that is a divisor of both of them
is 1. Otherwise, there are always values of θ∗ ∈ Θ∗ \ {0, 1} that cause θ∗ · P to be an integer and therefore PTθ to be
undened when TPθ attains that value.

One solution would be to say PTθ := c, c ∈ [0, 1], whenever both the numerator and denominator are zero. However,
this c is arbitrary and directly inuences the optimization of the expectation. This makes the optimal parameter
values dependent on c, which is beyond the scope of this chapter. Thus, no statistics are derived for the Prevalence
Threshold PTθ .

A.23 Threat Score (TS) / Critical Success Index (CSI)

The Threat Score (Palmer and Allen, 1949) TSθ or Critical Success Index (Schaefer, 1990) is a performance measure
that is used for evaluation of forecasting binary weather events: it either happens in a specic location or it does not.
It was already used in 1884 to evaluate the prediction of tornadoes (Schaefer, 1990). The Threat Score is the ratio of
successful event forecasts (TPθ) to the total number of positive predictions (TPθ + FPθ) and the number of events
that were missed (FNθ).
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A.23.1 Denition and Distribution

The Threat Score is thus dened as

TSθ =
TPθ

TPθ + FPθ + FNθ


By using Eq. (B2) and (B3), this denition can be reformulated as

TSθ =
TPθ

P + bM · θe− TPθ


Note that TSθ is well-dened whenever P > 0. The denition of TSθ is not linear in TPθ , and so there are no a, b ∈ R
such that we can write the denition as Xθ (a, b).

A.23.2 Expectation

Because TSθ is not linear in TPθ , determining the expectation is less straightforward than for other performance
measures. The denition of the expectation is

E[TSθ ] =
∑

k∈D(TPθ)

k

P + bM · θe− k
· P(TPθ = k)

Unfortunately, we cannot explicitly solve this sum, but it can be calculated numerically.

A.23.3 Optimal Baselines

Although no explicit formula can be given for the expectation, we are able to calculate the extreme values of the
expectation and the corresponding optimizers.

Minimal Baseline Firstly, we show that θmin ∈ [0, 1
2M

) constitutes a minimum and that there are no θ outside this
interval also yielding this minimum. To this end,

E[TSθmin
] =

∑

k∈D(TSθmin
)

k

P + 0− k
· P(TSθmin

= k) = 0,

because D(TSθmin
) = {0}. This is the lowest possible value, since TSθ is a non-negative performance measure, and

hence, E[TSθ ] ≥ 0 for any θ ∈ [0, 1]. Now, let θ′ ≥ 1
2M

, then there exists a k′ > 0 such that P(TPθ′ = k′) > 0.

Consequently, E[TSθ′ ] > 0 and this means the interval [0, 1
2M

) contains the only values that constitute the minimum.
In summary,

min
θ∈[0,1]

(E[TSθ ]) = 0,

θmin ∈ argmin
θ∈[0,1]

(E[TSθ ]) =


0,

1

2M




Since θ∗min is the discretization of θmin it corresponds to 0. More precisely:

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TSθ∗ ]} = {0}

Maximal Baseline Secondly, to determine the maximum of E[TSθ ] and the corresponding parameter θmax, we
determine an upper bound for the expectation, show that this value is attained for a specic interval and that there
is no θ outside this interval also yielding this value. To do this, assume that bM · θe > 0. This makes sense, because
bM · θe = 0 implies θ < 1(2M) and such a θ would yield the minimum 0. Now,

E[TSθ ] =
∑

k∈D(TPθ)

k

P + bM · θe− k
· P(TPθ = k)

≤
∑

k∈D(TPθ)

k

P + bM · θe− P
· P(TPθ = k) =

1

bM · θe
∑

k∈D(TPθ)

k · P(TPθ = k) =
E[TPθ ]

bM · θe
()
=

P

M
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Next, let θmax ∈ [1− 1(2M), 1], then

E[TSθmax ] =

P∑

k=M−(M−P )

k

P +M − k
· P(TPθmax = k) =

P

P +M − P
· P(TPθmax = P ) =

P

M
,

because P(TPθmax = P ) = 1. Hence, the upper bound is attained for θmax ∈ [1 − 1(2M), 1], and thus, θmax is a
maximizer.

Now, specically for P = 1, we show that the interval of maximizers is actually [1(2M), 1]. Thus, let θ ∈ [1(2M), 1−
1(2M)), then 0 < bM · θe < M and

E[TSθ ] =

min{1,bM ·θe}∑

k=max{0,bM·θe−(M−1)}

k

1 + bM · θe− k
· P(TPθ = k)

=
0

1 + bM · θe− 0
· P(TPθ = 0) +

1

1 + bM · θe− 1
· P(TPθ = 1) =

1

bM · θe · P(TPθ = 1)

=
1

bM · θe ·




1
1

 M−1
bM ·θe−1


 M
bM ·θe




 =

1

M
,

which is exactly the upper bound E[TSθmax ] = PM for P = 1.

Next, to show that the maximizers are only in [1 − 1(2M), 1] for P > 1, assume there is a θ′ < 1 − 1
2M

that also

yields the maximum. Hence, there is a k′ ∈ D(TPθ′ ) with 0 < k′ < P such that P(TPθ′ = k′). This means

E[TSθ′ ] =
∑

k∈D(TPθ′ )

k

P + bM · θ′e− k
· P(TPθ′ = k)

=
k′

P + bM · θ′e− k′
· P(TPθ′ = k′) +

∑

k∈D(TPθ′ )\{k′}

k

P + bM · θ′e− k
· P(TPθ′ = k)

≤ k′

P + bM · θ′e− (P − 1)
· P(TPθ′ = k′) +

∑

k∈D(TPθ′ )\{k′}

k

P + bM · θ′e− P
· P(TPθ′ = k)

=
k′

bM · θ′e+ 1
P(TPθ′ = k′) +

∑

k∈D(TPθ′ )\{k′}

k

bM · θ′eP(TPθ′ = k)

<
k′

bM · θ′e · P(TPθ′ = k′) +
∑

k∈D(TPθ′ )\{k′}

k

bM · θ′e · P(TPθ′ = k)

=
1

bM · θ′e
∑

k∈D(TPθ′ )

k · P(TPθ′ = k) =
P

M


Hence, there is a strict inequality E[TSθ′ ] <
P
M

and this means θ′ is not a maximizer of the expectation. Consequently,
the maximizers are only in the interval [1− 1(2M), 1] for P > 1. In summary,

max
θ∈[0,1]

(E[TSθ ]) =
P

M
,

θmax ∈ argmax
θ∈[0,1]

(E[TSθ ]) =


1

2M
, 1


if P = 1

1− 1
2M

, 1


if P > 1

Since θ∗max is the discretization of θmax, we obtain:

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TSθ∗ ]} =


Θ∗ \ {0} if P = 1

{1} if P > 1
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